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OVERVIEW OF THE FINITE ELEMENT METHOD IN GROUNDWATER HYDROLOGY 

T.N. Narasimhan and P.A. Witherspoon 

Lawrence Berkeley Laboratory, Berkeley, California 94720 USA 

ABSTRACT 

Since its introduction into the groundwater literature during 
the mid 1960's, the finite element method has developed into a 
very powerful numerical tool for analyzing a variety of ground
water flow problems. Applications of the method cover fl.ow in 
multi-aquifer systems, flow with a free surface, saturated
unsaturated flow, land subsidence, fractured-porous systems, 
and large groundwater basins under steady or nonsteady condi
tions. The method derives its power from the fact that it uses 
a very general technique for the evaluation of spatial gradients 

'in any direction at any {X)int within the flow domain. This 
advantage is complemented in the method by an integral statement 
of the conserVation equation at the point of interest. The 
algorithms stemming from this approach permit relatively simple 
geometric inputs, even when the problem of interest has complex 
geometries. From a conceptual perspective there is reason to 
suspect that alternate formulations of the finite element 
method may be possible in which the weighted integration 
technique is dispensed with in favor of an explicit definition 
of the subdomains of integration. The flexibility of existing 
finite element algorithms may be enhanced by having options for 
inputting preprocessed geometric inputs in addition to nodal 
point coordinates and element lists. Direct formulation of the 
finite element equations from conservation integrals may 
provide an alternative that deserves attention. With the 
advent of mini computers, the finite element method promises to 
become an every day tool for the practising engineer during the 
1980's. 

INTRODUCTION 

The power of the finite element method was first revealed early 
in the 1960's in the field of structural engineering. It was 
soon recognized that the method was sufficiently general to 
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permit application to a much wider class of problems. The 
earliest attempts to apply the method in groundwater hydrology 
commenced during the mid 1960's and by the early 1970's the 
method was well established as a valuable tool for solving 
groundwater flow problems in complex domains. Indeed, the 
impact of the method in the field of quantified hydrogeology 
can rightly be gauged from the very organization of the present 
international conference which convenes every two years and 
continues to attract papers with many new results and novel 
applications to water resource problems. It is appropriate 
in a conference such as this for one to stop for a moment 
and review the finite element method, identifying its strengths 
as well as its weaknesses. The purpose of this paper is 
to attempt such an overview in so far as it relates to problems 
in groundwater hydrology. 

Over the past decade literature on the finite element method 
in groundwater hydrology and related disciplines has grown 
at a phenomenal rate. It is therefore not realistic to attempt 
a comprehensive review of all the important papers that have 
been published on the subject. Instead we shall take the more 
limited approach of presenting an outline of the more important 
applications that have been made and to analyze some of the 
conceptual features of the method as they are currently under
stood. In developing this approach we shall rely on physical 
arguments rather than drawing upon the theories of mathematical 
operations. 

A majority of groundwater problems relate to the movement 
of water under isothermal conditions in the subsurface. 
More recently, the phenomenon of chemical transport in ground
water systems has assumed a major role of practical importance. 
In the present work, we shall restrict our attention to the 
diffusion process, which not only governs the movement of water 
in variably saturated deformable media but also treats the 
transport of solutes by real or apparent diffusive (or disper
sive) mechanisms. We shall not concern ourselves with the 
convective or advective transport of solutes by flowing water. 

SOME KEY APPLICATIONS IN GROUNDWATER HYDROLOGY 

In as much as stress analysis problems deal with systems under 
equilibrium, it was natural that the earliest application of 
the method to groundwater flow problems related to steady 
state seepage. Zienkiewicz and his various colleagues first 
applied the finite element method to steady state heat flow 
(Zienkiewicz and Cheung, 1965), and then to steady state 
seepage problems in anisotropic and heterogeneous media 
(Zienkiewicz et al, 1966). Taylor and Brown (1967) followed 
quickly with applications to seepage with a free surface. At 
the same time, the method was being extended to the transient 
diffusion problem based on physical considerations by Wilson 
and Nickell (1966), who successfully simulated transient 
conduction in concrete structures. Borrowing from their 
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work, Javandel and Witherspoon (1968, 1969) were able to extend 
the finite element methods to problems of transient flow of 
fluids in porous media. Unlike the physical approach taken by 
Wilson and Nickell (1966), Javandel and Witherspoon used the 
mathematically formal technique of Gurtin (1965) of employing 
variational principles to develop the finite element equations. 
They applied the method to the problem of transient flow of 
water to a well in multi-layered aquifer systems. 

