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QUANTUM NOISE IN JOSEPHSON JUNCTIONS AND DC SQUIDS 

Roger Hilsen Koch 

Abstract 

The development of a model to predict and understand the effects of 

quantum noise in the resistively shunted Josephson junction and experi-

mental tests of this model are described. It is shown that the low-fre-

quency spectral density of the voltage noise in a current-biased Joseph-

son junction with critical current I , shunt resistance R, and small ca
o 

pacitance is 2ei~R3/v in the limit eV ~ kBT(I/I
0

)
2 

and I > I
0

, where V 

is the voltage and I is the current. The noise arises from zero-point 

current fluctuations in the shunt resistor that are mixed down from near 

the Josephson frequency to the much lower measurement frequency. Exper-

imental data are in excellent agreement with these predictions, demon-

strating clearly the measurability of zero-point fluctuations and the 

validity when I> I of·the Langevin treatment combined with the Callen
o 

Welton expression for the noise from a resistor. The rounding of the 

current-voltage characteristic when I ~ I caused by quantum noise and 
0 

macroscopic quantum effects are briefly discussed. 

The noise temperature of a de superconducting quantum interference 

device (SQUID) coupled to a tuned input circuit is computed using the 

complete quantum expression for the equilibrium noise in the shunt re-

sistance of each junction. At T = 0, where the noise reduces to zero-

point fluctuations, the noise temperature for an optimized system is 

hv/kBln2, where v is the signal frequency and the noise energy, E/lHz, 

of the bare SQUID is approximately ~h. The computation is extended to 

iii 



nonzero temperatures, and it is shown that a SQUID operated at lK can 

approach the quantum limit. Tunnel junction de SQUIDs designed to ap

proach the quantum noise limit in the temperature range 1 to 4K were 

fabricated with an inductance of about 2 pH and a capacitance per junc

tion of about 0.5 pF. The lowest measured noise energy was 3. 2h at L 4K 

at a frequency <:of:: 202 kHz. When the 1/f noise was •< subtracted., the· white. 

noise> energ-y decreased .. from' around· 3h a.t 4. 2K:to below: 2h at 1. 4K. 
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I. INTRODUCTION 

We wish to analyze the problem of a current-biased Josephson 

junction (Josephson, 62) shunted with a resistor and the junction's 

intrinsic self-capacitance. The parameter we can vary after the junc

tion is fabricated is the bias current, We will predict and measure 

the average voltage across the junction and the low frequency fluctua

tions around the average. This problem is sufficiently complicated to 

justify two starting models; (1) the 'simple' ~esistively ~hunted 

Junction (RSJ) model (Stewart, 68; McCumber, 68) i.e., the electrical 

engineering approach, and (2) the transfer Hamiltonian method (Ferrell 

and Prange, 63; Anderson, 64) which is based ~n quantum mechanics and 

is far more complicated but can be shown to reduce exactly to the RSJ 

model in most circumstances. 

The RSJ model is used by most workers in the field because of its 

simplicity and predictive abilities. -All the following chapters of 

this thesis will unabashedly use the RSJ model for predictions and in 

all cases the measured data are in good agreement with these predic

tions. 

The RSJ model has been thoroughly tested in the thermal limit when 

k
8

T > hv J where v J is the Josephson frequency. The essential idea pre

sented and tested successfully is that these non-linear classical 

Langevin equations of motion remain valid in most cases when hvJ > 

k
8

T, the 'quantum' limit provided that the thermal terms in the equa

tions of motion are replaced by their quantum mechanical analogies. 

This means changing the spectrum of the Langevin driving term represent

ing the resistor no~se, from the thermal Johnson noise formula (Johnson, 
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28; Nyquist, 28) for the voltage noise, 

( 1.1) 

to the complete quantum formulation (Callen·and Welton, 51): 

(1. 2) 

In Chapter II we will present the quantum noise theory of the 

single junction, using the RSJ model. Appendix A presents some details 

of the computer methods. Chapter III will report on the results of the 

measurements; they are in excellent agreement with the theory and. for 

the first time experimentally verify equation (1.2). These measurements 

tested the model when I > I (the current bias I was greater than I , 
0 0 

the maximum possible pair current through the junction). 

