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Introduction 

The possibility to store heat in aquifers has attracted considerable 
attention during the last years. The goal is to be able to store large 
amounts of heat at moderate temperatures from summer to winter at an 
acceptable cost. The idea is to inject warm water in a confined aquifer 
and at a later time recover the heat by pumping back the warm water. 

Several solutions have been proposed. One possibility is to have a 
single well down to a horizontal aquifer stratum. The water is pumped 
radially outwards and inwards from the well •. Other solutions use a 
two-well system [1]. 

Aquifers with high permeability are attractive from the point of 
view that they will require little pumping work. An example of this 
type is shallow glacio-alluvial aquifers, called eskers, which are 
common in Sweden. Their suitability for thermal heat storage is under 
investigation ~J. This study is done in cooperation with that project. 

The mentioned systems with vertical bore holes that penetrate the 
whole aquifer de~th have a horizontal injection and extraction of water. 
The thermal front between injected warm water and colder surrounding 
regions is primarily vertical. The problem is that such a thermal front 
is unstable because of the lower density of the warmer water. The 
thermal front will tilt so that the warmer water eventually ends on top. 
This and other thermal stratification effects, which entail undesired 
heat losses, require both theoretical and experimental investigations. 
Systems that use horizontal injection-extraction devices along the 
top and bottom of the aquifer region do not have the same stratification 
problems. The water flow is basically vertical with warmer regions 
always on top. These injection-extraction systems are however more 
complicated and expensive. 

The heat loss in the aquifer is roughly proportional to the area of 
the warm storage region. This region shall therefore be kept as compact 
as possible. Buoyancy effects may increase the surface to an unacceptable 
degree. Consider for example a horizontal injection of warm water as 
shown in figur~ 1. A strong buoyancy flow will concentrate the injected 
warm water in only the upper part of the aquifer. The warm region 

1 



{T=T1) will look like a thin tongue, which protrudes into the cold 
regions (T=T0 ). The heat losses become excessive, and the system 
cannot be used. The lower viscosity of warmer water aggravates the 
stratification during the loading phase. 

Figure 1. Horizontal injection of warmer water in an aquifer with 
excessive thermal stratification. 

It is. necessary to be able to predict the buoyancy flow and the 
tiiting rate of a more or less vertical thermal front:for pertinent 
situations fn different aquifer types. This paper discusses these 

·thermohydraulic problems in heat storage aquifers. Some general 
ob.~ervations are made. Results of some analytical solutions are 
presented. The superposition of forced and natural convection is dealt 
with. Formulas for the tilting of the thermal front as a function of 
time are given. These are tested against numerical simulations and 
applied to laboratory and field experiments. The different results, 
formulas, and tilting criteria are summarized in the last para'graph. 

Thermohydraulic equations 

The coupled ground water and heat flow process in the aquifer is 
governed by two partial differential equations. The volumetric ground 
water flow q is related to the pressure gradient and the gravity force 
through the empirical law of Darcy: 

- k q = - i (vP + p g 2) •. ( 1 ) 
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The permeability is k. The water density p and the viscosity \l are 
functions of the temperature. 

The above formula assumes anisotropic aquifer. We will below also 
study cases, when the aquifer has different permeabilities in the 
horizontal (x,y) and vertical (z) directions. Then we have 

k aP q =- --
X ll ax 

k aP q =- --y ll ay 
k' aP q = -- (- + p g) z ll az 

The permeability in the vertical direction is denoted k'. 

(2) 

Compressibility effects are neglected in this study. The divergence 
of the ground water flow q is then zero at each point: 

. k -
v • q = v • [- - (vP + p g z)] = 0 

ll . 
(3) 

The temperature shall satisfy the equation 

aT ( · -) C -::r = V · • A v T - TC q 
a~ w (4) 

Here C and Cw are the volumetric heat capacities for aquifer (matrix 
I 

plus water) and' water respectively. The thermal conductivity A.. includes 
a contribution from the grouild water dispersion. 

The convective heat flow is given by TCw q. The thermal velocity is 
c - w -

VT = C q ( 5) 

The thermal velocity represents the convective displacement of the 
temperature field. The total change of the temperature field is, at each 
time, a superposition of the convective displacement and a heat diffusion. 

The aquifer region is bounded by impermeable layers and injection/ 
extraction wel}s. At an impermeable boundary the perpendicular ground 
water flow component vanishes. The boundary conditions at the wells 
are determined by the mode ofoperation of the well. The temperature 
of injected water is given. Outside the aquifer region the ordinary 
heat flow equation prevails. 
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The pressure· distribution and the ground water flo~ pattern are 
coupled to the temperature field through the den:;ity p(T) and 
viscosity ~(T). At each time there is a ·certain temperature distribution 
through the aquifer. This temperature distribution and the boundary 
conditions at the wells determine the ground water flow. The temperature 
changes with time due to the convective and diffusive heat flows. The 
ground water flow pattern will gradually change with time due to the 
changed densities p(T). and viscosities ~(T) throughout the aquifer. 

The ground water flow at a given time is thus determined by the 
actual temperature field and the conditions at the wells. During 
storage periods without injection and extraction there is a pure 
buoyancy flow, which is caused by density variations of the water in 
the aquifer • The perpendicular ground water flow shall vanish at all 
boundaries. During injection and extraction periods there is a forced 
convection due to the pumping •. The natural convection due to buoyancy 

. is superimposed on the forced convection. 

The major concern in this paper is the motion of thermal fronts in 
an aquifer which is used for heat storage. The thermal front between 
the warm region and colder surrounding regions may be more or 1ess 
sharp and well-defined. The front is dis.placed by the thermal velocity 
field vT. Heat diffusion will simultaneously widen the thermal front. 

The motion of a thermal ·front is determined by the flow velocity 
vT or q at the front. The flow q is determined by the temperature 
distribution, which in turn essentially is given by the. posit:ion of the 
thermal front. \4e want to learn how the thermal front moves in various 
situations. Our task is then to determine the ground water flow for 
various, pertinent positions of a thermal front in the aquifer. 

There are two cases. The simpler situation is that of pure buoyancy 
flow during rest periods without injection and extraction of water. 
Then there is the more complex case of combined buoyancy flow and 
forced convection during loading and extraction periods. 

We will first discuss the simpler case of pure buoyancy flow and 
then the case of combined forced and natural convection. These 
discussions concern only the momentary ground water f1ow at a given 
time. The complete thermohydraulic process is simulated by the 
numerical computer code CCC developed at LBL. 
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Buoyancy flow 

The temperature field in the heat storage aquifer gives a variable 
water density and an ensuing buoyancy flow in the aquifer. We will 
in particular consider the situation, when the aquifer may be 
separated into a warm region (T=Tl) and a cold region (T=T0 ). These 
regions are separated by a thermal front zone, through which the 
temperature falls from T1 to T

0
• The idealization of an infinitely 

thin or sharp thermal front will also be considered. This is often a 
quite reasonable and useful approximation. 

The whole boundary is considered impermeable during periods of 
pure·buoyancy flow (no injection/extraction). The ground water flow 
shall tend to zero in free regions that extend to infinity. 

Figure 2 shows the type of situation that we have in mind. The 
aquifer occupies a semi-infinite horizontal strip. Warm water has been 
injected through the left vertical boundary. There is a warmer region 
with a vertical (A) or tilted (B) thermal front zone. 

A. B. 

Figure. 2. Vertical (A) or tilted (B) thermal front in an aquifer with 
injection through the left boundary. 

Figure 2 applies both to the plane and the cylindrical case. In the 
latter case there is rotational symmetry around the left vertical 
boundary, where the bore-hole lies. 
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The goal is to be able to quantify the motion of the thermal front 

due t~· buoyancy flow. It should be remembered that we discuss the 

momentary flow for a given temperature field at a certain time. 

The following observation is useful in order to understand the flow 

process. Let r be any cl.osed curve in the aquifer. The 1 ine integral 

along r of the gradient of the.pressure is automatically zero. Darcy's 

relation (1) gives then 

If ij • d~ = g.C-ii ·I p d~ 
r . r 

(6) 

The right-hand term represents a net driv~ng force due to density 

variations along r. The left-hapd side gives an integral of the 

tangential component of the flow q along,,r. The flow is weighted with 

the flow .resistance coefficient t . The right-hand side is known, when 
the temperature and hence the density field is given. The formula ·· 

provides some information on the magnitude of the flow velocities. 

Figure 3 shows a case when the curve r crosses a sharp thermal front. 

The density and viscosity on the warm and cold sides are denoted p 1, 

'1! 1 and p
0

., '~~o respectively. 

I 
I 

I 

Figure 3. Closed curve r in an aquifer .with a sharp thermal front 

(dashed line). 

The vertical distance between the two points where r crosses the· 

thermal front is denoted H. Then formula (6) gives: 

'~~1 · . - '~~o -
I"Kt-·.-dr+J"Kq. dr= (p0 -p 1) gH 
r1 r

0 

(7) 

6 

'"-.. 



Let Lr denote the arc length of r, and qr a suitable mean tangential 
component of q along r. Formula (7} may then be written: 

k (Po-p 1 ) g 2H 
qr = ll ·~ • C (8) o 1 r 

The first factor will appear often in the following. We will call 
it the characteristic flow q

0
: 

k(po -p1 )g 
qo = p

0
+ll

1 
(9) 

The buoyancy flow will tilt a thermal front. The rate of tilting 
is of great interest to us. ~/e need a quantitative measure. This 
cannot be a very precise concept, since the shape of a front is 
changing successively. The definition of a tilting rate is necessarily 
·arbitrary to some extent. 

Consider a straight thermal front line at a time t. Each point on 
the front is displaced a length vT dt during a small time increment. 
The norme~l displacement is vTn~dt, where vTn is the thermal velocity 
component perpendicular to th'e front 1 ine. See Figure 4A and B. Let· 
s, - ~ ~ s ::: ~· be the coordinate along the straight thermal front. 
The angular tilting rate, which wear~ about to define, is denoted wt. 
The front is tilted an angle wt dt during the time increment dt. The 
curved thermal front (Figure 4~) is to be approximat~d by an 
appropriate straight line (Figure 4C). The question is how to choose 
this line. A natural choice is to require that the straight line 
approximation 
the upper and 
flow: 

shall correspond to the same total water flow across 
lower halves of the front. ~et Qt denote this tilting· 

0 
qn (s) ds = - f qn (s) ds 

H 
(10) 

""'2" 
We assume that the net flow through the front is zero. The formula 
above should otherwise only include the deviation from an overall mean 
flow across the thermal front. The equal.· flow requirement is now: 

1 H H Cw z•z•z tan(wtdt) = r- Qt dt (11) 

See Figure 4C. 
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A. B. c. 

Figure 4. Definition of the angular tilting rate wt. 
A: Thermal front at a time t. 
B: Thermal front at a time t+dt. 
C: Linear approximation with the same flow. 

