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QUANTUM NOISE IN JOSEPHSON JUNCTIONS AND DC SQUIDS

Roger Hilsen Koch

| Abstract‘

The development of a model to predict and understand the effects of
quantum noise in the resistively shunted Josephson juﬁction’and experi-
mental tests of this model are described. It is shown that the low-fre-
quency spectral density of thé voltage noise in a current-biased Joseph-
son junction with critical current Io’ shunt resistance R, and small ca-
pacitance is ZeI§R3/V'in the limit eV >kBT(I/Io)2 and I > Io’ where V
is the voltage and I is the current. The noise arises from zero-point
current fluctuations in the shunt resistor that are mixed down from near
the Josephson frequency to fhe'much 1owefkmeasurement frequency. - Experf"

imental data are in excellent agreement with these predictions, demon-

strating clearly the measurability of zero-point fluctuations and the

validity when I >.Io of - the Langevin treatment combined with the Callenf
Welton expression for the noise from a resistor. The rounding of the
current-voltage characteristic when I 5,10 caused by quantum noise and
macroscopic quaﬁtum effeéts are bfiefly discussed.

The ﬁoiée temperature of a dc superconducting quantum interferehce
device (SQUID) coupled to a tuned input circuit is computed using the
completerquantuﬁ expression for tﬁé equilibrium noise in the shunt re-
sistance of each junction. At T = 0, where the noise reduces to zero-
point fluctuations, the noise temﬁerature for an optimiéed system is
hv/kBan, where v is the signal frequency gnd the noise energy, e/le,

of the bare SQUID is approximately ® h. The cbmputation is extended to

iii



" nonzero temperatures, and it is shown that a SQUID operated at 1K can
approach the quantum limit. Tunnel junction dc SQUIDs designed to ap-
proach the quantum noise limit in the temperature range 1 to 4K were

fabricated with an inductance of about 2 pH and a capacitance per junc-—

tion of about 0.5 pF. The lowest measured noise energy was 3.2h at 1.4K'

at a frequency-0f:202.kHz. When the 1/f noise wasfsubfractedd the~white;

hoisénenérgy decreased from around 3h' at 4.2K’'to below: 2h at 1.4K.
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I. INTRODUCTION

We wish to analyze the problém of a current-biased Josephson
junction (Josephson, 62) shunted with a resistor and the junction's
intrinsic self-capacitance. The parameter we can vary after the junc-
tion is fabricated is the bias current. We will predict and measure

the average voltage across the junction and the low frequency fluctua-

tions around the average. This problem is sufficiently complicated to

justify two starting models; (1) the 'simple' Resistively Shunted

Junction (RSJ) model (Stewart, 68; McCumber, 68) i.e., the electrical
engineering approach, and (2) the transfer Hamiltonian method (Ferrell
and Prange, 63; Anderson, 64) which is based‘in quantum mechanics and
is far more complicated but can be shown to reduce exactly to the RSJ
model in most circumstances.

The RSJ model is used by most workers in the field because of its
simplicity and predictive abilities. "All the following chapters of
this thesié will unabashedly use the RSJ model fdr predictions and in
all cases the measured data are in‘good agreement with these predic-
tions.

The RSJ model has been thoroughly tested in the thermal limit when

kBT >th_where v. is the Josephson frequency. The essential idea pre-

J
sented and tested successfully is that these non-linear classical
Langevin equations of motion remain valid in most cases when th >
kBT’ the 'quantum; limit provided that the thermal terms in the equa-
tions of motion are replaced by their quantum mechanical analogies.

This means changing the spectrum of the Langevin driving term represent-

ing the resistor noise, from the thermal Johnson noise formula (Johnson,



28; Nyquist, 28) for the voltage noise,
Sv(\’) = AKBTR, (1.1)
to the complete quantum formulation (Callen and Welton, 51):
SV"(V) =:2hyR. coth .‘(h\)./Z'K.BT).» ' | (1.2

In Chapter II we will present the quantum noise theory of fhe
single juﬁction, using the RSJ model. Appendix A presents some details
of the computer methods. Chapter III will report on the results of the
measurements; they are in excellent agreement with the theory;and;far
the first time experimentally verify equation (1.2). These méasureménts
tested the model when I > Io (;he cutrent-bias I was greater than Io,
the maximum possible pair current through the junction);

Having tested these ideas in the single junctiqﬁ, we make predic-
tions for the performances of the dc¢ SQUID, which is,roughiy'speaking,
two junctions wired together. We find that at attainable temperatures
and present-day technologies the dc ‘SQUID when configured as a narrow-
band amplifier can be an ideal phase-preserving linear amplifier, i.e.
the Best‘possib1e>allowed by quantum mechanics. ihis means it-Qouldv
have a total equivalent noisg power per unit bandwidth equal to hym
referréd to the input‘(\)t-n is the measurement frequency). Ihe frequency

‘
range over which we obtain quantum-limited performance is approximately
1 MHz to 1+4GHz. This is much lower than any other equivalent amplifier.
The calculational results also predict a minimum noise energy of the

dc SQUID of approximately h._ The raée-to reach this or any ultimate

limit' is depicted in Figure 1.1. The noise energy, or energy resolu-

™
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tion as its commonly called, is defined as the smallest amount of
signal energy which when applied to the bare SQUID (from a high imped-
ence source so there is no back-action), produces at the SQUID output
a signal which just equals the SQUID's own noise in a unit bandwidth,
i.e. the signal for which the signal to noise ratio equals one.
Chapter IV presents the quantum limited:dc SQUID theory; basically put-
ting quantum noise in the RSJ model of the SQUID. Appendix B analyzes
the corrections when the SQUID is tightly coupled to an input coil.

Chapter V éresents the results of.measurements ofvdc SQUIDs near
the quantum limit that were performed primarily by Dale Van Harlingen.
Tﬁese measurements confirmed in part the predictions for the minimum
noise energy although no measurements were made of the total equivalent
noise poﬁer with the SQUID éonfigured as an amplifier. That is very
much harder. |

When &oesn't the RSJ model work?? Recently, measurements by Voss
and Webb (1981) and Jackel et al (1981) have shown behavior predicted,
in part, by Ivanchenko and Zil'berman (1969) and Caldeira and Leggett
(1981) that clearly lies outside the range of validity of the simple
RSJ model. (Wé need the enhanced RSJ). The effect is called Macro-
scopic Quantum Iunnellingv(MQT). The equations of motion predicted by
the RéJ model are identical to these of a point-like particle moving
down a one dimensional potential (the washboard potential), and the
question raised is whether the point-like particle in this model really
éhéuld be visualized as a small wave packet. If "igts" really a wave
packet then one might.expect tunnelling to occur if the potential can.

be made to have metastable wells separated by barriers. This is' the.



case when I < I as was observed by the two above-mentioned measure-

O’
ments,

Is the RSJ model dead?? Yes, in some limits, particularly below
the critical current, I < IO; but there exist ﬁany measurements Qhen
I> IO that verify it nicely. The question to ask is how wide is the
visualized wave paéket when compared to the characteristic distance
over which the one-dimensional potential changes. If the wave packet
is narrow when compared to the potengial characteristic width, we have
the "particle-like limit" and, using Eherfest's theorems, one has iden-
tiqal‘equations of evolution for the wave-packet and a point—particle.
The key contribution of Appendix C is to show that the well-known
transfer Hamiltonian starting model shows conclusively.that the wave
packet is the correct visualization. After the shunt resistor is
added, the Schrodinger equation for the total system becomes non-linear
in the wave  function, ¥(x), and stochastic. This stochasticity is the
noise we measured. When integrating this eéuatign to follow the evolu-
tion of the wave packet, the non-linearity eliminates the common
diffusion-like solution for a unbound particle, and forces the wave
function to stay compact over arbitrafily long times, like a soliton.
This is why the RSJ model works when it does. On the other hand,
in the limit of small IOC, (C is the juncfion self—capécitance) the

"diffusion forces ovércome.the contracting forces and the wave function

will spread out everywhere, the "wave-like limit', where MQT was ob-

served.



II. SINGLE JUNCTION THEORY

The effects of thermal noise on a resistively shunted (Stewart,
68; McCumber, 68) Josephson (1962) junction (RSJ) have been extensively
studied. The theories assume that the noise originates as Nyquist
noise in the shunt resistor R. The junction is modeled as a particle
moving in a tilted periodic potential, and the effect of the noise cur-
rent is to induce random fluctuations in the angle of tilt. These
fluctuations have two effects. First, they enable the phase of the
junction to slip by 27y when the bias current, I, is less than the
noise-free critical current, Io, thereby producing a voltage pulse
across the junction. This effect produces noise rounding of the I-V
characteristics at low voltages, V; the noise rounding has been cal-
culated by Ambegoakar and Halperin (1969) and Vystavkin et al. (1974)
for the case C = 0 (C is the capacitance of the junction). Subsequent-
ly, Kurkijarvi and Ambegoakar (1970) and Voss (1981) computed the case
C # 0. Second, the fluctuations generate a voltage noise when the
junction is current biased at a non-zero voltage. Likharev and Semenov
(1972) and Vystavkin et al. (1974) showed that for the C = O case in
the limit HvJ < kpT (vJ = ZeG/h is the Josephson frequency) and for

frequencies much less than v the spectral density of the voltage

J,

noise is given by

(2.1)



Here, RD is the dynamic resistance. This result was derived on the
assumption that the noise is sufficiently small that one can neglect

departures of the I-V characteristic from that of the ideal RSJ,

1/2
V= R(12 - 1(2)) : (2.2)

Thus, Eq. (2.1) is notvvalid in the noise-rounded region I < I-

Voss (1981) and Koch (unpublished) computed the noise for the case

C # 0. ‘Experimental resulté are in good agreement with calculations
for both the noise rounding (Falco EE.él’ 74) and voltage noise (Soulen
et al, 78).

For a junction voltage-biased on self-resonant step, Stephen
(1969) has calculated the contribution of pair current fluctuations
to the }inewidth of the Josephson radiation. This noise arises from
photon number fluctuations (including zero poin; fluctuations) in
the lossy cavity formed by the junction, and is not intrinsic to the
tunnéling of Cooper pairs in a non;resonant junction. Experimental
reéults (Dahm, EE al, 69) are in good agreemeﬁt with the predictions,

1. The Equationé of Motion and the Washboard Model

We consider a Josephson tunnel ‘junction with critical current Io
and capacitance C shunted with resistance R. We assume thaf A élways
lies below 2A/e, where A is the energy gép, so that the Riédel singu-
larity is unimportant. Furthermore, we take the temperature T to be
well beloﬁ the transitiop temperature, where the quasiparticle tunnel-
ing current is small compared with the current in the shunt resistance,

so that we can neglect noise from the quasiparticle tunneling current



(Dahm, et al, 69). The only significant noise source is the current
noise, IN(t), in the resistor, which has a spectral density, including

zero-point fluctuations, (Callen & Walton, 51)
§;(v) = (2hv/R) "coth (hv/2k T) (2.3)

at angular frequency v. Wecompute the spectral density of the voltage
noise, Sv(v), for a curfent—biased RSJ at a frequeﬁcy V.

The circuit as constructed is shown in Fig. 2.1(a). Using
Kirchhoffs.lawsvand the ac and dc Josephson equations we find the

equations of motion for the system:
I=CV + T sin 8+ V/R+ I(t) (2.4)
and
v = (o_/2m)8, o (2.5)

“Where § is the phase difference between the two superconducting wave
"functions across the tunnel barrier. Equations (2.4) and (2.5) can

be rewritten as a single equation (letting IN(t)=0 for the time being);

% 2 s+ dml = I I .- -dUu(s) (2.6)
7 € +o/R o~ Tam S0 T TR

This equation is like the equation of motion of a particle with mass
proportional to C, and a viscous damping proportional to 1/R in a one
dimensional potential, the washboard potential (Fulton, 75). The

analytical form of this potential is:
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Fig. 2.1 (a) Circuit diagram, (b) washboard potential I<I,,
(c) washboard potential I<I,, (d) voltage across
junction vs. time for I I,.



(2.7)

The position of the particle in the potential is the junction phase and
the Qoltage across the junction, which vafies as é, is just the velocity
in the;poteﬂtial.

The:poteﬁtial has two limiting forms: (1) when I < I, there
exist metastable wells (Fig. 2.1(b)) where the particle can be locally
bsfable,»and (2) when I >1, the particle spends its time sliding down
the never-ending slope (Fig. 2.1(c)), in a limit cycle whoée average
cycle time is-called the Jbsepheson time, Ty (Fig. 2.1(d)). The in-

verse of the Josephson time is the Josephson frequency Vv Notice the

7
voltage versus time plotted in Fig.~2.1(d) is very non-linear.