The phenomenon of transient seepage in deformable materials is 
of fundamental importance in the field of geotechnical engi
neering, which shares many field problems with hydrogeology. 
Sandhu and Wilson (1970) addressed themselves to the problem of 
fluid flow in saturated, deformable porous media and success
fully applied the finite element method to the simulation of 
land subsidence due to fluid withdrawal. The work of Sandhu 
and Wilson paved the way for the coupled stress-strain and 
fluid flow analysis of saturated soil masses, which forms the 
basis for a wide class of problems in the field of soil 
mechanics. Later, during the mid 1970's other workers solved 
the subsidence problem using the finite element method, notable 
among them being Gambolati et al, (1974) and Lewis and Schrefler 
( 1978). 

Contemporaneous with this work in porous systems, an increasing 
interest on the problems of fluid flow in fractured rocks also 
developed, both by hydrogeologists and by geotechnical engineers. 
It was therefore natural that researchers sought to apply the 
newly found tool to the study of problems related to fluid flow 
in fractures. Wilson and Witherspoon (1970}, who investigated 
the laminar flow of water in fractured porous rocks, applied 
the finite element method to simulate steady flow of water in a 
network of rigid fractures, representing fractures as line 
elements. Noorishad et al, (1971) extended Wilson's work to 
solve the problem of steady flow in a network of deformable 
fractures using the finite element method. Noorishad and 
Witherspoon (1981) have extended this approach even further and 
can now handle coupled thermo-hydro-mechanical transient 
behavior for non-isothermal fluid flow in fractured rocks. 

The problem of groundwater flow with a free surface has inter
ested civil engineers for nearly a hundred years since the 
early investigations of Dupuit, Boussinesq and Forschheimer 
during the late nineteenth century. The free surface problem 
is characterized by the fact that one segment of the boundary 
of the flow region, namely, the free surface, is either unknown 
(in the case of the steady state problem) or changes with time 
(in the case of the transient problem). The free surface 
problem is especially cumbersome to investigate using conven
tional numerical techniques such as the finite difference 
technique. Indeed, it was soon discovered that the very nature 
of the finite element method makes it admirably suited to 
manipulate problems in which the geometry needs to be changed 
frequently. Neuman and Witherspoon (1970) demonstrated that by 
using the finite element techniques in conjunction with an 
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iterative, deformable mesh, one could efficiently solve steady 
free surface problems. Neuman and Witherspoon (1971) and 
Ehlers (1971) extended the method to non-steady problems. 
Later, France (1974) handled three dimensional free surface 
problems using the finite element method. Gureghian and Youngs 
( 1975) also used the method to calculate steady state water 
table heights in drained soils. 

The next important class of problems that needed attention in 
subsurface fluid flow involved consideration of the effects 
of variable water saturation, that is, the phenomenon of 
saturated-unsaturated flow, which is of importance in civil 
engineering, hydrogeology and soil physics. Neuman (1973) was 
among the earliest workers to apply the finite. element method 
to analyse fluid flow in saturated-unsaturated porous media. 
Later, Neuman et a1,(1975) extended the method to include such 
other features as water uptake by roots, seepage faces, and an 
evaporation boundary. The same problem was also solved by 
other workers using the finite element method and these include, 
Reeves and Duguid (1975), Segol (1976), Narasimhan et al, 
(1978), Frind and Verge (1978), and so on. 

An ingeneous concept was proposed by Barenblatt et al (1960) 
to simulate the flow of water in fractured porous media. 
Noting that in a fractured porous medium the diffusivities of 
the fractures and the porous matrix may vary widely, Barenblatt 
et a1 reasoned that the fractures could all be lumped into one 
continuum while the porous materials could all be lumped into 
another continubm. The two· continua could then interact by 
introducing appropriately defined coupling terms. Although 
this approach has certain limitations, it has provided an 
economical way of analysing certain field problems too difficult 
to simulate otherwise. This concept is familiarly known as the 
"double porosity" approach in the petroleum engineering litera
ture. Duguid and Lee (1977) modified Barenblatt's concept 
slightly and successfully incorporated the double porosity 
approach into a finite element model. 