Having tested these ideas in the single junction, we make predic-

tions for the performances of the de SQUID, which is, roughly speaking, 

two junctions wired together. We find that at attainable temperatures 

and present-day technologies the de SQUID when configured as a narrow-

band amplifier can be an ideal phase-preserving linear amplifier, i.e. 

the best possible allowed by quantum mechanics. This means it would 

have a total equivalent noise power per unit bandwidth equal to hv 
·m 

referred to the input (v is the measurement frequency). The frequency 
m 

range over which we obtain quantum-limited performance is approximately 

1 MHz to 1+GHz. This is much lower than any other equivalent amplifier. 

The calculational results also predict a minimum noise energy of the 

de SQUID of approximately h, The race to reach this or any ultimate 

limit' is depicted in Figure 1.1. The noise energy, or energy resolu.,.. 

!-



-?() 

- 10 
N 

I 

' -:> -
N 
I 

""- -32 w 
10 

.. 
I-
z 
w 
:E 
a:: 
w 
a_ 
X 
w 

3 

NOISE ENERGY OF de SQUIDS 

(1976) 
Clarke, Goubau, Ketchen X 

lo-34 

THEORY: 

4.2Ke 

(1979) 
Koch, Clarke 

. (1980) 
Voss, Leibowitz, Raider, Clarke 

-..~-Voss, Leibowitz, Broers (1980) 
~~-voss, Lai bowitz, Knodeler, Raider, 

Broers ( 1980) 
Cromer et al. (1980) 

Van Harlingen, Koch, Clarke (1981) 

lo-32 lo-3o 

10 kB T (LC)I/2 (J/Hz} 

XBL823-5371 

Fig. l.l Predicted noise energy vs. measurement for seven 
tunnel junction de SQUIDS. 
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tion as its commonly called, is defined as the smallest amount of 

signal energy which when applied to the bare SQUID (from a high imped

ence source so there is no back-action), produces at the SQUID output 

a signal which just equals the SQUID's mvn noise in a unit bandwidth, 

i.e. the signal for which.the signal to noise ratio equals one, 

Chapter IV presents the quantum limited de SQUID theory; basically put

ting quantum noise in the RSJ model of the SQUID. Appendix B analyzes 

the corrections when the SQUID is tightly coupled to an input coil. 

Chapter V presents the results of measurements of de SQUIDs near 

the quantum limit that were performed primarily by Dale Van Harlingen. 

These measurements confirmed in part the predictions for the minimum 

no1se energy although no measurements were made of the total equivalent 

noise power with the SQUID configured as an amplifier. That 1s very 

much harder. 

When doesn't the RSJ model work?? Recently, measurements by Voss 

and Webb (1981) and Jackel~~ (1981) have shown behavior predicted, 

in part, by Ivanchenko and Zil'berman (1969) and Caldeira and Leggett 

(1981) that clearly lies outside the range of validity of the simple 

RSJ model. (We need the enhanced RSJ). The effect is called Macro

scopic Quantum _!unnelling (MQT). The equations of motion predicted by 

the RSJ model are identical to these of a point-like particle moving 

down a one dimensional potential (the washboard potential), and the 

question raised is whether the point-like particle in this model really 

should be visualized as a small wave packet. If "it's" really a wave 

packet then one mig.ht, expect tunnelling to occur if the potential can 

be made to have metastable wells separated by barriers. This is· the 

t 
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case when I < r
0

, as was observed by the two above-mentioned measure

ments. 