The effect of IN(t) can be quickly seen by observing in Eq. (2.7)
that the average slope of the potential is controlled by the bias
éurrent. The instantaneous current the junction sées, in the RSJ
model, is the sum of the external.bias current, I,
and the noise current, IN(t). Hence the slope of the poten-
tial will fluctuate around the average value with a power spectrum
_giQenvby SI(V). ~When I > I the slope fluctuations will cause the
time of passage through each limit cycle to Qary slightly, i.e. the
" instantaneous Josephson frequency will fluétuate. Because the limit
cyqlelis extremely non-linegr,the average voltage per cycle will also
fluctuate, and this means low frequency noise. Current noise in the

resistor that produces fluctuations in the potential slope at or near

the Josephson frequency will be mixed down to near dc by this non-
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linearity. This mechanism allows us to measure noise at many Gegahertz
witﬁ simple audio frequency equipment if we understand the junction
dynamics. The junction acts as a mixer.

In the other 1imit of the potential, when 1I< Io, the passage of
the particle from one well to another can occur in two ways. Noise
from the resistor can momentarily reduce the barrier height to zero,
allowing the particle to escape. The noise‘can be thermal or quantum
noise from the resistor giving rise to the terms "thermal® or "quantum

' The activation process is appropriate in the particle-

activationf
like limit, but in the wave-like limit, when the width of the wave
function of the particle is large compared to the characteristic width
over which the potential changes, the particle may also tunnel through
the barrier.(Ivanchenko and Zil'berman, 69).

it is convenient to introduce the dimensionless units and para-

meters, w = 21MV, i=I1/I , v=V/I R=w _/(2"I R/® ), [ = 2nk_T/1 & ,
o o J o o B oo

6 = w/ (21T R/® ), S.(8) = S_(0)(2TR/I & ), S (8) = S (w)(21/I & R),
v . o o} 1 1 ' oo v \Y 00

B} 2 _
Bc ZNIOR C/¢°, and K = eIoR/kBT.

2. Analytical Solutions of the Equations when I > Io

We calculate the properties of the RSJ from the instantaneous
phase difference across the junction, §(t), which evolves in dimension-

less time t/(@o/2ﬂI°R)¢according'to the Langevin equation

B & +08+ sind =i + i . " (2.8)
c . N :

The use of a noise term which includes quantum fluctuations,

Eq..2.3, in the classical equation, Eq. 2.8, yields the noise charac-
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teristics of the junction in all regimes from the thermal to the
quantum limit if the junction is in the particle limit.

We first consider the limit Bc << 1 in which the term BCS may be
neglected in Eq. 2.8. (As Bc -+ 0, the roll-off frequency of the.noise,
~1/RC, increases, and the mean square current noise available to the
junction, “(l/RC)Z, eventually becomes so large that the noise-rounded
critical current is reduced to zero. 1In the analytical discussion we
choose 0 < Bc << 1, while for the computer results we choose Bc 2 0.1.)
In the limit in which noise-rounding effects are negligible (i>1),

2_1y1/2

the I-V characteristic is v = (i and Eq. 2.8 may be solved

analytically using the Likharev and Semenov (1974) (LS) method. One
calculates the Fourier components of the voltage fluctuations taking
into account the mixing down of high frequency noise at harmonics of

the Josephson frequency and finds the spectral density

[ee]

v 2 ‘
SV(G) = Z [zkl Si(e—kv). (2.9

k=-co

Here, k is an integer, and

zkl - . ki(i—v)Ikl _1 (k-l)(i—v)lk_ll + (k+1)(i—v)|k+1|
|5 = 19,0 B-kcv 2 |78 - (x-Dv 5 = (k+1)v
(2.10)

Evaluating the z, in the limit ¢/v-»0, that is, when the measurement

k

frequency is much lower than the Josephson frequency, we find
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.2 -2 2 . (=kv)
5,(0) = [1 5,(0) + Si(v)/z] el Z i Ul eccwy (21D
v k

Even in the extreme quantum limit in which Si ~ kv, the sum still con-
verges, so that the last term is of order Gz/v, which is negligible
in the limit 6 <«<v.

Substituting Eq. 2.3 into Eq. 2.11 we find the result, valid

for i>1,
2TrD2 [N 2 :
SV(O) = 1 + (kv/21i7) coth (xv) , (2.12)
™
where RD = 9v/91i = i/v, or, in dimensioned units,
2 4kBT AN 2 :
SV(O) = R, +2eV [ coth [eV (2.13)
R R I K.T ,
where RD’= 3V/ 3L is the dynamic resistance. This equation is plotted

in Fig. 2.2. The inset of Fig} 2.2 shows the temperature dependence
of SV(O) for particular values of Io (assumed to bé independent of
temperature) and R at fixed bias current. For comparison, the LS
‘result in the classical 1iﬁi; is also shown.

Thg physical meaning behind the'two terms in Eq. (2.13) is easy to
undersgand. The first term in square brackets, AkBT/R represents the |
current noise iﬁ the resistor>starting out atkthé measurement frequency,

which is low enough to see the junction and bias supply as a simple
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Fig. 2.2 Low frequency spectral density S_ (0) of the voltage

noise vs. current for 5 values of kZeIyR/kpT with
Bc<<l. Inset shows S¢(0) vs. T for Io = 1mA,

I = 1.4lmA, and R = 0.86Q (chosen to give V = IoR

and k = 10 at 1K). Dashed line shows the LS classical

result. Dimensionless power spectral density are per
dimensionless hertz,
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resistor of value R The resulting output voltage noise is just RD2

D*
times the input noise, no mixing occurs. The second term is a product
of the current noise at the Josephson frequency, (4eV/R) coth (eV/kBT),
times a mixing coefficient, (RDIO/I) /2. The mixing coefficient teils \
us how well the non-linearity of the junction's phase evolution mixes
noise starting out at the Josephson frequency down to the much. lower
measurement frequency.

It is instructive to consider several limits of Eq. (2.13):

(i) eV<<kBT (kv<<l): We obtain the LS result S _(0) =

AkBTRz/R [1+(IO/I)2/2]. (ii) eV>>kBT (kv>>1): We obtain
. (o]

2

D >>k) this

2 2 2 2
5,(0) = R [AkBT/R + 2eVI_“/(RI")] For eV<<k, T(I/I ) (v;
yields the Nyquist result SV(O) = 4k, TR, while for eV>>kBT(I/IO)2

(vr 2<<;<) we find the quantum limit

D

o 2 2, . 23 - :
sv(o) = 2ev(10/1) RD /3 = 2e1o R7/V. (2.14)

Thus, to observe quantum effects we require « é éIoR/kBT>>1. At the
»particulér bias v=I R, Eq. (2.14) reduces to SV(O) - 2eI°R2,'which is
just the voltage spectral density of the shot noise due to a current I0
flowing through a resiétance R. However, it should be clear from the
derivation that Eq. (2.14) arises not from an intrinsic shot noise in
the pairs tunneling through the barrier but rather from the zero-point
fluctuations of the shunt resistance which have a current spectral
density 2hv/R.

3. Computer Solutions

To compute the noise rounding of the I-V characteristics or to

include the effects of a non-zero capacitance, we have used numerical
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'technties. Although we have computed the general case T#0, we
report here results only for the T=0 limit in which Eq. (2.3) becomes
?hv/R. We used an LSI-1l computer to integrate Eq. (2.8) using a
noise driving term obtained by digitally filtering pseudo—randpm white
noise. We obtained.the mean voltage by averaging the instantaneous
voltage-over typically LO4 Josephson cycles, and determined the low
frequéncy spectral density of the voltage noise by averaging the fluc-
tuations in the voltage after low-pass digital filtering (see Appendix A
for more on the computer methods). The accuracies of the average
voltage and the spectral density are believed to be +5% and +10% for
i>1, and *107 and +207% fof i<l. Figure 2.3 illustrates the noise
rounding'of the I-V characteristics due to zero point_fluctuations
for Bc = 0.1.» For a given depression of the critical current below
the noise-free value, the rounding extends to much larger values of
Qoltage than in the equivalent thermal noise case (Ambegoakar. and
‘Halperin, 69) because the noise in the resistor at the Josephson fre-
quency increases with voltage. |

In these computer solutions we have not included in our calculation
the possibility of macroscopic quantum tunneling. The tunnelling:
rate including the effectvof dissipation (Caldeira and Leggett, 81)

at T=0 is predicted to be:

Pyqur. T B exv{- <7.z + 8A/[Blc/2(1-iz)1/4]>AU(i)/hmo}.

(2.15)
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Fig. 2.3

0.4 0.8 .2
v=V/14R
XBL 8075556
I-V characﬁeristics at T = 0 with Bc'* 0.1 for 4 values

of xI' = 2meR/%,, showing rounding due to zero-point
fluctuations. Dashed line shows noise rounding in the
thermal noise limit for a similar depression in critical

current as for the case kI' = 0.05,
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Where B is an exponential prefactor, A is a factor on the order of 1,
and W, is the natural frequency of the particle in the well; w, =

1/2 () ;2)1/4

(ZNIO/QOC) . As Bc gets small the MQT rate drops according
to the formula, intuitively because the wave function is contracted

- by the dissipation. Eventually the junction will be in the particle-
like limit.

The barrier passage rate at T=0 from quantum activation for Bc=0.3

has been calculated to be:

R

Q.A. B exp {- (0(10) AU(i)/hwo) . (2.16)

The calculations were done using the classical Langevin equation with

a quantum driving term, so they are only accurate in the particle-

like limit. However as Bc + 0 the junction will be in the particle like
limit, and the MQT rate will fall below the quantum activation rate,
which will validate the classical Langevin approach.

For this reason as Bc + 0 the quantum noise rounding pfedictions
plotted in Fig. 2.3 and the dc SQUID calculation'in Section IV are
valid (tﬁe SQUID performance always peaks just in the beginning of
the noise rounded region).

Figure 2.4 shows the effects of increasing Bc. The dynamic resis-
tance increases markedly at low voltages Fig. 2.4(a) as Bc increases;
hysteresis occurs fo? Bc > 1. Figure 2.4(b) shows the corresponding
spectral densities of the voltage noise, with the dotted line taken
from Eq. (2.13). For v>0.5 the noise rounding is small, and the com-
.puﬁer and analytical results are indistinguishable. The increase in

noise with increasinglsé for a given voltage at low voltages reflects
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dotted line is taken from Eq. (2.12), The dashed
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spectral density are per dimensionless hertz.
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the higher dynamic resistance, but for all Bc at very low voltages the
noise decreases with decreasing voltage because of noise rounding.

At high voltages, the noise decreases with increasing Bc at a given
voltage because the noise currents are filtered out at frequencies
above ~1/RC.

4. Concluding.Remarks

In conclusion, we note that the quantum effects calculated here
should be observable provided one can obtain the limit k >> 1. Writing
K = (e/kBT)(BCQOjl/Zﬂc)l/z, where j1 is the critical current density
and c is the capacitance per unit area of the tunnel junction, we see
that the limit requires a high current density and/or a low temper-
ature. At 1K, with j1=104Acm—2, Bc =1 and ¢ = 0.04 pFum—z, we find
K = 10, a value at which quantum corrections are considerable (see
inset of Fig. 2.2). Our results for Bc<<1 should.also be applicable

to point contact junctions and micro-bridges to the extent that these

"devices can be represented by the RSJ model.
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III. SINGLE JUNCTION MEASUREMENTS

In order to test the theory of Section II, measurements were made
of the low frequency spectral density qf the voltage noise, SV(O), in
current-biased resistively shunted Josephson tunnel junctions under
conditions in which the noise mixed down from frequencies near the
Josephson frequency (vJ) to the measurement frequency (<<VJ) is in the

regime hv_ > kBT. In this limit, quantum corrections to the mixed-down

J
noise are important. The values of SV(O) measutred on junctions with
current-voltage (I-V) characteristics close to the predictions of the
Stewart-McCumber model were in excellent agreement with the prediction
for 1> 1, SV(O)/Rg = (4l T/R) + (2eV/R)(IO/I)zcoth(eV/kBT), with

no fitted parameters. Here, R and RD are the shunt and dynamic resis-
tance,vand Io is the critical current in the absence of noise. 1In
particular, the mixed-down noise at voltages above 300 UV did not

change significantly when the temperature was lowered from 4.2K to 1.6K,
and was in excellent agreement with the prediction (2eV/R)(Io/I)2

that is valid when th > kBT. This result demonstrates that the limit-
ing noise arises from zero-point fluctuations in the shunt resistor.