From a phenomenological point of view, the investigations cited 
above more or less cover the spectrum of problems that are 
commonly encountered in groundwater hydrolo9y. We will not 
attempt here to cite specific references that deal with the 
application of the method to site-specific problems. 

DEVELOPMENTS RELATED TO METHODOLOGY 

Although the early work of Wilson and Nickell (1966) used a 
physically based approach to the finite element method, a 
desire for mathematical formalism and rigor soon established 
itself. Accordingly, variational calculus was introduced to 
formulate the finite element equations. The variational 
principle for the steady state problem originally proposed by 
Euler formed the basis for solving the elliptic partial dif
ferential equation using finite elements. It also provided the 
starting point for deriving extended variational principles for 
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other steady state problems such as those involving the free 
surface (Neuman and Witherspoon, 1971). The variational 
approach, however, initially led to one difficulty, namely that 
a true variational principle is defined only for a system under 
equilibrium. To overcome this shortcoming, Gurtin ( 1965) 
introduced the novel concept of defining a variational principle 
in the Laplace domain, after initially eliminating the time 
dimension from the partial differential equation using the 
Laplace transform. The variational principle in such a trans
formed domain involves convolution integrals. These variational 
principles can be minimized using the Rayleigh-Ritz technique 
to arrive at the discretized finite element equations. 

Meanwhile, yet another technique was discovered that facilitated 
formulation of the finite element equations: this was the 
method of weighted volume integration, proposed at the turn of 
the century by the Russian engineer, Galerkin (1915), to solve 
problems related to the vibration of elastic plates. Finlayson 
and Scriven (1967) have compared the variational technique with 
the weighted integration technique. They concluded that it is 
easier to formulate the finite element equations using the 
Galerkin technique than by the variational technique, although 
the latter. has certain advantages in providing some fundamental 
insights into the nature of the physical problem. It is 
probably reasonable to state that at present the Galerkin 
approach is the most widely used to formulate finite element 
equations for fluid flow in subsurface systems. 

At the root· of the .finite element methodology is the concept 
that one uses a set of non-collinear points to define the 
spatial variation of a given piecewise-continuous function. In 
the simplest and primitive case, the number of points required 
is three in two dimensions and four in three dimensions. These 
considerations lead to the simple "triangular element" and the 
"tetrahedral element" in two and three dimensions, respectively. 
Both of these simple elements permit only first degree approx
imations to the variation of the desired spatial variable, just 
as is the case with classical finite differences. Ergatoudis 
et al (1968) correctly reasoned that by increasing the number 
of non-collinear points used to define the "finite element", 
one could introduce higher order approximations to define the 
spatial variability of the function of interest. Also by 
taking advantage of the role of the weighting function in the 
volume integration process, they made the higher order approx
imation serve the added purpose of handling complex geometrical 
shapes within the elemental regions. This contribution intro
duced the now well-known, isoparametric elements. An added 
flexibility to the isoparametric elements was proposed by 
Pinder and Frind (1972) who devised a technique for combining 
different orders of approximations along different sides of the 
finite element; the so called mixed isoparametric elements. 
Unlike the triangular and tetrahedral elements, the higher 
order elements necessitated the numerical evaluation of the 
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integrals before setting up the global matrix for final solu
tion. The efficiency and accuracy of integration in this 
regard was greatly facilitated by the use of Gaussian quadra
ture (Zienkiewicz, 1971). 

In its simplest form, the finite element method assumes that 
the permeability of the material inside an element is constant. 
Thus, material discontinuities coincide with interfaces of 
finite elements. In order to improve the accuracy of handling 
non-linear problems (problems where permeability changes 
with potential), Pinder et al, (1973) have devised the technique 
of functional coefficients. 

