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ABSTRACT 

Partially saturated soil materials undergo consolidation, heave, 

collapse and failure due to changes in pore fluid pressure. The pre

cise nature of the mechanics of such deformations is only poorly under

stood at present. Experimental evidence has shown that the volume 

change behavior of unsaturated soils cannot be adequately explained 

through changes in effective stress, even when a saturation dependent 

parameter is incorporated into the definition of effective stress. 

Two independent stress-state variables, involving combinations of total 

stress, pore air pressure and pore water pressure, are required to 

characterize volume changes and saturation changes in the partially 

saturated state. In general, two coupled conservation equations, one 

for the water-phase and the other for the air-phase need to be solved 

in order to predict the deformation behavior of unsaturated soils. 

If directional displacements and changes in the stress-field are 

required, then the conservation equations are to be integrated with an 

additional set of multi-dimensional force balance equations. For lack 

of a sufficient understanding of elastic constants such as Poisson's 

Ratio and Lair.e's constants as applied to unsaturated soils, little has 
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been achieved so far in integrating the conservation equations and the 

force balance equations. For the long-term modeling of consolidation 

with respect to Uranium mill tailings, it may be acceptable and econom

ical to solve a single conservation equation for water, assuming that 

the air-phase is continuous and is at atmospheric pressure everywhere 

in the soil. The greatest challenge to modeling consolidation in the 

unsaturated zone at the present time is to develop enough experimental 

data defining the variation of void ratio and saturation with reference 

to the two chosen stress-state variables. 
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INTRODUCTION 

The tailings from Uranium mills are often disposed off in the form 

of slurries into lined or unlined ponds. After emplacement, water 

drains from the slurry material, soon causing the material to 

desaturate and become partially saturated. Drainage continues for 

prolonged periods of time in the partially saturated state, until the 

hydrological regime within the tailings comes to a dynamic equilibrium 

with the local climatic conditions and the local ground water regime. 

As drainage proceeds, the tailings material successively goes 

through liquid, plastic, semisolid and solid states before attaining a 

relatively stable configuration. During this transition, the tailings 

may undergo significant deformation in the form of consolidation, heave 

or even failure. There is reason to believe that much of this deforma

tion may occur while the material is in a state of partial saturation. 

Apart from the fact that the deformation of the piles is of immediate 

concern for safe engineering management, it is of significance that 

deformation strongly controls permeability variations within the tail

ings material. Thus the distribution of fluid velocities, which is 

critical to the modeling of chemical transport, is strongly influenced 

by the dynamics of the consolidation process. The motivation for 

realistically simulating the consolidation process in the unsaturated 

zone stems both from a purely engineering view point of tailings 

management and the phenomenological view point of simulating chemical 

transport within the tailings. 
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The purpose of this paper is to review the current status of know

ledge in the area of modeling consolidation in the unsaturated zone. 

Although the flow of water in the.soil zone close to the atmospheric 

boundary may often be influenced by temperature changes and, in the 

case of Uranium mill tailings, water movement may also be influenced by 

chemical potentials, we shall restrict our attention to isothermal 

fluid flow. We shall be concerned essentially with an unconsolidated 

porous material with coexisting water and air phases. 

THE PROBLEM 

We are concerned with a porous medium, varying in grain size from 

that of fine silt or clay to that of sand, which is emplaced in the 

pond in the form of a slurry. Beginning with this initial condition, 

the material undergoes drainage, mainly dictated by gravity and under

goes progressive desaturation. In addition, the material may also lose 

water to the atmosphere due to evaporation at the surface or may gain 

water from rainfall. In an active mill tailing pond, new tailings 

material is built up on older material as the pond fills up. The 

weight of the newly added material causes the pore water pressure and 

the pore air pressure in the deeper materials to rise. The pressure 

rise, in turn, modifies the existing fluid flow dynamics. 

The overall problem is one of ti.ansient fluid flow in a variably 

saturated, heterogeneous, deformable porous medium, subjected to 

periodic incremental boundary loads during the active phase of tailings 

emplacement. At its upper boundary, the system interacts with the 
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atmosphere, through any vegetative or other cover material that may 

have been placed on the tailings. The downward drainage is ultimately 

dictated by the disposition of the water liable of the local ground 

water system. The drainage-deformation phenomenon is characterized by 

the presence and movement of two fluid phases, water and air, in the 

presence of a discrete, particulate, solid phase constituted by the 

grains of the porous medium. 

THE GOVERNING EQUATIONS 

The overall problem of isothermal consolidation of a variably 

saturated soil involves the integration of two fluid flow equations 

(the fluids being water and air) and a stress strain equation to handle 

multidimensional deformation. The fluid pressures, which are the 

independent variables in the flow equations, are controlled, among 

other factors, by the compressibility of the porous material. The 

stress-strain equation, on the other hand, involves displacements and 

stresses in different directions. As has been well established through 

the work of Biot (1941) and others, the scalar volumetric compressi

bility governing the fluid flow equations and the vectorial displace

ments of the stress strain equation can be suitably coupled through the 

use of fundamental elastic constants such as Lame's constants. While 

coupled equations based on Biot's theory have been extensively used to 

simulate muiti-dimensional deformation of saturated soils, they have 

not so far been extended to variably saturated soils. The reason for 

this non-extension is that the deformation properties of partially 
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saturated soils are extremely difficult to measure. At the present 

time, some successful measurements of volume change properties have 

been reported in the literature under some simple boundary conditions. 

