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Introduction

The possibility to storé heat in aquifers has attracted considerable
attention during the last years. The goal is to be able to store large
amounts of heat at moderate temperatures from summer to winter at an
acceptable cost. The idea is to inject warm water in a confined'aquifer
and at a later time recover the heat by pumping back the warm water.

Several solutions have been proposed. One possibility is to have a
single well down to a horizontal aquifer stratum. The water is pumped
radially outwards and inwards from the well, Qther solutions use a
two-well system [1].

Aquifers with high permeability are attractive from the point of
view that they will require Tittle puhping work. An example of this
type is shallow glacio-alluvial aquifers, called eskers,bwhich are
common in Sweden. Their suitability for thermal heat storage is under
investigdtion [2]. This study is done in cooperation with that project.

The mentioned systems with vertfca] bore holes that penetrate the
whole aquifer depth have a horizontal injection and extraction of water.
The thermal front between injected warm water and colder surrounding
regions is primarily vertical. The problem is that such a thermal front
is unstable because of the lower densitylof the warmer water. The
thermal front will tilt so that the warmer water eventually ends on top.
This and other thermal stratification effects, which entail undesired

-heat losses, require both theoretical and experimental inVestigations.

Systems that use horizontal injection-extraction devices along the

top and bottom of the aquifer region do not have the same stratification
problems. The water flow is basically vertical with warmer regions

always on top. These injection-extractionjsystems are however more
complicated and expensive.

~ The heat loss in the aquifer is roughly proportional to the area of
the warm storage region. This region shall therefore be kept as compact
as possible. Buoyancy effects may increase the surfacé to an unacceptable
degree. Consider for example a horizontal injection of warm water as
shown in figure 1. A strong buoyancy flow will concentrate the injected
warm water in only the upper part of the aquifer. The warm regidn



(T=T1) will Took like a thin tongue, which protrudes into the cold

regions (T=T ). The heat losses become excessive, and the system

cannot be used The lower viscosity of warmer water aggravates the = -
stratification during the Ioad1ng phase.
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Figure 1. Horizontal injection of warmer water in an aquifer with
. excessive thermal stratification.

_ It s necessary to be able to predict the buoyancy flow and the
tilting rate of a more or less vertical thermal front.for pert1nent
S1tuat1ons in d1fferent aquifer types. This paper d1scusses these
“thermohydraulic problems in heat storage aquifers. Some general
observations are made. Results of some analytical so]utions‘are
presented. The superposition of forced and natural convection is dealt
with. Formulas for the tilting of the thermal front as a function of -
time are given. These are tested against numerical simulations and
applied to laboratory and'field experiments. The different results,
formulas, and tilting criteria are summarized in the last paragraph.

Thermohydraulic equations

The coupled ground water and heat flow process in the aquifer is
governed by two partial differential equétions. The vblumetrit ground
water flow q is related to the pressure gradient and the gravity force
through the empirical law of Darcy:

q = --% (VP +p g 2).. : o ' (1) i
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The permeab111ty is k. The water density p and the viscosity u are
functions of the temperature.

The above formula assumes anisotropic aquifer. WeAwill below also
study cases, when the aquifer has different permeabilities in the
horizontal (x,y) and vertical (z) directions. Then we have

_ _ kP _ kP _ Kk
N uw YTy z2” "W az +e9) (2)

The permeability in the vertical direction is denoted k'.

Compressibiliiy effects are neg1ected_in this study. The divergence
of the ground water flow q is then zero at each point:

VeQq=V -'[;-E (v +p g i)] = 0. . (3)

The temperature shall satisfy the equation
aT ' - . .
Cog=9-(vT-TC Q) | (4)

Here C and C are the volumetric heat capac1t1es for aquifer (matr1x
plus water) and water respectively. The thermal conductivity i 1nc1udes
a contribution from the grouid water dispersion.

The convective heat flow is given by TC,, a- The thermal velocity is
c s

The thermal veTocity represents the conVective displacement of the

. temperature field. The total change of the temperature field is, at each’

time, a superposition of the convective displacement and a heat diffusion.

The aquifer region is bounded by impermééble Tayers and injection/
extraction wells. At an impermeable boundary the perpendicular groUnd
water flow component vanishes. The boundary conditions at the wells
are determined by the mode of operation of the well. The temperature
of injected water is given. Qutside the aquifer region the ordinary
heat flow equation prevails.



The pressure distribution and the ground water flow pattern are
coupled to the temperature field through the density o/{T) and
viscosity u(T). At each time there is a certain temperature distribution
through the aquifer. This temperature distribution and the boundary
conditions at the wells determine the ground water flow. The temperatufe
changes with time due to the convective and diffusive heat flows. The
ground water flow pattern will gradually change with time due to the
changed densities o(T) and viscosities u(T) throughout the aquifer.

The ground water flow at a. given time is thus determined by the

~actual temperature field and the conditions at the we]]s.ADuring

storage periods without injection and extraction there is a pure

buoyancy flow, which is caused by ¢ensity variations of the water in

the aquifer . The perpendicular ground water flow shall vanish at all

boundaries. During injection and extraction periods there is a forced

convection due tb the pumping..The natural convection due to:buOyancy
_is superimposed on the forced convection. '

The major concern in this paper is the motioﬁ of thermal fronts in
-an aquifer which is used for heat storage. The thermal front between
the warm region and colder surrounding regions may be more or less
sharp and well-defined. The front is displaced by the thermal velocity
field VT. Heat diffusion will simultaneously widen the thermal front.

The motion of a thermal‘ffont is determined by the flow velocity
Vr or q at the front. The flow q is determined by the temperature
distribution, which in turn essentially is given by the position of the
thermal front. We want to learn how the thermal front moves in various
situations. Our task is then to determine the ground water flow for
various, pertinent positions of a thermal front in the aquifer.

There are two cases. The simpler situation is that of pure buoyancy
flow during rest periods without injection and extraction of water.
Then there is the more complex case of combined buoyancy flow and
forced convection during loading and extraction periods.

We will first discuss the simpler case of pure buoyancy flow and
then the case of combined forced and natural convection. These
discussions concern only the momentary ground water fiow at a given
time. The complete thermohydraulic process is simulated by the
numerical computer code CCC developed at LBL.

4



Buoyancy flow

The temperature field in the heat storage aquifer gives a variable
water density and an ensuing buoyancy flow in the aquifer. We will
in particular consider the situation, when the aquifer may be
separated into a warm region (T=T1) and a cold region (T=T0). These
regions are separated by a thermal front zone, through which the
temperature falls from T1 to To' The idealization of an infinitely
thin or sharp thermal front will -also be considered. This is often a
quite reasonable and useful approximation.

The whole boundary is considered impermeable during periods of
pure buoyancy flow (no injection/extraction). The ground water flow
shall tend to zero in free regions that extend to infinity. '

Figure 2 shows the type of situation that we have in mind. The
aquifer occupies a semi-infinite horizontal strip. Warm water has been
injected through the left vertical boundary. There is a warmer region
with a vertical (A) or tilted (B) thermal front zone.
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Figure 2. Vertical (A) or tilted (B) thermal front inan aquifer with
injection through the left boundary.

Figuré 2 applies both to the plane and the cylindrical case. In the
latter case there is rotational symmetry around the left vertical
boundary, where the bore-hole lies. '



The goal is to be able to quantify the motion of the thermal front .
due t~ buoyancy flow. It should be remembered that we discuss'the
momentary flow for a given temperature field at a certain time.

- The following observation is useful'-in order to understand the flow
process. LetT be any closed curve in the aquifer. The line integré]
along T of the gradient of the .pressure is automatically zero. Darcy's
relation (1) gives then ' '

[$d-di=g(-2) . [odf .

r co r : :
The right-hand term represents a net driving force due to density
variations along r'. The left-hand side gives an integral of the
tangentﬁa] component of the f]ow’a a]ohg:f. The. flow is weighted with
the fwawresistqnce coefficient,E-. The right-hand side is known, when’
the temperature and hence the density field is giVen.'The formula
providés some information on the magnitude of the flow velocities.

- Figure 3 shows a case when the'curve I crosses a sharp thermal front.
The density and viscosity on the warm and cold sides are denoted Pys

U and P Ho respective]y.
/
/
Ty ep ;.
- TO: po’ uo
fo
7

-
Figure 3. Closed curve T in an aquifer with a sharp thermal front
(dashed line). '

The vertical distance between the two points where r crosses the:
thermal front is denoted H. Then formula (6) gives:

X TP Yo - - '
(B3 ot )
1 0



Let Lr denote the arc length of T, and q, a suitable mean tangential
component of g along . Formula (7) may then be written:
q. = kogwoyds gy | (8)
T gty = . ' : . :

"The first factor will appear often in the fo110w1ng HWe will call
it the characteristic flow -
k(po'p1)g

BotHy

9 = (9)

The buoyancy flow will tilt a thermal front. The rate of tilting-
is of great interest to us. We need a quantitative measure. This
cannot be a very precise concept, since the shape of a front is
changing success1ve1y The def1n1t1on of a t11t1ng rate is necessar1ly

-arbitrary to some extent

Consider a straight thermal front line at a time t. Each point on
the front is displaced a length VT dt during a small time increment.
The normal displacement is anth, where YTn is the thermal velocity
component perpendicular to the front line. See Figure 4A and B. Let-
S, - g <8< g, be the coordinate along the strdightithermal front.
The angular tilting rate, which we are about to define, is denoted Wy o
The front is tilted an angle w, qt during the time increment dt. The
curved thermal front (Figure 4B) is to be approximated by an
appropriate straight line (Figure 4C).'The question is how to chooéé
this line. A natural choice is -to require that the straight line
approximation shall cdrresnond to the same toté] water flow across
the upper and lower halves of the front. Let Qt denote this tilting’
flow: H

Z o . S
Q =/ a,(s)ds=-[ q (s)ds ° : (10)
0 H .
Z _
We assume that the net flow through the front is zero. The formula
above should otherwise only include the deviation from an overall mean
flow across the thermal front. The equal. flow requirement isrnow:
' c .
Joned tan(uydt) = X0, dt - | (11)

See Figure 4C;



Flgure 4. Definition of the angular tilting rate Wy .
‘A: Thermal front at a time t. ‘
B: Thermal front at a time t+dt.
€C: Linear approximation with the same. flow.

' The time increment is small so tan(w dt) = wtdt We have then the
following def1n1t1on of the tilting rate -

. 8 , : .
Ea-2 = Qt , - , (12)

The ti]tingvfIOw Q;vis the total water flow across the upper_half7of

the straight thermal front. The same amount Qt passes in the other

~ direction through the lower half of the front.