A key task in the application of the finite element method 
is that of setting up a matrix of algebraic equations to be 
solved simultaneously for the v·arious unknowns. Even with the 
fast computers that are increasingly becoming available, the 
solution of very large matrices is still not an easy process. 
Matrix solution techniques can be broadly divided into two 
classes: direct and iterative solvers. Perhaps the most 
widely used variant of the former is the Gaussian elimination 
scheme. The chief difficulty with the direct solver techniques 
when applied to large problems is that of computer storage. In 
a poorly ordered, large, sparse matrix, considerable time and 
space are wasted in storing and operating on the zeroes. 
Hence, many workers continue to develop improved direct solu
tion techniques to go with the finite element algorithms. 
Among these one should mention the LU decomposition scheme of 
Cholesky (see Weaver, 1967) and the frontal solution algorithm 
of Irons (1970). In order to handle very large, sparse 
matrices, Gupta and Tanji (1976) developed an algorithm in 
which they operated on portions of the matrix at a time. They 
chose to store and retrieve all the intermediate information 
from auxiliary devices such as tapes and discs. 

As opposed to direct solvers, iterative methods have the 
advantage of storing and operating only on non-zero quantities 
so that the storage requirements are always minimal. For this 
reason iterative schemes are continuing to be developed and 
applied to large problems involving the finite element method. 
Three such techniques that have enjoyed wide usage since the 
mid 50's are the Alternating Direction Implicit Procedure 
(Peaceman and Rachford, 1955), the Line Successive OVer Relax
ation Scheme (Young, 1962) and the Strongly Implicit Procedure 
(Stone, 1968) • 

There are several shortcomings associated with the iterative 
techniques. The first of these is of course the need to 
provide a good initial guess for the solution and the need to 
establish an acceptable estimate of error tolerance. Addition
ally, the iterative scheme may fail to converge or may converge 
extremely slowly, if at all, should the matrix be too stiff or 
should it lack diagonal dominance. When one seeks a solution 
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for a large heterogeneous flow region using the finite element 
method, it may become very difficult to avoid these difficul
ties. To lessen the problems arising from storage requirements 
associated with large sparse matrices, Narasimhan et al, (1978) 
borrowed the concept of mixing explicit and implicit methods of 
solution during a time step. This was first developed by 
Edwards ( 1969) for his integral finite difference scheme.. In a 
stiff matrix, the time constants associated with nodal points 
are widely variable; nodes with small time constants react very 
quickly to perturbations while others react more slowly. It is 
therefore possible during a given time step, to use the forward 
differencing approximation to decouple those groups of nodes 
that can be solved explicitly from those that can be solved 
implicitly to assure stability. In other words, the mixed 
explicit-implicit scheme provides a means of replacing a large 
matrix with a few small submatrices, leading to smaller storage 
requirements and faster execution times. 

CURRENT STATUS 

There is little doubt that the finite element method has 
developed into a valuable tool for investigating complex 
groundwater systems. In this regard, its strengths include 
the ability to handle complex geometries, heterogeneities 
and anisotropy. Additional factors are the ease of input 
organization and the generality of the formulation. Many 
computer algorithms currently exist that incorporate the finite 
element method to solve a variety of groundwater problems. 
Some of these are general purpose codes while others have been 
written for a specific class of problems. Clearing houses such 
as the Holcomb Research Institute of Butler University in 
Indiana help to distribute these programs or their documenta
tion to interested users. 

However, there still exist differences of opinion about the 
advantages of the finite element scheme over other numerical 
schemes such as the classical finite differences or the more 
recent integral finite difference method (Narasimhan and 
Witherspoon, 1976). Claims of improved accuracy and speed 
are often made and disputed. Because of wide variations in: 
(a) the programming efficiencies of individual codes, and (b) 
the nature of the subcomponents of the different algorithms, it 
is often extremely difficult to prove or disprove these claims. 
Familiarity or personal preferences often dictate the 
approaches taken by many users. 

Perhaps it is more relevant to attempt to synthesize the various 
methods rather than evaluating their individual superiorities. 
Such a synthesis may lead to a successful blending of the 
particular advantages of each method and thus generate a more 
powerful tool not hitherto available. The next section of this 
paper will attempt such a synthesis. 
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A DISCUSSION OF THE FINITE ELEMENT METHOD 

The physics of the transient diffusion problem requires, in a 
macroscopic sense, that intensive quantities such as potential 
be defined as averages over suitably defined domains around 
each point of interest in the flow region. Secondly, the 
physics also requires that gradients of potential be evaluated 
at any surface segment of interest in order that fluid flux 
across that segment may be calculated. 

