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Abstract

A statistical model isldevelopéd for the generation of complete
multi-fragment events in medium-energy. nuclear collisions. -Based on simple
geometrical' considerations, the .collision system is divided into a few
(particiﬁént/spectator)'sources that diséssemb]e independently. The
sufficiently ‘excited sources quickly explode into?pions,'nuc1eons, and
composite, possibly partic]e qnstab]e,nuc]ei.'-The different final states
compete according to their microcanonical weight. Theiless,excited sources,
and the unStable;exb1osion products, deexcite by sequential light-particle .
emission: *The model has been implemented as a Monte Car]obcomputer code .that -
is sufficiént]y efficient to permit generation of large event samples. The
ana]ysis’df‘SUch-md1ti4fragment events is addressed and some illustrative

applications are discussed.

Boos o -

“1. Introdiction’

In recent?yearsvthe theoretical and experimental activity in medium and.
high energy'nuc1ear-c011is10ns has increased rapidly. Previous theoretical
studies (as'well as earlier experiments) mostly focused on inclusive
observables. - In addition to statistical'calﬁulations based on the grand

canonical épproximation1"3) 4)

, several dynamical models [e.g., ref..:’] have
been put forward; they enjoy considerable (and combarab]e) success in .
%eproducinb'Certainffeatures of inclusive data in the relativistic regime.
Recenﬁly'a new theory, based on nonequilibrium statistical mechanics, has been-
deve]opeds)].

However, it is now possible to detect e1ectroni¢a11j practically all
charged fragments emerging from a co11ision, and thus good-quality, nearly ..

exclusive data-on multifragmentation processes. can be_obtaineds).' This fact

i
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calls on theory to address exclusive duantjties, Therefore, we have

undertaken- to develop a model for calculating.complete~mu1tifragment events in

'medium;energy nuc lear co]1isions.' (Ne have in mind an energy range -from a few .

tens of MeV to energies where part1c1e creat1on becomes 1mportant ), The goal
is to estab11sh a reference mode] that 1nvokes as few assumpt1ons as poss1b1e
'about the - spec1f1c dynam1cs of the collision process. Such.avmodel may f1nd,

~several app11cat1ons i) it can proyide the theoret1ca1 background‘aga1nst

-fwhlch subsequent more ref1ned and spec1f1c ca]cu]at1ons can be judged, ii) it .

. can be of he]p in ana]yz1ng the data, in particular in- the search for peculiar. .

1.structures in. theﬂ1nd1v1dua1 event patterns,.and 111) it can be of value in

attempts to assess the bias 1ntroduced in the data by the acceptance criteria

”'_assoc1ated with a particular detection system.

rThe.model-developed can be-braef]y described as follows. The'colliston
system is d1v1ded into a few subsystems, sources, each of which 1s assumed to
_d]sassemb1e;1n,a stat1st1ca1 manner. For the subd1v1s1on we use the

participant;spectator geometry. supplemented with a prescrjptlon to share‘

energy*and*momentum among - subsystems. . In this way we define one,oarticipant

source and'up'to two spectator sources, each characterized by its-numbervdf
-_fncheons,,chargé;'and total four-momentum; Those sources_that,havevan_
excitation’energyfsufficient for complete disassembly into free nucleons are
said to be .above the disassembly threshold,n They are assumedﬁto Pexp]ode?_
duick]y.into a-number of pions, nucleons, and_composite nuclei that are
genera1]y excited and particle unstable. Sources below the disassembly
thresho]d.are]assumed to deexcite by sequential light partic]e evaporation;
the same.is assumed for the particle unstable explosion products.

o In Section 2 thefprocedure for partitioning the system into separate

sources is described.' We introduce two parameters governing the sharing of
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energy and momentum among the participants and spectators. By varying these:
parameters many different physical scenarios can be encompassed in the model.
The explosion of a sufficiently excited source is assumed to populate the
aCCéS§551é mu1tifrégment channels accofding to their statiétical weight, as
obtained by summing over the available phase space; This picture has been
used t6°study the one-fragment inclusive quantities in medium-energy nuclear

collisions by employing the grand canonical approximation’*8),

However, the
focus of the present study is on exclusive quantities, and the conservation

laws must be obeyed event by event. We have therefore developed an- aproximate
microcanonical ‘treatment of the disaSsemb1y processg).

In Section 3 we
describe the details of ‘this treatment.
The evaporation process ‘is treated in a way rather similar to that of

8)

ref. 8 and is briefly summarized in Section 4.
o “In Section 5‘we-turn to the use of the model. Several illustrative
applications are made to cases under experimental study, and somé disbﬁssion
of the global ana]ysfs of multifragment events is given.

Section 6 contains our concluding remarks. Finally, in Appendix A we
giye a brief discussion of Lorentz invariance in the grand canonicali

approximation, while in Appendix B the details of thé macfostopic'mass formula

used for heavier nuclei are given.

2. Division into independent sources

As: discussed above, the co}]isioh systém'is divided into a number of
sources,. which are assumed to disassemble independent]y;_ For this task we
invoke simple ‘geometrical concepts that have proven their value for nuclear
collisions. at re]ativistic‘energies. Thus, the‘collisionrsystem A0 + B0

(where A0 denotes. the projectile and Bosthe target) is split into three-
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sources,A,B,giwhere‘A and‘B,are theiprojectilgvand‘target "gpectators",
respectiye]y, apdic_js the "pacticipanpﬁ systgm. Such{a pripartitiqn”
represents the'mjnima] dynamical input that can be expg;;ed'ﬁo havé some
correspondence with the data. In order to characterize the three sources .we
proceed as follows. | o .

TheEparfoion,of the.nucleons is determined on thelbasis of~the’standafdi _
straight-trajeﬁtpry c]ean—cut.prescrjption assocjgted with th? nuc lear
2) '

fireball model™’. Furthermore, we assume that_the neutron-to-proton ratios

“in the two spectator sdurcés;are as in the two original nuclei. We thus take

Am- té]: Z, = fﬂgia L . fﬁg a+ 1
I A 2 | AT LA 2
L. 0 o N 0. : ‘ J C
ey 1 i 1
8= [b] , 2 -'..ZB° b+l Ng. = NB°b o |
= * "B . vfﬁz 2.4 2 BT ._'Eg - ”??J-

N o - - (2.1)
1. =1, +1, -1, -1, ' '
LR e A
N.=N, +N, - N, - N

C ‘Ao Bo A B
-~ We havé~introduced thé cohvenient hotation _
A =,ZA f NA s Bu=,ZB + NB s Q = ZC f_Nc | _-‘(232)

for the total number of nucleons in the sources -A,B,C respectively.
-Furthermore, the real numbers a and b denote the approximate mean number of

nucleons in the two spectators as given by the expressionSjihirefL 2).