Is the RSJ model dead?? Yes, in some limits, particularly below 

the critical current, I < r
0

; but there exist many measurements when 

I > r
0 

that verify it nicely. The question to ask is how wide is the 

visualized wave packet when compared to the characteristic distance 

over which the one-dimensional potential changes. If the wave packet 

is narrow when compared to the potential characteris-tic width, we have 

the "particle-like limit" and, using Eherfest's theorems, one has iden

tical equations of evolution for the wave-packet and a point-particle. 

The key contribution of Appendix C is to show that the well-known 

tranifer Hamiltonian starting model shows conclusively that the wave 

packet is the correct visualization. After the shunt resistor is 

added, the Schrodinger equation for the total system becomes non-linear 

in the wave function, ljl(x), and stochastic. This stochasticity is the 

noise we measured. When integrating this equation to follow the evolu

tion of the wave packet, the non-linearity eliminates the common 

diffusion-like solution for a unbound particle, and forces the wave 

function to stay compact over arbitrarily long times, like a soliton. 

This is why the RSJ model works when it does. On the other hand, 

in the limit of small r
0
c, (C is the junction self-capacitance) the 

diffusion forces overcome the contracting forces and the wave function 

will spread out everywhere, the "wave-like limit", where MQT was ob

served. 
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II. SINGLE JUNCTION THEORY 

The effects of thermal noise on a resistively shunted (Stewart, 

68; McCumber, 68) Josephson (lq62) junction (RSJ) have been extensively 

studied. The theories assume that the noise originates as Nyquist 

noLse Ln the shunt resistor R. The junction is modeled as a particle 

moving in a tilted periodic potential, and the effect of the noise cur-

rent is to induce random fluctuations in the angle of tilt. These 

fluctuations have two effects. First, they enable the phase of the 

junction to slip by 2n when the bias current, I, is less than the 

noise-free critical current, I , thereby producing a voltage pulse 
0 

across the junction. This effect produces noise rounding of the I-V 

characteristics at low voltages, V; the noise rounding has been cal-

culated by Ambegoakar and Halperin (1969) and Vystavkin ~ al. (1974) 

for the case C = 0 (Cis the capacitance of the junction). Subsequent-

ly, Kurkijarvi and Ambegoakar (1970) and Voss (1981) computed the case 

C f. 0. Second, the fluctuations generate a voltage noise when the 

junction is current biased at a non-zero voltage. Likharev and Semenov 

(1972) and Vystavkin ~ al. (1974) showed that for the C = 0 case in 

the limit hvJ < kBT (vJ = 2eV/h is the Josephson frequency) and for 

frequencies much less than VJ' the spectral density of the voltage 

noise is given by 

(2.1) 

.~ 
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Here, RD is the dynamic resistance. This result was derived on the 

assumption that the noise is sufficiently small that one can neglect 

departures of the I-V characteristic from that of the ideal RSJ, 

(2.2) 

Thus, Eq. (2.1) 1s not valid in the noise-rounded reg1on I< I • 
0 

Voss (1981) and Koch (unpublished) computed the noise for the case 

C ~ 0. Experimental results are in good agreement with calculations 

for both the noise rounding (Falco et ~' 74) and voltage noise (Soulen 

~ ~' 78). 

For a junction voltage-biased on self-resonant step, Stephen 

(1969) has calculated the contribution of pair current fluctuations 

to the linewidth of the Josephson radiation. This noise arises from 

photon number fluctuations (including zero point fluctuations) in 

the lossy cavity formed by the junction, and is not intrinsic to the 

tunneling of Cooper pairs 1n a non-resonant junction. Experimental 

results (Dahm, ~ al, 69) are in good agreement with the predictions. 

