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Cé]cu]ation of Complete Multi-Fragment Events in a Statistical Mode]
E | for Nuclear Disassembly*
Jgrgen Randrup and.George Faif
s Nuclear Science Division
Lawrence Berkeley Laboratory
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Abstract

A quantitativeTy‘usefu1 approximation method is developed for generating

. compléfé mu]ti-fragment events in a statistical model for nuclear

disassembly. The method consists in factorizing the exclusive microcanonical
probability distribution into successively dependent one-fragment inclusive
distributions, each of which is approximated by its respective truncated grand

canonical equivalent.

*This work was supported.by the Director, Office of Energy Research, vaision
of Nuclear Physics of the Office of High Energy and-Ndc]ear_Physics of the
U.S. Department of Energy under Contract DE-AC03-76SF00098.
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In this Letter we report on the development of a préctica] method for
generating samples of multi-fragment distributions within tHe framework of a
statistic model for nuc]eér disassembly. -Nhi]e the method is quite general
and may have wide applicability, the réa]m of physics we_have in mind is that
of medium-energy nué]ear collisions. |

In such collisions a highly excifed transient system may be forﬁed and
subsequently disaésemb]e into many nuclear fragments. This problem has been
addressed in refs. [1-2], which.study the one-fragment .inclusive distributions
within a statistical model. Recent deve]opments'in detection techﬁique demand
‘ that the exclusive distributions be considered, and it is of interest to
calculate complete events on the basis of a sfatistica] model. This amounts
to assuming that a]i-mu1ti-fragmenf states compatible with the overall
conservation laws ake équa11y pfobablé. [In the nuc]ear.prpblem it'may be
necessary to divide the collision system (e.g. into participants and
spéctators) before invoking stafisticé (see ref. [3]) buf this need not
concern us here.] The ﬁraéiica1 task ié,thén to génerate a sémp]e.of
multi-fragment éventsvdiétributed statistically in accordance with the
appropriate exclusive microcanonical distfibution'function. This undertaking
is rather cumbersome,-particu1ar1y when.many different fragment species are
}inc1uded. It is therefore desirable to devefop a suitable approximate
method. Below we formulate the mafhematica] task, describe our approximation,
'and discuss its validity.

In an {deal exclusive measurement complete 1ﬁf0rmation is obtained on all
the fragments in the fina] state. A given event, say f,.is then characterized

o Here No. is the multiplicity of

I iy
by the quantities P2 i, € (1in)}

fragments of the particular species a =,n,p,d,t,...b These N, fragments are

labeled (arbitrarily) by iy E"(1,n0L) and their four-momenta are denoted

-
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P;@ = (E;Q,E;“). Because of the identity of the'fragmentsAwithin a
given species the actual labeling is without physical significance, i.e. f is
invariant'under permutafions of the labels ﬁ&, The total fragment
multiplicity of fhe event f is given by ne = g Nye

The set of all such events, the event space ¥ = {f}, has certain

a1gebraic‘properties, which are of great notationa1 convenience. For example,
any two events may be added, f + f = f. By this we mean that ﬁu +’ﬁa = nd Yo
€ (1,i)}u o, i, € (1,n)} =

and, furthermore, thatf{P& » iy

{Péq,'ia G-(],nd)} Yo. We note that the null event, f = 0, which has Ny = o'va,
is thevneutra]‘e1ement under addition. The évents with unit total multiplicity
are»e]emgntary objects in_the event space: any event f can be deéomposed in
terms of one-fragment evgnts: f = ka where k»=,1,...7ﬁf) and nfk = 1V k. It

is also convenient that some events can be compared: we shall write f <f (or
£ >f) iff 3F: f + F = f, i.e. the event f encompasses the event f.

In the statistical»ﬁode1, the disassembly depends on1y'on the conserved
quantities of the system, which in the present case are the tota] baryon number'
Ao’ the total charge humBér Zb,vand the total four—mohentum P0 = (36,E6). The
disassembling system (which shall often be referred to as the source) is thus
characterized by the quantities AdZoPo, denoted collectively by io féf
notational convenience,vand we'seék the probability distribution p(io|f) for
arriving at various final states f. The statistical assumption is that all

final states compatible with the conservation laws are équa1Ty probable. Hence
pligIf) = ;ig)™" 8y - 4F1) | M

where i[f] = AfoPf are the values of the conserved quantities for the
specified final state f. The norma]izétion constant is determined from the

condftion that p be normalized,



JGi,) = z s(i, - ilf}) | (2)
We note that the évent space ¥ consists of disjoint parts, F=y 3% , where
_ 0
3} = {f| i[f] = 10} is the part accessible for the specified value io‘
o - ‘ v