This.
tripartition is-illustrated in fig. .1 for the two cases Ca + Ca and Ne + U.
The brackets denote rounding down to the nearest integer. We note that for
asymmetric systems the smS]]er'Spectator source vanishes when the impact

parameter s is sufficientiy_sma]] (approximately when S,<TRB -"RA 1).
: 0

)
Furthermqré,;for a nearly head-on .collision of two equal nuclei, both
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spectator sources vanfsh. The possible presence of empty's0urceslposes no
formal or practical problems and need not be considered separately in the
further development. o J
Next we partition the momentum among theWSOUrces.':This is most

conven1ent]y done 1n the overall CM frame in which PA EB = 0. The
0

momenta of the three sources are parametr1zed in the form

.0 .O

-'FB = (1-y) & 33 (2.3)
0 0

> . > ->»

PC = —PA - PB

The parameter y € [0 1] governs the reduct1on of the mot1on of the spectator
sources When y van1shes, the spectators cont1nue w1th the1r 1n1t1a1 moment um
per nocleon In the other extreme when y is un1ty, a]] three sources move
with: the same ve]oc1ty The parameter y def1ned in th1s way is somewhat
ana]ogous to the 1ne1ast1c1ty parameter used to character1ze two-body |
co111snons.“ |

Fina11y; the generated excitation energy Q, equaT to the_loss of |
translational energy implied by (2. 3) must be partitioned. In'the standard
fireball mode] all the heat Q goes 1nto the part1C1pant source wh11e the :
spectators remain cold In order to ach1eve‘a more rea1lst1c descr1pt1on, we
employ the parameter x € [0,1] governing the 1eakage of heat tnto}the':

spectators. We thus assume that the invariant source masses. are .given by..



2 a2
MAC"= A (mc® + xq) + Va
MBc =B (mc™ + xq) + Vg » : _ (2,4)
_Mc?:c:(——-+[1+“*B(1._x)]q) +y

c

~Here q>= Q/(Ao +-Bo)xis“the_eXcitation energy per nucteon;'-lt\has been.
.assumed‘that the two Spectators are excited in proportion.to their mass.;
:_rat10° 'QA : QB = Aq:Bq = A:B. The quant1t1es Voo VB, and Ve are

-f_the ground state mass excesses of the nuclei (A, ZA), (8, ZB), .and (C,ZC)

: respecttve1y, taken from ref, 10)

for mass numbers <l6- and ca]cu]ated with a
"macroscop1c formula (see Appendix B) otherw1se :

When x vanishes there is no leakage of heat into the spectators the
part1c1pant source C takes up all the generated exc1tat1on energy
Converse]y, when X is unity, the exc1tat10n per baryon, and hence the.
temperature, 1s the same 1n all three. sources, correspond1ng to perfect heat
shar1ng Thus, the comb1nat1on X =Y =0 corresponds to the standard f1reba11
prescr1pt10n wh11e X = 1 corresponds to a complete equ111br1um of the
co]1JSjon system (except that the system is treated as three separate sources
SO there is an (usually untmportant) upper limit on the possib1e_fragment
v_size see eq (3 20)). , : o
The relat1ons (é'l) and (2.3) automat1ca11y conserve baryon number,

charge, and momentum, To ensure energy conservat1on we must demand

EA,+ EB +_EC ='EA6 + EBO (ZfS)
where the source energies are "
£y = Pl + M2t
Eg = Pp C’ +VM32°4 | | o , (2.6)
Ec = PC2c2 +‘MC2c4
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Thus, the generated heat Q is determined by the relation (2.5). [The value of

Q is easily determined by iteration: starting from Q(O) = 0, an improved

ve, e g

approximation is given by Q(k+1) = Q(k)v+ E B A é

A

The partition of the collision system,depends on the parameters x_and Y,
which are_ph&sica]]y related to the efficiency with which the nuclear éyétém
transports energyvand momentum, respéctive]y. They are expected to depend on
both the beam energy ahd the geometry of the collision. It is outéide the
scope of the present paper to attempt a calculation of’theée quantities from
bfirst principles, and they are simp]y cohsidered as 1mpact{parame§er and
energy depgndeni‘mpdelvparameterg. For the impact parameter dépendence we

employ the forms

' 2
X=Xy (1= (s/s, . )7) |
(2.7)
, 2
Y=Y, (1 - (s/s,.0%)
where s is.the impact parameter and s . =R, + R, is the maximum. ..

max A0 B0

impact parameter leading to a reaction under the present assumptions. Some
information on the energy dependence is contained in recent data on target
spectator ve]ocfties in Ne + Au reactionsll). ‘On this basis we. take

x = 0.2

0
- Vsbeamleo ' |
e - » : S » €5 = 125 MeV

Yo =

where hean is the laboratory kinetic énergy per nucleon of the beam. These
values yield a reasonable correspondence with the data and thus are useful for

generating quasi-realistic event sets.
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3. Exp]oéidn

~

In this chapter we deseribe how the "explosion" Of’a-sufﬁicient]yvexcited ’
~ source is treated. First, some useful notation pertaining to mu]tiffragment |
events is introduced.. Then, using this formalism, the exclusive
microcanonical distribution function deécribing tne_system night:éffén tne

| ekplosfon is factorized inio iné]usiVe distribUtidns. 'Finally, these are

appkoximdfed by their grandicanonica1 eqdiva]énis.. ’

3.1 wThe event set

An ideal exclusive measurement yields cbmbiete'infbrmation on all
fnagmentsiinvthe“fina1 state. An event f is then’ character1zed by the |
mu]tip}fcity n, of the various fragment spec1es a:n,p,d,t,... together w1th
their four-momenta:

(2 ‘ '
f=9gP%,2 €(lmn)t N L (3.1

The n, fragments of the :species a are arb1trar11y 1abe1ed by 2 € (l,na)
and theyr four-momenta are denoted by Pda 3 o 2 ). Because of the
jdentity of the fragments within a given spec1es the actual Tlabeling is
without significance, i.e., f is invariant under anbitrary permutations of the
labels g .

The total multiplicity of the event f is g1ven by ne _.z:n .

Furthermore, its total baryon number, charge, and four—momentum are;

respectively,
Ae = ;%ndAa
Zo = Yn7 (3.2)
a
n L
- 2;’2221 "
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where Aa:and Za denote the baryon number and charge characterizing ‘the '
fragment species a. It is often cohvenient to uée the brief notation i[f] for -
{Afifpf} collectively.

. The set of all such events, the event set ¥ {f}, has certain
notatjonai1y convenient a]gébka{c'properties Most importani]y, it is
possible to défihe an addition in &. . Thus, for any two events f T € Fwe have
FoF+f iff n =P +n_ Vo and {Pa 5 e (1,n )} - |
{P 28, € ,~a);5fa,g e (1 ﬁ')}, i.e., the sum event f is

obtained by s1mp1y extend1ng the event f by the event f, as shown in Fig. 2.

The event set ¥ is an abelian semi-group with respect to addition and the null

event, f = 0, which has.na = d Ya, is the neutral element. When f = f + T
we may also write f'= f - ?, Which is oftenchnveﬁient; We note  that the
function i[f] defined above is additive: i[f + f] = i[f] + i[f].

It 1s.q150 possible to introduce a partial ordering in the event set 54
We shall write < f (or equivalently, f 3_?), iffIfeF: f=Ff+7F. In
words: f encompgsses‘? iff f can_be'extended tb f. Obviously, this order
relation is reflexive (f < f ¥f), tfansitive;(f <f' Af' < f"=f<f") and
anti—symméfric_(f <f'Afl < f= fk= f'), as 1t_shou1d be.

It is easy to see,that,fwith respect to the two binary operations
intersection, n, and union, U, acting on the sets (3.1) characterizing the
events T’has the propert1es of a complete lattice, i.e., any non- empty subset
{f,f',...} of ¥ has a 1east upper bound and a greatest 1ower bound. These are
given by _ .

sup {f,f',...}=fUf" U...