1. The Equations of Motion and the Washboard Model 

We consider a Josephson tunnel junction with critical current I 
0 

and capacitance C shunted with resistance R. We assume that V always 

lies below 2!:,./e, where !:,. is the energy gap, so that the Riedel singu-

larity is unimportant. Furthermore, we take the temperature T to be 

well below the transition temperature, where the quasiparticle tunnel-

ing current is small compared with the current in the shunt resistance, 

so that we can neglect noise from the quasiparticle tunneling current 
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(Dahm, et al, 69). The only significan~ noise source is the current 

noise, IN(t), in the resistor, which has a spectral density, including 

zero-point fluctuations, (Callen & Walton, 51) 

( 2hv/R) coth (hv/ 2kBT) (2.3) 

at angular frequency v. We· compute .the spectral density of the voltage 

noise, SV(v), for a current-biased RSJ at a frequency v. 

The circuit as constructed is shown in Fig. 2.l(a). Using 

Kirchhoffs laws and the ac and de Josephson equations we find the 

equations of motion for the system: 

and 

. 
I= CV + I

0 
Hn o + V/R + ~(t) 

. 
v = ( <P I 2TT) 0 ' 

0 

(2.4) 

(2.5) 

·Where 6 is the phase difference between the two superconducting wave 

functions across the tunnel barrier. Equations (2.4) and (2.5) can 

be rewritten as a single equation (letting ~(t)=O for the time being); 

= .!2o.. 
21r 

-~ _-du(o > 
s1n v - do 

(2.6) 

This equation is like the equation of motion of a particle with mass 

proportional to C, and a viscous damping proportional to 1/R 1n a one 

dimensional potential, the washboard potential (Fulton, 75). The 

analytical fortil. of this potential is: 
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V(t) 

I c R 

(a) 

1<10 

(b) (c) 

Voltage 
• 

a: 8 

7: = 
J VJ 

Time 

{d) 

X BL. 8 24-5536 

Fig. 2.1 (a) Circuit diagram, (b) washboard potential I<I0 , 

(c) washboard potential I<I0 , (d) voltage across 
junction vs. time for I I 0 • 



uco) 
I <I> 

0 =-- 0-
2rr 

10 

I <I> 
0 0 cos 0 • 
2TT 

( 2. 7) 

The position of the particle in the potential 1.s the junction phase and 

the voltage across the junction, which var1.es as 8, is just the velocity 

1n the,potential. 

The. potential has two limiting forms: (1) when I < I there 
0 

exist metastable wells (Fig. 2.l(b)) where the particle can be locally 

stable, and (2) when I> I
0 

the particle spends its time sliding down 

the never-ending slope (Fig. 2.l(c)), in a limit cycle whose average 

cycle time is-called the Josepheson time, TJ' (Fig. 2.l(d)). The in

verse of the Josephson time 1s the Josephson frequency VJ. Notice the 

voltage versus time plotted 1n Fig. 2.l(d) is very non-linear. 

The effect of IN(t) can be quickly seen by observing in Eq. (2. 7) 

that the average slope of the potential is controlled by the bias 

current. The instantaneous current the junction sees, in the·RSJ 

model, is the sum of the external bias current, I, 

and the noise current, IN(t). Hence the slope of the paten-

tial will fluctuate around the average value with a power spectrum 

given by SI(v). When I > I the slope fluctuations will cause the 
0 

time of passage through each limit cycle to vary slightly, i.e. the 

instantaneous Josephson frequency will fluctuate. Because the limit 

cycle is extremely non-linear, the average voltage per cycle will also 

fluctuate, and this means low frequency noise. Current noise 1n the 

resistor that produces fluctuations in the potential slope at or near 

the Josephson frequency will be mixed down to near de by thisnon-
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linearity. This mechanism allows us to measure notse at many Gegahertz 

with simple audio frequency equipment if we understand the junction 

dynamics. The junction acts as a mixer. 

In the other limit of the potential, when I< Io, the passage of 

the particle from one well to another can occur in two ways. Noise 

from the resistor can momentarily reduce the barrier height to zero, 

allowing the particle to escape. The notse can be thermal or quantum 

noise from the resistor giving rise to the terms "thermal" or "quantum 

activation." The activation process 1s appropriate 1n the particle-

like limit, but 1n the wave-like limit, when the width of the wave 

function of the particle 1s large compared to the characteristic width 

over which the potential changes, the particle may also tunnel through 

the barrier (Ivanchenko and Zil'berman, 69). 

