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Optimal Choice of Directions
for the Reconstruction of an Object
from a Finite Number of its Plane Integrals
by
Audrey M. Tam

Abstract

The density of hydrogen nuclei in an object is a function f(z.y.2) wifh com-
pact support whosei plane integrals can be approximated by nuclear magnetic
resonance (NMR) measurements. Shepp [21] considered the problem of recon-
structing f from a finite set of projections, i.e., integrals over N, equi-spaced

planes which are perpendicular to 4, for each of N directions @,, . . ., Uy:

P(t,m;) = [f(x)6(zq; —t;)dz
R3

The numerical implementation of the inversion formula

P N
f(z) = Bn? ‘szP (z-uw)da,

qe

2
where P"(t,7) = d%-z;—P(t.ﬂ)

has three major steps: d_second—derivative approximation and iritérpoiation of a
function of one variable, ahd Quadrature over the unit sphére, S? In vthis papef.
we concentrate on finding qﬁadrature formulas for functions defined on S?, in
'order‘to efﬁciently' implerﬁent the inversion formula. Since, for each Z, the
integrand P"(Z -¥,%) is an even function of %, we are particularly interested in
quadrature formulas for ever functions. Product-space formulas, as in [15] and

[21], are convenient, but inefficient.
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We show how a large number of .basis polynomials are automatically
integrated by formulas which are invariant with respect to the group of rota-
tions associated with one of the regular solids -(tetrahedron, octahedron-cube,
dodecahe-dron—igosahedron). Formulas of this type have been extensively inves-
tigated by Sobolev, et al., see [9], [11], [19]. [23]. We describe the method of

McLaren in detail and outline the method of Lebedev and Konyaev.

In an effort to simplify the procedure for finding icosahedral formulas, we
‘eliminated one of the three degrees of freedom associated with a node by
assigning the same weight to each node. The resulting system of non-linear

equations can be solved by numerical methods, but good initial guesses, as well

as some preliminary manipulations, are still needed.

Griinbaum [4] proposed the heuristic principle that, for large N, a godd set
of nodes i, . . . ,Zy could be found by minimizing the potential energy due to N
pairs of electrons positioned at +%;. Numerically minimizing this function of 2N
variables is practically impossible. for N > 200, however. We reduced -the
number of v&riables by a factor of 60 by requiring that the set of points consist
of several icosahedral orbits. This method of finding quadrature nodes is almost
"automatic”, requiriﬁg no special adjustments beyond a good initial guess.

We compare the different_quadrat-’ure formulas by reconstructing a three-
dimensional model of a human head. The uniform-weight and equilibrium distri-
butions perform as well as product-space methods which use twice as rnaﬁy

‘directions:

®
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Introduction

The density of hydrbgen mi’clei in an object is a function f (z,y,z) with com-
pact support whose plane integrals can be approximated by nuclear magnetic
resonance (NMR) measurements. Shepp [21] considered the problem of recon-
structing f from a finite set of projections, i.e., integrals over N; equi-spaced

planes which are perpendicular to 4;, for each of N directions @,, . . . , Ty:

P(t,a;) = [f(Z)6(zg; —t)dz
R3 .

In Chapter 1, we give the derivation of the inversion formula

F(z) = _8312 fP"(:T:"E.ﬂ)d". where P"(tiZ) =

it
]
—
o
|
Sa”

and Shepp's basic algorithm for implementing it. The algorithm has three major
features: a second-derivative approximation, linear interp§lation. and quadra-
ture over the unit sphere, S?." Shepp tested this algorithm by applying it to
measurements taken from a three - dimensional model of a human head, which

we describe in Section 1.2.

For any finite set of directions, &,, . . . , iy, there exist non-zero functions
g(z,y,z‘) wilose projections along @,, . . . , Uy are all zero. The null-space of the
finite tWo-dimensional Radon transform has been studied extensively by Smi_th,
et al, see [22]. Louis [15] proposed a condition oﬁ the set of directions,
iy, ...,Uy, which minimizes the effect of these functions on the reconstruction.
He observed that this condition could be satisfied Qsing approximately half of
the directions which Shepp used.  He also pointed out that the number of plane
integrals per direction, N, is tied to N, the number of directions. There is an

optimal choice of N; and taking more than this number of measurements actu-

ally increases the error in the reconstruction.



Both Shepp and Louis perform the numerical integration by discretizing the

spherical coordinates parametrization of integration over S?,

m 2w
Sr@) = [ simﬁdv{ f(8.9)de. Shepp
82
n/2 2n
Jr@) =2 [sinsds [ f(8.9)de. Louis
s2 0 0

using N, equi-spaced points on each of Ny co-letitudes (product-space quadra-
ture). - This is not a very efficient choice of nodes, since there are a large
number of nodes clustered near the pole.s, while the nodes nearer the equator .
are spaced fartnef apart. In addition, the contribution of each point is weighted
by sind, where ¥ is its co-latitude. Hence, a point which is nedr a pole is
weighted by a small amount, while the weight of a point near the equator is

almost 1.

We decided ‘to coneentrate on the problem of finding good quadrature for-
mules for functions defined on S2 Since, for each Z, the integrand PYE-T _,ﬁ)
is an even function of Z, we are particularly interested in quadrature formules
for even functions, e.g., formulas which exactly integrate all even polynomials in
.f,y and z up to some degree ZK. There are (K+1)(RK+1) independent even
polynomials in z,y and z of degree less than or equal to 2K. Thus, the nodes
and coefficients of a 2Kth degree quadrature formula must simult-aneousvlyv
satisfy (K+ 1)'(2K+1)'equations. In Chapter 2, we show how a large number of
these constraints can be -eliminated by resiricting the search to formulas which
are invariant with respect to the group of rotations associated with one of the
regular solids (tetrahedron, octahedron-cube, dodecahedron-icosahedron). The
remaining constraints involve only polynomials which are also invariant with

respect to this rotation group.



An invariant quadrature formula has the form
1) = ¥ s @),
i=1. k=1

The action of the finite rotation group on a node i; produces n; distinct points,

the orbit of i;. The members of this orbit have the same weight, a;. -

McLaren [19] derived several efficient low-order quadrature formulas,
invariant with respect to either the octahedral grdup or the icosahedral group.
The procedure he uses to find these formulas is relatively easy to implement,
but cannot be applied to obtain formulas of order greater than 18. We demon-
strate this procedure by deriving an even 91-point 18th-degree formula.
(McLaren's formulas integrate both odd and even functions, and the last formula
he derives has order 14.) |

Lebedev [11] used a much more éomplicated method to produce octahedral
formulas. We outline this procedure in Section 2.4. Konyaev 9] derived a 302-

point 29th-degree formula by adapting this method to the icosahedral group.

_ His formula is especially efficient, for our purposes, since he restricts his points

to lie on the edges and medians of the associated icosahedron. This restriction -
produces icosahedral orbits which consist of 30 antipodal pairs. Thus, we could
integrate even functions using only half of his set of points, i.e., we could

integrate up to degree 2B using.only 151 points.

‘Konyén_ev does not fully describe his method for finding this fofmula. It
seems likely, however, that this procedure might alsb be limited in its range of
application. Certainly, placing too rﬁany points on the edges and medians of the
icosahedron will eventually produce a clustering of points aﬁd, pr&bably, a

reduction in efficiency.
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Hoping to simplify ihe procedure for finding icosahedral formulas, we
decided to sacrifice some of the efficiency of the formulas found by McLaren and
Konyaev. We eliminated one of the three degrees of freedom associated with a
node by assigning the same weight to each node. The resulting system of non-
linear equations can be solved by numerical methods, but good initial guesses,

as well as some preliminary manipulations, are still needed.

In Section 3.3, we combine two ideas to produce another method of finding
nodes for uniform-weight quadrature formulas. Griinbaum [4] proposed the
heuristic prmciple that, for large N, a good set of nodes i,, . . . ,Zy could Be
found by minimizing the potential energy due to N pairs of electrons positioned
at +i;. Numerically minimizing this function of 2N variables is practically
impossible for N > 200, however. We can reduce the number of variables by a
factor of 60 if we require that the set of points consist of several icosahedral
or.bits. This method of finding quadrature nodes is almost "automatic"”, requir-
ing no special adjustments beyond a good initial guess. Better convergence
might be obtained by devising an optimization routine speciﬁcal_ly téilored for

the function

N 60 120 N
Q- 5= 2D = 80| ), dy; + ) dej + -+ Y dysej |,
j=2 j=82 . J'=N-58
where dj; = — 1,_ — 4. ’;_ 1 _
| & ] | | Ty + uy |

(The second term in dy; is the potential due to the electron at —i;.)

In Chapfer 4, we compare the results of simulation experiments conducted
with the different quadrature formulas. The unifor_m—weight and equilibrium
800-point distributions perform as well as Shepp's or Louis' methods using twice
as many directions. We conchide by summarizing the strengths and weaknesses

of the methods we have.described.



Chapter One: Methods of Shepp and Louis

1. Inversion Formula
Definition: Let f: R3-R be a continuous function with compact support. The

Radon transform of f is the function

P(tm) = [f(z)6(zT —t)dz
. R3

where t&eR, Z£S? (the unit sphere), and Z¢R3,

Remark: The points £ which satisfy Z-Z = ¢ form the plane which is perpendicu-

lar to the direction Z, at distance ¢ from the origin (0,0,0). P(-t,—Z) = P(t.z),

since Z-(~#) = —t,
Now define
N o_ 1 -
m(x) = i g;P(u I, u)du
We can rewrite this as
dz'dy'dz'

mE) = g 1@y g e

(z' =z + (y' ~y)* + (2 —2)*
Then 2-m(Z%) can be viewed as the electrostatic potential of a field E, with

charge density f(Z) and (8, p.58]

F(&) = dvE = ———Vm(z)

Thus, if P(¢,@) is known for all values of ¢ and Z, f(Z) can be uniquely
recovered. (This formula, publishéd by Radon [20] in 1917, was already known to
Lorentz in 1906, see [2],[R4].) Typically, however, we have only the values

P(ti,ﬂj), i.e., some finite number of plane integrals along each of some finite

" number of directions. The interpolation and numerical quadrature required to



compute m(Z) from this data would create a large amount of distortion, which
would be compounded by the discrete Laplacian. A more convenient inversion

formula can be derived by manipulating the Fourier transforms of f and P.

For each @, the one-dimensional Fourier transform of P(t,Z), 1‘5(3 ), is the

three-dimensional Fourier transform, fN(s'aI), of f along «:
fP “‘s‘dt = ff (£)e 52 Tdz

The inverse transform of f (in spherical coordinates) gives

32n n
f(z.y,z) = Re [ fd¢fd19fds £ (s 8,9)s%singe

321|' w ’
_{4] fd;afdﬂfds 7 (s .9,¢)s%sinde ™, (1.1.1)

since f( -s,8,9) = _f(s ¥,¢) (f is real), while the inverse transform of Pis
_ 173 ist
Pt 8,¢) = g_j;P(s,ﬂ.;a)e‘s ds.
Formally differentiating this twice with respect to £, we get
D ) = 1_“'" 2, st
P'(t8,.¢) = - LP(s,ﬂ,go)s ] ds,l
which, substituted into (1.1.1), gives
| 1 2n n
z,Yy,2) = —~—=fde{dB8P"{t 9,¢)sind,
f(z.y.2) Bﬂzjo'_ v{ (t.9.9)

where t = Z-@Z is the distance along Z to the plane perpendicular to @ which
contains Z. This is just a particular parametrization of the more general for-

mula

f(&) = ——5 [ Pzaa)du (1.1.2)
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This formula can be implemented using a discrete (one-dimerisional) second-
derivative formula, followed.by interpolation and numerical quadrature. We

'_ describe a particular implementation in Section 3.