Let us now briefly discuss the effect of a linear scaling of the -
aquifer. Let the distances be multiplied by a factor A. We assume that
the temperature field is the same (for corresponding points). Then we
get a 11near scaling of the pressure, but the flow intensity q. is
unchanged. We have:

L+ AL -

-
+

>
©

1
_ W YW ) (13)
T » T t A7t .

F-Y)
v
o

We note that the tilting rate is 1nversely proport1ona1 to the linear

: d1mens1ons
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We will end this section with a brief discussion of the boundary
conditions at a sharp thermal front. There are two fundamental
requirements. The pressure P must be continuous at the front. The .
normal component of the water flow must also be continuous. This
means that the tangential component of the flow usually is dis-
continuous at the front. The normal component of the pressure gradient
is also discontinuous. We take as an éxamp]e a vertical sharp thermal
front. See Figure 6. ' |

' 21
z ! T quo
L.

Figure 6. Vertical sharp thermal front.

We have then

K P B ¥ '
i T alo T %21t P19 T 9z * oo e

Analytical solutions

It is possible to derive explicit expressions for the pressure

distribution and the buoyancy flow pattern in some idealized
situations. These solutions are very instructive. They provide a good
starting point for the analysis of the thermal stratification problems.

Figure 7 A-F. shows the considered cases. There is a warm regibﬁ with
the temperature"l’1 and a cold one with the temperature To‘ The density
and viscosity are P> My and Pos Yo respectively. The permeability may
for all cases except D be different in the horizontal (k) and vertical
(k') directions. We will use the notation '

“\ﬁc; . : - (17)
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Figure 7, A- E. Cons1dered cases with analyt1cal solut1ons
~ A Inf1n1te str1p .
_ B: Semi- 1nf1n1te str1p w1th lmpermeable left boundary.
. C: Semi- 1nf1n1te strip w1th free flow in a we]] along. the
left boundary
D: C1rcu1ar disc.
E: Cy11ndr1ca1 case.,
F: Inf1n1te str1p w1th thermal “front th1ckness D.

Case A is an 1nf1n1te, p1ane aquifer with a sharp thermal front.. The
height of the aqu1fer stratum is H. The express1ons for .the: pressurer
distribution and the flow field are derived in an append1x. The flow
f1e1d 1s shown in f1gure 8

:°'5. S /\—\\ .
LT, // \'\ T,
o ~ DO My . | . I [ {/]/ e Y ]

Figure 8. Flow field «}/q0 in case A (x=1).
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The aquifer region is a plane semi-infinite strip in.case B
and C. There is a sharp, vertical thermal front. The warmer region to
the left has a thickness L. The left boundary is impermeable in case
B. There may béva wel]'a1ohg the left boundary in which the water
flows freely. In this case C the hydrostatic pressure P = -py- 92
prevails along the left, vertical boundary.

In case D the aquifer is a circular disc. The permeability must in
this case be isotropic (x = 1).

E is acase with cylindrical symmetry. The warmer region occupies.a
cylindrical volume with radius L.

In case F we have a plane infinite aquifer. The thermal front has
a thickness D. The viscosity must for this case be constant u = Mg = My-
The density is oy in the warm region and p_ in the cold one. The

o
density is assumed to increase 11near1ythrough the thermal front reg1on.

The ana]yticalso]utions for these cases are given in [3]. The given
expressions are of course only valid at the considered time with the
given thermal front position.

The motion of the thermal front is determined by the intensity of
ground water flow across the front. Let z denote the vertical coordinate,
and let z = 0 be the mid-point of our thermal fronts. The horizontal
ground water flow across the front is denoted qf(z). This quantity is
of first-hand interest to us. We have in the six cases:

A. Infinite strip.’
- 1 1+51n( Z) : ‘ :
a(z) =« qy « = In o~ : (18)

0 1- s1n( )

B. Semi-infinite strip. Impermeable left boundary.

. 2n+1)n
)" sin [i—ﬂn—l—E] (19)
0 m Vo Mo [(anehect]

+ —
Hqtu u +u
1% 1

4
”

ne~18

) n

11
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C. Sem1 1nf1n1te str1p Free vertical f]ow along the 1eft boundary

. K ' ‘ A (2n+1)nz . )
R L 4 L (_)n : A sin [—H—] . ' 87
Qf(z)= K qO s Z s I e e . (20)
n=0 = O, 1 . tann [(.2n+1f)m<|.] o
Rt et T s tenh [
Ho™Ht - Ho™Hy ‘ : .
D.. Circular disc. A
SR L 14 : , ‘
ap(2) = g, - L il (R)ZJ- mE-2.8y - )
E. Cylindrical case. |
| - (2n+1)nz |
qp(z) =« q iE 2—-7('-"')":?-“. Sm[i“" - ] L e (22)
; f T ° . n=0 nelT oy IjY;) Hy o« Yoﬁnjr .
. o O gty T ¥ Hg*Hy L KyGyd
- (2n4+1)mel. - ' -
Ya 5T H
"Here we have used the iiodified Bessel functions’ Kn and T, .
F. Inf1n1te strip w1th diffuse thermal front D
(2n+1)m<-2- _
O R A . [(2n+1)nz (23)
qf(Z)'“qo’?Xm' p— - sin [FRE]
n=0 ° (2n+1)m<-2-
' - H . g
The flow e (z) refers to the middle of the thermal front reg1on For
large TP we have as a good approx1mat1on :
qf(Z) = 2q, "é- } : o (23Y)

The flows’ qf(z) are all odd funct1ons of z. Figures 9-14 show the
thermal front flow qf(z), 0<z< ?, in d1fferent cases. The curves

- . show the dimensionless flow qf/(Kq ). The quot1ent of the v1scos1t1es

B-=wm /u1 is an important parameter. We will use two values wh1ch S

' correspond to the following temperatures:

90°C b _T1 .9000 . P : K
o, B=—0=6.82 o g = 2.09 (24) ’
5= 5°¢ " T, =40°C :

'T1 :

T

Values for g = 1 will also be given for comparison.

12
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Figure 11': C: Semi-infinite strib with hydrostatic pressure along the
left boundary. : :
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Figure 12: E: Cylindrical case.
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Figure 9 shows the tilting flow across the'thermaI front for the
infinite strip. This curve is also indicated in the other figures for
comparison. The tilting flow is diminished somewhat when the aquifer
region is limited to the circular disc of case D. See Figure 9 . The
left region with the temperature T1 has a width L in case B and C. The
tilting flow does not differ much from the infinite case A, when %% is
greater than say 0.3. See Figures 10 and 11. The tilting flow of the
cylindrical case E has the same character as the plane case B. See
Figures 12, 13. It is clear from Figures 9-13 that the infinite strip
case A is a goodvapproximation for the tilting flow except for thin
warm regions. '

Figure 14 shows the tilting flow for a vertical thermal front with
a thickness D. The deviation from the sharp front case A is again rather
small, when «D/H is less than say 0.3. The flow increases linearly with
z for large «D/H in accordance with formula (23° ) N

We are particularly 1nterested in the rate of t11t1ng wy as defined
by (12). We need the tilting flow Q defined by (10) We have to
integrate the flow qf(z) over the 1nterva1 0<z< 2- The 1ntegrat1on
of each term in the different series is simple.

We get in case A:

Qt = ﬂg kg H (6 = 0.915... Catalan's constant) (25)
m h
The corresponding rate of angular tilting is:
_ 326 | . _ Wl
=772 Y "W Vo T T (26)
(326 3.0)

We will use this tilting rate w, as reference in the other cases.
The corresponding t11t1ng time t, is:
He | " (“o*“1)

_ 1. K, |
tO Tw KCWE 3ZG(po 1) . (27)

The second factor to the right is a function only of the two temperatures
To and T1.;Let us use the temperatures 40°C and 90°C as reference. The
temperatue influence on to is expressed by the quotient:

17



_ E(ToeTy) ulTg )+v(T L. p(a0)- 0(90)

n= NCUN S RN Y fu (28)
The function n is Shown in’ figure 15.
The basic tilting time t-fnay betwritten:

. - n-HC 6 ' S 3 SR

w -
‘The numer1ca1 constant is the second factor of (27) taken for the
~ temperatures T = 40% and T1 90 C

The ti]ting‘flow in case D becomes:. :

%=7%R w7 V% m. . (F=25 |
The ti]ting%fate“is‘thuS‘reduted’in'the proportion '2.5/3.0, when we
go from the 1nf1n1te str1p (w1th K = 1)ftomthé corresponding circular
d1sc. k ’ -
'The tilting rate'QtYQYJis shown' in figures 16, 17 and 18 for
=4, 82 2.09 and 1.0 respectively: for. different situations. We note
: aga1n that the dev1at1on from the t11t1ng rate W, of the infinite strip

is small, when £ Tr is greatér than say 0.5.

- '"zoq
- 0.233. _173'
- 0.457 0.157 7| 150
.. to(T4sT,) S e 042 0.2 0.2 |20
ST - 0.671 0.277 0.135 0.118 .90
-z 19.431 0.267 0.197 0.135 | 60 r;(°c)
. 339 iiv__ o5oo 0.304 ozaa‘nnss %0 )
- 7.4 262 T8 0617 0.3 0.313 0.228 | 20
o .33 6.49 2,80 1.28 0.741 0.488 0.385 0.288 | 10
- 813 2.2 645 2.9 1.40 ?pjzs 056 0.435 0:322 s

5 10 20 40 . 60 90 - 120 450 - 170 200
7,(°Ci'
Figure 15. Tilting time function n(T,, T ). See (27) and (28).
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Figure 16. Tilting.rafe for 8=4.82 (T,=90°C, 7 =5°C)
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Figure 17. Tilting rate for. 8=2.09 (T,=90°C, T =40°C).
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Figure 18. Tilting rate for gp=1.
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_Buoyancy tilting criterion

We are now able to present a buoyancy tilting criterion or, to be more
precise, a requirement in order to avoid substantial buoyancy tilting. It

~ should be emphazised that the criterion is not too precise. It should
be regarded as an order of magnitude guideline. ‘

Let ty denote the time period of the gtorage cycle. For annual
storage ty equals one year: t = 31.5.10" s. A reasonab}e condition is
that the basic tilting time to shall exceed ty; A condition in order to
avoid substantial buoyancy tilting is then

to>ty ] ' _ (30)

From (29) we get the condition:
—g < 00401072 B . (31)
The permeability k shall be in m2 and H in m. '