However, little is known about the elastic parameters such as Lame's 

constants as applied to partially saturated soils or about the depend

ence of such parameters on the saturation properties. The best that 

has been achieved in the literature is to solve the flow equations in 

conjunction with the scalar deformation phenomenon, namely, volume 

change. The scalar parameter can either correspond to isotropic 

compression loading, or to confined compression (oedometer) loading. 

Considering the fact that the movement of water in the partially 

saturated zone tends to be vertical, especially within the core of the 

tailings, the one-dimensional oedometer test, which is the simpler of 

the two, can be considered to be reasonably representative of the field 

condition. Under the circumstances, we shall not any more be concerned 

with the coupling of the stress-strain equation with the flow equation. 

A brief history 

Interest in the deformation of unsaturated soils began establish

ing itself in the geotechnical engineering field during the late 1950's. 

Bishop (1959) was one of the earliest to recognize that the deformation 

theory of the saturated-zone could be extended, with suitable modifica

tions , to the unsaturated zone. As a first step, he incorporated the 

air-phase pressure into Terzaghi's effective stress relation and intro

duced a saturation-dependent parameter x to account for the two-phase 
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conditions prevalent under variable saturation. However, it was soon 

learned by many workers through experimental evidence that deformation 

in the unsaturated zone cannot be accurately related to a single varia

ble such as the effective stress. Indeed, Bishop and Blight (1963) 

suggested that void ratio should be treated as a function of two varia

bles (o-pa and P a~P w) rather than just effective stress. Matyas 

and Sadhakrishna (1968) provided some of the earliest results express

ing void ratio and saturation to water as functions of o-pa and 

p a"P w. Fredlund and Morgenstern (1976) carried out a detailed 

analysis of the stress-state variables for the unsaturated soil, treat

ing it as a four phase system and showed that the combination, [o-pa» 

p -pw] was indeed an acceptable set of fundamental stress-state 

variables for the unsaturated soil, They also provided experimental 

results to show that the functional relation between void ratio and the 

two stress-state variables was unique, at least locally. At the 

present time there is enough evidence available to show that the two-

stress-state variable model reasonably accounts for the known behavior 

of unsaturated soil volume changes, including collapse upon wetting. 

For a more complete treatment of the literature on this : -pic, the 

reader is referred to Fredlund and Morgenstern (1976) and Lloret and 

Alonso (1980). 

Interest in modeling deformation in the unsaturated zone did not 

commence until the mid-1970's. Narasirahan and Witherspoon (1977) 

incorporated Bishop's x parameter into a numerical model for three 

dimensional fluid flow and one-dimensional consolidation. Fredlund and 



Hasan (1979) developed a one-dimensional model for the deformable 

unsaturated zone in which they solved two mass conservation equations, 

ane for water and the other for air. In this model they also incor

porated the generation of pore water pressure and pore air pressure due 

to undrained response to external loads. LIoret and Alonso (1980) 

developed a finite element one dimensional model to solve almost the 

same set of equations as considered by Fredlund and Hasan, except that 

they investigated the role of air-dissolution in the water and allowed 

for the non-linear relation between void ratio and saturation on the 

one hand and the stress state variables on the other. 

The Two-Phase Flow Approach 

Consider a sufficiently small volume element of the porous medium 

over which we can realistically define average values of intensive 

physical quantities such as porosity, saturation, density, compressi

bility, fluid pressure, fluid potential and so on. Let this volume 

element be enclosed by the surface T, We shall define this element to 

contain a constant volume of solids, V g. Under transient flow condi

tions in the partially saturated state, we need to write two conserva

tion equations, one for the mass of water and the other, for the mass 

of air accumulating in the element, as has been suggested by Fredlund 

and Hasan (1979) and Lloret and Alonso (1980): 

- / 
•> * 3 M 

p rq -n dr = -*-̂  CI) 
w, r'w 3t 
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Air 

" f pa,r«a •£<"••/" P a > r( v S dr) H = £ . (2) 
•'r •> 

where p w j« and P a j* denote, respectively, the densities of water 

and air at the interface dr, q w and q a are the Darcy velocities of 

water and air, My. and M a are the masses of water and air present in 

the volume element and H is Henry's solubility coefficient. The inte

gral on the left haiid side of (1) and the first integral on the left 

hand side of (2) denote the rates of accumulation of water and air due 

to fluid flow in and out of the volume element. The second integral on 

the left hand side of (2) denotes the mass of dissolved air convected 

into the volume element by the flowing water. 

