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Introduction ., 

Estimating an average level of any characteristic for a geographic area 

based on data collected from specific points in that area is a problem in many 

fields of study. For example, many atmospheric measurements are made in this 

way. The problem that we wish to address is the estimation of an average level 

of pollution for an area based on point data derived from monitoring stations. 

The sample mean may be seriously biased as an estimator of the mean level of 

pollution. An alternative is to fit an interpolating surface to the data values and 

find its average. This has been done in mining fields, for a map of the mineral 

grade will help plan the mining operation as well as give information on which 

parcels will have a high enough average grade to make processing economic 

(Ripley, 1981). 

A very simple way to smooth or interpolate is to calculate. the value of a sur­

face as a weighted average of the values at the data points. This method is 

called a moving average. Criteria are imposed so that the surface is smooth at 

the data points. These weights are chosen as a function of the distance between 

the data points and the estimation point. The method of estimation that is 

presented here is a weighted mean (i.e., an arithmetic mean of the logarithm of 

the geometric mean concentrations) and therefore is an example of a moving 

average. In this study we have air pollutant monitoring stations. These stations 

measure pollution a certain percentage of the time and are stationary in that 

the measurement is always taken at the same latitude and longitude. We 1-"ave 

chosen a few different geographic areas to test this method. At each station a 

log normal distribution is implicitly assumed. A relevant statistical problem is 

determining the "fitness" of the estimate and is a major part of this paper. for 

determining the "fitness", we have estimated each station's value from sur-

. ·.J 
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rounding stations' observed values and compared ·our estimate with the 

observed value. The methodology described here,is an explicit calculation, not a 

fit. and so is not affected by ill-defined boundary conditions and other uncertain·· 

ties. 

Data 

The Environmental Protection Agency has data for 6625 air quality 

monitoring stations (active 1974-1976) in the US + territories (Puerto Rico, 

Guam. V.I.). Ambient' air quality was measured at these stations. These poilu-

tants were sampled over one-hour intervals for specific gases like carbon 

monoxide, or 24-hour intervals for less specific pollutants like total suspended 

particulate. For sulfur dioxide and nitrogen dioxide. both one-hour and 2~-hour 

sampling intervals were used. The basic air quality file developed by the PAREP 

(Populations at· Risk to Environmental Pollution) project contains latitude and 

longitude of the 6625 monitoring stations active during 1974-1976, the per ce;nt. 

of time active, and the three-year geometric mean concentrations of nine pollu­

tants. This is the file from which data are obtained to investigate inlcrpol<lli:;;; 

strategies. 

Suppose, for example, we want to estimate the level of total suspended 

particulate for a particular county. We might want to obtain data from all the 

monitoring stations "'ithin the county. However. other stations which are ne<:;r 

but outside the county should also be lised to estimate the pollution wilhln lhr:: 

cour1ty because of their proximity; so we need to include nearby stations For 

analysis of long-term epidemiologic effects on a mobile population, highly 

--~--~·-------~detaited-ge-o-graphrc- accuracy is not required. Therefore. the estimate might he 

a weighted average, where the weight is a function of the distance from the n:JOn-

itoring station to the point of inter:est. 
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Estimation 

1 · one is trying to predict the average level of pollution at a particular 

point over a specified period of time from ne_arby monitoring stations, there are 

at least two characteristics which are important. One, already mentioned, is the 

distance cf the monitoring station from the point of estimation. Since the size 

of the sa~nple is probably correlated with the reliability of the mean value. 

another i11portant factor is the percentage of time a monitoring station was 

active. Thus, the weight function used in our estimate is bivariate in these two 

variables. The weight of station i for predicting at point j is taken to be 

where p;, is the percent of time station i was active, d.;.; is the distance of station i 

to the poi:1t j where pollution level needs to be estimated, and d 0 is a scaling 

parameteJ from 2 to 20 kilometers. Stations further than five times de were 

ignored since they have negligible weight. The log mean pollution level (i.e .. the 

logarithm of the geometric mean) at the point of interest j is estimated as 

i=n1 
~ W;,;X;, 
i.=l 

where x;, i3 the log of the observed value of the ith surrounding station and the 

sum is owr all stations close enough to be relevant; thus n; is the number of 

"predJctin~" stations for point j.-

h some cases two or more stations have exactly the same latitude and 

longitude .and (in general) different values of pollutant concentration The 6625 

stations luve 5777 distinct locations. In our analysis stations at the same loca-

tion ·w-ere considered as a single station with a concentration equal l.o a 
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geometric mean (weighted by the number of observations)· of the· individual 

values. The combining of stations does not affect the calculated values of ei. but 

it does affect the loss functions and correlation coefficients defined later in tbis 

section. 

To choose .the "o~timum" value of d~ and investigate the accura~y of 
. ' . :, -~ . . '<·:. ; • . . . . 

these weighted averages, a predicted value for each station was generated fron1 

observations from the' othe~ nearby statio~ (exc,luding one's. own value), i:Ji':Q 

compared to the 'actual value ?bS!=!rved at the selected station. By varying do. we 

can generate several estimates for comparison with each observed value. We 

can then look at correlations and loss functions to pick the "best" d 0 anq th~Js 

the ''best" weighting function for our estimate. 

We chose four functions to measure the "goodness of fit". These have 

been narried l) Correlatio~ Coetlicienl2) Loss Funct1o~ 3) W~ighted Correlation 

Coefficient 4) Weighted Loss .Function. The formulas for t.hese are as follows: 

Correlation Coefficient: 

Loss Function: 

Weighted Correlation Coefficient: 

f:'pj Wj(xj -x)(ej-e) 
j=l ' 
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Weighted Loss Function: 

j=n 

~p;W; 
j=l ; . 

where all the sums are over all stations which have both an observed value xi 

and a predicted value e;. The mean observed value is given by x and that for the 

predicted values is denoted by e. Observation j and its estimate are denoted by 

X; and e; respectively. The number of stations in the study area predicted is n. 

