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The canonical Poisson structure of the microscopic Lagrangian is 

used to deduce the noncanonical Poisson structure for the macroscopic 

Hamiltonian dynamics of a compressible. neutral fluid and of fluid 

electrodynamics. 
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I. INTRODUCTION 

It has only recently become apparent that Hamiltonian structures 

exist for several common non-dissipative fluid models. This recognition 

had been delayed because of the near-universal belief among physicists 

that canonical variables were required for Hamiltonian formalisms. For 

example, in Zakharov's review (!), Hamiltonian fluid models were 

introduced in terms of canonical but unphysical fields. 

Great advantages accrue when a model can be formulated in terms of a 

Hamiltonian with physical variables. This was demonstrated by 

Littlejohn (~) for the single-particle guiding-center problem. The 

·current interest in fluid Hamiltonians was stimulated by Morrison and 

Greene's discovery of a Hamiltonian structure for MHO (~_), followed by 

Morrison's formulation of such a structure for the Vlasov-Coulomb and 

Vlasov-Maxwell systems (!). 
Morrison's approach (~) requires a considerable amount of 

ingenuity. An alternate approach, developed by Marsden and Weinstein 

(§), uses sophisticated group-theoretical techniques. A third method 

has now been introduced by Bialynicki-Birula and Hubbard (,Z), based on 

the corresponding microscopic model, which leads to the required Poisson 

brackets qui'te easily. They applied their method to the relativistic 

Vlasov-Maxwell system. In the present paper, their method is used to 

derive the known Poisson structures for non-relativistic compressible 

fluid dynamics (_~) and electrodynamics (~). Our derivation is far more 

elementary than pr.evious ones. As a slight generalization, curvilinear 

coordinates are employed. 

II. FLUID DYNAMICS 

Consider first a neutral fluid, one species for simplicity, composed 

of N interacting particles. The velocity-dependent part of the 

lagrangian is 
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L=[lmg (r.)vl!v~ . 2 · pv -1 1 1 
1 

The canonical momenta, 

pi - aL/avP
1
. = m g (r·) vv,. 

p pv -1 

satisfy the canonical Poisson brackets: 

{rl! pj} = o·. oP 
1' v lJ v 

(1) 

(2) 

(3) 

For a macroscopic model, introduce the mass and momentum densities: · 

p(~) = [ mo (~-.!:.i); 
i 

g (x) =\pi o(x-r.) 
jJ - '-:- p - ~1 

1 

Their brackets follow immediately.from (3); for example, 

= 2;: m o(~'-.!:_1.)(a/arP1.) o(x-r.) 
1 - 1 

where a _ a/axP. Similarly, 
p 

[ -g (X I) 
p-
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{4) 

{5) 

( 6) 



Next we consider functionals of p(~) and g~(~). For two such 

functionals F, G, we have {by the chain rule) 

(7) 

where F~(x)::~F /og (x), F (x)=oF/op(x). Now substitute (5) and {6) 
- ~- p- -

into (7), obtaining 

(8) 

To generalize to several (interacting) species, simply add species 

labels and sum over species. This is the result of Morrison and Greene 

(1). 

To include an advected quantity cri, define its density 

cr(~) _ I:Oi o(x-.!:_i). 
i 

By (3), we ·have 

For funct:onals of p, g, a, we find an additional term for (8): 
~ 
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fd3x [- Fll(a G )a+ G (a F )a] , 
ll a ll ll a 

(10) 

where F = oF I o cr( x ) • 
a -

III. FLUID ELECTRODYNAMICS 

To allow for interaction with the self-consistent electromagnetic 

field, we generalize (1) (for one species) to 

L = L l m g (r.) v~ v~ + l Jd3x(aA /at)(aAll/at) 
i 2 ll\1 -1 1 1 2 ll 

where E (x)=-aA /at (in the radiation gauge). 
ll - ll 

canonical momenta are 

while the canonical field conjugate to A is 

. 
_ all aA)~) = A"(~) = - E" (~) . 

The canonical brackets are 

~ ~ll uij u\1, 

( 11) 

The· particle 

(12) 

(13) 

(14) 

It is now straightforward to calculate the brackets connecting£, I' ~: 
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{15) 

where B (x) = a A (x) - a A (x) = E , s>-(~); 
lJV - ll V - V ll - lJV" 

{16) 

(17) 

Moving on to the kinetic momentum density i' we find 

a(x-x')(e/m)p(x) B (x) + Eq. (6); 
-- - lJV -

(18) 

a(x-x')(e/m)p(x)a". 
-- - ll 

(19) 

Finally, for functionals of~' p, a, I, ~' we obtain 

{20) 

where E £. = aF/ai, F8 _ aF/aB. 

To generalize to several species, simply sum {20) over species; there 

are no cross terms. This result agrees with that obtained by Spencer 

(~). 
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