The mixed—~down noise for a wide range of bias voltages was used to
compute the spectral density of the current'noise in the shunt resistor,
SI(v); at.frequency V. With no fitted parameters, the measured value

of SI(v) at freduéncies up to 500 GHz was in excellent agreement with
the Callen-Welton (1951) prediction (2hv/R)c6th(hv/2kBT) at 1.6K and

4.2K. The presence of the zero-point term, 2hv/R, where

hv > kBT was clearly shown. The I-V curves of a junction with

B 2nI L /& ~ 0.5 and B = 271 RZC/® <<1, where -C is the junction
os' o c o o

L
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capécitance and Ls-is the 'shunt loop ‘inductance, showed structure at
voltages where the Josephson frequency was near a subharmonic of the

LSC resonant frequency. The additional non-linearity of the I-V char-
acteristic caused ﬁixing-down of noise near higher harmonics of the
Josephsoﬁ frequency, thereby greatly enhancing the measured voltage
noise. The measured'spectral density of the'noise was in good agreement
with thét of a computer simulation in which the values of Ls and C were
fitted to match the measured I-V characteristic. These data also
clearly demonstrated the quantum corrections to the mixed-down noise,
and, in particular, the presence of the zero point term.

1. . Experimental Procedures

A. Junction Fabrication
To observe quantum noise effects, we require junctions with ¢ 5 1.
. , . 1/2 .. .
Writing = (e/kBT)(BCQOJl/ch) , where i, is the critical current
density and ¢ is the.capacitance per unit area, we see that junctions
with high critical ‘current densities are necessary to observe these
. .. 4 .
effects in the liquid He temperature range. At 4.2K, w1th‘8c = 0.2,

4A cm-'2 and ¢ = 0.04pF Um_z we find K » 1.1. This is a con-

i, = 10
venient ‘value of k, since, as the temperature:is lowered to near 1K,
K inéreases=so that quantum effects become dominant.

Our PbIn—In203—Pb tunnel junctions, resistively shunted with
CuAl films, were fabricated on glass substrates using the photolitho-
graphic lift-off techniques described by workers at IBM (Greiner,
et al, 80). The configuration is shown in Fig. 3.1(a). We first

deposited a 10 ym-wide Cu (0-3 wt.Z Al) film 40 to 100 nm thick, and

then evaporated a 10 pym-wide, 250 nm-thick Pb (10 wt.% In) film at
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Fig. 3.1 (a) Configuration of resistively shunted tunnel junction;
(b) Schematic of measuring circuit; the dashed lines en~
close the components immersed in liquid helium.
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right angles to the CuAl strip. After another resist patterning, a
S$i0 oxide layer, 100 nm thick, was deposited and two windows were
opened by lifting off the Si0 to expose the PbIn and CuAl films.

After patterniﬁg the resist for the upper electrode, the exposed metal
surfaces were cleaned byhrf,sputter—etching in Ar, the InZO3 oxide
was. grown thermally in a low pressure of oxygen, and the 400 nm-thick
Pb counter-electrode was deposited and lifted off. A final protective
layer of Si0 was then evaporated. The diameter of the junction was
about 2.5 ym, and the critical current ranged from 0.1 to 2 mA (0.2

to 4 # 104 A cm-z) at 4.2K, depending on.the oxidation parameters.

The capacitance of the junction was estmated to be 0.5 pF (see Sec.
'III.2.D). The resistive shunt was about 5 um long and ranged in re-
sistance from 0.05 to 0.7 , depending on the thickness and composition
of the CuAl. The Pb counterelectrode formed a ground plane for the
shunt, reducing its inductance, Ls’ to about 0.2 pH. The critical
currents of these junctions proved to be quite'reproducible for a
given set of oxidation conditions, and the junctions could be recycled
between room and liquia helium temperatures at least several times
without significant deterioration. We found that storing the junctions
at room temperature for (say) 24 hours caused their critical currents
to decrease (up to a factor of 2), while annealing them at 70°C for
(say) 1 hour caused their critical currents to increase. Thus, if
necessary, we could adjust the critical current somewhat, as we did

with junction 3. Leads were attached to the junctions with pressed

In pellets.
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Junctions fabricated with these techniques omitting the resistive
shunts displayed excellent tunneling characteriétics with little excess
current at voltages below the sum of the gaps.

B. Meésurement Procedures

Before measuring the noise of a given junction, we plotted its I-V
characteristic and dynamic resistance on a X-Y recorder, thus determin-
ing its critical current and the présence of any resonant structure.

By applying an external magnetic field or by trépping the critical
current to near zero we obtained the shunt resistance.

The noise meaSurement procedures now to be described were those
that we used in the later megsurements where most of the data were col-
lected. Small modifications to6 the procedures used in the earlier work
will be mentioned at the appropriate places in Sec. III.2. The circuit
for measuring the noise across a junction is shown in Fig. 3.1(b).

The bias current was filtered by two low-pass filters each consisting
of a cooled 1.5 kQ resistor, RF’ and the cable capaciténce, Cc. The
junctién was connected across two cooled LC-resonant circuits with
(in fact, four-terminal

inductors L and capacitors C

tl’ Ltz tl? Ctz

= 69 UH,

connections were used). In a typical experiment, Lt1

L_, = 35 uH, = 21.5 nF, giving resonant frequen-

£2 = 75 nF, and C

Ce1

cies of 70 and 183 kHz. 'The leads across each tank circuit were con-

t2

nected in turn to a Brookdeal 5004 preamplifier to measure the noise
across the junction at the appropriate frequency. In addition, by
connecting together the leads across the tank circuits at the top
of the cryostat we could measure the noise at a third, intermediate

frequency, about 106 kHz for the values given above. After further
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amplification, the noise from the preamplifier was mixed down to fre-
quencies below 500 Hz using a PAR 124. After low-pass filtering,

the spectral density of the noise was measured using a PDP-11 com-
puter. The junction, which was immersed directly in liquid He4, was
enclosed in-a lead can, and the cryostat was surrounded by a mu-metal
shield. The cryostat, bias supply, and preamplifier we?e enclosed
in a shielded room.

To make the noise measurements, we first adjusted the bias cur-
rent through the junction to obtain the required voltage, which was
measured with a high-impedance voltmeter. We measured the yoltage
noise with the appropriate resonant circuit, using a typical averaging
time of 10 min. The noise produced by the. junction across the tank
circuit was QZSV(O) = mzLi SV(O)/Rj , so that the required quantity
SV(O)/Rg was independent of Q. We note that the predicted value
os SV(O)/Rg is virtually independent of Be in the range 0 < Bc < 0.5,
while the value of SV(O) does increase significantly as Bc is increased
in this range (Voss, 81). Thus, for Bc appreciably greater than zero
(junctions 2 and 3), it is much more reasonable to compare experimental
and theoretical values of SV(O)/RS, rather than values of Sv(0)° How-
evef; a knowledge of the tank circuit impedance, QZRD, was required to
enable us to subtract the preamplifier current noise. We determined Q
at each bias point by exciting the tank circuit inductively and measur-
ing the half-power frequencies, using a function generator. From time
to time during the noise measurements, the gain of the preamplifier-
mixer-computer chain was calibrated by measuring the Nyquist noise

across a room—temperature resistor R, (5.1 k) connected to the input
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of the preamplifier. We estimate the accuracy of the gain to be +2%.
These measurements of the noise and of Q were repeated at each of
the three frequencies for a series of voltages at each temperature
and for a range of temperatures. Below 4.2K, the temperature of the
helium bath was controlled by regulating the vapor.pressufe.
We now discuss the various measured corrections to the noise:
(i) The spectral densities of the voltage noise contributed by
-19 V2H -1

the preamplifier voltage noise (typically 6.1 x 10 z at 183 kHz)

and current noise (typically 2.8 x 10-26 Asz—l at 183 kHz) were sub-

tracted from the measured spectral density. The spectral density

of the current noise was measﬁred in a separate'experiment by measur-

ing the voltage noise across a cooled LC-resonant circuit containing

a known resistor. The spectral densityvof the voltage noise was ob-

tained during each set’of measurements on a junction by shorting the

input of the preampiifier. Because the current noise was checked

less frequently than the voltage noise, we designed the tank circuits

so that the contribution of the former was typically 25% of the latter.

The total preamplifier noise was comparable with the juﬁctionvnoise

at 4.2K, and as much as three times higher than the junction noise

at 1.6K; the corresponding errors introduced by the ;orrection.varied

from +5% to +15% of the spectral density of the noise-ih the junction.
(ii) Losses in the tank circuit (for example, due to the pfesence

of stréy resistance) are a source of noise.. The spectral density

of this contribution was quite negligible (~0.1%) for. the 70- and

183-kHz tank circuits. However, the 106-kHz tank circuit contained

two leads, parts of which were at room temperature. Their noise con-
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tribution was measured with the junction in the zero resistance state,
and was typically comparable with the spectral density of the voltage
noise of the junction. The error in the correction at 106 kHz was +5%.

(iii) From the noise measurements at the three frequencieé and at
each bias voltage and temperature we determined that some junctions (2
and 4) generated a 'small excess noise with a spectral density very
close to 1/f. The spectral density was proportional to (aV/an)z, sug-
gesting that the noise arose from fluctuations in the critical current
(Clarke and Hawkins, 76). For example, for junction 2 the 1/f noise at
183 kHz was typically 5% of the spectral density of the voltage hoise
at the higher bias voltages, where-BV/BIo became small. We subtracted:
the measured 1/f noise from the total junction noise at 183 kHz; even
if the uncertainty in the noise was as high as 307, the error intro-
duced was no more than +37%.

(iv) The noise measurements were all performed at bias voltages
well below the sum of the gaps of the two superconductors. The quasi-
particle current contributes a noiée with a current spectral density
(Dahm, et al, 69) 2qupcoth(eV/2kBT), where qu is the quasiparticle
current. Thus, the ratio of the spectral density of the quasiparticle
noise to the predicted spectral density of the mixed~down noise is of

2 at 4.2K over the vol-

order qu/(V/R), which we estimate to be ~ 10
tage range of interest. At the lower temperatures, the quasiparticle
current is substantially reduced, and its noise contribution is even
smaller. Thus, we have neglected quasiparticle noise.

(v) The power dissipation in the shunt resistor caused its tempera-

ture to rise significantly above the bath temperature at the higher
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bias voltages in some junctions. For each jﬁnctioﬁ we determined the
heating effect as a function of temperature by reducing the critical
current almost to zero and measuring the Nyquist noise of the shunt as
a function of power dissipation. At low bias voltages the measured
noise agreed with the Nyquist formula to within +3%. For most junc-
tions the heating effect was important only at bias voltages Vl>>kBT/e,
where the mixed-down term in Eq. (1.5) is nearly independent of the
shunt temperature. Thus, it was sufficient to correct the data by
subtracting the increase in the noise generated at the measurement
frequency, AkBAT/R, from the measured value of SV(O)/RE, where AT

is the temperature rise. In these cases,>the heating correction was
uncertain by +107% and was at most 307% of‘the total noise spectral
density of the junction, thereby introducing a maximum error of +3%
into the measurement. However, for junction 3, where the.heating
correction was particularly large, it was necessary to correct the
mixed-down term as well by also subtrac;ing (4hy/R) {|:exp(l':\')/kB'I’*)-l]-l
- [exp(hv/kBT)-lj—l} from the data, where T = T + AT.

(vi) We took considerable care to shield the experiment from
extraneous noise sources, and designed the measurement circuitry to
avoid coupling significant 300K noise into the low-temperature cir-
cuitry. ‘Measured values of the Nyquist noise in cooled resistors
in the range 1.5 to 4.2K.were within #+37 of the predicted value.
Furthermore, measurements on junctions in the classical limit eV < kT

B

showed the correct temperature dependence and were in excellent agree-

" with theory (see Sec. III.2.A). Thus, we believe our measurements

were not significantly influenced by extraneous noise sources.
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2. Experimental Results and Comparison with Theory

We report results on four different junctions that illustrate
various aspects of the theory. The essential parameters of the junc-
tions are-listed .in Table 3.1.

As Junctionsl

As a test of our measurement system aqd.of the effectiveness of
the shielding.we first investigated a junction in.the limit k<<'1 in
which the Likharev-Semenov (1972) result, Eq. (2.1).is applicable. At
4.2K, the value of Kk was 0.066. The-parametéfs BC and BL = ZWLSIO/QO
were-~0.003 and 0.2, respectively, so fhat,the I-v charactéfis;ic was
very close to that: for an ideal resistively shunted junctidn (see
Sec. III.2.D for a discussion of the effects of the value of(BL).

‘The 1/f and»heatingucorrections were negligible thrOughoﬁt the range
of measurement, so that the only corrections to the measured data
were for-preamplifiefland tank circuit noise. (In this experiment,
the measurements were at two frequencies only, 30 and 100 kHz.) In
Fig. 3.2 we compare the measured noise with the predictiéns of

" Eq. (2.1). Iﬁ plotting the theoretical points we used the predicted
dynamic.resistancef(Stewart, 68;;McCumber, 68).