The factor « depends on the ratio of the vertical and horizontal
permeabilities in the aquifer according to formula (17). The heat
capacity quotient Cw/C is dimensionless. The factor n contains the
dependence on the two temperatures Tovand T1. See Figure 15. The
condition (31) imposes a rather severe limitation on the quotient k/H.
Let us in particular put:

- C . . :
n=1, k=1, 1# = 1.6 : - (32)

Then we get as a rule of thumb:

fegpe 1072 | - (33)
An aquifer with a permeability of 1 darcy (k = 1.0-10'12 m2) and a

height H = 40 m (and the temperatures T, = 40° and Ty = 90% C) lies
at the 1imit of the criterion. =

Formula (31) is a condition for the permeability. We shall give an
alternative expression which instead contains a gradient of the driving
hydraulic head. Let h (m/m) denote an appropriate mean gradient of the
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driVing hydrauTic head during ‘injection and extraction periods. We
also introduce a.corresponding thermal displacement length Ly:

v T TRz P T Yy . (34)
The factor (u°+u1)/2 is a mean v1scos1ty in the aquifer during a cycle.
The quantity L /ty is the.thermal velocxty, when there is a driving
pressure gradient p gh The length Ly gives the d1sp1acement of the
thermal front for a pumping dur1ng the who]e per1od ty

Cond1t1on (30) becomes with (34) and (27)
.2 pp1 L
m50o7>K'po . o |
The7criterie (30)4(35) are based on the tilting rate of a sharp, vertical
front. Only pure buoyancy is influencing the tilting rate. We-will in the

(35)-

' A fo]low1ng sections d1scuss the more comp11cated situation with a sloping

thermal front for which both buoyancy and forced convection 1nfluence
.the. t11t1ng

Superposition of buoyancy and forced convection

The ground water flow in.the aquifer is a combination of :forced and
~ natural convection during periods of injection and extraction. One
may at each time regard the flow as a combination of a pure buoyancy
flow and a forced convection. ' :

The pure buoyancy flow has been discussed in detail. It is of the
same character durihg injection/extraction -and storage periods. It is
at work all the time and strives to tilt the thermal front so that the
warm water ends on top.

bThe pure -buoyancy part takes care of the density variations in the
aquifer. The other part, the‘forced convection, is not influenced by:
the density variations. Let Py and Pec be the two contributione»to the
total pressure:

P =Py + Pp . o , - (36)

The two components satisfy the equations:

22



B0 oo
v Bl -0 o o (38)

The equations (37) and (38) are for simplicity written for the isotropic
case. In the case with vertical anisotropy we have to use k' for the z-
component in accordance with (2).

The two equations (37) and (38) of the superposition (36) have
different characters. Equation (38) for Pec is- linear. The pressure Pf
and the corresponding forced-convection flow are proportional to the
magnitude of the injected and extracted water at the boundafy wells.
Equation (37) for Pb has a source term from the variable density. The
pressure Pb and the corresponding buoyancy flow is proportjona] to the
driving density difference PoP1 between the cold and warm regions.

We are particularly interested in the case of Figure 19. The aquifer -
occupies an infinite, p1ane strip. The sharp thermal front is tilted an
angle a. A volume Q1 (m /s,m) of water is pumped through the strip from
left to right. ' :

¢

LLLLLLL L LG L LLLLL

ek acae aereresers
Figure 19. Aquifer strip Qith_ti]téd thermal front. The volume 01 af
water is pumped through the strip.
The vo]umetric’grdﬁnd water flow q has two comboneﬁts:
LT e

The forced-convection part afc is the solution of (38). The flow is
constant and horizontal (afC'+ 01/H-i) in the undisturbed regions far
away from the front to the right and ;o the left. The buoyancy part 9%
is the solution of (37). It becomes zero far away from the front.
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A dimensional analysis will be of great use in the fo1]owing. The
dimensionless coordinates are x/H and z/H. The tilting angle «, the
viscosity ratio s=uo/u1, and the permeability quotient'x=/ﬁ7ﬁ are
independent parameters. We may write:

ab = qd'a. (‘E: ’ﬁ" ay By K) o . (40)
i Q i o ‘ |
qu = 'Hl vq" (')H('s 'ﬁ's a, B, K) . ) (41)

The characteristic buoyancy flow 9 is defined by (9). The flows q' and
q" are dimensionless. It is not d1ff1cu1t but rather lengthy to show
that they only depend on the five given parameters.

We need a definition of the tilting rate for the sloping thermal front
of Figure 19. Consider a vertical cut through the mid-point of the thermal
front. Let’Q+ and Q_ denote the flow rate over the upper and lower hg]ves
of the vertical cut. We have: '

0,*Q. 0,0
=._2._+__2_
Q,+Q.  0,-0.

.The tilting flow is then:
Q,-0_ :
U = —7—
Let da be the change of tilting angle during a time increment dt. Consider
the two triangles between the thermal front and the vertical cut. The area
of these congruent triangles increases, when the tilting angle changes
from a to a+da. Heat balance gives:

(42)

1B Htan(asda)-tan(a)) « C(T,-T ) = €, (T,~T )0, dt
or

d 8cw
F3 (tana) = E?E < Q (43)

The tilting flow Qt has in general a component th from the buoyancy
flow and a component th from the‘forced convection:

Q = Qe * Oy (44)
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The two components are obtained from (40) and (41).'Ne shall integrate
over the upper (or lower) part 0<z<H/2 for x=0. We get immediately:

Qg = GH * Fiyg (ar 8 x) L s
“th = 01 . %ft (ay B, ) o » ‘ (46)

The two functions f
a, By and k.

bt and fft depend only of the dimensionless parameters

The forced tilting is zero for a vertical front a=0. We have from
(25): .

foe(0s 8, %) = 22« R (2

fft(o’ By K) =

1
N )

The variation of tilting angle with time is determined by .(43) to (46)
for the present case of a sharp front in an infinite aquifer strip. We
need to know the two functions fbt(a, B, ) and fft(a; B, k). We will
in the following section show that they are related to each other by a
simple formula.

Stable front solution

Consider again odr_p]ane, infinite strip with a sloping thermal front as
shown in Figure 19. ’ '

Let us investigate, if it is possible to have a constant, horizontal

flow along the aquifer. We assume
. Q. - : ‘ -
Q=g X ' (48)

This simple flow is assumed to prevail throughout the aquifer strip.

We use the coordinates (x, z) of Figure 19. The pressure in the warm.
region must satisfy: ‘

Ok op : :
BRIl o ¥4 R (49)
_n. _ k' /oP o
=02 Gz e (50)
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1

See (2). The pressufé is then, except for an integration constant:

uyQy

Pr=-py 92 - (51)
In the cold region to the right we have in the same way:
Q-
- - _ .o
P = pogz —'EH—X (52)

The thermal front is given by x=tan(a).z, -H/2<z<H/2. The normal
component of the flow and the pressure must be continuous at the front.
The flow is constant. The remaining requirement of continuous pressure
at the front gives with (51) and (52):

410 404 '
py OZ - —EH—-tan(a)z = =0,92 = tan(a) z (53)

or with (9):

9H "B+l
tan(a) = - -T1 . B—‘f (54)

We have, when (54) is satisfied, the simple horizontal flow (48).

The tilting angle of formula (54) is negative, when the forced flow
Q1 is positive. Figure 20 il]détrates the physical situation. The
buoyancy flow rotates the front clockwise (p1<po). The forced convection
displaces the front downstream. The viscosity is smaller to the left
(“1<“o)‘ The flow in the lower protruding warm edge is enhqnced. More
water passes the lower half than the upper one. This gives a counter-

" clockwise rotation of the front. The buoyancy and forced-convection

effects oppose each other, when the tilting angle is negative. The two
effects balance, when the angle o satisfies (54).

I IIIIIY: LLLLLLL LS LLLL
e N g QN e
T TITIIT IV

Figure‘20.vC10ckwise rotdtion due to buoyancy flow (left, p1<po).
Counter-clackwise rotaticn due to forced convection (right,

Hy<ig). . 26



Formula (54) may be used to deduce a relation between the two tilting
functions fpt and fo, of formulas (45) and (46) Consider a certain case
when, except for 01, a]l variables a, 8, K 9, and so on are given. Let us.
choose the pump1ng rate Q1 so that (54) is sat1sf1ed The flow is then
given by (48) The thermal front will be d1sp1aced downstream, but it will
not be rotated The tilting flow Qt is zero. We have with (45) and (46):

Q CI Hef t(a’ B, ) + (- )m B+1 fft(a’ By ) =0 (55)
The value of Q1 from (54) has been inserted.

From (55) we get the remarkab]e formula:

fbt(a’ Bs K) mﬁt‘}‘ ft(as Ba K)

The formula is of course valid for any values of «, 8, and x.

(56)

The function fft(a, 8, «) will be computed numerically below. The

-buoyancy flow function fbt is obtained from (56). We will in the next.

paragraph analyse the effect of vertical anisotropy before the function

' ft is computed numer1ca11y

" Effect of vertical anisotropy

The permeability k' in the vertical direction may differ from the
permeability k in the horizontal directions. See formula.2. It is however
possible to transform an anisotropic case to an isotropic one.

We start with a case with the permeabilities k and k'. The quotient
= /k'/k differs from 1. In aquifer applications one often has k<1. Ue
have the coordinates x, y, and z, the pressure distribution P and the

flow q = (a,» a» qz).

~ The horizontal coordinates are contracted with the factor x. The new
system has the coordinates: '

x'=kx. . y' =«y z' =2 (57)

Let us consider theifollowing gfound water flow problem in the new
coordinates. The pressure in corresponding paints are unchanged. The
flow in the horizontal plane is increased .y the factor 1/x, while
the vertical flow is increased 1/x2:
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P(x', y', 2') = Plx, ¥, 2)
(58) .

v o] v )
U = % % 9 =% Y 9, %7 9,

(59)

The Darcy relations for q' become from (58) and (2):

Lo dokaP kP
U Ky o9X  uoax'

v o1 -k P _ _ kP
QY = T3y a3y _ (60)

_ 1=k’ (2P _ ko,
9 =y (5 + ea) = - 5 (Ggr + eg)

The new ground water flow problem has the isotropic permeability k.

We have the fo1lowing result. Consider a certain ground water flow
problem with a vertical anisotropy. Let the horizontal lengths be

~ contracted by the factor K._The pressure distribution is unchanged.
The horizontal flows are increasédv1/K and vertical flow 1/«2. Then the

~new flow problem has the isotropic permeability k. When applying this
in a certain case one has to bay particular attention to the boundary
conditions.