Ginf {f,f, = f0f 0L

respectivé]y.
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It is important to note the partition F-u Sﬁ_ of the event set,
i 0
where the disjoint subsets 95 are defined by
0

_3;.0 - (Ffl =) C(3.4)

For given initial conditions, ;haracterjzed by the quantitiés'{AoZoPo}'=
jo’ only events f € Sq are bhysica]]y accessible, due to the conservation
of baryon number, charge, and four-momentum.

Events with unit total multiplicity are elementary 6bjécts in the event

set. Any event f can be decomposed in terms of one-fragment events:

ne . v .
> f, , no =1 Yk " (3.5)
1 k7

VEI LR : f -

This decomposition is unique (apart from permuiatibns of the labels k).

The algebraic structure,of'the'event set discused above fihds_usefu]
app]icétion in deriving the factorization formula (3.14) on which the
vstatisticé] generation of events is based. | |

In the discussion above an evént f is defined in terms of the
| four-momenta of the'fragments as they emerge from the explosion (see eq.
(3.1)). It is important to recognize that the specification of such an f

actually characterizes an entire class of different final states, f = {F},

‘each final state being of the form

EN . :
Fo {oe e ,.Qae(l,na)}y | (3.6)

where the Lorentz vector Qi“ denotes the position of the fragment in

space-time shortly after the explosion. In our statistical model it is
assumed that the disassembly occurs at a definite time within a certain
charécteristit volume. The space-time information is then given by the

spatial positions Ra“ of the fragments at the disassembly time. Since any
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further 1ntéraction between the fragmeﬁts after the explosion is neglécted,
all final states F differing only in the"qutial configuration .of their
fragments at the time of disassembly emerge with the same set of four-momenta -
and thus belong to the same event f. In the statistical model all such final -
stateS’ére'equa11y probab1e*, and the appropriate measure on the event set F
can therefore be obtained by properly enumeratihg the_different spatial
fragment configurations in a'givén event f.

This task is generally complicated. and we resort to the approximation . -

7)),

introduced in ref. the integration over a given fragment‘s positfon is

approximated by an effective volume:

s, 6

Here:Qéwis,a.sujtab1e referencevvo1ume, usually equal to Ao/p0 wherg,

A, is the‘number.of baryons in the source and p, ~ 0.17 fi® is the

.gtahdard nuc lear matter density. The mode]lpdraméter X, which is of thé order
of unity, controls the average effective]y-avai]ab]e volume and‘can be re]ated
approxiﬁa;g]y to the fbreék-up" density as discussed 16 ref.‘s), 'THus'ii
follows that ﬁhe sum éver final states F can be réduced tp.a'gumAqvgr évents

(c}asse§<of final states) f:

n _ |
; > ;: (xa,) |- - o (3.8)

This defines the proper measure on &

*In our treatment we neglect conservation of the overall center-of-mass”
position and the tota] angular momentum, since these effects are expected to
be rather small and their inclusion would complicate the treatment

disproportionately.
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3.2 Factorization

Consider now a disassembl{hg system characterized by the quantities
{AOZOPO} = io. In the statistica] model all final states compatible
with the conservation of these quantities are equally probable (ignoring the
additional constraints associated with the center—of_mass position and the v , ~
total angular momentum, cf. footnote on page 11). Therefore, the relative

probability that the system disassembles into a final state belonging to a

specified eveht_f is given by
ne '
P(iolf) = (XQb) s(io - i[f])ﬁj(io)v ' (3.9)

As discussed above, the volume factor expresses the statistical weight of the
different spatial configurations of the ne fragments in f. The
normalization constant is determined from the requirement that p be normalized,

ne - | |
s(i, - ilf1) ‘ (3.10)

A0g) = T tag)

This qudntfty is often referred’to aé the phase-space integral.
The distribution p(io|f) pertains to the ideal situation where the
specification of the event f is complete, corresponding to an exclusive
measurement. Hence p is referred to as the exclusive distribution. When only
partial specification of the event is made, as is most often the case in
-Ipractice, the relevant quantity is the correﬁponding inclusive distribution p.
This distribution can be obtained from the exclusive distribution by .
integrating over the unspecified quantities.
In particular, when the partial specification is such that complete
information is given for some of the fragments and none for the rest, the

inclusive distribution is given by
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._w%ﬁ)eQ?mgwhe;pﬁJf+ﬂ o H'(;uy

Here the event f character1zes the part1a1 spec1f1cat1on and the sum is over
~all events f that encompass f [For example, if on]y one fragment is
specified we have f = 1, where fl is an e]ementary (i.e. one-fragmeni)
_eventJand the sum is over all f whose decomposition (3.5) into elementafy
events centain fl as a term ] Tﬁe second equatiOn in (3.11) follows by
emp]oy1ng f = f - f as the 1ndependent varlable |

It is poss1b1e to express inclusive d1str1butions in terms of ihe

phase-space integrals (3.10):

pi 1) ;pﬁﬁ+ﬂ

0 0
. (3.12)
o \TETE PO
= 2 @) sl - 0F1 - LFD) /()
f - |
_hF ~
= (xqy) © IG, - AED/IG)
. ) - . - n~ - L
i.e. the reduced-inc]usive probability p(i |f (X 2, ) for obta1n1ng
the partial event f is equa1 to the complementary phase—space 1ntegra1
(' - i[f]) divided by the total phase space 1ntegra1.]( ), as one wou]d

intuitively expect. v N _
By combination of (3. 9) and (3.12) it is possible to factorize p(i |f)

into simpler quantities. Thus, for any decomposition f = f+ ?;-we have

n
p(iglf) = (xqp) ' s(i, - i[F1)/T(i )
"“*"F o ‘ -
= (xa,) s(iy - iF] - S[FD/A(i,) | (3.13)
ng ' :n?= . - .
= (35) T ati, - ATFDCG)0m) T s(( - ATF) - TF Al - LFD)

= B(i [F)-p(i, - i[FI[F)



-14-

This relation expresses the fact that the ekc]usive probabi]ity for obtaining
the event f is equal to the.inclusive p?ébabin;y for obtéinjhg some”éﬁécifjed.
part f ﬁ_fvof the event f tjmg; the inclusive probabi]ity for also op}gining
the remainfng part of the eyent ?’:vva f, given that f has already been
betained.h_ | o | |

l By rebeated'use_of the above relation (3.13), it is.pqssﬁble tﬁvf§¢§9fize‘
‘fthe exclusive probabij{ty p ihto inclusive quantities. In particu]ar;be;;ﬁ
g decompésing the specified md1ti-fragmént event f in terms oflglementafy‘éyents-
fk,'P(iolf) can be féétokized”into one;fragmentuinc]usive}diéfribufions. .»