The time increment is small so tan(wtdt) = wtdt. We have then the 
following definition of tl'ie tilting rate: 

. . . 8 cw 
wt = ::2" • C Qt (12) 

H 

The tilting flow Q~ is the total water flow across the upper hal( of 
the straight thermal front. The ;;arne amount Qt passes in the other 
direction through the lower half of the front. 

Let us now briefly _discuss the effect of a linear scaling of the 
aquifer. Let the distances be multiplied by a factor ~. We assume that 
the temperature field is the. same (for corresponding points). Then we 
get a linear scaling of the pressure, but the flow intensity q is 
unchanged. We have: 

L + ~L p .. ~p 
1 

Wt + r Wt (13) 
T-.T q + q 

~Je note that the tilting rate is inversely proportional to the 1 inear 
dimensions. 
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We wi11 end this section with a brief discussion of the boundary 
conditions at a sharp thermal front. There are two fundamental 
requirem~~ts. The pressure P must be continuous at the front. The 
normal component of the water flow must also be continuous. This 
means that the tangential component of the flow usually is dis
continuous at the front. The normal component of the pressure gradient 
is also discontinuous. We take as an example a vertical sharp thermal 
front. See Figure 6. 

Figure 6. Vertical sharp thermal front. 

We have then 

(16) 

Analytical solutions 

.It is possible to derive explicit expressions for the pressure 
distribution and the buoyancy flow pattern in some idealized 
situations. These solutions are very instructive. They provide a good 
starting point for the analysis of the thermal stratification problems. 

Figure 7 A-F shows the considered cases. There is a warm region with 
the temperature r 1 and a cold one with the temperature T

0
• The density 

and viscosity are p 1, llt and p
0

, llo respectively. The permeability may 
for all cases except D be different in the horizontal (k) and vertical 
(k') directions. We will use the ~otation 

lk' 
K = VT 

9 
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. A. c. 

D. E. F. 

Figure 7, A-F. Considered cases w,ith anaJytical .solutions. 

· A: Infinite strip. 

8: Sem_i-iirfinite strip with impermeable left boundary. 

C: Semi-infinite strip with free flow in a weli ·along- the 

1 eft boundary. 

0: Circular disc. 

E: Cylindrical Ca$e. 

F:_ Infinite strip with thermal front thickness D. 

Case A is an infinite, plane aquifer with a sha .. rp thermal front. The 

height of the aquifer stratum i~ H. The expressions for .the: pressure· 

distribution and the flow field are derived in an appendix. The flow 

field is shown in figure 8~ 
., 
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The aquifer region is a plane semi-infinite strip in case B 
and C. There is a sharp, vertical thermal front. ·The warmer region to 
the left has a thickness L. The left boundary is impermeable in case 
B. There may be a well along the left boundary in which the water 
flows freely. In this case C the hydrostatic pressure P = -p1.gz 
prevails along the left, vertical boundary. 

In caseD the aquifer is a circular disc. The permeability must in 
this case be isotropic (K = 1). 

E is a case with cylindrical symmetry. The warmer region occupies a 
cylindrical volume with radius L. 

In case Fwe have a plane infinite aquifer. The thermal front has 
a thickness D. The viscosity must for this case be constant ll = llo = ll1• 
The density is p 1 in the warm region and p

0 
in the cold one. The 

density is assumed to increase linearlythrough the thermal front region. 

The analytical solutions for these cases are given in (31. The given 
expressions are of course only valid at the considered time with the 
given thermal front position. 

The motion of the thermal front is determined by the intensity of 
ground water flow across the front. Let z denote the vertical coordinate, 
and let z = 0 be the mid-point of our thermal fronts. The horizontal 
ground water flow across the front is denoted qf(z). This quantity is 
of first-hand interest to us. We have in the six cases: 

A. Infinite strip.· 

(18) 

B. Semi-infinite strip. Impermeable left boundary. 

4 oo (-)n sin (<2nH1hz] . - I Tn+T • ___ ___;~----
'If n=O n+ llo ll1 · ((2n+H1)m<LJ -- + -- coth -

ll1+llo ll1+llo 

(19) 
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c. Senil-.iilfinite strip~ Free vertical flow along the left bd~ndary. 

Sl·n [C2n+1 )nz] . ·. 4 • ... (-) n . A. 
qf(z) .= ~e q0 • ;r ~ .·Tn+T • JJ. JJ . (20) 

n-0 ___ o_ + __ 1_ • .tanh [C2n+~h~eLJ. 
JJo+JJ1 JJo+JJ1 

.- r, 
0~. Circul.ar disc. 

(21) 

E. Cylindrical case. 

(22) 

_ (2n+1)rr~el 
Yn - A 

··Here we have used the Modified Bessel functions Kn. and In. 

F. Infinite strip with diffuse therma 1 front. 0 
{ 2n+ 1 h~ez 

4.11>(-)n 1'-e A 
qf( z) = IC qo • 1T I rn+T • D 

n=O · ( 2n+ 1 )rr~e2 
• sin 

A 
The flow qf(z) refers to the middle of the thermal front region. For 

large# we have as a good approximation: 

(23') 

The flows· qf(z) are all odd functions of z •. Figures 9-14 show the 

therma·l front flow qf{z), 0 ::·z ::~ •. in d-Ifferent cases. The curves 

show·the dimensionless flow qf/(Kq
0

). The quot1ent of the visco~ities 
a = JJ/JJ 1 is an important p'arameter. l~e will use two values which 

cor~espond to the following temperatures: 

0 T 1 = 90 C 

T
0 

= 40°C 
a = 2.09 

Values for a = .will also be given for comparison. 

12 
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Figure 9. A: Infinite strip. 
0: Circular disc. 

{3=4.82 
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Figure 10. B: Semi-infinite strip with impermeable left boundary. 
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Figure 10'. B: Semi-infinite strip with im'permeable left boundary. 
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Figure 11. C: Semi~infinite strip with hydrostatic press~re along 

the left boundary. 
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left boundary. 
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Figure 12: E: Cylindrical case. 
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Figure 13: E: Cylindrical case. 
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Figure 14. F: Infinite strip with thermal front thickness D. 
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Figure 9 shows the tilting flow across the thermal front for the 
infi:lite strip. This curve is also indicated in the other figures for 
comparison. The tilting flow is diminished somewhat when the aquifer 
region is limited to the circular disc of case D. See Figure 9 . The 
left region with the temperature T1 has a width L in case B and C. The 
tilting flow does not differ much· from the infinite case A, when lf is 
greater than say 0.3. See Figures 10 and 11. The tilting flow of the 
cylindrical case E has the same character as the plane ~ase B. See. 
Figures 12, 13. It is clear from Figures 9-13 that the infinite strip 
case A is a good approximation for the tilting flow except for thin 
warm regions. 

Figure 14 shows the tilting flow for a vertical thermal front with 
a thickness D. The deviation from the sharp front case A is again rather 
small, when KO/H is less than say 0 .• 3. The flow increases linearly with 
z for large KO/H in accordance with formula (23'). 

We are particularly interested in the rate of tilting wt as defined 
by (12). We need the tilting flow Qt defined by (10). We have to 
integrate the flow qf(z) over the interval 0 ~ z ~ ~ . The integration 
of each term in the different series is simple. 

We get in case A: 

(G = 0.915 ••• Catalan's constant) 

The corresponding rate of angular tilting is: 

1 Cwqo 
• H vo = c-

We will use this tilting rate w
0 

as reference in the other cases. 
The corresponding tilting time t

0 
is: 

2 
1 HC 7r ( lJo +1J 1 ) 

to= w
0 
.=~ • 32G(p

0
-p

1
)g 

(25) 

(26) 

(27) 

The second factor to the right is a function only of the two temperatures 
T

0 
and T1 •. Let us use the temperatures 40°C and 90°C as reference. The 

temperatr:--~ influence on t
0 

is expressed by the quotient: 
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_ to(To,T1)~- JJ(To)+JJ(T_1l., p(40)-o(90) 
. n- £

0
(40,90) ~ p(T

0
)-pJT

1
) • ~(40)+JJ(90) 

The function n is shown in f{gure 15. 

The basic tilting time t may be written: 0 . . . 

t = n•HC • 1.2:10-G .o-- KCK-· . . w 

The numedc~l constant is .the_second factor of (27) taken for the 
0 0 

temperatures·_.T 0 = 40 C and T,: = 90 ~· " 

The tilting flow in case D becomes: 

Q .:.. 2 - R' -- q t ' 'If ,0. 
8 ·. . . 1 

(i)t = i . v 0- • -zR'. ' 
' . ,.{ . 

8 . 
(- !11 2.5) 

.'If . 

(28) 

(29) 

The tiltjng ,rate-;is thu_s ;r,educ.ed' in the proportion 2.5/J.O, when we 

go from the infinite strip (w:(th i = 1) to: the corresponding circular 

disc. 
. ~ .. 

The til:ting rate ~t/w~: is shown in fi gtires· 16, · 17 and 18 for 

. S = 4~82, 2.09 and 1.·0: respectively ·for different ~ituations. We note 

again that the deviation from the tilting rate w
0 

of the infinite strip 

is small, when -1}: is- greater ttian say 0.5. 

0.233. 170 

0.457 0.157 '150 

t
0

(T1,T
0

) 0.422 0.226 0.122 1_20 
Tl = t

0
(90,40) 

0;671 0.277 0.186 -0.118 90 

1.22 . 0.481 0.~67 0.197 0.135 60 · T ·{°C) 
. 0 . 

3.39 1 0.500 0.304 0.233 0.166 40 

7.14 2.62 1 •. 10. 0.617 0.398 !).313 0.228 20 

- - 33.3 6.49 2.80 1.28 0.741 0.488 0.385 0.284 to· 

81.3 24.2 6:45 2.96 1.40 \0.826 0.'546 0.435 o;322 5 

5 10 - 20 40 60 90 120 150 170 200 

T1 {°C) 

Figure 15. Tilting time function n(T1, To). See (27) and (28). 
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Buoyancy tilting criterion · 

We are now able to present a buoyancy tilting criterion or, to be more 
precise, a requirement in order to avoid substantial buoyancy tilting. It 
should be emphazised tflat the criterion is not too preCise. It should 
be regarded as an.order of magnitude guideline. 

let ty denote the time period of the storage cycle. For annual 
storage ty equals one year: ty = 31.5·:106 s. A reasonable condition is 
that the basic tilting time t

0 
shall exceed ty. A condition in order to 

avoid substantial buoyancy tilting is then 

t 0 > ty (30) 

From (29) we get the condition: 

K CW k . -12 
n C A < 0 • 04 ·1 0 (31) 

The permeability k shall be in m2 and H in m. 

The factor K depends on the ratio of the vertical and horizontal 
permeabilities in the aquifer accorcing to formula (17). The heat 
capacity quotient Cw/C is dimensionless. The factor n contains the 
dependence on the two temperatures T

0 
and T1• See Figure 15. The 

condition (31) imposes a rather severe limitation on the quotient k/H. 
Let us in particular pu't: 

c . 
w n = 1, ~e. = 1, c = 1.6 

Then we get as a rule of thumb: 

k 1 10-12 
H<2f0"• 

(32) 

(33) 

An aquifer with a permeability of 1 darcy (k ~ 1.0 ·10- 12 m2) and a 
height H = 40 m (and the temperatures T

0 
= 40° and T1 = 90° C) lies 

at the limit of the criterion. 