The result may also be expressed in the following way. Suppose we
know the flow pattern for a certain iéotropic problem with horizontal
lengths «Lq, KLZ and so on. Let Qs qy, and q, be the flow components.
Then there is a solution to the corresponding anisotropic case (e=VK7k)
with the extended horizontal lengths L1, L2 and so on, which has the

flow components kqQ,» «q,, and quz.

Y

We will apply this for our case with a sharp thermal front in a plane,
~infinite aquifer with vertical anisotropy. The front is tilted an angle
a. We can transform the problem to an isotropic one'by a horizontal
contraction k. This means that the tilting angle changes to a new value
a' according to

tan(a') = « tan(a) : : (61)
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Let us first treat the buoyancy tilting (01;0).‘The tilting flow of
the original problem is from (45):

Qus, = GoH-Fyyles B2 x) | | (62)

The boundary conditions are that the normal flow is zero at z=H/2 and
that the flow vanishes far away from the front. The boundary conditions
are directly fulfilled in the transformed problem. The tilting flow is

0y = aHFypla’s 80 1) | (63)

But we also have that the horizontal flow is enhanced by 1/x:

%t = % Ot - (64)
From (62)-(64) we have the important relation:
fbt(a" Bs .K) = K fbi(uls B» 1) (65)

‘This relation gives the effect of anisotropy,on'the buoyancy flow. From
(56), (61), and (65) we have for the forced convection:

feglos By k) = Frlats s ) (66)

The «-factor of (65) does not appear in this case. Formula (66) could
also have been derived directly in the same way as (65). One must then
remember the boundary condition with given pumping rate 01.

The two functions fft(“’ B, K) and fbt(a, 8, k) are now reduced to one
unknown function fft(a, 8, 1). The two remaining independent variables
are the tilting angle « and the viscosity ratio g. The following section
is devoted to a study of fc.(a, 8, 1).

"Forced-convection tilting

The partial differential eqpation for the pressure Pfc for the forced-
convection component is given by (38). We consider only the isotropic
case x=1. Figure 19 shows the plane, infinite aquifer strip with a

sharp, sloping thermal front. There is a constant horizontal flow Q1/H

in the undisturbed aquifer far away from the thermal front. The vertical
component of the flow.is zero at the horizontal boundaries z=#H/2.
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~ The pressure d1str1but1on Pf and the flow pattern have been computed
numerically with the use of forward differences. A mesh with about 3000
points has been used. Figure 21 shows the type of flow pattern that we
get.

////////Zj///////////////////////////J///////[

77/////////////f////A/////7////////f///////.////

Figure 21. Ground water flow pattern for forced convection in an aduifer

strip with a sloping thermal front.

The tilting angle of the thermal front is a. The viscosity is lower in |

the warm region to the left (u1<uo). The flow resistance is smaller in
the warm upper part around the .thermal front. The flow becomes stronger
in the upper half, and we get a tilting flow as shown in Figure 21.

The tilting flow Qe 15 defined by (42). The forced- convect1on t11t1ng
function is from (46):

feelas B2 1) = Qpy/Q, (67)

Here Q, (m3/m,s) deriotes the total volume of water that is pumped along .
the aquifer. '

The numerical calculations have been made for two viscosity ratios.
The value 8=2.09 is obtained for T,= =90°C and T =40°C, while g=4.82 is
obtained for T =90°C and T =5%C. The calcu]at1ons were made for several
angles a. Tab]e I shows the result.

0° 15° 30° 45° 60° 759 90°

u 2.09 0 .033 .067 .099 131 .158 .176

9 | 482 | o .061 .125 .18  .251  .302  .328

Table I. The function fft(a, B, 1) which gives the tilting flow as a
function of the tilting angle a and the viscosity ratio 8.
Isotropic cace (x=1). 30 '



The function fft is zero for a vertical front (47). We gét'the

derivative with respect to «, if we take the 1imit a=0 in (56). Ue
get with the use of (47): '

af ¢, (0,8,1) _4g el o ' (68)

da w7 " B+l . _
The limiting case with a horizontal frdnt-(u=90°) is simple. The flows '
in the upper and lower halves are inversely proportial to the viscosities:
Q+/Q_ =,u°/u1- From this we get:

o 9 - - ‘ e

~ The tilting rate formulas in the following section will contain the
quantity:

.,",2. 1 .B+1Of ( 8 1)
3G © tan(a) BT ° CFt\® B
In figure 22 we have plotted this expression from the values of table I.
We have chosen s=tan(a) as independent variable. o

(70)

1
e: f=4ag2
=2.09
fum *: B
- el R
es 4 NN T 8 s
_____ N
o 15° 30’ 45° 80" ) o 75°
L) o 2 3 4

sston i)

Figure 22. The quantity (70) as a function of s=tan(a). The full line
gives the basic tilting function ft(s).

We see that the points for the two values of B lie very close to each
other. It is reasonable to approximate expression (70) with a single
curve. We have with very good accuracy:

feplas 8, 1) = 22 tan(a) &7 - fy(tana) e

We will call ft(s) the basic‘tiltfng function. It is shown in figure 22.
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From the basic tilting function we get with formulas (71), (66), (61),
and (56) the two tilting functions fft(u, 8, x) and fbt(a, 8, k).

The value ft(O) js obtained from the derivative of (71) with respect
to o at the point a=0. We have with (68):
£,(0) = 1 | (72)

The asymptotic value of ft(s) for large s is from (69) and (71) of the

- form n2/(8Gs). The dashed curve in Figure 22 shows this asymptot. We note
from the figure that ft(s) is linear in the interval 0<s<2. We have with
good accuracy:

fuls) = 1-f s 0<s<2 ' g o (73)
f1 = 0,235
The function ft(s) is given in table II.

a® 0 15 30 45 60 75 90
s=tana 0 0.268 0.577 1.000 1.732 3.732. -
fu(s) | 1 0.937 0864 '0.765 0.593 0.329 0

Table II. The basic tilting function ft(s).

Tilting rate formula

We are now in the position to give a relatively simple formula for the
tilting rate .of -the thermal front. The discussion in the present section
concerns the case shown in Figure 19.

We have an infinite aquifer stfip with a sharp thermal front. The
tilting angle is a function of time: a=a(t).The aquifer may exhibit a
vertical anisotropy (x#1). The total forced-convection flow along the
aquifer is Ql' The value of Q1 may be positive, zero, or negative. The
combined effect of buoyancy and forced convection is considered.

The effects of the diffuseness of the thermal front, of a vertical
left boundary at finite distance from the front, and of cylindrical
symmetry instead of the present plane case are not included in the
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present considerations. An approximate treatment of these additional -

. complications are given in a following section.

The equation for the change of the tilting angle is given by (43).
The tilting flow is obtained from (44)-(46). The two tilting functions
fbt(a, 8, ) and fft(m, B, K) are connected to each other through (56).
The anisotropy dependence is given by (66) and (61). Finally we get
with the use of (71), the basic tilting function ft(s); and the basic
tilting time t:-0 (27) the following equation for a(t):

gf (tana) = %; ft(xtaha): 1+ agéwgi%.fana] - _ (74)
Let us use.thé variable
s = xtan(a) ‘ : (75)
We also introduce the parameter:
Q) g1 o ‘ (76)

TR
The quantity y is a measure of the forced-convection flow 01/H compared .

to the characteristic buoyancy-flow G- If we insert (9), we have
instead:

A Q mpHy v
'Y = of (77)
xkgH PoP1
" Using the characteristic tilting time (27), we have:
1, Ct )
_ 326 g-1 MM*w o | o (78)

YT TR
The last factor of (78) has the following physical interpretation. The
horizontal volumetric flow is7Q1/H. The corre;ponding thermal velocity
is Q1Cw/(HC). The thermal front is displaced a distance Q1tho/(HC)
during the characteristic tilting time. The last factor of (78) is
therefore the quotient of this displacement and the height H of the
aquifer strip. '

We may writé (74) in the follwing way:
ds _ x . ‘ : o
af = f; ft(S)(1+yS) _ (79)

The basic tilting function ft(s) is given by Figure 22 and Table II. Ve
note that the tilting s = «tan(a) is a function of the dimensipnless time
xt/to. There is only one parameter y.
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Equation (79) is solved in the following way. Formula (79) may be
rewritten:
ds K ' ‘
TEI(Tys = E; dt _ (80)

We introduce the following integral:

S(s,y) = ?m—ry"s' ' (81)
R S M G o ,
The variable sAis'positive: 0§s<w. The parameter y may assume any value:
-wcy<w, The integrand becomes, for negative v, infinite, when s'=-1/y.
The integral is infinite for s=-1/y. We get one curve for O<s<-1/y and
another one for -1/y<s<». See Figure 23.

We can use abproximation (73), when 0<s<2. The integration of (81) is
then elementary. We have:

S(sv) = e - CEED) o (82)
(f, = 0.235)  Oss<2

Expression (82) is not defined, when y=-f,. Then we have by direct
integration:

S(s:-fy) = b . (82)

The function S(s,y) is shown in Figure 23.

s« HFtana

,| Peop=a P2 per peos

Y=-05
p=-1
p=-2
py=-5
_; o 7 . 2 3 Ss)1 - ‘1—::-

Figure 23.  The function S(s,vy). See (81) and (82).
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The solution of (79) during a period with constant y is with (80) and
(81) given by:
| «(ty-ty) | | ;
S(Sz:-Y) - 5(51,Y) = ——-f;-— _ _ (83)
2 = s(t,) sy = s(t,)

- The tilting s = Ktana will follow the curves of F1gure 23. Figure 24
v illustrates what happens dur1ng a storage cycle. -

s=Jdtan «
[l
=1 =0
| 1 4
p=-1
83 b—eme e e
S2 =777 775 L | |
I 1 !
i 1
N i : l
! 1 l- ot
i ] | |
1l | ] o .
11 ] ] | e 2t
0 11 - sl vl VSQS,VD- 3
0 1 2 ‘
injection storage extraction

Figure 24. An example of tilting angle variation a(t) during a storage
cycle. :

We have an injection period with y=1. Then there is a storage period
with y=0. During the extraction period we take y=-1. Figure 24 shows the
three curves S{s,y) from Figure 23. We start at t=0 with a vertical
front: s=0. During the injection period we follow the curve S(s,1). The
tilting Sy at the end of the injection period is determined by the
injection time. During the ensuing storage period we follow the curve
S(s,0). tle start from §=5. The tilting So at the end of the storage
period is obtained from the given storage time. During the subsequent
extraction period we follow the curve S(s,-1). We start with the tilting
Sy The final t11t1ng S3 after iniection, storage and extraction is
obtained from the given extraction time.
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Figure 25 i]lustratés what may:happen when we increase the injection,
storage, and extraction periods.

