
LBL-14144
Preprint

ffi1 Lawrence Berkeley Laboratory
11:1 UNIVERSITY OF CALIFORNIA

Engineering & Technical
Services Division

To be submitted for publication

THC: DESIGN SPECIFICATION

Martin S. Itzkowitz and Jeremy Knight

October 1981

f- :"'r(1 6 1982

LIBRARY AND
DOCUMENTS SECTION

- "

I

This is a Librar~ Circulating Cop~ \
which rna~ b~ borrowed for two weehs. \
For a personal retention cop~, call '

Tech. Info. Diu is ion, Ext. 6782

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness o'f any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

• {!

To be submitted
for publication

THC: DESIGN SPECIFICATION*

~·1art in S. Itzkowitz

and

Jeremy Knight

Lawrence Berke 1 ey Laboratory
University of California

Berke ley, Cali fern i a

October 1981

LBL-14144

· * This work was supported by the U.S. Department of Energy under
contract No. DE-AC03-76SF00098 ·

i.

"'

LBL-14144

HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERcha
YPERchannel HYPER channel HYEERchannel- HY~ERohannel-HYPERchannel--HYPERchan
PERchannei-HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchann
ERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchanne
Rchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel
channel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel
hannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel H
annel HYPERchannel HYPERc ERchannel HYPERchannel HY
nnel HYPERchannel HYPERch Rchannel HYPERchannel HYP
nel HYPERchannel HYPERcha ***** * * **** channel HYPERchannel HYPE
el HYPERchannel HYPERchan * * * * hannel HYPERchannel HYPER
1 HYPERchannel HYPERchann * ***** * annel HYPERchannel HYPERc
HYPERchannel HYPERchanne * * * * nnel HYPERchannel HYPERch

HYPERchannel HYPERchannel * * * **** nel HYPERchannel HYPERcha
YPERchannel HYPERchannel el HYPERchannel HYPERchan
PERchannel HYPERchannel H 1 HYPERchannel HYPERchann
ERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchanne
Rchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel
channel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel
hannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel H
annel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HY
nnel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYP
nel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPE
el HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPER
1 HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERc

HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERch
HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERcha
YPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchan
PERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchann
ERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchanne
Rchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel
channel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel
hannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel H
annel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HY
nnel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYP
nel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPE
el HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPER
l HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERc
HYPERchannel HYPERchannel annel HYPERchannel HYPERch

HYPERchannel HYPERchannel October 9, 1981 nnel HYPERchannel HYPERcha
YPERchannel HYPERchannel H nel HYPERchannel HYPERchan
PERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchann
ERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchanne
Rchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel
channel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel
hannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel H
annel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HY
nnel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYP
nel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPERchannel HYPE

CONTENTS

Introduction ..
1 General Description

1.1 Data Structures •••••••
1.2 Network Services and Requests
1.3 Requests and Messages
1.4 Pseudocode Implementation

2 Data Dictionary
2.1 Nomenclature
2.2 Buffer .
2.3 Connection-Code
2.4 Connection-Record
2.5 Constants
2.6 Message
2.7 Node
2.8 Offer
2.9 Process
2.10 Queue
2.11 Request
2.12 Statistics
2.13 Text-Syntax-Elements

3 User Request Syntax and Semantics
3.1 Acknowledge-Request
3.2 Advisory-Request
3.3 Close-Request
3.4 Connect-Request
3.5 Offer-Request
3.6 Status-Request
3.7 Test-Request
3.8 Transmit-Request

4 Message Syntax and Semantics
4.1 Advice-Message ••••..

••

4.2 Connection-Acknowledge-Message
4.3 Connection-Close-Message
4.4 Connection-Open-Message
4.5 Data-Message
4.6 Test-Data-Message
4.7 Test-Response-Message

... • .

....

3
3
4
5
6

7
7
8
9

10
13
14
20
23
24
26
27
30
32

33
34
35
36
37
38
39
40
41

42
42
43
44
45
46
47
48

5 Sys~Specific Requests
5.1 BKY CDC (Compass)

• • • • • • • • • • • e • • • • • • • • • • • • • e • • e • • • • • • • • • • •

5.2 Fortran ...
5.3 RSX-11M (Macro) •••••••••••••••••••••••••••e•••••••••••••

5.4 UNIX (C) ••••••••••••••••••••••••••••••••••••a•••••••••••

5.5 VM-370 (Assembler)
5.6 VMS (Macro) •••••••••••••••••••••• 0 •••••••••••••••• 0 0 ••••

6 Pseudocode
6. 1
6.2

Request-Processor
Request-Handlers

..
..

6.3 Listener .•.......••••.....••.•.•......•.•...•.....•.....
6.4 Message-Processors ··•·· •··•
6.5
6.6

.. Driver
Housekeeper ...

6.7 Subroutines •••••••••••••••••••••••••••••••••• 0 ••••••••••

Appendix A - Error Codes•........•..

Appendix B - Node-Table ...
Appendix C - How to Sabotage the Network

Appendix D - Accounting ········~··································

Appendix· E - Chronology

49
49
51
53
55
56

:0.

57

58 ...

59
61
69
71
73
11
19

88

93

94

95

96

,,

Introduction

This writeup contains the internal and external specifications for

the local network protocol THC, designed and implemented at the Lawrence

Berkeley Laboratory Computer Center. The general design and structure

of THC is described in the paper THC - a Simple High-

Performance Local Network, by Jeremy Knight and Marty Itzkowitz, . LBL

Report 11426. An understanding of the material in that paper is assumed

in this.document.

Chapter 1 of this writeup contains an introduction to the data-

structures, requests, and messages used in the protocol, .as well as the

pseudocode structure.

Chapter 2 is a dictionary of all data-structures used in the imple-

mentation, with their symbolic and numeric values.

Chapter 3 describes the detailed syntax and semantics of the

requests that a process may make of the network.

Chapter 4 describes the detailed syntax and semantics of the net-

work messages.

Chapter 5 describes the system- and language-specific request for-

mat for each of the operating systems and languages supported in the

network operating system.

Chapter 6 is the pseudocode implementation of the network execu-

tive.

This is a revision of the version of 05 Mar 81. Changes include:

removal of network password encryption; differentiation between user and

network timeouts; provision of a single format for the Connection-

Acknowledge message; specification of a status-request to return a list

of all network nodes and states as seen from the local node; a status-

request to change the local state of any node; addional error logging;

and the definition of the character "*" as 'the local node' when used as

REQUEST.NODE-TO.

The term "security" has been changed to "privilege" throughout the

writeup in order to avoid a loaded term; anyhow, privilege hath its

rank. Though the name has changed, the pseudocode remains the same.

Substantive changes in the writeup are identified by a "I" in the

right-hand margin.

.... ~' ,,

General Description -3- Data Structures

1. General Description

1.1. Data Structures

(Bold-face is used below for the first reference to a particular
data-structure; all data-structures are described in detail in the Data
Dictionary, Chapter Two.)

A node is one of the machines in the network. Each node has a
node-table with entries containing information about all of the nodes in
the network. A node is one of those entries. The first entry in the
node-table on any node refers to that node itself.

Any user or system job running on a node is a process. The data
structure process is a collection of information describing it. Some. of
the information is network-global and is used by the executive to corre
late references between processes on different nodes •.

A process obtains service of the network by making a request. The
request tells . the system what to do with the process-level information
in the request.

Most requests involve references to a connection, which may be
thought of as two connection-records, one for each of the two sides, and
the logical path connecting them. Each node has a connection-table
which contains all of the connection-records on that node.

The connection-records provide the information necessary for corre
lating a request from a process with the network message that gets sent
across the logical path from one side of the connection to the other.

A message is held in a buffer, which holds the header and the text,
if it is small; if the text is too large to fit entirely in a buffer, it
is held in a databuffer, which is linked to the buffer. Buffers may be
held in queues. Buffers containing messages to be sent out from the
node are held in the send-queue; buffers containing messages received
from the network are held in the receive-queue. Buffers of messages
that must be delayed because of hardware difficulties are kept on a
wait-queue for each of the nodes.

The executive maintains a collection of statistics, containing
various performance measurement data. Some additional statistics are
kept, sorted by node, in the node-table.

The establishment of a connection is handled by means of a
bulletin-board. An offer is placed on the bulletin-boards by one of the
processes requesting the connection. It is accepted, and the connection
established, when the second process makes a connect-request that satis
fies and is satisified by the offer.

General Description Network Services & Requests

1.2. Network Services and Requests

(Bold-face is used below for the first reference to a particular
service or request; all requests are described in detail in Chapter
Three.)

A process obtains services from the network ·operating system. by
making requests of its local operating system. Interprocess communica
tion constitutes the underlying foundation for all services; either of
two kinds of interprocess communication may be used - a connection or a
query.

A connection establishes a path for continued communication between
the two processes. An attempt at establishing a connection may or may
not succeed; in any case a single packet of data may be passed back in
response. A query directs a single question to a process and gets a
single answer back. A query is exactly like an attempted connection
that can never succeed. · ·

Connections and queries each begin when one of the two · processes
involved makes an offer-request detailing the services provided and the
processes that may avail themselves of the offer. The other process
makes a corresponding connect-request which is matched against the offer
and then passed to the first process. The first process then issues an
acknowledge-request which is used to complete the .second process'
connect-request. When a connection is successfully opened, further com
munication takes places when the two processes each make transmit
requests. They each receive the other's data, and are allowed to
proceed. A connection is closed when either side makes a close-request.

Simple services are provided by processing a single request from a
process. A test-request is used to transmit an arbitrary block of text
to one of the nodes in the network and back again for verification.· A
status-request is a question asked of and answered by the local network
executive. It is answered from information held locally and may always
be completed independent of the state of the communications hardware.
Some status-requests are privileged. An advisory-request allows a
privileged process to inform the system of something thought to be help
ful to it.

me Internal Doctmentation

. ~-

General Description Requests and Messages

~ Requests and Messages

(Bold-face is used below for specific messages, described in
Chapter Four.)

An advisory-request causes the generation of an
which is then sent to one of the nodes in the network.
are also generated by the network housekeeper.

advice-message
Advice-messages

A test-request opens a connection-record, ·and sends · a test-data
message to any node in the network. The request is then suspended until
a test-response-message is sent back from the destination node.

A connect-request causes the generation of a connection-open
message. When a connection-open-message is matched against an outstand
ing offer-request, the offer-request is completed with the text of the
message. The offering process is then obliged to make an acknowledge
request, which causes a connecticin-acknowledge-message to be sent back
to complete the original connect-request. The side issuing the
connect-request is master of the connection, the side issuing the
offer-request is slave. However, once the connection is established,
their requests are symmetric.

Subsequent communication takes place by having each process issue a
transmit-request. The transmit-request from the master side causes the
generation of a data-message which is sent to the slave side. When the
message has arrived from the master side, and the process on the slave
side has made its transmit-request the master's data is given to the
slave, and the slave's data is moved to another data-message, which is
then sent back to the master to complete its request.

When either process wishes, it may issue a close-request which will
cause a connection-close-message to be sent to the other side to close
the connection.

me Internal Doct.JDentation

General Description Pseudocode Implementation

1.4. Pseudocode Implementation

(Bold-face is used in this section for the first reference to a
module of the pseudocode, described in more detail in Chapter Six.)

The processes on each side of a connection communicate in their
process-process protocol. In order to do so, each makes a request of
the system. The request is first processed by the request-processor,
which checks the request for legitimacy and then passes the request to
the specific request-handler for the type of request made. The
request-processor and request-handlers communicate with each other in
the session and transP0rt levels of protocol. They send messages by
pushing the buffer containing the message onto the send-queue. Incoming
messages are popped from the receive-queue by the listener and routed to
the appropriate request-handler for processing.

Some messages. are not used for process-process communication,· but
for the establishment of connections and for various simple chores.
These messages are not addressed to a connecti9n, but rather to the sys
tem itself, and are dispatched by the listener to the specific message
processor for the type of message received.

The send-queue and receive-queue are prpcessed by the driver. The
input-driver takes messages from the HYPERchannel adapter and pushes
them onto the receive-queue. The output-driver takes messages from the
send-queue and sends them out to the HYPERchannel adapter. Messages
sent to the node on which they originated are placed directly onto the
receive-queue as if they arrived from the hardware.

The housekeeper is invoked every second by a real-time clock rou
tine. It checks for various timer-driven events, such as intentional
delays or network timeouts, and generally keeps an eye on things.

Subroutines are included for buffer, connection-record and queue
management, and various other useful operations.

1HC Internal Doc1..111entation

Data Dictionary

~ Data Dictionary

2.1. Nomenclature

-7- Nanenclature

(Bold-face is used in this section for the first reference to a
subchapter, described in more detail below.)

Numbers are given in either decimal (110), octal (1568); or hexade
cimal (H6E). A single character enclosed in quotes stands for itself in
ASCII ("A").

Other constants are named by value with the value enclosed in
quotes ('CONNECTION-oPEN'). All named values are defined below under
Constants.

A table is one of the following:

BUFFER
CONNECI'IOH-CODE
CONNECTION-RECORD
MESSAGE
NODE
OFFER
PROCESS
QUEUE
REQUEST
STATISTICS

Variables are referred to as TABLE.FIELD. If the entry in question
is unambiguous,· a variable may be simply referenced as .FIELD. The
leading "·" is considered important. Some fields are pointers to other
table entries; references can be chained as in CONNECTION
RECORD.BUFFER.MESSAGE.TYPE. Intermediate names may be omitted if not
needed for clarity, as in CONNECTION-RECORD ••• TYPE. All of the fields
defined for a particular table are listed below.

The text of the requests and messages used in negotiating a connec
tion is always an "A" mode string. The text-syntax-elements of those
strings are referred to in angle brackets, as in <LOCAL-PROCESS>. The
various elements are defined below.

TIIC Internal Docllllentation

Data Dictionary -8- Buffer

2.2. Buffer

A buffer is large enough to contain a message header and some
number of data items (dependent on system). If the text of the message
will entirely fit in the buffer with the header, no databuffer is
needed. Buffers are allocated and deallocated by utility subroutines.
A newly allocated buffer will have all buffer control fields and all
message header fields cleared, but the text area will not be cleared. A
buffer has the following fields associated with it:

.NEXT

.PRIORITY

.DATABUFFER

.ERROR

.MESSAGE

.RESERVED
A databuffer is used whenever the text of a message is larger than

the (small) amount that will fit in a buffer with the message header. A
databuffer is large enough to contain all the data for the largest pos
sible message. On the PDP-11 and IBM systems, a databuffer is 3840
bytes long; on the 6000's, a databuffer is 512 em-words long.

Buffer Field Definitions

BUFFER. DATABUFFER
BUFFER.DATABUFFER is a. pointer to a databuffer that contains the
text of the message contained in the buffer. It is zero if no data
buffer is allocated.

BUFFER. ERROR
BUFFER.ERROR is a single byte that contains an
corresponding to any error the system may have detected
message into the buffer, or sending it from the buffer.

BUFFER.MESSAGE

error code
in reading a

BUFFER.MESSAGE refers to the message. contained in the,buffer.

BUFFER. NEX1
BUFFER.NEXT is a pointer to the next buffer on a chain. It is mean
ingful only for buffers on a queue. It is zero for the end of the
queue.

BUFFER. PRIORITY
BUFFER.PRIORITY is an 8-bit byte integer, representing the priority
of the message contained in the buffer. It is used when buffers are
put in a queue in order to maintain the queue in priority order. It
assumes the values 0-255; larger .values represent higher priority.

BUFFER. RESERVED
BUFFER.RESERVED is a flag set if the buffer is in use and clear if
it is available.

me Internal Docunentation

Data Dictionary

2.3. Connection-Code

I

-9- Connection-Code

A connection-code is a sixteen-bit field used in the negotiation of
connections. It refers variously to REQUEST.TEXT-CODE and
REQUEST.RESPONSE-CODE for offer- connect- and acknowledge-requests; to
MESSAGE.TEXT-CODE for connection-open- and connection-acknowledge
messages; and to OFFER.SERVICE-CODE in the bulletin-board.

Connection-Code Field Definitions

CONNECTION-CODE .AGENT (2*-o)
CONNECTION-CODE.AGENT is a bit set in offer, acknowledge and connect
requests from a priveleged process, indicating that the process is
acting as agent for another (user) process and that the local

. PROCESS.DE;SCRIPTOR is .supplied in REQUEST. TEXT.

CONNECTION-CODE.FOUND (2**1)
CONNECTION-CODE.FOUND is a bit set 'on' when a matching offer is
found. It indicates completion of the connect-request.

CONNECTION-CODE. IN-USE (2**2) "··
CONNECTION-CODE.IN-USE is a flag set 'on' when a match was found,
but the associated connection-record is in use for some other
request. It is used in connect-requests only.

CONNECTION-CODE .MASTER (2**3)
CONNECTION-CODE.MASTER is a bit set 'on' for the side that wants to
be or is the master side of a connection, and set 'off' otherwise.

CONNECTION-CODE.OPEN (2**4)
CONNECTION-CODE.OPEN is a flag which is 'on' if a connection is
being requested or was made, and 'off' if a query is being requested
or a connection was not made. ·

CONNECTION-CODE.REOFF£R (2**5)
CONNECTION-CODE.REOFFER is a flag used in acknowledge-requests that
are not opening a connection. It implies that any offers used for
this connection should be left open and the acknowledge-request
should be converted back to its original offer-request and completed
when another connection-open-message is received.