The mass of water M„ can be expressed by the relation: 

M = V e S p (3) 
w s w Kw 

where e is void ratio, and S w is water saturation. The mass of air 

in the element consists of two components, free air and dissolved air. 

As suggested by Lloret and Alonso (1980), one may express the total 

mass of air in the element by the relation, 

Ma " Vs e Pa [Cl-Bw) + HSJ (4) 

In equation (4) we recognize that since only two fluid phases are 

present, S a = (1-SW) where S a is the saturation of air. 
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In order to make th*s governing equations (1) and (2) to be of 

practical utility, we will use, as dependent variables, the easily 

measured physical quantities, p w and p a. We now have to express 

each of the quantities on the right hand side of (3) and (4) as 

functions of p w and p a. Of fhese, V s and H are constants and 

need no further consideration. As we shall see subsequently, the 

relation of the fluid densities to fluid pressures is far simpler 

than that of either of the other two quantities, void ratio and satura

tion. Hence, to consider the simplest case first, we can write down 

the dependence nf the densities of the fluids on their respective 

pressures. 

Under isothermal conditions, water has a relatively const;nl 

compressibility and its equation of state is given by, 

Pw| - p„,0 e x P c „ (P„-P W ) 0) ( 5 ) 

l pw 

where p w o is t n e density at pressure p w Q and c w is the 

compressibility of water. For air, one may use the Gas law 

(Fredlund, 1976) and writ , 

1 (6) 

where R^ is an average value of the Gas Content for moist air and T 

is absolute temperature. 

Assuming V g is constant in (3) and (4), we now have to consider 

the dependence of void ratio, e, and water saturation, Sw> on the 

fluid pressures, p w and p a. HistoricaLiy, the dependence of void 
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ratio on fluid pressure in fully saturated soils has been a topic of 

great practical importance in the field of soil mechanics. The now 

widely used concept of effective stress was proposed nearly sixty years 

ago by Terzaghi for saturated soils. According to this concept, e is a 

function ';f both the total stress and the pore water rressure. For a 

•porous material with incompressible solid grains, the effective stress 

relation is 

a' - a - p w (7) 

where a is the total stress and a* is the effective stress. For 

oedoraeter-type loading one may treat o and o* as vertical stresses. 

while for an isotropic loading, o tnd o' may be treated as ratcm princi

pal stresses. For saturated materials there is enough experimental 

justification to treat e as a unique function of effective stress, 

although some path-dependence may be involved (in the form of differ

ences between virgin compression and rebound). The functional depen

dence between e and o' for a soil is given in Fig. 1 (from Lambe and 

Whitman, 1969). If we consider that the total stress over the element 

doed not change with time, the void ratio for that element is purely a 

function of p w-

The dependence of water saturation on (iw has been the subject 

study by the soil physicists nearly a century. "^nerally assuming that 

the soil matrix is rigid, and neglecting temperature effects, there is 

sufficient experimental justification to consider that S w is a 

function of the pressure of the water phase. Thij relation coo is 

characterized by strong path dependence PLS shown in Fig- 2. 
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Fig. 1. Experimentally observed functional dependence between void 

ratio and effective stress (after Lambe and Whitman, 1969). 
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Scanning curve represents the expected path when the 

direction of saturation is reversed (after Liakopoulos, 

1965). 
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Interest in the analysis of deformation in partially saturated 

soils developed commenced in the late 1950*8 with the work of Bishop 

(1959), and Aitchison and Bishop (1960). Drawing upon the existing 

theory for saturated materials, these authors first attempted to extend 

the concept of effective stress to the zone of partial saturation. They 

proposed that effective stress is equal to total stress less a weighted 

sum of the p w and p a. Thus, 

ff' * 0 - [x P w + <1-X)pa] 

* 0 - p a + x(pa-pj (8) 

with Bishop's weighting parameter x being strongly dependent on satura

tion. Larabe and Whitman (1969) interpret x a s a normalized area of 

water contact suggesting that x is positive and varies from zero to 1. 

A positive X implies that an increase in effective stress causes ? 

decrease in bulk volume and vice versa. However, subsequent experi

mental work by many workers (for detailed discussions see, Fredlund, 

1979 and Lloret and Alonso, 1980) showed that in certain soils with an 

unstable structure, a decrease in effective stress due to wetting (an 

increase in p w) can cause a decrease in volume due to pore collapse, 

provided that the total stress is sufficiently high. This indicated 

that the effective stress, which according to Bishop and Blight C1963) 

is, "that function of the total stress and pore pressure which controls 

the mechanical effects of a change in stress, such as volume change," 

is a function of total stress in addition to the fluid-phase stress 

differential, p a"P w- Thus, the effective stress relation (8) is not 

adequate to describe the volume change behavior of partially saturated 
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soils. In a partially saturated soil, not only does the water pressure 

act over progressively decreasing solid surface area with decreasing 

saturation, but also the skeletal stress field is modified by capillary 

pressure forces acting radially inward towards the center of curved 

menisci. Indeed, the term (pa"Pw) occurring in (8) is the capillary 

pressure differential between the non-wetting phase (air) and the 

wetting phase (water) across the meniscus. Following an early sugges

tion by Bishop and Blight (1963) and the work of Matyas and Radhakrishna 

(1968), Fredlund and Morgenstern (1976) analyzed constitutive relations 

for unsaturated soils and showed on the basis of semi-empirical grounds 

that both e and S w have to be treated as functions of two independent 

stress-state variables. After examining three such acceptable pairs, 

Fredlund (1979) suggests that the combination (o-pa) and (p a~p w), 

originally used by Matyas and Radhakrishna as the most advantageous 

combination. 