: ds.tan @ Cpet p=0
\2: v
- Lt T e Sinigininiieiteie iy Attt r

1 ' '
1 1

o . !
t ! I
' ;

T e '

V40 ! f | memmme—meee pe=-1
1 1 1
' 1 B |
] 1 : T
| g !
1 h
: '. ! !
I 1 ! 1
| 1 | ]
' [ 1 1
' 1 1 I
' P ) 1
| (] t |
L ! —
T ‘ S sy - S
-1 olinjection 1 . storage 2 . -3 te .

4 extraction

Figure 25. An example Qf tilting angle variation a(t) during a storage
cycle.

The three curves S(s,1), S(s,0), and S{s,-1) are again shown from Figure
23.:The extraction curve S(s,-1) has two branches. The tilting s, after
the injection and storage periods: is greater than s=1. So we must follow
the upper branch of S(s,-1). ‘

The tilting angle increases during the extraction phase in our first
example shown in Figure 24. It decreases in the second example of Figure
25, when the extraction starts with a tilting 52>1. The tilting s moves
toward the asymptotic value -1/y during the extraction phase. The upper
decreasing branch is followed, when the initial tilting Sy is greater
than -1/y. The increasing lower branch is followed, when the initial
value S, is smaller than -1/y. At the limit we have with the use of (76)

s = ctan(a) = ;1 - f;;ﬂg_*} | | (84)
This is precisely the condition (54) for a stable fkont. The flow is
horizontal and constant throughout the aquifer (48).

We will end this section with some explicit formulas for the tilting
angle a(t). We assume that 0<s<2, s=xtan(a), so that (82) is valid.
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Qur first case concerns the pure buoyancy tilting of an initially
vertical front. We have:

Il

=0 al0) =0 SR )
- From (75), (82), and (83) weiget:
ettt | »
tan(a(t)) = ————E?T—f—— : t (‘tana < 2) ' (86).

Our next case concerns an injection period with a positive y. The
thermal front is again initially vertical:

0, af0) =0 (87)
Then we have from (82) and (83):
- -(y+f1)Kt/t
tan(a(t)) = 1 - : iye'(Y’f1)Kt;to (xtan(a) < 2) (83)
1

Tilting criterion for the injection period

The tilting of the thermal front during thevinjectfon’period of the heat

storage cycle is critical, since buoyancy and forced convection
contribute cooperative]y‘to the tilting rate. We can from the formulas
of the preced1ng paragraph g1ve “a criterion which ensures a moderate
t11t1ng

The formulas concerned a sharp front in a plane, infinite aquifer
strip. Effects of the diffuseness of the front, of the finite distance
to the injection well, and of eylindrica1 symmetry are not included.

Let the injection period be‘Ogtgti. The thermal front is vertical at
the beginning a(0) = 0. Let v; be the injection parameter (76) for 0,=0;-
The tilting angle o, —a(t ) at the end of the injection per1od is given
by (88). '

Let us requ1re that the t11t1ng ang]e a; becomes smaller than 45°
have the criterion:

a; < 45° tan(ai) <1 o S o (89)

. ‘We have with (88) the condition:
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1_e‘(Yi"'f1 )Kti/to

1 ' .
¥ <1 tan{a.) < 2
x f1+yief(Yi+f1_)Ktiﬁo (x (a.') )
This may be rewritten to the following inequality:
t 1+Y.lc
i 1 ;
< « In ( ) (x<2) (90)
'Fo K‘(Tfl'y_if T 10( |

The criterion (90) ensures that the tilting angle a; at the end of the
injection period is less than 452, The characteristic tilting time is
given by (27). The permeability ratio is k'/k=x2. We have that‘f1=0.235
(77). The injection parameter is given by (76) with Q1=Qi.

Figure 26 illustrates the criterion (90). The region below the curves
gives a moderate tilting during the injection phase (“i<450)'

&l

Large injection tilting
a; > Ity

os
Moderate injection tilting

a; <48

'y " a N Vl'

o 1 2 3 4

Figure 26. Injection tilting criterion(90) .

Let us illustrate criterion (908) in a more specific situation. We
take:

k=1 ti = 3 months Cw/C = 1.5 (91)
Then we have from (29) and (77):
t. 0.
i_k _d
TSR h vt ?
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The coefficients A and B depend only on the temperatures To and T1.
Formula (90) gives an inequality between k/H and Qi/(kH). The resulting
curve for the limit with ci=45° is given in Figure 26' for four injection
temperatures.

‘4
Large Injection tilting

. a>e8® T-20'c

Ty= 40’c

J=-90C

b ) T,e120°C
Moderate injection tilting

a < as’

[] ’ 1 2 3 4

Qrt0*
T

Figure 26'. The injection tilting criterion (90) in the special case of
(91). The region below the curyes gives an injection tilting ui<45°.

Calculation of ti]tihg angle

Formula (74) for the time development of the tilting'ang1e concerns a
sharp thermal front in an inifinite, plane aquifer. The previous
included the additional effects of a diffuse thermal front, of a finite
warm region, and of cylindrical symmetry. The influence of these three

_effects on the tilting rate is shown in Figure 16 and 17. We will in

this section use these results to give an approximate formula for the
tilting rate, when these three complications are taken into account.

Let us first discuss the modification of (74), when the diffuseness -
of the thermal front is considered. The temperature is T1 on the warm
side of the front and To on the cold side. The temperature falls from
T1 to To over the diffuse front. Let D denote the thickness of the front.
This D is 'of course not a very precise quantity. It will increase wi'h
time due the heat diffusion: D=D(t). Dispersion effects for the flowing
ground water may enhance the heat diffusion considerably.
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Curve F in Figures 16-18 shows how the tilting rate is reduced, when
the thickness D of the vertical thermal front increases. The dimensionlass
independent variable is «D/H. Let us denote this fuﬁction fD(KD/H). '
does not depend on the viscosity ratio. It is reasonable to assume .that
the buoyancy tilting is reduced approximately in the same way fpr a
vertical and a tilted-thermal front. The forced-convection contribution
to (74) is kept unchanged. Formula (74) is now, when the diffuseness of
the thermal front is taken into account in this approximate way, replaced

by:
H— (tana) = £ +— f (Ktana) ( ) -—T-tana (92) .

The function fD(KD/H) is given by curve F in Figure 16. The th1ckness of
the thermal front D(t) is a given function of time.

We will use the one-dimensional solution for the heat diffusion in a
case with an initially sharp temperature step. Let the femperature at
the start t=0 be T1 for -=<x<0 and To for O<x<=. The temperature T(x,t)
is given by the complementary error function erfc:

T T
T(x,t) = T + ——2—— erfc(7ﬁ7?7=) - (93)

The thermal conductivity » may have a considerable contribution from
‘the dispersion that is associated with the ground water flow. Let Ao be
the thermal conductivity in the aquifer, when the ground water is at

rest. The total thermal conductivity may be written:
A= g+ eevl (94)

We are here only presenting a simplified description of the complicated
dispersion phenoménon. The absolute value of the thermal displacement
velocity is Vp = qu/C. The dispersion is characterized by the parameter
2. It has the dimension of a length. In a homogeneous aquifer & is of
the order of the grain size. In an inhomogeneous aquifer there is a
macrodispersion. The length 2 of (94) is then associated with the linear
distances and dimensions of the inhomogeneities.

It is clear from character of the argument of erfc in (93) that the
thermal zone width D increases as V4it/C. We have taken:

p=y/16 . /4t : (95)
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The thermal conductivity is obtained from (94). A suitable mean value
for vT at the thermal front is used. The value of A changes when 2 is
changed. In such a case we take as a generalization of (95):

D(t) =\ﬁ§ + S e | ©(96)
. 0 :

Here Do is the thickness of the thermal front at the starting time t=0.

OQur next modification concerns the effect of the finite thickness of
the warm regidn.vwe will consider both the plane and the cylindrical
case. Our previous analytical solutions gave the effect for a perfectly
vertical front. See Figure 7 B and E.

The effect on the tilting rate is shown in Figures 16 and 17 for two

- values of the viscosity ratio 8. Curve B refers to the plane case and

curve E to the cylindrical one. The relative tilting rate is given as a
function of «L/H, where L is the thickness of the warm region. Let us
denote this function fB(KL/H,B).

Let Q(t) be the rate of injection of water. We define L in the plane
case and in the cylindrical case in the following way: .
(1) = L) + [ (plane)
‘L(t) = L(0) + dt’ plane
' 0 B .
c,a(t")

| . (97)
L?(t) = L2(0) + % f —— 4t (cylindrical)
o

In the linear case Q is the volumetric flow per unit width of the
aquifer (m3H20/ms). The distance L gives the width of the warm région,
if the flow were perfectly horizontal. In the cylindrical case Q is the
total injection rate (m3H20/s). The lenth L(t) is then. the radius-of
the warm cylindrical region around the injection well. '

The reduction of the tilting rate because of the finite width L was
given.by the function fB(KL/H,B)-fOF the buoyancy flow of a vertical
front.It is a reasonable first approximation to assume the same reduction
in our more general case with a tilted thermal front of finite width.

We have now the following approximate expression for the tilting rate,
when the effect of the boundary is considered:

d 1 oDy . U a-1 . L '
| It (tana) = f; ft(xténa)lfD(%r) + ﬁ;ﬂ’ETT tana -fB(%r,B) . (98)
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This is our final expression for the tilting rate.f

The characteristic tilting time t, is given by (27). The characteris-
characteristic tilting flow a4 is defined by (9). The function fD is
given by curve F in Figure 16. The width of the thermal front D(t) is
given by (94) to (96).. The function fg is given by curve B'(pléne case) |
or curve E (cylindrical case) for two values of B in Figures 16-17. The
length L is given by (97). '

A numerical solution of (98) is simp]e.'The integration ‘is performed
with small discrete time steps. The ‘injéction rate Q(t) is any prescribed
function of time. It is zero during storage periods -and negative during
extraction periods. The computer code for the numerical solution of (98)
is reported in [4]. ‘ :

Let us end this paragraph with an example. We take a plane aquifer
‘with the following data: '

H=20m =000 2o
¢, = 4.1-100 ymdk ¢ = 2.5.1080/mK
O~ - 3 » -3 :
T, = 20°% o = 997.8 kg/m ug = 1.002:1073 kg/ms (99)
" anOn _ 3 -3
T1 = 90°C Py = 965.6 kg/m uy = 0.3113-10 ~ kg/ms
A= 1.5 J/msK - 2=0.6m

We consider an injection pefiod ti with an injection rate Q1 followed by
a storage period of the same length:

108

t.,

p s = 11.6 days

- -3 3
Q; = 0.2-107° m°H,0/ms

The characteristic buoyancy flow and the characteristic tilting time
become: o 4 o : *

L -6
9, = 2.41.10

n/s » to = 19.7 days
The distance L after the injection period becomes (97):

L(t,) = 15.8m
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The forced-convection tilting parameter becomes:
y = 2.18
Figure 27 shows the time development of the tiiting angle a under
different assumptions. '

Let us first consider the pufe buoyancy f]ow of an initid]]y vertical
thermal front during a period ti' Curve A shows the result for a sharp

.thermal front. Formula (74) with.01=0 has been used. Curve B shows the

same process, when the effect of the diffuseness of the therma] front
is included. Formula (92) with Q1=0 has been used.