The exclusive distribution p pertains to the situation where the
specification of the final state is comb]ete,vcorresponding to an exclusive
measurement. When only partial specification of the final state is made, as
is most often the case, the relevant quantity is the corresponding inclusive
disfribution p. This quantity can be obtained from the exclusive distribution
by integrating over the unobserved quantities. In particu]ar,vwheh the
partial measurement‘ié'SUCh that_complefe'information is obtained for some”ofy
the fragments, the 1nc1us{ve disfribution‘ié given by

Biolf) =2 ntiglty N

Here the observed partial event is denotéd by ?‘and the summation is over all
final states f that encompass the specified observation f. It is simple to
express the inclusive distribution in terms of the phase space integrals (2):

p(iol? +F)

«>
W e~
e
o
-+
~—
1}

D
f
=307 0l - A0 - 4IF) o @

= )7 i, - iFD)

o’

i.e. the. inclusive probabi]ity for the partial event f is equal to the
corresponding complementary phase space integral 5(10 - i[f]) divided by the
total phase space integral J{i ).

By cdmbinatidn of (2) and (4) it is possible to factorize p(iolf) into

simpler guantities:
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i) sl - iF1 - A7)

o
—
-
-
. -
~—
I

= g(i)7! i, - 0FD) 9G, - AN (G, - AIFD) - dFD) (5)

~

B, 19) pliy - 9LF1 )

where f + ?'élf. This relation expresses the fact that the exclusive.
probability for obtaining.the'event f is equal to the-inc]usiVe probability
for obtaining a part of the event, f <f, times the exclusive probability for
obtaining:thg_comp]eméntary event = f - f, given that f has already been
obtained. -

- By repeated use of the above relation (5), it is possible to factorize
the?éxéTdsteaprobability p into inclusive probabilities. In particular, by
decomposing  the specified finaT multi-fragment event % in terms pf elemenary
one-ffagment eventS’fk, p(iolf) can be factorized into one-frégment

inclusive distributions:

nf ’ R i ‘"f .
Uil = 2 £ = Bliglf) plil 2 £y = oo
e . |
= T Bi,_; If) = p(i, 10) - (6)
k=1 f

Here we have;defined i E'ﬁk_]ﬁ— i[fk] for k Gé(l,nf)ﬂ The exclusive
factor'p(ihfIO) vanishes gﬁ1ess the quantities_specified by inf~a11
vanish, thus guaranteeing that the event f is in fact accessible by the
'disaséembling system charécterized by io. |

The factorization (6).of the exclusive multi-fragment distributioh_p into
inclusive one-fragment distributiohs is particularly convenfent when one seeks

to genérate a statistical representation of p, i.e. a\samp]e {f} of



-6-
multi-fragment events which are statisticai]y distributed in event space
according to the probability density p(iolf). To accomplish'this task, one
may proceed as follows.

Each event f is considered as a sum of elementary one-fragment events,
f = ka. To generate an event f, one firét makes a random sélection of the .
term f] on the basis of the inclusive probabi]ity distribution 6(i0|f1). ‘
Once f1 has been selected, the remaining part of the‘eVEnt is known to be

characterized by the quantities i, = i - i[f1]. The next term f, is

0
subSequent]y selected on the basis of 6(i]|f2), and the further reduced
residual event caﬁ be characterized. This procedure is iterated until no
residual system remains. [That this is guaranteed to happen at some point
fo]]bws from the fact that only actuaiiy accessible states are constructed by
this procedure: 1In eq. (5) the inclusive probability p is only nonvanishing.
if in fact the specified event f is part of an actually accessible event f,
‘and thus ¥ has an accessible counterpart.such that f + ¥ = f. Therefore, the
outlined procedure has unit efficiency (i.e. one néed never abort the
cohstruétion procedure andvstart over again).] 1In this way.a singie event f
is.donstructed; By employing the procedure repeatedly, a sample {f} of
desired size can be generated.