CONNECTION-CODE. (undefined) (2**6,2**7)

CONNECTION-CODE. CAPABD.ITY (2**15-2**8)
CONNECTION-CODE.CAPABILITY is an 8-bi.t byte used in offers to
specify service capabilities available, and in connects to specify
service capabilities needed. Bit assignment is at the discretion of
the service processes involved.

me Internal Documentation.

Data Dictionary -10- Connection-Record

2.4. Connection-Record

A connection between two processes requires a connection-record for
each side of the connection. The connection-record contains the infor
mation necessary to make the correspondence between the process request
and the connection over which it should be passed. It also contains
additional information necessary for the system-system level of proto
col.

tern.

A connection-record has the following fields:

.ID
.ID-LOCAL

.NODE-LOCAL

.SUBCHANNEL-LOCAL
.CYCLE
.CONNECTION-INDEX

.ID-REMOTE
.NODE-REMOTE
.SUBCHANNEL-REMOTE

.SEQUENCE-NUMBER

.FLAGS
.RESERVED
.ACKNOWLEDGE-PENDING
.OFFER
.MASTER
.REQUEST-SUSPENDED
.ACTIVE-SLAVE

.ERROR

.PROCESS

.NAME

.TIMER

.BUFFER

The connection-table contains the connection-records for the sys-

Conn.~c-tion~Record .. Field Defini ti9ns .

CONNECTIOH-R£CORD;.ACKNCiii..EIXiE-PENDING.
CONNECTION-RECORD.ACKNOWLEDGE-PENDING is a flag set 'on' when an
offer-request was . completed and an acknowledge-request must be
issued next. ·

CONNECTION-RECORD .ACTIVE...;SLAVE
CONNECTION-RECORD.ACTIVE-SLAVE is a flag set 'on' when an offer is
completed. It is used for node-level flow control.

CONNECTION-RECORD .BUFFER
CONNECTION-RECORD.BUFFER is the pointer to a buffer associated with
the connection-record. On the master side of a connection, it is
the buffer containing~the.response. to a.message.sent; on the. slave-

me Internal DoctBDentation

. .. •('

.'.: -

Data Dictionary -11- Connection~Record

side, it is the buffer containing the message received from the mas
ter.

CONNECTION-RECORD. CONNECTION-INDEX
CONNECTION-RECORD.CONNECTION-INDEX is the lower M bits of the six
teen bit integer which comprises the CONNECTION-RECORD.SUBCHANNEL
LOCAL field. The value of M is system dependent.

CONNECTION-RECORD. CYCLE
CONNECTION-RECORD.CYCLE is an N-bit integer, the upper N bits of
CONNECTION-RECORD.SUBCHANNEL-LOCAL. It is incremented circularly
and used to distinguish successive uses of the same connection
record. The value of N is system dependent.

CONNECTION-RECORD .ERROR
CONNECTION-RECORD.ERROR is an 8-bit byte set whenever the executive
detects an . unrecoverable error ori either side 6f the connection.
When set non-zero, it will cause the connection to be closed and the
connection-record released as soon as the local process makes a
request for that connection. See Appendix A for possible values.

CONNECTION-RECORD .FlAGS
CONNECTION-RECORD.FLAGS is a collection of flags used for control of
the connection record. It consists of the following:

.RESERVED

.ACKNOWLEDGE-PENDING

.OFFER

.MASTER

.REQUEST-SUSPENDED

.ACTIVE-SLAVE

CONNECTION-RECORD .ID
CONNECTION-RECORD.ID refers to the ordered set (node:-local,
subchannel-local, node-remote, subchannel-remote).

CONNECTION-RECORD. ID-LOCAL
CONNECTION-RECORD.ID-LOCAL refers to the ordered pair (node-local,
subchannel-local).

CONNECTION-RECORD. ID-Raci"E
CONNECTION-RECORD.ID-REMOTE refers to the ordered pair (node-remote,
subchannel-remote).

CONNECTION-RECORD .MASTER
CONNECTION-RECORD.MASTER is a flag telling which side of a connec
tion is the master and initiating transmissions, and which side is
the slave, responding to transmissions. It assumes the values 'on'
for the master side, and 'off' for the slave side.

CONNECTION-RECORD. NAME
CONNECTION-RECORD.NAME is the process referent for a connection. It
is matched against REQUEST.NAME; its format is system-dependent, but
it must· be non-zero •.

111C . Internal Doct.mentation

Data Dictionary -12- Connection-Record

CONNECTION-RECORD. NODE-LOCAL
CONNECTION-RECORD.NODE-LOCAL is the NODE.ID of the local node on the
network (self). See Appendix B for possible values.

CONNECTION-RECORD. NODE-REMOTE
CONNECTION RECORD.NODE-REMOTE is the NODE.ID of the node on the
remote side of the connection. See Appendix B for possible values.

CONNECTION-RECORD .OFFER
CONNECTION-RECORD.OFFER is a flag set 'on' if the connection record
is associated with one or more offers in the bulletin-board.

CONNECTION-RECORD. PROCESS
CONNECTION-RECORD.PROCESS is a system-dependent descriptor of the
local process using the connection. It is used in conjunction with
CONNECTION-RECORD.NAME to match REQUEST.PROCESS and REQUEST.NAME in
order to locate the connection being referred to for the request.

CONNECTION-RECORD. REQUEST -suSPENDED
CONNECTION-RECORD.REQUEST-SUSPENDED is a flag set 'on' when the pro
cessing of a request has been suspended pending the arrival of a
message; it is set 'off' when the message arrives.

CONNECTION-RECORD .SEQUENCE-NUMBER
CONNECTION-RECORD.SEQUENCE-NUMBER is a 16-bit 'integer g1v1ng the
sequence number of the next transmission expected on the connection.
It is incremented circularly.

CONNECTION-RECORD .SUBCHANNEL-LOCAL
CONNECTION-RECORD.SUBCHANNEL-LOCAL is the local subchannel in use by
this connection~record. It is a sixteen bit integer of which the
leftmost N bits form CONNECTION-RECORD.CYCLE and the remaining M
bits form CONNECTION-RECORD.CONNECTION-INDEX, where N+M=16 and N and
M assume system dependent values.

CONNECTION-RECORD.SUBCHANNEL-REHOIE
CONNECTION-RECORD.SUBCHANNEL-REMOTE is the subchannel of the remote
side of the connection. It assumes the same possible values as
CONNECTION-RECORD.SUBCHANNEL-LOCAL, but for the other side of the
connection.

CONNECTION-RECORD. TIMER
CONNECTION-RECORD.TIMER is used as a timeout clock when the connec
tion is waiting for some external event.

me Internal Doctmentation

r -

Data Dictionary -13- Constants

2.5. Constants

Constants are named by value with the value in quotation marks.
Constants not defined elsewhere are listed below.

·'DEADWOOD-TIMEOUT' ·c 1800) II
DEADWOOD-TIMEOUT is the value used for CONNECTION-RECORD.TIMEOUT II
when a connection is open but the process does not have a THC II
request outstanding. II

'DEFAULT-TIMEOUT' (1800)
DEFAULT-TIMEOUT is the value used for timeout when REQUEST.TIMEOUT
is zero.

'MF.SSAGE-PENDIHG'
MESSAGE PENDING represents a status bit in the hyperchannel hardware
indicating a message is waiting to be read in the adapter.

'NODE-DOWN-DELAY' (600)
NODE-DOWN-DELAY is the number of seconds that a node may be uncom
municative before it is considered down.

'NODE-SEND-TIME' (20)
NODE-SEND-TIME is the maximum interval that can elapse before the
housekeeper will send an advice-message to the node to prevent it
from calling us unresponsive.

'NODE-TIMER-MAXIMUM' (4095)
NODE-TIMER-MAXIMUM is the maximum value that NODE.IN- or .OUT-TIMER
can attain.

'NODE-UNRESPONSIVE-DELAY' (50)
NODE-UNRESPONSIVE-DELAY is the number of seconds a node may be
uncommunicative before it is considered unresponsive ("U").

'OFF' (0)
OFF is the value for a flag that is off.

'ON' (1)
ON is the value of a flag that is on.

'OUTPUT-DRIVER-RETRIES' (16)
OUTPUT-DRIVER-RETRIES' is the number of times the output driver will
attempt to send a message before deciding it cannot and reporting
'UNABLE-TO-SEND'.

me Internal Documentation

Data Dictionary -14- Message

2.6. Message

The network functions by passing messages from one process to
another. A message is composed of an .ENVELOPE containing the driver
driver protocol information; a .HEADER containing the system-system pro
tocol information; and a .TEXT containing the process-process protocol
information. A message contains the following fields:

.ENVELOPE
.CONTROL

.TRUNK-SELECT

.ASSOCIATED-DATA-FLAG
.ACCESS-CODE
.HW-TO
.HW-FROM
.PROTOCOL
.VERSION
.CHECKSUM

.HEADER
.ID

.ID-TO
.NODE-TO
.SUBCHANNEL-TO

.ID-FROM
.NODE-FROM
.SUBCHANNEL-FROM

.TYPE

.PRIORITY

.ERROR-CODE

.SEQUENCE-NUMBER

.CHARGE
.TEXT

.TEXT-DESCRIPTOR
.TEXT-MODE
.TEXT-COUNT
.TEXT-CODE

.TEXT-DATA

The variable 'MESSAGE' refers to the message contained in the
buffer pointed to by 'BUFFER' and message fields are relative to the
data area of the buffer. By NSC HYPERchannel convention a message is
divided into .MESSAGE-PROPER and (optional) .ASSOCIATED-DATA as follows:

.MESSAGE-PROPER
.ENVELOPE
.HEADER
.TEXT-DESCRIPTOR
.TEXT-DATA (if null or in "A" mode and .LE. 34 bytes)

.ASSOCIATED-DATA
.TEXT-DATA (ALL OTHER CASES)

THC Internal Documentation

Data Dictionary -15- Message

Message Field Definitioris

MESSAGE.ACCESS-CODE
MESSAGE.ACCESS-CODE consists of two bytes, which may be used by the
HYPERchannel hardware to restrict access to some nodes from others.
It is not used in this protocol and always has the value zero.

MESSAGE .ASSOCIATED-DATA
MESSAGE.ASSOCIATED-DATA contains MESSAGE.TEXT-DATA whenever
MESSAGE.TEXT-COUNT for the message is greater than thirty-four in
mode-"A", or non-zero for all other modes. For MESSAGE.TEXT-COUNT
less than or equal to· thirty-four in mode "A" or zero in other
modes, MESSAGE.TEXT-DATA is packaged with MESSAGE.HEADER in
MESSAGE.MESSAGE-PROPER, and MESSAGE.ASSOCIATED-DATA is absent. The
associated-data block is padded when written to the HYPERchannel
equipment: for modesA'A" and "C" it is padded to be an even number
of bytes long; for mode "B" it is padded to be a multiple of six
bytes long.

MESSAGE .ASSOCIATED-DATA-FLAG
MESSAGE.ASSOCIATED-DATA-FLAG is a single bit, the. low order bit of
MESSAGE. CONTROL, that says whether ('on') or not ('off')
MESSAGE.ASSOCIATED-DATA is-present.

MESSAGE.CHARGE
MESSAGE.CHARGE is a single byte used in various messages, g1v1ng the
charge to be billed to the user for the service performed at the
source node.

MESSAGE. CHECKSUM
MESSAGE.CHECKSUM is a 16-bit integer giving the arithmetic sum of
the first twenty-eight bytes of MESSAGE.MESSAGE;..PROPER. It is
placed in the message-proper as two bytes (bytes 28 and 29).

MESSAGE.CONTROL
MESSAGE.CONTROL consists of two bytes containing MESSAGE.TRUNK
SELECT (upper byte) and MESSAGE.ASSOCIATED-DATA-FLAG (low order bit,
lower byte). ·

MESSAGE.ENVELOPE
MESSAGE.ENVELOPE is a block containing the driver-driver level pro
tocol information in the message. It is the first ten bytes of
MESSAGE.MESSAGE-PROPER and the two bytes of' MESSAGE.CHECKSUM. It
contains information about routing and destination for use by the
driver. It consists of:

.CONTROL
.TRUNK-SELECT
.ASSOCIATED-DATA-FLAG

.ACCESS-CODE

.HW-TO

.HW-FROM

.PROTOCOL

'llfC Internal Doc1..111elltation

Data Dictionary

.VERSION

.CHECKSUM

MESSAGE.ERROR-CODE

-16- Message

MESSAGE.ERROR-CODE is a single byte giving the number of a particu
lar error. For a list of the various error-codes and their meanings
see Appendix A.

MESSAGE.HEADER
MESSAGE.HEADER is a block containing the system-system level of pro
tocol information in the message. The message header contains the
following fields:

.ID
.ID-TO

.NODE-TO

.SUBCHANNEL-TO
.ID-FROM

.NODE-FROM

.SUBCHANNEL-FROM
.TYPE
.PRIORITY
.ERROR-CODE
.SEQUENCE-NUMBER
.CHARGE

When written to the HYPERchannel hardware, MESSAGE.HEADER is bytes
10-21 of MESSAGE.MESSAGE-PROPER.

MESSAGE. HW-FRQt
MESSAGE.HW-FROM is a two-byte field g1v1ng the hardware address of
the node from which the message was or is to be sent. For possible
values see Appendix B.

MESSAGE.HW-TO
MESSAGE.HW-TO is a two-byte field giving the network address of the
node to which the message was or is to be sent. For possible values
see Appendix B.

MESSAGE.ID
MESSAGE.ID refers to the order:edset: (.ID-FROM; .ID:_TO) for outgo
ing messages or the reverse- pair, (.ID-TO, .ID-FROM) for incoming
messages

MESSAGE. ID-FRQt
MESSAGE.ID-FROM refers to the ordered pair
.SUBCHANNEL-FROM).

MESSAGE. ID-TO

(.NODE-FROM,

MESSAGE.ID-TO refers to the ordered pair (.NODE-TO, .SUBCHANNEL-TO).

MESSAGE .MESSAGE-PROPER
MESSAGE.MESSAGE•PROPER refers to the first part of the message as it

me Internal DocLIDentation

-
-.

J' •

Data Dictionary -11- Message

is sent over the HYPERchannel hardware. It contains
MESSAGE. ENVELOPE'~ _!vtESSAG_E. HEADER, and _MESSAGE. TEXT~DESCRI ETOR,-and ~ --

~-----will also-contain MESSAGE. TEXT-DATA if it is in mode "A" and no more
than thirty-four characters long. When written to the HYPERchannel
hardware, it is padded to be an even number of bytes long, if neces
sary. It contains the following data:

BYTES
0' 1
2,3
4,5
6,7
8
9
10
11
12,13
14,15
16
17
18,19
20
21
22,23
24
25
26,27
28,29

30-63

MESSAGE. NODE-FID4

MEANING
.CONTROL
.ACCESS-CODE
.HW-TO
.HW-FROM
.PROTOCOL (:0 FOR THC)
.VERSION (:0 FOR THIS VERSION)
.NODE-TO
.NODE-FROM
.SUBCHANNEL-TO
.SUBCHANNEL-FROM
.TYPE
.ERROR-CODE
.SEQUENCE-NUMBER
.CHARGE
.PRIORITY
.TEXT-COUNT
.TEXT-MODE

0 (UNUSED)
.TEXT-CODE
.CHECKSUM

.TEXT-DATA (present only if
.TEXT-MODE = "A" and .TEXT-COUNT .LE. 34)

MESSAGE.NODE-FROM is a single byte giving NODE.ID of the node on
which the message originated.

MESSAGE. NODE-1'0 ·
MESSAGE.NODE-TO is a single byte giving NODE.ID of the node to which
the message is addressed.

MESSAGE.PROTOCOL
MESSAGE.PROTOCOL is a single byte used by the hardware to describe
the operation requested by the message. It is zero for all THC mes
sages.

MESSAGE. PRIORITY '
MESSAGE.PRIORITY is a single byte giving the priority of the mes
sage.

MESSAGE.SECXJENCE-NUMBER
MESSAGE.SEQUENCE-NUMBER is a 16-bit integer expressed in two bytes.
It is incremented circularly.

1HC Internal Doctmentation

Data Dictionary -18- Message

MESSAGE. SUBCHANNEL-FIOt
MESSAGE.SUBCHANNEL-FROM is the subchannel originating the message.
It is a 16-bit integer expressed in two bytes.

MESSAGE. SUBCHANNEL-TO
MESSAGE.SUBCHANNEL-TO is the subchannel to which the message is
addressed. It assumes the same values as MESSAGE.SUBCHANNEL-FROM.

MESSAGE. TEXT
MESSAGE.TEXT refers to the process-process protocol information in
the message. It consists of:

.TEXT-DESCRIPTOR
.TEXT-CODE
.TEXT-COUNT
.TEXT-MODE

.TEXT-DATA

It is examined by the network only in connection-open-messages and
connection-acknowledge-messages.

MESSAGE. TEXT -CODE
MESSAGE.TEXT-CODE is a 16-bit integer available for use by the
process-process level of protocol. It is interpreted by the network
as a connection-code in connection-open-messages and connection
acknowledge-messages.

MESSAGE. TEXT -COONT
MESSAGE.TEXT-COUNT is a 16-bit integer expressed in two bytes g1v1ng
a count of the data portion of a message. Its maximum value depends
on • TEXT-MODE: in mode "A" it is a character count .LE. 2560; in
modes "B" and "C" it is a byte count .LE. 3840.

MESSAGE. TEXT-DATA
MESSAGE.TEXT-DATA contains the user
transmitted for the process-process
ined by the network only on
connection-acknowledge-messages.