Thus, referring back to (3) and (4), both e and S w are functions 

of two variables, 

e = e (a-pa, p a-p w) (9) 

Sw = Sw (a"Pa> Pa"PW) ( 1 0 ) 

We now introduce the terra "capillary pressure," p c, which is the 

pressure differential that exists across the meniscus between the non-

wetting phase, air, and the wetting phase, water, and is always posi-

t ive. It corresponds to the synonymous terras "tnatric suction", matric 

tension", and "moisture suction" commonly used in the soil physics 

literature. While p c has units of pressure, the other three terms 
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are usually defined in terms of head of water with reference to 

atmospheric pressure. Thus, 

cm 

Figure 3, from Matyas and Radhakrishna (1968), shows the surfaces 

of variation of porosity and saturation in relation to the two 

independent state variables, o-p a and p a-p w. 

In view of the aforesaid considerations, we may now proceed to 

express that time rates of change of M„ and M a over the vol'ime 

element in terms of the fluid pressures. 

First, consider the time derivative of M„ from (3), 

3M. 
at TT ' 17 (v. e s „ P„ 

as ~\ 
PS If- + p e ̂  + eS 3 p w 
p tf 3t w dt w ~ I 

Now consider 3e/3t in view of (9), 

3e 
3t 

, 3(o-p ) , 3p de ra de rc 
3(o-p ) 3t + 3p 3t 

(12) 

(13) 

Assuming that total stress remains constant over dt, 

3e 
Si

de 
3p 3(o-p ) 

In a s i m i l a r fashion, 

as 
w 

at 

3S 3S 

3 P Hc-p ) 

3p , 3p *a 3e r w 
Tit ~5p 3T 

3p 3S 3p 
r a w w 

Jt Tlp~ ~Ht 

(14) 

(15) 



- 1 7 -

•^Wwrf 

10*N/m* 

[ OtgiMOlMOicMwreg, 

*•*-. 1 0 5 N/m 1 

10*N/m* 

Fig . 3 . V a r i a t i o n of p o r o s i t y (A) and s a t u r a t i o n (B) as a func t ion of 

a - p a and P a " P w (from Matyas and Radhakr ishna , 1968). 
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And, from the equation of state for watnr, (5), 

3p 3p 3p 3p 
w ^ w vw __ *w 

3t dp 3t 
rt.T 

(16) 

Combining (13), (14), and (IS), we now have, 

3M 3p 3p 
~3t * V3 Pw Al ~St + *2 ~5F (17) 

where, 

Al * Sw K " *%) + e K " *%) 
S m» + e m : + e S c w 2 2 w w 

and, in w*iich, 

' T(a-p ) , p < at.ra. press. 3e 

0 , p > atm. press. rw — * 

Tp-> "„ 

3e 

, p < atra. press 

*&- ' p w - a t m - p r e s s -

3S 
Uc-P ) ' V < atra- p r e s s- as 

— - , pw < atra. press. 
c 

0 , p 2; atm. press. 0 , p _>_ atra. press. 
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Similarly, 

where, 

and 

3M T SP 9p 1 

A3 = a-S w)[^- r a| +_^]-e[ m»- m«] 

A 4 = ° " V m
2 " e m 2 

The Equation of Motion 

An important feature of the unsaturated zone is the strong influ

ence of the phase saturations on fluid transport. We will assume that 

both air and water move within the soil in accordance with Darcy's Law, 

subject to the modification of the hydraulic conductivity term to 

include relative permeability effects. Thus: 

+ k k 
a - - — - ^ (p„ g Vz + 7p ) (19) 

thlS. vp (20) 

where k is intrinsic permeability, k r w and k r a are relative 

permeabilities with reference to the water and air phases, u w and 

p a are viscosities of water and air and z is elevation above datum. 

In (20) the gravitational effects in regard to the air-phase has been 

omitted. 
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In a deforraable, partially saturated soil k is a function of the 

geometry of the porous medium, while k r is a function of the phase 

saturation. For saturated materials there is enough experimental 

evidence to suggest that log k is linearly related to void ratio (Lambe 

and Whitman, 1969). This leads to the exponential expression, 

k - *0 e,P [i2gp] (21) 
where k 0 is the permeability at the reference void ratio e Q and 

Cfc i& the slope of the best-fitting straight line on the e versus log 

k plot. No reliable data is available to date as to how (21) may be 

extended to unsaturated soils. 

