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NO~ENCLATURE 

A Constant defined ill Eq. (40). 

a Inside diameter of the crucible 

A 
n 

b 

B n 

E o 

Constants defined in Eq. (28) 

Constants defined in Eq. (28) . 
t 

amplitude of the energy barrier 

Spring constant of the torsion fibre 

F Body forces of the ·fluid in the r, <p, e directions r,<P,e 
C Damping torque· 

g gravitational cOIl~tant 

H height of the·crucible 

h height of the liquid 

I Moment of inertia of the oscillating system without the sample 

I Moment of inertia of the oscillating system including the samp.le 
o 

J" p6sitive roots bf Jl(Z) = 0 
n 

k BoltzJilann'sconstant 

k j fa 
n n 

L Damping coefficient of the pendulum motion 

Parameters defined in Eqs. (30a) and (30b). 

M Molecular weight of the liquid metal 

m I-aN· 

n Molecular density of the liquid metal 

N Avogadro's number 
.0 

PPressure in the fluid. 

P Critical pressure .. c 
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R Gas constant 

r r-coordinate 

T P.eriod of pendulum motion without the inertia rod 

t Time interval between each two triggerings of the photocell 

* T Reduced temperature 

T Critical temperature 
c 

T Melting temperature of the liquid metal 
m 

TI ,Period of pendulum motion with the inertia rod 

V 8pecificvolume 

* V Reduced volume 

'V 
r,C/>,z Linear velocities of the fluid in the r,C/>, z directions 

nt/T 
x tan (7Tt/T) 

z H-z 

z z-coordinate 

Decay constant of the pendulum motion 

y 2Tf/T 

£ Depth of the potential well between molecules 

Dyn~ic viscosity 

-n Mean viscosity of the liquid and the saturated vapor 

* n Reduced viscosity 

n Critical viscosity 
c 
'It 

n Reduced critical viscosity 
c 

e Angular displacement of the oscillating motion 

'V Kinematic viscosity; nip 
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p Density of the fluid 

Pc Critical density 

o Collision diameter of the intermolecular potential function 

T Period, of the oscillating motion 

<I> Spatial component of the angular veiocity of the fluid 

~ ~-coordinate 

<I> Angular velocity of the pendulum at time = 0 
o 

~ Angular velocity of the fluid 

. .,; 
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The Viscosity of Ces~um Metal to Its Critical Temperature 

Han-:-Chung Tsai 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory, 

and Department of Nuclear Engineering, College of Engineering, of the 

University of California, Berkeley, California 94720 

ABSTRACT 

Cesium metal viscosity has been measured up to l600°C by oscillating 

cup techniques. Viscous drag due to the saturated vapor phase has been 

taken into account in the data analysis. The measured result can be 

represented by the equations 

R-n n CmP) 

R-n n CmP) 

= 

= 

6.34xl02 

-0.187 + T 

The critical viscosity of cesium determined from the law of rectilinear 

diameters is 0.57 ±.04 millipoise. 

Viscosities of sodium and potassium were also estimated from the 

cesium data by the law of corresponding states. 
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I. INTRODUCTION 

'Alkali metals are of interest as high temperature coolants and 

working fluids in nUmerous nuclear and space applications. Viscosity is 

among one of the transport properties'which are required for rational 

design6f systems involving alkali metals' for such applications. 

In determining high temperature fluid viscosity, there are four 

commonly' used techniques , namely ,'capillary method, falling sphere 

method~' rotational viscometer and oscilla'tirig cup viscometer. (1) 

In ihE¥ caj>illary method ,the viscosity is determined by measuring 

the rate of fluidflo~ through the capillary tube as a function of applied 

pressur'e or liquid heads. Although its theory is simple and exact, the 

method suffers two main disadvantages: 1) the accuracy of the measured 

result relies 'critically on the accuracy of the capillary diameter, 

2) an open flow system has to be m~dnt~linedover a uniform temperature 

zone. This method, however,is popular in alkali metal vapor and 

. '. (2-4) 
molten salt viscosity determinations. . 

In the falling sphere method, a round ball with a grea,ter specific 

gravity than the liquid is dropped into the liquid under investigation 

and the asymptotic velocity of the ball then determines.the liquid 

viscosity. The main difficulties associated with this technique are 

to keep a large column of high temperature/high pressure fluid and to 

measure accurately the ball speed. (5) 

The rotational viscometer is a cylindrical body immersed in a concentric 
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cylindrical bath filled with the fluid whose viscosity is .to be· determined. 

Relative angular velocity between the body and the bath is maintained 

constant and the torque required for this relative motion is measured 

and used to determine the fluid viscosity. The difficulty of measuring 

the torque makes this method'relatively inaccurate. 'The rotational 

viscometer is, therefore, used mostly for high viscosity materials like 

glasses and siags. (6) 

The oscillating cup viscometer isa cylindrical crucible containing 

the fluid and suspended by a 'piece of wire. Torsional oscillation about 

the vertical axis, initiated by a twist of the wire, is damped by the 

viscous drag of the fluid inside. The degree of damping is related to' 

the fluid viscosity. The theory of oscillating cup viscometer has been 

, (7) , (8) 
discussed in detail by Roscoe and Thresh • 

One of the advantages of this method is that the fluid is contained 

ina sealed crucible so that the problems associated with vaporization 

and chemical reaction with the surrounding atmosphere are avoided. Another 

merit is that the hot zone can be relatively small and the temperature 

uniformity can be more easily achieved. Also, the decay constant and the 

oscillation period of the motion can be measured with high degree of 

accuracy. Because of these advantages, oscillatfngcup technique is 

adopted for the present study of cesium metal viscosity. 