The curves C-F show the tilting angle during the injection and
storage periods. The curve C is computed without the modifications for
a diffuse front and a left boundary. Formula (74) has been used during -
the injection and storage periods. The curve D includes the boundary

~modification. Formula (98) with fD=1 has beén used. The curve E shows

the tilting when the effect of the diffuseness is included. Formula
(92) has been used. Finally, the curve F shows the result when both
modification are considered The full formula (98) has been used.

R INJECTION STORAGE
60’ = 3
a ABCOETF ©
30' IMECTION X% K% | D
DIFFUSERESS| x X x i €
BOUWIDARY x x

010* : r10* 2-10*
"e 232 OAYS

Figure 27. Tilting angle variation for the example of (99). The curves
A-F refer to different assumptions.
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The correction for the left boundéry.is illustrated if we compare C
with D and F. There is a clear effect in the beginning, when «<L/H is ..
" small. The effect is negligible when «L/H exceeds say 0.5.

The effect of the diffuseness of the thermal front is illustrated,
when we compare A with B and C with E. The difference is considerably
greater for the latter case. This is due the dispersion assumption (94).
We had in case A and B: o ‘

=0 A= 1.5J/msK

1
In case C-F we took during the injection phase:
6 g .1073 |
L A1e100 0,207y gy 4075

v -
T 2.5.0° 20

A= 1.5+ 0.6+1.64.107° 6

+2.5.10" = 26 J/msK

Comparison with computer simulations

The main objective of this chapter is to study the validity of the .
assumptions made when deriving-the analytical expression for the
tilting rate (98). The following major assumptions were made.

a) Compressibility effects are neg]igible'.

b) The curved thermal front is approximated by an appropriate straight
line. ‘ ’ '

: c) The diffuse front is represented by a zone with linearly varying
density. ‘ '

d) The analytical corrections for a diffuse front and for the effect of
the well close to the front are valid even when the front is non-
vertical.

e) The diffuse front does not reduce the forced-convection tilting rate.

A suitable way to test these assumptions is to utilize a numerical
model of the aquifer system. The simulations have béen performed with
the computer code CCC developed at Lawrence Berkeley Laboratory. This
code which encompares conduction, convection and compaction has been
validated against a'number of semi-analytic solutions and against the
Auburn field experiment [5], [6] . The computer time expended to
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simulate this problem pdts some restrictions on the mesh size used in
the numerical model. The treatment of the transport equation using
finite difference methods (or finite element methods) introduces a
spurious increase of the diffusion process. The character of the
‘numerical dispersion tensor is such that it may be used to account for
the effects of macroscopic dispersion [7]. In our simulations this
numerical dispersion is equal to an additional thermal conductivity of
about 15.0 J/msK during the injection period.

The simulations are performed with the following basic data for the
_plane aquifer: '

Density of the solid 2;5-103 kg/m? '
Specific heat of the solid 0.9-103‘J/kg'
Thermal conductivity of solid-liquid mixture 1.5 J/msK -

Specific storage of the porous media
Thermal expansivity of water
Specific heat of water

Héight of aquifer

0.5.107% m2/N
0.317-1073 K~
4.1.10% J/kg
20m

1

Porosity ' 0.25

In the reference case we use:

Mass injection rate _ 0.2 kg/ms

Injection temperature T1 = 90°C

Ambient temperature T° = 59
Permeability | k = 1.548-10" 11 n?
Permeability ratio A _ K2 =1.0
Injection period _ 6.5-105 3 ='7.5 days

Storage period 6.5-105 s * 7.5 days

The aquifer is penetrated by three wells. Two wells are situated on-
opposite sides of a central well. The system is symmetrical with respect
to a plane through the central well. This means that we only have to
consider one half of the system. The distance between the wells is 300
meters,

Figure 28 shows the computéd temperature field when the high
’permeabi]ity value k = 1.548-10'10 m2 has been used. The temperafure
fields at the end of the injection period(Figure 28a) and at the end of
the étorage period (Figure 28b) are given. '
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Figure 28a. Temperature field at the end of the injection period (7.5
days). The permeability ‘is 1.548-10710 2.

8C° 70° 60°50°4¢°|

10
0 i 1 " L " - i i .
] 10 T ' 20 : 30 40
m

Figure 28b. Temperature field at the end of the storage period (15 days).
The permeability is 1.548-107 0 m2,
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The disadvantage of a very high permeability aquifer is clearly
demonstrated. At the end of the storage period the hot water has been
spread out in a thin layer adjacent to the upper cbnfining stratum. Heat
losses to confining layers are not included in the calculation. It is
obyious that the heat losses from the aquifer would be substantially
enhanced if the hot water behaves as in Figure 28.

When the permeability is ten times lower, 1.548.10" "1 mz, the
temperature fields are as shown in Figure 29. The tilting effects are
still large considering the short period of time. '

v L]

80’ 76 60 50°40° 30" 20°

Figure 29. The temperature field at the end of the injection period (a)
and at the end of the storage period (b). The permeability
is 1.548.107 "1 o

mZ.‘
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Figure 30. The temperature field at the end of the injection period (a)
and at the end of the storage period (b) The permeability
is 1.548.10" 12 n2.

0-12

When the permeébi]ity is Tow, 1.548.1 , the tilting effects are

small. See Figure 30.

The thermal front (T = (T1+T°)/2 = 47.5%C) for the three different
permeabilities are shown by the solid lines in Figure 31. The
corresponding theoretical straight fronts are dashed. The agreement
between the theoret1ca] and the simulated thermal fronts is quite
satisfactory. '

Formula 29 indicates a strong dependence on the temperature levels
of the injected and the ambient water. This effect is demonstrated in
Figure 32. The tilting angle for the (60-20) case (degrees centigrade)
is about one half of that for the (90-5) case. This is in agreement with
theory. See Figure 15 where n(60,20) = 2.62 and n(90,5) = 1.40.
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Figure 31a. The thermal fronts after the injection period (solid lines).
' The dashed lines give the corresponding theoretical ones. The
hydraulic conductivity values 10°>, 107% and 1075 m/s (1=5%)
correspond to the permeabilities 1.548.1071°, 1.548.107!!
and 1.548.1012 2 respectively.
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' Figure 31b. The thermal fronts after the storage period (solid 1ines).
The dashed lines give the corresponding theoretical ones.
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F1gure 32. A compar1son of thermal fronts after injection at different
temperature levels. The s1mu1ated fronts (SO]ld lines) and
the theoretical fronts (dashed lines) are given at the end
of the injection pefiod,(32a)'and at the end of the storage

. period (32b).

The anisotropy of the permeability enters as the product ck =

Kk

in the denominator of t (27). Thus, if « is varied, while the quantity

/E' is kept constant, the tilting time t will remain constant. In
spite of this the tilting angle will not be the same. The reason is -
- that-both the correction for a diffuse front and that for a well close

to the frbnt.haye a K-debendent parameter. There will be minorf

differences in the tilting angles if the anisotropy does not attain

large values.. Figure 33 shows the thermal front after the storage ‘period

for three different values of the an1sotropy.

In the case K2=0.1'the thermal front retains the characteristic_s-
shape of a re]ative]y sharp front. Compare with Figure 14. The reason

for this is that the parameter «D/H is re]at1ve1y small.

In the figure

both the simulated, and the theoret1ca1 thermal fronts exhibit only small
dev1at1ons from the 1sotrop1c case. But the relative positions Of curve
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Figure 33. The simulated (a) and the theoretical (b) therma] fronts for
different anisotropy (K ) values at the end of the storage
period (vk'k constant).

n2=5;0 is reversed. The difference is explained by the evaluation of
the diffuse zone length. In the theoretical calculation the front was

assumed to be sharp at the beginning and to evolve as the square root

of time. The discrete representation of the temperature in the numerical

scheme will give an initial diffuseness on the order of the width between
the nodal points. At the start of the injection the diffuse zone will be

too large. This reduces the flow. '

" Figure 34 shows the thermal front at the end of the storage period
when the same vo]umé_has been injected with different flow rates. The
length of the cycle, which consists of both the injection and storage
peFiods, is kept constant. The flow rate of the reference case is
dénoted_Q. The y value corresponding to the flow rates 0.5Q, Q and 2Q

s 1.14, 2.29 and 4.58 respectively.

It appears that, if the injecfion volume is given, the injection
strategy is of little importance for the tilting angle at the end of

‘the storage cycle. Compare with Figures 24 and 25.
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Figure 34. The simulated (a) and the theoretical (b) thermal fronts at
the end of the storage per1od when the same volume has been -
"1n3ected at different flow rates. The length of the cycle,
which consists of both the injection and the storage periods,
s kept constant. | '

~ The general agreement between the simulated and the theoretical’
thermal fronts indicate that the assumptions made in the analytical
approach are reasonable.

Discussion of field experiments

We shall in this éection compare- our theoretical results with some field
experiments. These have been carried out at Neuchdtei (Switzertand) [8],
Campuget (France) [1} and Auburn (USA) [9]. The basic data and the
corresponding. characteristic tilting time t, are given in Table III.
The principal parameters are the height (H) and the permeability (k) of
the aquifer, and the temperature of the injected (T ) and the ambient

. water (T ). The development of the t1lt1ng ang]e durxng the injection,
storage, and production periods is calculated as previously described
(98). The vertical permeability k' isloften uncertain. The two values
k'=k and k'=k/10 have been used in these cases. A thermal conductivity
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o 0 o 2 o '3 (days) (days) (days) (days)
| T1( c) T, c) K(m/s) k(m®) ~ H(m) ’Vinj(m ) tinj tetor tprod St
Neuchatel - 51 1M - 0.3-1.107% 0.4-1.3.107% 1 7.2 494 9.3 124 28 0.2-0.6

! Campuget . 33.5 14 1107 1151071 1 9 20,200 77 42431 42483 7.2
Awurn 17 3% 20 5.0 0.5.1071" 0.1 10 8,000 3410 10436 26 556
Auburn 2 - {55 20 500t 0501070 0.1 10 54,788 79 517 41 - 18.1
Auburn Ex - 90 20 5.0 0.5.10°'% 0.1 10 54,788 90 9% 90 6.2
Low permeabil ity 120 20 1:107° 1.10°'%% 1 30 -90,000 90 % - 90 166
aquifer _ , . _ _ _ S
Very low 120 20 1.0 1100 1 100 -90,000 9 9 90 - 5,530
permeability aquifer . '

Table III. Aquifer storage data and characteristic tilting time ty




of 1.5 br 15 J/msK has been used. The higher value represents a‘modgrate
maérodispersion. The step-wise computation of the tilting angle'ié
discontinued, when o=60° is attained. This is the limit for the simple
approximation (73) of f (s).