~ The procedure described above is a mathematicaiiy valid Way of generating
a representative sample of the exact many-fragment distribution p(iolf).
.However, it requires the exact one-fragment inclusive distributions, which are s
cumbersome to calculate, particularly when several excitabie-fragmént species
ate included. |

Some degrée of approximation is theréfofe necessary. Fortunately,

one-fragment distributions, which are the only ones réquired in the procedure,

are much easier to approximate than more exclusive quantities. It is
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— ——— —thereforepossible to turn the mathematical procedure into a practical
method. The key lies in employing the grand canonical appro*imation
separately for each of the inclusive faqtors in (6). The grand canonical

“ appfoximat{on is accurate for one-fragmént«distributions as long as the
fragment considered is only a small part of the system. This condition_is
reaSonabiy well fulfilled for most of the factors in the product (6), although'
it “is substantially violated for the last few factors. Below we describe how
this idea is implemented and discués the quantitative validity of the
approximation. ” ‘

Thé replacement of the exact inclhsive probability ﬁ(ik]fk+]) by its
grand canonic&l”équiva]enf is carried out along thelifnes of refs. [1;2],
except for a few importaht modifications designed to énsure that absolute
.conservation laws are reépected. - The re]eygnt partitjon function is given by

Z, = ? exp'{-ﬁk(Ef - e - v Te)} | (7)

where Tf = Af/Z - Zf is the isospin proaect1on of the f1na1 state f.

The three Lagrange multipliers Bk’“k’vk are determlned by the

constra1nts |

o " -

_éAf% = Ak, <Zf> =vZ

*
with AkaEk k‘ ) It is'convenient to write

2 _ p2:2)1/2

*Instead of the total CM ehergy Mk.c2 = (Ek , it is-

often convenient to specify the available energy per nucleon € E'(Mkczl
o 2 . 2\ - , ~ .
- (A =2 ) mc® - Z,moc )/Ak- B, where B =~ 8 MeV is the

average binding energy per’nucleon.'



SLn.Zk _Ak %ma

. 2_
g 3 [E™, /2 By (M1 AV T
o’ "Gy "€ S ' (9)

M2 X3 "o\ 2

o h™By
As explained in refs. [1,2], ;a(B) is the intrinsic partition function for the
species o, and the dimensionless parameter x expresses the disassembly volume
. . 4m 3
in units of 3 Ak' | |

In deriving the form of’wz, nonrelativistic kinematics has been used

for convenience. Hdwever,_in order to ensure exact relativistic energy

conservation, the temperature parameter in the maxwellian momentum

distribution has been increased to

5 Tk 39 %k 3 |
T, = (1 +s—(1+ ) (10)
k- T ?_ZMOLC | 72_—2%9 | | |

where T = 1/Bk is the ensemble temperature determined from (8). This
construction-guaraﬁfeés that the average relativistic kinetic energy t = E -
Mc2 equals the prescribed value thfough second order in the small quantity

T/Mc2 ~ e/mc2

“at eachvstage in the.fragmentation sequencé; overall
four-momentum conservétibn'in each evehtlis of course automatica]]y ensured.
(For more details see‘ref.1[3].)

In the partition function (7) we exclude events containing fragments
1argér than the actual source ik. This truncation guarantees that baryon
number and charge'are conserved although the‘keiative multiplicity of large
fragments will still be somewhat oVerestimated. [In this truncated grand
canonical scheme fragments nearly as large as the source are still assumed to

have a Poisson nu]tip]jcity distribution while in reality there cén be at most

one such fragment in each event.]

-
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In order to illustrate the accuracy of this approx1mat1on we d1sp1ay in
fig. 1 the ca1cu1ated mean.multiplicities of fragments with baryon number A,
for a selected case having A0 = 40,..ZO = 20,.e0 = 40 MeV. - For comparison .
the figure jnc]udes‘the;grand canonical approximation Ny = Aowg;' While
not perfect .the agreement is found to be satisfactory on the whole.

L1ke the fragment s1ze, the fragment kinetic energy is unbounded in the
grand canon1ca1 approximation. Therefore, in order to ensure energy -
conservat1on ~we truncate the maxwe111an momentum distribution at the
k1nemat1ca1 11m1t Thus, when a source w1th invariant mass Mk ejects a
fragment w1th mass M the correspond1ng maximum momentum Py is determined by '

2.2

e f(Mk MMM+ M- M) (M - M M')(Mk - M- M2

aM, - ()

where the mass M' of the res1due 1s ca]cu]ated using a b1nd1ng of~8 MeV per
‘ baryon In order to 1eave the mean k1net1c energy unaffected by the
truncat1on the temperature parameter is increased ‘appropriately. While th1s B
mod1f1cat10n is small and 1nconsequent1a1 as long as the fragment is
relat1ve1y small, it becomes essential towards the end of the fragmentation
sequence. In particu]ar,‘at the final stage, when the source sp]itsafnto the -
last two fragments, the empioyed modification automatically yie]ds_the'exact
microcanonica1 momentum distribution.vlThis limiting property great}y improves
the accuracy of our method 7 _ d