MESSAGE. TEXT -DESCRIPTOR .

specified information to be
level of protocol. It is exam
connection-open-messages and

MESSAGE. TEXT-DESCRIPTOR is a set of fields defining the structure of
the text portion of a.message. It contains the following:

.TEXT-CODE

.TEXT-COUNT

.TEXT-MODE

THC Internal Documentation

:r •

Data Dictionary -19- Message

MESSAGE. TEXT -MODE
MESSAGE. TEXT -MODE is a single byte describ_ing __ the __ for:mat-of------ -

---MESSAGE-:-TEXT-. -It-is a single upper-case ASCII character and assumes
the following values:

"A" - ASCII CHARACTERS
Data is placed on the HYPERchannel as one character per
byte. On the PDP-11's and the IBM 4331 is stored·one char
acter per memory byte in byte-addressed order. On the
6000's it is stored one 8-bit byte per ppu-word (or per 12-
bit byte in central memory).

"B" - BYTES
Data is placed on the HYPERchannel as one byte per byte. On
the PDP-11's and the IBM 4331 it is stored one byte per
memory byte in byte-addressed order. On the 6000 's it is
stored one and one-half 8-bit bytes per PPU-word (seven and
one-half bytes per CM-word in central memory).

"C" - PACKED DISPLAY CODE BYTES
Data is placed on the HYPERchannel as one character per
byte; on the 6000' s it is stored as ten bytes per CM word; ;,.:
on the PDP-11 's and the IBM 4331 it is stored one byte per
memory byte.

MESSAGE .. TRUNK-sELECT
MESSAGE.TRUNK-SELECT is a single byte, the upper byte of
MESSAGE.CONTROL, specifying which trunks the NSC adapters should use
for transmission.

MESSAGE. TYPE
MESSAGE.TYPE is a 8-bit byte giving the type of the message. It
assumes the following values:

'ADVICE' (0)
'CONNECTION-ACKNOWLEDGE' (1)
'CONNECTION-CLOSE' (2)
'CONNECTION-OPEN' (3)
'DATA' (4)
'TEST-DATA' (5)
'TEST-RESPONSE' (6)

MESSAGE. VERSION
MESSAGE.VERSION is a single byte giving the version number of the
protocol in which the message is being sent. It is used to allow
graceful changes to the protocol without requiring all implementa
tions be updated simultaneously. It is zero for the version herein
described.

1HC Internal Doctmentation

Data Dictionary -20- Node

2. 7 .. Node

The term node refers to one of the machines in the network. Each
node has a node-table, containing entries for all of the nodes in the
network, including itself. A node table entry contains the following
fields:

.NAME

.ID

.HW

.TRUNK..;SELECT

.PRIVILEGE

.STATE

.STATISTICS
.BITS.;.RECEIVED
.BITS-SENT
.MESSAGES-RECEIVED
.MESSAGES-SENT
.CONNECTIONS
.TIMEOUTS

.IN-TIMER

.OUT~TIMER ,

.WAIT-QUEUE

A list of the nodes in the network is found in Appendix B. The first
entry in each node's table refers to itself.

Node Field Definitions

NODE.BITS-RECEIVED
NODE.BITS-RECEIVED is a count of the total number of bits received
from that node. It includes .ENVELOPE, .HEADER, .TEXT, and any pad
ding for all messages received from that node.

NODE .BITS-SENT
NODE.BITS-SENT is a count of the total number of bits sent to that
node.

NODE·. CONNECTIONS
NODE.CONNECTIONS is a .count of the total number of connections suc
cessfully opened anct· then closed between that node and the local
node. · .

NODE.HW
NODE.HW is two 8-bit bytes containing the network hardware address
for that node. See Appendix B for possible values.

NODE.ID
NODE.ID is a single upper-case ASCII character identifying the node.
See Appendix B for possible values.

niC Internal Doct.~~~entation

Data Dictionary -21-

NODE.IN-TIMER
NODE. IN-TIMER is a count of the number of seconds __ elapsed-si-nce-a --

--- --------message-was- receivea-from the node.-

.r

NODE .MESSAGES-RECEIVED
NODE.MESSAGES-RECEIVED is a count of the number of messages received
from that node.

NODE.MESSAGES-SENT
NODE.MESSAGES-SENT is a count of the number of messages sent to that
node.

NODE.NAME
NODE.NAME is a string up to 8 characters long g1v1ng the expanded
name of the node. See Appendix B for possible values.

NODE. otrr-TIMER
NODE.OUT-TIMER is a count of the number of seconds elapsed since a
message was last sent to the node.

NODE.PRIVILEGE
NODE.PRIVILEGE is the maximum value of PROCESS.PRIVILEGE for a pro
cess running on the node. A message citing a PROCESS.PRIVILEGE
greater than NODE.PRIVILEGE will cause the offending node to be log
ically disconnected from the remainder of the network.

NODE.STATE
NODE.STATE is a single character designating the current state of
the node. It assumes the following values:

"A" - available for normal communication
"D" - disconnected (for security violation)
"I" - initial (unknown) state
"U" - unresponsive to communication; retry later
"X" - down; all connections to this node should be aborted

NODE.STATISTICS
NODE.STATISTICS is a block of information summarizing the perfor
mance of the given node relative to the node in whose table it
appears. It contains the following entries:

.BITS-RECEIVED

.BITS-SENT

.MESSAGES-RECEIVED

.MESSAGES-SENT

.CONNECTIONS

.TIMEOUTS

NODE.TIMEOl1l"S
NODE.TIMEOUTS is a count of the number of times a message was not
received from that node within the allotted time.

NODE. TRUNK-5ELEC'f

me Internal Docunentation

Data Dictionary -22- Node

NODE.TRUNK-SELECT is a single byte specifying which hardware trunks
the adapter should use to access this machine. It is copied to the
upper byte of MESSAGE.CONTROL when a message is sent.

NODE .WAIT -QUEUE
NODE.WAIT-QUEUE is the queue head of a queue of messages held while
the node is unresponsive •. If the node goes down, the messages will
be discarded; if the node comes up they will be sent.

me Internal Doct.JDeDtation

Data Dictionary -23- Offer

2.8. Offer

The term offer is used for an entry in the network bulletin-board
on a node. An offer contains the following fields:

.SERVICE-NAME

.SERVICE-CODE

.REMOTE-PROCESS

.LOCAL-PROCESS

.CONNECTION-RECORD

.PASSWORD

Offer Field Definitions

OFFER.CONNECTION-RECORD
OFFER.CONNECTION-RECORD is a pointer to the connection-record that
will be used when the offer is accepted.

OFFER .LOCAL-PROCESS
OFFER.LOCAL-PROCESS is the .DESCRIPTOR of the process making the
offer. It is normally obtained from the operating system; processes
with .PRIVILEGE .ge. 2 may specify REQUEST.TEXT-CODE.AGENT = 'on'
and supply the descriptor in REQUEST.TEXT.

OFFER. PASSWORD
OFFER.PASSWORD is an encrypted password used whenever the
authorization-code in OFFER.REMOTE-PROCESS specifies access to
password-holder. It is eight bytes long.

OFFER. REMOTE-PROCESS
OFFER.REMOTE-PROCESS is the .DESCRIPTOR of the process or processes
that will be allowed to accept the offer. See PROCESS.DESCRIPTOR
definition for explanation of process matching.

OFFER.SERVICE-CODE
OFFER.SERVICE-CODE is a descriptor of the type of service offered.
See connection-code fields for further information. It is obtained
from REQUEST.TEXT-CODE in the offer-request.

OFFER.SERVICE-HAHE
OFFER.SERVICE-NAME is an eight-byte string giving the arbitrary name
of the service.

me Internal Doct~~~entation

Data Dictionary -24- Process

2.9. Process

The term process is used to refer to a user or system program run
ning on a particular node. A process has a number of global (network
wide) attributes:

.DESCRIPTOR
.USER-ID
.PROJECT-ID
.GROUP-ID
.PRIVILEGE
.AUTHORIZATION-CODE

.NODE

.CHECK-USER-ID

.CHECK-GROUP-ID

.CHECK-PROJECT~ID

.CHECK-PASSWORD

The values for user-, project-, and group-id for a process are assigned
by the network-wide validation process described elsewhere.

Process Field.Definitions

PROCESS.AU'lliORIZATION-COOE
PROCESS.AUTHORIZATION-CODE is a single byte specifying the various
elements of .DESCRIPTOR which will be checked before a a connect
request can be matched against an offer. Individual bits are
defined as follows:

BIT 2**0 - .CHECK-USER-ID
BIT 2**1 - .CHECK-PROJECT-ID
BIT 2**2 - .CHECK-GROUP-ID
BIT 2**3 - .CHECK-PASSWORD

In addition, .PRIVILEGE must always be greater than or equal to that
specified in the descriptor.

PROCESS~ DESCRIPTOR ·
PROCESS.DESCRIPTOR is an 8-byte string describing the process and
used for the matching of the offer-request and the connect•request.
It is of the form:
<.USER-ID><.PROJECT-ID><.GROUP-ID><.PRIVILEGE><.AUTHORIZATION-CODE>

PROCESS.GROUP-ID
PROCESS.GROUP-ID is a sixteen-bit (two-byte) integer g1v1ng the
index into the accounting tables for the group under which the pro
cess is being run.

PROCESS. NODE
PROCESS.NODE is the node on which the process is running.