The crucible used in the oscillating cup technique has essentially 

a constant volume and because of the thermal expansion of the sample 

fluid, complete filling of the crucible with the liquid is not possible 

if one sample is to be studied over a range of temperatures. As a 

result,' there is always a space in the crucible on top of the liquid 

' .. 
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phase which is occupied by the saturated vapor. For low temperature 

experiments, the viscous drag due to the vapor phase is small and may 

be neglected. This cond'1.tion is not 'valid at high temperatures when 

the liquid metal has high vapor pressure. In addition to the high vapor 

pressure, thetemperatur'e dependences of the liquid and vapor viscosities 

accentuates this effect. The liquid Viscosity decrease with temperature 

owfng to the positive activation' energy of this transport property, (9) 

but the vapor viscosity increases with temperature due to the increased 

translational momentUm transfer. (10) The liquid and vapor viscosities 

approach each other at high temperature and' ultimately become equal at 

the critical p~int. (11) 

The precision of the decay constant measurement in the oscillating 

cup 'technique is proportional to the sample viscosity and inversely 

proportional to the system moment of inertia. In the high temperature 

, measurements, thick-wall crucibles are required to contain the high 

pressure vapor. The bulky crucibles have a large moment of inertia. In 

addition, the viscosity of liquid is low at high temperature. Indeed 

these phenomena might be the ultimate limitations on the use of the 

oscillating cup technique for measuring the viscosity of substances at 

temperatures where the vapor pressure is high. 

Among the alkali metals, cesium was chosen for study for ,the 

following reasons: 

, , (12) 
(a) it has the. lowest critical temperature and pressure, 

(b) its critical constants have all been measured and are fai~ly 

well established, (12) and 
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c) it is compatible with tungsten, the crucible material, up 

to the critical point. (13) 

The critical constants of cesium reported by several investigators 

are shown in Table I. In our research only the critical temperature is 

of immediate concern. A mean temperature of 1760°Cfrom the three values 

shown in Table I is used. 

Table I. Critical Constants of Cesium 

Investigator T (OK) Pc (gm_cm- 3 ) p (atm) 
c c 

Dillon et a1.(14) 2057 ± 40 0.428 ± .012 

Renkert and Franck(15) 1993 ± 30 104 ± 10 

Bonilla et a!. (16) 2050 0.445 117 

Mean value 2033 0.436 113 

The vari·a tion of cesium vapor pressure wi th tempera ture ha.s been 

(:1.5) (17) measured by Renkert and Franck,' and Stone et a!., and is shown 

in Fig.!. 

Density data for both liquid and saturated vapor of cesium are 

obtained from Ref. 18. The densities versus tempera.ture plot is shown 

in Fig. 2. Change of the densities of the two phases with temperature 

is similar to that of the viScosities, I.e., the liquid and the vapor 

properties approach each other and become equal at the critical tempera-

ture. 
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Fig. 1. Vapor pressure of cesium. 
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Fig. 2. Densities of the liquid and the saturated vapor of cesium. 
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Since the viscous drag due to the vapor phase becomes significant 

at high temperatures, a two..;.phase mathematical solution to the fluid 

mechanics of "the oscillating cup viscometer which allows the vapor drag 

to be taken into account was developed and employed in·this cesium 

viscosity research. 

Cesium viscosity was measured up to l600°C, 'which is 160°C below 

the reported critical temperature. Similarity of the properties between 

the alkali metals indicates that the law of corresponding states of the 

liquid viscosities should apply to this class of substances. The 

measured cesium viscosity was used to construct the universal viscosity-

(19) (20) 
temperature function in the way suggested by Chapman and Pasternak. 

This correlation is of value since direct measurement of the viscosities 

of the other alkali metals is more difficult due to the high critical 

temperatures and pressures. 
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II. THEORY OF THE OSCILLATING CUP VISCOMETER 

The oscillating cup viscometer is essentially a pendulum system 

composed of a sealed right circular crucible, which contains the fluid 

under investigation, suspended by a piece of torsion fibre. The drag of 

the viscous fluid inside the crucible causes damping of the oscillatory 

motion and the measurable damping effect is a function of the viscosity 

of the fluid. At relatively low temperature, only the liquid phase exerts 

the drag on the pendulum. The theory for this case has been worked out by 

Roscoe (7) and Hopkins and Toye. (21) At higher temperatures, especially as. 

the critical point is approached, the drag due to the saturated vapor 

phase above the liquid is also appreciable and has to be taken into 

account. This extension is presented here. 

A. Liquid Phase Only 

The Navier-Stokesequations for the liquid are to be solved along 

with the appropriate boundary conditions. Assuming the fluid is Newtonian 

and incompressible, the equations of motion are 

= (la) 
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( 
dV,f.. dV,f.. V,f... dV,f.. v r v ,f..dV,f.. ) 

p __ 'I-' + V _._'1-' + _'I-' __ 'I-' + __ 'I-' + V 'I-' 

dt r dr r dCP r Z dZ 

= F,f.. _ 1. dP + n (d 2
Vcp +1. ~-_ ~. + ~ d

2
Vcp + ~dvr + d

2
Vcp) (lb) 

'I-' r dCP dr 2 r dr r2 r2 dcp2" r2 dCP dZ 2 

. (dV dV· v cp dVdV ") 
p ':I Zt + v __ Z + - __ Z + V

z 
':I Zz : 

o r dr . r dCP 0 

where 

= F 
Z 

dP + - n 
dZ 

d
2
V ·dV d

2
V d

2
V) 

( 
Z I Z I Z Z 

dr 2 +-;a;+r2· dcp2 +"~ 

Vr ; vcp' Vz are the velocity components in the r,cp, z 

directions, 

Fr' Fcp' Fz are the components of the body force in the 

r, cp, z. directions, 

P is the density of the liquid, 

P is the pressure, 

n is the dynamic viscosity of the liquid. 

