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Abstract 

A quantitatively'useful approximation method is developed for generating 

. complete multi-fragment events in a statistical model for nuclear 

disassembly. The method consists in factorizing the exclusive microcanonical 

probability distribution into successively dependent one-fragment inclusive 

distributions, each of which is approximated by its respective truncated grand 

canonical equivalent. 

*This work was supported by the Director, Office of Energy Research, Division 

of Nuc 1 ear Physics of ~he Office of High Energy and Nuc 1 ear Physics of the 

U.S. Department of Energy under Contract DE-AC03-76SF00098. 
t . 
·On leave from the Roland Eotvos University, Budapest Hungary. 
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In this Letter we report on the development of a practical method for 

generating samples of multi-fragment distributions within the framework of a 

statistic model for nuclear disassembly. While the method is quite general 

and may have wide applicability, the realm of physics we have in mind is that 

of medium-energy nuclear collisions. 

In such collisions a highly excited transient system may be formed and 

subsequently disassemble into many nuclear fragments. This problem has been 

addressed in refs. [1-2], which study the one-fragment inclusive distributions 

within a statistical model. Recent developments in detection technique demand 

. that the exclusive distributions be considered, and it is of interest to 

calculate complete events on the basis of a statistical model. This amounts 

to assuming that all multi-fragment states compatible with the overall 

conservation laws are equally probable. [In the nuclear problem it may be 

necessary to divide the collision system (e.g. into participants and 

spectators) bef~re invoking statistics (see ref. [3]) but this need not 

concern us here.] The practical task is then to generate a sample of 

multi-fragment events distributed statistically in accordance with the 

appropriate exclusive microcanonical distribOtion function. This undertaking 

is rather cumbersome, particularly when many different fragment species are 

included. It is therefoie desirable to develop a suitable approximate 

method. Below we formulate the mathematical task, describe our approximation, 

and discuss its validity. 

In an ideal exclusive measurement complete information is obtained on all ~ 

the fragments in the final state. A given event, say f,. is then characterized 

by the quantities {pia, i . E (l,n )} . Here n is the multiplicity of . a a aa a -

fragments of the particular species a= n,p,d,t, ... These na fragments are 

labeled (arbitrarily) by ia E (l,na) and their four-momenta are denoted 
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p~a = (p~a,E~a). Because of the identity of the fragments within a 

given species the actual labeling is without physical significance, i.e. f is 

invari.ant under permutations of the labels .;a· The total fragment 

multiplicity of the event f is given by nf = ~ na. 

The set of all such events, the event space~= {f}, has certain 

algebraic properties, which are of great notational convenience. For example, 

any two events may be added, r + f =f. By this we mean that n + n = n . 'tJa -- a a a 
an_d, furthermore, that:{p! , i,., E (l,n )} u {pia, i E (l,n )} = 

'"" '"" a a a a 
{pia ·; E -(1 n)} 'tJa We note that the null event._ f = 0, which has n,., = 0 'r;/a, a-. ' a ' a · '"" 
is the neutral element under addition. The events with unit total multiplicity 

are E)em~ntary objects in the event space: any event f can be decomposed in 

terms of one-fragment events: f = Ef k where k = 1, ... , nf) and nf = 1 'tJ k. It 
k 

is also convenient that some events can_be compared: we shall write f ~f (or 

f ~f) iff 3f: f + r = f' i.e. the event f ·encompasses the event f. 

In the statistical model, the disassembly depends only on the conserved 

quantities of the system, which in the present case are the total baryon number 

A
0

, the total charge number Z
0

, and the total four-momentum P 
0 

= (P 
0

,E
0
). The 

disassembling system (which shall often be referred to as the source) is thus .. 
characterized by the quantities A

0
Z

0
P

0
, denoted collectively by i

0 
for 

notational convenience, and we seek the probability distribution p(i
0 

If) for 

arriving at various final states f. The statistical assumption is that all 

-"' final states compatible with the conservation laws are equally probable. Hence 

where i[f] = AfZfPf are _the values of the conserved quantities for the_ 

specified final state f. The normalization constant is determined. from the 

condition that p be normalized, 
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We note that the event space ~consists of disjoint parts, ~ = U ~i , where 
0 

'S. = {f I i[f] = i
0

} is the part accessible for the specified value i 0 .~ 
10 . 