2. Head Phantom

In actual tomography or zeugrnatbgraphy [10]. the error in the reconstruc-
tion can résult from noise or error in the measurement of the data, as well as
from the algorithm. To isolate the error which is due to a particular implemen-
tation of (1.1.2), the data is computed directly from a phantom -- a three-

dimensional model of a hurnan head, consisting of 17 ellipsocids:

inner and outer skull (), densities 2. and 1.02

left and right ventricles (2), density 1.

eyes,ears,nose and mouth (6), incremental densities -1,1,1.5,-1
‘assorted tumors and a blood clot (7), densities 1.03 and 1.05

(This is Shepp's extension of his two-dimensional head phantérn {1‘3]. Except for
the top and bottom of the skull, the three-dimensional phantom is contained in

S? The exact data for the ellipsoids is listed in Table 1. ) The equation of an

ellipsoid with
center at £y = (Z0,Y0.2¢)
orthonormal axes 7;, i = 1,23
lengths of semi-axes a;, 1 = 1,2,3
is

= (@ -0 [ |
iZjl 101—] < 1

The area of the intersection of this ellipsoid with the plane ¢ @ = ¢ is

A = mayagas(s? — £*)sS,
where
t=t - ()
s?=oafat + afaf + afaf

and A = 0 if s® - £* < 0.



e — e T T T T Table !
17 - ellipsoid Head Phantom
outer 0. 0. 0. 0.723 0.964 1.270 2.000 1.000
“skull 0. 0. 0. 1.000 0. 0. 0. 1.000
inner 0. -0.018 -0.019 0.701 0.925 1.224  -0.980 1.000
skull 0. 0. 0. 1.000 0. 0. 0. 1.000
right 0.220 c. 0.381 0.110 0.310 0254  -0.020 0.951
ventricle -0.309 0. 0.309 0.951 0. 0. 0. 1.000
left -0.220 0. 0.381 0.160 0.410 0.381 -0.020 -0.951
ventricle | -0.308 0. -0.309 0.951 0. 0. 0. 1.000
left -0.080 -0.605 0.381 0.046 0.023 0.023 0.010 1.
tumor 0. 0. 0. 1.000 0. 0. Q. 1.CCC
center 0. -0.605 0.381 0.023 0.023 0.046 £.010 1.
tumor C. 0. 0. 1. 0. 0. 0. 1.
right 0.060 -0.605 0.381 0.023 0.046 0.023 0.010 1.
tumor C. 0. 0. 1 C. 0. Q. 1.
. 6. ,  0.100 0381  0.046 0.046 0.046 0.010 1.
old "r 0. c. 0. 1.0 0. 0. 0. 1,
L . -0.100 0.127 0258 0258 - 0258 0.010 1.
old g 0. 0. . 1.0 0. 0. 0. 1.
. 0. 0.350 0.381 0.210 0.250 0.230 0.010 1.
old e C. 0. 0. 1.0 0. 0. C. L
blood 0.560 -0.400 0.381 0.030 0.200 0.200 0.030 0.919
clot -0.338 0.202 0.345 0.938 0. 0.190 -0.070 -6.979
: 0.258 0.753 0. 0.127 0.127 0.127  -1.0 1.0
left eye : .
0. 0. 0. 1.0 0. 0. 0. 1.
_ -0.258 0.753 0. 0.127 0.127 0127 -l .
| Tlghteye | 0. 0. 1.0 ) 0. 0. L
0. 1.140 -0.196 0.127 0.340 0.170 1.500 L.
nose 0. 0. 0. 0545 _ -0.839 0. 0.839 0.545
0. 0. -0.762 0.458 0.810 0.508 -1. -1.
mouth 0. 0. 0. 1.0 0. 0. 0. L
0.708 -0.138 -0.181 0.084 0.318 0.318 1. 0.990
left ear
-0.109 -0.087 C.109 0.994 0. 0.088 -0.009 0.996
- -0.708 -0.138  -0.191 0.064 0.318 0.318 1. -0.990
rightear | 109 -0.087___ -0.108 0,994 . -0.086 -0.008 0.996

Table 1 gives the center (z4,y0,20). the lengths (a; a5,a3) of the semi-axes, the

incremental gray level (G)., the coordinates (v,;,v12.%3), (V2,.V22.v23).

(V31 Va2, vg3) of the 3 orthonormal axes of each of the 17 ellipsoids corresponding

to the head part indicated. "old f g,e" refer to the tumors used in [13].
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3. Reconstruction Algorithm

Let J (z.y.2) be the density function of the head phantom. We assume that,

for each of N directions, we have the integrals of f over N; parallel planes at

intervals of h = . Le., we compute the plane integrals

Ny =1

P(t; &)  1<j<N , t; = (i = 1)h — 1, 1<i<N;.

There are-three parts to the numerical implementation of (1.1.2). Here, we
describe Shepp's discretization. The other methods which we will discuss differ

primarily in part (c), the quadrature formula.

(a) asecond-derivative formula to get @(t; ;) ~ P"(¢;.%;)
- 1 _ — _
QL ;) = h—g{P(tH—l-uj) - RP(t, ;) + P(t;14;)]
(b) an interpolation formula to get @(t,@;) when ¢; <t < t;,,
_ _ t -1t _ N1
Q(t ;) = @t %) + T[Q(ti+l'uj') - @(t;.1;)]

(¢) a formula for numerical integration of functions defined on S?, i.e., a set of

directions, 4, . . ., iy, and a set of coefficients, ¢y, . . ., ¢y, such that, for

iivcjg(ﬂ,-) ~ [g(@)da.
s2

‘Remark: Since P(Z-u,¥) is an even function of @, the plane integrals along —«
provide the same information as the plane integrals along . By a set of direc-

tions, we mean one which contains no antipodal pairs.

Shepp’s choice of directions is suggested by the spherical coordinate parametri-

zation of (1.1.2):



i1

) : 2 H
f(z) = ———1——fd¢fd19P"(fﬂ,ﬂ)sim9.

where T = (z,y,2) and 7 = (sindcosyp, sin¥sing, cosy¥). This can be discretized

as
: Ng N
iy = _ 1 om 2m 0 AT
T ngkgl sind; Q(Z Ty, Tz )
where

Uy = (sim?,—coéga,; . sind;singg |, cosﬂj)
' . iy .

- -— — < <
¥ = (J %2 Ny 1 J» =< Ng

21
gok:(/c—l)']v——, IS]CSN¢

¢
and Ny N, aré odd integers to prevent redundahcy in the set of directions.
We will refer to this type of formula as a product - space formula, since its '
nodes are the points‘ on S whoée spherical éoordinéﬁes are all possible ordered

pairs (U;, ¢, ): for some set of id}{-and some set of g}

'Shepp tested thié algorithm on thevhead phantom, using ng_‘= Ny iand

Ng = 1()'1 to reconstrucﬁ the 2 = .381 plaﬁe, whiéh.passes throdgh the centers of

most of the tumors. More pféc{sely.' the values of f were computéd on a:lzBrx

128 grid of the square .[-1,1] X [-11] Satisfactory reconstruction of the com-

plete 17 - ellipsoid phantom required 99 x 99 directions. (A reconstruction was

.judged' to be satisfactory if the three small tumors- could be readily dis-
tinguished. ): However, if the "high - coritrasf” features were removed, the-

resulting 11 - ellipsoid phantom could be r‘ec.onstructed using only 25 x 25 direc-

tions. The high - contrast features are the eyes, ears, nose and mouth, which

"cast tangents" into the p[ane of reconstruction.
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4. Louis’'s Modifications

Given any finite set of directions, @,, . . ., iy, there exist non-zero functions

g(x.y,z) such that
Py(t. %) =0 aet, I<igN.

These functions belong to the null space. of the "discrete” Radon transform.
Louis [15] calls them "the ghosts aséociat‘ed with the set of directions
iul ,,,,, uy} (not to be confused with the head "phantom" described in Séction
Two). The null-space of thé finite two-dimensional Radon transform has been
studied extensively by Smith, et al., see [R2]. A density function, f'. can be
uniquely expressed as the sumvof a ghosp, g. and a non-ghost, 2. le., h isin the
orthogonal complement of the null-space of P(t,ﬁi). Using the plane integrals

along ¥,, . . ., iy, we can recover, at most, only the non-ghostly part of f.

Louis [15] proposed a condition on the set of directions, Z,, . . . , @y, which
ensures the near-absence of lower frequencies in this set’'s ghosts. If the ghosté

have negligible Fourier coefficients for frequencies s < K, we can hope to accu-
rately reconstruct details of size % In order to present this condition and its

consequences, we will need some definitions and properties of spherical harmon-
ics.
Deﬁnitioh: A polynomial, V,(z,y.2z), homogeneous of degree n, is-an n-degree

spherical harmonic if V¥V, = 0.
A general homogeneous polynomial of degree n' has é—(n-&-l)(n +2) coefficients.
V2V, has degree (n—2), or é—(n—l)n coefficients which must be zero if I}, is a

spherical harmonic. This gives é—(n—l)n conditions on é—(n+1)(n+2)

~ coeflicients, which means that V;, is determined by only 2n + 1 coefficients. An



orthonormal basis for the space . Qf,n;deg,ﬁee-srpheri’cad“lrfa?rfn“o—m'—é—s"fsﬂg'i;gEgyﬂ the

2n + 1 functions [17]

[ on (nalmn|™* cos myp
=Y = ! |m | .
A 12n+1 n—lml)!} Ta™ (cosd) sin|m |g
4 -1/2
K@) = |Gt Pa(cosd)

where Z = (sin¥cosg,sindsing,cosd),

dm

T,T(Z) = (_1)m(1 _zZ)m/é e

Pn(z),

n R
and P,(z) = (2"n!)™! :x" (z® — 1)® are the Legendre polynomials.
The reader is cautioned that this is not the standard notation. 7% more com-

monly appears as (=1)™ Pq*.

A spherical polynomial of degree n is a linear combination of spherical harmon-

ics of degree =n. An arbitrary m-degree spherical polynomial has (n+1)?
coeflicients. An even or odd spherical polynomial of degree n has —é—-(n+1)(n+2)

coefficients.

Theorem (Louis) Let g(z,y.z) have support in the unit ball and suppose g is a

host function of the set of directions #,,...,4Zy. Let K=1 be such that
g
é—K(K+1)sN. If €,,....%y are not roots of any spherical polynomial of

degree =(K—1), theng(sZ) N Qfor |s| < K+é—
Proof: If g(z.y.z) has support in the unit ball, then P, (¢ .Z) = 0 for [¢t| =1, and
the Radon transform of g can be expanded in terms of the Gegenbauer polyno-

mials, G¥/?(t), which are orthogonal over the interval [-1,1] with respect to the
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weight function (1 — t2):
Py(t) = (1= %) 3 GY*(t)gn (@) (1.4.1)

where the coeflicients, g, (Z) are

m + -g—— 1 v
Im (T) = e !:Crﬁ’z(t)Py(t.i)dt

The conditions of Helgason [7] and Ludwig [16] require that g,, (Z) be a spherical
polynomial of degree m. Recall that P(-t,—u) = P(t,Z) (Section 1.1), i.e.,
P(t.Z) is an even function. Then the fact that G2 is odd if m is odd, and even

if m is even, requires that the same be true of g,,. Thus, we can write g, as

gm (@) = dyrsie (7)) (1.4.2)

If g is a ghost, then Py (t %) =0 for 1<i<N. From (1.4.1j. gm () = 0 for all
m and for 1 <1i < N, since the Gegenbauer polynomials G ?(t) are'liﬁearly
independent. If iy, . .., %y are not roots of any spherical ptﬁlynornial of degrée
<K, then the coefficients dpy in (1.4.2) must be Ofor allm < X, i.e., gn =0 for

m < K,

Remark: Let M = éf(m + 1)(m + 2) and denote the M spherical harmonics

{YF 0<l<m,m+leven -l <k<l} by Z,,....Zy. Then the condition on
the set of directions #%;,". . ., Uy-is equivalent to the linear:independence of the

columns of the N x ¥ matrix Z =[ Z; (%)]. This is.possible onlyif # < N.

Now, with g, = 0 form < KX,
Py(t@) = Zxaﬁ’z(t)qm(ﬂ), (1.4.3)
m=

The Fouriertransform of g is the one-dimensional Fourier transform of 7, (t.Z):
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9(sm) = Fyls @) = 3 [(1 =) GX*O] ()am(@).