VRD = R[1 —‘15/12]_. e ' (3.1)
so that only the measured values-of R, Io, I, and T were used. Thus,
we have neglected noise rounding, (Ambegoakar and Halprin, 69) and
the predicted spectral density of the noise diverges as I ~ Io. Above

the noise-rounded region, the: agreement between theory and experiment
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Fig. 3.2 ‘SV(O) vs. I for junction 1 at 4.2K, Solid circles

are data with dashed line drawn through them; solid
line is prediction of Eq. (2.1).
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is very good indeed. At very low voltages, the measured noise de-
creases as the current is lowered because the noise-roundéd dynamic
resistance decreases.

The good agreement between theory and expériment for I> Io in-
dicates very strongly that the contribution of extraneous noise sources
is negligible.

B. Junction 2

The parameters- of this junction (Table 3.1) were chosen to em-
phasize the quantum effects: Thus K increased from 0.99 at 4.2K to
3.0 at 1.6K (the critical current increased slightly as the tempera-
ture was lowered). The values of BC and BL’ about 0.38 and 0.31 at
4.2K, respectively, were small enough that the deviations from the
ideal resistively shunted junction were relatively minor. Figure 3.3
shows I and dV/dI vs. V at 4.2K. There is a small drop in dV/dI at
aSOut 800 W which we believe is associated with a resonance of the
shunt inductance and the junction capacitance (see Sec. II1I.2.D).
There is also some very fine structure and a dip at 300 uV of unknown
origin. Webemphasize'that in comparing the quantity SV(O)/Rg with
the theory, small deviations in RD from Eq. (3.1) will be suppressed
provided the mixing coefficient (13/212) in Eq. (2.13) is not af-
fected by the additional non-linearity. Another deviation from the
simple model arose because the shunt resistance, R, which was measured
with the critical current suppressed nearly to zero, varied between
0.65Q and 0.75Q as the voltage bias was increased from 0 to 1 mV.

We believe this variation was the result of a proximity effect between

the shunt and the. electrodes, or possibly of diffusion of Pb into
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the shunt. The measured value of R was used at each voltage bias
when we compared theory and experiment.

In Fig. 3.4 we plot measured values of SV(O)/RE vs. voltage
(open circles) after the preamplifier noise has been subtracted.
The golid circles are the noise after-the 1/f noise subtraction and
the heating correction have been made. At low voltages the correction
is entirely due to 1/f noise, while at high voltages,,Lhe correction
is largely due to heatiﬁg. ‘In the mid-voltage range,.both corrections
are small. The solid iine through the solid circles is the prediction
of Eq. (2.13) ﬁsing the measured values of R; IO’ I, V, and T. The
upper dashed line is the predicted noise in the absence of zero point

fluctuations, that is

’
s (0) 4k T r\2 _
v _ . 4eV (_g 1 (3.2)
R R \I / exp(2eV/k, T) -1
2 » B
Rp

The triangles in Fig; 3.4 represent the measured mixed-down noise,
which was computed by subtracting AkBT/R from.the solid circles.

The solid line thfough the triangles is the mixed-down noise predicted
by Eq. (2.13), (2eV/R)(IO/I)Zcofh(eV/kBT),vwhile the lower. dashed

line is the mixed-down noise. predicted by Eq. (3.2) in the absence

of zero point fluctuations, (4eV/R)(I_/1)” [exp(2eV/k,T) - 1171, The
small discrepancies between thevdata and Eq. (2.13) at very low vol-
tages are possibly due fo our neglect of noise rounding in the theory.
it is evident from Fig. 3.4 that both the total measured noise across

" the junction and the measured mixed-down noise are in excellent agree-
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SV(O)/R% vs. V for junction 2 at 4.2K. The open circles show the total
measured noise across the junction; solid circles below show the noise
remaining after correction for 1/f noise and heating, Upper solid and
dash lines are predictions of Eq. (2.13) and (3.2). Solid triangles are -
measured mixed-down noise, lower solid and dash lines are mixed-down

‘noise predicted by Egs. (2.13) and (3.2).
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Fig. 3.4(b) Sy(0)/Rf vs. V for junction 2 at 1.6K. Wotation is as for Fig. 3.4(a).
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ment with the theory that includes a contribution from the mixed-down
zero point fluctuations, and are substantially higher than the predic-
tions of a theory that does not include this contribution.

In fig. 3.5 we shéw fhe temperature dependence of the noise for
twelve bias voltages ranging from 50 uV to 550 uV. The notation is the
same as that in Fig. 3.4. The temperature T = 2eV/kB is indicated for
the six lowest voltages; mixed-down noise at temperatures well above
‘this temperature is in the classical limit eV<G:kBT,>whi1e that at tem-
peratures wely below this temperature is in the quantum limit eViﬁ>kBT.
The mixed-down noise at the six highest voltages is in the quah;um
limit at all temperatures measured. For all twelve voltages, the total
junction noise is in good agreement with the predictions of Eq. (2.13),
, and substantially greater than the predictions of Eq. (3.2). The data
at 300 wv, however, lie somewhat above the prediction. This discrepan-
cy arises from the structure at 300 W (see Fig. 3.3) that incréaées
the magnitude of the mixed-down noise above the value predicted by
Eq. (2.13) (this topic will be discussed in detail in Sec. III.2.D).
The mixed-down noise at 350 W and above is independent of temperature,
and in excellent agreement with the value of Eq. (3.14), SV(O)/RE =
(2eV/R)(Io/I)2. (As the temperature was lowered, I, increased slightly,
giving rise to the slight increase in the mixed-down noise that is evi-
dent in both the data and the theéretical prediction.) As the voltage
is lowered the mixed-down noisebbecoﬁes increasingly temperature depen-
dent, and remains in good agreement with the predictions of Eq. (2.13).
"At 50 uvV, the mixed-down noise is in thé classical limit for the whole

temperature range, and proportional to T, as expected. This tempera-
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Fig. 3.5 SV(O)/R% vs, T for junction 2 at 12 bias voltages.
Notation is as for Fig. 3.4(a). Arrows indicate
2eV = kpgT.
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~

"ture dependence démonstrates that the contribution of any extraneous
noise was negligible.

~We can extract from our data the measured spectral density of
the cufreht noise SI(v) generated by the shunt resistance R at the
Josephson frequency v = 2eV/h. We divide each value of the mixed-down
noise by the mixing coefficient ZIO/I)Z/Z, a procedure that converts
the mixed-down noise in Eq. (2.13) into Eq. (2.3). The results are
plotted in Fig. 3.6 for 4.2K (solid circles) and 1.6K (open circles).
The solid lines are the corresponding predictions of Eq. (2.3) using
measured values of v = 2eV/h, R, and T. The slight increase of the
data above the theory at the highest voltages may reflect the presence
of a resonance on the I-V characteristic. The agreement between the
data and the predictions is rather good, bearing in mind that, once
again; no fitting parameters are used. By contrast, the dashed lines
represent the theoretical prediction in the absence of the zero point
term, (4hv/R) [exp(hv/kBT) -1]_1, and fall far below the data at the
higher frequencies. The existenée of zero point fluctuations in the
measured spectral density of the currenf noise is rather convincingly
demonstrated.

C. Junction 3
An alternativevmeans of varying the mixed—down»noisé between the

quantum and thermal limits is to change Io.at fixed temperature. The
-critical current was lowered by trapping flux in the junction. The 1/f
noise in junction 3 at 183 kHz was”inéignificant (<2%), but the heating
correction at the highér voltages was substantial, so that it was

necessary to correct the mixed-down noise in addition to the noise
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Fig. 3.6 Measured spectral density of current noise in shunt
resistor of junction 2 at 4,2K (solid circles) and
1.6K (open circles). Solid lines are prediction of

Eq. (2.3), while dashed lines are (4hv/R)
[exp (hv/kgT = 1]"1 .
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generatedAat the measurement frequency. Ianig. 3.7 we plot SV(O)/RS
vs. V at 4.2K for four values of Io corresponding to values of K rang-
~ing from 0.65 to 0.07. 'At the highest two values of I, the presence
- of a resonance near ZOOIUV increased the magnitude of the measured
noise somewhat above the prediction of Eq. (2.13). Apart from this
discrepancy,.the measured total noise and the measured mixed—down
noise are in very good agreement with the predictions. For K*0.65,
the data lie convincingly above the theory that does not include the
‘mixed-down zero-point fluctuations, while for k = 0.07 the contribu-
tion of the zero-point term is less than our experimental error. Once
again, the correct observed dependence of the noise on Io demonstrates
the absence of any significant extraneous noise.

D. Junctiom 4

As noted earlier, some junctions contain resonances that can
affect the magnitude of the noise mixed down to the measurement fre-
quency. Junction 4 exhibited strong resonmant structure, and we have
investigated its origin and its effect on the noise in some detail.
Figure 3.8 shows the I-V and (dV/dI) - V characteristics at 1.1K for
four values of critical current; the three lowest values were obtained
by trapping flux in the junction. The structure arises from the re-
sonant circuit formed by the shunt inductance,’Ls, and junction capaci-
tance, C; the equivalent circuit is shown in the inset in Fig. 3.9.
The resonant circuiﬁ pulls the Josephson frequency slightly so that it
becomes more closely a subharmonic of the resonant frequency. Hence,
as the current bias is increased, thevdynamic resistance will be alter-

nately increased and decreased as the Josephson frequency passes through
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Fig. 3.7 Sy(0) vs. V for junction 3 at 4.2K for 4 yvalues of I,.
Notation is as for Fig. 3.4(a).
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each subharmonic frequency of the LCR resonance. The 1/n dependence of
the dynamic resistance is shown clearly in Figs. 3.8 and 3.9 (n is
an integer).

The equations of motion are

=~
n

Ising+CV+1I_, (3.3)
and

ISR + IsLs +V (3.4)

<3
]

N ’

where IS is the current flowing through the shunt, and VN is the equi~
librium noise voltage generated by R with spectral density

2hv Rcoth(hv/ZkB/T). We have computed the I-V characteristics and

the spectral density of the voltage.noise across the junction, using
the procedure outlined in Appendix A. To obtain these curves, it

was necessary to fit the values of L, and C. From our simulations,

we conclude that the I-V characteristic will show substantial resonant
structure when BL = ZnLSIO/Qo > 0.5 and the approximate Q of the LCR

1/2>> 1. The observed rapid decrease in the magnitude

circuit (8 /8 )
of the resonant structure as I0 is lowered is demonstrated in Fig. 3.8.
Figure 3.9 shows I and Ry vs. V for junction 4 at 1.4K, the tem-
perature at which the noise measﬁrements were made. The computed’
dynamic resistance is also shown, using’_LS = 0.23 pH and C = 0.81 pF;
these values are consistent with values expected from the dimensions
of the sample. The agreement between the measured and computed values

is quite good, although the measured structure at the higher voltages

is considerably more smeared than predicted, possibly because of noise
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rounding. Furthermore; the measurements lie slightly below the
computed values at lower voltages, even though noise rounding is
negligible in this region. This discrepancy occurs because the mea-
sured shunt resistance at low voltégeé drépped somewhat below the
high voltage value, a fact that_couldvnot readily be included in the
coﬁputer simulation.

This junction was investigated at an early.stage of our work,
and we measured the noise mostly at one frequency only, 98.6 kHz,
with a few measurements at 31.6 kHz. We used the following procedure
to. subtract the 1/f noise in the range of voltage where the oscilla-
tions occured. First, if the 1/f noise arises from fluctuations in
the critical current (Clarke and Hawkins, 76) the spectral density
of the voltage noise shouldvbe proportional to (BV/BIO)Z. At voltages
where the RSJ result, Eq. (2.2), is valid we find

2 ' 2

av | oLt O (3.5)
3T, v . |

Hence, the voltage noise arising from 1/f fluctuations will be

sMfwvy = R2(z vy st/ fvy (3.6)
v o I -
o
where Si(f(v) is the spéctral density of the 1/f fluctuations in
)

the critical current at the measurement frequency. Second, the mixed-
down noise in Eq. (2.1) for voltages well below kBT/e.can be written as
(ZkBTR)(IOR/V)z.' Thus, at low voltages where the deviations from the
RSJ model are negligible and for fixed values of Io’ R and T, the spec-

tral densities of -both the mixed-down noise and 1/f noise (and their
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’sum)vshould be proportional to 1/V2, Figure 3.10 shows the spectral
densities of the voltage noise across the junction for V < 100 uv at
98.6 kHz, and for two voltages at 31.6 kHz, with‘the direct.term
(AkBT/R)Rg subtracted out. At 98.6 kHz the plotted quantity scales
with 1/V2, suggesting that the 1/f noise scales as (8V/3Io)2. We then
assume that the spectral aensity of the excess noise scales as 1/f, and
from data at the two voltages where measurements were made at two
frequencies, calculate the spectral density of the 1/f noise in the

Sl/f(98.6 kHz) = 5.5 x 10722 A%uz"1. By sub-
(o]

" critical current:
tracting the 1/f4voltage noise computed using Eq. (3.6) from the data
at 98.6 kHz, we obtain the mixed-down noise shown in Fig. 3.10. The
mixed-down noise-is in excellent agreement with the predicted value.
Thus, this proceduré provides strong evidence that the spectral denéity
of the excess noise at low voltages scales closely as 1/f (as is the -
case for all junctions on which we have measurements at three fre-

quencies). We then calculated the 1/f voltage noise at the higher

voltages (> 100 uv) from measurements at 98.6 kHz, using the value of

Sl/f

I quoted above, together wih measured values of BV/BIO. We also
o

measured the noise at 31.6 kHz at several voltages between 100 and
200 uV, and obtained values that were consistent with those obtained by
the aone procedure. Since the overall 1/f correction was small,btypi—
- cally 15% or less of the total junction noise at 200 uV, we believe
that the error introdpced by the-cérrection is at most +5Z of the
lmixed—dowﬁ noise.