Thus, for f = If

k’
nf nf
p(iolf ='kz=:1 fk) = 6(10‘f1)'p(j]‘! k§2 fk) v'.—'_ .
| (3.14)
T s £, |
} 501 1) - pli 10}
o pli_4 k)‘ p(lnf )

Here welhaQe def ined ik = ik-l - 1[fk]ifor'k'€\(1,qf); The eXcJusivev
factor p(inf|0) vanighe; un]ess‘the guantities spe;ifigd by inf.a11
vanish, thus guaranteeing that the event f is in fact accessible by the
disasgéhb]ing system chéracterized by 10;

3.3 Statistical event generation

The factorization (3.14) of the exclusive mu]ti-fragment distribution p
into 1nélusive oné—frégment distfibufions ié partiéulafly/convéniehf wﬁen-one
seeks to geheréte a statistical répréée&tation of p, i.e., é samb]é {f} of ‘
multi-fragment events_that are'statistically distributed in the évent subset

1
o

3. according to the probébi]ity density p(iolf), To accomplish this
task, one may proceed as follows. '
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Each event f is considered as a sum of elementary one-fragment events,

f = If To generate an event f, one first makes a random selection of the

K
term £, on the basis of the inclusive probability distribution
6(i0|f1). Once fl'has been seiected, the'remaiqing part of the event is
known to be characterized by ihe quantities i1:= id-- i[fl]. .The next
term f2 is‘subsequentiy selected on the basis ofiﬁ(illfz), and the |
further reduced residual event can be characterized. This procedure is
iterated until no residugi system remains. [That this is guéranteed to héppen
at some point follows from the.fact that only actua]iy.accésﬁibie events are
constructed by this procedure: In eq. (3.11) the inclusive probability p is
nonvanishing on1y~if'in'factithevspecified event f is paki-of an._actually.
accessibie.eyent-f,'and thus‘? has a counterpart sﬁch that Fefof.
Therefbke,-the outlined procedure has unit efficiency'(i;e.,‘one need never:
abortiihé-constrqction'procedure and start over again).] In this way a single.
event fVis”constructed.: By emp]bying;the procedure repeéted]y; absample
{f} 6'3%0 of desired size can be generated. |

The procedure described above is a mathematiéaiiyfva]id way of generating
a representative sample of the exact many-fragment distribution p(iolf);'
However, it requires thé exact one-fragment inclusive distributions, which are
cumbéfsome to ca]cdiate, particularly whén severa]{excitablebfragmeht species
are included.

Sqme.degreeiof approximation is therefore necessary.. Fortunately,
one-fragment distributions, whith are the only ones required in the procedure,
are much easier to approximate than more exclusive gquantities. It is
therefore possible to turn the mathematical procedure into'a bracticai
method. The key lies in employing the grand canonical approximation

separaieiy for each of the inclusive factors in (3.14). The grand canonical
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approximation is accurate for one-fragment distributions as long as the
fragment considered s only a'smq11 part -of the system. This.condition is
reasohéb]y well fulfilled for most of -the factors in the product (3.14),
although it is substantially violated for the last few factors. Below we -
describe how this idea is implemented and discuss the quantitative validity of
the approximation.

3.4 Truncated grand canonical approximation

" The: replacement of eachnpf the exact inclusive probabilities
6(iklfk+I)-by_thejrcrespective_grandjcanonical equivalents is carried out

7’8); except for a few important modifications

along the lines of refs.

desigﬁed;tosensure that abso]ute,conservation ]aws7are,respected.~-
Consider a source: character1zed by 1 = {A E:} where:E::is the

invariant excitation energy -of the'source.' [Asad1scussedfjn‘ Appendix A, the -

essent1a1qd§pendence.on the.four-momentum Pkiaz(ﬁkiEk) is through the invariant

combination Sy = Ei - PE 2 _'CMkcz)z,-or, equivaleht]y;:the,excitation energy
Ek = Mkc2 - (Ak - Zk)mnc2 - kapcz. The overall.Lorentz boost .into the';‘

desired frame of reference is elementary to perform after the exblosion has
been completed.] The corresponding partition function is

B : n . *
Zk(ek‘,uk,vk)ﬂ =; (xszo)‘f exp {— B(Ee = Af - v Tf)} 3 15)

where T = Ac/2 - I is the total isospin projection of the event f. =~
Since the fragments are treated as non- 1nteract1ng, the partition function
factorizes and one has - |

SLnZk-Aka(k) o . .(3.16)

a
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(k)

For the intensive quantities wy 7,8)

we use the standard form

2eM \312 iy =B (V< A —, T )
(k) = XQ <T> C(k)'e k a k a k a (3.17) .
h Bk @ - '
Here cik) is the 1ntr1ns1c part1t10n funct1on of the spec1es a (see eq.
3.22) and-v 1s'1ts ground-state mass excess. (See Append1x B.)
The three Lagrange mu]t1p11ers Bk’ "k’ Vi are determ1ned by the
constraints on the ensemble averages t v o
<Ep>'= B 5 Ae> =R, <Le>=1 S . (3.18)
This leads to the following three coupled equations
: Yrlk) L ~(k k
T e (k) - S o ‘
c1o2 A e SR v , | (3.19)
. L (k)
Tk/Ak = Za TQ mu

Here e = Ek/A js the,excitation energy per baryon in the source

Tik )

'k -'{AkaE:} Furthermore t s the mean k1net1c energy (see |
eq. (3.30)) and ei ) the mean 1ntr1ns1c exc1tat1on energy (see eq (3 27))
"for fragments of the speC1es a. The pr1mes on the summat ions "in eq. (3.19)
indicate the fact that we truncate these sums to observe exact baryon number
and charge conservat1on as exp1a1ned in the fo]]ow1ng -

3.4.1 :Species truncation

In the grand canonical approximation the summation in (3.15) inc]udes all.
fragment species. This yields a finite (though small) probab1]1ty w(k)
for fragments @ containing more nucleons than the source. To ensure that such

fragments can never occur, we restrict the summation to fragments for which
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a v a

I Th1s truncat1on is 1nd1cated 1n the sum over spec1es in (3.19) by thevprime
hfollow1ng the summat1on symbo] [The cond1t1on (3.20) 1s actually slightly
;'str1cter than necessary, since, at suff1c1ent energy, the creat1on of
'negat1ve1y charged mesons m1ght.compensate for a nuc]ear fragment charge
_“exceed1ng that- of the source, and at st111 h1gher energ1es (we]l beyond the |
“vegion of present 1nterest) the creat1on of ant1baryons m1ght compensate for

fragments with an excess1ve number of baryons.] h R

"'The inclusive probability for the creation of arfragment-of a g%Ven

“species a is

P - 2: AR A € X9

n: the stat1st1ca1 event generation the spec1es of the k'th fragment is then

fread1]y decided on the basis of the probab111t1es {P(k)} .

@

3.4.2 Intr1ns1c exc1tat1on

After dec1d1ng the fragment spec1es, the second step in the event.
generat1on 1s to dec1de on the amount of 1ntr1ns1c eXC1tat1on of that

fragment The 1ntr1ns1c part1t1on funct1on 1s ngen by
i Q = € a =7, . .- .- Lol T . : . ~ e
so the féiétivé-brbbab%iityifsrfa'§a¥ti¢u1ar excitatfonienérgy:is'

o e
p{¥) (e) jff(eo et (3.23)

The 1ntr1ns1c energy can then read1]y be dec1ded at random accord1ng to the

frequency funct1on pk( ).'
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eff

In the_abpve re]atidn, 0 -denotes the density of levels with a half-life

_sufficient1y'1oﬁg'to be inc1uded in the fina]'pha§¢ 5pace:of the explosion. =

8) 10)

Following ref. °/, we take the lowest nuclear levels from ref. . At

higher excitation enekgy; ahd when A > 16, we use the Fermi gas form

“ k | _
_Du(e) = ;§7§ o, exp ‘{ZJaa_e } N X » . .:' (3.24):
with the level density parameter givén_by
Aa k2' , | , ' . .
% = B Wev <1 T - > o335,
. Ta’ . :

and k; = 0.2/MeV, k, = 0.8 [ref. 8)1

2
The effective level dehéity piff(e) ban.bé obtained from the level
density °a(€) (3.24) by mu]fipiying}with the probability that a state with
energy ¢ is sufficiently long lived. This probability is taken to be of a
simple gaussian form o
- . (C;Bmin)z
p(I‘ < FO) = exp - —2—;—'2-—