The finite element method seeks to satisfy the first require
ment by associating with each nodal point, a subdomain which 
is some weighted fraction of the subregion formed by the union 
of all finite elements that contain the given nodal point as 
a corner point. Potentials and changes in potentials are 
averages integrated over these subdomains. The second require
ment, namely, that of evaluating gradients of potential, leads 
to a technique which gave the finite element method its special 
identity. In this technique one first defines a "finite 
element", a small region formed by a set of non-collinear 
points, within which the potential function of interest is 
assumed to be piecewise continuous and is approximated in terms 
of the "point" values at the corner points. Once this is done, 
it is easy to compute the gradient of potential at any point 
and in any direction within the finite element by simply 
differentiating the piecewise continuous, approximating 
function at .that point. 

This method of gradient evaluation is obviously far more 
general and powerful than the classical finite differencing 
technique. First, the finite element approach can provide 
gradients in more than one direction, an ability which is vital 
for handling general non-isotropic conditions. Secondly, this 
approach can provide higher order approximations to the spatial 
variation of the potential function by merely increasing the 
number of non-collinear points that define the finite element. 
Both these features can only be attained using finite dif
ferences with a great deal of difficulty, if at all. 

The two requirements mentioned above, that of averaging 
potentials over subdomains and that of evaluating gradients at 
interfaces, are mutually independent in nature. The uniqueness 
of the finite element concept is inherent in the latter re
quirement but not in the former. Indeed, it is possible to 
have other approaches such as integrated finite differences in 
which potentials are defined as averages over finite subdomains 
so that complex geometries can be handled. Yet, the finite 
element method, as it is commonly understood, is treated as 
being synonymous with defining the subdomain by a process of 
weighted volume integration. How relevant is it to uniquely 
associate the finite element method with weighted volume 
integration? Is it possible to use finite element gradients 
with alternate ways of defining the subdomain over which ~he 
accumulation term is evaluated in space? 
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Let us return to the problem of the physical basis for the 
concept of fluid movement. In order to evaluate the average 
change in potential over any domain in space bounded by a 
closed surface, we first evaluate the net accumulation of mass 
by summing up the fluxes crossing the bounding surface. This 
accumulation is then divided by the capacity of the domain to 
obtain the change in potential. A fundamental task therefore 
is to define the geometry of the subdomain over which the 
accumulation is evaluated by surface integration. The surface 
integral, thus, is primitive and is of fundamental importance. 
In practice, however, one could replace the surface integrai by 
an ·equivalent volume integral, provided that the equivalence 
can be established at all times. Indeed one can show (e.g. 
Narasimhan and Witherspoon, 1976) that, in so far as triangular 
elements in two dimensions are concerned, the weighted volume 
integral of the finite element method is exactly equivalent to 
an appropriate surface integral and this equivalence is in 
dependent of time in the transient problem. This reasoning can 
be also extended to tetrahedral elements in three dimensions. 

An important consequence of the weighted volume integration 
approach is that a geometrical description of the subdomain 
associated with a nodal point is only implied in the integral 
statement. The location or the nature of the bounding surface 
is never explicitly stated. While one can give a reasonable 
physical interpretation to such an approach for triangular and 
tetrahedral elements, such an interpretation becomes extremely 
tenuous when applied to higher order elements. If such a 
bounding surface exists, does it change with time? In the 
case of higher order elements, what can one say about the 
equivalence between surface integrals and their corresponding 
volume integrals? The equivalence is not a factor in steady 
state problems in which the accumulation is zero over any 
region surrounding a nodal point. However, the transient 
problem is of special interest because one must evaluate volume 
averages for the time derivative. There is a suspicion that if 
one cannot assure the exact equivalence of surface and volume 
integrals at all times, then, the weighted volume procedure can 
in fact prove to be less than desirable. It may be of interest 
to explore a technique in which gradients are evaluated using 
the finite element method, while integration of fluxes is 
carried out over surfaces of explicitly defined subdomains. 

One of the most attactive features of the finite element method 
is the ease with which the geometric information to define the 
discretized problem can be provided as input. To solve the 
diffusion problem in general, three types of geometric infor
mation must be provided a priori. These are: (a) a set of one 
dimensional data (lengths between discrete points) to enable 
the evaluation of gradients of potential; (b) a set of two 
dimensional data (areas of interfaces between adjoining volume 
elements) to evaluate fluxes across surface segments; and (c) a 
set of three dimensional data (bulk volumes of elements) to 
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calculate the "capacity" of each element. 