Formula (31) is a condition for the permeability. We shall give an 
alternative expression which instead contains a gradient of the driving 
hydraulic head. Let h (m/m) denote an appropriate mean gradient of the 
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drivtng hydraulic head during injection and e_xtraction periods. We 
also introduce a corresponding thermal displacement length Ly: 

k cw 
Ly = (llo+llt)/2 • pogh. y ty (34) 

The factor (1!
0

+\.1 1)/2 is. a mean viscosity in the aquifer during a cycle. 
The quantity Lyfty is the.thermal velocity, when there is a driving 
pressure grad.ient p

0
gh. The length LY gives the displacement of the 

thermal front for a pumping during the whole period t( 

Conditi_on (30) becomes with (34) a~d- (27): 

,..2 po-pt .. LY 
'1o"G" a! 0.7 > K • -- • liJT 

. Po 
(35). 

The criteria (30)~(35) are based on the tilting rate of a sharp, vertical 
front. Only pure buoyancy is influencing the tiiting rate. t~e will in the 
following sections discuss the more complicated. situation with a sloping 
th~rmal fron"t for which both buoyancy and forced convection influence 
-the tilting. 

Superposition of buoyancy and forced convection 

The ground water flow in th~ aquifer is a combination of forced and 
natural convection during periods of injection and extraction. One 
may af ea.ch time regard the flow as a combination of a pure buoyancy 
flow and a forced convection. 

The pure bu·oyancy flow has been discussed in detail. It is of the 
same character during injection/extraction and storage periods. It is 
at work all the time and strives to tilt the thermal front so that the 
warm water ends on top. 

The pure buoyancy part takes care of the density variations in the 
aquifer. The other part, the forced convection, is not influenced by· 
the density variations. Let Pb and P fc be the two contributions to the 
total pressure: 

P = Pb + Pfc (36) 

The two components satisfy the equations: 
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v • [~ (vPb + pg!)] = 0 (37) 

V • [~ VPfc] = 0 (38) 

The equations (37) and (38) are for simplicity written for the isotropic 
case. In the case with_ vertical anisotropy we have to use k' for the z
component in accordance with (2). 

The two equations (37) and (38) of the superposition (36) have 
different characters. Equation (38) for Pfc is linear. The pressure Pfc 
and the corresponding forced-convection flow are proportional to the 
magnitude of the injected and extracted water at the bounda~y wells. 
Equation (37) for Pb has a source term from the variable density. The 
pressure Pb and the corresponding buoyancy flow is proportional to the 
driving density difference p

0
-p 1 between the cold and warm regions. 

We .are particularly interested in the case of Figure 19. The aquifer 
occupies an infinite, plane strip. The sharp thermal front is tilted an 
angle B. A volume Q1 (m3/s,m) of water is pumped through the strip from 
left to right. 

Figure 19. Aquifer strip with tilted thermal front. The volume Q1 of 
water is pumped through the strip. 

The volumetric ground water flow q has two components: 

(39) 

The forced-convection part qfc is the solution of (38). The flow is 
constant and horizontal (qfc + Q1/H·I) in the undisturbed regions far 
away from the front to the right and to the left. The buoyancy part qb 
is the solution of (37). It becomes zero far away from the front. 
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A dimensional analysis will be of great use in the following. The 
dimensionless coordinates are X/H and z/H. The tilting angle a, the 
viscosity ratio B=ll/ll 1, and the permeability quotient K=M are 
independent parameters. We may write: 

(40) 

(41) 

The characteristic buoyancy flow q
0 

is defined by (9). The flows q' and 
q" are dimensionless. It is not difficult but rather lengthy to show 

. ._ 

that they only depend on the five given parameters. 

We need a definition of the tilting rate for the sloping thermal front 
of Figure 19. Consider a vertical cut through the mid-point of the thermal 
front. Let Q+ and Q_ denote the flow rate over the upper and lower halves 
of the vertical cut. We have: 

The tilting flow is then: 

Q+-Q
Qt = -z-

Q++Q_ Q+-Q
Q+ = -z- + -z-

Q++Q_ Q+-Q
Q_ = -z-- -z-

(4i) 

Let da be the change of tilting angle during a time increment dt. Consider 
the two triangles between the thermal front and the vertical cut. The area 
of these congruent triangles increases, when the tilting angle changes 
from a to a+da. Heat balance gives: 

or 

(43) 

The tilting flow Qt has in general a component Qbt from the buoyancy 
flow and a component Qft from the forced convection: 

(44) 
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The two components are obtained from (40) and (41). l~e shall integrate 
over the upper (or lower) part O~z~H/2 for x=O. We get immediately: 

Qbt = qoH • fbt (a, a. K) 

.Qft = Q1 • fft (a, 6• K) 

(45) 

(46) 

The two functions fbt and fft depend only of the dimensionless parameters 
a, 6, and K. 

The forced tilting is zero for a vertical front a=O. We· have from 
(25): 

(47) 

The variation of tilting angle with time is determined by (43) to (46) 

for the present case of a sharp front in an infinite aquifer strip. We 
need to know the two functions fbt(a, s, K) and fft(a, s, K). We will 
in the following section. show that they are related to each other by a 
simple formula. 

Stable front solution 

Consider again our plane, infinite strip with a sloping thermal front as 
shown in Figure 19. 

Let us investigatei if ft is possible to have a constant, ·horizontal 
flow along the aquifer. Ue assume 

- Q1 . 
q=lfx (48) 

This simple flow is assumed to prevail throughout the aquifer strip. 

We use the coordinates (x, z) of Figure 19. The pressure in the warm. 
region must satisfy: 

Q1 k aP 
qx = H = - \i1 ax (49} 

k' aP q = 0 = -.-- (-- + p1g) z ~ 1 az (50) 
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See (2). The pressure is then, except for an integration constant: 

11 1Q1 
P = -p 1 gz - ""K1r x (51 ) 

In the cold region to the right we have in the same way: 

11oQ1 
P = -p 0 gz - IUr x (52) 

The thermal front is given by x=tan(a)•z, -H/2<z<H/2. The normal 
component of the flow and the pressure must be continuous at the front. 
The flow is constant. The remaining requirement of continuous pressure 
at the front gives with (51) and (52}: 

11 tQ1 11oQ1 
-p 1 gz - ~·tan(a)z = -p

0
gz -~ tan(a} z (53) 

or with (9}: 

qoH B+t 
tan(a) = - -o- • B=T 

1 
We have, when (54) is satisfied, the simple horizontal flow (48}. 

(54) 

The tilting angle of formula (54) is negative, when the forced flow 
Q1 is positive. Figure 20 illustrates the physical situation. The 
buoyancy flow rotates the front clockwise (p 1<p ). The forced convection 0 . 

displaces the front downstream. The viscosity is smaller to the left 
(p1<JJ

0
). The flow in the lower protruding warm edge is enhanced. 14ore 

water passes the lower half than the upper one. This gives a counter
clockwise rotation of the front. The buoyancy and forced-convection 
effects oppose each other, when the tilting angle is negative. The two 
effects balance, when the an9le a satisfies (54}. 

Figure 20. Clockwise ~ntation due to buoyancy flow (left, p1<p
0
). 

Counter-clockwise rotiticn due to forced convection (right, 

11 t<IJO) • 26 



Forllllla (54) may be used to deduce a relation between the two tilting 
functions fbt and fft of formulas (45) and (46). Consider a certain case 
when, except for Q1, all variables a, B, "·' q

0 
~nd so on are given. Let us 

choose the pumping rate Q1 so that (54) is satisfied. The flow is then 
ghen by (48). The thermal front will be displaced downstream, but it will 
not be rotated. The tiiting flow Qt is zero. We have with (45) and (46): 

qoH B+1 
Qt = q0H·fbt(a, B, K) + (-) tan{a)"a=T fft(a, 6, K) = 0 (55) 

The value of Q1 from (54) has been inserted. 

From (55) we get the remarkable formula: 

( ) 1 B+1 ( · ) fbt a, B. K = tan{ara=r·f ft a, B. K (56) 

The formula is of course valid for any values of a, B, and"· 

The function fft(a, B, K) will be computed numerically below. The 
buoyancy flow function fbt is obtained from (56). ~le will in the next 
paragraph analyse the effect of vertical anisotropy before the function 
fft is computed numerically. 

Effect of vertical anisotropy 

The permeability k 1 in the vertical direction may differ from the 
permeability k in the horizontal directions. See formula 2. It is ho\'1ever 
possible to transform an anisotropic case to an isotropic one. 

We start with a case with the permeabil ities k and k 1 • The quotient 
K = /k 1/k differs from 1. In· aquifer applications one often has K<l. He 
have the coordinates x, y, and z, the pressure distribution P and the 
flow q = (qx, qy, qz). 

The horizontal coordinates are contracted with the factor K. The new 
system has the coordinates: 

X1 = KX. yl = KY Z 1 =· z (57) 

Let us consider the following ground water flow problem in the new 
coordinates. The pressure in corresponding p~ints are unchanged. The 
flow in the horizontal plane is increased LY the factor 1/K, while 
the vertical flow is increased 1/K 2 : 

27 



P'(x', y•, z') = P(x, y, z) 

The new flow q• satisfies the mass conservation equations (3), 

aq~ aqy aq~ 1 a 1 1 a 1 a 1 
ax' + ay' + W =·K' ax (K' qx) + iC ay (iC qy) + li <7 qz) 

= ~ V•q = 0 
IC 

The Darcy relations for q• become from (58) and (2): 

q• = .!~~ = 
x " JJ ax 

k aP' 
--·~ JJ ax 

• 1 -k aP k aP' 
q = --·- = - -""";;"-T y " JJ ay JJ ay 

, 1 -k' ( aP ) q . = -::z- - + pg = z " JJ az 
k aP' 

- - ( -;;-::-r + Pg) 
JJ az 

(58) 

since: 

(59) 

(60) 

The new ground water flow problem has the isotropic permeability k. 

We have the following result. Consider a certain ground water flow 
problem with a vertical anisotropy. Let the horizontal lengths be 
contracted by the factor K. The pressure distribution is unchanged. 
The horizontal flows are increased 1/K and vertical flow 1/K2 • Then the 

. new flow problem has the isotropic permeability k. Hhen applying this 
in a certain case one has to pay particular attention to the boundary 
conditions. 

The result may also be expressed in the following way. Suppose we 
know the flow pattern for a certain isotropic problem with horizontal 
lengths KL 1, KL2 and so on. Let qx, qy, and qz be the flow components. 
Then there is a solution to the corresponding anisotropic case (K=M) 
with the extended horizontal lengths L1, L2 and so on, which has the 
flow components KQx' KQY, and K2qz. 