Assuming that 

1. v and v are zero, r z 

2. Vcp is independent of cp, 

3. pressure P is also independent of cp, 

4. the only body force on the liquid is its own weight, 

then the equations (la) , (lb), (lc) can be reduced to 

V 2 dP 
P .-L. = 

r dr 

(Ie) 

(2a) 
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(2b) 

(2c) 

In terms of angular velocity (T./J = ~) and kinematic viscosity (v = % ), 
Eq.(2b) can be rewritten as 

= ~+l~+~ 
ar2 r ar az 2 

(3) 

If the system has settled down such that at any point the liquid and the 

containing vessel have the same period and decay constant, we may separate 

the time and spatial components of the angular velocity as 

T./J(r,z,t) = <P(r,z) 

where 

a = -13 + iy • 

at 
e 

13 is the decay constant and y is the angular velocity of the pendulum 

motion. The latter is related to the period of oscillation, T, by 

2n 
y = -

T 

Substituting Eq. (4) into Eq. (3), we get 

(4) 

(5) 

(6) 

(7) 

-" 
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which is the final version of the equation to be solved for the velocity 

profile of ~he liquid inside the vessel. 

The boundary conditions are 

(I) <p,::i <p at r = a and z = 0 
0 

(8a) 

(II) d<P 
0 h = at z = 

dZ 
(8b) 

where <P is the angular velocity of the crucible body when passing the 
o 

equilibri.um position, a is the inside radius -of the crucible and h is 

the height of the liquid (Fig. 3). The second boundary condition is 
.. 

equivalent to no shear'force from the top of the liquid which is assumed 

to be vacuUm. 

The equation of the motion of the oscillating system is 

2 . 

I .d 0 + L de + f0 _ - 0 
~ dt 

(9) 

where 

I = moment of inertia of the empty system, 

L damping coefficient due to the viscous drag, 

f spring constant of the torsion fibre, 

e angular displacement of the oscillation motion. 

The solution of Eq.(7) which satisfies the boundary condition is (21) 

<P(r,z) 
a <Po J 1 (ibr) 

= ----=---
- 1/2 z-h J 

J (j r/a)b 2a 2cosh (j 2+b 2a 2) ---
1 n n a 2<p;a l: 

n=l ~1 r J 2 (iba) 

(10) 
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Fig. 3. Fluids in the containing vessel. 
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where b 2 ='a/V and jn's are the positive roots Of J1(z) = 0 in ~scending 
, , 

order of magnitude. The damping torque G due to the viscous drag of the 

liquid'on the inside wall of the crucible is then 

G = 2nne at I a 3 I
h

,,( d<P) , 
o dr r=a 

'Ia(d<P) 3' J' dz ' - 0 ,az z~o r~r ',' , 

The damping coefficient L, which is related to the torque G by 

G L de 
dt 

(11) 

(12) 

can then be. determined. Since the pendulum motion is damped sinusoidally 

de 
dt 

<P 
'0 

at e 

Combining Eqs.(ll), (12), (13) 

hn fa' 
h 

L = i(d~<P/¢O») 
dr r=a 

0 

(13) 

and solving for L. we get 

a 

r' dr 1. dz - i (d(<P/<PO») (14) dZ . z=O 
0 

To calculate L, it is convenient to follow Roscoe's process of simplifying 

Eq.(14) into a rapidly converging serie~:(7) 

L 2."" I ba 'h ! 1 - 2. (~a) + 8(~a) , + B(~a)' + 12.8 ~~a) 4 +" . J 

+ 2ba 4 ,{ ls _ 2 + 9 _ ---,-'1'--,---::-
n(ba) S(ba)2 n(ba)3· -12=-:S:-:~~~ a-:")-:-4 + .•. J I (15) 

Recall Eq.(9), which by writing e at e e beco~es 
o 
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Ia2 + La + f = 0 . (16) 

Since a and L are both complex, Eq.(16) can be separated into real and 

imaginary parts: 

I«(32.,..y2) + SRe(L) - y Im(L) + f = 0 

~21(3y - Blm(L) + Y Re(L) = 0 

(17) 

(18) 

Eq. (18) is preferred over Eq. (17) because it does not contain the torsion 

wire spring constaht f. The viscosity n can now be determined by solving 

·Eq.(18) and Eq.(15) simultaneously since all the other quantities are 

measurable or known. Application of the liquid phase solution is 

illustrated in Ref. 22. 

B. . Two Phases 

When the temperature is far below the critical temperature, the 

viscous drag due to the vapor phase in an oscillating cup viscometer is 

negligible compared to that of the liquid. As the critical point is 

approached,however, the dynamic viscosity of the saturated vapor becomes 

comparable to that of the liquid and finally becomes equal to the latter 

at the critical point. When a viscometer only partially filled with 

liquid is operated at high temperature, it is necessary to solve the 

equation of motion in both phases. 

A.fter the transient par.t of the motion has been passed ,we can 

assume that 

. , 
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Vir = v = 0 vr 

viz v = 0 vz 

.. dV ip 
= 

dV
Vp 

. 
0 

d¢ d¢ 

where v's are the components of the linear velocities of the liquid and 

vapor phases as shown in Fig. 3. The subscripts iand v refer to liquid 

and vapor phases, respectively. 