In a similar fashion, there is sufficient experimental evidence 

to show that the relative permeabilities to the wetting and the non-

wetting phases are non-linearly related to saturation. Figure 4 from: 

Corey (1977) is a schematic representation of the dependence of k r on 

saturation. In this figure S r denotes residual saturation of the 

wetting phase while Sjg denotes the critical condition at which the 

non-wetting phase tends to form disconnected bubbles within the 

wetting; that is, ̂  corresponds to the condition at which p w 

equals the air-entry pressure. 

Many workers have proposed semi-empirical relationships for the 

dependence of the relative permeabilities on saturation. Brooks auJ 

Corey (1964) proposed an equation of the following form for the wetting 

phase relative permeability: 

k = S E (22) 
rw e 
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Fig. ". Sketch of relative permeabilities to the wetting and the 

non-wetting phases (after Corey, 1977). 
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where S e is the effective saturation defined as, 

The exponent e varies from 3 to 4, as proposed by different 

workers (see Corey (1964)). According to Corey, this range is tywical 

for soil materials as well as porous rocks. For highly developed 

structures, e may exceed a value of 4. 

It is very well known that the relative permeability curves are 

strongly subject to hysteresis. Although the phenomenon of hysteresis 

is a topic of basic interest (e.g., Mualem, 1976), its incorporation 

into computational models for engineering purposes is far from a 

reality; the data required and the computational effort needed to 

implement hysteresis are too large to be economical. Under the 

circumstances, one simply restricts computational models to 

unidirectional changes in saturation; that is, one either considers a 

desaturating medium or a resaturating medium. 

At the present time no reliable data is available on the relative 

permeability characteristics of a porous medium which is, at one and 

the same time, partially saturated and is undergoing deformation. 

Nor is much known about the nature of anisotropy to permeability in 

such media. Although one may incorporate into (19) and (20) the 

appropriate expressions for k and k r as given in (21) and (22), such 

substitutions will have to be justified by future experimental data. 
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Pore Pressure Generation 

The governing equations in (1) and (2) are to be complemented by 

appropriate source terms. Two types of source terms are of interest. 

The first relates to the arbitrary addition or withdrawal of fluid from 

the system; examples include production of water from a well or the 

infiltration of rainfall. The latter could also be treated as a flux 

boundary condition. The second kind of source relates to the genera

tion of fluid pressures due to external loading, such as that caused by 

the gradual increase in the weight of the mill tailing over burden 

during the active phase of tailing emplacement. The peculiarity of 

this source term is that the pore pressure is generated instantaneously 

without the addition or removal of mass from the system. The genera

tion of pore pressure is to be computed assuming that the soil responds 

in an undrained fashion to the imposed external load and that the 

change in void volume caused in the volume elemen* by the external load 

is equal to the sum of the volume changes in the two phases. 

Obviously, the pore pressures generated in the two phases are functions 

of the matrix compressibility, the two fluid compressibilities, the 

porosity of fluid saturations and the magnitude of the total stress 

change. As pointed out by Fredlund and Hasan (1979) and by Lloret and 

Alonso (1980), an iterative computational procedure is required to 

compute the magnitudes of the pore pressures generated in each phase. 
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The Complete Two-Phase Governing Equation 

The mass conservation equations for the w^ter pUase and the air 

phase are presented below in an integral form in equations (24) and 

(25). These are obviously coupled equations since the pressures of the 

two phases occur in both the equations. Initial conditions are 

prescribed for the two phase-pressures as well as for the total stress, 

as indicated in (26). Boundary conditions may be of the Dirichlet type 

(27), the Neumann type (28) or may be of a mixed type, such as a 

seepage face (29), 

Water Phase: 

k k ^ 3p 3p 
V w Al Tt + A2 TF r k krw r i + 

p O t p lp g Vz + Vp l"n di 

(24) 

Air Phase: 

• / • 

k k 3p 9p 
p G + / p — Vp -n dr = V p A, —£• + A. —£• (25) 
a a J a y_ "a s a 3 at 4 at 

r 
where G„ and G a are source terms representing volumetric fluid 

generation rates. 

Initial Conditions: 

P w (t=0) ' P w o (26a) 

Pa ( c =°) " Pao ( 2 6 b ) 

o- (t=0) = a (26c) 
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Boundary Conditions: 

(i) DirichleC condition: 
P w - Pw(t) along Tj (27a) 

p a - Pa(t) along r 2 (27b) 

(ii) Neumann condition: 

-q • n dr = 0 (t) across r (28a) 

-q • n dT = q (t) across r (28b) 

(iii) Seepage Face: 

only flow out 1 

gion ) 

and water can onl_ 
" on T^ 

of the flow regi 

The handling of the pore pressure generation term arising due to 

change in boundary stresses needs special mention. The pore pressure 

generated due to external stresses are not accompanied by a change in 

the mass of water within the volume element. It is not possible to 

incorporate such a pore pressure term into (24) or (25) since the two 

sides of both the equations have dimensions of mass per unit time while 

the pore pressure generation term has units of pressure per unit time. 