We will apply this for our case with a sharp thermal front in a plane, 
infinite aquifer with vertical anisotropy. The front is tilted an angle 
a. We can transform the problem to an isotropic one by a horizontal 
contraction K. This means that the tilting angle changes to a new value 
a' according to 

tan(a') = K tan(a) {61) 
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Let us first treat the buoyancy tilting (Q1=0). 'The tilting flow of 
the original problem is from (45): 

(62) 

The boundary conditions are that the normal flow is zero at z=±H/2 and 
that the flow vanishes· far away from the front. The boundary conditions 
are directly fulfilled in the transformed problem. The tilting flow is 

(63) 

But we also have that the horizontal flow is enhanced by 1/K: 

(64) 

From (62)-(64) we have the important relation: 

(65) 

This relation gives the effect of anisotropy on the buoyancy flow. From 
(56), (61), and (65) we have for the forced convection: 

(66) 

The K-factor of (65) does not appear in this case. Formula (66) could 
also have been derived directly in the same way as (65). One must then 
remember the boundary condition with given pumping rate Q1• 

The two functions fft(a, B, K) and fbt(a, B, K) are now reduced to one 
unknown function fft(a, B, 1). The two remaining independent variables 
are the tilting angle a and the viscosity ratio a. The following section 
is devoted to a study of fft(a~ B, 1). 

·Forced-convection tilting 

The partial differential equation for the pressure Pfc for the forced
convection component is 9iven by (38). ~Je consider only the isotropic 
case K=1. Figut:'e 19 shows the plane, infinite aquifer strip with a 
sharp, sloping thermal front. There is a constant horizontal flow Q1/H 
in the undisturbed aquifer far away from the thermal front. The vertical 
component of the flow. is zero at the horizontal boundaries z=±H/2. 
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The pressure distribution·Pfc and the flow pattern have been computed 
numerically with the use of forward differences. A mesh with about 3000 
points has been used. Figure 21 shows the type of flow pattern that we 
get. 

Figure 21. Ground water flow pattern for forced convection in an aquifer 
strip with a sloping thermal front. 

The tilting angle of the thermal front is a. The viscosity is lower in 
the warm region to the left {~ 1 <~0 ). The flow resistance is smaller in 
the warm upper part around the thermal front.-The flow becomes stronger 
in the upper half, and we get a tilting flow as shown in Figure 21. 

The tilting flow Qft is defined by {42). The forced-convection tilting 
function is from {46): 

{67) 

Here Q1 (m3/m,s) denotes the total volume of water that is pumped along. 
the aquifer. 

The numerical calculations have been made for two viscosity ratios. 
The value ]=2.09 is obtained for T1=90°C and T

0
=40°C, while B=4.82 is 

obtained for T1=90°C and T0=5°C. The calculations were made for several 
angles a. Table I shows the result. 

a 

00 15° 30° 45° 60° 75° 90° 

2.09 0 .033 .067 .099 • 131 • 158 • 176 

4.82 0 .061 .125 .189 .251 .302 .328 

Table I. The function fft{a, B, 1) which gives the tilting flow as a 
function of the tilting angle a and the viscosity ratio B. 
Isotropic c~£e ~K=1). 30 
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The function fft is zero for a vertical front (47). We get the 
derivative with respect to a, if we take the 1 imit a-+0 in (56). \~e 

get with the use of (47): 

afft(O,B,1) 4G B-1 
a a = 7 · B+ 1 ( 68) 

The limiting case with a horizontal front (a=90°) is simple. The flows 
in the upper and lower halves are inversely proportial to the viscosities: 
Q/Q_ = Y/ll1• From this we get: 

( o ) 1 B-1 
f ft 90 • B. K = I . B+T (69) 

The tilting rate formulas in the following section will contain the 
quantity: 

1r
2 1 B+ 1 ) 

4ir • tan(a) • a=T • f ft(a, B, 1 (70) 

In figure 22 we have plotted this expression from the values of table I. 
We have chosen s=tan(a) as independent variable . 

• : fJ•4.82 

••••• 
• : fJ. 2.09 

G.5 

0 ~~~~~~~·---4+~----~8~~----------------~~~·~ 
0 2 :s 4 

••t•ruat 

Figure 22. The quantity (70) as a function of s=tan(a). The full line 
gives the basic tilting function ft(s). 

~le see that the points for the two values of B 1 ie very close to each 
other. It is reasonable to approximate expression (70) with a single 
curve. We have with very good accuracy: 

( ) 4G B-1 ( ) fft a, B, 1 = ;z tan(a) B+l • ft tana (71) 

We will call ft(s) the basic tilting function. It is shown in figure 22. 
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From the basic tilting function we get with formulas (71), (66), (61), 

and (56) the two tilting functions fft(a, a, K) and fbt(a, a. K). 

The value ft(O} is obtained from the derivative of (71} with respect 
to a at the point a=O. We have with (68}: 

(72) 

The asymptotic value of ft(s) for large s is from (69} and (71} of the 
form w2/(8Gs). The dashed curve in Figure 22 shows this asymptot. We note 
from the figure that ft(s) is linear in the interval 0<S<2. We have with 
good accuracy: 

ft(s) ;; 1-f1·s 

f1 = 0.235 

The function ft(s) is given in table II. 

0 0 15 30 45 60 a 

s=tana 0 0.268 0.577 1.000 1. 732 

ft(s) 1 0.937 0.864 . 0. 765 0.593 

Table II. The basic tilting function ft(s}. 

Tilting rate f01·mula 

(73) 

75 90 

3.732 "' 

0.329 0 

We are now in the position to give a relatively simple formula for the 
tilting rate .of--the.thermal front. The discussion in the present section 
concerns the case shown in Figure 19. 

We have an infinite aquifer strip with ~ sharp thermal front. The 
tilting angle is a function of time: a=a(t). The aquifer may exhibit a 
vertical anisotropy (K#1 ). The total forced-convection fl0\'1 along the 
aquifer is Q1• The value of Q1 may be positive, zero, or negative. The 
combined effect of buoyancy and forced convection is considered. 

The effects of the diffuseness of the thermal front, of a vertical 
left boundary at finite distance from the front, and of cylindrical 
symmetry instead of the present plane case are not included in the 
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present considerations. An approximate treatment of these additional 
complications are given in a following section. 

The equation for the change of the tilting angle is given by (43). 
The tilting flow is obtained from (44)-(46). The two tilting functions 
fbt(a, a, tc) and fft(a., a, tc) are connected to each other through (56). 
The anisotropy dependence is given by (66) and (61). Finally we get 
with the use of (71), the basic tilting function ft(s)~ 
tilting time t (27) the following equation for a(t): 

0 

d 1 · · [ Q1 a-1 · } at (tana) = t~ ft(tctana)• 1+ qoH"e+l tana 

Let us use the variable 

s = tctan(a) 

We also introduce the parameter: 

Q1 e-1 
Y = "qoR"B+f 

and the basic 

(74) 

(75) 

(76) 

The quantity y is a measure of the forced-convection flow Q1/H compared 
to the characteristic buoyancy·flo~>~ q • If we insert (9), we have . 0 
instead: 

Q1 llo-ll1 
Y = iCKgH" Po-p 1 

· Using the characteristic tilting time (27), we have: 

32G B-1 Q1Cwto 
y = -;z·m H2C 

(77) 

(78) 

The last factor of (78) has the· following physical interpretation. The 
horizontal volumetric flow is ·Q1/H. The corresponding thermal velocity 
is Q1Cwf(HC). The thermal front is displaced a distance Q1Cwt/(HC) 
during the characteristic tilting time. The last factor of (78) is 
therefore the quotient of this displacement and the height H of the 
aquifer strip. 

~le may write (74) in the follwing way: 

~ = ~ ·ft(s)(1+ys) 
0 

(79) 

The basic tilting function ft(s) is given by Figure 22 and Table II. ~le 

note that the tilting s = Ktan(a) is a function of.the dimensipnless time 
tct/t

0
• There is only one parameter y. 
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Equation (79) is solved in the following way. Formula (79) may be 
rewritten: 

ds ~e 
ft(s)(t+ys) = t

0 
dt (80) 

We introduce the following integral: 

s ds' 
S(s,y) = f t (s')(l+ys') 

-0 t 
(81) 

The variable s_ is positive: O~s<oo. The parameter y may assume any value: 
-ca<y<ca. The integrand becomes, for negative y, infinite, when s'=-1/y. 
The integral is infinite for s=-1/y. \~e get one curve for O~s<-1/y and 
another one for -1/y<S<w. See Figure 23. 

We can use approximation (73), when O~s~2. The integration of (81) is 
then elementary. We have: 

1 S(s,y) = ~ • y+T1 

(f1 = 0.235) 

1 n( l1+ys I 
1-f1s 

0<S<2 

Expression (82) is not defined, when y=-f1. Then we have by direct 
integration: 

S(s,-f1) = ~ 
1 

The function S(s,y) is shown in Figure 23. 

••Je tan a 

(82) 

(82') 

}'=-0.5 

}'=-1 

~===========------ }'=- 2 

~----------------------------------------}'=-5 

0 2 

Figure 2';· The function S(s,y). See (81) and (82). 
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The solution of (79) during a period with constant y is with (80) and 
(81) given by: 

~e(t2-t1) 
S(s2,y) - S(s1,y) = t 

0 

s2 ~ s(t2) s, = s(t1) 

(83) 

The tilting s = Ktana will follow the curves of Figure 23. Figure 24. 

illustrates what happens during a storage cycle. 

s=ol'tan a 

}'=1 

0 .. -injection storage 

}'=0 

1 

extraction 

2 

v=-1 

ol't 
S ls.pl- to 

Figure 24. An example of tilting angle variation a(t) during a storage 
cycle. 

We have an injection period with y=1. Then there is a storage period 
with y=O. During the extraction period we take y=-1. Figure 24 shows the 
three curves S(s ,y) from Figure 23. t~e start at t=O with a vertical 
front: s=O. During the injection period we follow the curve S(s,1). The 
tilting s1 at the end of the injection period is determined by the 
injection time. During the ensuing storage period we follow the curve 
S(s,O). We start from s=s 1• The tilting s2 at the end of the storage 
period is obtained from the given storage time. During the subsequent 
extraction period we follow the curve S(s,-1 ). ~le start with the tilting 
s2• The final tilting s3 after iniection, storage, and extraction is 
obtained from the given extraction time. 
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Figure 25 illustrates what may·happen when we increase the injection, 

storage, and extraction periods. 

II• Jl' tan (a) 

2 

'' 
0 ; injection 

: extraction 

• storage 

----- ----- P•-1 

3 
Jl't 

S (s.y)- T. 

Figure 25. An example of tilting angle variation a(t) during a storage 

cycle. 

The three curves S(s, 1), S(s,O}, and S(s,-1) are again shown from Figure 

23. The extraction curve S(s,-1) has two branches. The tilting s 2 after 

the injection and storage periods is greater than s=1. So we must follow 

the upper branch of S(s,-1). 