The need to calculate these quantities beforehand can be 
bypassed by merely providing as input, the coordinates of the 
nodal points, supplemented by a node list identifying the 
corner points of each finite element. From these input data, 
lengths, areas and volumes are implicitly generated through the 
process of weighted integration. For many practical problems 
of interest, this ability to avoid calculating areas and 
volumes beforehand is extremely convenient and desirable. 

Although one should take full advantage of this remarkable 
feature of the finite element method, it is worthwhile to 
consider whether or not the flexibility of the method can be 
enhanced by having an option to input preprocessed geometric 
data directly. One of the drawbacks inherent in choosing to 
work with nodal point coordinates is that the domain of volume 
integration must have a relatively simple shape (triangle, 
square, tetrahedron, cube) either in the real domain or in 
the transformed domain. Not only does this force one to write 
the algorithms for specific coordinate systems, but also the 
chances for errors of integration are increased because all 
actual geometric shapes must be approximated in terms of 
·predetermined elemental shapes. When complex geometries are 
involved, such errors can be minimized by preprocessing the 
required data as accurately as one may wish. 

Another situation in which the preprocessing option would be 
benefieial is the problem of providing for mesh refinement in 
certain locations. There often are situations in which a 
single large volume element may have to communicate with 
several smaller neighboring ones. Such a situation arises when 
a wellbore or a fracture element may communicate with several 
elements in the porous medium. Although one can develop the 
conductances between the different sized finite elements using 
published procedures, (e.g. Narasimhan et al, 1978), it is far 
simpler to handle the situation using preprocessed geometric 
inputs. We believe the finite element method can benefit from 
the added flexibility of having an option to provide geometric 
input information as needed. 

A question that is occasionally raised for the finite element 
method concerns the manner in which the time derivative is 
handled in the discretized equations. Depending on how one 
chooses to handle this derivative, one obtains either a 
"distributed" capacity matrix or a "lumped" capacity matrix. 
Let us attempt to analyze this question from a conceptual 
perspective. 

The equation of motion, namely, the Darcy-Buckingham law, 
relates gradient of potential to fluid flux under steady-state 
conditions. In order to make use of this law, the potential is 
assumed to be a discrete piecewise continuous function over 
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each finite element such that the potentials at nodal points 
are functions only of time while the linear coefficients, which 
help to express the potential within an element in terms of 
those at the corner points, are only functions of space. 
Furthermore, the value at a given nodal point is an appropriate 
average over a simply connected subdomain immediately surround
ing the point. It follows, therefore, that the approximating 
function in the finite element method is to be restricted 
solely to the spatial domain and cannot be used in the time 
domain. Hence, the accumulation term evaluated for a given 
point using the weighted volume integration procedure can only 
be converted into an average change in potential at that point 
by dividing it (the accumulation) by the capacity of the simply 
connected subdomain associated with that point. This manner of 
treating the time derivative in which the accumulation at each 
point is converted to a single average time derivative using a 
single capacity term of the point in question, gives rise to 

. the so called "lumped" capacity matrix. From the basic phy
sical postulates that govern the problem, it appears that the 
lumped capacity matrix is the most appropriate way of handling 
the time derivative. 

However, a different situation arises when one derives the 
finite element equations by minimizing variational principles 
or by integrating the partial differential equation according 
to the method of weighted residuals. In the differential 
equation, one treats the dependent variable, the potential, to 
be a continuous function of space and time. In formulating 
finite element equations from the differential equation, one 
starts by approximating the dependent variable as a piecewise 
continuous function over a finite element and substitutes this 
approximating f.unction both in the spatial derivative and in 
the time derivative. Then, one proceeds to integrate the 
differential equation over the union of finite elements by 
appropriately weighting the integrals with respect to each 
point of interest. Under these conditions, the accumulation at 
a point is converted into a sum of time derivatives, not only 
at the point of accumulation but also at its neighbors. The 
capacity matrix, thus, includes the capacity of the accumula
tion point as well as that of its neighbors. Such an operation 
is often referred to as a "distributed" capacity matrix. It is 
known that in certain problems (e.g. saturated-unsaturated 
flow, Neuman, 1973) better solutions are obtained by associat
ing all accumulation at a point with a single node rather than 
distributing it over several nodes. 