In order to 111ustrate our method w1th regard to the k1net1c energies, o
1et us d1sregard for s1mp11c1ty all b1nd1ng effects so that only nuc]eons are
produced S1nce the fragments are generated sequent1a1]y in our method 1t is -
poss1b1e to cons1der the energy distribution for the k'th nuc]eon generated .
where k € (1, A ). For two samp]es of 1000 events correspondlng to the total

d1sassemb1y of a system w1th A 40, Z0 = 20, € = 40 MeV, we display
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2. and the associated

in fig. 2 the meén kinetic energy Tk = <Ek - me
dispérsion as fﬁnctions of the sequence number k. We note thét, apart from
the statistical fluctuations arising from the finite sample size (1000), thé ‘
mean_kinetic.energy does not depend on at which stage in the sequence the
nucleon is generated. The average'value of Tk is the.overall average o >
kinetic energy, which of course is guaranteéd to equal the sbecifiedvvalue
e, = 40 MeV. | | ' |

The dispersions in Tk a];o exhibit statistical fluctuations around’the
appropriate value expécted for a relativistjc Boltzman}gas-of nucleons, as
long as the respéctive sourées are not too‘$ma1}. However, towafds the end 6f
‘the generation sequence (i.e. when k Q=Ao), the smailhess of the sources
gives rise to somewhat too large f1uctua£ions, as would be expected. This
- feature is reflectedvas an increase of the kinetic energy digpersions.
However, the effect is seen to be relatively modest, 1ifting the bVeral]
average dispersion from its grénd canoniéa] value of 31.5 MeV to around 32.6
MeV. |

It is, of course, not easy to safely ascertain the quantitatfve accuracy-
of our calculational approximation since the exact sd]ution, the
microcanonical distribution, is not avai]ab]é. Howéver, proVided that tﬁe
disassembling system is not too small, a keaéonab]y accurate approximation to
the one-fragment inclusive quantities is provided by the grand canonical
distribution. Since this latter distributioh is obtained on the basis of the N
total syétem, Wh11é our éa]cu]ation uSes (tfuncated) grand canonical’
distributions for succeésively smaller systems, a good correspondence between

the two is hbt_g priori’guaranteed and need be tested explicitly.
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The results discussed above, and similar analyses of other cases, ]eédius
to conclude that the quantitative accuracy of ‘the calculated one-fragment
distributions is in fact satisfactory. In the statistical model, there are no
corre]atfons between .the different fragments, apart from those imposed by the
conéérvation_]aws, The samé iS'true}in.oufJapproximation method. fherefore,
we expecf'that the generated multi-fragment distributions are equally
satisfactory. o

In‘conclusion_then,.we have developed an approximate procedure for -
generating comp]éteVmu1ti-fragment events within a statistical model for
nuc1ear\dj$assemb1y. 'The,method makes‘it possible to generate 1aFge samples
(with;sizeszcomparabTe-to‘the corfesponding data):ofAtheoretical eventé
without?prOhibitive‘compﬁfétiona1 requirements. While the method'is rather
general and hence df widé.app11cab111ty,ﬁwe especiai1y expect it to be of
va]ue'in thercurrent.expidration~of-nuciear collisions at medium and high
energies. ) | )

This work was supporfed by the Director, Office of Energy Research,
Division of Nuciear Physics of the Office of High Energy and Nuclear Physics

of the U.S. Department of Energy under Contract DE-AC03-76SF00098.
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Figure Captions

Fig. 1.

Fig. 2.

The mean multiplicity of nuclear fragments with é specified baryon
number A, for the disassemblxvgf"q_system characterized by Ao =
40, ZO = 20,'::0 =:40 MeV. The solid histogram is the result. of
the present model while tHe dashed histogram displays the
corresponding drand canonical approximation. The calculations
include the nuclear levels described in ref. [2].

Tota1 disassembly of a system characterized by A0 =40, Z_ = 20,

0

€ = 40 MeV into nucleons. The mean kinetic energy <t> = <t -

mc2> and the associated dispersion o, are plotted as functions

- of the sequence number k (see text). The results for. two samples

with 1000 events each are shown. - The exact overall values of <t>
and Oy (as given by the grand canonical approximation) are

indicated by the horizontal lines while the arrow indicates the

actual calculated overall Oy -
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