The tilting angle increases during the extraction phase in our first 

example shown in Figure 24. It decreases in the second example of Figure 

25, when the extraction starts, with a tilting s2>1. The tilting s moves 

toward the asymptotic value -1/y during the extraction phase. The upper 

decreasing branch is followed, when the initial tilting s 2 is greater 

than -1/y. The increasing lower branch is followed, when the initial 

value s2 is smaller than -1/y. At the 1 imit we have with the use of (76) 

-1 "qoH 8+1 
s = Ktan(a) = -- = ~·~ (84) 

y -~1 B-• 

This is precisely the condition (54) for a stable front. The flow is 

horizontal and constant throughout the aquifer (48). 

\~e will end this section with some explicit formulas for the tilting 

angle a(t). ~le assume that 0::5s::52, s=Ktan(a), so that (82) is valid. 
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Our first case concerns the pure buoyancy tilting of an initially 
vertical front. We have: 

y=O a(O) = 0 

-From (75), (82), and (83) we get: 

tan(a(t)) = 
1-e-f1Kt/to 

Kf1 

(85) 

(~<:tana < 2) (86) . 

Our next case concerns an injection period with a positive y. The 
thermal front is again initially vertical: 

' . 
y>O, a(O) ;. 0 

Then we have from (82) and (83): 

1 1_e-(y+f1}Kt/t0 
tan (a ( t) ) = - • ...:.__:=---.--,.-..,--,.-rr

" f1+ye-(y~f1)Kt/to 

Tilting criterion for the injection period 

(87) 

(Ktan(a) < 2) (88) 

The tilting of the thermal front during the injection period of the heat 
storage cycle is critica~, since buoyancy and forced convection 
contribute cooperatively to the tilting rate. We can from the formulas 
of the preceding paragr~ph give·a criterion which ensures a moderate 
tilting. 

The formulas concerned a sharp front in a plane, infinite aquifer 
strip. Effects of the diffuseness of the front, of the finite distance 
to the injection well, and of cylindrical symmetry are not included. 

Let the injection period be O<t<t .. The thermal front is vertical at 
- - 1 ' 

the beginning a(O) = 0. Let Y; be the injection parameter (76) for Q1=Qi. 
The tilting angle a 1=a(t1} at the end of the injection period 1s given 
by (88). 

Let us require that the tilting angle a 1 becomes smaller than 45°. We 
have the criterion: 

0 a; < 45 tan(a1) < 1 

We have \'lith (88) the condition: 

(89) 
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1 1-e-(y;+f1)Kti/to 
K • f1+y;e-(yi+f1)Kti/to < 1 (Ktan(ai) < 2) 

This may be rewritten to the following inequality: 

ti 1 1+ylK 
r- < • ln <~> (~e<2) (90) 
~0 K(f1+yi) I-T11C 

The criterion {90) ens'ures that the tilting angle a1 at the end of the 
injection period is less than 45°. The characteristic tilting time is 
given by (27). The permeability ratio is k'/k=K 2 • We have that t 1=0.235 
(77). The injection parameter is given by (76) with Q1=Qi. 

Figure 26 illustrates the criterion (90). The region below the curves 
gives a moderate tilting during the injection phase (ai<45°). 

0.5 

L- Injection lilting 

.. , > 4</ 

.11'·0.25 

o L-.... ___ __.._ ____ _._ _____ ..__ ___ _.... ____ r, 
0 2 :s 4 

Figure 26. Injection tilting criterion(90). 

Let us illustrate criterion (90) in a more specific situation. ~le 

take: 

I( = 1 ti = 3 months CJC = 1.5 (91) 

Then we have from (29) and (77): 

t; k 
- =- • A t

0 
H 
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The coefficients A and B depend only on the temperatures T
0 

and T1• 
Formula (90) gives an inequality between k/H and Qi/(kH). The resulting 
curve for the limit with a.=45° is given in Figure 26' for four injection 

1 ' 
temperatures. 

l.-. Injection IIIII .. 

a,> 41• 

-=~------~T~,-~,2~(c~---------
-... Injection tilting 

cr1 < 45• 

0 ~--------~--------~--------~--------~-
0 2 

or to"' 
kH 

4 

Figure 26'. The injection tilting criterion (90) in the special case of 
(91). The region below the curves gives an injection tilting a1<45°. 

Calculation of tilting angle 

Formula (74) for the time development of the tilting angle concerns a 
sharp thermal front in an inifinite, plane aquifer. The previous 
analytical solutions for the buoyancy flow with a y~r!i£!!! thermal front 
included the additional effects of a diffuse thermal front, of a finite 
warm region, and of cylindrical symmetry. The influence of these three 
effects on the tilting rate is shown in Figure 16 and 17. We will in 
this section use these results to give an approximate formula for the 
tilting rate, when these three complications are taken into account. 

Let us first discuss the modification of (74), when the diffuseness 
of the thermal front is considered. The temperature is T1 on the warm 
side of the front and T

0 
on the cold side. The temperature falls from 

T1 to T
0 

over the diffuse front. Let D denote the thickness of the front. 
This 0 is ·of course not a very precise quantity. It will increase w·:"~ 

time due the heat diffusion: D=D(t). Dispersion effects for the flow'ing 
ground water may enhance the heat diffusion co,nsiderably. 
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Curve F in Figures 16-18 shows how the tilting rate is reduced, when 
the thickness 0 of the vertical thermal front increases. The dimensionless 
independent variable is KD/H. Let us denote this function f0(K0/H). It 
does not depend on the viscosity ratio. It is reasonable to assume ,that 
the buoyancy tilting is reduced approximately in the same way for a 
vertical and a tilted·thermal front. The forced-convection contribution 
to (74) is kept unchanged. Formula (74) is now, when the diffuseness of 
the thermal front is taken into account in this approximate way, replaced 
by: 

d 1 [ KD Q1 a-1 ] at (tana) = to ft(Ktana)• f0(H) + qoH"a+l tana (92) 

The function f0(KD/H) is given by curve F in Figure 16. The thickn~ss of 
the thermal front O(t) is a given function of time. 

We will use the one-dimensional solution for the heat diffusion in a 
case with an initially sharp temperature step. Let the temperature at 
the start t=O be T1 for -=<X<O and T

0 
for O<X<=. The temperature T(x,t) 

is given by the complementary error function erfc: 
T -T 

T(x,t) = T
0 

+ ~ erfc(
1 

x ) (93) 
c. • 4At/C 

The thermal conductivity A may have a considerable contribution from 
the dispersion that is associated with the ground water flow. Let A

0 
be 

the thermal conductivity in the aquifer, when the ground water is at 
rest. The total thermal conductivity may be written: 

(94) 

We are here only presenting a simplified description of the complicated 
dispersion phenomenon. The absolute value of the thermal displacement 
velocity is vT = qCwfC. The dispersion is characterized by the parameter 
t. It has the dimension of a length. In a homogeneous aquifer i is of 
the order of the grain size. In an inhomogeneous aquifer there is a 
macrodispersion. The length i of (94) is then associated with the linear 
distances and dimensions of the inhomogeneities. 

It is clear from character of the argument of erfc in (93) that the 
thermal zone width D increases as V4At/C. We have taken: 

(95) 
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The thermal conductivity is obtained from (94). A suitable mean value 
for vT at the thermal frontis used. The value of x changes when vT is 
changed. In such a case we take as a generalization of (95): 

t 
o2 + 

64 • I x(t') dt' 
0 iTC 0 

D(t) = (96) 

Here 0
0 

is the. thickness of the thermal front at the starting time t=O. 

Our next modification concerns the effect of the finite thickness of 
the warm region. We will consider both the plane and the cylindrical 
case. Our previous analytical solutions gave the effect for a perfectly 
vertical front. See Figure 7 B and E. 

The effect on the tilting rate is shown in Figures 16 and 17 for two 
values of the viscosity ratio a. Curve B refers to the plane case and 
curve E to the cylindrical one. The relative tilting rate is given as a 
function of KL/H, where L is the thickness of the warm region. Let us 
denote this function f8(KI.JH,a). 

Let Q(t) be the rate of injection of water. ·we define L in the plane 
case and in the cylindrical case in the following way: 

t c -~~t') 
L(t) = L(O) + f wCH . dt' [plane) 

0 
t c Q(t') 

L2(t) = L2(0) + 1 I w dt' (cylindrical) 
• . 1r 

0 
CH 

(97) 

In the linear case Q is the volumetric flow per unit width of the 
aquifer (m3H20/ms). The distance L gives the width of the warm region, 
if the flow were perfectly horizontal. In the cylindrical case Q is the 
total injection rate (m3H20/s). The lenth L(t) is then the radius·of 
the warm cylindrical region around the injection well. 

The reduction of the tilting rate ·because of the finite width L was 
given by the function f8(KL/H,a) for the buoyancy flow of a vertical 
front.It is a reasonable first approximation to assume the same reduction 
in our more general case with a tilted thermal front of finite width. 

We have now ~e following approximate expression for the tilting rate, 
when the effect of the boundary is considered: 

d < > 1 < r KD Q 1 a -1 ] KL Cit tana =toft Ktana)[fD(H) + qoH"S+T tan<i ·fs(H,a) (98) 

41 



This is our final expression for the tilting rate. 

The characteristic tilting time t
0 

is given by (27). The characteris
characteristic tilting flow q

0 
is defined by (9). The function f0 is 

given by curve F in Figure 16. The width of the thermal front D(t) is 
given by (94) to (96) •. The function f8 is given by curve B (plane case) 
or curve E (cylinddcal case) for two values of s in Figures 16-17. The 
length L is given by (97). 

A numerical solution of (98) is simple. The integration is performed 
with small discrete time steps. The injection rate Q(t) is any prescribed 
function of time. It is zero during storage periods ·and negative during 
extraction periods. The computer code for the numerical solution of (98) 
is reported in [ 4 J • 

Let us end this paragraph with an example. ~le take a plane aquifer 
with the following data: 

H = 20 m 

0 r1 = 90 c 

~ = 1.5 J/msK 

-11 2 k = 1.0·10 m 2 
K = 1 

6 3 
C = 2.5·10 J/m K. 

3 
p

0 
= 997.8 kg/m 

p 1 = 965.6 kg/m3 

R. = 0.6 m 

-3 
~0 = 1.002·10 kg/ms 

~ 1 = 0.3113·10-3 kg/ms 

(99) 

We consider an injection period ti with an injection rate Q1 followed by 
a storage period of the same length: 

6 ti = 10 s = 11.6 days 

-3 3 Qi = 0.2·10 m H2o;ms 

The characteristic buoyancy flow and the characteristic tilting time 
become: 

. -6 
q

0 
= 2.41·10 m/s t

0 
= 19.7 days 

The distance L after the injection period becomes (97): 

L(t.) = 15.8 m 
1 
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The forced-convection tilting parameter becomes: 

y = 2. 18 

Figure 27 shows the time development of the tilting angle a under 
different assumptions. 

Let us first consider the pure buoyancy flow of an initially vertical 
thermal front during a period ti. Curve A shows the result for a sharp 

. thermal front. Formula {74) with Q1=0 has been used. Curve B shows the 
same process, when the effect of the diffuseness of the thermal front 
is included. Formula {92) with Q1=0 has been used. 