‘(é > B
' cut - '

min) f(3926)

Here'Bmin is the lowest barrier ehergy; i.e., the barrier energy for the
dominant evaporation mode (see Chapter 4). The cut-off parameter €cut is
fairly uncertain. Two criteria have been used as gufdance: 1) The specific
exﬁeriﬁehtal ihfovmation'On levels and widths. in very Tight nuclei shou1d be wl
reasonably reproduced. This requirement dictates rough correspondence with .

the formula used in ref. 8) for A < 16. 2) At high temberatuke, the mean

nuclear excitation energy

a

. » ' -8, ¢ ' |
L Ide e o () e ¥ | o 3.27)

should saturate at some constant energy per_nuc?eon} We have, somewhat

arbitrarily,'demanded a saturation value of g = 8 MeV per nucleon, which
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dictates that e ., ~ eg A al/2 for large A.. On this basis we have adopted e
the form )

ecut‘
The standard va]Ue ¢ =1 corresponds to T = 1 .Mev for thé'cutfdtf’1eve1
width. The sens1t1v1ty to the specified value of F can be examined by

vary1ng the parameter c.

3. 4 3 Re]at1v1st1c effects o

The th1rd step in generat1ng the k th fragment is the determ1nat1on of
its momentum”pék). In the grand\canonyca1 approxtmat1on'the fragment
momentum»haswafre]ativistic Bo]tzmann distributfbn with the temperature

=~1/Bk This, g1ves r1se to a spectra] d1str1but1on 1nvo]v1ng the

mod i f fed Besse}efunctjon_KZ(BkV:) This is somewhat 1nconven1ent |
h'particu1ar1y sinee the re]ativist1c fragment mass M is subJect to
statisticaT,f1ucthatiohs (since it includes the exc1tat1on energy)
Fortunate]y, at 1ntermed1ate energ1es, where our- 1nterest is focused,
_re]at1v1st1c effects are minor and we may c1rcumvent the problem as fo11ows.

We assume tHat the fragment momentum has a Maxwell distribution with some.
modified temperatUhe T'k" The value of T'k is adjusted so-as to ensure:
that the mean re]at1v1st1c fragment k1net1c energy t Ea.- Macz-»
equals the va}uevcorrespond1ng_to ‘the exact-re]at1vnstnc dfstributiongwith‘the_ )
tempekatuhé‘Tk. This is atcomp]ished foh |

5 k 39 k
' =T 1+32 2_[1 + (3.29)
k k 2 MaCZ < 32 M C2> . .

2

through second order in the small quantity'Tk/Mac‘. To the same order,

the mean re]etivistic_kinetic energy is

A) = coe [a-3Y2_17 " (a>a) C3.28)
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GURERN IS —z(m—g) . em
. [+

This is the quantity entering in eq. (3. 19) This approximate treatment
conserves the relativistic energy but sl1ghtly d1storts the spectral
distributions; the effect on the second moment of the kinetic energy is of the
2)2

order (T k/M o and unimportantgat intermediate energies.

3.4.4 Momentum truncat1on

In the grand canon1cal approx1mat1on, the fragment moment a are also
unbounded leav1ng open the poss1b1l1ty of v1olat1ng energy conservat1on
This problem 1s analogous to the unrestr1cted spec1es summat1on d1scussed»1n
Sec. 3. 4 1 Although the problem 1s un1mportant most of the t1me, 1t becomes h_
essent1al when the source has only a few nucleons left. We remedy th1s lq ‘_MT
unphysical aspect of the approx1mat1on in the follow1ng manner. | v‘”:-

When a source w1th 1nvar1ant mass Mk eJects a fragment w1th mass M
the correspond1ng max imum fragment momentum po, 1n the source frame, 1svugtd‘j
determined by | N

2 2
4Mk Py =

M * My MM+ M - M)

(3.31)

| Y
(M - M+ M )M -M - M)c

where M' is-the minimum mass of the residue. For the present purpose we use:

M = [(Ak - Aa) - (Zk - Za)] m, + [Zk - Zc] mp ' (3.32)

i.e., we demand that the residue excitation be above the disassembly

threshold. The maxwellian momentum distribution is therefore truncated at

pik) = Pye In order that the mean kinetic energy be left unaffected by

the truncation, the temperature parameter is increased appropriately. In

P
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making this adjustment we use nonrelat1v1st1c kinematics since relativistic
effects are: at the correct1ve 1eve] a]ready We thus need to so]ve the

equation

(3.33)

for the mod1f1ed temperature Tk Th1s 1s qu1ck1y done by use of Newton s f:

method | | . .

| " As stated before the mod1f1cat1on is small and 1nconsequent1a1 as 1ong'v

as the fragment is re1at1ve1y sma]] ‘ It becomes essent1a] however, towards
ivthe end of the generat1oanequence In part1cu1ar, at the f1na1 stage, when
Jthe source sp11ts 1nto the 1ast two fragments, the mod1f1cat10n automat1ca11y :

--'y1e1ds the. exact m1crocanon1ca1 momentum d1str1but1on wh1ch 1s a de]ta o

[Th1s corresponds forma]]y to Tﬁ ;.-w ] Th1s o

‘ correct 11m1t1ng property is 1nstrumenta1 in conta1n1ng the accumulated error

' funct1on at p po.

assoc1ated w1th our approx1mat1on procedure



~emission has often been considered in the literature (e.g. ref.
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4. Evaporation

Subsystems‘with excitation energy below the disassembly threshold
and metastable products of the explosion process are assumed to deexcite on a -
§1Qwer time scale via sequentia1'light particle emission‘end, subsequently,
gehma.decay. This 1atter.process, which'does not effect the ffagment yields
and is expected to modify the fragment momenta on]y s11ght1y, is 1gnored in
the presentrtreatment '

The deexc1tat1on of heav1er (A R 30) nuclei by seqUehtial'1ight—partfe1e
12y but, to

our knowledge, there exists no reljable evaporation model that can be used

fbbfh in the above mass region and for highly excited very light nuclei

(5 < A < 30).: Therefore, we have found 1t necessary toudevelop a sjmp]e
un1versa1 treatment of the evaporat1on process. ‘A | |

Swm11ar1y to the exp]os1on, we employ statistical 1deas to descr1be the
evaporat1on process The physical p1cture is that of different 11ght |
part1c1es compet1ng to be emitted at each stage of the deexc1tat1on process
according to the available phase space. 'In the actual calculation only the
ciessica11y.a1lowed emission of nucleons and alpha particles haé'been'taken
into account. The emission of other light partic]es,‘such as deuterons, is
expected tb,be-]ess favored and has been neglected for simplicity; it is,
however, straightforward to include additional ejectile species in the model.
Each evaporation mode i (= n, p, or‘a emission) is characterized by a

separation energy

35 = Mejecti]e ¥ Mdaughter = Moother
and a barrier
B, =S, +V, , (4.2)
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which represents the minimum excitation energy needed in the mother nucleus
for the evaporation mode i.to be allowed. The electrostatic contribution to

~ the barrier is.estimated .by

L . . 2 . o . » :
' Zejectﬂezdaughter € ’ ‘ ‘ .
Vi TR +d o ' (4.3) -=
o+ e Jdaughter i - : o -
twhere R is the radius of the daughter nucleus, R v ~r AL3
daughter _ _ * “daughter ~ o daughter