In the experiment at Neuchatel (Switzerland) 494 m3 of hot water at

51C was injected into an aquifer with a height of 7.2 meters. The
aquifer cons1sts of three layers with different permeab111t1es (400,
800 and 1300 Darcy) This gives a t11t1ng time t, =0.2- 0.6 days. Figure
35 shows the computed variation of- "the t11t1ng ang]e with time. In_curve
A we use the highest permeability value (1300 Darcy), a permeab111ty
ratio (x ) of 1.0, and a thermal conduct1v1ty (1) of 1. 5. This
unfavourab]e case tilts to 60 degrees in just one day. If we instead
use the lowest permeab111ty, 400 Darcy, ‘together with <2-0 1 and A=15
J/msK, the tilting will reach the limit after 8 days. This should be
compated to a storage period of 124 days A strong disturbance of the
temperature field due to buoyancy flow must be expected. Th1s is in
agreement with the field test.

INSECTION : gromace . PRODUETION
o P = )
a !
. i
3 <t A ST
Af13907 10 1s !
8 ]0.4.00? 0.1 15 !
Tye 1% Ker2mo
‘ r, - 851%
|
!
i
t
[ I .
° 50 100 150
: DAYS

Fiqure 35. Neuchdtel. Theoretical tilting angle variation.

In Campuget (France)another field test was carried out during 1977-
78 using an aquifer with a lower permeability (115 Darcy) and a height
of 9 meters. The temperature difference was only 33.5-14°C. This gives
a characteristﬁr~tilting time t6=7 days. The deVelopment of the tilting
angle is given in Figure 36. :
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Figure 36. Campuget. Theoretical tilting angle variation.

~ The time to reach the 60 degrees limit varies from 21 days for case A
‘to 71 days for case C. Since this is an alluvial aquifer, it is
reasonable to assume that the vertical permeability is less than the
horizontal one (x<1). The whole storage cycle extends over 245 days.

The calculations give a considerable tilting. A comparison with the
field test is not simple. The situation is complicated by the large

heat loss through the thin cover1ng 5011 1ayer (1-3 meters) The effects
temperatureprof11es but rather result in increased heat losses to the .
ground surface. The small fract1on, 20%, of the 1nJected energy that
was recovered may support this interpretation.

The aquifer in the Auburn (Alabama, USA) field tests is located at a
depth of 40 to 61 meters. The permeability is 50 Darcy. The well '
penetrates only the upper 9 meters of fhe aquifer ‘The calculations of
a theoret1ca1 t11t1ng angle are made with an aquifer height of H=10
,'meters.

During ‘a numerical simulation of the first experiment if was necessary
to assume an anisotropic permeabiltiy in order fo get good agreement.
The vertical permeability is set equal to 10% of the horizontal one. The
result is that the tilting rate is reduced by a factor 3. In the first
experiment the temperature difference was as low as 36 to 20°C. The
“tilting time t, is 56 days. The calculated tilting ungles (Figure 37)
reach values of 36° and 43° depending on the magnitude of the thermal
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Jsigure.37..Auburn 1. Theoretical tilting éng]e variétion.

conductivity. In this case the calculations are stopped when the whole -
injected volume has been produced. The effects of the tilting should

be rather limited during the a cycle of 85 days. The experimental
temperature field indicates a tilting angle of 20° at the end of the
storage period. From Figure 37 we get a value around 35%. The assumption
that the Tower part does not take part in the tilting process may
accoﬁnt for this discrepancy. The presence of a cold water volume below
the injected warm water will allow a closed streamline to extend into
the lower region. The streamline will then be longer, and the flow will
expérience an additional flow resistance. See (7) and (8). The cold
aquifer region below the heated volume will have a moderating influence
on the tilting rate.

The first cycle of a second experiment was completed during 1978.
The temperature of the injected water was now 55%. Due to this thé
characteristic tilting time ty was lowered: to 18 days. This illustrates
the strong temperature dependence of the buoyancy flow. The increased
buoyancy flow drives the tilting angle to 60° in about 40 days. The
experimental temperature'fie]dvexhibits a pronounced tilting at the
end of the storage period. The whole cycle is 175 days long. The theory
over-estimates the tilting angle. This is due to the aforementioned
intricacies of the partially penetrating well. Figure 38. ‘

A wider field of applications of the aquifer neat storage contept
can be found, if the water is stored at a higher temperature. In shallow
aquifers a temperature of 90° has been mentioned as desiratle. Applied
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Figure 38. Auburn 2. Theoretical tilting angle variation.

at the Auburn test site this would give a characteristic tilting time
’-to of 6 days. The bdoyancy f]ow is then roughly ten times as high as
‘in the first field test, where the injection temperature was 36°C,
Compare Figures 37 and 39. Annual storage meénsva Tonger storage cycle.
The prob]em of thgrma1 stratification then becomes further aggravated.

’ed' sscrion srorace sAODUCTION
@
. Pasfas
% .
. T, = 20°C .
o T, = 90°%
H =10m
0°
”.
'
o
[ ] 30 100 150
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Figure 39. Auburn, Example. Theoretical tilting angle variation.
A1l the field tests conducted so far have utilized aquifers with
rather high permeabilities and injected water of rather low

temperatures. In the 1ight of this investigation ore must issue a
warning for the substantial increase of the tilting flow that will
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‘occur when larger temperaturedifferences are used during Tonger storage
cycles.'An exaﬁp1e of a premising system is given in Figure 40. The
curves A-C. show the t11t1ng angle during a storage cycle for a low
'permeab111ty system (k 1.10° -12 m ) T1ght aquifers wlth this

¥ B ) H W .
INJICTION -, sromact | pmooucTion

o T eV it
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K 2 H
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Coef107® 10 75 30
T ocf1107? 0t 15 30
of11073 1.0 1.5 100

DAYS . -

Figure 40. Theereticgf,tiltin; angle variations for Tow permeability
aquifers.

permeability can be found deeper down'where jt-is possible to keep the
water under pressure. InJect1on temperatures exceed1ng 100°C can then
be utilized. As can be seen in Figure 40 the t11t1ng rate is not large.
The numerical simulation performed with the computer code CCC in 1976
- used the same parameters as. those resulting in curve D [5 ] The
corresponding t11t1ng t1me—constant is 15 years. The buoyancy effects
in this system is negl1g1b1e as far as annual storage is concerned.
This, together with the computed high efficiencies, points to the
excellent performance of this kind of system.

) The tilting isa major factor fervthe_therma1 performance of an

aquifer heat storage system. We have seen that the tilting rate varies
with as much as 10 000 times between different aquifers which have
been studied or proposed. Great differences in thermal performance are
to be expected. The extrapolation of the efficiency of a certain
system to other eases st be made with great care and caution.
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" Conclusions

The two basic parameters for the tilting rate of the thermal front is
the characteristic tilting time t°”(27) and the injection/extraction
parameter y (76).

The angular tilting rate of a sharp, vertical thermal front in a
long, plane aquifer strip is 1/t . This ti]ting'rate is inversely
proport1ona] to the height H of the aqu1fer. It is proportional to the
permeablllty kk = vk'k. The buoyancy t11t1ng rate depends strongly on
the injection temperature T1 and the ambient aqu1fer temperature T
The rate is increased 5 times, if we go from T -10 % and T1 =40 to
T -10°c and T, =90°%.

Let L denote the distance from the well to the vertical thermal
front. The 1nf1uence on the buoyancy t11t1ng from the boundary of the
well is neg]1g1b1e if «L/H>0.5. This app11es both to the p]ane and
the cylindrical case.

The diffuseness of the thermal front d1m1n1shes the t11t1ng rate.
Let D be an approprlate width of the front. The t1lt1ng rate is
reduced by 50%, when D’ increases from D=0 to KD/H 1.

The effect of vertical anisotropy in the‘aqUifer on the tilting is
simple to assess. One shall use an effective permeability /kk'. I1f, for
example, the vertical permeability is chénged from k'=k to k'=k/10,
then the tilting is reduced with the factor /1/1020.3.

The tilting angle increases during the injection and storage periods.
;Itfnay-increase or decreasé during the extraction period. See Figures
- 24-and 25. The injection period, when buoyancy and forced convection
_cooperate, is the most critical one. Criteria that énsure only moderate
, ihjectioh tilting are shown in Figures 26 and 26'.

It is not possible to give any simple criterion how to avoid
detrimental tilting during a storage cycle. Keeping this in mind we
_give the following guide-line, which is an upper limit on the quantity
k/H. We get from Figure 26' with Qi=0 for interseasonal storage:
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Aquifer height H (m)
10 25 50

Injection 60 '3 . 8 15

temperature

T, (%) 90 1 3. 6
120 0.7 2 4

Table IV. Order of magnitude upper limit for aquifer permeability k or

V /kk* (Darcy) in order to avoid large tilting.
These values refer to a sharp thermal front. The diffuseness caused by
heat dispersion will permit higher permeabilities. This is in particular
the case for thin aquifers, where the thickness of the thermal front
may be of the same order as the height H. In an anisotropic aquifer
Table IV gives an upper limit on /Kk'.

An aquifer which satisfies the condition of Tablé IV is expected to
have a very good thermal performance. An assessment of the thermal
performance of aquifers with considerably higher permeabilities than
those of Table IV will require a more elaborate investigation.

Surmary -

The basic equations for the thermohydraulic hrocess in the aquifer are
given by (2), (3), and (4). The ground water flow in the aquifer with its
displacement and, in particular, its tilting of the thermal front may at
each moment be regarded as a superposition of a buoyancy flow and a forced-
convection flow. The buoyancy flow is at work.all the time, while the
forced convection takes place during periods of injection and extraction.