As a‘further complication, we did not measure the:heating correc-

tion on this junction, but rather on one fabricated simultaneously.
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© Fig. 3.10 Spectral density of total voltage noise across

junction 4 at two frequencies in the region

V < kgT/e with (4kgTRf/R) subtracted out (open
and solid circles). Solid lines have slope ~ 2,
Triangles are measured mixed-down noise assuming
excess low frequency noise is proportional to 1/f;
dashed line is prediction of Eq. (2.1).
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~As a result the heating correction had a higher uncertainty, which
we estimate to be +67% of the total spectral density, than for the
other junctiqns.
Figure é.ll(a) shows the spectral den;ity of the measured voltage

noise at 1}4K, together with the measured mixed-down noise computed

by subtracting 4kBTR§/R, with the 1/f noise subtracted. The solid
line shows the result of the computer simulation, with the zero point
term included and with the values of Lg and C obtained by fitting

the model to the I-V characteristics in Fig. 3.10. The data tend

to lie somewhat above the computed curve at voltages above 100. V.

In Fig. 3.11(b) we have applied a heating correction By‘subtracting
AkBATRS/R fromvthe solid circles_in 3.11(a). The agreement between
the measured and computed values is now rather good, indicating that
our model is a good approximation.

| Our computer simulation yields the magnitudes of the contributions
of the noise generated at multiples of the Josephson frequency, as
shown in Fig. 3.12. We define a mixing impedance, Zk’ (Likharev and

Semenov, 72) via the relation

T

sv(o) = sV (o) g;o sI(ka) , (3.7)

=
]
Q

where k = 0, 1, 2 ..., and Sik) (0) is the épectral density of the

mixed-down voltage noise due to noise near frequency ka. We note

2 .2 . ) : .
| Ry- .For 8_ = 0.031 and B 9.05, A, is essentially

that - |Z
o
zero for k > 2, and the deviations from the RSJ model are negligible.

On the other hand, for BL = 0.4 and 1.05, there are very substantial
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junction 4 at 1.4K, solid circles are mixed~down
noise with 1/f noise subtracted. Solid and dashed
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data after heating correction has been made, solid
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\

contributions to the noise from harmonics out to the 5th and 9th,
respectively, and the noise is considerably enhanced over the value
predicted by Eq. (2.13). These results explain quantitatively the
additional noise associated with the resonant structure, and, qualita-
tively, the, additional noise observed on junctions 2 and 3 in the
vicinityvof structure on the I-V'chéracteristic; In fact, the capaci-
tance and inductance of these two junctions were estimated from computer
fité to this structure. |

Although the data obtained from junction_h are considerably harder
to intérpret than those from the other junctions, the rolé of zero
point fluctuations is even more important because of the large number
of harmonics that contribute to the mixed—d0wn.noise. The noise gener-—
ated at frequencies near the higher hérmdnics éaﬁ be in the quantum
.1imit even for junctions with k < 1.

3. Concluding Remarksv

We emphasize that in comparing thebdata for junctions 1, 2, and
3 with theory we have used only measured parameters;'there is no fit-
ting of the data. Thus, junctions 2 and 3 provide the main evidence
for the accﬁracy of Eq. (2.13). We believe the results obtained from
these junctions are a convincing demonstration first, of the existence
of a zero point term in the spectral density of.the current noise
of a resistor in thermal equilibrium (Fig. 3.6), aﬁd, éecond, that
these fluctuations give rise to the limitiﬁg voltage noise in a current-
biased resistively shunted Josephson junction in the quantum limit
for 1 > Io (Figs. 3.4, 3.5 and 3.7). Furthermore, the good agreement

between our results énd_Eq. (2.13) justifies our use of a Langevin
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equation together with a zero-point driving term to predict quantum
noise effects in a current-biased Josephson junption in the overdamped
limit when i; is in the free-running mode I > Io. We were not able to
examine the validity of the'theory in the noise-rounded case I < Io
since quantum effects are negligible in this regime in the He4 tempera-
ture range for the parameters of our junctions.

The data from junction 4, which exhibited resonant structure, re-
quire a fitting of Ls and C to compare the experimental results with
the theory. However, we note that the values of Ls and C that yield an
excellent fit to the measured I and dV/dI vs. V characteristics, also

produce a very good fit to the noise data (Fig. 3.11). These results
show very dramatically the strong effects of additional non-linearities
on the voltagé noise due to the mixing-down of higher order harmonics.
Because quantum effects increase rapidly as the order of the harmonic
increases, the role of zero-point fluctuations is even more pronounced
in junctions with resonant structure.

The fact that the zero-point fluctuations in the resistor can
be observed at frequencies as high as 5 x 1011 Hz implies that a
Josephson mixer using the ac Josephson effect as the local oscillator
is an ideal quantum-limited device at these frequencies. When an ex-
ternal local oscillator is used, however, the additional non-linearity
induced on the I-V characteristic céuses noise near the higher harmonics
of the Josephson frequency to be mixed down, thereby greatly increasing
the noise of the mixer. Thisrlimitation of the Josepﬁson-mixer with

an external local oscillator has been discussed extensively by other

authors (Taur;_80; Claassen and Richards, 78).
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Finally, in accord with other observations, (Giffard et al.,
79; Claassen, et al., 74) we find no evidence for a contribution to
the measured noise arising from the shot noise of pairs tunneling
through the junction. For example, in Fig. 3.4, the spectral density
, -22 2. -1

of a term-l;eIo would be about 3.2 x 10 A"Hz ~, a value at least
five times greater than the observed mixed-down noise at 1 mV. We
emphasize, however, that this observation in no way invalidates the

theory of Stephen, (1969) which is applicable to a quite different

situation.



Table 3.1.

Parameters of Junctions.

a,b

Junction
Temperature (K)

I (mA)

R (Q)

1/£,,2. -1

I
o

(frequency)

S (A2Hz )

Heating (K/uwW)

4.2
0.32

0.075

0.003
0.20
0.066

<2 x 10
(100kHz)

<1

22

4.2

0.51

0.38
0.31

0.99

6.0 x 10

(183kHz)

0.25

2

1.6
0.60

0.67Q at 50uV

0.702 at 100UV

0.75Q at 400pV
0.45
0.37
3.0

23 3.0 x 10723

(183kHz)

1.6

3

4.2

0.36
QS%ZAtSQN
0.62Q at ioqjv
0.682 at 200pv

0.77% at 400UV
0.21

0.22
0.62
<3 x 1072

(183kHz)

7

4
1.4
1.53

0.084Q at 50uV

0.0920 at 100uV

0.032
1.05
1.17

5.5 x 10722

(100kHz)

1.6

(9}
1]

N
[

0.5 pF for 1, 2, 3, 0.81 pF for 4;

= 0.2 pH for 1, 2, 3, 0.23 pH for 4;

R taken at 100uv.

taken at 100 uv.

119
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IV. DC SQUID THEORY

Recent research on dc superconducting quantum interference devices
(SQUID's) has been directed toward the fabrication of a device limited
in sensitivity by intrinsic quantum.mechanical noise processes. In
this section we present a model calculation of the noise in the dc
SQUID that involves the complete quantum expression for‘the equilibrium
noise in the shunt resistance of each junction. At T = 0, where the
sensipivity is limited by zero-point fluctuations in the éhunt resis-
tances, for an optimized SQUID we find an equivaient noise energy

€/1Hz = SQ/ZLxh, where S. is the spectral density of the equivalent flux

o
noise, and L is the SQUID inductance. When the SQUID is coupled to an
optimized series-resonant input circuit, we find total equivalent noise
power referred to the input to be hv, where v is the signal fre-
quency. This noise power represents the uncertainty pfinciple limit
for any linear aﬁplifier, énd thus the system operates nearly as an
ideal amplifier at T = 0. We show that by proper choice of parameters
it should be possible to approach this ideal behavior with a SQUID
operated at 1 K.

Tesche and Clarke (1977) calculated €/1Hz for a SQUID incorporat-
ing two resistively shunted Josephson junctions (RSJ) with zero capa-
citance assuming that the only source of noise was thermal noise in the
resistive shunts. Their predictions have subsequently been found to be
in reasonable accord with experimental measurements (Clarke, 80). 1In
the absence of any rigorous calculation of the limiting voltage noise

in a current-biased RSJ at T = 0, they speculated'that the ultimate

sensitivity should be limited by pair shot noise in the tunnel junc-
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tions. Assuming a shpt noise voltage spectral density 2eIoR2 for a
junction with critical current Io and shunt resistance R, they found
€/1Hz = h/2 for an optimized SQUID. However, we now suggest that the
noise in an overdamped RSJ at T = 0 is set By zero-point fluctuations
in the shunt resistance rather than‘by an intrinsic shot noise in the
junction itself (Gallop and Petley, 76). We now apply the zero-point
fluctuation calculation, including the effects of junction capacitance,
to the case of the SQUID. .
1. The Model

‘We begin by considering the isolated symmetric SQUID. Each of
- the two‘junctions has a critical current Io, capacitance C, and shunt
resistance R. We introduce the dimensionless parameters
The phase

- 2 = _ -
B.=2mI R°C/® szzon/@o, k=eI R/k T and T=z2rk, T/I

%"

b
differences across junctions 1 and 2, 61 and 62, and the voltage V(t)

across the SQUID are related to the circulating current J(t) and ap-

plied flux ® by the equations

J/I0 = (61 - 62 - 27r<I>/<I>O)TrB y (4.1)
v = (3, + 8,0_sum, (4.2)
. 2 . : i
® ® :
81 0 2 o 1 . . (4.3)
Be T <2_TTR> : 61<_2wR) =37 7 Lo sindy + Ing
- 2 : ‘ v
o) A '
§2 o 2 oy _1 . : (4.4)
ot <Eﬁ> ' 52(%) =3I T sindy s Iy
o . ' . v '
Here, IN1 and Iﬁz are the equilibrium noise currents generéted in the

shunt resistors, each with a spectral density (Zhv/R) coth (hv/ZkBT),
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which includes zero-point fluctuations. To find the limiting perfor-
mance, we first solve Eqs. (4.1)-(4.4) numerically to obtain €/1Hz
and T, for a SQUID at T = 0 with k' = 0.02 (R¥40Q) and B = 1; at T = 0,
the spectral density of the current noise in each shunt resistor re-
duces 2hv/R. The computer techniques used were similar to those
described for the single junction calculations,
2. Results

Figure 4.1(a)-(f) shows the time-averaged voltage V, the transfer

function 3V/3d, the noise spectral densities SV’ S , and £/1Hz

J’ SVJ

vs ¢ for three values of Bc where SV and S_ are the spectral densities

J

of the voltage noise across and the current noise around the SQUID;
SVJ is the cross-spectral density of these two noises (Tesche and

Clarke, 79), and €/1Hz = S®/2L, where S@ = Sv/(BV/Bé)Z. The current
I, which has the same value of 1.63Io for all Fhe curves, has been
chosen so that the maximum in 0V/39 always occurs near ¢ = @o/A. In
a separate investigation, we have found that this procedure produces
the optimum performance. The peaks in the noise spectral densities
occur at slightly different values of applied flux than the peak in

ovV/3d. As Bc is increased from 0.25 to 1, the maximum values of 3V/3d

and SV, SJ, and 8 all increase markedly. However, the minimum values

vJ

of €/1Hz are remarkably close to each other, reflecting the fact that
y

(8V/3®)2 and S, increase almost proportionately as Bc is changed with

\
R held constant. The minima in €/1 Hz, about h in all three cases, are
much broader with respect to the applied flux than the peaks in 3V/39

and the noise spectral densities.
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We have not included in these calculations the possibility of
Macroscopic Quantum Tunnelling which could permit the SQUID to tunnel
between wells of metastable equilibrium that exist when |I| < Ic'
(Tesche, 1981). One might expect this effect to be important since
the SQUID performance peaks approximately at I ~ I (IC is the critical
current of the SQUID for a given applied flux. Ic < ZIO). However
since MQT is predicted to decrease rapidly as the damping increases,
we do not expect it to make a significant contribution in the highly
damped limit considered here. See Section II.2 for more details.