me Internal DOct.JDentatiori

Data Dictionary -25- Process

PROCF.SS.PRIVILEGE ,
PROCESS.PRIVILEGE is a single byte giving the privilege level of the

~~~~~~~~-1pr.ocess.-I-t-assumes-the-fol-lowing-values-: 

0 - user process 
1 - user process running system code 
2 - privileged (system) process 
3 - privileged process running system code. 
4 - executive process (highest privilege level) 
5 - executive process running system code 

PROCESS.PROJECI-ID . 
PROCESS.PROJECT-ID is a sixteen-bit (two-byte) integer g1v1ng the 
index into the accounting tables for the project under which the 
process is being run. 

PROCESS. USER-ID 
PROCESS.USER-ID is a sixteen-bit (two-byte) integer g1v1ng the index 
into the accounting tables for the user for whom the process is 
being run. 

me Internal Doctmentation ·. 



Data Dictionary -26~ Queue 

2.10. Queue 

Queues of buffers are maintained, containing messages sorted in the 
order of the priority of the message. 

The send-queue contains messages which are waiting to be sent over 
the HYPERchannel. 

The receive-queue contains messages which have arrived from the 
HYPERchannel but have not yet been processed by the receiving system. 
On some operating systems, the receive-queue is not used, but messages 
are passed directly to the listener. 

Each node table entry has a NODE.WAIT-QUEUE. 
Queues have the following field associated with them: 

.NEXT 
The following operations are performed on queues: 

PUSH <BUFFER> ONTO <QUEUE> 
POP <BUFFER> FROM <QUEUE> 

Queue Field Definitions 

QUEUE.NEXT 
QUEUE.NEXT is a pointer to the first buffer in 
assumes the same values as the variable 'BUFFER'. 
indicates an empty queue. A non-zero value is the 
priority) buffer in the queue. 

11fC Internal DoctDentation 

the queue. It 
A value of zero 
first (highest 



Data Dictionary -?1- Request 

2.11. Request 

A request-is the interface between a process and. the system. A 
request has the following fields: 

.PROCESS 

.NAME 

.TYPE 

.COMPLETE 

.ERROR 

.TIMEOUT 

.NODE-TO 

.TEXT 
.TEXT-DESCRIPTOR 

.TEXT-CODE 
.• TEXT -COUNT 
.TEXT-MODE 

.TEXT-DATA 
.RESPONSE 

.RESPONSE-DESCRIPTOR 
.RESPONSE-CODE 
.RESPONSE-COUNT 
.RESPONSE-MODE 

.RESPONSE-DATA 

.RESPONSE-BUFFER-LENGTH 

The syntax and semantics of the various requests are described in 
Chapter Three; the system- and language-specific formats for the 
requests are described in Chapter Five. 

Request Field Definitions 

REQUEST. CCJ4PLEI'E 
REQUEST.COMPLETE is a flag (or euphemism) set when the request is 
processed by the system. 

REQUEST .ERROR 
REQUEST.ERROR is set to an error-code when an error is detected in 
processing the request. See Appendix A for possible values. 

REQUEST. NAME 
REQUEST.NAME is the name by which a request refers to a connection. 
Its format is system-dependent. It is matched against CONNECTION
RECORD.NAME. 

REQUEST.NODE-TO 
REQUEST.NODE-TO corresponds to NODE.ID of the node to which the 
request is addressed. It is used only in advisory-, test-, and 
connect-requests. If set zero in connect-requests, all nodes in the 
network will be polled until some node responds with a significant 
answer •. 

me Internal Docl.lllentation 



Data Dictionary -28-. Request 

REQUES'f. PROCESS 
REQUEST.PROCESS is a pointer to the process making the request. It 
is used in conjunction with REQUEST.NAME to access the appropriate 
connection-record for servicing the request. 

REQUEST. RESPONSE 
REQUEST.RESPONSE contains the information provided in response to 
the request. It contains the following: 

.RESPONSE-DESCRIPTOR 
.RESPONSE-CODE 
.RESPONSE-COUNT 
.RESPONSE-MODE 

.RESPONSE-DATA 

REQUEST .RESPONSE-BUFFER-LENGlH 
REQUEST.RESPONSE-BUFFER-LENGTH is the length of the buffer for· 
.RESPONSE-DATA in system dependent units. 

REQUEST.RESPONSE-CODE 
REQUEST.RESPONSE-CODE gives the text-code for the response. For 
acknowledge-, connect-, and offer-requests it is aconnection-code 
(q.v.). See the various requests for details. 

REQUEST. RESPONSE-COUNT 
REQUEST.RESPONSE-COUNT gives the length of .RESPONSE-DATA as in 
MESSAGE. TEXT-COUNT 

REQUEST.RESPONSE-DATA 
REQUEST.RESPONSE-DATA contains the information provided in response 
to the request. 

REQUEST. RESPONSE-DESCRIPTOR 
REQUEST.RESPONSE-DESCRIPTOR gives the format of .RESPONSE-DATA. It 
consists of the following: 

.RESPONSE-CODE 

.RESPONSE-COUNT 

.RESPONSE-MODE 

REQUEST .RESPONSE-MODE 
REQUEST.RESPONSE-MODE gives the mode of .RESPONSE-DATA, as in 
MESSAGE. TEXT-MODE. 

REQUEST. TEXT 
REQUEST.TEXT gives the text of the request. It consists of the fol
lowing: 

.TEXT-DESCRIPTOR 
.TEXT-CODE 
.TEXT-COUNT 
.TEXT-MODE 

.TEXT-DATA 

111C Internal Doctmentation 

- "' 



Data Dictionary -29- Request 

REWEST. TEXT-CODE 
REQUEST. TEXT-CODE is a two-byte field used by the process-process --·- _ 

___ ----·--- --- --·p~otocol-.-· ·-For -offer...,- connec·t~arrd-acl<nowleage-requ-ests-it is--a
connection-code (q.v.). See the request descriptions in chapter 

.. 

three for details. 

REQUEST.TEXT-DATA 
REQUEST.TEXT-DATA refers to the data portion of the text of the 
request. It is examined by the network only for acknowledge-, 
connect-, and offer-requests. 

REQUEST. TEXT -COUNT 
REQUEST.TEXT-COUNT gives the size of REQUEST.TEXT as in 
MESSAGE. TEXT-COUNT. 

REQUF.SI. TEXT -DESCRIPTOR 
REQUEST.TEXT-DESCRIPTOR is the description of REQUEST.TEXT. It con-. 
sists of: 

.TEXT-CODE 

.TEXT-COUNT 

.TEXT-MODE 

REQUEST. TEXT -MODE 
REQUEST.TEXT-MODE gives the mode of REQUEST.TEXT as . in 
MESSAGE. TEXT-MODE. 

REQUEST. TIHEOOf 
REQUEST.TIMEOUT is the user specified time to wait before timing out 
on the request. 

REQUEST. TYPE 
REQUEST.TYPE gives the type of the request. It assumes the follow
ing values: 

'ACKNOWLEDGE' (1) 
I ADVISORY I ( 2) 
'CLOSE I (3) 
'CONNECT' (4) 
'OFFER I (5) 
'STATUS' (6) 
'TEST' (7) 
'TRANSMIT' (8) 

me . Internal Doctmentation . 



Data Dictionary -30- Statistics 

2.12. Statistics 

The statistics table is a block of information kept concerning net
work performance and usage. 

STATISTICS.ACTIVE-SLAVE-COUNT 
STATISTICS.ACTIVE-SLAVE-COUNT is a count of open slave connections 
on the local node. 

STATISTICS.ACTIVE-3J.AVE-MAXIMUM 
STATISTICS.ACTIVE-SLAVE-MAXIMUM is a limit placed on the .value of 
STATISTICS.ACTIVE-SLAVE-COUNT. 

STATISTICS.BUFFER 
STATISTICS.BUFFER is a twenty-bin-histogram of the number of buffers 
in use at a particular time. It is sampled and incremented by the 
housekeeper. Bin 1 reflects 0-5 percent buffers in use; bin 2 
reflects 5-10 percent; etc. 

STATISTICS. BUFFER-COUNT 
STATISTICS.BUFFER-COUNT is a count of the number of buffers avail
able on the local node. 

STATISTICS.BUFFER-UNAVAILABLE 
STATISTICS.BUFFER-UNAVAILABLE is a count of the number of times a 
buffer was needed and could not be obtained. 

STATISTICS. CONNECTION 
STATISTICS.CONNECTION is a histogram similar to STATISTICS.BUFFER, 
but for connection-records. 

STATISTICS. CONHECTIOH-RECORD-COUNT 
STATISTICS.CONNECTION-RECORD-COUNT is a count of the number of 
connection-records available on the local node. 

STATISTICS.CONNECTION-UNAVAILABLE 
STATISTICS.CONNECTION-UNAVAILABLE is a count of the number of times 
a connection-record was needed and could not be obtained. 

STATISTICS.DATABUFFER 
STATISTICS.DATABUFFER is a histogram similar to STATISTICS.BUFFER 
but for databuffers. 

STATISTICS.DATABUFFER-COUNT 
STATISTICS.DATABUFFER-COUNT is a count of "the number of databuffers 
available on the local system. 

STATISTICS.DATABUFFER-UNAVAILABLE 
STATISTICS.DATABUFFER-UNAVAILABLE is a count of the number of times 
a databuffer was needed and could not be obtained. 

STATISTICS.DRIVER-RETRIF.S · 

me Internal Doct.~~~entation 



Data Dictionary -31- Statistics 

STATISTICS.DRIVER-RETRIES is a count of the number of times the 
driver retried any message before successfully sending it. 

STATISTICS. ERROR-RECEIVE 
STATISTICS.ERROR-RECEIVE is a count of the number of times a 
hardware receive error was encountered by the driver. 

STATISTICS~ERROR-SEND 
STATISTICS.ERROR-SEND is a count of the number of times the driver 
was unable to send a message out over the hardware. 

STATISTICS .LOST -MESSAGES 
STATISTICS.LOST-MESSAGES is a count of the number of input messages 
lost because a buffer was not available·to hold them. 

STATISTICS. REJECTS 
STATISTICS.REJECTS is a count of the number of times the output
driver abandoned an attempt to send a message because another mes
sage arrived from the hardware. 

STATISTICS. START 
STATISTICS.START is a time. stamp of the last time the statistics 
table was reinitialized. 

STATISTICS. TIME 
STATISTICS.TIME is a time stamp of the current time. 

STATISTICS. TIME-INTERVAL 
STATISTICS.TIME-INTERVAL is an integer giving the number ef seconds 
elapsed since the statistics block was last reinitialized. 

STATISTICS. TYPE-<VALUE> 
The STATISTICS.TYPE-<VALUE> fields each contain a count of the mes
sages sent for each of the corresponding values of MESSAGE.TYPE. 

me Internal Doct.mentation 



Data Dictionary -32- Text Syntax Elements 

2.13. Text-Syntax-Elements 

The various text-syntax-elements are "A" mode strings taken from 
acknowledge-, connect-, and offer-requests, or from connection-open- and 
connection-acknowledge-messages. 

<LOCAL-PROCESS> 
<LOCAL-PROCESS> is an 8-byte string containing process.descriptor 
for the local process. Note that the term 'local' is with respect 
to the originator of a message or the process making a request, and 
that the meaning of 'local' and 'remote' changes when, for example, 
the text of a connection-open-message is placed in the response to 
an offer-request. 

<PARAMETERS> 
<PARAMETERS> is the additional data available for the user-level of 
protocol. It is of arbitrary length, but must fit in a message with 
the other syntax-elements. 

<PASSWORD> 
<PASSWORD> is an 8-byte string containing an encrypted or unen
crypted password, depending on context. 

<RFXYIE-PROCESS> 
<REMOTE-PROCESS> contains a PROCESS.DESCRIPTOR, as in <LOCAL
PROCESS>. 

<SERVICE-NAME> 
<SERVICE-NAME> is an 8-byte string containing the name of a service. 

niC Internal Docllllentation 



User Requests -33- Syntax and Semantics 

~ User Request Syntax and Semantics 

All user requests have input parameters specifying what is to be 
done and output parameters specifying what happened. Input parameters 
are-

.PROCESS 

.NAME 

.TYPE 

.NODE-TO 

.TEXT 

.TIMEOUT 

.RESPONSE-BUFFER-LENGTH 

output parameters are-

.COMPLETE 

.ERROR 

.NODE-TO 

.RESPONSE 

Each of the possible requests, in alphabetical order by 
REQUEST. TYPE, are detailed in subchapters below. The errors listed as''. 
possible for the ·various requests are only those errors characteristic · 
of that particular request. Any request can get one of the various more 
general errors. 

nl<;: Internal DocliDenta~ion 



User Requests -34- Acknowledge-Request 

.~ Acknowledge-Request 

An acknowledge-request must be issued by a process as soon as pos
sible after the completion of an offer-request caused by the receipt of 
a connection-open-message from some other process. 

An acknowledge-request has the following input parameters: 

.PROCESS = (CONNECTION-RECORD.PROCESS) 

.NAME = (CONNECTION-RECORD.NAME) 

.TYPE = 'ACKNOWLEDGE' 

.NODE-TO = (ignored) 

.TIMEOUT = (arbitrary) 

.TEXT-CODE = (CONNECTION-CODE) 

.TEXT-DATA = ("A" MODE STRING) 
IF .AGENT = 'OFF' 

<PARAMETERS> 
IF .AGENT = 'ON' 

<LOCAL-PROCESS><PARAMETERS> 

If .TEXT-CODE.REOFFER = 'on' and .OPEN = 'off', the request is not 
completed, but is converted back to the original offer-request, which is 
suspended until a new connection-open-message arrives. 

Otherwise, the request is completed immediately, and the output 
parameters are set as follows: 

.COMPLETE = 'ON' 

.RESPONSE = (null) 
• RESPONSE-CODE. OPEN = 'ON' (if the connection is left open) 
.RESPONSE-CODE.MASTER = 'ON' if this side is master, else 'OFF' 

1HC Internal Doct~~~entation 



User Requests -35- Advisory-Request 

3.2. Advisory-Request 

An advisory-request is issued to cause the transmission of an 
advice-message to a node in the network. It may be issued only from a 
privileged process. 

An advisory-request has the following input parameters: 

.PROCESS = (self) 

.NAME = (ignored) 

.TYPE = 'ADVISORY' 

.NODE-TO = (destination node) 

.TIMEOUT = (ignored) 

.TEXT = (any legitimate advice-message) 

An advisory-request is completed immediately, and the output param
eters are set as follows: 

.COMPLETE = 'ON' 

.RESPONSE = (null) 

1HC Internal Doc1.111entation 



User Requests -36- Close-Request 

3.3. Close-Request 

A close-request is issued by a process when it wishes to close a 
connection. 

A close-request has the following input parameters: 

.PROCESS = (CONNECTION-RECORD.PROCESS) 

.NAME = (CONNECTION-RECORD.NAME) 

.TYPE = 'CLOSE' 

.NODE-TO = (ignored) 

.TIMEOUT = (ignored) 

.TEXT-CODE = (0-778 = user close code) 

.TEXT = (null) 

It is completed immediately, and a connection-close-message is sent 
to the . other side of the connection. The output parameters are set as 
follows: 

• COMPLETE = 'ON ' . 
. RESPONSE = (null) 

me Internal Doctmentation 

.. . --

... 'JJ 



" -

User Requests -37- Connect-Request 

3.4. Connect-Request 

A connect-request is issued to obtain service from another process. 
It causes the transmission of a connection-open-message to one or more 
nodes. 

A connect-request has the following input parameters: 

.PROCESS = (self) 

.NAME = (proposed value for ,CONNECTION-RECORD.NAME) 
• TYPE = 'CONNECT ' . 
• NODE-TO = (destination node; if 0 all nodes will be polled) 
.TIMEOUT = (arbitrary) 

.TEXT-CODE.OPEN = 'ON'/'OFF' for connection/query 

.TEXT-DATA = ("A" mode string) 
IF .AGENT = 'OFF' 

<PASSWORD><SERVICE-NAME><REMOTE-PROCESS><PARAMETERS> 
IF .AGENT = 'ON' 

<PASSWORD><LOCAL-PROCESS><SERVICE-NAME><REMOTE-PROCESS><PARAMETERS> 

A connect-request is completed when a significant response is 
returned, or all nodes have been polled. A response is significant if 
MESSAGE.ERROR-CODE is non-zero, or MESSAGE.TEXT-CODE.FOUND is 'on'. 

The output parameters are set as follows: 

.COMPLETE = 'ON' 

.RESPONSE-CODE = (CONNECTION-CODE) 

IF .ERROR-CODE .NE. 0 
.TEXT = (null) 

IF .FOUND = 'OFF' 
.TEXT = (original connection-open message) 

otherwise, 
.RESPONSE-DATA = ("A" mode s'tring) 

<REMOTE-PROCESS><PARAMETERS> 

~,'..;_~- -~ '.~ _, 
-~ . . ;.:. 

niC Internal DocLJDentation 

'•,· 



User Requests -38- Offer-Request 

3.5. Offer-Request 

.An offer-request is issued to offer a service for another process 
to connect to. It causes the entry of one or more offers into the 
bulletin-board. 

An offer-request has the following input parameters: 

.PROCESS = (self) 

.NAME = (proposed value for CONNECTION-RECORD.NAME) 

.TYPE = 'OFFER' 

.NODE-TO = (ignored) 

.TIMEOUT = (arbitrary) 

.TEXT-CODE = (OFFER.SERVICE-CODE) 

.TEXT =·("A" mode string) 
<OFFER> ••• <OFFER> 

where 