The excltisive distribution p·pertains to the situation where the 

( 2) 

specification of the final state is complete, corresponding to an e.xclusive 

measurement. When only partial specification of the final state is made, as 

is most often the case, the relevant quantity is the corresponding inclusive 

distribution p. This quantity can be obtained from the exclusive distribution 

by integrating over the unobserved quantities. In particular, when the 

partial measurement is such that complete information is obtained for some of 

the fragments, the inclusive distribution is given by 

p(i
0
lf) = E p(i If) 

f;;;f' 0 
( 3) 

Here the observed partial event is denoted by t and the summation is over all 

final states f that encompass the specified observation r. It is simple.to 

express the inclusive distribution in terms of the phase space integrals (2): 

E p(i
0
lr + 7) 

f 

= '(i
0
)-l E 6(i

0 
- i[f] - i[f]) 

f 

= 1( i ) - 1 1( i - i [T] ) 
0 0 

i.e. the. inclusive probability for the partial event 1 is equal to the 

corresponding complementary phase space integral '(i
0 

- i[fJ) divided by the 

total phas·e space integral _3( i
0

). 

By combination of (2) and (4) it is possible to factorize p{i
0
lf) into 

simpler quantities: 

(4) 
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p(iolf) !J(io)-l o(io i[f] i[f]} 

= ,( i o ) - 1 !T( i o - i c n ) , ( i o - i c n ) -1 o ( ( i o - 1 en ) - i crJ ) . ( 5 ) .. 

where f + f = f. This relation expresses the fac.t that the exclusive · 

probability for obtaining the· event f is equal to the ·inclusive probability 

for obtaining a part of the event, t ~ f, times the exclusive probability for 

obtaining the complementary event f = f - t, given that f has already been 

obtai ned. 

By·repeated use of the above relation (5), it is possible to factorize 

the 1!eixclusive probability p into inclusive probabilities. In particular, by 

decompos:ingthe specified final multi-fragment event fin terms of elemenary 

one-fragment eve~ts fk, p(i
0

lf) can be factorized into one-fragment 

inclusive d1stribut .. ions: 

Here we have d~fined ik =.ik_ 1 .. - i[fk] fork E.(l,nf). The exclusive 

factor p(in lo) vanishes unless the quantities specified by in ··all 
. f . . f 

vanish, thus guaranteeing that the event f is in fact accessible by the. 

disassembling system characterized by i
0

• 

. ( 6) 

The .factorization (6} of the exclusive multi-fragment distribution p into 

inclusive one-fragment distributions is particularly convenient when one.seeks 

to generate a statistical .representation of p, i.e. a .sample {f} of 
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multi-fragment events which are statistically distributed in event space 

according to the probability density p(i
0

lf). To accomplish this task, one 

may proceed as follows. 

Each event f is considered as a sum of elementary one-fragment events, 

f = ~fk. To generate an event f, one first makes a random selection of the 

term f 1 on the basis of the· inclusive probability distribution p(i
0

!f1). 

Once f 1 has been selected~ the remaining part of the event is known to be 

characterized by the quantities i 1 = i
0

- i[f1]. The next term f 2 is 

subsequently selected on the basis of p(i 1 !f2), and the further reduced 

residual event can be characterized. This procedure is iterated until no 

residual system remains. [That this is guaranteed to happen at some point 

follows from the fact that only actually accessible states are constructed by 

this procedure: In eq. {5) the inclusive probability p is only nonvanishing 

if in fact the specified event f is part of an actually accessible event f, 

and thus f has an accessible counterpart such that f + f = f •. Therefore, the 

outlined procedure has unit efficiency (i.e. one need never abort the 

construction procedure and start over again).] In this way.a single event f 

is constructed. By employing the procedure repeatedly, a sample {f} of 

desired size can be generated. 