(with»r0 1 15 fm), and the shifts d are 1.5 fm for the proton and 0 5 fm for

8);

the a1pha-partjc1e; respectively For a given.excitation.energy €0 in

the mother nucleus and a given evaporation mode i. the spectrum

T T g sl e
wvhas.:-been_u's\"ed.,-:i'r) the'daughter nucleus, where.ema* =€, - St and.g(e) is the
. X5 o |
degeneracy of the energy e in the daughter (taken from ref 10) for A < 16 '

‘l_1f ava11ab1e and put equa1 to ole) de otherw1se w1th the Jevel dens1ty (e )
(3.24)){ The energy factor arises from the 1ntegratlon over the momentum of
the ejectile. It is understood that

€0 > Brin , : B o (8.5)

ié a necessary condition for”oarticle decay; if the excitation energy of the
“mother is below the lowest barrier-Bmih the state ‘is particle stable and

| w111‘eventUa11y deoa}vto”the'ground state by gamma emission. Inteqrating

(4.4) over energy and summing over the different evaporat1on modes y1e1ds the
~normalization and the probability according to which the evaporat1on mode is
‘se1etted.‘ The .energy of the daughter nucleus 1s_then picked according to the

| wejght'function (4.4). vFina1]y, an ejection direction is chosen at random'and'
the necessary Lorentz transtrmations are performed. The effect of the
Cou]bmb,repu1Sion has been neglected. One step in the evaporation sequence

is illustrated in fig. 3.
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This method of solving the evaporation problem-yields in a conveniént way
full kinematic information on the emitted light particles and on the particle -

stable residues in any desired referénce frame.

5. Some illustrative .results

In the'preceding,‘we hdave described the details of our model for multi-
fragmentation. The model is based on calculating the available microcanonical
phase ‘space in the approximation giVén in Section 3. The validity of the
‘approximation has been discussed in ref. 9). The model has been implemented
in the form of a Monte Car]oﬁcomputer cdde'(capable of running on any standard
computer). Because of the care taken to use efficient methods, and in
particular due to the factorization into grand Canonica] distributidns, the
code s rather fast. [On the CDC 7600 it typically takes 200-400 CP seconds
to genefate‘iOOO-compTete everits.] Thus, it is practically possible to:
generate sufficiently large samples of events tdfpérmit quantitatively useful
'analyses. As mentioned earlier, we regard the model as a flexible tool which
may find a number of applications. Here we will illustrate some of the
possible uses by a few instructive examples. Specific comparisons with data,
as well as more extensive theoretical studies, will be reported elsewhere.

As a first illustration, we display in Fig. 4 the mass distribution of four

40, , 208

arbitrarily chosen events for the case of 120 MeV/n r “Pb,using a medium -

impact parameter s = %'Smax' (Snax = Ra *'Rg » the sum of the radii'of’thé
collidihg nuclei.) The figure displays ghe mu?tiplicity-hiStogram-of '
fragments with masses up to 16, with heavier fragments jndiéated exp]icif]y.
The general character of the events is the .same. The hatched parts of the
nucleon and alpha yields result from the evaporétion phase of the disas§eMb1y'

process; they are seen to constitute a major part of those yields. We note

that in all cases there is one heavy fragment. This is the evaporation
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reSidue of the-tanget—]ike spectator source. Its mass is around 125, and 1f
moves with a'fairlyITOW velocity in the forward direction.

In thé following illustrations we cnnsider two cases on which actual

40

experiments have been/are being carried out: 395 MeV/n 4OCa + "“Ca and

208Pb.

795 Mev/n 2Oye + | o

_ Fignré 5%disp1ays tne mean total fragment multiplicity n as a function of
the impactﬁparameter S. The'dfspersion-in this quantity is.indicated by the.
bars. To-ﬁ11hstraté.the efféét of the limitations of the detection system we
also display;ani"observed" mu1tiplicity that includes on]y'chargedvfragmenté
having -a kinetic energy above 20 MeV in the laboratory. We note that this
_séhe@atic Cutxintrbduces aasubstantiai“reduction’in thevmu1tiplicity;i In
| particuiﬁr,;fonla central .collision between Ne and.Pb, nearly two-thirds of. .
the fragmenfs are'e1iminated! It is a]éo:noted that whether a nut is made or
not, thereviﬁ a fairly good?correspondente between the impact paramefer_and
kthe multipiitfty;b.Ihis result suports the use of the muitiplicity as a rough
indfCator.df-the impact parameter, | .
| When confronted with excfusive data we are faced with the task of
reducing the wealth of information to a-few'instructive-quantities. In cases
when one;is'seanchjng for evidence of a specific dynamical phenomenon,
appropriate signals often suggest themselves. For example, in high-energy
ee” or pp co]iisidns the‘bas1c quark structure of matter is signa]}edﬁby’»;'
the jetfspnuéture 1n.the emission patfern; However,bin nuc lear co11isibnsrwe
are stiTT at-an éar}y stage where we seek to gain a global impression of the
events to obéain guidance for further étudies;-

* In-the global analysis of -many-particle events it;isnoftenvusefu] to- -
emp]oy'observables'fhat areninsénsitive to the specific form in nnith the
emerging~matten'§pbears,‘i.e., whether it be in the form of elementary.

nucleons’ or composite nuclei of various species. :This. requirement can-be
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formulated as a demand for coalescence invariance. That is to say, if any

composite fragment @, is split intq two fragments g and o) having the
same velocities as o and with masses M+ M = M , then the
0 . @] - an Gq :

observable remains unaffected. Conversely, if two fragments aq and %,
with similar velocities are lumped together as one fragment ab with the same .
velocity and a mass M =M + M ', then the observab]e-remains

. ao 0.-' (!2 .
unaffected.. The advantage of using coalescence. invariant observables is that
the results become insensitive to possible shortcomings of the particular.
dynamical model as regards the description on how the emerging matter
eventually'condenses into physica1 fragments. This is especially relevant
when using either cascade calculations, which yield a fina]-state;consisting

only of elementary hadrons (nucleons and pions), or fluid dynamical models, - -

which merely yield a structureless matter flow. It is readily seen that in

.order'that an observable be coalescence 1nvariant it must be additive in the

four-momentum of the fragments, with weights that can be arb1trary funct1ons

of the fragment ve]oc1t1es A]thouqh the present model takes proper account

of compos1te fragments, in what follows we w111 use coa]escence 1nvar1ant

global observab1es in order to faC111tate compar1sons with the dynam1ca1
ca]cu1at1ons ment1oned above k
An exmnp]e of such a coalescence invariant global observable is the

Lorentz tensor

A ) '
= z: 2Mk | - : o (5.1)

"Here Pk is the four-momentum of the k'th fragment and Mk is its rest -mass.

That this quantity is indeed coalescence invariant follows from the fact that

P;/Mk = (PE/Ek)i(Ek/Mk)v= v:Yk.
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The spatial part of the above Lorentz tensor has been singled out in

13)

ref. as'eépeCia11y useful for stUdyfng the global event structure. This

"kinetic—f1ow" tensdr can be written as

(5.2)

in the CM system df'thé nf'fragments included in the 'sum. For a given event
f, the tensorﬁ? can be characterized by 1£s three eigenvectors %i.1abe1ed

such that t1 S_té < t3.‘ Thus it takes six independent quantitieg to
specify'?*cOmp]eté]y;‘for example, the over§11 size, the‘orientation, and the
~intrinsic shape of the equivalent ellipsoid.