It is convenient to introduce the dimensionless u·nits and para-

meters, W = 2TIV, i=I/I , v=V/I R=W /(2TII R/~ ), f = 2nkBT/I ~ , 
0 0 J 0 0 00 

8 = w/(2TII R/~ ), S.(8) = SI(w)(2TIR/I ~ ), S (8) = SV(w)(2n/I ~ R), 
0 0 1 00 v 00 

Be = 2TII 0R 2C/~0 , and K = ei
0

R/kBT. 

2. Analytical Solutions of the Equations when I > I
0 

We calculate the properties of the RSJ from the instantaneous 

phase difference across the junction, o(t), which evolves in dimension-

less time t/(~ /2TII R) according to the Langevin equation 
0 0 

The use of a noise term which includes quantum fluctuations, 

(2.8) 

Eq. 2.3, in the classical equation, Eq. 2.8, yields the notse charac-
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teristics of the junction in all regimes from the thermal to the 

quantum limit if the junction is ~n the particle limit. 

We first consider the limit Be << 1 in which the term sc6 may be 

neglected in Eq. 2.8. (As B + 0, the roll-off frequency of the noise, 
c 

-1/RC, increases, and the mean square current no~se available to the 

junction, cr(l/RC) 2
, eventually becomes so large that the noise-rounded 

critical current is reduced to zero. In the analytical discussion we 

choose 0 < B << 1, while for the computer results we choose B ~ 0.1.) 
c c 

In the limit in which noise-rounding effects are negligible (i>l), 

the I-V characteristic is v = (i 2-1) 112 and Eq. 2.8 may be solved 

analytically using the Likharev and Semenov (1974) (LS)' method. One 

calculates the Fourier components of the voltage fluctuations taking 

into account the mixing down of high frequency noise at harmonics of 

the Josephson frequency and finds the spectral density 

Here, k is an integer, and 

ki(i-v)l kl 
+ 8-kv 

00 

k=-oo 

1 
2 [

( k- 1 )( i -v) I k-1
1 + 

e - (k-1)v 

(2.9) 

(k+1)(i-v)l k+11] 
e - (k+1)v 

(2.10) 

Evaluating the zk in the limit 8/v+O, that is, when the measurement 

frequency is much lower than the Josephson frequency, we find 
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s ( 0) 
v (8<<v) (2.11) 

Even in the extreme quantum limit in which S. ~ kv, the sum still con
~ 

2 verges, so that the last term is of order e /v, which is negligible 

~n the limite «v. 

Substituting Eq: 2.3 into Eq. 2.11 we find the result, valid 

for b 1, 

s (0) (2.12) 
v 

1T 

where RD = av/ai = i/v, or, in dimensioned units, 

SV(O) = R 2 [4:BT + 2eV cor coth ~:~ (2.13) D 
R 

where RD = ()V/()I is the dynamic resistance. This equation is plotted 

1n Fig. 2.2. The inset of Fig. 2.2 shows the temperature dependence 

of SV(O) for particular values of !
0 

(assumed to be independent of 

temperature) and R at fixed bias current. For comparison, the LS 

result in the classical limit is also shown • 

The physical meaning behind the two terms 1n Eq. (2.13) is easy to 

understand. The first term in square brackets, ~k T/R represents the 
B 

current noise in the resistor starting out at the measurement frequency, 

which is low enough to see the junction and bias supply as a simple 
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resistor of value RD. The resulting output voltage no1se is just R 2 
D 

times the input noise, no m1x1ng occurs. The second term 1s a product 

of the current noise at the Josephson frequency, (4eV/R) coth (eV/kBT), 

2 
times a mixing coefficient, (RDI

0
/I) /2. The mixing coefficient tells 

us how well the non-linearity of the junction's phase evolution m1xes 

noise starting out at the Josephson frequency down to the much lower 

measurement frequency. 