The procedure described above is a mathematically valid way of generating 

a representative sample of the exact many-fragment distribution p(i
0

lf). 

However, it requires the exact one-fragment inclusive distributions, which are 

cumbersome to cal'culate, particularly when several excitable fragment species 

are included. 

Some degree of appro~imation is therefore necessary. Fortunately, 

one-fragment distributions, which are the only ones required in the procedure, 

are much easier to approximate than more exclusive quantities. It is 

i 
" 
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method. The key lies in employing the grand canonical approximation 

separately for each of the inclusive factors in (6). The grand canonical 

approximation is accurate for one-fragment distributions as long as the 

fragment considered is only a small part of the system. This condition_is 

reasonably well fulfilled for most of the factors in the product (6), although 

it 'is iubstantially violated for the last fe~ factors. Below we de~cribe how 

this idea is implemented and discuss the quantitative validity of the 

approximation. 

The replacefuent of the exact inclusive probability ~(iklfk+l) by its 

grand canonical ~quivalent is carri~d out alorig the lines of refs. [1,2], 

except for a few important modifications designed to ensure that absolute 

.conservation laws are respected. The relevant partition function is given by 

where Tf = Af/2 - Zf is the isospin projection of the final state f. 

The three Lagrange multipliers Bk,~k,vk are determined by the 

constraints 

*Instead of the total CM ehergy Mkc2 = (E~- -P~c 2 ) 112, it is· 

often convenient to specify the available ene·rgy per nucleon ck - (Mkc2. 

- (Ak- ·Zk) mnc 2 - Zkmpc 2 )/~~ B, where B ~ 8 MeV is the 

average binding energy per nucleon.· 

(7) 

( 8) 
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( 9) 

As explained in refs. [1,2], ~a(B) is the intrinsic partition function for the 

species a, and the dimensionless parameter x expresses the disassembly volume 

. "t f 4n 3 A 1 n un 1 s o 3 r 
0 

k • 

In deriving the form of w~, nonrelativistic kinematics has been used 

for convenience. However, in order to ensure exact relativistic energy 

conservation, the temperature parameter in the maxwellian momentum 

distribution has been increased to 

( 10) 

where Tk = l/Bk is the ensemble temperature determined from (8). This 

construction guarantees that the average relativistic kinetic energy t = E -

Mc2 equals the prescribed value through second order in the small quantity 

T/Mc 2 ~ E/mc 2·at each stage in the fragmentation sequence; overall 

four-momentum conservation in each event is of course automatically ensured. 

(For more details see ref. [3].) 

In the partition function (7) we exclude events containing fragments 

larger than the actual source ik. This truncation guarantees that baryon 

number and charge are conserved although the relative multiplicity of large 

fragments will still be somewhat overestimated. [In this truncated grand 

canonical scheme fragment~ nearly as large as the source are still assumed to 

have a Poisson multiplicity distribution while in reality there can be at most 

one such fragment in each event.] 

.. 
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In order -to illustrate the accuracy of this approximation,. we display in 

fig. 1 the calculated mean. multiplicities of fragments with baryon number A, 

for a selected case having A
0 

= 40, Z
0 

= 20, E
0 

= 40 MeV. For comparison 

the figure includes the; grand canonical approximation "a.= A0w~. While 

not perfect, .the agreement is found to be satisfactory on the whole. 

Like .the fragment. size, the fragment kinetic energy is unbounded in the 

grand canonical approximation. Therefore, in order to ensure energy 

cons~r_xation, we truncate the maxwell ian momentum distribution at the 
.. t. ' ~; 

kinematical limit. Thus, when a source .with invariant mass Mk ejects .a 

fragment with mass M the corresponding maximum momentum pk is determined by 

where .the mass M' of the residue is calculated using a·binding of~ MeV. per 
. ' .. 

baryon. In order to leave the mean kinetic. energy unaffected by the 

( 11) . 

truncation, the temperature parameter is increased appropriately. While thi.S 

modification is s~all and inconsequential as long as th~ fragment is 

rel ati vel y sma 11, it become·s essenti a 1 towards the end of the fragmentation 

sequence. In particular, at the final stage, when the source splits into the 

last two fragments, the employed modification automatically yields the exact 

microcanonical momentum distribution. ·This limiting property greatly improves 

the accuracy of our method. 