IF .AGENT = 'OFF' 

<OFFER> = <PASSWORD><SERVICE-NAME><REMOTE-PROCESS> 
IF .AGENT = 'ON' 

<OFFER> = <PASSWORD><LOCAL-PROCESS><SERVICE-NAME><REMOTE-PROCESS> 
i 

An offer-request is completed upon receipt of a connection-open
message from a process that wishes to avail itself of the service. 

The output parameters are set as follows: 

.COMPLETE = 'ON' 

.RESPONSE-CODE.OPEN = 'ON'/'OFF' for connection/query 
.• RESPONSE-CODE.MASTER = 'ON' if other side prefers to be master • 

• RESPONSE-DATA = ("A" mode string) 
<PASSWORD><REMOTE-PROCESS><SERVICE-NAME><LOCAL-PROCESS><PARAMETERS> 

Immediately following the completion of an offer-request, the pro
cess must issue, an acknowledg~request to, complete. the three-way 
handshake opening.the connection. 

nfC Internal Docimentation 

. . --



_•,., . 

User Requests -39- Status-Request 

3.6. Status-Request 

A status-request is issued to obtain information about the state of 
the network as seen by the local node. 

A status-request has the following input parameters: 

.PROCESS = (self) 

.NAME = (see below) 

.TYPE = 'STATUS' 

.NODE-TO = (ignored) 

.TIMEOUT = (ignored) 

.TEXT-CODE = function code 

Code Function 
1 Wait for· network request; if .NAME ·=/0 wait for anY 'request; 

otherwise, wait for request on connection given by .NAME. . 

2 Return node list. .RESPONSE is an "A" mode string containing 
NODE.ID, NODE.STATE, and NODE.NAME for each entry in the local 
node table. The response is in ASCII regardless of the charac
ter set of the local operating system. 

3 Force change of node state. .TEXT is A-mode string: 
<NODE . .ID><new-state> where <new-state> is one of the ASCII char
acters "A", "D", "I", or "X". The user process must have a 
privilege level of at least 2 (system process). 

A status-request is completed immediately from information held. 
locally, and the output parameters are set as follows: 

.COMPLETE = 'ON' 

.RESPONSE = (null) 

me Internal DocliDentation 



User Requests -40- Test-Request 

3.7. Test-Request 

A test-request causes the transmission of a test-data-message to 
any node in the network. 

A test-request has the following input parameters: 

.PROCESS = (CONNECTION-RECORD.PROCESS) 

.NAME = (any name not in use by the process) 

.TYPE = 'TEST' 

.NODE-TO = (destination node) 

.TIMEOUT = (arbitrary) 

.TEXT = (arbitrary) 

The test-request is completed when the test-message-processor on 
the destination node sends the test-response-message. The output param
eters-are set as follows: 

.COMPLETE = 'ON' 

.RESPONSE = (arbitrary - copy of original text) 

'DIC Internal DocLJDentation 

... -·~ 



User Requests -41- Transmit-Request 

3.8. Transmit-Request 

A transmit-request is issued by a process when it wishes to 
ex·change a block of information across an open connection. 

A transmit-request has the following input parameters: 

.PROCESS = (CONNECTION-RECORD.PROCESS) 

.NAME = (CONNECTION-RECORD.NAME) 

.TYPE = 'TRANSMIT' 

.NODE-TO = (ignored) 

.TIMEOUT = (arbitrary) 

.TEXT = (arbitrary) 
The transmit-request is completed when the other process on the 

connection has made its corresponding transmit-request. The output 
parameters .. are set as follows.: 

.COMPLETE = 'ON' 

.RESPONSE = (arbitrary- REQUEST.TEXT of other process) 

me Internal Doct~~~entation 



Messages -42-

4. Message Syntax and Semantics 

4.1. Advice-Message 

An advice-message is sent in processing an advisory-request made 
by a privileged process. It is also sent directly from various parts of 
the executive itself, the housekeeper in particular. 

An advice-message has the following field values: 

.NODE-TO= REQUEST.NODE-TO 

.NODE-FROM = (self) 

.SUBCHANNEL-TO,.SUBCHANNEL-FROM = 0 

.TYPE = 'ADVICE' 

.ERROR-CODE = 0 

.SEQUENCE-NUMBER = (ignored) 

.PRIORITY = 255 

.CHARGE = 0 

.TEXT = REQUEST.TEXT (arbitrary) 

An advice-message is used merely to inform the destination node that the 
source node is alive. At this time, the text is not examined. 

me Internal DoctJDentation 



.::..•_ .. 

Messages -43- Connection-Acknowledge 

4.2. Connection-Acknowledge-Message 

A connection-acknowledge-message is sent from the connection-open
message-processor if· no matching offer is found in the bulletin-board. 
If a match is found, the text of the connection-open-message is passed 
as the response to the original offer-request, and the connection
acknowledge-message is sent in processing the obligatory subsequent 
acknowledge-request. 

A connection-acknowledge-message has the following field values: 

.ID-TO = .ID-FROM of original message 

.NODE-FROM = .NODE-TO of original message 

.TYPE = 'CONNECTION-ACKNOWLEDGE' 

.ERROR-CODE = (as appropriate) 

. · ·IF .ERROR-CODE .ne. 0 ··. · .. 
• SUBCHANNEL-FROM = 0 
.TEXT = (null) 

IF .TEXT-CODE.FOUND = 'OFF' 
.SUBCHANNEL-FROM = 0 
.TEXT = (unchanged from connection-open-message) 

IF .TEXT-CODE.OPEN = 'ON' 
.SUBCHANNEL-FROM = (newly opened subchannel) 
.TEXT = ("A" mode string) <LOCAL-PROCESS><PARAMETERS> 

otherwise (not opening connection) 
.SUBCHANNEL-FROM = 0 
.TEXT = ("A" mode ,string) <LOCAL-PROCESS><PARAMETERS> 

all other fields as in the original message • 

r 
1HC Internal Doctmentation 

,, ··f; 



Messages -44- Connection-close 

4.3. Connection-Close-Message 

A connection-close message is sent in processing a close-request 
issued by either side of a connection. 

A connection-close message has the following field values: 

.ID-TO = (.SUBCHANNEL-REMOTE of open connection) 

.ID-FROM = (ignored) 

.TYPE = 'CONNECTION-CLOSE' 

.ERROR-CODE = (arbitrary) 

.SEQUENCE-NUMBER = (ignored) 

.PRIORITY = 0 

.CHARGE = 0 

.TEXT = (null) 

me Internal Doct.mentation 



,. -

Messages -l.J5- Connection-Open 

4.4. Connection-Open-Message 

A connection-open-message is sent in processing a connect-request 
from a process. It is addressed to subchannel zero on the destination 
node. If the connection is established, the connection-acknowledge
message will contain the subchannel code for future messages. The ini
tial sequence number specified in the connection-open-message is arbi
trary, but each subsequent transmission must use the next higher 
sequence-number. At any one time, one side is the master and originates 
all messages; the other side is the slave and replies to all messages. 

A connection-open message has the following field values: 

.NODE-TO = (destination node) 

.SUBCHANNEL-TO = 0 

.ID-FROM = (connection-record) 
• TYPE =. 'CONNECTION-OPEN' 
.ERROR-CODE = 0 
.SEQUENCE-NUMBER = (arbitrary) 
.PRIORITY = 0 
.CHARGE = 0 
.TEXT-CODE.OPEN = 'ON'/'OFF' for connection/query 
.TEXT-CODE.MASTER = 'ON' if sender prefers to be master 
.TEXT = ("A" mode string) <PASSWORD><LOCAL-PROCESS> 

<SERVICE-NAME><REMOTE-PROCESS><PARAMETERS> 

me Internal Doctmentation 



Messages -46- Data 

4.5. Data-Message 

A data-message is sent in processing a transmit-request for an open 
connection. 

A data-message has the following field values: 

.ID = (for open connection) 

.TYPE = 'DATA' 

.ERROR-CODE = 0 

.SEQUENCE-NUMBER = (next sequential value) 

.PRIORITY = 0 

.CHARGE = 0 

.TEXT = REQUEST.TEXT 

niC ··Internal Docunentation 



.-

Messages -47- Test-Data 

4.6. Test-Data-Message 

A test-data-message is sent in processing a test-request •. ·· 

A test-data-message has the following field values: 

.ID-FROM = (local connection-record) 

.NODE-TO = REQUEST.NODE-TO 

.SUBCHANNEL-TO = 0 

.TYPE = 'TEST-DATA' 

.ERROR-CODE = 0 

.SEQUENCE-NUMBER = (arbitrary) 

.PRIORITY = 0 

.CHARGE = 0 

.TEXT = REQUEST.TEXT 

TIIC Internal Doctmentation. 



Messages -48- Test-Response 

4.7. Test-Response-Message 

A test-response-message is sent by the test-message-processor upon 
receipt of the test-data-message. 

A test-response-message has the following field values 

.ID-TO and .ID-FROM interchanged 
relative to the test-data-message 

.TYPE = 'TEST-RESPONSE' 

.CHARGE = 1 

all other fields as in the test-data-message. 

TIIC Internal Docl.lllentation 



Syst~pecific Requests -49- . BKY CDC ( Canpass) 

~ System-Specific Requests 

5.1. BKY CDC (Compass) 

. RA+1 call TOC is issued by a central processor program to make a 
request of the network. 

+------------+------------+------------+------------+------------+ 
: "T" "0" : "C" : rcl : : Param Address : 
+------------+------------+------------+------------+------------+ 

The lower 18 bits of RA+1 point to a parameter block. If the auto
recall bit (2**40) is set, control of the cpu is taken from the user and 
not restored until processing of the command is complete and the 
response made. 

Toe Parameter Block 

+------------+------------+------------+------------+------------+ 
0 : • TYPE : • TIMEOUT : . NODE-TO : • ERROR : C: 

+------------+------------+------------+------------+------------+ 
1 : : .TEXT-DATA buf addr : 

+------------+-..;.-----------+------------+------------+------------+ 
2 : • TEXT -CODE : • TEXT -MODE : • TEXT -COUNT 

+------------+------------+------------+------------+------------+ 
3 : : .RESPONSE-DATA buf addr : 

+------------+------------+------------+------------+------------+ 
4 : CONNECTION-REC.PTR. : REQUEST.RESPONSE-BUFFER-LENGTH 

+------------+------------+------------+------------+------------+ 
5 : .RESPONSE-CODE : .RESP-MODE : .RESPONSE-COUNT 
+------~-----+------------+------------+------------+------------+ 

6 : REQUEST. NAME : 
+------------+------------+------------+------------+------------+ 

Word 0 

Word 1 

Word 2 

Byte 0 -
Byte 1 -
Byte 2 -
Byte 3 --
Byte 4 --

Bytes 3-4 

Bytes 0-1 
Byte 2 -
Bytes 3-4 

REQUEST.TYPE 
REQUEST.TIMEOUT 
REQUEST.NODE-TO 
REQUEST.ERROR 
C (REQUEST.COMPLETE) 

REQUEST.TEXT-DATA buffer address 

REQUEST.TEXT-DESCRIPTOR 
REQUEST.TEXT-CODE 
REQUEST. TEXT -MODE . 
REQUEST.TEXT-COUNT 

TIIC I!)ternal Doct.~~~entation 



System-Specific Requests 

Word 3 

Word 4 

Word 5 

Word 6 

Bytes 3-4 

Bytes 1-2 

Bytes 3-4 

Bytes 0-1 
Byte 2 -
Bytes 3-4 

-50- BKY CDC ( Canpass) 

REQUEST.RESPONSE-DATA buffer address 

CONNECTION-REC.PTR 
(a pointer used to locate the connection
record referred to in the request. It is 
used only advisedly and is set on comple
tion of the request.) 

REQUEST.RESPONSE-BUFFER-LENGTH 
(in CM words) 

REQUEST.RESPONSE-DESCRIPTOR 
REQUEST.RESPONSE-CODE 
REQUEST.RESPONSE-MODE 
REQUEST.RESPONSE-COUNT 

REQUEST.NAME 

111C Internal Doctmentation 



Syst~pecific Requests -51- - - Fortran 

5.2. Fortran 

Network requests are made from Fortran programs by calls to the 
subroutine THCTOC. The call is as follows-

;. 

CALL THCTOC(NAME,ITYP,IERR,NODETO,ITXDE,TEXT,IRSDE,RESP,IRSBL,ITIMO) 
where all variables are assumed integer·and ' 

NAME = REQUEST.NAME (system-dependent format) 
ITYP = REQUEST.TYPE 
IEER = REQUEST. ERROR 
NODETO = REQUEST.NODE-TO 

ITXDE = REQUEST.TEXT-DESCRIPTOR (three word array) 
ITXDE(1) = REQUEST.TEXT-CODE 
ITXDE(2) = REQUEST.TEXT-COUNT 
ITXDE(3) = REQUEST.TEXT-MODE 

TEXT = REQUEST.TEXT-DATA 

IRSDE = REQUEST.RESPONSE-DESCRIPTOR (three word array) 
IRSDE(1) = REQUEST.RESPONSE-CODE 
IRSDE(2) = REQUEST.RESPONSE-COUNT 
IRSDE(3) = REQUEST.RESPONSE-MODE 

RESP = REQUEST.RESPONSE-DATA 

IRSBL = REQUEST.RESPONSE-BUFFER-LENGTH (units are system-dependent) 
ITIMO = REQUEST.TIMEOUT 

REQUEST.COMPLETE is system-dependent. 
t• 

CDC SKY Fortran Particulars 

.Nfu~E is an arbitrary 60-bit word 

.COMPLETE is the return of the subroutine 

.RESPONSE-BUFFER-LENGTH is in CM-words 

DEC RSX-11M Fortran Particulars 

.NAME is a three word array containing the six-byte name 

.COMPLETE is the return of the subroutine 

.RESPONSE-BUFFER-LENGTH is in bytes 

DEC VMS Fortran Particulars 

Function THCTOC returns QIO status 
.NAME is a character string 
.COMPLETE is the return of the subroutine 
ITXDE and IRSDE are longword arrays 
Units for counts are bytes 
ITYP, !ERR, NODETO, IRSBL, and ITIMO are all longwords 

THC Internal Docunentation 



Syst~Specific Requests -52- Fortran 

IBM CMS Fortran-H Particulars 

.NAME is a 20 word array. NAME(1) is an event flag 1-63. 
NAME(2-20) is used as intermediate storage for processing the 
request, and should .not be touched by the user code . 

• COMPLETE is the setting of the event flag (NAME(1)) 
.RESPONSE-BUFFER-LENGTH is in bytes (4*WORDS) 

TIIC Internal Doctmentation 



.... . 

System-Specific Requests -53- RSX-11H (Macro) 

5.3. RSX-11M (PDP-11 Macro Assembler) 

Network requests are made by the QIOW$ directive. All requests 
will use the same function code IO.THC. The following is the form of 
the directive-

QIOW$ FCN,LUN,EFN,PRI,ISB,AST,<P1,P2,P3> 
Where 

FCN = function code (IO.THC) 
LUN = logical unit number 
EFN = event flag number 
PRI = priority (ignored, but must be present) 
ISB = address of the I/0 status block 
AST = address of the AST entry point (if used) 
P1 = .TEXT-DATA buffer address 
P2 = HYPERchannel request block address 
P3 = .RESPONSE-DATA buffer address 

HYPERchannel Request Block 

+-------------------+-------------------+ 0 : unused : • TYPE : 
+-------------------+-------------------+ 

2 : .ERROR : .NODE-TO : 
+-------------------+-------------------+ 4 : .RESPONSE-MODE : .TEXT-MODE : 
+-------------------+-------------------+ 6 : • TEXT -CODE : 
+-------------------+-------------------+ 

10 : .TEXT-COUNT 
+-------------------+-------------------+ 12 : • RESPONSE-CODE 
+-------------------+-------------------+ 14 : • RESPONSE-COUNT : 
+-------------------+-------------------+ 16 : .RESPONSE-BUFFER-LENGTH (in bytes)· 
+-------------------+-------------------+ 20 : .RESPONSE-BYTES-TRANSFERRED : 
+----------------~--+-------------------+ 22 : .NAME ( 1st 2 chars.) 
+-------------------+-------------------+ 24 : .NAME ( 2nd 2 chars.) : 
+-------------------+-------------------+ 26 : .NAME ( 3rd 2 chars.) : 
+---~---------------+-------------------+ 

H •• ERR 

H .• RMO 

H •• TCE 

H •• TCT 

H •• RCE 

H •• RCT 

H •• RBL 

H •• RBT 

H •• NAM 

30 : .TIMEOUT : H •• TIM 
+-------------------+-------------------+ 

THC Internal Doctmentation 

H •• REQ 

H •• NOD 

H •• TMO 



Sys~pecific Requests -54-

Byte 0 

Byte 2 

Byte 3 

Byte 4 

Byte 5 

Bytes 6,7 

Bytes 10' 11 

Bytes 12,13 

Bytes 14' 15 

Bytes 16,17 

Bytes 20,21 

Bytes 22-27 

Bytes 30,31 

= REQUEST.TYPE 

= REQUEST.NODE-TO 

= REQUEST.ERROR 

= REQUEST.TEXT-MODE 

= REQUEST.RESPONSE-MODE 

= REQUEST.TEXT-CODE 

= REQUEST.TEXT-COUNT 

= REQUEST~RESPONSE-CODE 
= REQUEST.RESPONSE-COUNT 

= REQUEST.RESPONSE-BUFFER-LENGTH 

= REQUEST.RESPONSE-BYTES-TRANSFERRED 

= REQUEST.NAME (up to 6 characters) 

= REQUEST.TIMEOUT 

RSX-11H (Macro) 

The offset address values and the value of IO.THC are defined by 
the HYUSR macro. 

niC Internal Docuilentation 

- .). 



/ 

.. 

_._ . 

Syst~pecific Requests -55-

5.4. UNIX (C) 

SYNOPSIS 

ioctl(fildes, rqtype, &request) 

int 
int 

fildes; 
rtype; 

I* file descriptor *I 
I* REQUEST.TYPE + ('H' << 8) */ 

struct { I* REQUEST. *I 
int TYPE; 
char NODE-TO; 
char ERROR; 
char TEXT-MODE; 