The curves C-F show the tilting angle during the injection and 
storage periods. The curve C is computed without the modifications for 
a diffuse front and a left boundary. Formula {74) has been used during 
the injection and storage periods. The curve D includes the boundary 
modification. Formula {98) with f0=1 has been used. The curve E shows 
the tilting when the effect of the diffuseness is included. Formula 
(92) has been used. Finally, the curve F shows the result when both 
modification are considered The full formula {98) has been used. 

fl)' 
INJECTION 

a 

~· 
INJECTION 

BOU.'IDAIIY 

40° 

~ 

20' 

tO' 

o' 
0·101 1-101 2·101 

n.e 23.2 DAYS 

Figure 27. Tilting angle variation for the example of {99). The curves 
A-F·refer to different assumptions. 
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The correction for the left boundary is illustrated if we compare C 
with D and F. There is a clear effect in the beginning, when KL/H is 
small. The effect is negligible when KL/H exceeds say 0.5. 

The effect of the diffuseness of the thermal front is illustrated, 
when we compare A with B and C with E. The difference is considerably 
greater for the latter case. This is due the dispersion assumption (94). 
We had in case A and B: 

A= 1.5 J/msK 

In case C-F we took during the injection phase: 
6 . -3 

v - 4.1•10 • 0.2·10 = 1.64·10-5 m/s 
T - 2.5•106 20 

A= 1.5 + 0.6•1.64·10-5•2.5·106 = 26 J/msK 

Comparison with computer.simulations 

The main objective of this chgpter is to study the validity of the 
assumptions made when deriving· the analytic~l expression for the 
tilting rate (98). The following major assumptions were made. 

a) Compressibility effects are negligible • 

b) The curved thermal front is approximated by an appropriate straight 
line. 

c) The diffuse front is represented by a zone with linearly varying 
density. 

d) The analytical corrections for a diffuse front and for the effect of 
the well close to the front are valid even when the front is non
vertical. 

e) The diffuse front does not reduce the forced-convection tilting rate. 

A suitable way to test these assumptions is to utilize a numerical 
model of the aquifer system. The simulations have been performed with 
the computer code CCC developed at Lawrence Berkeley Laboratory. This 
code which encompares conduction, convection and compaction has been 
validated against a number of semi-analytic solutions and. against the 
Auburn field experiment [5], [6] . The computer time expended to 
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simulate this problem puts some restrictions on the mesh size used in 
the numerical model. The treatment of the transport equation using 
finite difference methods (or finite element methods) introduces a 
spurious increase of the diffusion process. rhe character of the 
numerical dispersion tensor is such that it may be used to account for 
the effects of macrosGopic dispersion f71. In our simulations this 
numerical dispersion is equal to an additional thermal conductivity of 
about 15.0 J/msK during the injection period. 

The simulations are performed with the following basic data for the 
plane aquifer: 

Density of the solid 
Specific heat of the solid 
Thermal conductivity of solid-liquid mixture 
Specific storage of the porous-media 
Thermal expansivity of water 
Specific heat of water 
Height of aquifer 
Porosity 

In the reference case we use: 

Mass injection rate 
Injection temperature 
Ambient temperature 
Permeability 
Permeability ratio 
Injection period 
Storage period 

2~5-103 kg/m3 

0. 9··103_ J/kg' 

1.5 J/msK 
0. 5 • 10-4 m2 /N 
0.317·10-3 K- 1 

4.1·103 J/kg 
20 m 

0.25 

0.2 kg/ms 
0 T1 = 90 C 

T = 5°C 
0 -11 2 k = 1.548··10 m 
2 

IC = 1.0 
6.5·105 s ~ 7.5 days 
6.5·105 s ~ 7.5 days 

The aquifer is penetrated by three wells. Two wells are situated on· 
opposite sides of a central well. The system is symmetrical with respect 
to a plane through the central well. This means that we only have to 
consider one half of the system. The distance between the wells is 300 
meters. 

Figure 28 shows the computed temperature field when the high 
permeability value k = 1.548·10-10 m2 has been used. The temperature 
fields at the end of the injection period(Figure 28a) and at the end of 
the storage period (Figure 28b) are given. 
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m 

m 

m 

Figure 28a. Temperature field at the end of the injectio:1 period (7 .5 

days). The permeab i1 i ty is 1 • 548 ·1 o- 1 O ~z. 

m 

Figure 23b. Temperaturefi~ld at thP. end of the storage period (15 days). 

The permeability is 1.548·10- 10 m2• 
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m 

10 

The disadvantage of a very high permeability aquifer is clearly 
demonstrated. At the end of the storage period the hot water has been 
spread out in a thin layer adjacent to the upper confining stratum. Heat 
losses to confining laye.rs are not included in the calculation. It is 
obvious that the heat losses from the aquifer would be substantially 
enhanced if the hot water behaves as in Figure 28. 

When the permeability is ten times lower, 1.548·10-11 m2, the 
temperature fields are as shown in Figure 29. The tilting effects are 
still large considering the short period of time. 

m 

10 

Figure 29. The temperature field at the end of the injection period (a) 

and at the end of the storage period (b). The permeability 
is 1.548·10-11 m2• 
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Figure 30. The temperature field at the end of the injection period (a) 
and at the end of the storage period (b). The permeability 
is 1.548•10-12 m2• 

t~hen the permeability is low, 1.548·10-12, the tilting effects are 
small. See Figure 30. 

The thermal front (T = (T1+T
0

)/2 = 47.5°C) for the three different 
permeabilities are shown by the solid lines in Figure 31. The 
corresponding theoretical straight fronts are dashed. The agreement 
between the theoretical and the simulated thermal fronts is quite 
satisfactory. 

Formula 29 indicates a strong dependence on the temperature levels 
of the injected and the ambient water. This effect is demonstrated in 
Figure 32. The tilting angle for the (60-20) case (degrees centigrade) 
is about one half of that for the (90-5) case. This is in agreement with 
theory. See Figure 15 where n(60,20) = 2.62 and n(90,5) = 1.~0. 
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Figure 31a. The thermal fronts after the injection period (solid lines). 

20 

10 

0 

0 

The dashed linef give the corresponding theoretical ones. The 
hydraulic conductivity values 10-3, 10-4 and 10-5 m/s (T=5°C) 
correspond to the permeabil ities 
and 1.548·10-12 m2 respectively. 

1~. 

10 20 

m 

1.548·10-10 , 1.548·10-11 

-~ 
-~ -~ -----------~ 

30 

Figure 31b. The thermal fronts after the storage period (solid lines}. 
The dashed lines give the corresponding theoretical ones. 
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Figure 32. A comparison of thermal fronts after injection at different 
temperature levels .. The simulated fronts {solid lines) and 
the theoretical fronts {dashed lines) are given at the end 
of the injection period {32a) and at the end of the storage 
period {32b) ~ 

The anisotropy of the permeability enters as the product Kk = lk'k 
in the denominator of t {27). Thus, if K is varied, while the quantity 

0 .. 
lk'k is kept constant, the tilting time t

0 
will remain constant. In 

spite of this the tilting angle will not be the same. The reason .is 
.. 

that both the correction for a diffuse front and that for a well close 
to the front have a K-dependent parameter. There will be minor 
·differences iri the tilting ang~es if the anisotropy does not attain 
large values. Figure 33 shows the thermal front after the storage period 
for three different val4es of th~ anisotropy. 

In the case K2=0.1 the thermal front retains the characteristicS
shape of a relatively sharp front. Compare with Figure 14. The reason 
for this is that the parameter KD/H is relatively small. In the figure 
both the simulated. and the theoretical thermal fronts exhibit only small 

. . . 
deviations from the isotropic case. But the relative positions of curve 
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Figure 33. The simulated (a) and the 
different anisotropy (K2) 
period (/k'k constant). 

(b~ 
0.1 1D 50 

0 10 

-m 
theoretical (b) thermal fronts for 
values at the end of the storage 

2 . ; 
K =5.0 1s reversed. The difference is explained by the evaluation of 
the diffuse zone length. In the theoretical calculation the front was 
assumed to be sharp at the beginning and to evolve-as the square root 
of time. The discrete rep.resentation of the temperature in the numerical 
scheme will give an initial diffuseness on the order of the width between 
the nodal points. At the start of the injection the diffuse zone will be 
too large. This reduces the flow. 

·Figure 34 shows the thermal front at the end of the storage period 
when the same volume has been injected with different flow rates. The 
length of the cycle, which consists of both the injection and storage 
pe~iods, is kept constant. The flow rate of the reference case is 
denoted Q. They value corresponding to the.flow rates 0.5Q, Q and 2Q 
.is 1.14, 2.29 and 4.58 respectively. 

It appears that, if the injection volume is given, the injection 
strategy is of little importance for the tilting angle at the end of 
the storage cycle. Compare with Figures 24 and 25. 
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Figure 34. The simulated (a) and the theoretical (b) thermal fronts at 
the end of the storage period when the same volume has been 
injected at different flow rates. The length of the cycle, 
which consists of both the injection and the storage periods, 
is kept constant. 

The general agreement bet\oJeen th~ simulated and the theoretical· 
thermal fronts indicate that the assumptions made in the analytical 
approach are reasonable. 

Discussion of field·experirnents 

We shall in this section compare our theoretical results with some field 
experiments. These have been carried out at Neuchate1 (Switzerland) [8], 
Campuget (France) [11 and Auburn (USA) [9]. The basic data and the 
corresponding. characteristic tilting time t

0 
are given in Table III. 

The principal parameters are the height (H) and the permeability (k) of 
the aquifer, and the temperature of the injected (T1) and the ambient 
water (T

0
). The development of the tilting angle during the injection, 

storage, and production periods is calculated as previously described 
(98). The vertical permeability k' is often uncertain. The two values 
k'=k and k'=k/10 have been used in these cases. A thermal conductivity 
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Neuchatel 

! Campuget . I Auburn 1 

Auburn 2 

Auburn Ex 

Low permeability 
aquifer 

tn Very low 
~1 permeability aquifer 

I 

I 

I 

-,, 
' 

T 1 (oC) To(oC) 

51 11 

33.5 14 

36 20 

55 20 

90 20 

120 20 

120 20 

k(m2) 2 K(m/s) IC 

0.3-1·10 -2 0 .4-1. 3·10 -9 1 

1-10-3 1.15·10-10 1 

5-10-4 0.5. 10- 10 0.1 

5-10-4 0.5·10- 10 0.1 

5·10-4 0.5·10- 10 0.1 

1·10-5 1·10-12 1 

1·10 -6 . 1·10- 13 1 

Table III. Aquifer storage data and characteristic tilting time t
0

• 

"' 

H(m) 'Vin/m3) 
(days) (days) 
tinj tst~r 

.7 .2 494 9.3 '' 124 

9 20,200 77 .42+31 

10 8,000 3+10 10+36 

10 54,784 79 51 

10 54,784 90 90 

30 -90,000 90 90 

100 -90,000 90 90 

(days) 
tprod 

28 

42+53 

26 

41 

90 

90 

90 

. ,, 

(days) 
to 

0.2-0.6 

7.2 

55.6 

18.1 

6.2 

166 

5,530 



of 1.5 or 15 J/msK has been used. The higher value represents a mod~rate 
macrodispersion. The step-wise computation of the tilting angle is 
discontinued, when a=60° is attained. This is the limit for the simple 
approximation (73) of ft(s). 