As in .the single phase case, the Navier-Stokes equations can be 

reduced to 

a 2v ip + .:. dV 1p _ vip +d 2v ip 
3r2 r dr r2 3z2 

F
iz 

-g 

for the liquid phase and similarly 

F vz -g 

3P 
v 

3r 

(

32
V vP 

nv .. dr2 

ap 
v 

dZ 

for the vapor phase, where 

Pi density of the liquid, 

P
v 

density of the saturated vapor, 

(19a) 

(19b) 

(l9c) 

(20a) 

(20b) 

. (20c) 
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Tl.R, = dynamic viscosity of the liquid, 

Tlv = dynamic viscosity of the saturated vapor, 

F.R,z = body force in the liquid, 

F body force in the vapor, vz 

P.R, = pressure in the liquid, 

p = pressure in the vapor . v 

Again, we can express Eqs. (19b) , (20b) in terms of kinematic viscosities 

Tl.R, 
V.R, -

P.R, 

Tlv 
V = -. 

v Pv 

and angular velocities 

as 

and 

v.R,~ 
r 

= vv~ 
r 

Vv at 

d2~.R, 3 d~.R, d2~.R, 
- .. -+---+ --

ar2 .. r ar dZ 2 

d 2~v 3 d~v~a2~v 
= -- +---+-­

ar2 r dr dZ 2 

(2la) 

(2lb) 

(22a) 

(22b) 

(23a) 

(23b) 

Further assume that the system has settled doWn such that at any point the 

fluid and the containing vessel have the same period and decay constant, 

so we can again write 



l/lJl,(r,z,t) 

l/l (r ,z ,t)· = v . 

<PJI,(r,z) 

<P (r,z) 
v 

at 
e 

at 
e 

. . 
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(24a) 

(24b) 

where a -B + iy with y defined as 2rr/T; T is the period of the osci1l~-

tionand B the decay constant of ·the system. Notice that a is the same 

for both phases because the system has only one period and one decay 

constant. Substituting Eqs. (24a) , (24b) into Eqs. (23a) and (23b), we 

get for the liquid phase 

and for the vapor phase 

a .- <P 
\) v 

v 

Equations (25a)and (25b) . are the two equations to be solved for the 

velocity profiles of the fluids inside the containing vessel. 

The boundary conditions are 

(I) <PJI, <P at r a and z 0, 
0 

(II) <P - <P .at r = a and z H, v 0 

(III) <PJI, <P at z = h , v 

d¢JI, d<P 
(IV) v 

h n ., - T) - at z = 
dZ = A. V dZ 

(25a) 

(25b) 

(27a) 

(27b) 

(27c) 

(27d) 
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<P is the angular velocity of the crucible when it is passing the 
o. 

at equilibrium position, in other words, <P e is the angular velocity of o 

the crucible. Condition (III) assumes no slip at the interface and 

condition (IV) represents the continuity of shear stress at the inter-

face. 

A series expression 

(28) 

is assumed for·the solution of Eq.(25a), where J 1 is the·Bessel function 

of order one and J1(kua) = 0, A!, B! are constants to be determined and 

2 a (29a) m~ = 
V i 

(~~)2 = k 2 2 (30a) - mi 
. . 

n n 

The subscript and superscript i refer to liquid phase. 

It is evident that Eq.(28) satisfies the first part of the boundary 

condition (I), namely, <Pi 

requires * 

equality can be proved: 

= ·41 
o at r = a. The condition <P~ = <Po at z = 0 

cosh ~ih and the following· 
n 

<P 
o 

~: 
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2m~2 <Po 

Substituting Eq. (31) into Eq. (28) yields 

~ . 

sinh(~ z) 
n 

a<P 
+~ 

r 

J (m r) 
1 . Q 

J1 (m~a) 

(31) 

(32a) 

Similarly the solution for the vapor phase can be expressed in the same 

form 

a<P . J 1 (mvr) + __ 0 

r J 1 (mva) 
(32b) 

where the axial.coordinate in th~ vapor phase has been changed to Z 

H-z. 

Parallel to that of the liquid phase, m and ~v in Eq.(32b) are 
v n 

defined as follows: 

m 2 ~ JL 
v Vv 

(29b) 

(~v) 
2 2 2 

k - m 
n n v 

(30b) 
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To determine AJI"s and AV's, the other two boundary conditions have 
n 'n 

to be utilized. Equation (27d) permits A
V 

to be expressed in terms of 
n 

(33) 

Substituting Eq. (33) into Eq. (32b) and combining Eq. (32a) with boundary 

. condition III (Eq. (27e»; ~Q, can be determined as: 
n ~ 

J 2(k a)k 
n n 

2mJl, 2. + 2mv 
2 II .. ' 

(Q,~) 2eosh (Q,~h) (JI,~) 2eosh [Q,~ (H-h)] 

(34) 

A v canthus be determined from Eq. (33) and Eq. (34) •. 
n 

are 

q, . 
JI, 

V = 
o 

= 

The ratios of the maximum fluid velocities to that of the crucible 

aJ1(mJl,r) 

rJ 1 (mJl,a) 

aJ 1 (mvr) 

aJ1(m a) 
v 

(35a) 

22 
m" 

+ . v v 
J2(kna)kn(9.n) cosh[9.n(H-h)] 

eosh[Q,v(H-h-Z)] n . 

J 1 (knr) 
-~-. (35b) 

r 
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The viscous drag Gon the inside walls of the crucible due to 

the presence of liquid and saturated vapor is 

G 

j H-h 
+' 
.. 0 

(
at) oa~e 

2 o· 
21Ta 11" . or r=,a 

dZ 

The damping coefficient L, as in the single phase case, can be 

expressed as 

L 

= 

G 
~ 

o 

.+ 

at 
e 

. jH-h (0 (~ I~ )} 
3 V 0 dZ 

I1v a 0 r -
o r=a 

(36) 

(37) 
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To determine nR, if nv is known (or vice versa) t Eqs. (37) and (18) 

must be solved simultaneously. It is also possible to determine both 

nR, and ~with two different measurements with different hva1ues. 
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III. EXPERIMENTAL APPARATUS 

A. ,General Description 

The system is described with reference to the sectional diagram of 

Fig. 4. 