Since G 3(t) = P'yp +1(t), where P (t) is the mth Legendre polynomial,

(1-t9 oy = @ENmIB p ) _p o))

From a table of Fourier transforms [18],

/2 -
4t 1_(3)—Jm+g_(s)]

m+2

[Pn(t) = Prmsa(®)] (s) = (=) |20

() VERs ¥ 22(m + D). 5(s),
) 2

where J,(s) is the Bessel function of-the first kind. Substituting this into (1.4.3) -
gives

Jew) = bns ¥ a@)aa@ (44
where

km = (=)™ VER(m + 1)(m +2)

Louis asserts that, since J,(s)®~0 for |s|<v-1, 5.(317) is "small" for
|s| <K + %—- We were unable to reconstruct a proof of this statement, althoﬁgh
we have no reason to doﬁbt its vélidity. Using the bound {25, p. 255],

Jvz) < e VN2 . (1 —z?)"1/4. (2ry)~1/R - (1.4.5)

for vlarge and 0 < z < 1, and with
V1 =2
Nz) = ln,l_“‘__;l_L_ V1 - 2%,
we could only prove the weaker statement:

g(sZ) » O uniformly as v » = if z = li—<1—s, for £ > 0.
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The main obstacle is the fact that A(z) = 0 for z close to 1. Rewriting (1.4.4), we

get

3(sa) = VERS V2 3§ (s (m + D7 a(6) [ XA Pt a)at
m=K mtom Yy

Taking absolute values and replacing J,(vz) by the expression in (1.4.5) gives us

1

~WA(z) .
¢ [ CYAt) Pt @)t |,
-1

|g(vrz)| = (z8-28) /¢ i
v=K+3/2

v

We bound G¥? by its maximum value, %—(m +1)(m +2) and denote the integral

of P(t. @) by I. Writingm +1 as V—-é—. and m +2asv+ %we obtain

~ —_— ] - = . - 4
Fvzm)| = £(28-2H)4 Y e -
B v=K+3/2

Now, if z < 1 —¢, then A(z) >0, and e ™M) <

(—u}\_?.-r!_sF This gives us

6 ¢ 1._1
)\3(2) v=K+3/2 Ve v

lg(vz)| < é—(zﬂ_za)-lu,

The summation is less than 1 1 and v
K+ =
2
_ 2z 2
(z8 - 28V <
1 V3 )
a(1-2) 2vs.:r:<1 £

Thus, K can always be chosen to make:this bound less than some ¢’
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Choice of Directions

The set of directions which Shepp used in his algorithm (Section 3) fall on-

the longitudes

p=(k - 1)]?% 1<k<=N,

14

and are therefore roots of the spherical harmonic, ¥, ™), where n = N,. If g is

a ghost function of this set of directions, its Fourier transform,

§sT) = 3 knsV2T  5(s)qm(@)

m =0 2
has g, =0 for m < N,—1, providedﬁthat @, . ... Zy are not roots of any lower
dégree polynomial. But this can be accomplished using only -é“—N‘,(Nqp + 1) direc-

tions, instead of the N? directions which are generated by Shepp’é choice of
Ng =N, In fact, a slight modification ofv Shepp's set of directions gives the

-é—N_q,(Nq, +1) directions
Ly, = (sirrd‘,-c:Ss;a,c ,sind;singy , cos¥;)

B N S | '
13,-—(] Z)Ng'*'l' lS]Sz—(ng"‘l)v

¢ = (k —1)]%"—, 1<k = N, (as before)
: @

Louis [15] performed simulation experiments using this set of directions to
reconstruct the head phantom described in Section 3.© However, the eyes, ears,
nose and mouth wefe not included in the calcﬁlation of the projections P(t; )
in order to obtain reasonably good reconstructions from relatively small sets of

data.

Louis computed f at 128 equi;spacéd points on each of the lines y = .23

and y = -.805 of the plane 2 = .381, comparing
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(@) N, =25 Ng=13, N =N, Ny =325, N, =51
and
(b) N,=35 Ng=18,N =N,  Ng=630, Ng =71
with
(¢) N, =25 Ng=25 N =N, Ng=625 N, = 101
He concluded that (a) achieved roughly the same resolution as (c), i.e., the

significant details of the phantom were visible, and that (b) did better than (c¢).

Optimal Lateral Sampling

It is important to noﬁe that Louis varied a parameter that Shepp left fixed.
" Recall that Shepp took as his data the values of P, (%;.%Z;) for N directions Z and
Ns equi-spaced values of t. He used N; = 101 in his simulations, regardless of
the value of N,, remarking that, to achieve higher resolution, a larger numb.e'r of
plane integrals per direction would be needed. Louis, however, reasoned that
the Shannon sampling theorem implies a relationship between the set of direc-

tions and N;. If the Fourier transform of an object is "known" (i.e., not affected

%—, its Nyquist frequency is 1—. For

. . . : +
by ghosts) inside a ball of radius K KT 1

the set of directions which Louis used, K = N,. Hence,

This seems to be a (locally) optimal choice of Ny -- for example, increasing the
value of N in (a) to 75 or 101 aétually increases the L? error in the reconstruc-
tion. This fact is surprising since a larger number of measurements (on the
same inteﬁal) should give a better approximation to the function, P (¢ @),
hence, to P";(t,@). Louis’'s explanation for this phenomenon is that the low -

order quadrature formula cannot handle the high - frequency parts of the more
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 accurate approximation to the second derivative.

Shepp’'s Method with Optimal Lateral Sampling
It seemed likely thaf. Shepp's set of directions would produce better results

if a smaller Ny were used. In particular, these directions also eliminate the

effects of ghosts inside the ball of radius N, + é— By Louis's argument, there-

fore, the best results should be obtained by using N; ® 2N, + 1. However, when
we re-tested this set of directions, allowing N, to vary, we found that the optimal
Ns; was not the inverse of its own Nyquist frequency. Instead, the lowest L?

errors resulted from using

N, N 2K +1, ﬂ";—”)—szvs g(+v1)2(1(+2)| Kodd.  (1.4.4)

With this value for N, Shepp's' directions produced a lower -'Lz,errof tha‘n.a com-
parable number of Louis's direétions (see Table 9, Sec. 4.1). . |

K - 1, with K defined as in (1,4.4), is the "expected”" order of a fixed-node
N-peint quadrature formula for even functions defined on thé sphere. ThlS type
of formula has one free parameter for éach node -- its weight, a; -- and so v}e

expectvto be able to satisfy N constraints. In particular, if this quadrature

integrates well the first %K(K + 1) even spherical harmonics, i.e., those of even

degree < K -1, then its orderis K —1. Note that, for Louis's method, K = N,
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5. Order of Product-Space Quadratures

Any function in L?{S?%) can be expanded in a series of spherical harmonics.
Just as a one-dimensional quadrature formula is exact for polynomials in z up to

some degree p, we can look for quadrature formulas
1) = Sous @)~ [ 1@ (5.0
t=1 S

which exactly integrate all spherical harmonics up to some degree p. With three

variables, however, such a formula must satisfy (p+1)® equations (or

-;—-(p + 1)(p + 2) equations, if only even functions must be integrated):

N
Y oo = 4m
i=1
N .
Yo Ya(®) =0, -m=n<m, 1sms<p (m even)
izl
where {Y;™ .. ., Ym} is the orthonormal basis (defined in Section 1.4) for Yn,

the space of m-degree spherical harmonics.

A quadrature formula (1.5.1) is exact for all spherical polynomials of degree <p

- if and only if

E, = ﬁ @ a; P (%,2;) = 0 (1.5.2)

=1

for Legendre polynomials of degree m'<p, m # 0. This property is a result of the

addition theorem for spherical harmonics:

_ 41 & _
Pm(Z-7) = o——— )} YR(@)YR(9). m=0.
n=-m

Substituting this into (1.5.2), we see that

. Z o) = 37 2
la.,,a.J P (T.T;) om + 1 HI(YR)112,

™=

.
~a,
(]



_1

where

N
[[(Y"_Lm) i=la’t Ya (’LL,‘)

.
Zlaa Yo(:)

Thus, (1.5.2) is true if and only if the quadrature formula, {a;.%j, exactly

integrates all spherical harmonics of degree m <p, m #0.

The quadrature formulas used by both Shepp and Louis integrate a function

of two variables by repeated 1 - dimensional quadrature. Shepp discretizes
. 2n _ _
[ sinvds [ f(¥¢)de.
0 0

Louis restricts his nedes to the upper hemisphere. discretizing

n/2 . 2
2 [ singdd [ f (¥, ¢)de.
0 [o] .

Both methods use nodeé of the form

Ty = (B, 95)
1, m
= _———) —— =
19.,' ('L Z?Md, 1<t N,g
y 2 ,
®; = (y—l)-NL. l<j=<N,
¢

l.e., the nodes lie on N, equi—sbaced meridians and N, co-latitudes equi-spaced

T
2M

v
My

between and (BNg—1)

- The order of a prodﬁct -.spéce quadrature formula depends on the relationship
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between Ny and My To illustrate, we list the values of £,, 0 = m < 52 m even,

for 4 cases:

1) N, =25 My =26, Ny
2) N, =29, Mg=22 Ng=11
3) N,=Mg= Nyg=25 (Shepp)
4) N,=49, Mg=12 Ny=6

13 (Louis)

FEpfor2=m <52 m even —
N,=25| N,=29 | N,=25 | N, =49
Mg=26 My =22 My =25 Mg =12
Nﬁ=13 Ny =11 Ny =25 Ns=6

m | N=325 | N=319 | N=625 | N =204
2 .00006 | ..0001R .00007 00134
4 .00006 .0001R% .00007 00146
8 .00006 .0001R .00007 00168
8 .00006 .00013 .00008 00205

10 .00007 .00014 .00008 00267

12 .00007 .00015 .00009 00379

14 .00008" .00017 .00009 00598

16 .00008 .00019 .00010 01100

18 .00008 | -.00022 .00011 02568

20 .00010 .00026 .00013 .09443

22 .00012 .00032 .00015 | 1.39288

| R4 .00014 .00040 .00017 | 5.07027

26 | 2.56597 -.00052 .00021 .00022

28 .23085 .00071 .00026 .00028

30 74713 | 2.13813 .00033 | .00037

32 .10851 .18290 .00043 | - .00051

34 39315 .68696 .00059 .00076

36 05094 .08435 .00086 | .00119

38 .RO6R2 41725 .00133 .00208

40 .02178 .07494 .00226 .00419

42 .19676 | 1.05408 | . .00444 .01061

44 .00885 | 2.78538 .01092 04204

46 .18814 .37886 .04200 .66383

48 | .04090 .06760 84431 | 2.57347

50 1 1.60807 87432 | 3.21987 | 1.46635

92 | 2.75052 14210 .33782 .00882

E,, measures the error in approximating the integrals

82

sin

2n b .
fY,“,,(ﬂ.cp) = f[-cos}'n;odgof TR (cosd)sin$dd, -m<n<=m
0 o
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By performing each quadrature separately, we determined that, for N, odd, the
one - dimensional quadrature over ¢ is exact forn < N, —1, n even:
2n

N .
nz"cosn_zfcosnd
My /= |sin i } |sin |9 e

and the one - dimensional quadrature over ¥ is exact for n # 0:

, L
siny; TR (cosy;) = fsimS TZ (cos¥)d.
0

Thus, form < N, — 1, £, is exactly the quadrature of the mth Legendre polyno-
mial:
: 2

el I 3 o BT Y, sin®; Py (cosd;)} .

Em = 2m + 1 | Ne N, &,

Now, examining the list of values of E,,, we see that £, is small for m <<"2Mq,,
increases sharply near m = ZMﬂ; and then repeats this pattérn. Thus, thé Ep
values for Louis's method, with N, & My, are small for m < N, — 1, and then are
dominated by the error in the ¢ - quadrature. The £, values for Shepp’s
method, on the other hand, increase gradually, with a large error at
m =2M; = 2N, Usihg ﬁddes in the lower hemisphere as well as the upper hemi-

sphere, with the ¥ - levels distributed symmetrically about the equator,

effectively halves the ¢ - increment, from T_to 2T The large error at

Md 2N¢
m = 2Mg = 2N, then, is the combined "large error" of both of the one - dimen-

sional quadratures.

The second of our 4 cases appears te be an'optim'al choice of N, and My

My ™ %NW The error in the ¢ - quadrature takes over just before the error in

the P,,(cosd) - quadrature begins to increase significantly. This quadrature
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formula has a higher order than Louis's method, although it uses fewer points.

Or, if the order of quadrature is specified, an "optimal” formula would use é—

fewer points than Louis's.
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Chapter Two: Invariant Quadrature Formulas

1. Automatic Integration (Group representation theory)

The efliciency of a quadrature formula can be described by the number

L where N is the number of quadrature nodes, and g is the total number of

3N’ _

spherical harmonics for which thé formula is exact. An eﬁiéiency of 1 indicates
that each of the 3N free parameters -- the weights and coordinates of the nodes
-- is being used to eliminate one of the constraints. A product - space quadra-

ture formula has only one free parameter .for each node, ie., its weight. Thus,

its efficiency is about é— Sobolev [24] proposed the idea of Gauss - type quadra-
ture formulas, invariant with respect to some (finite) rotation group. These for-
mulas automatically integrate all But a few of the sp‘herical harmonics of a given
degree. The weights and positions of the nodes are then found by solving the
system of constraints which remains.. These quadrature formula’s are difficult to
derive, but their efficiency is close to 1 .sinc‘:e each node has three free parame-
ters. Another advantage of these quadratures is the more unifofm distri_butioﬁ

of their nodes. In this section, we present the theoretical basis for these formu-

las. Similar discussions can be found in [24] and [19].

There are five regular solids: tetrahedron, cube, octahedron, dodecahedron

-and icosahedron. The' tetrahedron is self-dual, the cube is dual to the

octahedron, and the dodecahedron is dual to the icosahedron, i.e.,‘ the centers

of the faces of one are the vertices of the other.