In the experiment at Neuchatel (Switzerland) 494 m3 of hot water at 
51°C was injected into an aquifer with a height of 7.2 meters. The 
aquifer consists of three layers with different" permeabilities (400, 
800 and 1300 Darcy). This gives a tilting time t

0
=0.2-0.6 days. Figure 

35 shows the computed variation of' the tilting angle with ti.me. In curve 
A we use the highest permeability value (1300 Darcy), a permeability 
ratio (~<:2 ) of 1.0, and a thermal conductivity {X) of 1 ~5. This 
unfavourable case tilts to 60 degrees in just one day. If we instead . . 2 
use the lowest permeability, 400 Darcy, together with ;c =0.1 and X=15 
J/msK, the tilting will reach the limit after 8 days. This should be 
compated to a storage period of 124 days. A strong disturbance of the 
temperature field due to buoyancy flow must be expected. This is in 
agreement with the fiefd test. 
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Figure 35. Neuchatel. Theoretical tilting anqle var.iation. 

In Campuget-(France)another field test was carried out during 1977-
78 using an aquifer with a lower permeability (115 Darcy) and a height 
of 9 meters. The temperature difference was only 33.5-14°C. This gives 
a characteristir· tilting time t0=7 days. The development of the tilting 
angle is given in Figure 36. 
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Figure 36. Campuget. Theoretical tilting angle variation. 

The time to reach the 60 degrees limit varies from 21 days for case A 
to 71 days for case C. Since this is an alluvial aquifer, it is 
reasonable to assume that the vertical permeability is less than the 
horizontal one (K<1). The whole storage cycle extends over 245 days. 
The calculations give a conside_rable tilting. A comparison with the 
field test is not simple. The situation is complicated by the large 
heat loss through the thin covering soil layer (1-3 ~ters). The effects 
of a H!:Q~9 buoyancy flow may then not be vis i b 1 e in the vert ica 1 
temperatureprofiles but rather result in increased heat losses to the . 
ground. surface. The 'small f~action, 20%, of the injected energy that 
was recovered may support this interpretation. 

The aquifer in the Auburn (A.labama, USA) field tests is located at a 
depth of 40 to 61 meters. The permeability is 50 Darcy. The well 
penetrates only the upper 9 meters of the aquifer. The calculations of 
a theoretical tilting angle are made with an aquifer height of H=10 
meters. 

During a numerical simulation of the first experiment if was necessary 
to assume an anisotropic permeabil tiy in order to get good agreement. 
The vertical permeability is set equal to 10% of the horizontal one. The 
result is that the tilting rate is reduced by a factor 3. In the first 
experiment the temperature difference was as low as 36 to 20°C. The 

. tilting time t
0 

is .56 days. The calculated tilting i.ingles (Figure 37) 
reach values of 36° and 43° depending on the magnitude of the thermal 
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.li"'tgure 37 •. Auburn 1. Theoretical tilting angle variation. 

conductivity. In this case ~he calculations are stopped when the whole 
injected volume has been produced. The effects of the tilting should 
be rather limited during the a cycle of 85 days. The experimental 
temperature field indicates a tilting angle of 20° at the end of the 
storage period. From Figure 37 we get a value around 35°. The assumption 
that the lower part does not take part in the tilting process may 
account for this discrepancy. The presence of a cold water volume below 
the injected warm water will allow a closed streamline to extend into 
the lower region. The streamline will then be longer, and the flow will 
experience an additional flow resistance. See (7) and (8). The cold 
aquifer region below the heated volume will have a moderating influence 
on the tilting rate. 

The first cycle of a second experiment was completed during 1978. 
The temperature o.f the injected water was now 55°C. Due to this the 
characteristic tilting time t

0 
was lowered, to 18 days. This illustrates 

the strong temperature dependence of the buoyancy flow. The increased 
buoyancy flow drives the tilting angle to 60° in about 40 days. The 
experimental temperature field exhibits a pronounced tilting at the 
end of the storage period. The whole cycle is 175 days long. The theory 
over-estimates the tilting angle. This is due to the aforementioned 
intricacies of the partially penetrating well. Figure 38. 

A \'lider field of applic'ations of the aquifer· heat storage concept 
can be found, if the water is stored at a highe~ temperature. In shallow 
aquifers a temperature of 90° has been mentioned· as desirab1e. Applied 
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a 

so toO ISO 

T
0 

= 20°C 
T1 = ss0c 
H = 10 m 

Figure 38. Auburn 2. Theoretical tilting angle variation. 

at the Auburn test site this would give a characteristic tilting time 
t

0 
of 6 days. The buoyancy flow is then roughly ten times as high as 

in the first field test, where the injection temperature was 36°C. 

Compare Figures 37 and 39. Annual storage means a lqnger storage cycle. 
The problem of th~rmal stratification then becomes further aggravated. 

rfL---~-~------~----~--.1..--...___,._J 
0 so 100 ISO 

DAYS 

T0 = 20°C 
T1 = 90°c 
H = 10 m 

Figure 39. Auburn, Example. Theoretical tilting angle variation. 

All the· field tests conducted so far have utilized aquifers with 
rather high permeabilities and injected water of rather low 
temperatures. In the light of this investigation or.r must issue a 
warning for the substantial increase-of the tilting flow that will 
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:occur when larger t~mperature differences are used during 1 onger storage 

cycles. An example Of a promising system is_given in Figure 40. The 

curves A-C.show the tilting angle during a storage cycle for a low 

permeability system (k=1·10- 12 m2J. Tight aquifers \'lith this 

-··"· 

•• 
a 

To 20°C 120°C = T1 = •• 
''·' k .jC2 ). 

4d' 
1·10-12 A 1.0 1. 5 

til B 1·10-12 1.,0 7.5 
1·10..;12 

+:., .! 

c 6.1 1.5 
2lf 

1·10'"13 D 1.0 .. ,, 1. 5 

WI 

.. 0 
•', . 100 200. 

·_:~. DAYI · 

Figure 40~ Thebretich til tin; angle variations for ·1ow permeability 

aquifers. 

H 

30 

30 

30 

100 

permeability can be found deeper down ·where it is possible to keep the 

water under pressure. Injection tempera-tures exceeding 100°C can then 

be utilized. As can be seen in Figure 4.0 the tilting rate is not large. 

The numerical simulation performed with the computer code CCC in 1976 

used the same parameters as those resulting in curve D [5]. The 

corresponding tilting time~constant is 15 years. The buoyancy effects 

in this system is negligible as far as annual storage is concerned. 

This, together with the computed high efficiencies, points to the 

excellent performanc:e of this kind of syst~m. 

The tilting isa major factor for the thermal performance of an 

aquifer heat storage system. We have seen that the ti 1 ti:ng rate varies 

with as much as 10 000 times between different aquifers which have 

been studied or proposed. Great differences in thermal performance are 

to be expected. The ex~rapolaticin of the efficiency of:a certain 

system to other cases must be made with great care and caution. 
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Conclusions 

The two basic parameters for the tilting rate of the thermal front is 
the characteristic tilting time t

0 
.(27) and the injection/extraction 

parameter y (76). 

The angular tilting rate of a sharp, vertical thermal front in a 
long, plane aquifer strip is 1/t

0
• This tilting rate is inversely 

proportional to the height H of the aquifer. It is proportional to the 
permeability Kk = lk'k. The buoyancy tilting rat·e depends strongly on 
the injection temperature T1 and the ambient aquifer temperature T

0
• 

The rate is increased 5 times, if we go from T
0
=t0°C and T1=40°C to 

00 0 T0=1 .c and T1=90 c. 

Let L denote the distance from the well to the vertical thermal 
front. The influence on the buoyancy tilting from the boundary of the 
well is negligible if KL/H>O.S. This applies both to the plane and 
the cylindrical case. 

The diffuseness of the thermal front diminishes the tilting rate. 
Let Dbe an appropriate Width of the front. The tilting rate is 
reduced by 50%, when 0 increases from 0=0 to ~D/H=·t. 

The effect of vertical anisotropy in the·aquifer on the tilting is 
simple to assess. One shall use an effective permeability lkk'. If, for 
example, the vertical permeability is changed from k'=k to k'=k/10, 
then the tilting is reduced with the factor /1/10;;;0.3. 

The tilting angle increases during the-injection and storage periods. 
It may increase or decrease during the extraction period. See Figures 
24 and 25. The injection period, when buoyancy and .forced convection 
cooperate, is the most critical one. Criteria that ensure only moderate 
injection tilting are shown in Figures 26 and 26'. 

It is not.possible to give any simple criterion how to avoid 
detrimental tilting during a storage cycle. Keeping this in mind \-Je 

give the following guide-line, which is an upper limit on the quantity 
k/H. We get from Figure 26' with Qi=O for interseasonal storage: 
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Aquifer height H (m) 

10 25 50 

Injection 60 3 8 15 
temperature 
T 1 (oC) 90 3. 6 

120 0.7 2 4 

Table IV. Order of magnitude upper limit for aquifer permeability k or 
lkk' (Darcy) in order to avoid large tilting. 

These values refer to a sharp thermal front. The diffuseness caused by 
heat dispersion will permit higher permeabilities. This is in particular 
the case for thin aquifers, where the thickness of the thermal front 
may be of the same order as the height H. In an anisotropic aquifer 
Table IV gives an upper limit on lkk'. 

An aquifer which satisfies the condition of Table IV is expected to 
have a very good thermal performance. An assessment of the thermal 
performance of aquifers with considerably higher permeabilities than 
those of Table IV will require a more elaborate investigation. 

Summary 

The basic equations for the thermohydraul ic process in the aquifer are 
given by (2), (3), and (4). The ground water flow in the aquifer with its 
displacement and, in particular, its tilting of the thermal front may at 
each moment be regarded as a superposition of a buoyancy flow and a forced
convection flow. The buoyancy flow is at worLall the time, while the 
forced convection takes place during periods of injection and extraction. 