The pendulum is made up of five parts, the cruCible (D), in which 

the sample is held, the 'connecting rod (E), the thermal insulator (F), 

the external part of 'the pendulum (G) and the chuck (H). 'A photograph 

of the assembly is shown in Fig. 5. A polished surface on the external 

portion (G) is used to reflect the incident. lkser light (Z) by which 

the osCillating motion is mOIlitored. This portion also has a horizontally 
. . . . 

drilled hole into which different inertia rods (I) can be inserted and 

fixed 'so that the moment ~f inertia of the pendulum can be adjusted. 

(See'section B of experimental procedure.) 

The pendulum: system is suspended by a piece of torsion fibre (J) 

attached 'to a 'second chuck (K) which is fixed to a rotable holder (L). 

,to a rotary feedthrough (N) by which oscillation. of the pendulum is 

initiated through the vacuum wall. 

The: crucible is suspended in the hot zone of a Brew tungsten mesh 

furnace (A) 'of 1 3/4 inch diameter and 3 1/2 inch height . Layers 'of 

tungsten thermal shields arranged on the side, the top and the bottom 

" reduce the radiation heat loss and also provide uniform temperature in 

the hot zone. Temperatures up to·1300°C are measured by a chromel-

, Alumel thermocouple located close to the crucible., An optical pyrometer 
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Fig. 4. Sectional diagram of the experimental system. 
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Fig. 5. Torsion pendulum. 
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(P) which sighted through a right angle prism (Q) into a hole 1/8 inch 

in diameter drilled through the bottom shield parts into the inner 

furnace region is used to measure temperatures above 900°C. 

The entire system is enclosed in a vacuum chamber (C) which serves 

three functions: 1) it prevents the oxidation at elevated temperatures, 

2) it reduces heat loss by convection, 3) it minimizes damping effect 

due to the presence of surrounding gases. 

To minimize absorption of the building vibrations, the entire 

apparatus is placed in a sand-filled pan. 

B. Vacuum System 

The system is equipped with a mechanical pump, an ion pump (IP) and 

two liquid nitrogen soprtion pumps (SP). To avoid vibrations, the 

mechanical pump is turned off when taking data. Instead of the ion pump, 

which is capable of maintaining the system at a lower pressure, the 

sorption pumps are used to keep the system vacuum at < 3xlO- 5 torr. This 

is done to eliminate the possibility of damaging the ion pump in case 

of a cesium leak from the crucible. The pressure maintained by the 

sorption pumps is low enough that no other pumping is necessary. 

C. Pendulum Motion Recording System 

The pendulum motion recording system is illustrated in Fig. 6. 

A helium gas laser is used as the incident light beam because of 

its strong intensity and spot size. The reflected light from the poliahed 
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surface on the pendulum triggers an IN2l75 photocell located in the 

vacuum chamber. Before feeding the output of the photocell into the 

multichannel analyzer, a logic circuit designed to correct the spatial 

error due to the finite dimension of the photocell and laser beam is 

employed. Due to the finite time required for the laser spot to pass 

the photocell, the output from the photocell has a certain width which 

increases as the oscillation motion slows down (Fig. 7 ). The logic 

circuit generates a narrow pulse each time when the laser beam passes 

the left edge of the photocell which is used as the reference position. 

The corrected pulses are then sent as the channel advancing pulses 

to the multichannel analyzer operating in the multiscalar mode. At the 

same time, 100 KHz timing pulses are fed into the MeA. The counting 

starts at channel 1 and continues until a channel advancing pulse 

transfers the timing pulses to channel 2 and so on. Since each stored 

count is equivalent to 10 microseconds, the number of timing pulses 

stored in a particular channel provides an accurate measure of the 

time elapsed between successive passages of the beam past the photocell. 

Fig. 8 shows a typical set of data obtained in this manner. 

The position of the photocell is in general different from the 

position of the reflected light beam with the pendulum in equilibrium 

(Le., not oscillating). The upper points in Fig. 8 represent the 

time intervals for the pendulum to move from the photocell to the maximum 

angular displacement farthest from the photocell and return to the cell. 

The lower points are a similar record for the remaining portion of the 

oscillation. Figure 9 shows another version of the pendulum oscillation. 
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Fig . 6. Pendulm motion recording system . 
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Fig. 8. A typical set of data shown on the screen of the multi-channel 
analyzer. 
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Fig. 9. The damped sinusoidal motion of the pendulum. 
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The damped sinusoidal curve represents the pendulum motion and the line 

b is the position of the left edge of the photocell. The points shown 

in Fig. 8 are the time intervals tl, t2, t3, tit, etc. 

lfthe damping over the interVals t 1 , t 3, ts,.etc. are small, the 

curve in Fig. 9 can be considered as synnnetric around each of the peaks. 