char RESPONSE-MODE; 
char *TEXT-BUFFER; 
int TEXT-CODE; 
int TEXT-COUNT; 
char *RESPONSE-BUFFER; 
int RESPONSE-CODE; 
int RESPONSE-COUNT; 
int RESPONSE-BUFFER-LENGTH; 
int TIMEOUT; 

} request;· 

DESCRIPTION 

UNIX (C) 

Network requests on the UNIX system are made through the general IIO 
trap door "ioctl". The first argument is a file descriptor obtained via 
an ppen(ldevlhy", call. The second argument is the REQUEST.TYPE with 
the ASCII character "H" in the high-order byte. The third argument is 
the address of the request structure shown. 

'lHC Internal Docunentation . 



Syst~pecific Requests -56- VM-370 (Assembler) 

5.5. VM-370 (Assembler) 

Requests are made as VMCF send-receive functions to the virtual 
machine 'THC'. Requests are made with the DIAGNOSE instruction-

DIAG RX,RY,68 

RX points to the VMCF parameter block (doubleword aligned)-

+-------+-------+-------+-------+-------+-------+-------+-------+ 
: (V*1) : (V*2) : (VMCPFUNC) (VMCPMID) : 
: X'0003' : REQUEST.NAME : 
+-------+-------+-------+-------+-------+-------+-------+-------+ 

(VMCPUSER) 
CL8'THC 

+-------+-------+-------+-------+~------+-------+-------+-------+ 
: (VMCPVADA) : (VMCPLENA) : 
: .TEXT pointer .TEXT-LENGTH in bytes 
+-------+-------+-------+-------+-------+-------+-------+-------+ 

(VMCPVADB) (VMCPLENB) : 
: .RESPONSE pointer : .RESPONSE-BUFFER-LENGTH : 
+-------+-------+-------+-------+-------+-------+-----~-+-------+ 
: : : (VMCPUSE) : : : 
: . NODE- : . TEXT- : . TEXT -COUNT • TEXT -CODE : . TIME-: . TYPE : 
: TO : MODE : : : OUT : : 
+-------+-------+-------+-------+-------+-------+-------+-------+ 

Note that REQUEST.TIMEOUT is divided by sixteen to fit in one byte. 

RY will contain a completion code for the DIAGNOSE instruction; if 
zero, the request has been successfully issued. REQUEST.COMPLETE is 
signaled by by the arrival of a response external interrupt block. The 
response external interrupt block is in the same format as above, except 
that the .TEXT-DESCRIPTOR fields are replaced by the corresponding 
.RESPONSE-DESCRIPTOR fields, and .TYPE is replaced by .ERROR. Also, V*1 
and V*2,may contain VMCF error-codes which must be checked. 

me Internal Doctmentation 



System-Specific Requests -57-

5.6. VMS (Macro) 

Macro: 

$QIO [efn],chan,func,iosb,[astadr],[astprm],p1 
$QIOW 

High-level languages: 

SYS$QIO. ( [ efn] , chan, func, iosb, [ astadr] , [ astprm] , p 1 , , , , , ) 
SYS$QIOW 

where 

VMS (Macro) 

efn - event flag number 
chan - I/0 channel number 
func - function code 

iosb - I/0 status block address 
astadr - AST entry point address 
astprm - AST parameter 

(always IO$_ACCESS = 32 hex) p1 - THC request block address 

+------------+------------+------------+------------+ 
l .TIMEOUT l .NODE-TO l .TYPE THC 
+------------+------------+------------+------------+ 
I 
I 

+ .NAME 
I 
I 

+ 
I I 
I I 

+------------+------------+---~--------+------------+ 

l . RESPONSE-CODE l . TEXT -CODE l 
+------------+------------+------------+------------+ 
l .RESPONSE-COUNT l .TEXT-COUNT l 
+--------~---+------------+------------+------------+ 

l . RESPONSE-BUFFER-LENGTH l . RSPNSE-MODE l • TEXT -MODE l 
+------------+------------+------------+------------+ 

THC+12 

THC+16 

THC+20 

l . TEXT -DATA-ADDRESS l THC+24 
+------------+------------+------------+------------+ 
l .RESPONSE-DATA-ADDRESS l THC+28 
+------------+------------+------------+------------+ 

+------------+------------+------------+------------+ 
l I/0 status IOSB 
+------------+------------+------------+------------+ 
l l .ERROR l IOSB+4 
+------------+------------+------------+------------+ 

.COMPLETE is the setting of the event flag 

niC Internal Doct.mentation 

,., . ''~ 



Executive Pseudocode -58- Note 

A Note on the Pseudocode 

This is ordinary, informal pseudocode; its few rules can be easily 
deduced by most programmers. However, a few items warrant further 
explanation-

Capitalized verbs (e.g. Allocate-Buffer) represent subroutines 
found in the last sub-chapter. 

Items surrounded by quotes (e.g. 'Syntax-Error') are error-codes or 
constants whose value is given in the index. If ·a phrase contains a dot 
(e.g. QUEUE.NEXT) it is a table field described in the data dictionary. 

This pseudocode presents an idealized implementation of THC on a 
pseudo machine. Actual implementation details will be dictated by the 
structure of the particular operating systenrused and by the architec-
ture of the hardware. · 

'D:IC Internal Doct.JDentation 



j!. • 

Executive Pseudocode -59-

6.1. Request-Processor 

set CONNECTION-RECORD, BUFFER = 0 

if process parameters outside process space 
goto [REQUEST-ERROR] 'Parameter-Outside-FL' 

else 
set REQUEST.ERROR = 0 
set REQUEST.RESPONSE-CODE = 0 

Request-Processor 

if REQUEST.TIMEOUT = 0 then set REQUEST.TIMEOUT = 'Default~Timeout' 
if REQUEST.NODE-TO = "*" then set REQUEST.NODE-TO = self 

switchon REQUEST.TYPE 

case 'ACKNOWLEDGE' 
exit to Acknowledge-Request-Handler 

case 'ADVISORY' 
exit to Advisory-Request-Handler 

case 'CLOSE' 
exit to Close-Request-Handler 

case 'CONNECT' 
exit to Connect-Request-Handler 

case 'OFFER' 
exit to Offer-Request-Handler 

case 'STATUS' 
exit to Status-Request-Handler 

case 'TEST' 
exit to Test-Request-Handler 

case 'TRANSMIT' 
exit to Transmit-Request-Handler 

case other 
goto [REQUEST-ERROR] 'Invalid-Request-Type' 

endswitch 
end if 

[REQUEST-ERROR] <error-code> 
set REQUEST.ERROR = <error-code> 
if CONNECTION-RECORD .ne. 0 

if BUFFER .ne. 0 and BUFFER .ne. CONNECTION-RECORD.BUFFER 
Release-Buffer 

end if 
set CONNECTION-RECORD.ERROR = 'Remote-Process-Error' 
Clean-Up Connection-Record 

elseif BUFFER .ne. 0 
Release-Buffer 

end if 
Complete-Request 
exit 

nfC Internal Docllllentation 



Executive Pseudocode -60- Request-Processor 

[REQUEST-DELAY] 
if (CONNECTION-RECORD = 0 or CONNECTION-RECORD.BUFFER = 0) 
and BUFFER .ne. 0 

Release-Buffer 
end if 
if CONNECTION-RECORD .ne. 0 and .SUBCHANNEL-REMOTE = 0 

Clean-Up Connection-Record 
end if 
exit and delay process 

niC Internal DocLJDentation 

. _. 



Executive Pseudocode -61-

6.2. Request-Handlers 

Acknowledge-Request-Handler 

Access-Connection-Record 

if CONNECTION-RECORD.ACKNOWLEDGE-PENDING = 'off' 
goto [REQUEST-ERROR] 'Protocol-Violation' 

end if 

set BUFFER = .BUFFER 

if MESSAGE.TEXT-CODE.OPEN = 'off' 
set REQUEST.TEXT-CODE.OPEN = 'off' 

end if 

set REQUEST.TEXT-CODE.FOUND = 'on' 
set REQUEST.TEXT-CODE.IN-USE = 'off' 
Format CONNECTION-ACKNOWLEDGE-MESSAGE 
set CONNECTION-RECORD.ACKNOWLEDGE-PENDING = 'off' 

Request-Handlers 

Generate CONNECTION-ACKNOWLEDGE-MESSAGE.TEXT # 

if REQUEST.TEXT-CODE.OPEN = 'on' 
set CONNECTION-RECORD.MASTER = 'off' 
set REQUEST.RESPONSE-CODE.MASTER = CONNECTION-RECORD.MASTER 
set REQUEST. RESPONSE-CODE. OPEN = 'on' # 
set MESSAGE.TEXT-CODE.MASTER = not (CONNECTION-RECORD.MASTER) 
Push BUFFER onto SEND-QUEUE 
increment CONNECTION-RECORD.SEQUENCE-NUMBER 
set CONNECTION-RECORD.BUFFER = 0 
set CONNECTION-RECORD.TIMER = REQUEST.TIMEOUT 

else (connection not being opened) # 
set CONNECTION-RECORD.ID-REMOTE = 0 
set MESSAGE.SUBCHANNEL-FROM = 0 
Push BUFFER onto SEND-QUEUE 
set CONNECTION-RECORD.BUFFER = 0 

if REQUEST.TEXT-CODE.REOFFER = 'on' 

else 

set CONNECTION-RECORD.ACTIVE-SLAVE = 'off' 
decrement STATISTICS.ACTIVE-SLAVE-COUNT 
goto [REOFFER] in Offer-Request-Handler 

Clean-Up Connection-Record 
end if 

end if 

Complete-Request 
exit 

me Internal Documentation ·· 



Executive Pseudocode -62- Request-Handlers 

Advisory-Request-Handler 

if PROCESS.PRIVILEGE < 2 then goto [REQUEST-ERROR] 'Privilege-Violation' 

Check • NODE-TO 
Move REQUEST.TEXT to BUFFER 

set MESSAGE fields-
.NODE-TO = REQUEST.NODE-TO 
.NODE-FROM = self 
.PRIORITY = 255 

Send ADVICE-MESSAGE 

Complete-Request 
exit 

Access-Connection-Record 

Close-Request-Handler 

if CONNECTION-RECORD.REQUEST-SUSPENDED = 'on' 
delete suspended request 
set .REQUEST-SUSPENDED = 'off' 

end if 

if CONNECTION-RECORD.ACKNOWLEDGE-PENDING = 'on' 
goto [REQUEST-ERROR] 'Protocol-Violation' 

end if 

set CONNECTION-RECORD.ERROR = 'User-Close'·= 3008 + (.TEXT-CODE .and. 778) 
Clean.;..Up Connection-Record 
Complete-Request 
exit 

THC Internal Documentation 



Executive Pseudocode -63-

Connect-Request-Handler 

Open-Connection-Record 
Allocate-Buffer 

if BUFFER = 0 then goto [REQUEST-DELAY] 

Generate CONNECTION-OPEN-MESSAGE.TEXT 
Format CONNECTION-OPEN-MESSAGE 

if REQUEST .NODE-TO •. ne. 0 
Check .NODE-TO 
set MESSAGE.NODE-TO = REQUEST.NODE-TO 

else 
set MESSAGE.NODE-TO = first NODE-TABLE node (self) 

end if 

set CONNECTION-RECORD.TIMER = REQUEST.TIMEOUT 

[SEND-MESSAGE] 
Push BUFFER onto SEND-QUEUE 
Wait-For CONNECTION-ACKNOWLEDGE-MESSAGE 

Request-Handlers 

if MESSAGE.ERROR-CODE .ne. O, then goto [REQUEST-ERROR] ERROR-CODE 

if .FOUND = 'off' and CONNECTION-RECORD.NODE-REMOTE = 0 
if BUFFER.ERROR = 'Node-Unresponsive' 

set BUFFER-ERROR = 0 
set MESSAGE.ID-FROM = MESSAGE.ID-TO 

end if 

set MESSAGE.NODE-TO = next NODE-TABLE node with .STATE = "A" 

if MESSAGE.NODE-TO .ne. 0 
set MESSAGE fields-

.ID-FROM = CONNECTION-RECORD.ID-~OCAL 

.SUBCHANNEL-TO = 0 

.TYPE = 'CONNECTION-OPEN' 
set CONNECTION-RECORD.BUFFER = 0 # 
goto [SEND-MESSAGE] 

end if 
end if 

if BUFFER.ERROR .ne. O, then goto [REQUEST-ERROR] BUFFER.ERROR 
if .TEXT-CODE.IN-USE = 'on', then goto [REQUEST-ERROR] 'Offer-In-Use' 
if .TEXT-CODE.FOUND = 'off', then goto [REQUEST-ERROR] 'Offer-Not-Found' 

Move MESSAGE.TEXT to REQUEST.RESPONSE 
set REQUEST.NODE-TO = MESSAGE.NODE-FROM 

me Internal Documentation. 



Executive Pseudocode Request-Handlers 

if MESSAGE.TEXT-CODE.OPEN = 'on' 
set CONNECTION-RECORD.ID-REMOTE = MESSAGE.ID-FROM 
set CONNECTION-RECORD.MASTER = MESSAGE.TEXT-CODE.MASTER 
increment CONNECTION-RECORD.SEQUENCE-NUMBER 
Release BUFFER 
set CONNECTION-RECORD.TIMER = 'Deadwood-Timeout' 
set CONNECTION-RECORD.BUFFER = 0 

else (connection not open) 
Clean-Up Connection-Record 

end if 

Complete-Request 

exit 

me Internal Documentation 

II 

. _ ... 



i. • 

Executive Pseudocode ~-

Offer-Request-Handler 

if .AGENT = 'on' and PROCESS.PRIVILEGE < 2 
goto [REQUEST-ERROR] 'Privilege-Violation' 

end if 

Request-Handlers 

if REQUEST.TEXT-MODE .ne. "A", then goto [REQUEST-ERROR] 'Syntax-Error' 

Open-Connection-Record 
set CONNECTION-RECORD.OFFER = 'on' 
set CONNECTION-RECORD~MASTER = 'off' 
set CONNECTION-RECORD.ID-REMOTE = 0 
initialize REQUEST.TEXT pointer 

for OFFERs in REQUEST 
get OFFER entry in BULLETIN-BOARD 

if OFFER = 0 then goto [REQUEST-DELAY] 

set OFFER fields from REQUEST 
.SERVICE-CODE = REQUEST.TEXT-CODE 
.PASSWORD= next 8 bytes of REQUEST.TEXT 

if .AGENT = 'off' 
.LOCAL-PROCESS = PROCESS.DESCRIPTOR from system 

else 
.LOCAL-PROCESS = next 8 bytes of REQUEST.TEXT 

end if 

.SERVICE-NAME = next 8 bytes of REQUEST.TEXT . 
• REMOTE-PROCESS = next 8 bytes of REQUEST.TEXT 
.CONNECTION-RECORD = CONNECTION-RECORD 

if insufficient text, then goto [REQUEST-ERROR] 'Syntax-Error' 
end for 

[REOFFER] (entered from Acknowledge-Request-Handler) 

set CONNECTION-RECORD.TIMER = REQUEST.TIMEOUT 
Wait-For CONNECTION-OPEN-MESSAGE 
Move MESSAGE.TEXT to REQUEST.RESPONSE 
set CONNECTION-RECORD.ACKNOWLEDGE-PENDING = 'on' 
set CONNECTION-RECORD.TIMER = 'Deadwood-Timeout' 
set REQUEST.NODE-TO = MESSAGE.NODE-FROM 

Complete-Request 

exit 

me Internal Documentation 

II 



Executive Pseudocode -66-

Status-Request-Handler 

switchon REQUEST.TEXT-CODE 
case 1 

if .NAME = 0 and any requests are pending 
sleep until any request completes 

Request-Handlers 

elseif .NAME .ne. 0 and CONNECTION referred to by .NAME has a request 
sleep until it completes 

end if 

case 2 
Allocate-Buffer 
if BUFFER = 0 then goto [REQUEST-DELAY] 
set MESSAGE.TEXT-MODE = "A" 

for node-table 
copy NODE.ID to MESSAGE.TEXT 
copy NODE.STATE to MESSAGE.TEXT 
copy NODE.NAME to MESSAGE.TEXT 
increment MESSAGE.TEXT-COUNT by 2 plus size of .NAME 

end for 

Move MESSAGE.TEXT to REQUEST.RESPONSE 
Release BUFFER 

case 3 
if PROCESS.PRIVILEGE < 2 

go to [REQUEST-ERROR] 'Privilege-Violation' 
end if 

if REQUEST.TEXT-MODE .ne. "A" 
go to [REQUEST-ERROR] 'Invalid-Text-Mode' 

elseif REQUEST.TEXT-COUNT .ne. 2 
go to [REQUEST-ERROR] 'Invalid-Text-Count' 

·else 
parse REQUEST.TEXT into ID and NEW-STATE 

end if 

set NODE from ID 
if NODE = 0 

go to [REQUEST-ERROR] 'Request-Format-Error' 
end if 

switchon NET-STATE 
case "A" "D" "Ii' "X" 

' ' ' NODE.IN-TIMER = 0 
NODE.OUT-TIMER = 19 

case other 
go to [REQUEST-ERROR] 'Request-Format-Error' 

endswitch 

log fact that state change is forced 
Set NODE.STATE to NEW-STATE 

TIIC Internal Documentation 

• .II 



Executive Pseudocode 

case other 
endswitch 

Complete-Request 
exit 

-67-

Test-Request-Handler 

Open-Connection-Record 
Check .NODE-TO 
Move REQUEST.TEXT to BUFFER 
Send TEST-DATA-MESSAGE 
*set CONNECTION-RECORD.TIMEOUT = REQUEST.TIMEOUT 
Wait-For TEST-RESPONSE-MESSAGE 

Request-Handlers 

if BUFFER.ERROR .ne. O, then goto [REQUEST-ERROR] BUFFER.ERROR 
Move MESSAGE.TEXT to REQUEST.RESPONSE 
Clean-Up Connection-Record 

Complete-Request 
exit 

me Internal Doctmentation 



Executive Pseudocode -68-

Transmit-Request-Handler 

Access-Connection-Record 

if CONNECTION-RECORD.ACKNOWLEDGE-PENDING = 'on' 
goto [REQUEST-ERROR] 'Protocol-Violation' 

end if 

set CONNECTION-RECORD.TIMER = REQUEST.TIMEOUT 

if CONNECTION-RECORD.MASTER = 'on' 
Move REQUEST.TEXT to BUFFER 
Send DATA-MESSAGE 
Wait-For DATA-MESSAGE 

if CONNECTION-RECORD.BUFFER.ERROR .ne. 0 
Release CONNECTION-RECORD.BUFFER 
set CONNECTION-RECORD.BUFFER = 0 
goto [REQUEST-DELAY] 

end if 

Move MESSAGE.TEXT to REQUEST.RESPONSE 
Release CONNECTION-RECORD.BUFFER 
set CONNECTION-RECORD.BUFFER = 0 

else (slave) 
Wait-For DATA-MESSAGE 
Move MESSAGE.TEXT to REQUEST.RESPONSE 
Move REQUEST.TEXT to BUFFER 
set CONNECTION-RECORD.BUFFER = 0 
Send DATA-MESSAGE 

end if 

increment CONNECTION-RECORD.SEQUENCE-NUMBER 
set CONNECTION-RECORD.TIMER = 'Deadwood-Timeout' 

Complete-Request 
exit 

me Internal Documentation 

Request-Handlers 



Executive Pseudocode -69-. 

6.3. Listener 

Pop BUFFER from RECEIVE-QUEUE 

if BUFFER = 0 then exit 

if BUFFER.ERROR .ne. 0 then goto [LISTENER-ERROR] BUFFER.ERROR 

set NODE from MESSAGE.NODE-FROM 

if unknown NODE 
goto [LISTENER-ERROR] 'Unknown-Source-Node' 

elseif NODE.STATE = "D" 

else 

Release BUFFER 
exit 

set NODE.IN-TIMER = 0 
Set NODE.STATE to "A" 
increment NODE.BITS-RECEIVED by bit count of MESSAGE 
increment NODE.MESSAGES-RECEIVED 

end if 

if MESSAGE.SUBCHANNEL-TO = 0 
switchon MESSAGE.TYPE 

case 'ADVICE' 
call Advice-Message-Processor 

case 'CONNECTION-oPEN' 
call Connection-Open-Message-Processor 

case 'TEST-DATA' . 
call Test-Data-Message-Processor 

case other 
goto [LISTENER-ERROR] 'Unknown-Message-Type' 

endswitch 

else (message addressed to nonzero subchannel) 
set CONNECTION-RECORD from MESSAGE.SUBCHANNEL-TO 

if MESSAGE.ID-TO .ne. CONNECTION-RECORD.ID-LOCAL 