As is done sometimes, [e.g., Jacob, 1950; Larabe and Whitman, 1969], one 

could generate the same pore pressure by injecting an appropriate mass 

of water into the element. Although this procedure will generate a 

quantitatively equal amount of pore pressure, the physics of the 
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phenomena are not Che same. Therefore, to maintain dimensional consis

tency as well as physical realism, we shall use two auxiliary condi

tions to incorporate the pore pressure generation into the governing 

equations. These auxiliary conditions relate to the conditions at the 

pid of the time interval dt, which will constitute the new initial 

conditions for the next time Interval. Thus: 

Auxiliary Conditions: 

Ci) 

(ii) 
t+dt 

3p w 

—aT dt + p fc (30a) 
3t rw.ext 

3Pa 
-5f dt + p .. (30b) 
at *a,ext 

( i i i ) a | t + d t = ao + l r d l : < 3 0 c ) 

where p w e x t and p a e x t are fluid pressures generated due to 

external stress. 

Simplification of the Governing Equations 

Although the two-phase equation is physically complete, it may be 

possible, under certain circumstances, to ignore the equation for the 

air phase, leading to considerable savings in computational effort. 

In the case of Uranium mill tailings, the time-scale of interest is of 

the order of several tans of years at least. However, due to the 

considerable mobility of the air phase, any locally enhanced air-

pressure pockets that may exist within the air phase should be expected 

to dissipate within a matter of a few hours to not more than a few 

days. Under the circumstances it is practically realistic to reduce 

the problem to a single conservation equation for water, assuming that 
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the air-phase is continuous and is at atmospheric pressure. Such an 

assumption is indeed the basis tor the classical unsaturated flow equa

tion, originally suggested by Richards (1931). 

The Unsaturated Flow Equation 

We may obtain the unsaturated flow equation from (24) by 

discarding the air-phase pressure terra and by eliminating equation 25. 

This equation as well as its associated initial conditions, boundary 

conditions and auxiliary conditions are given in equations 31 to 36. 

/
k k p — [p gVz + Vp 1 • n w u L w 6 l w J 

w 
dr 

r 
S mf w 2 

w 

+ e m2 

a-p •a 

Initial Conditions: 

°-p„ 

3p 

w (31) 

p ( t=0) = p 

a ( t=0) = a 

(32a) 

(32b) 

Boundary Condi t ions : 

( i ) D i r i c h l e t c o n d i t i o n : 

P w = P w

( t ) along 

(ii) Neumann condition: 

-q • n dT = 0 ( t ) 

(33) 

(34) 
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(iii) Seepage Face: 
p • atmospheric pressure (35) 

and water can only flow out 

of the flow region on T$ 

Auxiliary Conditions: 

3p 
(i) p (t+dt) = p + •-— dt + p 

rw^ J rwo 3t rw»e 
(36a) 

(ii) o(t+dt) * a + | | dt (36b) 

Narasirahan and Witherspoon (1977) proposed an integral governing 

equation for an unsaturated deformable medium. The primary difference 

between their equation and equation 31 is that in the latter both void 

ratio and saturation are treated as functions of two variables, a-pa 

and p a~P w- However, Narasimhan and Witherspoon (1977) treated e as 

a function of Bishop's effective stress using the x parameter and S w 

as a function only of p c-

NUMERICAL SOLUTION 

The governing equations of either the generalized two-phase system 

or the simpler unsaturated system are best solved numerically. The 

basic task of numerical solution is to discretize the flow domain into 

appropriately small volume elements and to apply the conservation 

equat ions to these subdomains in a systemat ic fashion. The subdomains 

of integration may be defined explicitly (as in the integral finite 
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difference method or the finite difference method) or implicitly by a 

procedure of weighted volume integration (as in the finite element 

method). Spatial gradients of fluid pressures, which are essential to 

evaluate fluid fluxes according to Darcy's law, can be estimated either 

uses finite difference approximations or finite element approximations. 

In order to assure that a stable solution is obtained for the transient 

problem, it is necessary to use appropriate time-averaged values of 

fluid pressures to evaluate the fluid fluxes using Darcy's law. These 

time-averages over a time step may be based on either the central 

differencing approximation or a backward differencing approximation or 

a combination of the two. Or, if instability is expected to occur only 

in certain portions of the flow region, one may use a combination of 

forward differencing approximation (where stability is not expected to 

be violated) and central- or backward differencing approximations 

(where stability is expected to be violated; Narasimhan et al., 1978a, 

1978bK 

The implicit time-averaged approximations of the fluid pressures, 

when combined with the spatial gradients (either by finite differences 

or by finite elements), boundary conditions, initial conditions and the 

source terms, lead to system simultaneous equations in which the time-

derivatives of the fluid pressures over each subdomain constitute the 

unknowns. The known boundary conditions, initial conditions and the 

sources together determine the magnitude of the known vector. The 

coefficients of the unknown, which constitute the elements of the 

conductance matrix, are functions of the material diffusivity as well 

as the geometrical properties of the volume element. In as much as 
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each volume element may only have few elements as its neighbors, the 

matrix containing the coefficients of the unknowns is usually extremely 

sparse in nature. 