The heights of the peaks are t.hen proportional to the inverse of 

cos ,:rrtl, Tft3· h i h· . i d T cos~, etc., were T s t e per 0 • Therefore the decay 

constant B, by definition, is 

s = 
I 

2Tf 
... [cos(1!f}] 

J/,n . } 

. COSC~l) 

If the asymmetry of the pulses is taken into account the percentage 

error can be shown to be less .than (22) 

where 

Tft3/-r 

7ft ~\ tan(~ 
7f tl IT-

tane~l) 

which in the present experim2nts, is always less than O~l% • 

'f' 

" . /1· 
I 
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D. Torsion Wire Preparation 

In measuring the damped sinusoidal motion of a oscillating cup 

viscometer, some degree of damping is always observed even when the 

sample is in solid form. This inherent-damping is mainly due to the 

presence of the internal friction in the torsion wire. There are many 

- .' . . (23 24) 
explanations of the causes of the internal friction, ' the most 

significant ones being dislocation line movement and grain boundary 

slip. Impure polycrystalline metals normally have less internal fric-

tion t:han high purity specimens because the impurities effectively pin 

the dislocation lines. Annealing is also effective in reducing the 

internal friction because it reduces the density of dislocation line 

and, depending on annealing temperature, reduces the total grain 

boundary area. For these reasons, an~ea1ed 3% Re-W wire was chosen as 

the torsion fibre. (25) Figure 10 shows the difference between pure 

tungsten and 3% Re-M wires and the effectiveness of annealing. 

E. Tungsten Crucible Design 

The vapor pressure of cesium increases sharply when the critical 

temperature is approached (Fig. 1). On the other hand, the strength of 

tungsten decreases rapidly with temperature. (26) Special precautions 

therefore, have to be taken in designing the crucibles for high tempera-

ture,high pressure experiments. Tungsten was chosen over tungsten 

alloys whi.ch have higher yield stress because of its good corrosion 

resistance. (13) 
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Fig. 10. Effectiveness of impurity and annealing on the internal 
friction of torsion wire. 
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TwO kinds of crucible were used in this research. The "thin-wall" 

ones shown in Fig. 11 were used for lower temperature runs. Figure 12 

is the sectional view of the "pressure vessel" type crucibles used for 

high temperature, high pressure runs. 

All the crucibles were fabricated from forged tungsten rod stock 
, 

by Northwest Industries, Inc. Prior to the loading of cesium, the 

,crycib1es were vacuum annealed at 10000C for 20 minutes. This procedure 
);>. 

relieves the internal stress introduced in machining and helps prevent 

cracking when the lids were later sealed by electron-beam welding. 

Vacuum annealing at this temperature is also an effective way to clean 

tungsten. 
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Fig .. 11. Sectional view of the thin-wall crucible. 
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IV. EXPERIMENTAL PROCEDURE 

A. Sample Preparation 

The high purity (99.99%) cesium metal used in this research was 

supplied by Leico Industries, Inc. A typic'a1 chemical analysis of the 

sample is shown in Table IL 

Tungsten crucibles and cesium sealed in glass ampoules were loaded 

in a glove box flushed with dry nitrogen. The cesium was heated to the 

melting point and poured lnto .. the crucible. The amount loaded was roughly 

controlled by meastiring the weight increase of the crucible using the 

balance inside the glove box. After the lid was electron-beam welded to 

the body, the exact weight of the cesium charge was accurately measured 

by an analytic balance. 

To prevent overheating of the cesium.metal during electron beam 

welding, the crucible was held ina cylindrical copper block (9 cin 

diameter by 13 cm height) with a central hole to hold the crucible. In 

order to serve as a heat sink, the copper block was prechil1ed to liquid 

nitrogen temperature. This method effectively eliminated the vaporiza­

tion of cesium during the welding operation but increased the possibility 

of cracking in the weld due to the large thermal gradient. 

Transfer of the loaded crucible from the glove box into the electron 

beam welder was done in less than 10 seconds. Since the loaded .crucib1es 

were chilled to liquid nitrogen temperature before leaving the glove box, 

gas flow through the tight-fitting lids (if any) would be from the inside 
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Table II. Chemical Analysis of Cs Sample 

Impurities Content (ppm) 

Aluminum < 2 

Calcium < 5 

Chromium < 2 

Copper < 2 

Iron < 5 

Lead < 2 

Lithium <10 

Magnesium < 2 

Manganese < 2 

Nickel < 2 

Potassium < 8 

Rubidium < 8 

Silicon < 3 

Sodium < 8 
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. out as the crucible warmed up. Thus it is believed that the cesium did 

not become oxidized during the short period of transportation from the 

dry box to the welder and the pump-down time of the vacuum system of the 

welder. 

B •. Moment of Inertia Measurement 

In order to determine the viscosity from the decay constant measure-

ments, the moment of inertia of.the pendulum system is required. This 

quantity is determined by comparing the oscillation periods of the pendulum 

with and without an attached rod of known moment of inertia. 

Let lobe the moment of inertia of the system without the inertia 

rod, the period To for small amplitude oscillation is 

= 
Do 

2rr/ f (38) 

. where f is the spring constant of the torsion Wire.· By attaching the 

rod with known moment of inertia Ib.to the pendulum, the period increases 

to 

= 
/IO+Ib 

2rr f 

Therefore I· can be determined from (38) and (39) as· o . . . . . 

I o = 

(~)' - 1 

(39) 
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In the actual analysis, however, the moment of inertia of the system 

excluding the sample is used. The calculated inertia of the solid sample 

therefore has to be subtracted from 1
0

• 

c. Viscosity Measurement 

Since the system has been previously tested on liquid tin and been 

used to measUre the viscosities of uranium metal (22) and uranium dioxide~27) 

no further verification of the system accuracy has been made for the 

present experiment. 

The intrinsic damping effect was measured before each experiment 

when the sample was in solid form. The temperature of the hot zone was 

then gradually increa'sed while the pressure gauge was closely monitored 

for any cesium leakage. At each temperature, su"fficient time was allowed 

for the crucible to reach thermal equilibrium with the hot zone. A 

braking device was then engaged to bring the pendulum system completely 

to rest before an initial twist was transmitted to the pendulum through 

the rotational feed through on top of the vacuum chamber. In each experi-

"ment, 25 consecutive oscillations were recorded and used to determine 

the mean period and decay constant. 