The_total_(ndnre1ativistic) kinetic energy in the final state is given by

Te = trle= 2 o -

3 .
,_“l té | C(5.3)

: 1
(in the CMiframe, of course). |
Tﬁe major priﬁcipal'axis 3 has’thé directipn (e,¢). Here the angle o

between thé beém and § is denoied the flow ahg]e.v The azimuthal angle ¢ can
be arbftrarfly put to zero; thus defining a."reaction‘plane" re]atfve to which
other directions can be specified. A third angle ¥ is needed to specify the..
orientafion of; e.g., the minor axis i in the plane perpéndfcu1ar to 3. The
three angles (e,v,y) are equivalent to the standard Euler angles needed to
specify the orientation of a rigid body in space. [Note that for oblate-type
events,vwhere t1 << t2 z=t3, it may be advantageousvto'singie out the

minor principalvaxis 1 as a reference. 1In this case no sensible definition of
a flow angle can be given. Hence;.when studying "bounce-of f" effécts it may

be useful to divide the events into-pro]até and oblate classes by e.g.

2 >
t2 <.t1t3.1
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The kemaining two quantities needed to characterize the kinetic tensor
.are associéted with the intrinsic "shape" of the flow pattern. Since the
kinetic tensor can be replaced by an equivalent ellipsoid it may seem natural
to employ the standard (e,y)'parameﬁers used to describe ellipsoidal-type
deformations. However; since the définition of an equiva1ent e]]ipéoid (thch'

14)) is not unique, and since very large

has been used, é.g., in ref.
distortions mayboccur; this avenue appears less prom{sing.
Instéad; fo]1owing the approach taken for the analysis of high-energy

e+e' co]lisionsgls) we consider the following two shape parameteré:

SPHERICITY: S - %-(1 - 33)
' - (5.4)
. 3¢
COPLANARITY. C = -?-(q2 - ql)
where q; = t% /2: t are the norma11zed eigenvalues of T A given event shape
T i=1

can then,be_represented in a Dalitz-type triangular plot, as’illustrated in
fjgf 6.;AThé_equi1atera1 triangle has the Qide length 2/¥/3 and the distances
from tHé representatfve point to the Sides are the corresbondjng normalized”
eigenvalues q;- If we impose the ordering 40 <G, < q3, only the

lTower left sixth of the domain is needed, as 1nd1cated by the dashed 30- 60
triang1e~ih_the'figure. It is convenient to introduce the above gquantities S
and C. _Asiis clear from the figure, C measures the distance of the event from |
thé hypotenuse and S is the distance along the hypotenuse (by cbnvention a
factor 3/2 has been introduced). It is therefore conventioné] to flip the
triangle around so that S becomes the abscissa and C the ordinate. It shbuld
be evident frpm this discussion that the proper'domain of such an SC-plot is
bounded by the inverted 30-60 triangle and, furthermore, there is a natural
relation between the horizontal and vertical scales in such a plot, hame]y the

one implied by the above definitions (5.4).
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As an i]]ustration,vWe display in fig: 7 SC-plots for the two cases .
considered in fig. 5. In both cases onTy positively charged fragments with
kinetic energies above 20 MeV have been accepted. The figure shows contours
of equal probability in the triangular SC-plane. The impact parameters s =

(0.1, 0.3, 0.5) x s

;haveﬁbeen added with. the respective weight 1, 3, 5 in.
order to roughly simulate a selection of central collisions. Since these
results are 1ntonded aslillustrationg only, ho special ettort_has'been,made to
~obtain good statiStico,ondvonly ZOQ.eVentsvwene generated for,each-impactw.
‘pérameter. (The 1imitiné consideration here was not the cost of generation
but rather the desire for convenient nvent storage and retrieval. ) ~ The
indicated contours are therefore only rough approx1mat1ons |
Howeyer,‘even with this re]at1ye]y small’event sample, a distinctive
: vstructuré is apparent in the contour plots. In both cases, a two-peak struc-
tufé'émeroes; vIn the case of Ne + Pb the'twoioéoks have.about the_samé height
“‘ofthouoh:thé‘r%ght—hand peak is Tess well defined. In the case of Ca + Ca the
“téftiﬁand poak is notab1y higher than the riothhand peak. In both cases, the'
Teft- hand peaks arise predominantly from the 1mpact parameter s = 0.5 Smax‘ '
The smaller impact parameters, which carry a smaller weight, tend to have a
lérger sphokicity, due to the smaller importénce of the spéctatok soutces.
It is noteworthy that pre]1m1nary data exh1b1t a somewhat similar

16) °

structure It would be 1nterest1ng to pursue the compar1son in more

detail when the,data ana]ys1s is completed.

6. Concluding remarks

We have developed and imp]ementéd a statistioai model for the'generatioo
of complete multi-fragment events in medium—energy nuclear collisions. In

‘doing so, we have deliberately aVoided, as far as possible, to invoke specific

.
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assumptions about the collision dynamics. The model is intended to provide a
useful framework for exploratory studies of these novel processes.

In order to characterizé the disassembling sources, use was made .of
s{mple géometry. In addition, two parameters, denoted x and Yy, were.
introduced to describe the leakage of enekgy and pafa11e1umomentum from
participarits to spectators. In future studies, one might.want to introduce -a
third parameter, séy z, to describe the amount of transverse momentum- given to
the Speétafdr sources.” Such a parameter may.be called for to describe a
collective "bounce-off" of the two ﬁpectator sources. The introduction would
be stréighfforward - in_the present paper we have 1ef§ it out in order to keep
things as simple as possible.

" .In the present version of the model, we have considered only one

participant and up to two spectator sources. This is the minimum number we

expect to be of interest. However, the model readily submits to the

introduction of more sources, should it appear warranted. For example, one
might have pkojéctﬁ]e—Tike participants and target-like participants, hot and
cold spectator matter, or a practically continuous set of sources as in the a
firestreak model, with due account taken of finite-particle number effects, of’
coufse; Thdé the work reported in the present paper may'ultimately find use
in many differéht contexts involving the ext]usi?e disassembly of excited
nuc lear matter. |

| We éonsider the quantities x ahd y and the numbers of sources to be the
physiéaT input parameters of our model. The.parameters X and ¢ related to the
extension of the sources 1n\space and time (see eqgs. (3.7) and (3.28),

respectively) are also important, and different dynamical ideas may lead to

different values of these quantities. The sensitivity of the results to these

parameters has;been'discussed in a somewhat different context in ref. 8).
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For the sake of simplfcity the standard values X = ¢ =1 have been used
throughout the present paper.

A few further parameters, e.g. the radius parameter rg» OF the
constants k1 and kzkin the level density (3.24), or the Coulomb shifts .

di in (4.3), are of the usual nuclear physics type: although they are not
well known, sufficient information is available to fix them with reasonable
accuracy. .We do not consider these parameters essential for the present
purpose. At the same,time, we realize that e.g. Coulomb effects may.play an
important role, in pgrticu]ar for Tow-temperature sources 17), and they
should be taken into account (beyond the mean field treatment of ref. 8)) if
a more refined description is attempted. In the present paper, however, we
refrain from the introduction of further parameters andvconcenfrate,on the .
source characteristics as the main input of the mdde1.

Clearly, it wou]d be of interest to calculaté the source characteristics
in specifjc dynamical models. For exemp]e, one might employ intrafnuclear
cascade or fluid dynamics at the initial .collision stage and attempt to
describe the outcome in terms of a few distinct sources. Alternatively, one
might try to calculate the energy and momentum transport parameters x and y in
a microscbpic nuc Tear model wjth_idea%ized geometry. Insofar as the character
of the sources can be calculated on the basis of a nuclear model, the
multi-fragmentation processes can be exploited to yield constraints on the
nuclear energy-momentum transport properties.