If the orientation of a regular solid is fixed, there is a finite group of rota-
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tions in R3 which move vertices to vertices and thus preserve that orientation.
The axes of these rotatiohs are the lines which connect opposing vertices, oppos-
ing centers of faces, and opposing midpoints of edges. The permissible angles of
rotation depend upon the number of faces which share a vertex and the number
of sides of a face (rotations about midpoints of edges mﬁst be 180 degrees). This
group . of rotations acting .on a point of the unit sphere which does not lie on an
axis of rotation generates an-orbit of:n points widely distributed over the sur-
face of the sphere, Where n is the order of the group. Quadrature formulas
whose nodes consist of several of these orbits are invariant with respect to the
gfoup of rotations and, as we will show, "automatically” integrate exactly a large
class 6f spheriéal polynomials.

Let G be the groﬁp of rotations of the sphere a;ssociated with a fixed regular
solid. The vertices, centroids and edges of this solid -- iV,-;.zci;.in; - are the
special invariant sets of G. If a pbint u -on the sphere is not in one of the special

sets, the geheral invariant set {p@:. peG} contains n points. (If Z lies on a

n

> antipodal pairs.)

median or an edge of a face, these n points are actually

| A quadrature formula which uses J invariant sets of G has the form
;I 0N _©) | -
Yo Y r@®), (2.1.2)
i=1 k=1 ’
i.e., every point in the. invariant' set 1171("): 1=k <mn;} is assigned the same
weight a;, i ="1,....J. We will call theupoints u;, 1 =i < J, the base nodes of this

quadrature formula. Then, the:system of equations (2.1.1) becomes

s

Mo M

m(m(k)) =0 ,~-m<n<m, l<m<p. (R.1.3)

.3
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We will use some basic properties of group representations to show that most of
these equations are automatically satisfied. Details of these properties can be

found in [5].

An element p of the vgroup G acts on the vector space Y,, by tfansforrm’ng a

spherical harmonic heY,, into the function ph, satisfying
(ph) (@) = h(p~'@), forallZeS?.

Y,, is invariant under fhe action o-f the full rotation group, so it is invariant
under the action of G. le., the function pY% is a linear combination of the basis
fuhctions_ {¥;x™, ..., Y™. Thus there is a (2m + 1) - dimensional representa-
tion, M, of thé action of G on Y. For every pst, M(p) is the (2m +1) x

(2m + 1) matrix satisfying

" pYR™

Hp)-| . | =
Yo pYm
There is an.orthonormal basis {Z,,....Zzm+1} of Y, which brings # mto
reduced form:
M=MH, - @M,
dim M@ - @dim M, = 2m + 1.
Then'Ym =Y @ - @ Yy, where dim Y, = dim M. Yo is invariaint under

the irreducible representation M,, and Y, is spénned by some subset of

(Zy - Zamad

Let DXV ) D®) be all of the distinct irreducible unitary representations

of G, with dim D® =n, Fach M, is one of these D@'s, although the list --
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My ..., M, — might not include all of the D@)s. Fix some ordering of the ele-
ments of G, p; =1, pa, . . ., p,. and let §a(ij)} be the (n,)? n-vectors whose kth
components are the ij-elements of D{@)(p,):
[ D(o1) ]y
a(ij) = . 1<i,j <ng.

[ D9)(p,) s

Let b(ij) be the (ng)? n-vectors obtained in this way from the representation
D®). Then, from the orthogonality relation for irreducible unitary representa-

" tions,

¥ (D) [(D¥ (o)) = 'T_L"'daﬁ O 051
peG Na

we know that vectors corresponding to different irreducible representations are

orthagonal.

Now for a fixed Z£S?, define the projection m: Y,,, - R"™, -

r@ | | r@
[ (pz'a) paf (@)
n(f) = =
[ (pn') paf (7)
Supposef ihat M, = D@, and. denote. by zZ{), ..., Z,ﬁ’:,)i the subset of
{Zy, .. . . Zam4+1) which spans Y. Since Y,, transforms according to the

irreducible representation ¥,

n
pZ&) = X [ Do) Iy 2%,

=1

This is just the p-element of the vector equation
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m(Z{k)) = rf ZJ(k)(ﬁ).a(ij),ﬂ '
j=1

and we see that m(Ynu) is spanned by the vectors {a(ij)}. Thus, if Yp; and Yo
transform according to different irreducible representations, M; # Mg, then

m(Ypm;) is orthogonal to m(Yms ).

DU is usually taken to be the identical representation, consisting of the 1 x
1 matrix with entry 1, denoted here by the symbol 1. If DV appears u times in
the list - My, . .., M, — then there are u basis functions which are themselves
invariant under the action of G, i.e., pZ; = Z; for all pe¢G. We may assume that
any such basis functions are Zi=Ym1, .. .. Zy=Ymy and M{= - =M, =1

Define

Hn=Ymi @  ® Yy, and Kp = Yme) @ @ Yo

Then Ym = Hn @ K and, if feHp, then n(f) is a multiple of the vector

E =(1.1...,1)7, since

F(p@) = f(z) forall peG.
Any function geK, transforms according to some other irreducible

representation(s), so (g ) is in the orthogonal complement of £. Thus,

Y g(pi) = 0.

peG

Since the choice of Z&S? was arbitrary, any function in K, is automatically

integrated by any invariant quadrature formula.

If =0, thenY,, =K, and
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for all feY,, and for any choice of nodes and weights. Thus, only the following

equations impose constraints on the {a;{ and {}:

S e 2,(%) [4” 7=

oy Z;(%) = =

< ] 0 Jj=R2....6G.

where G = i u(m) and {Z,, . .. .Z'cpj is a basis for Ho® - @ Hp. (Z,1is
2o .

the constant function 1, since Hy = Y, = constant finctions.) This set of equa-
tions may include some for spherical harmonics of odd degree. Since we are

only interested in integrating even polynomials, we discard these and are left

with
N 4 j =1
i=1a1nizj(ui')_ 0 j=2 ... K, (2.1.3)
B2
where Ep = é p(Rm) and {Z;, . .. . Zglisabasisfor Ho® He ® -+ @ Hp.
m =0

u(m) = dim H,, can be calculated from the characters of the representa-

tion M:

um) = %L“ZGXM(P)- xu(p) = trM(p).
pe

This is a consequence of the orthogonality relation for the characters of irredu-

cible unitary representations:

Y XalP) Xg(p) =1 By
peG’

SinceM =M, @ - - @ M,

xu(p) = trM(p) = ilxi(p) = ux(e) + i Xxi (0) .

i=1 i=utl

where x;(p) = tr #;(0), x1(p) = tr 1 = 1. Then

Yoxulp) = LxulP)xilp) = Z'i’xi(p)xl(p) = nn .

peG pEG peGi=1



31

The characters of M have been calculated in [6] (for example). Bfieﬂy, since the
trace of M(p) is just the sum" of its eigenvalues, and any rotation through an

angle ¥ (about any axis) has eigenvalues e¥¥%, -m <j <m,

Thus, the number of m-degree spherical harmonics which are invariant with
respect to the group of rotations, G, associated with a particular regular solid is

giveri by

sin(m + é—) Ve

1
u(m) = -n_z T 1
143 sin-z—'gbk

where the Y, are the permissible angles of rotation for that solid, and there are

n, rotations through the angle ¥, in the group G.

~ Table 2 lists the values .of Y. and n, for the tetrahedral, octahedral and\
icosahedral rotation groups. The tetrahedral group, with order 12, is isomorphic
to A4, the alternating group on 4 elements. The octahedral group, with order 24,
is isomorphic to S, the symmetric group on 4 ele@ents. The icosahedral group,

with order 60, is isomorphic to S, the symmetric group on 5 elements. [12]

Table 2
Tetrahedral Octahedral Icosahedral
2 en | A 0w _m 2 2w 4m
Y |0 0w 3 3 0 > + 3 T w0 = 3 5 5
m |1 3 4 4 |1 6 8 3 6|1 15 20 12 12

Using this information, we can compute the values of w(m) for the rotation

groups associated with the tetrahedron, the octahedron - cube, and the
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icosahedron - dodecahedron. Notice that the right - hand side of

sin(m + 1—) Ve

2¢m + 1 1 2
wm) = S - Y e 7
e >0 SInSY
iS périodic in m with periodi 72"— this being the smallest common muitiple of the

integers glr—. Thus,

Y
n,_n+2m+1 1 sin(m + )%
#(m+2—)=_—;—_+n—2 £ S— = 1+ pu(m),
Y 0 sin-é—'wk

and only the first %’— characters need to be calculated:

1ifm=03o0r4
0=sm=< 5 u(m) =

0 otherwise (TETRA)
m=6 um) = ulm —-6) +1
1 ifm =0,46,8,9, or 10
0=sm =<11: wu(m) = |, otherwise (OCTA)
m=12. wu(m) = pum —-12)+1
1'ifm =0.6,10, or 12
0sm <14 u(m) = 0 otherwise (ICOS)

' 0 if m = 17,19,23, or 29
16=m =29 ulm) = |, otherwise

3

'
[
o
E
g

"

u{m - 30) + 1

An invariant quadrature formula is determined by its base nodes,
'121, .. ..,y and their corresponding weights, a,, ... ,a;. The system of equa-
tions (2.1.3) has K + 3(J — K) unknowns -- the weights of the K special invariant
sets used, and the weights and spherical coordinates of the base nodes of the

general invariant sets used. Thus, we can hdpe to integrate exactly the first
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K+3(J -K)= E; invarian£ functions. As a function of p, E, increases more
slowly for the icosahedral group than for.the other two groups. F‘o.r fixed J and
K, therefore, an icosahedral formula would be of higher degree than an-
octahedral or tetrahedral formula. Since the difficulty of solving system (2.1.3)
depends primarily on the number of base nodes used, we will concentrate on
quadrature formulas which are invariant with respect to the icosahedral rotation
group.

In the rest of this chapter, we review some of the earlier work done on

invariant quadrature formulas. We describe in detail the method used by

McLaren to construct his octahedral and icosahedral formulas, and demonstrate o

it by deriving an 18th - degree formula which does not appear in [19]. Lebédev,
using a more complicated and versatile method, produced octahedral formulas,

and Konyaev derived icosahedral formulas by a method based on Lebedev's.



2. Mclaren's Method

McLaren's method for solving the system (2.1.3) is based on the fact (Sec.

1.5) that a quadrature formula

I(f) = Yof(m) = [f(u)dz
82

i=1

is exact for all spherical polynomials of degree <p if and only if

f @; @5 P (T, 2;) = 0 (2.2.1)

ij=1

for Legendre polynomials of degree m <sp, m#0.

Rewriting (2.2.1) to correspond to an inuariant quadrature formula, we get |

n
é a;a; g i; Pm(ﬁi(’)'ﬁj(s)) =0 m<p, m#0. (R.2.2)

i.j=1 r=1s=1

_ The left - hand side of this is, in matrix form, a’T1{™)a, where

Ty
o= Y ﬁ Po(@h gy, 1=ij=<J.

r=l1s=1

™) is symmetric by construction. non-negative by the addition theorem, and

has rank =u(m).

Consider the  case: rank- [I™) = u(m)=1. Then II™) =qg(m). q(”‘)T and:
rr.f}") = qi("‘)q,-("‘-)v, for some (column)‘J-vector, g{™). In fact,

Qi(m) =t Vﬂ;nm '

since m{™) = ¢{™) q™). Denote the sign of g™ by &; = +1. Then

mim) = e VAT N
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Now the condition all™)a = 0 reduces to a”g™) = 0, but the inner products

() ﬁj(s)) are complicated functions to calculate. We adjust the »pfoblefn- once -
more and Vuse”the veftices {Vi! as pivots so that only inner products of the form
(@) V;) are needed. Define

12

) = Y, Pu(Vio V)
ij=1
and cobserve that
[80 Vﬂ'SB"] .10
[0 aT] go Vs g™
q(m) a
) i md)
m)
0 af mig lo
=40 a’|] - o
) H(”‘\), la
g
= a’I™qa .
When u(m) = 1, ) # 0, so [né{,’f’ ++« m§P)] is not the 0 - vector. Since the

rank of

[80 Vg

[0 VIEE) g™

is at most 1, the other rows are either multiples of the first row, or 0. So

, . L
a’Tl™)a = 0 whenever ) a; m{f*) = 0, and this condition may be substituted for
i=1 . : )

the corresponding equation in system (2.1.3). Referring to the list of u(m) for
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the icosahedral group, we see that if m < 30, u(m) <1, and the constraints in

(2.1.3) can be replaced by

fqn&,ﬂ’:O, lsm<p, um)=1. (2.2.3)

We demonstrate McLaren's solution of (2.2.3) by deriving an even invariant .
formula which is exact for degree 2m < 18. Notice that, since mé%) = 0 when m.
is odd, any constraints which correspond to odd harmonics must be satisfied by
other means, for example, by requiring that any general nodes lie on a median
or an edge of the solid. This produces general sets which consist of antipodal
pairs. The special sets also consist of antipodal pairs, so odd harmeonics

automatically integrate to 0.