After the experiments were over, the intrinsic decay constant was 
\ 

measured again to reaffirm the value measured prior to the experiments. 

The temperature"dependence of ,the intrinsic damping was determined 

separately with a dummy crucible (consisting of solid tungsten). S was 

found to be independent of temperature in the experimental range. 
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V. RESULTS 

The cesium viscosity measurements were carried out with two thin-

wall crucibles (A and B) in the temperature range from 135 to 550°C and 

froIIi530 to 815°C, respectively, and with one pressure vessel type 

crucible (D) from 800 to l600°C. - Slight overlap of the temperature 

ranges provided a check of the consistency of data obtairtedfrom dif-

ferent viscometers.-The -information on thes~ three viscometers is given 

in Table III. 

Two-phase soiutionwasempioyed for temperatures greater than 600°C, 

at which temperature the reported vapor viscosity is abo~t 1/8 of that 

of the liquid. The saturated cesium vapor viscosities used in the two-

- (28) 
phase solution were taken from the work of Bonilla et al. 

Figures 13 and 14 show the measured cesium _viscosity plotted as 
--

.n ,vs. T and logn vs. lIT, respectively. The data are aiso,tabulated 

in Table IV.- ' Achener and Boyer(29) have measured the cesium viscosity 

using the oscillating 'cup technique up tol060°C. Their result is 

shown in Fig. 13 for comparison. The agreement between their results 

and the present data is quite good. 

The difference between the values Of- the liquid viscosity deduced 

from the set of data points but analyzed by the single-phase and two-

phase solutions of the equations of motion depends on the temperature 

and the relative height of the vapor phase compared to that of the 

liquid. With viscometer B, at 600°C the corrected liquid viscosity is 

8% less than that without the correction for vapor drag. For crucible D 

'fit,1600°C the analogous figure is 30%. 
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TableIII. Characteristics of Viscometers and Cesium Charges 

Crucible Type 

Crucible I.D. (cm) 

Crucible inside Height 
(cm) 

Moment of Inertia 
(gm-cm 2

) 

Torsion Wire 

Cesium Charge (gros) 

Height of Liquid (em) 

Temperature Range 

Viscometer A 

thin wall, 
tungsten 

1.58 

6.05 

274.62 

W-3% Re, 7 mil, 
annealed 

15.593 

4.44 at 500°C 

Viscometer B 

thin wall, 
tungsten 

1.58 

6.04 

275.84 

Viscometer D 

pressure vessel, 
tungsten 

1.59 

5.59 

397.33 

W-3% Re, 7 mil; W....;3% Re, 7 mil 
annealed annealed 

10.035 7.044 

3.68 at 815°C 

53D-8l5°C 
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Table IV. Cesium Viscosity Data 

Temperature Period Decay Constant Vapor Viscosity Liquid Viscosity* 
r C) (seconds) (10- 3 sec-I) (millipoise) (millipoise) 

135 3.175 1.718 3.86 

135 3.216 1. 712 3.89 

216 3.174 1.558 3.06 

216 3.215 1.551 3.08 

216 3.174 1.542 3.00 

232 3.175 i.538 2.96 

232 3.217 1.491 2.81 

232 3.219 1. 498 . 2.84 

320 3.181 1.438 2.49 

320 3.181 1.496 2.52 

320 3.221 1.412 2.43 

420 3.185 1.321 2.02 

420 3.184 1.378 2.21 

497 3.183 1.282 1.84 

497 3.183 1. 295 1.88 

556 3.185 1.281 1.80 

556 3.185 1.279 1. 79 

645 3.24 0.919 0.22 1. 59 

735 3.24 0.918 0.24 1.53 

815 3.24 0.880 0.26 1.41 

790 3.94 0.424 0.25 1.54 

898 3.92 0.420 0.27 1. 41 

957 3.94 0.415 0.28 1.34 

1024 3.92 0.412 0.29 1.25 

1105 3.94 0.411 0.31 1.20 

1183 3.92 0.415 0.32 1.15 

1197 3.94 0.410 0.32 1.12 
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Table IV. Continued 

Temperature Period Decay Constant Vapor Viscosity Liqufd Viscosity* 
(OC) (seconds) (10- 3 sec..,.l) (millipoise) (mi11ipoise) 

1308 3.94 0.406 0.34 1.02 

1348 3.92 0.403 0.35 0.97 

1400 3.93 0.402 0.36 0.93 

1472 3.92 0.407 0.37 0.91 

1510 3.94 0.402 0.38 0.87 

1555 3.92 0.402 0.39 0.83 

1605 3.94 0.400 0.39 0.79 . 

* Corrected for vapor viscosity for T > 600°C. 

;. 



The measured Cs liquid viscosity was fitted by the equation 

in n = 

in n = 

-0.187 + 6.34Xl0
2 

T 

6.0lxl03 

-2.55 + T 

where n is the dynamic visco'sity in millipoises and T is the absolute 

temperature in oK. The standard deviation of the viscosity for the above 

two expressions are 0.008 mP and 0.06 mP, respectively. 

The activation energy for the low temperature range is 1.3 ± 0.2 kcal/ 

gm-mole. The values found by Achener and Boyer (29) are 1. 03 kcal/gm-mole 

for the 55 to 448°C range and 1.76 kcal/gm-mole for the 533 to l064°C 

range. The liquid viscosity does not follow an Arrhenius law in the 

high temperature range, so cannot be characterized by a single activation 

energy. 
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VI. DISCUSSION 

A. Law of Rectilinear Diameters: The Critical Viscosity of Cesium 

It was first discovered by Cailletet and Mathias in 1886 that when 

approaching the critical temperature, the mean density of the liquid and 

its saturated vapor is approximately a linear function of 'temperature. (30) 

This is the so-called law of rectilinear diameters. Grosse later pointed 

out that this law also applies to liquid and vapor viscosities. (11) 

The fact that the viscosity varies' rapidly as the critical tempera-

tiJre is approached coupled with the problem of loading exact amount of 

sample into a constant volume device like the oscillating crucible makes 

the direct measurement of critical viscosity very difficult. Like most 

of ,the critical density measurements, law of rectilinear diameters was 

utilized to estimate the critical viscosity of the cesium metal by 

extrapolating data at lower temperatures. Since the pr,esent data extend 

quite close to the critical point, the accuracy of such an extrapolation 

is good. 