3. Ultimate Performance at T = 0

The quantity €/1Hz is a convenient parameter for comparing the
performance of isolated SQUID's, but does not completely specify the
sensitivity of the device. In practice, the SQUID must be coupled

to an input circuit, and one must take into account not only S_, but

v

also SJ and SV .. The current noise of the SQUID couples back to the

J
input coil, producing a real voltage noise at the input terminals,
while the voltage noise of the SQUID can be regarded as an effective
noise referred to the input. In Clarke, Tesche, and Giffard (CTG)
(1979), it was shown that the tuned input circuit shown in Fig. 4.2

has a higher sensitivity than an untuned circuit. For a given source
reéistance Ri’ the values of Li and Ci have been optimized for a signal
frequency v << 2eV/h. From Eqs. (15) and (16) of CTG, it is straight-
forward to show that the SQUID introduces (in a weak coupling limit,

a? = Mz/(LLi) << 1,) a total effective voltage noise referred to the

input terminals of the voltmeter with a spectral density. (See the

appendix for the corrections in the tightly coupled case az ~ 1),
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Fig. 4.2 Schematic of dc SQUID coupled to tuned input circuitj V3 and V, are the

input and output voltages. M2 = a2LLi.
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(s); | -1 2 172
S v W) = zvai (%> (svsJ - sVJ) | (4.5)

(S)hv = SiS)(v)/ARi as the effective

We define the quantity n
mean photon power per hertz in:the-input . circuit due to intrinsic
SQUID..noise. Thus:

(s) 2 /2

n =n(§vs - 8-.).

vy
J vJ :

(4.6)

In Fig, l(g)é-weuplot n(s) vs §. We.see that for Bc_= 0.25 and 0.5,
n(S)'has the minimum value of ~1/2, whereas for Bc = 1, the minimum
has a scmeﬁhéﬁ higher value; Thus for Bc = 0.25 and 0.5, an optimized
tuned voltmé;er-at.T =0 has a méan iﬁput noise due tbvthe‘intrinsic
SQUIb noise of 1/2 photon at the measurement frequency. At a signai
frequency v; we add the SQUID noise in ;he input circuit, hv/2, to
the zero-point fluctuations of the input resistor, hv/2; their»sﬁm, hv,
épproximatelyvequals the minimum value for any linear phase-preserving
amplifier. (Léuisell, et al, 71; Gordon, et al, 633 C#ves, preprint).
vThé intrinsic noiﬁe‘can be expressed alternatively as a noise -
~temperature. ‘We equate the sum,; hv, to the thefmalvnoise power per

Hz available from. the resistor at an effective temperature TN’ namély

hv/[exp(hv/kBTN) - 1]. We thus obtain
Ty zh\)/kBlnz, - (4.7)

the optimum value for any linear amplifier (Louisell et al; 61).
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4, Results for T# 0

We now consider briefly the experimentally realistic case T # 0.

(s) ¢or a SQUID with

In Table 4.1vwe list values of BV/BQ,VE/IHz, and n
an inductance of 1 pH and a capacitance of 0.5 pF per junction (corre-
sponding to a junction area of about lOUmz), for specified values of T,
B, Io’ Bc and R. We also list KV/IOR, the parameter cbaracterizing the
relative importance of the quantum and.thermal noise sources, and A@/@o,
a measure of the applied flux over which the quoted sensitivity can

be obtained. For the computations at 4.2 K we used the classical

limit 4 kBT/R for the spectral density of the current noise in each
shunt, wHereas at the lower temperatures we used the full expression
(Zhv/R)coth(hV/ZkBT). At 4.2 K, the values éf ;/IHz range from about
(s)

3h to 1lh, while the values of n range from about 4.5 to 9. The

(s)

lowest values of n due to the effects of current noise. We have

also computed the sensitivity at T = 0.9 and 0.45 K for the values

B = Bc =1, and find n(s) = 2.0 and 1.5, respectively. It is inter-
esting to note that the SQUID approaches the quantum limit when
KV/IoRzl, as we would expect from our analysis of the single junction.
As one goes to lower temperatures, the range of applied flux, A@/éo,
over whiéh the best sensitivity is obtained ﬁarréws from 0.005 at 4.2 K

to 0.001 at the lower temperatures.

5. Concluding Remarks

In conclusion, we have shown that at T = 0 a dc SQUID coupled to a
tuned input circuit has a noise temperature of hv/kBan, corresponding
to an intrinsic photon power per Hz of hv, when the parameters are

properly optimized. At a temperature of 1K, one should be able to



Table 4.1. Parameters for SQUID with L = 1 pH and C = 0.5 pF.

Computed values accurate + 15%.

T
(K)

4.2
4.2

4.2

0.9

0.45

0.5
0.5
0.5
1.0
1.0
1.0
3.0
3.0
3.0
1.0

100

IO
(ma)

0.5
0.5
0.5
1.0

1.0

1.0

3.0
3.0
3.0
1.0

1.0

B

c

1.0
0.5
0.25

1.0

0.5

0.25
1.0
0.5

0.25

'1.00

1.00

R
©)

1.13
0.80
0.56
0.80
0.56
0.40
0.46
0.33
0.23
0.80

0.80

KV/I R
0.23
0.07
0.05
0.19
0.09
0.06
0.25
0.15
0.11
0.60

1.20

9v/od
(mV/®o)

27
8
5

27

57

80

- €/1Hz

@)
6

6

11
1.1

0.6

(s)

n

. 6.0

7'5
9.0
5.0

6.5

800

4.5
5.5
7.0
2.0

1.5

AQ/@O

0.003
0.003
0.003
0.005
0.005
0.005
0.01

0.01

0.01

0.001

0.001
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achieve a photon power per Hz of about 2hv, using junctions with a
critical current density of 108 Am—z. Junctions with a smaller area
and a higher critical current density should enable one to achieveran
even better performance, pfovided that heaging or other nonequilibriﬁm
effects do not become important. The near-ideal performance for a

given bias current is obtained over a relatively narrow range of flux,

2 8

typically 10_3-10— ®o' However, since the flux noise is typically 10

¢ Hz_l/2
o

, the dynamic range of the amplifier can still be considerable,
at least 105 in a unit bandwidth. The limited working range of the
SQUID makes it most attfactive as a small;signal amplifier, without
flux modulation or negative feedback, although operation in a flux-
locked loop with near-ideal sensitivity may not be out of the question.
In our calculations we have entirely neglected the contributions of 1/f
néise which will, of course, degrade the performance at low frequencies.
On the other hand, the quoted performaﬁce should be obtainable up to
high frequencies, say 1/10 of the Josephson frequency or about 10 GHz
for the devices listed in Table 4.1.

We also remark that it may be difficult to achieve a high coupling
coefficient a between a SQUID with an inductance as low as 1pH and an
input inductance large anough to be useful in many applications. In
principle, ‘since o does not appear in Eq. (4.6), a low coupling effi-
ciency does not have a deleterious efféct on the noise temperature,
vBut,-in practice, a low valﬁe of 0 may lead to undesirable values of

Ri and/or Ci (Tesche and Clarke; 79). However if one were to reduce

the junction area to 0.1 pmz, one could increase L to the more useful
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value of 100 pH and still achieve comparable performances to those

listed in Table 4.1.



67

V. DC SQUID MEASUREMENTS

Recently, there have been substantial improvemehts in the sensi-
tivity of dc Superconducting QUantum Interférence Devices (SQUIDs).
Generallf,»the per formances havé been in reasonable agreement with the
prediction for an optimized SQUID, (Tesche and Clarke, 77) €/IHZESQ/ZL

1/2

~ 10 kBT(LC) (for T = ZWkBT/IOQO = 0.05), where €/1 Hz is the flux

_noise energy. Here, S@ is the spectral density of the equivalent flux
noise of a SQUID of inductance L, and C is the capacitance of each of
the Josephson tunnel junctions. This result assumes that the flux
noise arises from thermal noise in the resistors shunting the junctions.
The lowest noise energy reported so far, approximately 6h, has been
achieved by Voss et al. (1981) and by Cromar and Carelli (1981). 1In
Section IV.we computed the noise energy when quantum corrections to the
noise generated in the shunts near the Josephson frequency, Vs become
important. This noise is mixed down to the measurement frequency (<<VJ)
by.the non-linearity of the junctions. In the limit T = 0, the noise

in the shunts reduces to zero point fluctuations, and the limiting
noise energy is €/1 Hz < h. In this séction, we report measﬁred noise
energies of dc SQUIDs in the 1 to 4.2K temperature range that,‘after
subtraction 6f al/f coﬁponent, are within a factor of two of the
theoretical limit for T’= 0. These measurements were done primarily

by Professor Dale Van Harlingen. |

1. Experimental Procedures

The SQUIDs were designed to have very low values of L and C and

~

.. _ .2 5
the optimized values B = 2LIO/<I>o ~ 1 and Bc = 2 IOR C/Qo % 1, where Io

and R are the critical current énd shunt resistance of each junction,
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and @o is the flux quantum. The configuration is shown inset in
Fig. 5.2, and is similar to that used by Cromar and Carelli. Two
nZO3 ~ Pb tunnel junctions of nominal diameter 2 um

and separation 30 um were defined by lifting-off windows in an Si0 in-

Pb(20 wt. % In) - I

sulating layer. Additional windows determine the length of a 10 um-wide
" CuAl ‘resistive shunt for each junction. The capacitahce of each junec-
tion is estimated to be 0.3 pF, while the SQUID loop, consisting of the
insulating layer separating the upper and lower electrodes, has a self-
inductance of about 2 pH. The SQUID inductance, L, was estimated in
two ways. In the first, we measured the mutual inductance with respect
to a current along the counter electrode, and assumed this value to be
L/2. 1In the second, we measured the maximum and minimum critical cur-
rents, and estimated B from Fig. 4 of Tesche and Clarke (1977). The
two methods agreed to within 4% and 7% for SQUIDs A and B. We have
used the first method to obtain the values quoted in the tables. We
did not measure C and R directly, and the errors in the quoted values
may be as high as +50%. The SQUID may be flux-modulated by passing a
current along the counter-electrode.

Figure 5.1(a) shows the voltage, V, vs. the applied flux, ¢, for a
typical SQUID. The structure on the V-¢ characteristic arises. from
resonances excited when the Josephson frequency is a subharmonic of
the LC-resonance frequency. Figure 5.1(b) shows 3V/39 and the dynamic
resistance RD = 9V/9I vs. &. Both quantities show sharp peaks when
the bias current is just above the critical current. This sharp re-

sponse and the large values of 9V/dd and R are obtained because the

D

noise-rounding in the I-V and V-9 characteristics is rather small for
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(a) Voltage-flux characteristics for a typical SQUID at 4.2K
for 8 values of bias current; (b) transfer function 3V/93¢
(solid line), and dynamic resistance, Rp (dashed line), vs.

$/¢, for the SQUID in (a) at 4.2K with I = 2.70 mA.

Fig. 5.1
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the high critical current junctions used. It is interesting to note
that 8V/8®lbscaies almost exactly with RD when 0dV/3® exceeds about
1.5 mV/@o.:

To measureithe’spectral_dgﬁsity of the voltage noise, SV, we
coupled tﬁe:SQUID'towawlow-noise:preamplifier via one of two cooled"
LCetank‘circgits. By éonnecting.the_two-tank,qirtuits together: at the
top of the cryostat we obtained an intermediate resonant frequency.
The noisé'ap each méasuremeht frequency was mixed déwn to frequencies
below lkHz, and the iow;frequency spectrél.density was measured with
a.computer. The gain of the preaﬁplifiér-miker—computer chain was.
éalibrated against the thermal noise of a resistor at the preamplifier
‘input. The'préamplifier noise temperature, about 2.8K, was negligible
compared witb the effective output temﬁerature of -the SQUID, SV/AkBRD,
which was typically 70K. The noise contributed by the tank circuits
separately was negligible, but the noise of:the combined tank circuilt,
which'con;ained leads at room temperatu;e, was typically 10% of the
SQUID noise, and was subtracted fr@m the'total meééured noise. We
measured 9V/99 by applying a 1 kHz flux with an amplitude of 10-4 @o
-or less, and measuring-the voltage across the SQUID with é.lock-in
detectér. We then computed S; = SV/(BV/8®)2.