goto [LISTENER-ERROR] 'ID-Error' 

elseif MESSAGE.TYPE = 'CONNECTION-CLOSE' 
set CONNECTION-RECORD.ERROR = MESSAGE.ERROR-CODE 
set CONNECTION-RECORD.SUBCHANNEL-REMOTE = 0 
Release BUFFER 

if CONNECTION-RECORD.REQUEST-SUSPENDED = 'on' 
wake up request-handler 

end if 

elseif CONNECTION-RECORD.SUBCHANNEL-REMOTE .ne. 0 
and CONNECTION-RECORD.ID-REMOTE .ne. MESSAGE.ID-FROM 

me Internal DocliDentation · 

Listener 

,._:,:.· 



Executive Pseudocode -70- Listener 

goto [LISTENER-ERROR] 'ID-Error' 

elseif MESSAGE.SEQUENCE-NUMBER .ne. CONNECTION-RECORD.SEQUENCE-NUMBER 
goto [LISTENER-ERROR] 'Sequence-Error'· 

elseif CONNECTION-RECORD.ERROR .ne. 0 
Release BUFFER 

elseif CONNECTION-RECORD.BUFFER .ne. 0 

else 

goto [LISTENER-ERROR] 'Unexpected-Message-Received' 

set CONNECTION-RECORD.BUFFER = BUFFER 

if CONNECTION-RECORD.REQUEST-SUSPENDED = 'on' 
wake up request-ha.ndler 

endif · 
end if 

end if 
exit 

[LISTENER-ERROR] <error-code> 
set BUFFER.ERROR = <error-code> 
if BUFFER.ERROR = 'Node-Unresponsive' 

if .TYPE= 'ADVICE', 'CONNECTION-ACKNOWLEDGE', or 'CONNECTION-CLOSE' 
or .TYPE= 'DATA' and CONNECTION-RECORD(-FROM).MASTER = 'off' 

set NODE from MESSAGE.NODE-TO 
set BUFFER.ERROR = 0 
Push BUFFER onto NODE.WAIT-QUEUE 
exit 

elseif .TYPE= 'DATA', 'TEST-DATA', or 'CONNECTION-OPEN' 
set CONNECTION-RECORD from MESSAGE.SUBCHANNEL-FROM 

if CONNECTION-RECORD.ID-LOCAL = MESSAGE.ID-FROM 
and CONNECTION-RECORD.SEQUENCE-NUMBER = MESSAGE.SEQUENCE-NUMBER 
and CONNECTION-RECORD.ERROR = 0 

set CONNECTION-RECORD.BUFFER = BUFFER 
wake up request-handler 
exit 

end if 
endif (MESSAGE.TYPE) 

elseif BUFFER.ERROR = 'ID-Error' and MESSAGE.'TYPE = 'CONNECTION-CLOSE' 
Release BUFFER 
exit 

endif (BUFFER.ERROR) 

log <error-code> 
Release BUFFER 
exit 

niC Internal Doctm1entation 

I 
I 

II 

- ...._ 



Executive Pseudocode -71- Message-Processors 

6.4. Message-Processors 

-----
--________ A9vi-ce-Messag~Proces5or-

Release BUFFER 
return 

---

Connection-Open-Message-Processor 

if MESSAGE.SUBCHANNEL-FROM = 0 
goto [LISTENER-ERROR] 'Bad-Connect-Message' 

end if 
.. 

. for CONNECTION-TABLE 
if CONNECTION-RECORD.ID-REMOTE = MESSAGE.ID-FROM 

goto [LISTENER-ERROR] '!D-In-Use' 
end if 

end for 

parse MESSAGE.TEXT into syntax elements 
if syntax error 

set MESSAGE.ERROR-CODE = 'Syntax-Error' 
. set MESSAGE.TEXT = (null) 

else 
for BULLETIN-BOARD 

Match-Offer-to-Message 
if match succeeds 

---

set CONNECTION-RECORD from OFFER.CONNECTION-RECORD 

---

if CONNECTION-RECORD.ID-REMOTE .ne. 0 or .ERROR .ne. 0 
or STATISTICS.ACTIVE-SLAVE-COUNT .ge •• ACTIVE-SLAVE-MAXIMUM 

set MESSAGE.TEXT-CODE.IN-USE = 'on' 
else 

set CONNECTION-RECORD fields-
.ID-REMOTE = MESSAGE.ID-FROM 
.SEQUENCE-NUMBER = MESSAGE.SEQUENCE-NUMBER 
.BUFFER = BUFFER 
.ACTIVE-SLAVE = 'on' 

increment STATISTICS.ACTIVE-SLAVE-COUNT 
wake up Offer-Request-Handler 
return 

end if 
end if 

end for 
end if 

interchange MESSAGE.ID-TO and .ID-FROM 
set CONNECTION-RECORD = 0 
Send CONNECTION-ACKNOWLEDGE-MESSAGE 
return 

1HC Internal Doctmentation · 



Executive Pseudocode 

Test-Data-Message-Processor 

set MESSAGE.CHARGES = 1 
interchange .ID-TO and .ID-FROM 
Send TEST-RESPONSE-MESSAGE 

return 

. ,, .~ ': 

me Internal DocliDentation 

Message-Processors 



Executive Pseudocode -73- Driver 

6.5. Driver 

(Note - the driver pseudocode as . shown. is only approximate; machine 
arch,i tecture considerations dictate the precise form of the driver.) 

forever. 
read adapter status 

if hardware has message 
call Input-Driver 

else 
Pop BUFFER from SEND-QUEUE 
if BUFFER .ne. 0, then call Output-Driver for BUFFER 

endif · 
end for 

Input-:-Driver 

Allocate-Buffer 

if BUFFER .ne. 0 
input MESSAGE.MESSAGE-PROPER 

read hardware status 
if error 

else 

set BUFFER. ERROR = 'Receive-Error,. 
increment STATISTICS.ERROR-RECEIVE 
return 

move MESSAGE.HEADER to BUFFER 
check for input-driver errors

'Checksum-Error' 
'Header-Length-Error' · 
'Protocol-Version-Error' 
'Invalid-Text-Count' 
'Invalid-Text-Mode' 

if error 
set BUFFER.ERROR = error-code 
discard MESSAGE.ASSOCIATED-DATA, if any 

else (no message format errors) 
compute word count of MESSAGE.TEXT 

if databuffer needed 
locate or allocate DATABUFFER 

niC Internal .Docunentation. 



Executive Pseudocode -74-

set BUFFER.DATABUFFER = DATABUFFER 

if DATABUFFER .ne. 0 
input MESSAGE.ASSOCIATED-DATA 
move MESSAGE.TEXT to DATABUFFER 

else (databuffer not available) 
discard MESSAGE.ASSOCIATED-DATA 
set BUFFER.ERROR = 'Data-Lost' 
increment STATISTICS.DATABUFFER-UNAVAILABLE 

end if 

else (databuffer not needed) 
set DATABUFFER = 0 
input MESSAGE.ASSOCIATED-DATA, if any 
move MESSAGE.TEXT, if any, to BUFFER 

end if 

read hardware status 
check for errors

'Receive-Error' 
'Message-Length-Error' 

if error 
set BUFFER.ERROR = error 
increment STATISTICS.ERROR-RECEIVE 

end if 

endif (message format errors) 
end if 

if BUFFER.ERROR .ne. 0 
set BUFFER.PRIORITY = 0 

else 
set BUFFER.PRIORITY = MESSAGE.PRIORITY 

end if 

Push BUFFER onto RECEIVE-QUEUE 
wake up Listener 

else (buffer not available for messag-e) 
discard MESSAGE.MESSAGE-PROPER and .ASSOCIATED-DATA 
increment STATISTICS.BUFFER-UNAVAILABLE 
increment STATISTICS.LOST-MESSAGES 

end if 

return 

niC Internal Doctmentation 

Driver 



Executive Pseudocode -75-

Output-Driver 

set NODE from MESSAGE.NODE-TO 

if NODE not in NODE-TABLE 
set BUFFER.ERROR = 'Unknown-Destination-Node' 

elseif NODE.STATE = "D" 
set BUFFER.ERROR = 'Node-Disconnected' 

elseif NODE.STATE = "X" 
set BUFFER.ERROR = 'Node-Down' 

elseif NODE.STATE = "U" 
set BUFFER.ERROR = 'Node-Unresponsive' 

elseif NODE .ne. self 
format MESSAGE.MESSAGE-PROPER from MESSAGE.HEADER, setting

.PRIORITY = BUFFER.PRIORITY 

.CONTROL 

.ACCESS-CODE 

.HW-TO/FROM from .NODE-TO/FROM 

.PROTOCOL, .VERSION 

.CHECKSUM 
set RETRY-COUNT = 0 

while RETRY-COUNT < 'Output-Driver-Retries' 
send MESSAGE.MESSAGE-PROPER to hyperchannel adapter 
read adapter status 

if error is 'Message-Pending' 
place BUFFER in SEND-QUEUE 
increment STATISTICS.REJECTS 
return (to read message) 

elseif no hardware error on send 

if MESSAGE.ASSOCIATED-DATA-FLAG = 'on' 
send MESSAGE.ASSOCIATED-DATA to adapter 
read adapter status 

end if 

if no error 
add RETRY-COUNT to STATISTICS.DRIVER-RETRIES 
goto [OUTPUT-DONE] 

end if 

endif (error other than 'MESSAGE-PENDING') 
increment RETRY-COUNT 

end while 

niC Internal Documentation 

Driver 



Executive Pseudocode -76-

set BUFFER.ERROR = 'Unable-To-Send' 
end if 

[OUTPUT-DONE] 

if BUFFER.ERROR = 0 
set NODE.OUT-TIMER = 0 
increment NODE.BITS-SENT by bit count of MESSAGE 
increment NODE.MESSAGES-SENT 
increment STATISTICS.TYPE-(MESSAGE.TYPE) 

elseif BUFFER.ERROR = 'Unable-To-Send' 
increment STATISTICS.ERROR-SEND 
log error 
set BUFFER.ERROR = 'Node-Unr~sponsive' 

endif , 

if NODE = self or BUFFER.ERROR .ne. 0 
place BUFFER in RECEIVE-QUEUE 
wake up Listener 

else 
Release· BUFFER 

end if 

return 

...... 

TIJC Internal· ·DocliDentation 

Driver 



Executive Pseudocode -77-

6.6. Housekeeper (called every second) 

set UNUSED-CONNECTION-RECORD-COUNT = 0 

for CONNECTION-TABLE 

if CONNECTION-RECORD.RESERVED = 'off' 
increment UNUSED-CONNECTION-RECORD-COUNT 

else 
if .NODE-REMOTE .ne. 0 

if .NODE-REMOTE.STATE = "D" 

Housekeeper 

set CONNECTION-RECORD.ERROR = 'Node-Disconnected' 
elseif .NODE-REMOTE.STATE = "X" 

set CONNECTION-RECORD.ERROR = 'Node-Down' 
end if 

end if 

if CONNECTION-RECORD.TIMER .ne. 0 
decrement CONNECTION-RECORD.TIMER 

if CONNECTION-RECORD.TIMER = 0 
if CONNECTION~RECORD.REQUEST-SUSPENDED = 'on' 

set CONNECTION-RECORD.ERROR = 'Network-Timeout' 
else . 

set CONNECTION-RECORD.ERROR = 'User-Timeout' 
endif · 
if .NODE-REMOTE .ne. 0 

increment .NODE-REMOTE.TIMEOUTS 
end if 

end if 
end if 

if CONNECTION-RECORD.ERROR .ne. 0 
Clear-Connection-Record-Network 

end if 
end if 

endfor (connection-table) 

for NODE-TABLE, excepting NODE = self 
if NODE. STATE • ne. "X" OR "D" 

while NODE.WAIT-QUEUE .ne. 0 and NODE.STATE = "A" or "I" 
Pop BUFFER from .WAIT~UEUE 
Push BUFFER onto SEND-QUEUE 

endwhile 

if NODE.IN-TIMER < 'Node-Timer-Maximum' then increment it 

switchon NODE.IN-TIMER 

case 'Node-Unresponsive-Delay' 
Set NODE.STATE to "U" 

11IC Internal . Doc\Dentation · 



Executive Pseudocode 

case 'Node-Down-Delay' 
Set NODE.STATE to "X" 

endswitch 
end if 

if NODE. STATE ·= "X" or "D" 

-78-

while NODE.WAIT-QUEUE .ne. 0 
Pop BUFFER from .WAIT-QUEUE 
Release BUFFER 

end while 
set NODE.OUT-TIMER = 'Node-Send-Time' - 1 
set NODE.IN-TIMER = 0 

elseif NODE.STATE .ne. "U" 

Housekeeper 

if NODE.OUT-TIMER < 'Node-Timer-Maximum' then increment it 

if NODE.OUT-TIMER = 'Node-Send-Time' 
Allocate-Buffer 
if BUFFER .ne. 0 

set MESSAGE fields
.NODE-TO = NODE 
.NODE-FROM = self' 
• TYPE = 'ADVICE' · 
.TEXT = (null) 
all others = 0 

Push BUFFER onto SEND-QUEUE 
else (no buffer) 

decrement NODE.OUT-TIMER 
endif (BUFFER .ne. 0) 

endif (NODE.OUT-TIMER) 
endif (NODE.STATE) 

endfor (node-table) 

increment STATISTICS.CONNECTIONS for UNUSED-CONNECTION-RECORD-COUNT 
compute UNUSED-BUFFER-COUNT and UNUSED-DATABUFFER-COUNT 
increment STATISTICS.BUFFERS for UNUSED-BUFFER-COUNT 
increment STATISTICS.DATABUFFERS for UNUSED~DATABUFFER-COUNT 
increment STATISTICS.TIME-INTERVAL 
update STATISTICS.TIME 

return 

1liC Internal Documentation 



Executive Pseudocode -79-

6.7. Subroutines 

Access-Connection-Record 

if REQUEST.NAME is improperly formatted or zero 
goto [REQUEST-ERROR] 'Improper-Request-Name' 

end if 

for CONNECTION-TABLE 
if .PROCESS = REQUEST.PROCESS and .NAME = .REQUEST-NAME 

if CONNECTION-RECORD.ERROR .ne. 0 

Subroutines 

goto [REQUEST-ERROR] CONNECTION-RECORD.ERROR 
elseif .REQUEST-SUSPENDED = 'on' and .TYPE .ne. 'CLOSE' 

goto [REQUEST-ERROR] 'Request-Already-Pending' 
else 

return 
end if 

end if 
end for 

set CONNECTION-RECORD = 0 
goto [REQUEST-ERROR] 'Connection-Not-Found' 

Allocate-Buffer 

for all BUFFERs 
if BUFFER.RESERVED = 'off' 

set BUFFER.RESERVED = 'on' 
set BUFFER.MESSAGE.HEADER = 0 
set BUFFER.ERROR = 0 
set BUFFER to buffer address 
return 

end if 
end for 

set BUFFER = 0 
increment STATISTICS.BUFFER-UNAVAILABLE 
return 

me Internal DocliDentation 



Executive Pseudocode -80-

Check .NODE-TO 

for node-table 
if REQUEST.NODE-TO = NODE.ID 

if NODE.STATE = "X" 
goto [REQUEST-ERROR] 'Node-Down' 

elseif NODE.STATE = "D" 
goto [REQUEST-ERROR] 'Node-Disconnected' 

end if 
return 

end if 
end for 

go to [REQUEST -ERROR] · 'Unknown-Destination-Node' 

Clean-Q£ Connection-Record 

if CONNECTION-RECORD = 0 then return 

if CONNECTION-RECORD.OFFER = 'on' 
for BULLETIN-BOARD 

if OFFER.CONNECTION-RECORD = CONNECTION-RECORD 
delete OFFER 

end if 
end for 
set CONNECTION-RECORD.OFFER = 'off' 

if CONNECTION-RECORD.ACTIVE-SLAVE = 'on' 
set .ACTIVE-SLAVE = 'off' 
decrement STATISTICS.ACTIVE-SLAVE-COUNT 

end if 
end if 

if CONNECTION ... RECORD.ERROR = 0 
set CONNECTION-RECORD.ERROR = 'User-Close' 

end if 

set CONNECTION-RECORD.PROCESS = 0 
Clear-Connection-Record-Network 

return 

1HC Internal DocliDentation 

SUbroutines 

- .. 



.. . 

Executive Pseudocode -81-

Clear-Connection-Record-Network 

set NODE from CONNECTION-RECORD.NODE-REMOTE 

if NODE = 0 or NODE.STATE = "D" OR "X" 
set CONNECTION-RECORD.SUBCHANNEL-REMOTE = 0 

end if 

if CONNECTION-RECORD.SUBCHANNEL-REMOTE .ne. 0 
if CONNECTION-RECORD.BUFFER = 0 

Allocate-Buffer 
if BUFFER = 0 then return 

else 
set BUFFER = CONNECTION-RECORD.BUFFER 

end if 

set CONNECTION-RECORD.BUFFER = 0 
set MESSAGE.TEXT = (null) 

if CONNECTION-RECORD.ERROR = 'User-Timeout' 
set MESSAGE.ERROR-CODE = 'Remote-User-Timeout' 

else if CONNECTION-RECORD.ERROR = 'Network-Timeout' 
set MESSAGE.ERROR-CODE = 'Remote-Network-Timeout' 

else 
set MESSAGE.ERROR-CODE = CONNECTION-RECORD.ERROR-CODE 

end if 

Send CONNECTION-CLOSE-MESSAGE 
end if 

setCONNECTION-RECORD.ID-REMOTE = 0 
increment CONNECTION-RECORD.SEQUENCE-NUMBER 
increment CONNECTION-RECORD.CYCLE 

if CONNECTION-RECORD.BUFFER .ne. 0 
Release BUFFER 
set CONNECTION-RECORD.BUFFER = 0 

end if 

if CONNECTION-RECORD.PROCESS = 0 
set CONNECTION-RECORD.RESERVED = 'off' 

. elseif CONNECTION-RECORD.REQUEST-SUSPENDED = 'on' 
wake up request-handler 

end if 

return 

THC Internal Documentation 

Subroutines 



Executive Pseudocode 

bill process 1 unit 
set REQUEST.COMPLETE = 'on' 
wake.up process 
return 

-82-

Complete-Request 

Format <type>-Message 

set MESSAGE.TYPE = <type> 
" if CONNECTION-RECORD .ne. 0 

set MESSAGE FIELDS from CONNECTION-RECORD
.SEQUENCE-NUMBER = .SEQUENCE-NUMBER 
.ID-TO = .ID-REMOTE 
.ID-FROM = .ID-LOCAL 

set MESSAGE.PRIORITY' = 0 
end if 

return 

Generate CONNECTION-ACKNOWLEDGE MESSAGE.TEXT 

initialize MESSAGE.TEXT POINTER and REQUEST.TEXT POINTER 
set MESSAGE.TEXT-CODE = REQUEST.TEXT-CODE 
set MESSAGE.TEXT-MODE = "A" 

' Subroutines 

if REQUEST.TEXT-MODE .ne. "A", then goto [REQUEST-ERROR] 'Syntax-Error' 

if .AGENT =''off' 
set <LOCAL-PROCESS> = PROCESS.DESCRIP!OR from system 

else 
set <LOCAL-PROCESS>= next 8 bytes·of.REQUEST.TEXT 
if PROCESS.PRIVILEGE < 2, then goto·[REQUEST-ERROR] 'Privilege-Violation' 

end if 

if insufficient text, then goto [REQUEST-ERROR] 'Syntax-Error' 

set <PARAMETERS> = remainder of REQUEST.TEXT 
set MESSAGE.TEXT-COUNT from POINTER 
return 

me Internal Doctmentation 

- .... !. 

•· 



Executive Pseudocode -83-

Generate CONNECTION-OPEN MESSAGE.TEXT 

initialize MESSAGE.TEXT POINTER and REQUEST.TEXT POINTER 
set MESSAGE.TEXT-CODE = REQUEST.TEXT-CODE 
set MESSAGE.TEXT-CODE.FOUND = 'off' 
set MESSAGE.TEXT-CODE.IN-USE = 'off' 
set MESSAGE.TEXT-MODE = "A" 

Subroutines 

if REQUEST.TEXT-MODE .ne. "A", then goto [REQUEST-ERROR] 'Syntax-Error' 

set <PASSWORD> = first 8 bytes of REQUEST.TEXT 

set <SERVICE-NAME> = next 8 bytes of REQUEST.TEXT 
set <REMOTE-PROCESS> = next 8 bytes of REQUEST.TEXT 

. . . . . . 
'Privilege-Violation' 

if insufficient text , then goto [REQUEST-ERROR] 'Syntax-Error' 
set <PARAMETERS> = remainder of REQUEST.TEXT 
set MESSAGE.TEXT-COUNT from POINTER 
return 

Match-Offer-to-Message 

if OFFER.SERVICE-NAME .ne. <SERVICE-NAME>, then return failure 
if OFFER.SERVICE-CODE.OPEN .ne. MESSAGE •• OPEN, then return failure 
if (OFFER •• CAPABILITY & MESSAGE •• CAPABILITY) .ne. MESSAGE .• CAPABILITY 

return failure 
end if 

for (A,B) = (OFFER.REMOTE-PROCESS,<LOCAL-PROCESS>) and 
(<REMOTE-PROCESS>,OFFER.LOCAL-PROCESS) 

if A.AUTHORIZATION-CODE.CHECK-PASSWORD = 'on' 
if OFFER.PASSWORD .ne. <PASSWORD>, then return failure 

end if 

for ID = (GROUP-ID, USER-ID, PROCESS-ID) 
if A •• CHECK-ID = 'on' and A.ID .ne. B.ID, then return failure 

end for 

if A.PRIVILEGE > B.PRIVILEGE, then return failure 
end for 

return success 

nfC Internal DocLiDentation 



Executive Pseudocode -84-

Move MESSAGE.TEXT to REQUEST.RESPONSE 

bill process MESSAGE.CHARGES 
compute WORD-COUNT 

if WORD-COUNT > REQUEST.RESPONSE-BUFFER-LENGTH 