The emphasis of the present paper is on the exposition of the model and
its numerical implementation. The applications included are but a few
illustrations of the possible uses of the hoﬂe]. We anticipate extended use
of the model in the time ahead, partly for systematic theoretical studies and

- partly for aiding in the aha]ysis of data. Results of these efforts will be

reported as they emerge.
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Appendix A: The grand canonical approximation

The macrostate of the system'is specified by the (conserved) quantities

=A7 P E The phase space integral is the number of

0°000°
microstates F having i[F] = iy
J(i,) = %; s(ilF1 - 1, 2: (x2,) 1[f] - i ) - (A-l)
Fof i~ io we have
Y & 7 I € 1 U0 | S o
(i) ~ Jige ° ° (A-2)
where
(i AnIG) o | o (A3)
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Therefore, the inclusive probability for a partial event with i[f] << i_ is
(cf. ea. (3.12)) - | | o .

=x(i)-ilf]

F) = (xa,) | (i, - ATEN/AG) ~ (xa,

This is the grand canonical approximation.

~In order to determine the quantity i, use can be made of the identity

io= L Alflp(i If) = X ¥ Alf,Ip(i 1f) = X lf 1605, f)) (A-5)
.0 SR L 170 : 17 0l'1 _
o R A i o f L0
1 1 1

where f] is an elementary (i.e. one-fragment) event. Insertion of (A—4) for
the inclusive distribution on the r1ght hand side then y1e1ds an equat1on for

by 1nv01v1ng ‘only elementary events.

; | BUREIN -
o = 2: iff,] X e L . (A-6)
1



_38-

Due to Lorentz invariance the. phase space 1ntegra1 of the system depends
- .
only on: the.total four-momentum through. the comb1natjon-E§ P?c2 (Mfcz)2

Consequently, the Lagrange multipliers for energy and momentum are re]ated:

N _alnﬂ_a@lc‘%a]nﬂ_ E
E= 3F =~ 3 7=—78

aMc Mc
- . (A-7)
> aIn® _ WCZ)B]T" _E 8 |
I TR Hd) T
where g = a]nﬂ/&Mc ) and. J Mc2) ﬁs the proper 1eVéﬂ;den51ty of the system. We
- note that g = xP/c =B .
;::Iherihc]usive;probabi1ity forva fragment with energy e1 énd_momehtum
.';pl.is then
S S ._)‘ g op -\ A-—)‘ Z i
YT e E 1 P 1 1
'-p(10|f1) - Xﬂo
o - AP 2 . , SR v
. 'ngoelfpoc.Plc)/Mc- PR - (A-8)
=X e ; , 3
0
. - E,-..
1
=‘XQO e R

Here we have used the fact that the invariant quantity (Eoel—Bgc-Bic)/Mcz
is equal to the fragment energy Ei"as seen in the CM frame, where 35 vanishes.
Furthermore, the four constra1nt equat1ons

Eo 2: e1 p(1 |f )

o b 1

>
Py = 2: p1 o 1)

(A-9)

“can be combined to:a single equation for g:
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2 2 2 L MERS
Moc™ = (Ej = PC )/M9C o
D o 1 , N . | N .
N M CZ'g: (Eoey ‘:POFfPIC)“p(1b}f1) - | (A-10)
"o 1 . _ o ..
-8k~ g
"_fE E].XQO e
1
202 L2 322 | |
where (Moc )o = Eg-- Poct. L o _ U

Thus, Lorentz invariancé reduces the number of Légrangeimu1tip1iers
associated with the four-momentum to one single multiplier étéssociated with
the rest energy of the system. Moreover, the standard férh 6f the grand
canonfca] approximation ho]ds when_thg four;momenta are refer;ed to the CM

frame.
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Appendix B: The macfoscopic nuc lear energy

For nuclei with A > 16 it is impractical to use the exact groundéstate
energy.l Instead, we use the following macroscopic formula for the
ground-state mass excess, n

Vo (MeV) = NV +Z V. | | , | o

A7

(12 _ 10 (odd-odd)
YA A |
1 2 (odd-A) (B-1)-
12,7007 ven-even)
A A

+30(|1] + & (if N = Z = odd))

50
A

2 _ v + 931.504 MeV A.

The true rest energy is given.by Mc
" Here Vn,= 8.07167 MeV and VH = 7.28922 are the mass éxceSses of the
neutron and the hydrogen atom. (Whether or not the atomic binding energies

shod]d be considered is of novimportance in the present context.)

In the second line we use tﬁe parameter values

a, = 15.4941 MeV ; a, = 17.9439 MeV - |
(B-2)

0.7053 MeV , c, = 1.1533 MeV

3 4
The third line is .the even-odd (pairing) term and the fourth line is the
Nigher termls). -
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Finally, in the last line we have added a phenomenological shif;. This
term is of little consequence for heavy nuC]ef but for very light nuclei it
has the effect of reproducing the average trend of the masses. Due to this
term, the formula can be used all the way down to A =~ 4 without systematic
error (although we only use it down to A = 17). |

It should be added, though, that in using the above macroscopic formula,
shell effects have been neglected. In the preéent calculations, shell effects
are expected to manifest themselves primarily at the last stages of the_
evaporation chains, when the nuclei have cooled sufficiently. The érrors

introduced in this way are unimportant at the present stage of development.
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Figure captions S

Fig. 1. The mean number of nucteons in«the various, sources as functions of
the impact parameter, for two cases. of experimental ingerest;
40Ca + 40Ca-aﬁd 20Ne + 208.Pb. The numbers a and b refer to
the prpjecti]é and target spectator source, respectively, while ¢

‘ 7 réfers to the participant source. | |

Fig. 2. - ITlustration of event addition: The events f (containing six
fragments)'and_f (containing four ffagments) are added. to forh the
event f (containing all ten fragments). |

Fig. 3. ITlustration of one step in the.evaporatfdn sequence. - The total
barrier B against»emission of ‘the part%cu1ar type_of ejectile is
given by the separation energy S p]ds the CoUiomb'barhier V. The
tpfﬁ] available energy e, - S "gqes»into kinetic ehergy KE of the
final two-partic]e system and intrinsic excftation € of\the daﬁghter
nucleus. The cufve indicates qualitatively the relative probability
for reaching various excitations e.-

Fig. 4. The mass distribution of four generated events for the case of
120 MeV/n *Oar + 208py 14 addition to the many light fragments
there is one heavyvfragmeht in_each évent: the evaporation'residﬁe
of the target-like spectator source. The hatched parts of the
nucleon and alpha:.yields result from the evaporation phase.

Fig. 5. The hean fragment multiplicity n as a function of impact parameter
for twb cases of experimental interest. The full curve is the total
multiplicity while the daéhed curve only includes charged fragments
with a kinetic energy above 20 MeV in the taboratory, corresponding

to a schematic detection bias.



Fig. 6.

Fig. 7.
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The Da1it;-type triangular plot of the event shapes expressed in
terms of sphericity and,cop]anarity,vcf{ text. .

Contour plots in‘the sphericity-coplanarity p]ané of 200 "#egﬁral“

~ events for the cases 395 MeV Ca + Ca and 795 MeV Ne + Pb.. The

labels on the contours indicate the relative probabilities on’a

linear scale.
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Fig. 3
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