This technique for measuring S® can lead to substantial.e;gggggif
the I-V éharacteristic is slightly hysteretic, because one can obtain
an artifiéially‘higﬂ value of 3V/3%. To guard against this probiem;
we applied a very small flux noise (comparable to the intrinsic flux

noise) to the SQUID at the measurement frequency, and observed the

increase in tHe voltage noise. Fér,SQUIDs“withllarge values . of 9V/ 99,
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we were able to measure S@ directly in this way, thaining values
that were within +30% of those obtained by the alternative metﬁod.
However, for small values of 3V/39, wherg itbwas necessary to apply
a larger amplitude of flux noise to produce an observable effect,
there was significant inductive coupling of the noise to the leads
attached to the SQUID. 1In this case, the method could not be used
to measure S@; but could still be used to check for the absence of
hysteresis.
2. Results

We report here on only two of several SQUIDs studied, with para-
meters given in Tables 5.1 and 5.2. For both SQUIDs, the critical
current increased by about 20% when the temperature was lowered to
1.4K, 1In addition, both the maximum value of 3V/3% and RD increased
as the temperature was lowered, largely as a result of the reduction
in the noise rounding of the I-V characteristic. The characteristic
of SQUID B became hysteretic at about 3K, so that data could not be
obtained at temperatures much below 3.4K. |

The measuredvvalues of ¢/1 Hz vs. T for SQUID A are shown in
Fig. 5.2. The noise at each measurement frequency decreases roughly
linearly as T is 1owefed. We estimate the accuracy of each point
:icnge‘:SZ. The lowést measured value of ¢/1 Hz obtained at 1.4K and
202 kHz was 3.2 + 0.2h, corresponding to an equivalent flux noise

of 812 = (1.7 5 0.1) x 1078 5 uz"1/2

. It is evident from Fig. 5.2
that there exists a substantial frequency-dependent contribution to

the SQUID noise. From noise measurements at the three frequencies

‘we determined that the spectral density of the excess noise exhibited
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Table 5.1. Performance of SQUID A (At 4.2K, L = 1.9 pH, C ~ 0.3 pF,
Io =0.55 mA, Rz 1-39-, B= 100’ Bc&"Oog)o

T 3v/30 Ry €/1Hz (h)"

(K) (mv/9 ) () 220kHz 149kHz ~ 112kHz white 1/ (100kHz)

4.2 6.8 4.7 4.4 18.2 23.2 3.6 + 3.0 21.6 + 4.7

2.8 9.4 6.4 8.6 10.6 13.2 2.8+ 1.8  11.6 + 28

1.8+ 12.5° 8.9 bs -~ 6.9 1.5 + 1.0 6.0 + 1.5.
1.4 13.9 11.1 3.2 4.0 5.1 0.8+ 0.7 4.8+ 1.0

Table 5.2. Performance of SQUID B (At 4.2K, L = 2.5 pH, C ~ 0.3 pF,
I =10.38mA, R~1.60, B =0.9, 8 ~0.9

T 3V/ 3% RD | . e/1dz (h)

(K). (mv/9)) ()  118kHz " 34kHz white? 1/£2  (100kHz)
4.2 6.5 3.2 5.2 11.5 2.7 + 0.6 3.0 + 0.4
3.8 11.3 4.5 4.5 10.6 2.1 + 0.5 2.7 + 0.4
3.4 22.0 7.7 3.7 8.7 - 1.7 + 0.4 2.3 + 0.3

a .
Measurements made at two frequencies only:
Excess noise is assumed to scale as 1/f.
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Fig. 5.2 Measured €/1 Hz vs. T at three frequencies for SQUID A,
with + 5% error bars. Inset shows SQUID configuration.
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a power law variation close to 1/f. This conclusion is supported by
low frequency measurements which show €/1 Hz scaling accurately at 1/f
over four decades of frequency bétwéen_O.l and 1000 Hz. The measured
magnitude of tﬁe 1/f contribution below 1 KHz agrees with the value
extrapolated from the high frequenéy data to within 20%. The measured
noise can thus be resolved into white noise and 1/f néise components,
with the values listed in Table 5.1.

In Fig. 5.3, we plot €/1 Hz (including 1/f noisé) vs. ¢ for
SQUID A. Although 3v/3d is sharply peaked in &, with a peak width
less than 10_3 @O, we see €/1 Hz is roughly constant for a range of
order 0.1 @o. Thié result is expected since S(I> varies as
R;/(SV/B@)Z, and Ry scales closely with 3V/3% [Fig. 5.1(b)]. Thus,
although we have not atﬁempted to do so, it should be possible to
operate these SQUIDs in a flux-locked loop without signifiéant logs
of sensitivi;y.

Data for SQUID B were obtained only at two frequencies, 34 kHz and
118 kHz, so that we-héd to assume that the spectral density of tﬁe
excess noise was proportional to 1/f. Fpr this SQUID; the magnitudes
of the white noise and 1/f noise at lOd kHz were comparable. - The
lowest observed noise energy was (3.7 + 0.2)h at 118 kHz and 3.4K, a
value that yields a white noise enmergy of (1.7 + 0.4)h.
3. Concluding Remarks |

Given the substantial errors, the measured valués of the white
‘noise energy for both SQUIDs_are in reasonable agreement with the
predictions. For a deviéevwith L *2pH, C = 0.3 pF, Bc * 1, and B ~ 1

we expect £€/1 Hz to be about 3h at 4.2K, decreasing to a little more
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Fig. 5.3 Measured €/1 Hz vs. A@/@o for SQUID A at 202 kHz
and 1.4K. Ad is measured relative to the flux

for which 3V/9¢ is a maximum,
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than h at 1K. We believe that the best measured white ﬁoise energy at
1.4K was below 2h, but, given the large error bars, we cannot determine
whether_or not the noise was beginning to level off as the temperature
was lowefed. I persoﬁélly béliéve the SQUID had reached the 'quantum
limit",

The present series of SQUIDs is not appropriate for quasistatic or
low frequency measurements in view of the high level of 1/f noise and
very small in input inductance. However, they may be useful as high fre-
quency amplifiers, in a stripline configuration. Since the Josephson
frequency at the operating voltage is typically 25 GHz, one might ex-
pect the high sensitivity to extend to frequencies of at least several

GHz.
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APPENDIX A.

TWO METHODS OF COMPUTING I-V CHARACTERISTICS

AND NOISE IN RESISTIVELY SHUNTED JUNCTIONS

In this appendix, we outline two methods of computing the I-V char--
acteristics and spectral density of the voltage noise for resistivély
shunted junctions. The first method calculates the I-V characteristics

and R_, including noise-rounding, and can also be used to compute the

D,
spectral density of the voltage noise, although the last calculation
is rather slow. Unfortunately, for reasons that we will explain, this
method is not useful for computing the noise in a junction with resonant
structure, such as junction 4. The second method calculates the noise
very efficiently at voltages where noise rounding is negligible. With
the model of the junction we have used, this method appears to account
for most of the data observed on junction 4 satisfactorily, although
higher order corrections might provide a better fit at voltages above,
say 500 uV.

Method 1

The model circuit, inset in Fig. 3.9 is described by Eqs. (3.3)
and (3.4). We réwrite these equations in dimensionless units v = V/IOR,
i= I/Io, s = IS/IO, and § = t/(@o/ZHioR), and use w as a dimensionless

angular frequency to obtain:

e
]

sind + Bc6 + s (Al)

and

O
1

s + BLs * Vo (A2)
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where § = 38/36, etc., and we have used 2eV = h3§/3t. As usual, Bc =

I RZC/® and B, = 2rL I /® . The instantaneous state of the junction
o o) L s 0o o

is specified completely by 8, § and s. Using Eqs. (Al) and (A2) ome

can compute § and § and the higher order derivatives of § and s,

for example:

Bs=06-35, | (A3)
5;5 = - & cosb - &, O (a4)

and so on. We have neglected all derivatives of \ Once the deriva-

tives have been evaluated numerically for the existing values of §,

é, and s at time 0, we compute the new values of 51, Sl’ and s1 at

a later time, O + T, by using a fifth-order Taylor expansion:

8§, =08+ érv+ o+ (376/307)7°/51 :(AS)

él =8 48T+ ...+ gasd/aeS)r4/4! , (A6)
and

s =8 b ATH L4 (853/865)T§/5! . (A7)

To predict the average voltage for i > l,rwe set,v_ = 0, integrate
Eqs. (Al) and (A2) numerically over e#actly one Josephson cycle,bmea—
sure the required time 6, and compute <v> = <é> = 21/6. This proce-
* dure was'gsed to compute the values of RD in Fig. 3.9, with values
of LS and C chosen to fit the data.

The results ﬁefekindependent of the length of the time step, T,

. To check that the

provided T was less than the smaller of Bc or BL
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presence of noise did not affect the characteristics for i > 1, we
varied v in time to simulate noise from the resistor while the junc-
tion was allowed to evolve over many Josephson cycles. The resulting
values of the voltage‘were identical to those with V.= 0.

To obtain a time—representation of vn(e) with a white power spec-
trum, Sz(w), we used a pseudorandom number generator to produce
voltage pulses that were gaussian distributed in amplitude and uncor-
related in time. A non-white power spectrum, Szw(w), could be
generated, when necessary, by convolving this time representation with
an appropriate filter function. This filter function was chosen so

that its transfer function in the frequency domain, T(w), satisfied

S™(w) = |T(w |?s¥(w). . (a8)
v v

The high—frequgncy éut-off, wﬁ,‘of vﬁ(e) was always chosen to be 1afge
enough that the predicted averége voltage and noise voltage were inde-
pgndent of the value of wH when the latter was varied over a factor of
20 or more. Furthermore, when the noisé near the Josephson frequency
was nén—white, we took account of the implied non-zero correlation time
by ensuring- that the é;rrelation tiﬁe of the filter was much larger
than 1/vJ.

To obtain <é>, the computed values of §(8) were filtered with
a low-pasé gaussian filter with a roll-off frequency, ) of 0.03 to
0.1 wge The fluctuations in the filtered values of <§> were used to
compute the low frequency spectral density of the voltage noise. This.

spectral density was independent of the roll-off frequency of this low-

pass -filter.
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This method was used to predict <§> and the fluctuations in §
in single junctions and dc SQUIDs, including low-voltage regions of the
I-V characteristics whefe there is significant noise rounding. However,
when we tried to use this method to predict the noise in junction 4,
which has substantial resonant structure, we obtained very poor results.

-1/2

The essential problem was that the resonant frequency, = (LSC) ’

“rc

was typically 5 to 20 times higher than wJ, while W was necessarily at

H

least several times greater than w, .. Thus, since w, was typically an

LC L

order of magnitude less than w._ the ratio of wH/wL was typically 103.

J
Consequently, the ratio of the "input" noise power to the "output"
noisé power for "f-noise" was typically 106. The computed spectral
densities of the noise proved to be erratic with such large ratios,
possibly because of our neglect of the derivatives of v in Eq. (A3).
As a result, we had to abandon this technique for junc;ions with reso-
nant structure.

Method 2

Above the noise-rounded region of fhe 1-v Charactgristic, we
used a more accurate but more complicated method to calculate the

noise in resonant junctions. In this region, following the perturba-

tion approach of Likharev and Semenov (1972), we can expand § and s:
§(0) = 60(6) + §(0) : (A9)

and

5(8) =5 (8) + s8) , (AL0)
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where 60 and s, are the noise~free solutions for the phase and shunt
current, and § and s represent small departures from 60 and S, due

to noise. Substituting these exprssions into Eqs. (Al) and (A2),

we find
0 = GCOSGO + BC6 + s (Al1)
and
5=§+5L§+v (812)

We Fourier transform these equations over the range - © < ( < ® to

obtain

(&2}

0= .}/ﬁ F(w')g(w - w")dw' + BC(- wz)g(w) + s(w) (Al13)

—-00

and

w8 (W) <1+jwsL)§<w) + v (), (A14)

where F(w') is the normalized Fourier transform of cosGo(e). Since
cosGo(e) is ‘a periodic function, F(w') consists of a series of spiked

functions centered at w = 0 and spaced at intervals of W e Setting

w' = ka, where k is an integer, we can transform the integral to a

sum, replace F(kw.) with F,, and eliminate s between Eqs. (Al13) and
3 q

k
(A14) to find

o«

E - . 2 v
- _Jw. = __n (A15)
k== de(w ka) * 1 + ijL w Bc S(w)v :
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In subsequent calculations, we have shown that there exists a
maximum value of |k|, K s above which the noise at frequency ki ¢ is not
significantly mixed down to the measurement frequency. Cutting off the
summation at # km, we are left with ka + 1 inhomogeneous equations
with unknown phases §(y - zme), ooy 8w + Qme), where |2] < km. To

solve these, we first compute the coefficients F, using method 1 (with

k

v, T 0). The required fluctuations in the §(w - fwj) are then obtained

by a conventional matrix inversion of Eq. (Al5). We find

+km
Az’k vn(w + ka)

k==k, 1+ j(w+ kw B

’ (Al6)

S(w + QwJ) =

where A = B_l, and B is the matrix representation of Eq. (Al5):

jw + QwJ)
Lkl + j(w + QwJ)gL

(Al17).