Which of the two procedures is correct; lumping or distribut
ing? One way of judging would be to apply the procedures to 
many typical problems with known analytical solutions and 
observing which of the two methods provides a better comparison 
with analytic solutions. This trial and error approach, 
however, is not very satisfying since one cannot generalize the 
conclusions to other problems for which no analytical solutions 



12 

are available. Therefore a choice must be made on conceptual 
grounds, utilizing the fundamental postulates of the diffusion 
process and the theoretical foundations of integration. 

The concept of a "point" quantity is easily suited for setting 
up a differential equation and obtaining analytical solutions 
to it. However, if we seek to obtain a solution by a process 
of integration, the notion of a value at a point is of little 
use. Instead, the concept of an average value over a subdomain 
becomes critical. Therefore the question arises, how appro
priate is it to substitute the approximating function in the 
time derivative before integration is carried out? It appears 
that the formulation of the finite element method has been very 
much restricted to one par.ticular perspective. In as much as 
the numerical problem is ultimately one of integration, there 
must be an independent way of formulating the equations, apart 
from that of starting with the differential equation. One 
such attempt was made by Narasimhan (1978) who developed the 
necessary equations directly by defining the domains of inte
gration and the operators of averaging. His analysis suggests 
that the "lumped" capacity matrix is logically more consistent 
with the physics than the "distributed" capacity matrix. 

The foregoing discussion points out the need for a more 
critical analysis of the foundations of the finite element 
method from different perspectives than has hitherto been done. 
The modern digital computer is primarily an integrating device. 
The power of these devices is likely to be far better utilized 
by directly formulating groundwater problems as integral 
systems rather than relying heavily on the integration of 
differential equations as is done now. A basic change in 
perspective is clearly needed. 

If the 1970's proved the decade of large digital compu~ers, the 
1980's promise to belong to the desk-top, mini-computers. The 
qualifier "mini" remarkably misleads one about the power of 
these devices. The capacities of the first generation mini
computers already exceed that of the large computers of only a 
decade ago. With such tools available, solutions to complex 
problems will come within the everyday reach of practising 
engineers and hydrologists. Efforts must already be underway 
to modify existing finite element programs to the desk top 
computer. The finite element method will thus find more and 
more applications in problems of groundwater hydrology in the 
new decade. 

CONCLUDING REMARKS 

Since its introduction some twenty years ago, the finite 
element method has come to be recognized as a powerful tool of 
analysis in the field of groundwater hydrology. The method has 
been used to solve problems related to large groundwater 
basins, multiple aquifer systems, flow to wells, flow with a 
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free surface and a seepage face, flow in the unsaturated zone, 
water uptake by plant roots and so on. Iri order to satisfy the 
needs of efficiency and rigor, the methodology of the scheme 
has also continued to improve. New concepts such as isopar
arnetric elements and functional coefficients were introduced. 
Advantage has also been taken of better quadrature schemes and 
efficient matrix solvers. The method will continue to be a 
highly desired tool for quantitative analysis in groundwater 
hydrology~ 

How the finite element.method can be further improved is a 
question of more than passing interest. We have attempted to 
answer this question from a conceptual perspective. The 
uniqueness of the finite element notion lies in its ability 
to provide a means of evaluating gradients of potential in 
any direction at a given location. It is this ability that 
sets the finite element method distinctly apart from the 
finite difference method. The integral aspect of the finite 
element method, that is, expressing potentials and changes in 
potentials as averages over small subdomains through a process 
of weighted integration, is not necessarily unique to the 
method. It is possible to have integral methods (such as the 
integrated finite difference method) which do not use finite 
element gradients. It will be of interest to change the 
traditional formulations and evaluate the advantage of the 
finite element method, independent of weighted volume inte
gration. Perhaps the flexibility of the method can be enhanced 
by providing options to input geometric data in a form other 
than that of a set of nodal point coordinates. It will also be 
of interest to formulate the finite element method directly 
from the theory of integration by defining domains of inte
gration and operators of averaging. This should provide an 
alternate perspective not available in the traditional approach 
of integrating point equations. 

The mini-computer revolution is now here. The finite element 
method will soon become an everyday tool, well within the reach 
of the practising engineer and hydrologist, and will greatly 
enhance their ability to solve complex problems in groundwater 
hydrology. 
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