3. 18 - degree Invariant Formula

37

u(Rm) =1for 2m =0, 6, 10, 12, 16 and 18, so E;5 = 6. We set about to find

an invariant quadrature formula which uses all three special sets (K = 3) and

one general set (J = K + 1 = 4). Recall that the six unknowns are the four

weights -- a,, @;, ag, and ag -- and the spherical coordinates of the gerieral base

node, €. These must satisfy the equations

a, 7E™) + a, 72™) +a, 7Z™ + apn ™) = 0, l<sm<9.

(2.3.1)

Note that only five of these nine equations are really constraints on the unk- -

nowns, since the equations for m = 1, 2, 4 and 7 are satisfied by any invariant

formula. The sixth constraint involves only the weights:

12a, + 20a; + 30a, + 60a; = 4w

McLaren assumes that the vertices of the icosahedron are

(tp,+q.0) (0. £p, £9) (£9.0.+p) .
where - :
2 _ 5+ \/S 2 - 5 - \/5
10 T 1o

The quantities V; V;. ¥;-C; and V- E; are calculated in [19], giving us

m2™) = 24(Pam (1) + 5sz(\}_ﬁ5) |

T = 120(Pan (A + Pom(n)). Xem? = (52 2vB)

TG = 120(Pon (0) + Pam(2) + Pom(@)), 726 = (5 V)
mzm) = .

i=1

: 8 .
120 ) Porn (VW1), £V = £V, 1

We substitute these into (2.3.1) and divide out 120a, to get

(2.3.2)
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S Pam (1) + 5Pen (2] + 8. [Pem (M) + Pom ()] 239

+ 50 [Pen(?) + Pam(6) + Pan(@)] + 3 Pan(v/i) = 0, L=m <58,

i=1
where b, = a,/az;. b =a./az and by = a,/a;.

We can transform (2.3.3) into

b, Cor ‘ _ 8° :

-5l-[12’" + 5(—\/1—5—)2’"] + b [A¥™ + P 4 b, [0F™ + ™ 4 6P+ ) VP
b i=1

6b,

- 1
_-——[5

2m + 1

+2b, +3bg +6], 1=m<9, (2.3.4)

The left - hand side is obtained by writing’ (*)®*™ in place of P,,(*) in (2.3.8),
e.g., A*™ in place of Py, (A\). Now each term (*)®™ can be expanded in terms of

Po(*), 0<i<m [17]. But, since (2.3.3) is true for 1 <i < m, we are left with

only the constant term of each expansion, which gives us the right -

1
2mo+ 1’
hand side of {2.3.4).

8 : '
Denote by Sp, the sum Z v[®. Each Sy, is a linear function of the ratios b,
i=1 .

b.. bg. The icosahedral coordinates of @ -- vy, . . . , ¥4 -- are the roots of the 6th-
degree monic polynomial, @(v), whose coefficients, ¢,, . . . , cg, are related to the

symmetric functions, S,,, by Newton's formulas [3]:

Sz +¢,S,+2, =0 (2.3.5)
Sgt+ec,;Sg+ -+ +9cg = 0

We solve these equations to obtain ¢,, . . . , cg as functions of b,,, b,, b,:
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cl=—2 C2=';—

864b, — BOOb, — 6756, — 29700

Cg =

70875
_ 864b, — B0Ob, — 675b, — 6075

e = 118125

. _ 49248b, — 20000, - 506255, — 101250

. =

41765625
Cg, Cq, Cg = quadraticsin b,, b;, b,

tg = cubicinbd,, b;, b,

Since ¢, = cg=cg = 0, we can solve the last three equations for by, b, by. There
-~ are four solutions, but orﬂy one of them gives non-zero weights for all four invari-

ant sets:

_ 5R966953 , _ 50266112

_ 46646875 , _ _
53833764 ° 53833764

b = 53833764

b

© With these values,

7,4 69 o, 461 o 53222 . _ 529

=8 - + g
Q) =Vt -2+ v = 5V " Bovs ¥ Trvosavs Y T 13041125

and

v, & .89822338 v, ™ 142068429

vs ¥ .45836723 vs N .087B35698
vy N 39343758 vg N 0200877256

The roots of @(v) are real and lie between 0 and 1.

cos™Y\/V)) + cos™Y(~\/vz) ® 66°, which is larger than the angle between two

neighboring vertices. since -c_os'l(\—}_g—) < 84°. Hence, v, and v; are icosahedral



coordinates of a general base node &. In fact, Z is determined up to sign by v,
and vp. Since four of the conditions on vy, . . . , vg are always true, regardless of
the position of &, vg, . . . , Vg are the remaining icosahedral coordinates of Z. An
-additional check on the v; is provided by the equations which relate the
icosahedral coordinates to the Cartesian coordinates of @:

Yy +02 = w; 0T +yy =

—yy +6z = w; -y +d0y = ws (2.3.8)
=0z +y2 = w3 YT +0y = wg

where (z,y,z) are the Cartesian coordinates of the element of the general

_invariant set which is closest to the vertex (0,7.4), 7= 1—10—(5—\/5).

5= \/%—(5+\/5)andp,¢=\/u_,;.

From these equations, we see that vy =vy,= -+ = vg> 0 are icosahedral

coordinates of a point on the sphere if and only if

Yy =2
i=1
and
Prtpe _ MgTHe _ PstHeg _ 6 _ 1+V5
M3t s Hs—He MM Y 2

Applying this test to the roots of @(v), we obtain for these three quotients the

values 1.618034 , 1.618033 , 1.618035 , respectively. A slight deviation from

1.+ V5.

5 = 1.618033988... is expected, since the numerically obtained roots: of

@(v) are only approximate.

Solving (2.3.6) for (z,y.2), we get
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_ Me M3 Me T M5
2= B St —umms
_ Hstis _ M
e e 257468
+ + _
gz BTl o HaT M o 955018

2y 26

From the sixth constraint, (2.3.2), and the values of b,, b, and b,, we calculate

the weights a,, a., 2, and ay:

B625m

= 25T~ ogze1
a, :%gg—gg%z 110470
% ;%B?TB_%“ .09936
o = %%gg%m .10642.

- We now have the nodes and weighﬁs of a quadr.éture- formuia which exactly

integrates all even spherical polynomials of degree < 18.
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4, Method of Lebedev and Konyaev

Lebedev [ 11] obtained quadrature formulas up to order 29 which are invari-
ant with respect to the octahedral group with inversion, denoted by Gg. Konyaev
[9]. using similar methods, obtained quadratures of orders 19 and 29 which are
invariant with respect to the icosahedral group with inversion, Gs;. We outline

Lebedev's method first, using his:notaﬁon.

Let Q be the octahedron inscribed in S?, with vertices on the z-, y-, z-axes. Let

I(f) = [ f(@p @)z

4T <2

where ZeS?, p(@Z) # 0 is an integrable weight function invariant with respect to
Gg such that /(1) = 1, and dZ = sin¥d¥d ¢.
Lebedev’'s method finds the base-nodes b¥ ck, d¥ and the 'wéights A, B,

Ci. D, of the n-degree quadrature formula

Sn() =AY F(@)+ 4} £ (@) + oY £ ()

i=1

Ny 24 Ng 24 Ny . a8
+ kglak Y rH+ :;1 Ge 2, f(ch) + k';le 2 f(dh)

i=1 i=1 i=1 .
where a;! are the vertices, a? are the midpoints of the edges, o are the centers
of the faces, b¥ lie.on medians, c¥ lie. on edges, and d¥ are general base-nodes.
The coordinates of the special sets.a are known and.the coordinates of the

points in the orbits of b¥, c¥, df are
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bk (il,,,tl,;.tmk), (£le, £my, £L), (£my, £l £L),

1 - mf

_ < o ~

cf (£Pe.£9%.0), (£Gi. £Pe.0), (£0¢ 0. £q2),
(0.£p. £ ). (£Gi.0.£P¢). (0. £k . £P% ),

where g2 =1 —p?

where [g =

d‘k (:t'rk,i-uk,:{:wk), (i—?’k.:twk,:!:uk), (ﬂ:uk,:i:'rk,:i:wk),

' (j:uk-,:{:wk.,j:’rk). (:I:wk,tuk.t’rk). (ﬂ:wk.i—'rk,tuk).v

Le., for a fixed k, bf and c¥ each have only one free parameter in their coordi-
nates. :

Any polynomial P(z,y.z) which is invariant with respect to G must be a

symmetric function of z?, y?, 2%, and so can be written as a polynomial in

(o3} x2+'y2+22

0y = z?y? + zP2? + yR2?

and g3 = z?y®2?

Since g; = 1 on S?, the restriction to S® of P(z,y,2) is

P(x,y‘,z) = @03, 03) = > ;0304

0=4i +6j sn

Lebedev now divides into‘ four groups the invariant polyﬁomials of degree = 6.
Group A contains the four simplest polynomials, whose terms are constant mul-
" tiples of 03, 03, or of. The-polynomiéls in Group B have terms involving oicd,
where i,j <2-and 4 + j < 3. Pdiynomiélé in Group_ C contain gfod, terms, with
j‘ < 2, but no restriction on i"or oni+jJ. Groupv D_contains the polynomials with
higher-order terms.

Requiring that I(f) = S,(f) for pelynomials of degree <n produces four
subsystems of algebraic eéuations. f‘of each value of n, each subsystem must

be re-worked into the form of a moment system of equations:‘



B
W

iBiu{‘ =c, k=01....2p—1

where the F; and u; are to be found from the known values, ¢;. The w; are the

roots of the monic p-degree polynomial

Fp(w) = uP = fpuP ™'~ - =,
where the:vector (fo, . . ., fp-1) is the solution of the Hankel matrix equation
co €1 ' Cp | Jo Cp
¢y €z -~ Cp fi Cp+i
Cp-1 Cp "~ Czp-z fp-l‘ C2p-1
Then Bi = P_l(w')/ F’p (7.11), Where %—1('“1) =-g.0 + glu + -+ gp—lup-l and
gp-1=Cg

gp-2=¢1— fp-1Co

go =cp-1= fp-16p-2 — ** ~ fiCo.

Konyaev-uses a similar approach to ~obtain'qﬁadrature' formulas:which are -
invariant with respect to the icosahedral group of rotations. Using. the.
icosahedron, T, whose vertices we give in Section 3.1, he assumes that his gen-
eral base-nodes lie on the meridian ¢ = 0. These "general” nodes, however, are
actually analogues of the b¥ an@ c¥ in Lebedev's formul_as. since this meridian
contains only edges and medians of T. By restricting all his base-nodeé top =0,

he is able to simplify the invariant polynomials 2 and k (also given in Section
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3.1) to

h(ty =1 =262 3
k(t) = 1 - 10t — 53 + 204 + 12t°

where
= 2sind cos¥ — sin®y

-He obtains a 29-degree quadrature formula

i=1 k= i=1 .

12 30 : 20 i 60
Sa(f) = @ RI(A)+b ¥ 7(B) +c L (G)+ S de Y 7 (D),
i= i=1 1
where the 4; are the vertices, the B; are the midpoints of the edges, the (; are
the centers of the faces, and the D,; lie on the medians or edges of T. The

-~

weights of the special sets and of the base-nodes Dy; are (rounded to 6 decimal

places)
a = .002964 d, =.0046835
b = -001905 . dp=.003780
¢ = .003862 dy = .003546
.003778

QU
-
I

and the coordinates of the base-nodes J; are

D, = (VI=27.0.2)).

where

-.611254 zg = — 978512
-.909192 2z, = —935811

2,

23

This formula integrates exactly all polyriomials of degree < 29 using 302 nodés,
These 302 nodes are actually 151 directions, which would integrate exactly all
even polynomials of degree <28. For a small number of base-nodes, Dy, res-
tricting all the vquadrature nodes to lie on mediahs and edées allows for a rela-

tively uniform distribution of nodes. For larger numbers of base-nodes, how-



Chapter Three: Uniform-Weight Invariant Quadratures

- In Chapter Two, we described two methods for finding Gauss-type quadra-
tures for the sphere. These formulas are very efficient, but ﬁnding the coordi-
nates and weights of the base nodes requires intricate rnam'pulétion of the sys-
tem of non-linear equations which they must satisfy. Far from the simplicity of
the product-space formulas, wheré a. new formula can be obtained by.changing a
single number, each of these invariant formulas is the end-product of a com-
plete fe-working of fhe system 6f non-linear constraints into a sequence of linear
and simpler non-linear problems. Finally, 1;1either McLaren’s nor Konyaev's
method seems capable of producing quadratures of higﬂer order than Kc'onyaev's‘
28-degree formula. In this chapter, we describe two methods for ﬁnding
uniform-weight quadratures. These methods are more straightforward, but

sacrifice some of the eﬁiciéncy of the Gauss-type formulas.