- 2
{Bly = Fp, * ¢ - @+ )T

In Eq. (Al17), § 1is the Kronecker delta. Since the v at different

L,k

frequencies are independent, the noise at the measurement frequency

can be obtained from Eq. (Al6) with |w|<<| QJ| and £ = 0:

k
n ‘ .
. 2 v
S5(w) = VZQ;k Izk(w)l S, (W + kw)) (A18)
: o . v
where
z (w+ W) = 3+ QwJ)Al:k ’ : . (A19)
k J 1+ j(w+ ka)BL
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is the complex dimensionless impedance that mixes noise from (w + k“J)
to (W + QwJ), and Si (w + kuJ) is the dimensionless spectral density of
the noise current in the resistor. We obtéin Eq. (3.7) from Eq. (Al8)
by replacing w with v, setting v = 0, using positive frequencies only, "
and assigning appropriate dimensions. In dimensioned units, at fre-

quencies small compared with Zo/Ls’ ZoviS~just the dynamic resistance.

Thus, the method can be tested by comparing the value of Zo with the

value of R, obtained with method 1. The computed values of Z(w) were

shown to be independent of w for(u<<(nJ, and w/wJ was chosen to be

between 1/30 and 1/10. The value of k@, typically 16 to 25, was chosen

so that kmw

>> W the value of km was varied to show that the values

377 Vet
of Z(w) did not depend on it.

The method was used to compute the'Specﬁral density of junction 4
shown in Fig. 3.11, and the corresponding values of |Zk|2 in Fig. 3.12.
The complexity of the method does not easily allow the value of R to
be voltage dependent, and the noise in Fig. 3.11 was computed with
R = 0.092Q for all voltéges. This approximation gave rise to the

discrepancy between the measured and predicted noise at low voltages

in Fig. 3.11.
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APPENDIX B. NOISE IN TIGHTLY COUPLED SQUIDS

We wish to analyze the problem of a SQUID tightly coupled to an
input coil., The appendix was motivated by C. Tesche_(l982) who first
worked oﬁt theiproblem incorrectly in a different way. The effect
of the input circuit shown in Fig. (4.2) can be added to the SQUID

equations (4.1) to (4.4) with the change that equation (4.1) becomes

oMy (w) _ (B1)

. q)o .
® (w) - 7 (61-62). +LJ (W) - 7 s iji 0

where Z is the impedence of the input circuit excluding the input
coil and the reflected SQUID impedence, and we have set Vi = 0. We
now add an additional flux source in the SQUID loop only with a spec-

tral amplitude-

jomZyw) (B2)

v - _ a2 |
¢ ,(»w) = - A“LJ(W) t 7 I,

this source exactly cancels the effect of the input circuit and effec-
tively reduces the self-inductance of the SQUID from L tolL (1—a2), Now

solve the SQUID equation for the bare SQUID with the reduced inductance,

and call the results vaare’ SJbare, 6bare, etc. Now @V(w;an) =0,

provided IZI << W Li which is usually true, which means we can remove

J
the additional flux source at high frequencies G@sz) 1eaving everything
unchanged. Secondly removing the additional source at low frequencies
has two effects: (1) the input circuit source - szzJ(w)/(Z.+ iji)

is restored and (2) we haQe an effective flux source in the SQUID

¢ (w) = OLZLJ(UU) at low frequencies (w << wJ). The resulting output
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noise from this source can be analyzed linearly because it's only

non-zero at low frequencies. Hence when w << w

J
V(W) = V()P + (3v/38) o LI(w)P3TE (3)
J(w) = J(w>bare (1 +.a2L/Lc) , : (B4)
where
1oL, (85)
L L R
c D c

and Ly E.A@a/AJ and RC is the lossy part of this reSponse-(seé the

end of this appendix). We find

,. , . |
50 = s50rPaTe L fov) of12s% R0 Te (v VL gorbare (B6)
v 20 30 vJ

5] = sj’b‘"e 11+ o’L/L |2 (B7)

d = q)bare -a ZLJ . (BS)

The first order current source in the input circuit»from the SQUID
is —juMI/(Z + iji), but we need to consider the second order current
sourcé in the input circuit, which is the extra current source in the
input from the change in flux in the SQUID introduced.by the first

order current source in the input, this is:

: _{jwMJ/(Z + iji)} . {jwMZ/((z + jeLOL) } .
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Adding all orders of current noise in the input we have

2
I o ~JwMJ 1+ jwM2 . jwM2 . -
total (Z + JwLi) - (Z + JwLi)Lc (z + JwLi)Lc
- jwMJ WM _ (B9)
(Z + jwL.) (Zz + jwL.)L
1 a=o 1 C
- JWMJ - 1 _ - jwMJ
(z + JuL,) 2 2
_ JWM . _ JwM
1 -@= WL L Z + JwL; L_

The reason for doing this is because we are not solving directly the
equation of motion for the tightly coupled SQUID, but only treating
the input as a perturbation; hence we must take the total effect

of the input into consideration. fhe effect can be visualized as

a reflected SQUID impedence of:

S ) . | :
Zo JwM /LC juM (1/LD + Jw/Rc) . | (B10)

The values of LD and Rc’ the dynamic low-frequency inductance and

resistance to an applied flux will depend on the SQUID bias point
and the SQUID readout system (Rc = O(LDR/L) for normal SQUID operation).
Clarke, Tesche, and Giffard (1979) (CTG) used szz/ARD for the reflected

SQUID impedence, where they should have used Z Also their equation 7

R
has the wrong sign for the current noise term, hence the sign of YVJ

needs to be taken as negative in the remainder of the paper.
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2
The formalism in CTG may be used in the large-o 1limit by simply

changing from the bare values of L, SV’ S_, etc. to the tightly coupled

J
values and making the change to the proper value of the reflected SQUID
impedencé, ZR" In the sma-ll—oc2 limit, CTG is ﬁnchanged as expected.

This approach to the  tightly coupled SQUID should be good as long as

the input circuit looks inductive at the Josephson frequency or higher.
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APPENDIX C

MACROSCOPIC QUANTUM EFFECTS

Appendix C concerns itself with converting the microscopic Hamil-
tonian picture of a shunted current-biased Josephson junction to the ma-
croscopic 'cos §' potential. In this way the microscopic meaning and
existence of macroscopic quantum effects in Josephson junctions can be
clearly interpreted.'

Lets start with the Hamiltonian for the junction without a bias

current or resistor added. It is simply:
- )% + (' +HD) (c1)
T T °

Here nR(nL) is the number operator for pairs on the right (left) side of
the junction, C is the junction capacitance, and H;(H;) transfers a pair

across the junction from right to left (left to right). H; can be re-

presented as -

H, = ———-a+é ' (C2)

where N is the total number of pairs, E_. is the tunnelling energy and

J

+ . . . .
ap creates a pair on the right side, etc. The basis states used to re-

present the system are pair number states

|m> = IN + m>R|N - m> (C3)

L’

N is very large so we have -N <m <N, for any of the physically import-
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ant excited states (m F 0).

The .eigenenergies are calculated by writing the eigenfunctions as

linear combinations of the |m> states

lb,> = f_b$|m>- (ca)
m

”~

The Schrodinger equation for an eigenstate, operated on by the bra <n|

from the-left:
<n|€2|wl> = <nIHJ|wZ>’ : (Cs)

can be evaluated term by term to find the recursion relation for the bﬁ
and the eigenenergy for the 2th state:
L L

b -5 (b, +b ). (c6)

At this point we could work backward to show this is equivalent to
the "cos §' Hamiltonian but it is easier to start with the 'cos §' Ha-
miltonian and show it leads to the same eigenfunctions with identical
eigenenergies. Imagine a particle in a one dimensional potential

I, c¢g .
om COs X with a has§-——5 . The Hamiltonian is

4
H, = & P__ 0“0 cos x (C7)
with the commutator

- [x,P] = in, . (c8)
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so we have:

P=-ih 2= . (C9)
X

" The units of P are action and x is dimensionless (P will later be pro-
portional to the charge on the capacitor P = QOQ/Zn = ®OCV/2n). The ba-
sis states we will expand in to find the eigenstate WQ(X), are linear

combinations of plane waves

(= -]

b, (0 =f bYk)e*%ag, | (C10)

The Schrodinger equation for wz when multiplied by e "% and integrated

by x from = to ® is: (-° <K q. < x)

e . - _ ' _
€ vo()e "¥ax = [ uet%¥ax. (C11)
s f % [ o 3

Again expanding the terms of (Cll) term by term one finds that Eq. (Cll)

. -now looks like this:

and it dictates the eigénenergies and expansions in terms of plane waves
of the eigenfunctions of the 'cos §' potential. Notice here that be-
_cause we have let both x and P run from - to %, and not just O to * or
0 to 27 etc.; thére are no probléms withvthevvhermicity of x or P and
the correctneés of the commﬁtator. .Thé eigenfunétions are specified in

terms of % (the band index) and the smallest value of q, qmih, (the re-
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ciprocal lattice vector) in the series of bg(q) that are linked together
by the bz(q + 1) terms.in Eq. (Cl1l2). 1If when solving the system we only
choose initial states whose Uin vectors are zero there will be a one to
one correspondence between these states and the eigenstates dictated by
the microscopic Hamiltonian (Cl), because Eq. (Cl2) with 9oin equal to

zero is the same.as (C6) when Io¢o/2w = EJ.
Importantly, if we allow a slightly more general wavefunction solu-

tion to the-micro- apd'macroscopic junction‘HémiltoniAns:
z bnln> > bnln + o> _ (C13)
and
T b e1nx | Giox 4 b‘e. R (C14)

(In Eq. (Cl4), the solutions are expressed in terms of the basis states,
which are greatly reduced for the 'cos 8' Hamiltonian because of the con-
dition for equivalence that Ynin 0.) we will have a general solution
to the system including the bias-current and resistor Hamiltonians.

When specifying the initial eigenstate we choose Upin = 0 and o arbi-
trarily so the wavefunction magnitude is periodic in 27 and always stays

that way.

Since the 'cos &' Hamiltonian, even with a restricted subset of ei--

genfunctions, shows tunnelling and it is a different representation of
the microscopic Hamiltonian, one could expect tunnelling (MQT) theore-
tically starting from the macroscopic picture. Since the wavefunction

magnitudes are all periodic in 2m, the event of tunnelling cannot be in-
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terpreted as the junction phase increasing by 2w, but the voltage across
the junction, P, increasing beyond what would otherwise be expected.
This is what.is actually measured. There is a packet in every well,
all packets are created_equal,and they stay that way, and tunnelling
means they all move downward together. Here we imagine the situyation
when the cos § potential is tilted by an external bias current. Even in
this case, if before applying the bias current the wavefunction magni-
tude is periodic in 2w, it still will be periodic after the current is
applied.

This model of the junction tunnelling predicts interference effects
since the probability density entering a well from an uphill well will
interfere with that density remaining in the well. At present it is not
known if this increases or decreases the average tunnelling rate or not,
but this effect could test the "in every well" model presented here.

We now .ask for a microscopid picturg of macroscopic quantum tun-
nelling. The junction macroscopic wavefunction ¢ (K) consists of many
delta functions, since y(x) is periodic, and each delta function corre-
spdnds in the microscopic picture to a particular number of pairs across
the barrier, m. Thé voltage across the junction, P = CV@O/Zn, in-
creases because of the tunnelling, which means <w|P]w> = h<¢|K|w> is
bigger., Macroscopically this just means the amplitudes of these delta
functions shift to ‘a higher value of K or microséopically fhat the num-
ber of pairs on one side of the junction increases. 1Its really very
simple; put current through the junction, and many pairs move across the
junction and some stay across.—

The ideal Josephson junction has <An2> extremely large since the

charging energy per pair moving across the junction is vanishingly
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small. As IOC + 0 the charging energy per pair becomes significant forc-
ing the size of <An2> to decrease there by increasing <Ax2>. Hence we
have the broadened wave packet of phase in the macroscopic bicture. As
IOC + 0 the response of the pair current for I < Io goes from the ideal
reactive respomse (the Josephson inductance) to a real and reactive re-
sponce, v'partially in phase with I, to finally a totally real response,
i.e., a lack of coherence across the junction.

One should not confuse the tunnelling phenomenon with the effect of
tunnelling on an hysteretic junction. The voltage across the junction
from the tunnelling means the junction has gained kinetic energy. If
the junction is sufficiently under damped, so this energy is not direct-
ed to the resistor the system can evolve, possibly with the help of self-

interference, into the so-called free runningvmode.
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