It is instructive to consider several limits of Eq. (2.13): 

(i) eV<<kBT (Kv<<l)! We obtain the LS result Sv(O) = 

llkBTR~/R [l+(I
0
/I)

2
/2]. (ii) eV>>kBT (KV>>l): We obtain 

SV(O) = RD
2 

[4kBT/R + 2eVI
0

2
/(RI

2
)] For eV<<kBT(I/I

0
)
2 

(vrD
2

>>K) this 

2 yields the Nyquist result SV(O) = 4kBTR, while for eV»kBT(I/I
0

) 

2 (vrD <<K) we find the quantum limit 

(2.14) 

Thus, to observe quantum effects we require K ::: ei
0

R/kBT>>l. At the 

2 particular bias V=I
0

R, Eq. (2.14) reduces to SV(O) = 2ei
0

R , which is 

just the voltage spectral density of the shot noise due to a current I 
0 

flowing through a resistance R. However, it should be clear from the 

derivation that Eq. (2.14) arises not from an intrinsic shot noise in 

the pairs tunneling through the barrier but rather from the zero-point 

fluctuations of the shunt resistance which have a current spectral 

density 2hv /R. 

3. Computer Solutions 

To compute the no1se rounding of the I-V characteristics or to 

include the effects of a non-zero capacitance, we have used numerical 
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techniques. Although we have computed the general case TfO, we 

report here results only for the T=O limit in which Eq. (2.3) becomes 

2hv/R. We used an LSI-11 computer to integrate Eq. (2.8) using a 

noise driving term obtained by digitally filtering pseudo-random white 

no1se. We obtained the mean voltage by averag~ng the igstantaneous 

voltage over typically 10
4 

Josephson cycles, and determined the low 

frequency spectral density of the voltage noise by averaging the flue-

tuations 1n the voltage after low-pass digital filtering (see Appendix A 

for more on the computer. methods). The accuracies of the average 

voltage and the spectral density are believed to be +5% and +10% for 

i>l, and +10% and +20% for i~l. Figure 2.3 illustrates the noise 

rounding of the I-V characteristics due to zero point fluctuations 

for B = 0.1. For a given depression of the critical current below 
c 

the noise-free value, the rounding extends to much larger values of 

voltage than in the equivalent thermal noise case (Ambegoakar and 

Halperin, 69) because the noise in the resistor at the Josephson fre-

quency increases with voltage. 

In these computer solutions we have not included in our calculation 

the possibility of macroscopic quantum tunneling. The tunnelling 

rate including the effect of dissipation (Caldeira and Leggett, 81) 

at T=O is predicted to be: 

(2.15) 
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Where B is an exponential prefactor, A is a factor on the order of 1, 

and w is the natural frequency of the particle in the well; w = 
0 0 

(2'TTI /¢ c)
1

/
2 (1-i 2

)
1

/
4

• AsS gets small the MQT rate drops according 
0 0 c 

to the formula, intuitively because the wave function is contracted 

by the dissipation. Eventually the junction will be in the particle-

like limit. 

The barrier passage rate at T=O from quantum activation for S =0.3 
c 

has been calculated to be: 

R = B exp 1- (0(10) 6U(i)/hw
0

) I· Q.A. (2.16) 

The calculations were done using the classical Langevin equation with 

a quantum driving term, so they are only accurate in the particle-

like limit. However as Sc ~ 0 the junction will be in the particle like 

limit, and the MQT rate will fall below the quantum activation rate, 

which will validate the classical Langevin approach. 

For this reason as S ~ 0 the quantum noise rounding predictions 
c 

plotted in Fig. 2.3 and the de SQUID calculation in Section IV are 

valid (the SQUID performance always peaks just in the beginning of 

the noise rounded region). 