1. Icosahedral Group of Rotations

In order to use quadrature formulas which are invariant with respect to a
particular icosahedrdn. we must be able to generate the orbit of a given point
ZeS? In this section, we describe the 60 rotations which preserve the

icosahedron, T, whose vertices are (in spherical coordinates):

¥ =0,
= cos~! mm: g = 20 Am Bm Bm
) cos \/5.;0_0. 55 5
= vzl ,=n3n  In 9n
¥ = cos = ¥ 5.5 ™5 5"
8 =

and associate any point on T with its projection onto S? (i.e., z - —(-:T), We will

refer to a rotation p in either of two ways:
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[1] p(8,9,7), where ¥ and ¢ are the spherical coordinates of a point Z&S?, the
axis of the rotation is the line through (0,0,0) and @, and 7 is the angle of

rotation about this axis.

[2] the 3 x 3 matrix representation P(p) = Z,Y _s2,YsZ_, where

cosa —sina 0] [cosa 0 —sina
Z, = |sina cosa O and Y, = 0 1 O
0 0 1 sinae 0. cosa

P(p) performs the rotation p through the angle ¥ about the axis

7 = (sindcosy, sin¥sing , cos¥) by
(a) rotating @ to (0,0,1): (Y4Z_,) 4@
(b) rotating through y about (0,0,1): Z, (YsZ_,%)

(c) rotating back to @: (¥3Z_,) ' (Z,YsZ_,1)

The 60 rotations which preserve T are the identity, 1, and the rotations

plaxis,y):
axis Y number possible
v, ﬂ:25—ﬂ-.t4l 6x4=24
G 2L | 10x2=20
Ey 0 | 15x1=15

where {V;} are the.12 vertices, {C;] are the .centers of the 20 faces and {£;} are .
the midpoints of the 30 edges. (Since p(-Z, —y) = p‘(ﬂ,y). we count the rotations

using only half of each set of axes.)

These rotations permute the five cubes which can be inscribed in T [12],

and they form a group, G. Hénce. G. is isomorphic to a subgroup of S5, the.
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symmetric group on five elements. Since Aj is the only subgroup of S of order

80, G ~ As. Asis generated by rotations p and 7 which satisfy
=1 78 =1 (p7)? =1
We can arbitrarily choose one of the G, for the axis of p. and one of the V; for the
: - _ 2 _ 2\ - _ .
- axis of 7. If we set p -p(Cl.—s——). T= ‘rv(Vl.?-). then pr = u(E,.n). with £,

- determined by p and 7.

Taking V; = (0,0,1) creates the simplest possible T

[ 2m 21

COS—; —sm—5— 0

P(T) = Zgn = Sing-ﬁ— cos-21 0
5 5 S

0 0 1

Five faces of T share the vertex V,. One of these has as its other two vertices

-cos“vl..s— ~ %— Let C, be the center of this

(9,.0) and (ﬁy,%"—), where 9y

9 .
face, C; = (130,-75T—). with ¥, to be determined later. Then £, = (—ZV—.O). the
midpoint of the edge between V, and (¥y.0). (See Fig. 3.1.1) Thus,

[

(9]
Q
<
|»—» © o™

7
o -1

1
P(u) = Y52 20 Ys,2 =
L_ 9
V5 V5

Then, since u. = pT1,

P(p)

—-C

4 g
- O éllz\)

PG P =

S S

4
&

where ¢ = cos -2?77- s = sin%r-.v The eigenvector of P(p) is its axis Cy:
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V2
C - 1 (3 - \/3) V 5 + \/S
' V15-3v5 2
V5 + 1
V2
So¥¢ = cos"(-\/—si_g—l- A 6524,
Vi enorth Po\e
(60, %, (oy,2X

(ev,0)

Figure 3.1.1

With these choices of p and 7, the elements of G are
o, 7™, i =0123 j =012 k =01234,

Og = 1
oy = T luT
0, = VUV, where v = T1p

03 = 0,0z ( = 0z0y).

The o; are rotations of order 2 which preserve the tetrahedron whose vertices

are
€y = (130,1-57-_—) = axis of p
Cg__=" (77-—-‘!9'(;. —351' ‘
Ca = (m—18¢.0)
= (9, 3T
where cos®%p = —Ll & -.1878, ¥'¢c ~ 1.7595. Since the o; have order

V15 + 65



2, they exchange pairs of these G:

0,0 Cp & G, C3 « C
gs! Cl And C4. Cg — Ca
03:‘ Cl — Cs. Cg > C4

51
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2. Exact Uniform-Weight Quadrature

T is the icosahedron described in the prévious section and G is its associ-
ated group of rotations. A polynomial f () is invariant with respect to G if
pf = 'f for all peG. From Section 2.1, we know that there exist invariant spher-
ical harmonics of degrees.0, 6, 10, 12, 16, 18, etc. Yo = 1 is; of courée. the 0-
degree  invariant. harmonic: A-6th-degree- polynorvni‘al' which is-invariant with
respect to G is”

h(z,y,z) = 5z%2% + 5y*2® + 2% + 10z%y®2? — 5z2%2* — 5y?2*
’ + 2z%2 + 10zy*z - 20z%?2

A 10th-degree invariant polynomial is

k(zy,z) = (4z% =82z + z°)(z* + 5y* + z* + 2282 — 2z23
— 10z%y? — z?2® - 30zy®z — 25yP2®)(z* + S5yt + 2*
— Bz3z + B8xz? - 10z%? + 14z°%2% — 10y?2?).

Remark: h.(x,y,z) = He(x.y‘z)..'. %,,-6 and'lc(:z:,y,z_) = K10+7'4K3+ 17275 w'

2 =

where 7 z%+y® + 2% Hgand Kj are 6th-degree spherical harmon-

ics, and K is a 10th-degree spherical harmonic. (h and k are given

in[9].)

All other invariant polynomials.can be-expressed as polynomials in A and %, i.e.,
as linear combinations of. the functions g; = hikJ. To construct a uniform-v
weight quadrature formula which is exact for all polynomniials of degree < ¥, we
neéd to ﬁnde base nodes, %, . . . , Ty, each in a distinct general invariant set,

such that -
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v g(V) + ¢ g5(C) + e gy (E) + 60 fiqu(ﬂm) (3.2.1)

v+cec +e +60K _
' équ(

4r :

for the first 2N g (ordered by 'deg(qij) = 61 + 10j), where v = 12 or 0, ¢ = 20
or 0, e = 30 or 0, depending on which of the special invariant sets we want to

use, and M = degree of the 2Kth q;;. The first 10 ¢; are:

gqi0c = h Qoz = k?
qo1 = k q21 = h%
Qa0 = h? qao = h*
g1 = hk g1z = hk?
gso = h° gs1 = h%
The K base nodes &y, . . ., Uy are determined by solving the system of equations
v (V) + ¢ 94(C) + ¢ ay(E) +60 3. ak i (3.22)
m=1 .
_ v+c+e +60K _
for oy, . . ., ag and B;. . . . , Bx. and then finding points %, £S? such that

h(TZp) = am  and  k{Zp) = Bm -
If such a i, exists and does not belong to a special. set, its orbit contains 60
points whose h and k values are oy, and B,. If, in addition, %, does not fall on a
median or on an edge.'its orbit contains ne antipodal pairs and therefore pro-
vides 60 airections.
In the next two sections, we describe our procedure for matching a pair

(& . B ) to a point i, £€S? and our method for solving sysﬂtem (3.2.2).
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2.1 Matching (ag.fm) to a point G, S?

In the next section, we describe our method for solving the system of equa-
tions (3.2.2) for the values a,, and B,,. For each associated pair (am,fm). We
look for a point I, £S? such that h(Z,) = a, and k(iZ,) = B.. We restrict our

search to a region of S® where k -and & -are single-valued functions.
In Figs. 3.2.1 and 3.2.2, we plot the level curves of h .and k£ on the region

S-ﬁsﬂ_ _2i< ¢,$ 2_7'.

5" )

cn|:)

Since h and k are symmetric with respect to medians and edges, we can restrict
our attention to one of the six sub-triangles of a face. The vertices of such a
sub-triangle are a vertex, va’n adjacent edge's m;dpoint. and a centroid, so we will
call this triangle VCE.

Specifically, consider the triangle (Fig. 3.2.3) with vertices

_ Vv =(6y,0)
V = (8y.0) =~ (.8944,0,.4472) o=T
C = (¥,0) ~ (.9822,0,-.1876)
~ .
E = (3—--{5% N (.9511,.3090, 0) | : (n-6v,3)

v Fig are 3.2.3

For each pair (a,, .8m) in the solution of (3.2.2), we look for the spherical coordi-
nates of a point @, ¢ VCE satisfying k(%) = am. k{Z,) = B, using IMSL sub-
routine ZSCNT, with starting value sﬁpphed by a search through a table of

(o, B)-values for@ = (¥;.¢x).

. - . _L._ T_T._ ) y = 2
¥ =%+ 355 (2 By) j 1,... .4 22
k_n
_ 200 10 k=1 ..., fv!, -1
$e = Pmax (13) k = Mg
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, where (3, ¢mex (8)) is on one of the boundary arcs VE or CE-——————— "
- )
| In 6rder to generate this table, we needed explicit expressions for the boun-
dary of triangle VCE. The arc VC is simply part of the meridian ¢ = 0. Since
VE is the projectibn onto S? of the line segment between V and ' it liesvon a
' gréat circle, i.e., the plane through VE passes through the origin. The line
through the origin, normal to this plane, intersects S® at two points. Let Z be

one of these points. Then every point, A, on the great circle satisfies 4A- Z = 0.

If A = (sindcosp, sin¥sing,cos¥) and Z = (sindzcospz,sindzsingz, cosdy),

- this condition produces the equation

¢ = @z —cos”!(—cotd¥zcotd),

Since VE intersects the equator at go = % we know that ¢z = '-1—"0-4; -72‘— We
- arbitrarily choose
b, = N0 - 30
2= 10v2 % 5
and go on to determine cot 8z. Let Z = (2,2323). Then
Z3
cotdzy = —— cospz.
z,
. ' : z ’
Z +V = 0 provides the relationship 2z, + 23 = 0, or 2—3— = —tandy, and the

1

equation for the arc VE is

- | Prax(B) = 3n_ cqs"(cos%Lcowmnﬂy)v:

5
= : ‘Similarly, the equation for the arc CE is
. an -1 3 ]
Pmex(V) = 5~ cos (cos 5—cot1$ tanvd'c)
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In Fig. 3.2.4, we plotted the (h(ﬁ).k(ﬁ))-values for @ on the boundary of
triangle VCE to get R, the range of (h,k). If, upon solving system (3.2.2), we

find that (a,,.fm)# K, for some m, then there is no quadrature formula

corresponding to the solution (a,,8,), . .. . (ax.Bx)-
ez e
[ L 4
St -

r “ﬂ:d
—
: A .
- —
e
Lyt
Lou:ig
LA
-5

h(u)
Figure 3.2.%
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2.2 Solution of the System of Equations

If we denote h(C) by a, and k(C) by 8., we can rewrite (3.2.2) as

vhcoai-pl+60- Y abph = Lrerer80K roo@y, (3293
. m=1 4’” . sa

since h(V) = k(V) = 1 and A(E) = k(E) = 0.
. R —. 185185198, 8. ~ 7.7160501, and in Table 4 (Section 3.4), we list the Valués

of Zl,r_f g;; () for the first 20 gi;- Thus, the sums ﬁ ot B4, have values which
52 | _

m=1

“can be calculated:

i . Llutcte+60K [ DY |
ﬁa}nﬁ;"n = 50 yp 4qij(u)—u—c-aé.ﬂg] . .(3'2.4)

m=1
While working with a fixed K, we will use the notation

T; = RHS. of (3.2.4),

with special notationfor j = 0 or 1:
S; = Tio i = Ta
We can solve system (3.2.2) explicitly for K < 4. We demonstrate the pro- »

cedure for the case K = 4. Fo_r K > 4, we turn to numerical methods to solve

(3.2.2). We present the solutions for the cases X = 5 and K =10.

K=4

The first 8 monomials gy and their degrees are

qij | h | & | R® | Rk | h® | k® | K% | A*

deg | 6 | 10| 12 | 16 1B 20 | 22 | 24

s THRNN o4 are the roots of some monic 4th degree polynomial
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fla) = at+ c103+co® +cgx + ¢y,

4 )
The coefficients ¢; and the sums S; = 2 oy, are symmetric functions of
m=1

ay, . . ., a4 They are related by Newton's formulas [3]:

Sy+¢c; =0

Sz +c1S, +2cp =0

Sz + ¢S+ ¢S5, +3c3 = 0

Sy + 01 S3+cS2+¢c35;+4c, = 0

Thus, we can calculate the coefficients of f(a) from the values (3.2.4) for .S;. If

the roots of this f (a) are all real, then we have the 4 a-values, a; = h ().