The Matrix Equation for the Two-Phase Problem 

The conservation equations (24) and (25) are presented in a 

discretized form in (37) and (38): 

£ DIm [pw,Am 8 Zm + **,J " ( PW,*M « Z * + ?»,*)/£ U L \ + pw,* G * 
ra \ m / 

H*m £*1D 

Vs Pw,* 
A p a i Ap, a,4 . . " pw,* 

1 fit 2 fit 

1 = 1,2,3 L 

m = 1,2,3 L 

(37) 

23 U £ m P a > m - P a , i ( E U L ) + p*,a Ga 

Vs Pa,« 
AP„-J> 4P„ 

3 fit 4 fit + A, 

i = 1,2,3 L 

m = 1,2,3 L 

In (37) and (38), 

(38) 

rw,i rw,i rw,i ' ' (39a) 
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p * p . + X Ap . i=£..m Ka,i *a,i *a,i ' ' (39b) 

where the superscript o implies initial conditions and X is a weighting 

factor; X*0 for forward differencing, 0.5 for central differancing and 

1.0 for backward differencing schemes. 

Incorporating boundary conditions, substituting (39a) and (39b) 

into (37) and (38) and collecting all known quantities leads to, 

B£,m &P».» + B*,L+A A V * 

B*,A * Pw,* + BLH,L*m A pa,m = h 

(40a) 

(40b) 

The 2L x 2L coefficient matrix B is non-symmetric and sparse, 

whose structure is schematically depicted in Fig. 5. 

The Matrix Equation for the Unsaturated Flow Problem 

The discretized form of (31), which expresses the single-phase 

unsaturated flow equation is as follows: 

Z U L fp„,*n S z m * Pm] " (P fa g « £ • P ) ( £ TJJM + P G 

Ap 

a-pa °-P. 

(41) 
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Fig. 5. Schematic description of the sparsity structure of the 

two-phase problem. 
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On incorporating boundary conditions and collecting all known 

quantities to the right hand side, we get, 

Equation 42 is a sparse, symmetric matrix. 

The matrix equations given in (40) and (42) can be solved either 

by direct solution techniques or by iterative techniques. Because of 

the strong dependence of permeabilities as well as saturation and void 

ratio on the fluid pressures, the coefficient matrices in (40) and (42) 

will in general be very stiff. That is, the terms on the principal 

diagonal will vary greatly in magnitude. As a result, solving them 

through iterative techniques may lead to convergence difficulties, 

to overcome which one may have to sacrifice computational speed. 

Direct solvers, on the other hand, can handle stiff matrices with 

greater ease, but are constrained by much larger computer storage 

requirements than iterative solvers. At present, it appears that for 

one-dimensional and two-dimensional problems direct solvers are 

competitive and preferable. For three dimensional problems, iterative 

methods may still have to be used although computational time may be 

large. Currently frontal solvers and profile solvers are available in 

the literatu-'̂  for improved efficiency in solving sparse and poorly 

structured matrices. 
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EXISTING ALGORITHMS 

Although numerous computer programs have been developed in the 

literature to solve transient fluid flow in variably saturated systems 

(Freeze (1971), Neuman (1973)), the attention given to systematically 

handling deformation in such systems has been minimal. For want of 

time, it has not been possible in the present study to carry out an 

extensive literature search for the few models on unsaturated 

consolidation that are available in the literature. Under the 

circumstances, details of three nfedels will be given below. The first 

of these is based on Bishop's parameter, while the other two are based 

on two stress-state variables. 

Narasimhan and Witherspoon (1977) developed a unified model for 

fluid flow in saturated-unsaturated porous media and incorporated it 

into a computer program called TRUST (Narasimhan et al., 1978a). The 

model is based on the following governing equation, 

/
k k 

p w , * ^ T ^ P
W , * g 7 ( z + * } • ndF = HCtZ2± (43) 

j- w 

where ijj is the pressure head and M c ^ is the fluid mass capacity of 

element & defined as, 

M . - V p - S e f c + S Y X ' a + e — p (44) 
c,£ s w,l |_w w w w v dijjj 

In (44) x1 is related to Bishops x parameter by, 

(45) 
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Also, the coefficient of compressibilit}', ay is defined by, 

s - -fe <«> 
where a1 is effective stress when e and a' are non-linearly related, 

the dependence of ^ on a' can be better treated more accurately by 

using the compression index C c or the swelling index C g. Thus, 

a « „ ~ n, i , normal consolidation (47) 

a * 2 3Q3 g1 » swelling or rebound (48) 

where C c and C s are, respectively, the indices cz compression and 

swelling (Lambe and Whitman, 1969). 