The mean viscosity n is calculated and shown in Fig. 15. The data 
, , 

between 1200 to 1600°C were least-squares fitted into a straight line 

n - l(n '+n ')' = l.l3-3.2lX,lO-ItT 
- 2' Iiq. sat.vap. . 

where T is'the temperature ,in °c. The mean viscosity in this temperature 

range is a very good linear function of temperature. Extrapolating the 

, "(12) 
mean'viscosity to l760°C, the reported critical temperature of cesium, 
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yields a critical· viscosity of 0.57 ± 0.4 millipoises. This value is 

smaller than the 0.8 millipoises Grosse obtained by extrapolation of 

. estimated sodium and potassium critical viscosities. (11) 

B. Andrade's Theory of Liquid Viscosity (31) 

Consider a simplified model of the liquid state in which the molecules 

are arranged in a regular array and are in constant vibrational motion. 

In order for a molecule to jump to an adjacent site to which the momentum 

is transferred by virtue of a velocity gradient, an energy Eo to overcome 

the potential barrier is required. According to the Boltzmann distribu-

tion law, the ratio of number of molecules possessing energy Eo at tempera-

tures T to the number possessing this energy at temperature T' is 

E."O .(1 _ L)· 
k T T' 

e , 

This is the main factor in the temperature dependence of viscosity, for 

which an approximate formula is 

Eo 
kT Eo/kT 

e = . A e (40) 

This is ·the so-called Andrade I equation. 

In deriving the above equation, no account was taken of the variation 

of liquid specific volume with' temperature. The average distance between 

1 
molecules increases with temperature as V3, where V is the specific 

. 2 
volume, and the number of molecules per unit area diminishes as V-J • 

. ',~. 
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(32) 
From the mean field theory of the classical van der Waals model, Eo 

can be taken as a/V where a is a constant. The result is the Andrade II 

equation: 

(41) 

The measured cesium viscosity was tested against these two predic-

tions. In Fig. 14 data are plotted according to the first equation. It 

can be seen that the measured cesium data are in good agreement with 

Eq.(40) up to lOOOoK. Beyond that, the data start to deviate from the 

predicted straight line, Comparison of cesium data with the Andrade II 

equation is shown in Fig. 16. Again, cesium behaves as predicted only 

in the low temperature region. This is not surprising since the equations 

were derived based on the assumption of lattice structure of the liquid. 

This model fails at high temperature, however, since the molecules possess 

high kinetic energies and tend to make the liquid structure more random 

than solid-like. 

C. 'Theory of Corresponding States: . Viscosities of Sodium and Potassium 

The high' pressure limitation discussed in the Introduction is the 

reason that the entire liquid range of the alkali metals might not be 

covered experimentally for some time to come. Because of their high 

critical pressure, lithium, sodium and potassium are even more difficult 
, 

to contain near the critical point than is cesium. Consequently it is 

desirable to estimate the critical viscosity of the other alkali metals 

from the measured cesium data by using the theory of corresponding states. 
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One of the conditions for the validity of the principle of corres-

ponding states is that the reduced potential energy between molecules be 

written as a universal function of the reduced intermolecular distance 

u r . 
(e.g., £" = u(a)' where £ and cr are the force constants of the potential 

function). The similarity in the properties of the alkali metals should 

satisfy this requirement quite well. It can be shown that with· this 

condition, a law of corresponding states for viscosity can be derived. (33,19) 

The reduced viscosity is 

ll* = ll* (T*,V*)· = (42) 

where T* reduced temperature kT 
= 

£ 

V* reduced volume 1 
::;:" = 

ncr 3 

n = molecular density 

M = molecular weight 

N = Avogadro's number. 
0 

Because of the difficulty of finding the necessary values for cr, it 

is convenient .to follow Pasternak's. method (20) of multiplying ll* by 
2 

(v*) '3 to eliminate cr from Eq. (42) . The resulting dimensionless quantity 

.. ; is 

2 
ll*(V*)'3 = 

1 2 

llN "3'V~ o 
I 

(MRf)2 
= f (T*) (43) 

where R is the gas constant. The energy parameter ~ in Eq. (43) is deter­

mined from the empirical relationship found by Chapman: (19) 



£ 

k 
= 

'-55-

5.2 Tm 

where Tmis ,the melting point of the liquid metal in degrees Kelvin. 
2 

In Fig. 17 , n* (V*) '3 vs .T* is plotted from the measured cesium 

viscosity. The sodium and potassium viscosities predicted from the 

(44) 

universal plot of Fig. 17 are shown in Figs. 18 and 19, respectively, 

along with the experimentally measured results of Kalakutskaya. (34) The 

agreement is satisfactory at medium and high temperatures. With the 

vapor viscosity data provided by Bonilla and co-workers, law of recti-

linear diameter may be, used to determine the following critical 

viscosities: 

= 0.50 ± 0.5 millipoise for sodium 

and 

= 0.46 ± 0.5 millipoise for potassium • 

The reduced viscosity of the alkali metals at the critical point is: 

/ " 

n * 0.24 c, 
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