Now, 3 of the 4 remaining equations are linear in 8;, . . . . 8. We can write them

in matrix form as

11 1], 11 [T
o ag ag||Bz| + Ba- 04% = Ty,
o? of of| |Ps Q4 Tz

This gives us f,. B2, 83 as linear functions of 8,, which makes the last equation --

the one which corresponds to k? — a quadratic in g,.

If B84 is real, we have 1 or 2 sets of £,,...,8s4 ie, 1 or 2 solutions
(a1, B1), - - . . (g, B4). If, for each pair (o, ,Bm) of a solution, there exists a point
Uy, such that h(i,) =am, k(Gy) = Bm. then we have an invariant 24th-degree

quadrature formula.

Table 3 summarizes the outcome of this procedure for the different choices of

special invariant sets.
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At the end of this chapter,‘we list the (¥, ¢) - and the (a, 8)-values of the 4 gen-
eral nodes of each quadrature formula. Figure5'3.2.5 through_ 3.2.7 show their
location in the triangle VCE. We tested these formulas on the 11-ellipsoid phan-
tom (eyes, ears, nose and mouth omitted) with Ny & 2d + >1, where d - 1 is the
order vof the formula, i.e, 24. The L? error is calculated from the reconstrﬁcted
values on a 64z 64 grid of '_the plane z = .381, with the understanding that the

reconstructed value is 0 at any gridpoint outside the circle z? + y® = 1 —(.381)%

Table 3

‘v c e | #Dirs | Solutions / Formulas

0 0 O 240 | Nosolns (2 complex )
2 0 0 246 2 solns / 1 formula (1 8,, not iﬁ range of k)
0 | 20 0| 250 ‘ No solns (2 complex a,,)
0 0 30| 255 | Nosolns (2 complex a,,)
12 20 0| 258 | No solns (2 complex a,,)
12 0 30| 261 | Nosolns (8, not real)
0 20 30| R65 | Nosolns (2 comp'lex %)

12 20 30| 271 | 2solns /2 formulas
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K=5
The Sth and 10th g;; are
hk? (degree = 26) and A3k (degree = 28).
Since h° is not one of the first 10 qi;. we have no value for Ss. Thus, ¢5 - and,
therefore, a;, . . . , a5 — cannot be determined, and we cannot solve this system
of equations in the same way that we found all the solutions of the KX = 4 case.

With some modification, however, we can combine that procedure with numeri-

cal algorithms to obtain some of the solutions.

If we make some initial guess for a5, we can calculate

R, = i}a,"n=5‘i-—a§, l<i<4.
m=1
Then R, ....,FR4 can be used to find the coefficients ¢y, ... ,c4 of the 4th-
degree polynomial whose roots are «;, . . ., a4. Thus, we have a,, . . . , a4, which

depend on a5 in some complicated way.

As before, the equations which correspond to k., kk: k%, h% are linear in-

B1. .. ..B8s. Making an initial guess for f5, we can solve the following matrix
equation for 8y, . . . B¢
1 1 1 1
[51 |'To _ 1
% G2 Q3 Qal gyl T, as
af af af af| (B3| T |T2| ~ Bs a?zi
af of af af| 14l 178 s

Then, the-equations for k% and hk® form a system of 2 equations which depends
on as and Bs. We solve this system numerically for the unknowns as and fs.
More specifically, we used IMSL subroutines ZCPOLY (a polynomial root-finder)

LEQRC (a matrix-solver), and ZSCNT (a non-linear-system-solver, secant

method). The a, and B,, were allowed to be. complex throughout the
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computation, but were Aécepted as a solution only if they were real. Using this
method, we found solutions for only 2 choices of special sets - (v,c.e) = >(12,0.0) |
a’nd.(v c.e)= (i2,20.0). The locations of the general nodes of these fofmulés afe
-listed at the end of this chapter, along with the results of_the simulation experi-

ments.

Remark: An appﬁrently more natural way t?) find (04, , Bm ) numerically is to try
to solvé ‘the 1ast 2 equations for Sg and T,, instead of o5 and 8s. le.,
make initial guesses for Ss and T, solve Newton’é formulas for
¢y, ....cs and obtain ay, . . . , as as the roots of this 5th—degree poly-

nomial. Then the matrix equation for the 8,, would be simply

11 11 1],

o N (8, [To
yoe os as o | 7
ai ag ag og as| Bzl = [Te
3 .3 .3 .3 o3 T
ay a3 &3 &g Qs 24 Ts
4 4 4 4 _atbd 4
&y Oz A3 &4 Qs

Although this approach seems more straightforward, Wev could not find

suitable initial guesses for S5 and T to obtain a selution.
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K=10

This case is solved by the same procedure as K = 5. The 11th through 20th

qi are

qy | R® | kK3 | R*%® | Rk | h® | Rk3 | h3k® | ROk | k* | A7 or h%3

deg | 30 | 30 32 | 34 | 36| 36 38 40 | 40 42

If we/_take h2k3 for the 20th q;;, we nebed to initialize 4 values of a,, and 4 values
of B,,. We then try to soive a system of B equations -- those which involve kR k3.
and k% Of course, initial values must be chosen more carefully, and conver-
gence is much slower than in the K = 5 case. We found solutions for 2 choices of
special sets - (v,c,e) =(12,0,30) and (v.c.e) = (12,20,30). The locations of the
general nodes of -these formulas are listed at the end of this chapter, along with

the resuits of the simulation experiments.
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3. Equilibrium Distributions
Let &,, . .. ,%y be points on S? and suppose that there are posiﬁive point
charges at each point %; and at —Z;. Then the electrostatic potential at each 4,

excluding the potential due to the charge at 7 itself, is given by:

1 1 1
& = —+ — — + — —
2 Pt L I k7
e
If@,, ..., 4y are chosen to minimize the total potential energy of this system
: 1
Q = ﬁ Qi. — + ﬁ ﬁ + — o [}
i=1 i=1j=1 u]l l"u'i.'*'uj‘
J [ 33
then +@,, . . ., +iy is an equiibrium distribution for the 2N point charges, i.e.,
at each 4, the electric field due to the other point charges,
iZ: i, — il .+ 1.
Eizw_"'ﬁ utu,a ul—er
R Ak % + T |

Je=i
is a scalar multiple of the position vector ;.

In [4], Griinbaum proposed that, for large N, a set of directions chosen in
this way would be a good set of nodes for a uniform-weight quadrature formula.

Having shown that the directions i, . . . , Zy which minimize the quantity

" MZ

ij Pem (T - T;) (3.3.1)

are the nodes for a quadrature formula which is exact for spherical polynomials

of degree < 2p, he observed that

1 1 _ = o
)m—ﬁj‘ * i +'EJI - 2m2=cp2m(u1 u_,).

This suggests that, for large N, the electrostatic potential & is a reasonable

approximation to the quantity (3.3.1).
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If (¥;,¢;) are the spherical coordinates of i;, then @ is a function of 2N vari-
ables. Numerical minimization of this function is possible when N & 50, cumber-

some when N & 100, and almost impossible when N = 200.
If N is an integer multiple of 60, however, we can significantly reduce the

number of variables by requiring that the 4; consist of %— icosahedral orbits.

Then @ becomes-a.function of only E%variables. E.g., for N =860, we look for a
‘single point %, whose orbit {pZ,: peG} minimizes @ over all other orbits.
We can also reduce the number of operations needed to calculate @ and its

derivatives:

1 o1
|2 — 4 | |2 + 7 |

Let d; = . Since d;; = dj,

N N N N t-1 .
0-% =% Sy =2y T ay =20,

1 i=2j5=1
i

and minimizing 0 will minimize @.

For arbitrary @, . . ., @y, calculating D requires the computation of é—N(N -1)
quantities d;;. If the set of points 4,, . . . , &y consists of K general icosahedral

orbits, N = 60K, then only 30K + 29K values of d;; need to be calculated. To

show this, we will write § — ‘g—as :

[\}
Q-5= L dy + ) dy
same diff
orbit orbit-

where the first summation involves only points %; and %; which are in the same
orbit, and the second summation involves only points & and %; which are in

diﬁereﬂt orbits.



65

To begin, we break up the summation over i by orbits:

N & :
Q- 5= Y Xy
- d=1g=l
g =i
80 80 N 120 60 1 N
= Y |udy + )Y dy|+ Yody v Y dy )y
i=1]j=1 Jj =81 i=61 (j=1 Jj =861 j=121
7= JEX
[~ —g0
oo l g+ 3 a
i=N-59 j=1 J=N-59
i~
60 - 60 120. 120
= Y udy + Y, dy + o) d
i=1j=1 1=61j =61 i=N-59 j=N-59
j»=i =i J =i
60 N 120 N N ~-60 N .
+RIY X ody v )y ) dy o+ + X dy
i=1j=61 1=81 j =121 i=N-118 j=N-59 ]

Now the symmetry of the orbits enables us to reduce each double summation to

60 times a single summation: -

If o; and ﬁ,— belong to the orbit of %, then |

60 N a,.
BEE

18
&
I

If i is in the orbit of iz, thén

N N
Y dy = ) dy

j=61 . j=61
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and so, for @; and 4; in different orbits,

have
N- I J
Q- _é__= oD = 60[ d-lj 4+ % dﬁl,j + -+ ﬁ .,dNiSQ,'j l
j=2 j =62 . j=N-58
N N N
+ 120 ) dy; + dery + 0+ ), dyoie;
ji=61 j=121 j=N-59

and computing D requires the calculation of 59K same:-orbit d;;'s and
(N -860)+ (N —-120)+ -+ +60 = 60[(K—1)+ - - +2+ 1] = 30K(K —-1)
different-orbit dj;'s.

There is a similar reduction of computation-in the calculation of the partial
derivatives. We used IMSL routine ZXCGR, a conjugate-gradient method, and
obtained solutions to the K-general-node cases, for K = 4, 5, 10. Starting from
the K nodes of one of the exact quadrature formulas (Section 3.2), convergence
occurred in 33, 39, and 78 iterations, respectively. We calculated the electric

“field E‘i for each base-node #;. The angle between Ei and Z; is always less than

3°.
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4. Tables and Figures for Chapter Three

1
Values of o {z qi; for the first 20 g;;

Table 4
K am 4o v J 4m Lo i
h 8 % RO 30 21852725
k 10 17—275— k3 30 | 123.688858
2 . 475 212
h 12| == h2k? | 32 4485985
3125 .
nk | 16 | - | R% | 34 1103166625
R 18 | sosees | M 36 1184429625
. 338125 g .
k2|20 | S | hkD | 36 | -14.72420693
hek | oz | 118125 | a2 | g 10379491
, 2028117 |
. 439625 .
R 24 | ST vk 40 | 733.8222725
Rk? | 26 | -2.1098055 || RS | 40 09613535
h3k | 28 1014723 || h?k2 | 42 2.280482148

We 'cornpufed the ﬁrstB integrals by uéing MACSYMA (Project MAC's SYmbolic
MAnipulation System) to do the following: | |

(1) expand htk? with z = sindcosy and y = sin¥sing,

() discard any term which contains an odd power of z (h and k are homogené-

ous even polynomials with only even powers of . In each polynomial, a
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term contains an odd power of x if and only if it contains an odd power of z.

Hence, the same is true of the terms of htk/.)
(3) integrate the remaining terms with respect to ¢, from 0 to 2,
(4) replace 2% by cos®d, sin®d by 1 — cos®¥, multiply by sind, and integrate with

respect tod, from 0 to .

For 26 =.deg g;; < 60, we computed the integrals using -a-polynomial mani-
pulation package written in APL by Jeffrey Shallit to perform steps (1) and (2),
and an APL program written by John Hughes to compute the integral of each

term by the formula:
fZZk ,y2n22p = pP-T,
2-

where.

b= om. (Rk — 1) '((—1)0[8] 4 2k +1

0]+ Sl

(k) 2k +2
2(n +k) - r n ”]
* R(n +k) (-1) [7!]+O
v - _m+k n +k 1
T_2[2p+1 [1]2p+3 [ ]2p+5
- n+k n+k l
* +(=1) [n+k 2p+2n+21c+1




Nodes and reconstruction results of Exact Uniform - Weight Formulas—

We list the spherical coordinates and (a, B) - values of the K - general node

formulas. Non-zero values of v, ¢ and/or e indicate that these special invariant

. sets are used in a formula. Note that the special sets consist of antipodal pairs,

so only half of each set is actually used in the simulation experiments. Thus,

the total number of directions is N = 60K + %(v +c +e). N; is the number of

plane integrals measured along each direction.