The pure buoyancy flow of a vertical thermal front is analysed. The 
character of the buoyancy flo\'1 with its driving density differences is . 
illustrated by-Formulas (6)-(8). The starting point of the analysis is 
some exact solutions for the ground \'later flow. The considered cases are 
shown in Figure 7 A-F. The flow across the vertical thermal front is given 
by (18)-(23). These flows determine the tilting rate of the front. 
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The most important case is the tilting rate of a sharp front in a 
plane, infinite aquifer, Figure 7Ao The basic tilting time for this case 
is: 

t .. ~ • 1o 2 ·1 0-6 . ( 29) 
o tc:~~o"w 

.The quantity Tl is a function of the injection temperature T 1 and the 
ambient temperature T

0
, Figure 15o 

The influence of the boundary of the well and of a finite width of the 
thermal front is shown by Figures 16-17o The infinite ·aquifer c'ase 

· according to Figure 7A gives the tilting rate with good acc~racy except 
for quite thin warm regions (~c:L/H<Oo3) and for quite thick thermal fronts 
(tc:D/H>Oo3)o 

A simple buoyancy tilting criterion or guide-line is given by (30)
(35) 0 

The superposition of buoyancy and forced convection is defined by the 
equations (36)-(38)0 A detailed dimensional analysis is made for the case 
of a sharp, tilted thermal front in a plane, infinite aquifer strip. See 
Figure 19o The tilting flow Qt may be written (42)-(46): 

Qt = q0H•fbt(a,S,tc:) + Q1•ft't(a,S,K) 

The chara_cterfstic buoyancy flow q
0 

is defined by (9) o The two functions 
fbt and fft for the buoyancy tilting and the forced-convection tilting 
respectively depend only on the tilting angle a, the viscosity ratio 
8=~0/~ 1 • and the anisotropy parameter K (17)o The time development of 
the tilting angle is given by (43): 

. d sew 
1ft (tana) = HZC Qt (43) 

There exists a certain combination of tilting angle a and pumping rate 
Q1 for which the flow in the aquifer is constant arid horizontal (48): 

(54) 

The physical situatior), when this happens, is illustrated in Figure 20. 
The tilting rate is zero, when (54) is satisfied. From this we may deduce 
the relation (56) between fbt(a,·s,K) and fft(a,S,K). 
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The effect of anisotropy is analysed. It is possible to reduce such 
a case to an isotropic one. We have for example: 

fft(a,S,K) = fft(a',S,1) 

tan(a') = Ktan(a) 

(65) 

(61) 

The remaining unknown function fft(a,s,1) is computed numerically, 
Table 1. It is shown that we can express the results with a single 
function ft(s): 

( ) 4G ( ) s-1 ) fft a,S,1 = nz tan a S+1 ft(tana (71) 

The basic tilting function ft(s) is given in Figure 22 and Table II. 

The final formula for the tilting rate of a sharp,tilted front in an 
infinite, plane aqu1fer becomes: 

s = Ktan(a) 

Q1 s-1 
Y = KQ

0
H"B+T 

(79) 

(75) 

(76) 

The solution of (79) is simple. The tilting s will follow the curves in 
Figure 23. Two examples of the tilting angle variation a(t) during a 
storage cycle are given by Figures 24 and 25. 

The injection period, when buoyancy and forced convection cooperate, 
is the most critical one. The tilting at the end of the injection period 
is less than 45° if 

ti 1 1+y.K 
~ < K(f

1
+yi) ln(~) (90) 

The length of the injection period is ti. The injection parameter is yi, 
and f 1 = 0.235. Condition (90) is shown in Figure 26. 

A modificat~on of the tilting formula (79), which accounts in an 
approximate way for the finite width of the thermal front and for the 
well boundary in the plane and cylindrical case, is derived: 

d ( ) 1 ( ) [ f ( KO) • Q 1 8-1 ] ( KL ) at tan a = to f t dana 0 H + qoH"B+T tana f B H' 8 (98) 
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An expression for the thickness of the thermal front, D(t), is given by 
(96). The distance to the well boundary is L (97). The function f0 is 
given by curve F in Figure 16. The function f8 is given by curve B 

·(plane case) or curve E (cylindrical case) for two viscosity ratios in 
t~e Figu~es 16 and 17. 

The complete tilting angle formula and different simplifications of it 
are illustrated in a particular case. See (99) and Figure 27. 

The theoretical formulas have been compared with computer simulations 
of the complete thermohydraulic process in the aquifer. A computer code, 
called CCC, which has been developed at Berkeley, was used. -Results are 
shown in Figures 28-30. The thermal fronts after the injection period 
and after a subsequent storage period are shown in Figure 31 a and b. 
The corresponding theoretical straight fronts agree very well with the 
numerically simulated ones. The agreement is also quite good in.other 
cases, when the temperature levels T1 and T

0
, the anisotropy K2 , and the 

injection rate Q, are varied. See Figure 32, 33, and 34 respectively. 

The field experiments, which have been carried oat at Neuchatel, 
Campuget, and Auburn, are discussed. Data for these experiments are 
summarized in Table III. The .characteristic tilting time t

0 
is also given. 

The variation of the tilting angle according to (98) has been computed 
with different assumptions for these experiments. See Figures 35, 36, 37, 
and 38. The tilting angle passes 60° in all cases except Auburn 1. This 
is basically due to the small value of the characteristic tilting time 
t

0 
compared to the time of the storage cycle. 

The e'ffect of the injection temperature T 1 is illustrated by the three 
cases Auburn 1 (T1=36°), Auburn 2 (T1=55°), and Auburn Example (T1=90°). 
The tilting rate is tripled from T1=36°C to T1=55°C and again from 
T1=55° to T1;,90°C. See Figure III. This drastic effect on the tilting is 
shown in Figures 37-39 • 

The ~dvantage of aquifers with lower permeability is discussed. We 
get for a certain aquifer with a low permeability (k=1 darcy) a 
characteristic tilting time t

0
=166 days. See Table III. In an aquifer with 

very low permeability (k=0.1 darcy) the characteristic tilting time became 
t

0
= 20 years. The modest (k=1 darcy) and negligible (k=0.1 darcy) tilting 

durfng an annual injection, storage, and production cycle is shown in 
Figure 40. 
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A few conclusions end the paper. 
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APPENDIX. ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL FRONT IN AN 
INFIN'rTE STRIP. 

We will in this appendix deri'~ the analytical expression for the pressure 

in case A, which is shown in figure 7 A. The aquifer lies in the region 
· . H H H H 
- • < x < •,- 2 < z < 2 . The thermal frott lies at x ~ 0, - 2 < z < 2· 

.Let. P(x, z) denote the P.ressure in the aquifer. The pressure shall satisfy: 

- • < X < 0, - ~ < Z < ~ : 

(A 1) 

0 _.!!< H ~ X < •, 2 z < 2: . 

a (k aP) + L (~ ( aP + ) ) -a - pog = 0 
X p

0 
ax az p

0 
az 

(A 2} 

The horizontal boundaries are impermeable: 

aP 0 +.!! -'"'<X < 0 az + plg = z = - 2' 

(A 3} 

aP .H 
0 az + pog = 0 z = +- <X<'"' - 2 ' 

Hydrostatic conditions shall prevail far·awS¥ from the thermal front: 

P-+- plgz x-+ - ... . 
(A 4) 

P-+- pogz x-+ + ... 
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The pressure and normal flow are \ . .'ontinuous at the thermal front: 

P(- O,z) = P( .+ O,z) 

_ ~ . aP = _ ·~ aP . 
. 111 • ax/x= -0. 11o • ax/x= +0 

We start with the following expressions: 

X < 0: 

X > 0: 

where 

P(x,z) = -
.. 

+ l an 'ua(x,z) 
ri=O 

.. 
P(x,z) = - p,

0
gz + l bn.un (x,z) 

n=O 

u~(x,z)·= sin (2n+1)'1fZ 
H 

• e 

_ (2n+1 hnc:l z I 
H 

It is not difficult to verify that these expressions satisfy A 1 :., A:·Y for 

any choice of the coefficients a and b .• The coefficients are determined 
n n 

by the two remaining conditions A5 and A6: 

qo Hl11 4 (-)n 
a = ----- • n-z •(2n+1 ) 2 n k 

- llo b = . a n ).11 n 

In particular we have for the flow across the thermal front: 
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(A 5) 

(A 6) 

(A 7) 

(A 8) 

.-;.,., 

(A 9) 
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~ (z) k aP • - ii'1 • ax/x=-o = 

~ 
2n+1 

• sin ( 2n+1 )irz 
H 

The series may be expressed in the simpler way of formula (18). 
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Notations 

c 

fbt 

fo 
fft 

ft 

f1=0.235 

G 

g 

H 

h 

k 

k' 

l 

ly 
p 

pb 

Pfc 

Qbt 

Qft 

Qt 

Q,. Qi 

q 

volumetric aquifer heat capacity (solid+water) (Jtm3 °C) 

volumetric water heat capacity (4.2·106 Jtm3 °C) 

thickness of thermal front (m) 

curve B (plane case) or curve E (cylindrical (-) 
case) in;Figures 16-18 

buoyancy tilting function (-) 

curve F, Figure 16 (-) 

forced-convection tilting function (-) 

basic tilting function (71) (-) 

(-) 

Catalan's constant (-) 

standard gravity (9.81 mts2) 

height of aquifer stratum (m) 

driving hydraulic head (m/m) 

permeability (horizontal direction) (m2) 

permeability (vertical direction) (m2) 

thickness of warm aquifer region (m) 

distance to well boundary (97) 

macro-dispersion length (99) 

(m) 

(m) 

thermal displacement corresponding to a time ty (m) 

pressure in the ground water 

buoyancy flow pressure component 

forced-convection pressure component 

buoyancy tilting flow 

forced-convection tilting flow 

ti-lting flow 

pumping rate 

volumetric ground water flow 

buoyancy ground water flow across the thermal 
front 
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(Pa) 

(Pa) 

(Pa) 

(m3H20/ms) 

(m3H20tms) 
2 3 (m /s or m H20/ms) 

(m3H20tms) 

(m/s or 
m3H20tm2, s) 

(m/sJ 

.... 



qo 

R 

S(s,y) 

s 

T 

To 

r, 
t 

; t; 

ty 

t .. .L 
o w0 

- Cwvr= cq 

z 
. 
z 

a 

a' 

r 

y 

p 

characteristic ::,uoyancy flow (forrrula 9) · 

radius of circular disc aquifer 

t i1 ting integra 1 (81), (8l) 

tilting variable (75) 

temperature 

temperature of colder region 

temperature of warmer region 

time 

injection time· 

time period of storage cycle 

characteristic tilting time 

thermal velocity 

characteristic thermal velocity 

horizontal Cartesian coordinates 

vertical Cartesian coordinate 

t•nit vector in the upward direction 

tilting angle of thermal front 

modified tilting angle {61) 

tilting angle after injection period 

viscosity ratio 

closed curve in the aquifer 

pumping rate parameter (76) 

tilting time function 

permeab i1 i ty ratio 

thermal conductivity in the aquifer 

d~namic viscosity for water-

dynamic viscosity for water at temperature Ti 

density of water 

density of water at temperature T i. 

angular tilting rate 
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(m/s) 

Jm) 

(-) 

(-) 

(oC) 

(OC) 

(OC) 

(s) 

(s) 

(sl 

(s) 

(m/s) 

(m/s) 

(m) 

(m) 

(-) 

(-) 

(-) 

(-) 

(-) 

(J/ms °C) 

(kg/ms) 

(kg/ms) 

(kg/m3) 

(kg/m3) 

(s-1) 



characteristic tilting rate 

.gradient operator 
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