The model is based on an integral finite difference method (1FDM; 

Narasimhan and Witherspoon, 1976) and can handle three dimensional 

fluid flow in heterogeneous or anisotropic domains under complex 

geometry and time-variant boundary conditions and sources. The volume 

element is defined to have constant volume of iracompressible solids; 

its bulk volume and voids volume change in time. Narasimhan and 

Witherspoon (1978) verified the model by applying it to a variety of 

saturated-unsaturated flow problems including deformation. 'Narasimhan 

(1979) applied the model to a 85-m high desaturating column and carried 

out parametric studies on the role of the variation of the x parameter 

with saturation. A detailed documentation of the program is currently 

available (Reisenhauer et al., 1982). 
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A comparison of the TRUST equation (43) with the two-state 

variable-unsaturated flow equation (31) shows that in the former, the e 

and S w are treated as a function of a single independent variable, 

effective stress defined as, 

However, since TRUST stores the total stress in memory at all 

times as well as keeps track of moisture suction as a function of time, 

one can update it to evaluate e, S w as functions of both a-pa and 

p c. The task of modification involves the replacement of the x~P a r a~ 

meter subroutine by a new subroutine in which the dependence of e and 

S w on the two state variables are input either as a table or as a 

convenient polynomial function. 

Fredlund and Hasan (1979) implemented the theory developed by 

Fredlund and Morgenstern (1976) into a one-dimensional consolidation 

model. In this model, two continuity equations are solved, one for the 

water phase and the other for the air phase. The relative permea

bilities to the two phases are allowed to vary as functions of fluid 

pressures, while void ratio and saturation are both non-linearly 

related to the state variables. Air is treated as an ideal gas and is 

assumed to obey the gas law. Temperature effects are neglected. In 

addition, they also developed an auxiliary, iterative algorithm to 

compute the magnitudes of the water-phase pressure and the air-phase 

pressure generated due to undrained response of the partially saturated 

soil to external loads. Using this auxiliary algorithm to provide a 

step-wise change in initial conditions, they applied their model to a 
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doubly draining unsaturated column, subjected to a stepwise external 

load at time t • 0. The Fredlund-Hasan model is based on the finite 

difference technique. 

Lloret and Alonso (1980) have also developed an algorithm co 

model, in one-dimension, the consolidation of an unsaturated soil using 

the isothermal, two-phase approach. The physics of their model is 

essentially same as that of Fredlund and Hasan, except that Lloret and 

Alonso have also incorporated the dissolution of air in water. 

However, it appears that the consideration of air dissolution may not 

be worth the added computational effort. The Lloret-Alonso model is 

based on the finite element method. They applied their model to a 

partially saturated foundation subjected to a step-wist: increment in 

load and the initial time. 

Note that all the models referred to above compute only volumetric 

changes. They do not attempt to compute the changes in stress field. 

As such, one could use for the total stress, either the vertical stress 

Cone-dimensional consolidation theory) or the mean principal stress, 

depending on which of these will closely approximate the field boundary 

conditions. The determination of linear displacements from volume 

changes will have to be carried out on the basis of a knowledge of 

field boundary conditions. 
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CONCLUDING REMARKS 

That soil materials deform in the state of partial saturation is 

known. It is known, if only qualitatively, that the concepts of 

deformation related to fully saturated soils could be extended to 

unsaturated soils. At the present time, theoretical analysis and 

experimental measurements have been carried out only with respect to 

volume change behavior of unsaturated soils. Little has been done 

towards fully analyzing the directional displacements and the stress 

field in partially saturited soils. Extreme difficulties associated 

*dth experimentation or unsaturated soils and their complex behavior 

due to the presence of several phases, including the effects of 

capillary stresses, stand in the way of complete stress-strain analysis 

of unsaturated soils. 

Experimental data have shown that ihe volume-change behavior of 

unsaturated soils cannot be adequately accounted for through the use 

of an "effective stress" even though it is defined in terms of a 

saturation-dependent parameter. Recent work based on a semi-empirical 

approach shows that volume change of unsaturated soils is more 

realistically accounted for in terms of two stress-state variables 

which are comtlaations of the total stress pore-air pressure and 

pore-water pressure. Additionally, the undrained response of a 

partially saturated soil to external loads has to be quantified in 

terms of an implicit relation between the compressibilities of the 

porous medium, the liquid-phase and the air-phase. The hydraulic 
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conductivity of a deforming unsaturated soil is a function of the void 

ratio as well as the phase saturations. 

Mathematical models have been developed and are available to solve 

the governing equations either in terms of two coupled conservation 

equations or, under certain simplifying assumptions in terms of a 

single conservation equation for the water phase. It appears at the 

moment that our computational abilities exceed our abilities to gene

rate empirical data to be input into the computational model. Perhaps 

the greatest challenge confronting the simulation of consolidation of 

unsaturated soils is the measurement of the dependences of void ratio 

and saturation on the chosen stress-sLate variables. For lung term 

prediction of consolidation of Uranium miil tailings it may be accep

table and economical to vork with the simplified single-phase governing 

equation rather than the two-phase equation. 
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