K= 4

v|{icl|le| N| @ h(8,¢) k(d.9) | Ny | L%error
1.6232 03185 | -.08916 5.4207 |
15613 19740 | 01097 1.0594 |

121 0} 01246 \"05p7 13230 | 25113 1915 | o1 | 1457
1.3347 04405 | 62708  -.0535
1.5940 10973 | -.03679 3.5070
15296 09414 | 08149 21110

12120 | 30 ) 271 1 {4154 14144 | 33285 -2134 | 00 | 1444
1.3150 03809 | 68259  -.0055
1.5932 10016 | -.03679 3.6697

- | 15279 11180 | .0B149 1.8242

12 1 20| 30 | 271 | 14513 12397 | 33285 -0857 | 00 | 1441
1.3114 05683 | 68259 - 0394

Figure 3.4.1 |




K=5
v|c|e| N 3 @ h(¥,0) k{(8,¢) | Ny | L?error
1.6666 .0B716 | -.12499 5.7056
1.5388 09918 | .06122 2.2688
12! olo| 30815106 23667 | .062909 -0089 | 61 | 13.61
' 1.4290 .06889 | .34689  .3898 ,
12899 10636 | .69198 -.1137
1.6265 .13787 | -.06995 3.6685
1.5147 22476 | .06353 .1092
121 20| 0 316| 1.5260 .02706 | .09815 26350 | 63 | 13.28
1.4024 12772 | 37947 -.2181
1.3040 04494 | .70798 0161
K= 10
v ic | e N 0 @ h(8.¢) k(S8.¢) | Ny | L?error
17019 .07222 | -.1532 6.6124
1.6001 .05598 | -.0660 4.7897
15762 .12958 | -.0084 2.6717
| 15600 .21520 | .0109  .7500
1.5037 .08725 | .1423 1.5813
12| 0308621 "ygsy 11915| .1735 8550 | OF | 1R17
1.4070 .16449 | .3299 -.3773
1.3946 .06629 | .4463  .0599
13209 .06235 | .6302 -.0988
12357 07160 | .B420  .3261
1.6343 .04165 | -.1030 5.6339
16622 .14625 | -.0925 41808
15472 16617 | .0346 1.3528
15423 04916 | .0592 2.9464
15113 .21170 | .0753  .1864
12 | 20 | 30 | 631 | 14587 .o7571 | .2349 .9ee1 | 87| 11.33
13998 .17469 | .3355 -.4398
13932 -05252 | .4570  .1055
13201 .08B245 | .6414 -.1455
12434 04452 | 8463 3528

70
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Figure 3.4.2

The actual implementation of these quadrature formulas raiée_s an interest-
ing quesﬁion.’ Recall that fbr the purpose of reconstruction, we are only
interested in numerically integrating even functions of @. Hence, we think of
the quadrature nodes as "directions” and make some effort to avoid redund'ar‘lcy'
in this se£ of directions. The orbit of a general node Z, contains 60 distinct
directions, unless ‘Em is ,on‘a median or an edge of the icosahe,dro‘n.v which hap-
pens rarely. The special invariant sets, ‘however, consist of antipodal'paii‘s. so
implementation of a quadrature formula uses only 6 vertices and/or 10 cen- -
troids and/or 15 midpoints of edges.v Since the (am ,Bm) are the solutions of a
| systern of equations which assumes twice as many special points, it seems rea-
sonable to count the contributions of the épecial points twice, as if they had
been calculated at each point of an antipodal pair. But this pi"oduces alarger L?

error in the reconstruction than simply weighting each direction equally.



72

Nodes of Equilibrium Distribution Formulas

In the following tables, we list the (¥;,¢;) coordinates of these solutions,
their (a;, ;) values, and the values of cos™'(E; - &) for each base-node. Figures
3.3.1 through 3.3.3 show their locations in the triangle VCE. We tested these for-
mulas on the 11 - ellipsoid phantom (eyes..ears, nose and mouth omitted). The
optimal values of N; for these formulas are approximately the same as the
optimal values of N; for the exact uniform - weight formulas. The L? error is cal-
culated from the reconstructed values on a 64x64 grid of the plane z = .381,
with the understanding that the reconstructed value is 0 at any gridpoint out-
side the circle z% + y% = 1—(.381)2. The reconstruction results are given on the

last line of each table:

K= 4

v 7 h(ﬂ..so) k(8.¢) | cos™HE; &)

1.6316 | .07067 | -.09466 | 5.1887 .036871
1.5397 | 20726 | .03639 | .5869 .043576

1.4509 | .08714 | 27756 | .5752 .026749

1.2962 | .06465 | .71565 | -.0035 .028169

Ng =51 LZ%error = 14.48

Figure.3.3.1
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K=25

2 ¢ R(%.¢) | k(V.9) | cos™H(E; &)

1.6486 | .07067 | -.11399 | 5.6090 | .037480
1.5493 | 21481 | .02277 | 6120 | .043860
1.5109 | 06655 |..12990 | 1.9611 | .046866
1.4038 | 12968 | .37388 | -.2206 | .040497

1.2779 | .05564 | .76563 .1135 .025763

N, =65 L?-error = 13.17 ' C
Figure 3.3.2

K= 10

9 | ¢ | AR@g) | k@) | cosNE &)

16811 | 04897 | -.14880 | 6.6206 | 032826
16120 | 15235 | -.05187 3.0169 055148
1.5844 | 05391 | -.02525 | 4.1095 | .047568
1.5544 | .24632 | .01225 | .2B858 | = .047864

1.4999 | 17246 | .115672 .4592 |. .031832

1.4927 | .06136 | .17650 | 1.5753 .046B858
1.4077 | .15688 | .33656 | -.3409 | .058872

1.3973 | .04679 | .44741 [ .1579 .052083

1.3153 | 08847 | 64829 | -.1533 | .030515

1.2270 | .03998 | .87933 .4709 .018955

Ny =89  LZ%error = 11.01

Figure 3.3.3
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Chapter Four: Summary of Results

1. Simulation Experiments
We tested five methods by simulating the reconstruction of Shepp's head

phantom with the high - contrast features removed. The L? error

e _ 2
[ $ e -FEr)
=1 B

was computed from the values of f on a 64 x 64 grid of the plane z = .381. f
was assumed to be 0 (i.e., was not calculated) outside the disk

z? +y? =1 - (.381)®2. Table 5 summarizes the results of these experiments.

Notice that Shepp's set of directions is tested with two values of Ng.

Table 5
11 - ellipsoid phéntom , 84 x 64 grid of 2 = .381
| Method (Sec. ref.) N N, | L? error
Shepp (Sec. 1.3) 625 | 101 14.15
Louis (Sec. 1.4) 830 71 | . 13.36
Shepp (Sec. 1.5) 825 | 71 12.89
| Exact (Sec. 3.2) 631 87 11.33
Louis 1225 | 97 11.09
Shepp .1089 93 11.04
Equilibrium (Sec. 3.3) | 800 89 11.01

Figures 4.1.1 through 4.1.7 piot the values of f  at 128 points of the line y = .23,
which passes through the left and right ventricles. Figures 4.1.8 through 4.1.14
plot the values of f at 128 points of the line y = —.605, which passes through the

three small tumors, "old f.g.e".
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2. Comparison of Methods

In this section, we discuss the merits and Weaknessevs of the quadrature for-
mulas which we have described. A highly efficient formula is clearly more desir-
able than a less efficient one. Reconstruction of an object asv complex as }1
human head, however, _involves the numerical integration of an approximation of
a very discontinuous functioﬁ. Since P(t,Z) as a function of ¢ is only piecéwise
differentiable, the approximation to its second derivative, Q(t;, @), contains
many large positive and negative peaks. Hence, it is also important that a qua-
drature formula be of high order. Thus, a second consideration in comparing
methods is the ease with which we can derive a formula of a given (high) order,

using a particular method.

Product-Space Formulas

This method is .clearly the most convenient of those we have described. .A

Kth-order formula is obtained by taking Ny, =K + 1, and My = N, for Shepp’s

2—N,. for our ‘'optimal"

method, Ms =N, + 1, for Louis's method, or Mg = 3

method. The efliciency of Louis’s method is é— the efficiency of Shepp's method.

- is approximately the same, and the efficiency of our method approaches —é—as K

increases.

Another drawback to these formulas concerns the spacing of the quadra-

ture nodes and the large variation in the weights. The nodes lie on N4 latitudes

which are spaced at intervals of Mﬂ_ There are N, nodes on each circle 4 = ¥,
: R odes: .

and the arc-length of this circle is 2msind;. Thus, for values of ¥ near 0 or = (the

poles), the nodes are very close together, whereas for values of ¥ near g—(the
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equator), the nodes are much farther apart. Since the weight of each node on.
the circle ¥ = 49; is sind;, these methods, in effect, have many nodes near the
pole(s) but assign them very little weight. A more eflicient use of quadrature

nodes would be to space and weight them more uniformly.

Gauss-type Icosahedral Formulas

The invariant quadrature formulas described in Chapter Two automatically
integrate most of the spherical harmonics of each degree. Thus, the coordi-
nates _and wéights of a few base nodes will satisfy the small number of remaining
constraints, produéing, for example, Konyaev's 151-point formula which is exact
for even functions of degree < 28. The efficiency of these formulas is close-to 1,
and the action of the icosahedral rotation group distributes the quadrature
nodes uniformly over the sphér-e. In addition, the magnitudes of the weights are
more equal. The weights of our 91-point 18-degree formula (Sec. 2.3), for exam-
ple, are all on the order of 0.1. The weights of Konyaev's 28-degree formula all

have magnitude 1073,

Unfortunately, finding the coordinates and weighté of the base nodes
requires intricate manipulation of the system of noh—linear e'quations which they
must satisfy. Far from the simplicity of the produc:t-space formulas, where a
new formula can be-obtained by changing a single number, each of these invari-
ant 'formulas ‘is-the end-product of a complete re-working of the system of non-
lineaf' constraints into a sequence of .linear and simpler non-linear problems.
Finally, neither McLafen’s nor Konyaev's method seems capable of producing

quadratures of higher order than Konyaev's 2B-degree formula.
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Uniform-Weight Icosahedral Formulas

The vproduct-space formulas. are very easy to derive, but not very efficient.
The Gaués—type quadratures are very efficient, but difficult to derive. Our
uniform-weight formulas are a compromise between these two extremes. They

are more efficient than the former and easier to derive than the latter. Actu-

L

> ahd does not appear

ally, their efficiency, as measured by £, , hovers around

to be much higher than that of our "optimal” product-space formula. The fact
that they perfbrm better in simulation experiments than product-space formu-
las may be due to the absence of large values of E, for all m. The equilibrium
quadratures, in particulaLr, integrate harmonics of high degree with relatively .

small errors.

The procedure for deriving an equilibrium quadrature formula isvpractically '
"aﬁtomated". A good set of starting values is ﬁeeded for the numerical optimiza-
tion foutine. but no other changes are required. The procedure for the exact
quadrature, on the other hand, calls for a rearrangement of the constraints, and
a different set of equations must be solved for each new value of K , the number
of base nodes‘. Thus, although the exact formulas perform almost és well as the
equilibrium formulas in the simulation exp‘eriment.s. the equilibrium distribution
is more likely to provide a systematic way of producing efficient quadrature for-

mulas.

Future Research

Our method for finding the nodes of icosahedral equilibrium quadrature for-

mulas eliminates the need for intricate manipulation of the constraints.

Instead, we rely on a numerical algorithm which may converge slowly or not at

all, depending on the starting vector. Because of the symmetries in the function

3
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D=@- _]_2\/_ it might be possible to devise an optimization routine, specifically
tailored for this function, with better convergence properties. We plan to
explore this possibility, in conjunction with a search for a reliable starting vec-
tor. To produce the 4-, 5- and 10-base-node equilibrium quadratures, we took as
starting values the base nodes of one of the exact quadrature formulas. Cleaﬂy,
this is not a practical method for choosing starting points for formulas which
use more base-nodes, since we do not have an exact formula of order > 10. We
are optimistic that the following procedure will generate a set of 6K starting

points from a known set of X base-nodes.

Our icosahedron T has five first neighbors, i.e., there are five distinct icosahedra

which are associated with T in the following way:

Let D be the dodecahedron which is dual to T, i.e., its vertices are the centroids
G, of T. Five &istinct cubes can be inscribed in D. Their verticges are the vertices
of D, and their edges are diagonals of the pentagonal faces of D. For.each of
these five cubes, there is another dodecahedron which can be cifcum_scribed

around it. These dodecahedra are distinct and are dual to five different icosahe-

dra. A rotation by g—about. a midpoint of an edge of T rotates T into one of these

neighboring icosahedra. The samie rotation takes our K base-nodes into K.

base-nodes. of the neighboring icosahedron. Thus, by performing the appropri-

L

ate five rotations through 5 we get a total of 6K points. In.this way, we hope to

obtain the starting points for a 6K-base-node equilibrium quadrature formula.
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