set REQUEST.ERROR = 'Buffer-Too-Small' 
set WORD-COUNT = .RESPONSE-BUFFER-LENGTH 

end if 

set REQUEST.RESPONSE-DESCRIPTOR = MESSAGE.TEXT-DESCRIPTOR 

if BUFFER.DATABUFFER = 0 
move WORD-COUNT words from BUFFER. 

else . 
move WORD-COUNT words from DATABUFFER 

end if 

return 

Move REQUEST.TEXT to BUFFER 

if request parameters unsatisfactory 
goto [REQUEST-ERROR] 'Bad-Text-Count' OR 'Bad-Text-Mode' 

end if 

if BUFFER = 0 then.Allocate-Buffer 
if BUFFER .ne. 0 

if databuffer needed 
if BUFFER.DATABUFFER = 0 then allocate DATABUFFER 
if DATABUFFER .ne. 0 

set BUFFER.DATABUFFER = DATABUFFER 
copy .TEXT-DATA to DATABUFFER 

else (no databuffer) 
Release BUFFER 
goto [REQUEST-DELAY] 

end if 
else (databuffer not needed) 

Subroutines 

if BUFFER.DATABUFFER .ne. 0 then deallocate DATABUFFER 
set BUFFER.DATABUFFER = 0 
copy .TEXT-DATA to BUFFER 

end if 

set MESSAGE.TEXT-DESCRIPTOR = REQUEST.TEXT-DESCRIPTOR 
else (no buffer) 

goto [REQUEST-DELAY] 
end if 

return 

TiiC Internal DocLJDentation 



Executive Pseudocode -85-

Open-Connection-Record 

if REQUEST.NAME is improperly formatted or zero 
goto [REQUEST-ERROR] 'Improper-Request-Name' 

end if 

for connection-table 
if CONNECTION-RECORD.PROCESS = REQUEST.PROCESS 
and CONNECTION-RECORD.NAME = REQUEST.NAME 
and CONNECTION-RECORD.RESERVED = 'on' 

set CONNECTION-RECORD = 0 
goto [REQUEST-ERROR] 'Connection-Name-In-Use' 

end if 
end for 

: for connection-table 
if ~ONNECTION-RECORD.RESERVED = 'off' 

set CONNECTION-RECORD fields
.RESERVED = 'on' 
.PROCESS = REQUEST.PROCESS 
.NAME = REQUEST.NAME 
.ID-LOCAL (unchanged) 
.SEQUENCE-NUMBER (unchanged) 
.MASTER = 'on' 
.NODE-REMOTE = REQUEST.NODE~TO 
all others = 0 

return 
end if 

end for 

set CONNECTION-RECORD = 0 
increment STATISTICS.CONNECTION-RECORD-UNAVAILABLE 
goto [REQUEST-DELAY] 

Pop BUFFER from <QUEUE> 

BUFFER = QUEUE.NEXT 

if BUFFER .ne. 0 
set QUEUE.NEXT = BUFFER.NEXT 
set BUFFER.NEXT = 0 

end if 

return 

'D:IC Internal Doct.JDentation 
-~ .. . ., 

Subroutines 



Executive Pseudocode -86-

Push BUFFER onto <QUEUE> 

set LAST = QUEUE 
set NEXT= LAST.NEXT 

while NEXT .ne. 0 and BUFFER.PRIORITY .le. NEXT.PRIORITY 
set LAST = LAST.NEXT 
set NEXT = LAST.NEXT 

endwhile 

set LAST.NEXT = BUFFER 
set BUFFER.NEXT = NEXT 
return 

set ·BUFFER. RESERVED. = 'off_' 

if .DATABUFFER .ne. 0 
deallocate .DATABUFFER 
set .DATABUFFER = 0 

end if 

return 

Release BUFFER 

Send <type>-Message 

Format <type>-Message 
· Push BUFFER onto SEND-QUEUE 
return 

niC Internal Docunentation 

f 

Subroutines 

.. 

.... .-..;-

• 



Executive Pseudocode -87-

Set <node>.STATE to <new-state> 

if <node>.STATE .ne. <new-state> 
<node>.STATE = <new-state> 
log state change 

end if 

return 

Wait-For <type>-Message 

set CONNECTION-RECORD.REQUEST-SUSPENDED = 'on' 

Subroutines 

while CONNECTION-RECORD.BUFFER = 0 and CONNECTION-RECORD.ERROR = 0 
sleep 

end while 

set CONNECTION-RECORD.REQUEST-SUSPENDED = 'off' 

if .BUFFER .ne. 0 

if MESSAGE.TYPE = <type> or CONNECTION-RECORD.BUFFER.ERROR .ne. 0 
set BUFFER = CONNECTION-RECORD.BUFFER 
return 

else 
goto [REQUEST-ERROR] 'Protocol-Violation' 

end if 

else (buffer not attached to connection-record) 
goto [REQUEST-ERROR] CONNECTION-RECORD.ERROR 

end if 

Note - if .BUFFER .ne. 0 branch is taken, CONNECTION-RECORD.ERROR should 
not be examined until after completion of the current request. Other
wise, a connection-close message from the slave side of a connection can 
overrun and trash the last data-message waiting on the master side. 

niC Internal DoctJDentation 

0 



Appendix A -88- Error Codes 

Appendix A - Error-Codes 

Request Errors 

Request errors are errors detected by a request-handler. 

' ' (1B) 
Error-code = 1 is avoided for RSX compatibility. 

'Buffer-Too-Small' (2B) 
Request response buffer cannot hold the entire response. Some data 
was lost. 

'Connection-Not-Found' (3B) 
Request is trying to make a req~est for a connection which the sys
tem cannot· find;· REQUEST.NAME does not correspond to any of the 
open connections for this process. 

'Connection-Name-In-Use' (4B) 
Request is trying to open a connection with a name already in use by 
the, process. 

•Invalid-Text-Mode' (5B) 
REQUEST.TEXT-MObE is either unrecognized or inappropriate for the 
request. 

'Invalid-Text-Count' (6B) 
REQUEST.TEXT-COUNT is not a legitimate value for .TEXT-MODE. 

'Unknown-Destination-Node' (7B) 
REQUEST.NODE-TO does not correspond to any of the nodes in the 
node-table; detected on connect-, test-, and advisory-requests. 

'Parameter~tside-FL' (10B) 
One or more of the parameters of the request lie outside user memory 
space. 

'Invalid-Request-TyPe' ( l1B) 
REQUEST.TYPE does-not.correspond to any of the legitimate· possible 
values. 

'Syntax•Error' (12B) 
REQUEST.TEXT is not properly formatted. 

'Privilege-Violation' (13B) 
The request is privileged, and cannot be made by the process. 

'Request-Format-Error' ( 14B) 
Either REQUEST. TEXT buffer or REQUEST.RESPONSE buffer is outside 
user memory space, or some other parameter of the request is not in 
proper format. '.\i:. 

TIJC Internal DocLJDentation 

.. 



.. 

Appendix A -89- Error Codes 

'Lmproper-Request-Name' (15B) 
REQUEST.NAME is improperly formatted or zero. 

'THC-Not-Available' (16B) 
The local node is not communicating with the network. 

'Illegal-I/O-Function-Code' (20B) 
The function code for the I/0 request is invalid (system-dependent). 

'HRB-Outside-FL I (21B) 
The HRB is outside the user fl (RSX 11M) • 

'Bad-Function-Code' (22B) 
An invalid function code has been specified (RSX 11M). 

'Account-Table-Entry-Missing' (23B) 
There is no account table entry for the remote user (gateway nodes)~ 

'Illegal-Account' (24B) 
The user account number is invalid. 

'Pool-Allocation-Failure' (25B) 
Pool space allocation failed (RSX 11M). 

'Account-Table-Already-Exists• (26B) 
The account able already exists (gateway nodes). 

'DECNET-Error' (27B) 
An error was detected in a DECNET subroutine (DECNET gateway nodes). 

User Protocol Errors 

These errors are caused by a mismatch in the issuance of requests 
between the two processes involved. 

'Protocol-Violation' (40B) 
The process has made an inappropriate request. 

'User-Timeout• (41B) 
The user has gone too long without speaking to the process on the 
other side of the connection; the connection is closed. 

'Network-Timeout• (42B) 
No message has been received from the other side in too long a time; 
the connection is.closed. 

'Remote-Process-Error' (43B) 
The process at the remote end of the connection has erred in some 
interaction with the network. 

'Remote-Process-Abort' ( 44B) 
The process at the remote end of the connection has aborted for some 

'DIC Internal Doctmentation 



Appendix A -90- Error Codes 

(non-network) re~~on. 

'Operator-Disconnect' ( 45B) 
An operator has forced the closing of the connection. 

'Request-Already-Pending' (46B) 
Connection already has a request pending on it. 

'Offer-Not-Found' (47B) 
A matching offer was not found in the bulletin-board of the 
appropriate node. 

'Offer-In-Use' (50B) 
A match was found, but the corresponding, connection-record was in 
use for another process. 

'Remote-Network..:.Ti.ineout' <51.B) 
The executive on the other side of the connection closed the connec
tion with a 'Network-Timeout' error. 

'Remote-User-Timeout' (52B) 
The executive on the other side of the connection closed the connec
tion with a 'User-Timeout' error. 

Listener Errors 

These errors are detected by the listener; they reflect a confusion 
on the system-level between the two sides of a connection. 

'ID-Error' (100B) 
MESSAGE.ID doesn't match the appropriate CONNECTION-RECORD.ID. 

'!D-In-Use' (101B) 
MESSAGE.ID-FROM in the connection-open-message is already in use for 
a different connection. 

'Sequence-Error' (102B) 
A message was received with.the wrong sequence-number. 

'Bad-Connect-Message' ( 103B)· 
A connect-message was addressed to a non-zero subchanne1. 

'Unexpected-Message-Received' ( 104B) 
A message was received on a connection when it wasn't the source 
side's turn to send. 

Input Driver Errors 

These errors are either due to hardware or undebugged code. 

'Header-Length-Error' (200B) 

THC Internal Documentation 



... 

Appendix A -91- Error Codes 

The actual byte count of MESSAGE.MESSAGE-PROPER was incorrect for 
the MESSAGE.HEADER. 

'Unlmown-Source-Node' (201B) 
Message was received and MESSAGE.NODE-FROM does not appear in local 
node-table. 

'Checkst.m-Error • (202B) 
Checksum of MESSAGE.HEADER was incorrect. 

'Data-Lost' (203B) 
Data was lost in reading the message because a databuffer was not 
available. (This is a resource allocation problem, not a hardware 
error.) 

.'Unknown-Message-Type I (204B) . 
MESSAGE.TYPE is not a legitimate value. 

'Receive-Error' (205B) 
Adapter status shows errors on input of message from hardware. 

'Bad-Text-Count• (206B) "' 
MESSAGE.TEXT-COUNT is not a legitimate value corresponding to 
MESSAGE. TEXT-MODE. 

'Bad-Text-Mode' (207B) 
MESSAGE.TEXT-MODE is not a legitimate possible value. 

'Message-Length-Error• (210B) 
The actual byte count of MESSAGE.ASSOCIATED-DATA was incorrect for 
MESSAGE. TEXT. 

'Protocol-Version-Error• (211B) 
MESSAGE.PROTOCOL was non-zero or MESSAGE.VERSION does not correspond 
to any of the versions currently supported. 

Output Driver Errors 

'Unable-To-Send' (240B) 
Hardware will not successfully transmit the message. 

'Node-Down' (241B) 
The destination node appears not to be running • 

'Node-Unresponsive • (242B) 
The destination node appears not to be responding to communication, 
but is not known to be down. 

'Node-Disconnected • (243B) 
The destination node has attempted to breach network security and 
has been disconnected from the network. 

niC Internal Doc1.111entation 



Appendix A· -92- Error Codes 

User-Specified Errors 

'User-Close • (3XXB) 
XX : (remote process' REQUEST.TEXT-CODE .AND. 77B) 

The process on the other side of a connection has issued a close
request. 

11:1C Internal Doct.mentation 

~ . .() 

'~ 

... __ . 



Appendix B -93- Node Table 

Appendix B - Node-Table 

.ID .NAME .HW Op System Computer 
------ ------- ----------

< > "A" ada1 1100 RSX-11M PDP 11/34 
,, "B" 66008 3300 SKY CDC 6600 

., "C" 6400C 2200 SKY CDC 6400 
~ "D" igm 1102 VMS VAX 11/780 

"F" pdm 5501 VMS VAX 11/780 
"G" csmg 4403 VMS VAX 11/780 
"I" bgt1 1000 VM/370 IBM 4331 
"M" nrmn 5500 VMS VAX 11/780 
"N" dgt1 1101 RSX-11M PDP 11/44 
"Q" ada2 4402. RSX-11M PDP 11/34 
"T" unx1 4400 UNIX PDP 11/70 
"U" unx3 4401 UNIX PDP 11/70 

----

TIIC Internal Doct.~~~entation 



Appendix c -94- Network Sabotage 

Appendix C - How To Sabotage The Network 

Cut or disconnect trunk cable from an adapter. 

Change adapter access-code. 

Change adapter address, preferably to match someone else's. 

Alter adapter trunk delay timers. 

Have your adapter reserve one of the others (send message with associ
ated data) and decline to release the reservation. 
Loop doing the above to all of the others. 

Lie about who you are. 

Flood one or more adapters with messages with bad checksums. 

Flood the trunk with messages addressed to non-existant nodes. 

Flood one or more adapters with messages padded out as large as you can 
manage. 

Flood us with test messages. 

Power down your adapter. 
Pick on our accounting/login machine in particular. 

This list is by no means complete, but includes only those holes found 
on twenty minute inspection. 

THC Internal Docl.IDentation , 

~ ' ,• 

(' 

... .. 

• 



~, 

•f.._, 

<t 
j/1 

Appendix.D -95- Accounting 

Appendix D - Accounting 

Each request made of the network operating system is billed to the · 
process making the request. The charges for a request are expressed in 
terms of network packets, and correspond roughly to the cost of servic
ing that request compared to the cost of servicing the most simple of 
requests. The network executive on one node may pass a charge (in the 
message header) to its friend on the other node so that the transaction 
may be billed to the appropriate process in that neck of the woods. 

The proposed charge for network service is one computing-unit per 
1000 network packets. 

me Internal Doctmentation 



Appendix E -96- Chronology 

Appendix E - Chronology 

31 JAN 79 Completion of preliminary design specifications for 
advisory, test, command, and display-request messages. 

31 MAR 79 Completion of preliminary executive and test-message pro
cessing on B, C, and Z nodes. Begin acceptance test using 
test messages (deferred pending NSC retrofit). 

11 MAY 79 Completion of preliminary design for minimal subset of all 
message types (writeup version). Completion of preliminary 
executive on N node. 

31 JUL 79 Completion of preliminary executive on T node. 

28 SEP 79 Completion of redesign of requests, messages, tables, and 
executive (major writeup revision). 

01 NOV 79 
11 DEC 79 
29 FEB 80 

01 MAR 80 

30 APR 80 

03 JUL 80 

31 JUL 80 

09 SEP 80 

28 OCT 80 

30 NOV 80 
15 FEB 81 

05 MAR 81 

31 MAR 81 

31 AUG 81 

31 AUG 81 

Minor writeup revision. 

Writeup revision reflecting pseudocode debugging. 

Writeup revision changing password handling. 

Deletion of Z node. 

Implementation of version of 29 FEB 80 on A, B, C, and N 
nodes. Begin remote job entry and batch output retrieval 
service. 

Writeup revision reflecting incorporation of "A" mode. 

Installation of T node. 

Implementation of version described in writeup of 03 JUL 80. 

Writeup revision containing enhancements to node-level flow 
control, close-request p~ocessing, and syntax handling. 

Implementation of version described in writeup of 28 OCT 80. 
Installation of I node. 

Writeup revision reflecting changes in C, V, W, and X modes; 
password.encryption; user-specified timeouts. 

Installation of U node. 

Upgrade to version as described in writeup of 05 MAR 81. 

Installation of F and M nodes. 

09 OCT 81 Writeup.revision. 

30 NOV 81 Upgrade to version of 09 OCT 81. 

'DIC Internal Docl.lllelltation 

.. 



This report was done with support from. the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



'.! 

) 

~·~"::~;f 
TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

t 

,,.-

, ' .. ~--

-~~ 

.. 

,, . 

c '(.:~. 

.. I•, 

•:. 

·. 4 
·\: 

''!~~: 

>\~-·~,:': 
;j- ... 
···v 

-~--~i{, 
~ "· . 
}!!:.':·· 

•\ -;l'':f ": 
' :. ), I . (,.{' ... 

_:-:-·~~ o!' 

:-· 

.. 
' : ~ 

•, 
. ~ -~ ., 

,, ._.., 

J. . ' :. ;(:: H~;;::: :· ,:'•;,· •!'"' ~;~f:I.·· .: ' 
. •. 

·' .,·;, :ft :~{·:·•<.<. 
''"', '., 
,.;-, .. -: 

' 

~ ' . -~ 
. . ·.~·. ' ' 
'··' "+ 

'f•! . 

' '{J· 
!"<." 
I 

. L'~:~ . 

::; L'\·~ . . 

..... _. 

,' 

pr~~-.'~~~ ~~-. > { 

I. 

"..:.·.·· •j._:· . 

'·· 

:~t;~'.l., ·; 

. ..... ... 
, . .. -.. 

', ' 

... ;;-

.. - ~ 

.... ' 

·'·;/~-~~i-~: ·:.~ 

I :' 

/. 

',:j~'r,;l" 

~·- .;1'·.:'J·-'~:t~,.,~ 
;,.- ~ ... - j 

•" ., 

~ ... 