In order to illustrate our method with regard to t~ekinetic energies, 

let us disregard for simplicity all binding effects so that only nucleons are 

produced. Since the fragments are generated sequentially in our method it is· 

possible to consider th~ energy distribution for the k'th nucleon generated. 

where k E (l,A ). For two samples of 1000 events corresponding to the total 
. 0 

disassembly of a system wit~ A
0 

= 40, Z
0 

= 20, E
0 

= 40 MeV, we display 
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in fig. 2 the mean kinetic energy Tk = <Ek - mc 2> and the associated 

dispersion as functions of the sequence number k. We note that, apart from 

the statistical fluctuations arising from the finite sample size (1000}, the 

mean kinetic energy does not depend on at which stage in the sequence the 

nucleon is generated. The average value of Tk is the. overall average 

kinetic energy, which of course is guaranteed to equal the specified value 

£
0 

= 40 MeV. 

The dispersions in Tk also exhibit statistical fluctuations around the 

appropriate value expected for a relativistic Boltzman gas of nucleons, as 

long as the respective sources are not too small. However, towards the end of 

the generation sequence (i.e. when k ~ A
0
), the smallness of the sources 

gives rise to somewhat too large fluctuations, as would be expected. This 

feature is reflected as an increase of the.kinetic energy dispersions. 

However, the effect is seen to be relatively modest, lifting the overall 

average dispersion from its grand canonical value of 31.5 MeV to around 32.6 

MeV. 

It is, of course, not easy to safely ascertain the quantitative accuracy· 

of our calculational approximation since the exact solution, the 

microcanonical distribution, is not available. However, provided that the 

disassembling system is not too small, a reasonably accurate approximation to 

the one-fragment inclusive quantities is provided by the grand canonical 

distribution. Since this latter distribution is obtained on the basis of the 

total system, while our calculation uses (truncated} grand canonical· 

distributions for successively smaller ~ystems, a good correspondence between 

the two is not~ priori guaranteed and need be tested explicitly. 

,, 
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The results discussed above, and similar analyses of other cases, lead us 

to conclude that the quantitative accuracy .of the calculated one-fragment 

distributions is in fact satisfactory. In the statistical model, there are no 

correlations between the different fragments, apart from those imposed by the 

conservation laws. The same is true in our approximation method. Therefore, 

we expect that the generated multi-fragment distributions are equally 

satisfactory. 

I~. conclusion then, we have develnped an approximate procedure for 

generating complete multi-fragment events within a statistical model for 
' 

nuclear disassembly. The method makes it possible to generate large samples 

(with,sJzes comparable· to the corresponding data) of theoretical events 

without ·prohibitive computational requirements. While- the method is rather 

general and hence of wide applicability, we especially expect ~t to be of 

value in the current exploration of nuclear collisions at medium and high 

energies. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear Physics 

of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 
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Figure Captions 

Fig. 1. The mean multiplicity of nuclear fragments with a specified baryon 

number A, for the disassemblY__~~--~ system characterized by A
0 

= 

40, Z
0 

= 20, e:
0 

= 40 MeV. The solid histogram is the result. of 

the present mode 1 while the dashed his to gram d i sp 1 ays the 

corresponding grand canonical approximation. The calculations 

include the nuclear levels described in ref. [2]. 

Fig. 2. Total disassembly of a system characterized by A
0 

= 40, Z
0 

= 20, 

e:
0 

= 40 MeV into nucleons. The mean kinetic energy <t> = <E -

mc2> and the associated dispersion crt are plotted as functions 

of the sequence number k (see text). The results for- two samples 

with 1000 events each are shown.·· The exact overall values of <t> 

and crt (as given by the grand canonical approximation) are 

indicated by the horizontal 1 ines while the arrow indicates the 

actual calculated overall crt. 
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