The pure buoyancy flow of a vertical thermal front is analysed. The
character of the buoyancy flow with its driving density differences is -
illustrated by Formulas (6)-(8). The starting point of the analysis is
some exact solutions for the ground water flow. The considered cases are
shown in Figure 7 A-F. The flow across the vertical thermal front is given
by (18)-(23). These flows determine the tilting rate of the front.
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The most important case is the tilting rate of a sharp front ina
plane, infinite aqu1fer Figure 7A. The basic tilting t1me for this.case
is: '

_onHC | 4 . 0-6 | y ey
to EEC; 1.2-10 _ _ | L o (29)
The quantity n is a fuinction of the injection temperature T1 and the
ambient temperature T F1gure 15.

The influence of the boundary of the well and of a finite width of the

. thermal front is shown by Figures 16-17. The infinite'équifer case

" according to Figure 7A gives the tilting rate with good accuracy except

for quite thin warm regions («xL/H<0. 3) and for qu1te thick thermal fronts
{<D/H>0.3). ‘

A simple buoyancy tilting criterion or guide-line is given by (30)-
~ (35). ‘ .

The superposition of buoyancy and forced convection is defined by the
equations (36)-(38). A detailed dimensional analysis is made for the case
of a sharp, tilted thermal front in a plane, infinite aquifer strip. See
Figure 19. The tilting flow Q, may be written (42)-(46):

. Qt = qu'fbt'(a’B’K) + Q1'ff‘t(a98s’<)

The characteristic buoyancy flow 94 is defined by (9). The two functions
fbt and fft for the buoyancy t1lt1ng and the forced-convection tilting
respect1ve1y depend only on the tilting angle a, the v1scos1ty ratio

/u1, and the anisotropy parameter « {17). The time development of
the t11t1ng ang]e is given by (43):

(tana) = —2- Q, h (43)

There exists a certain combination of tilting angle a and pumping rate
Qq for which the flow in the aquifer is constant and horizontal (48):

qH ) ’
tan(a) = = -%T %;+‘ | (54)

The hhysical situation, when this happens, is illustrated in Figure 20.
The tilting rate is zero, when (54) is satisfied. From this we may deduce
the relation (56) between fbt(a,%,n) and fft(a,B,K).
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The effect of anisotropy is analysed. It is possible to reduce such
a case to an isotropic one. We have for example:

fft(ﬂgs"‘) = ff-t(a'98’1) ’ ‘ i (65)
tan{a') = «tan(a) (61)
The remaining unknown function fft(a,s,i) is computed numerically,

Table 1. It is shown that we can express the results with a single
function ft(s):

_ 4G g-1
fft(G,B,‘l) = ?’ tan(a) -B—+—1- ft(tana) . (71)
The basic tilting function ft(s) is given in Figure 22 and Table II.

The final formula for the tilting rate of a sharp,tilted front in an
infinite, plane aquifer becomes:

B = £ (s)(14ys) (79)
o ,
s = ctan(a) : : (75)
U -1 | '
Y= —’—]:[qu s (76)

The solution of (79) is simple. The tilting s will follow the curves in
Figure 23. Two examples of the tilting angle variation «(t) during a
storage cycle are given by Figures 24 and 25.

The injection periéd, when buoyancy and forced convection cooperate,
is the most critical one. The tilting at the end of the injection period
is less than 45° if
,:i< (IR o}
0 K(f1+Yi) 1-f1K
The length of the injection period is ti' The injection parameter is Yy

and f, = 0.235. Condition (90) is shown in Figure 26.

(90)

. A modification of the tilting formula (79}, which accounts in an
approximate way for the finite width of the thermal front and for the
well boundary in the plane and cylindrical case, is derived:

d 1 Dys 1 p-1 L
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An expression for the thickness of the thermal front, D(t), is given by
(96). The distance to the well boundary is L (97). The function fy is
given by curve F in Figure 16. The function fB is given by curve B

" (plane case) or curve E (cylindrical case) for two viscosity ratios in
the Figures 16 and 17.

The complete tilting angle formula and,different'simplifications of it
are illustrated in a particular case. See (99) and Figure 27.

A

The theoretical formulas have been compared with computer simulations
of the comp]ete'thermohydraulic process in the aquifer. A computér code,
called CCC, which has been developed at Berkeley, was used. -Results are
shown in Figures 28-30. The thermal fronts after the injection period
and after a subsequent storage period are shown in Figure 31 a and b. -
The corresponding. theoretical straight fronts agree very well with the
numerically simulated ones. The agreement is also quite good in other
cases, when the temperature levels T1 and To’ the anisotropy x2, and the
injection rate Q, are varied. See Figure 32, 33, and 34 respectively.

The field experiments, which have been carried out at Neuchdtel,
Campuget, and Auburn, are discussed. Data for these experiments are
summarized in Table III. The characteristic tilting time to is also given.

The variation of the tilting angle according to (98) has been computed
with different assumptions for these experiments. See Figures 35, 36, 37,
“and 38. The tilting angle passes 60° in all cases except Auburn 1. This
is basically due to the small value of the characteristic tilting time
ty compared to the time of the storage cycle.

The effect of the injection'temperature T1 is illustrated by the three
cases Auburn 1 (T,=36°), Auburn 2 (T,=55%), and Auburn Example (T,=90°).
The tilting rate is tripled from T1=36°C to T1=55°C and again from
T1=55° to T1590°C. See Figure III. This drastic effect on the tilting is
shown in Figures 37-39.

The qdvantage of aquifers with lower permeability is discussed. We
get for a certain aquifer with a low permeability (k=1 darcy) a
characteristic tilting time t0=166 days. See Table III. In an aquifer with
very low permeability (k=0.1 darcy) the characteristic tilting time became
to" 20 years. The modest (k=1 darcy) and negligible (k=0.1_darcy) tilting
during an annual injection, storage, and production cycle is shown in
Figure 40. ' '

63



. A few conclusions end = the paper.
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-®m < x <™

APPENDIX. ANALYTICAL SOLUTION FOR A SHARP, VERTICAL THERMAL FRONT IN AN
INFINITE STRIP.

We will in this a.ppendix derive the analytical expression for the pressure

~ in case A, which is shown in figure T A. The aquifer lies in the region

,—-g'<z<g-.Thethermalfrortliesatx=0,-g—<z<g.

Let P(x, z) denote the pressuré in the aquifer. The pressure shall satisfy:

H H
-¢<x<0,--2-<z<§-:
3k 3P, a k' - , ‘ 4 .
ax(‘|l1 =) + ( ( +p.8)) =0 (A1)
0‘x<6,——<z<%:'
) k 9P k! BP
E(T 3—x) E(u %2 +pg)) =0 (A 2)
o o .
The horizontal boundaries are impermeable:
—254-“)137—-0 zzt%, - <x <0
(A 3)
-g-g+p°g=0 z=£%,d<x<m
Hydrostatic conditions shall pr_evail far away from the thermel front:
P+- 0,82 X+ -
i | (A b)
P+~ pogz X > 4+ o
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The pressure and normal flow are continuqus at the thermal front:

P(- 0,2) = P( + 0,2) o T - . (A 5) .t
' H___H | ‘
2°%%2 N
- E ] —ag . = - E e e— ’
»u1 . 3x/x= o po 3x/x= +0 | (A 6)

We start with the following expressions:

x < 0:

P(x,z) = - P82z *+ } a, un(x,z) : | _ (AT)

i=0
x > 0:
@« N
P(x,z) = - P82 + } bnlnn(x,z)
" n=0 )
where - L
- §2n41!wklz[
. H
. sy (2n+l)mz ' :
w (x,z) = sin === -+ e R (A 8)

It is not difficult to verify that these expressions satisfy A 1 = A:b for
any choice of the coefficients aﬁ and bﬂ' The coefficients are determined

by the two remaining conditions AS and A6:

W NN O O
kU

& = X 2 *(n+1)2 (A 9)

u
P = - 2] e g
n 111 n

In particular we have for the flow across the thefmal front:
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(2) = -k &
ks z‘ o ax/x==—o_

e

agqo . m

o . ' S
n _ i

} %1 . 8in (2n+1)mz B (A 10)

n=0

The series may be expressed in the simpler way of formula (18).
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Notations

f1=0.235

~r *®* ® T T @ o

volumetric aquifer heat capacity (solid+water)
volumetric water heat capacity »
thickness of thermal front

curve B (plane case) or curve E (cylindrical
case) in Figures 16-18

buoyancy tilting function
curve F, Figure 16
forced-convection tilting function

basic tilting function (71)

Catalan's constant
standard gravity

height of aquifer stratum
driving hydraulic head

permeability (horizontal direction)

permeability (vertical direction)

thickness of warm aquifer region
distance to well boundary (97)

macro-dispersion length. (99) .

thermal displacement corresponding to a time ty

pressure in the ground water
buoyancy flow pressure component

forced-convection pressure conmponent

~ buoyancy tilting flow

forced-convection tilting flow
tilting flow

pumping rate

volumetric ground water flow

buoyancy ground water flow across the thermal
front
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© (4.2-10% a/md °c)

(3/m° °¢)

(m)
(-) .

(-)

(-)

(-)

(-)

(-)

(-)

(9.81 m/s
(m)

(m/m)

2)

(m)
(Pa)
(Pa)

_(Pa)

(m3H20/ms)

(m3H20/ms) -~
' (m2/s or m3H20/ms) -

(m3H20/ms)'

(m/s or
m3H20/m?, s)

(m/s]



_dynamit viscosity for water at temperature T,

characiéristic buoyancy flow (formula 9)

- radius of circular disc aquifer

" tilting integral (81), (82)

tilting variable (75)
temperature

temperature of colder region
temperature of'warmér.region
time |
injection timé'

timé period of storage cycle

~characteristic tilting time

thermal velocity

characteristic thermal velocity

horizontal Cartesian coordinates

vertical Cartesian coordinate

vnit vector in the upward direction
tilting angle of thermal front
modified tilting éngle (61)

tilting éng]e after ihjection period
vigcosity ratio

closed curve in the aquifer

pumping rate parameter (76)

ti]tfng time function

permeability ratio

therma1 conductivity in the aquifer
dynamic viscosity for water” '

i
density of water

density of water at temperature Ti

angular tilting rate
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- (m/s)
%%A(m)

(-)
(-)
(%)
(%)
(%) .
(s)

ﬂ(S)
(s)

(s)
(m/s)

(m/s) -

(m)
(m)
(-)

(<)

(<)

(-)

()

(a/ms %)
(kg/ms)
(kg/ms)
(kg/m3)
(kg/m)

(s™h
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V=

characteristic tilting rate _(s")v
L 9 9 )

Sx'sy'az)  gradient operator ' : | (")
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