The weight for station j, W;, is 

The "best" d 0 would be the one which maximizes the correlation, and minimi?.es 

the loss function in both the weighted and unweighted case. 

Results 

We have chosen three areas to experiment with, using this method. The 

pollutant we have considered is total suspended particulate. The areas are the 

Detroit Standard Metropolitan Statistical Area (SMSA), the state of Cali[orn.ia 

and Los Angeles County. These areas are chosen somewhat arbitrarily, although 

the results do change with these areas perhaps as a function of size. The maps 

of the areas and their "relevant" monitoring stations are shown in figures 1. '?,. 

and 3. The size of the circle representing the monitoring station is indicali ve of' 

the geometric mean pollutant level at that station. 

Very different results were obtained in the different areas. The resullE-: 

are summariized in Figures 4,5,6 and Tables 1.2,3. Stations in the Detroit S\'c~:'.,'\ 

' 
i 

'v 
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(Fig. 4 and Table 1) gave an optimal d0 of 4 km consistently in all goodness.,of (it 

functions and these functions lo~k reasonably smooth. California State (Fig.:5 

and Table 2) also gave reasonable losses and correlations as a function of d 0 . yet 

unlike Detroit the -optimal c/.0 was 2 km· instead oC4 km. Los Angeles County (Fig. 

6 and Table 3) gave the most disconcerting results. The estimate was negatively 

correlated with the observed value and the optimal d 0 in the correlations is 2 km 

while in the loss functions it is 20 km. It is also clear that the weighted good­

ness of fit functions are relatively flat which indicates that these weights make 

the goodness of fit relatively insensitive to d 0. Figures 4, 5, and 6 and tables 1, 2, 

and 3 are illustrative of these findings. 

' 

Unweighted Weighted Unweighted Weighted 
d.o (km) Correlation Correlation Loss Loss 

Coefficient Coefficient Function Funct.iqrW 

i 2 0.829 0.854 0.0227 0.0236 
I 4 0.849 0.894 0.0139 0.02JO 

6 
.I 

0.854 0.870 0.0106 0.025~ 

8 0.851 . O.B41 0.0080 0.0307 
10 .·I 0.832 0.807 0.0072 0:0363 
12 I 0.807 0.775 0.0067 O.Oid~3 

14 I 0.785 0.747 0.0064 0 0·~:55 
16 0.766 0.725 0.0061 0.0491 
18 0.751 0.708 0.0058 0.0523 
20 0.738 0.695 0.0056 0.05::;: 
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Table 2. California State 
Unweighted Weighted Unweighted Weighted 

d 0 (krn) Correlation Correlation Loss Loss 
Coefficient Coefficient Function Function 

2 0.744 0.680 0.0500 .. 0.0385 
4 0.702 . 0.671 0.0361 0.0358 
6 0.720 0.677. 0.0266 ·. 0.03?0 I I 

'-' 
8 0.716 0.694 0.0196 0.0384 

10 0.722 0.705 0.0153 0.0390 
12 0.690 0.718 0.0139 0.0391 
14 0.699 0.729 0.0110 0.0387 
16 0.697 0.739 0.0097 0.0381 
18 0.695 0.745 0.0086 0.0376 
20 0.694 0.747 0.0075 0.0374 

. Table ~. l.n~ AnP"P.lP.~ Countv 

I Unweighted Weighted Unweighted Weighted 
d 0 (km) Correlation Correlation Loss Loss 

Coefficient Coefficient Function Function 
2 -0.848 -0.695 0.0964 0.0319 
4 -0.788 -0.755 0.0396 

I 
. 0.0654 

6 -0.843 -0.829 . 0.0325 0.0544 
8 ·-d.872 -0.874 0.0199 0.0481 

10. -0.888 "0.879 0.0139 0.0438 
12 -0.877 '-0.861 0.0103 . 0.0400 
14 -0.837 -0.819 0.0078 0.0363 . 
16 -0.761 -0.752 0.0060 0.0332 
18 -0.646 -0.659 0.0048 0.030? 
20 -0.512 -0.552 0.0039 0.0290 

These seemingly contradictory results may be due to sample selection. 

If we look at the number of stations in our sample for each area, we see a 

marked difference. 
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no. of stations no. of "relevant" 
in ArPA !O:t.Atinn!l;l 

Detroit 39 198 
California 146 210 
Los Ane:eles 13 61 

A small number of stations could have a negative effect on the correlation. For 

example, the extreme case is with only two relevant stations a and b. Their pol-

lutant values might be 100 and 200 for station a and b respectively. If we use 

station a to predict station b and station b to predict station a, we then would 

have a perfect negative correlation. The source of negative correlation is indeed 

an influence when .small numbers of stations are used in the estimation pro­

cedure. Negative correlations should disappear for larger study areas having 

discrete clusters of stations with markedly different pollutant levels (i.e., a large 

"between" cluster variance). 

Conclusions 

This work is at an early stage. There are many other ways to test this 

estimate. Because of peculiar effects fo~ small samples, it is probably more 

meaningful to use larger sample study areas with noticeable clusters of different 

pollution levels. We also need to look at other pollutants to see how these 

results might change. Other algorithms, including fitting procedures, should 

likewise be tested. Tests should be devised for the elimination of spurious data 

points. Standard deviations should be calculated, which reliably describe th:; 

confidence levels of an air quality estimate. This is just the beginning of lht~ 

search of methods for interpolating point data into a continuous variable, whi:'h 

can apply to many problems in statistical analysis of spatial data. 
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