Figure 2.4 shows the effects of increasing S • The dynamic resisc 

tance increases markedly at low voltages Fig. 2.4(a) as S increases; 
c 

hysteresis occurs for Sc ~ 1. Figure 2.4(b) shows the corresponding 

spectral densities of the voltage noise, with the dotted line taken 

from Eq. (2.13). For v>O.S the noise rounding is small, and the com-

puter and analytical results are indistinguishable. The increase in 

noise with increasing S for a g1ven voltage at low voltages reflects 
c 

., 
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Fig. 2.4 (a) I-V characteristics at T = 0 for Kf = 21TeR/~0 = 
0.0194 (R=40Q) with Sc ~ 0.1, = 0.5, 1. (b) Spectral 
density of the voltage noise for the curves in (a); 
dotted line is taken from Eq-. (2 .12) • The dashed 
portions are of lower accuracy, Dimensionless power 
spectral density are per dimensionless hertz. 
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the higher dynamic resistance, but for all S at very low voltages the 
c 

noise decreases with decreasing voltage because of noise rounding. 

At high voltages, the noise decreases with increasing S at a given 
c 

voltage because the noise currents are filtered out at frequencies 

above -1/RC. 

4. Concluding Remarks 

In conclusion, we note that the quantum effects calculated here 

should be observable provided one can obtain the limit K >> 1. Writing 

K = (e/kBT)(Sc¢
0

j
1

/2ITc)
112 , where j 1 is the critical current density 

and c is the capacitance per unit area of the tunnel junction, we see 

that the limit requires a high current density and/or a low temper-

lK . h . 104 - 2 
Q 1 d 0 04 - 2 f. d ature. At , w~t ]

1
= Acm , ~c = an c = ._ pfVm , we ~n 

K = 10, a value at which quantum corrections are considerable (see 

inset of Fig. 2.2). Our results for S <<1 should also be applicable 
c 

to point contact junctions and micro-bridges to the extent that these 

·devices can be represented by the RSJ model. 
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III. SINGLE JUNCTION MEASUREMENTS 

In order to test the theory of Section II, measurements were made 

of the low frequency spectral density of the voltage noise, S (0), in 
v 

current-biased resistively shunted Josephson tunnel junctions under 

conditions in which the noise mixed down from frequencies near the 

Josephson frequency (vJ) to the measurement frequency (<<vJ) is in the 

regime hvJ > kBT. In this limit, quantum corrections to the mixed-down 

noise are important. The values of S (0) measured on junctions with 
v 

current-voltage (I-V) characteristics close to the predictions of the 

Stewart-McCumber model were in excellent agreement with the prediction 

no fitted parameters. Here, R and RD are the shunt and dynamic resis-

tance, and I is the critical current in the absence of noise. In 
0 

particular, the mixed-down noise at voltages above 300 ~V did not 

change significantly when the temperature was lowered from 4.2K to 1.6K, 

and was in excellent agreement with the prediction (2eV/R)(I /I)
2 

0 

that is valid when hvJ > kBT. This result demonstrates that the limit-

ing noise arises from zero-point fluctuations in the shunt resistor. 

The mixed-down noise for a wide range of bias voltages was used to 

compute the spectral density of the current noise in the shunt resistor, 

s
1

(v), at frequency v. With no fitted parameters, the measured value 

of SI(v) at frequencies up to 500 GHz was in excellent agreement with 

the Callen-Welten (1951) prediction (2hv/R)coth(hv/2kBT) at 1.6K and 

4.2K. The presence of the zero-point term, 2hv/R, where 

hv > kBT was clearly shown. The I-V curves of a junction with 

2ni L /¢ - 0.5 and S _ 2ni R
2

C/¢ <<1, where C is the junction 
OS 0 C 0 0 



22 

capacitance and L · is ·the: shunt loop ·inductance, shm-.red structure at 
s 

voltages where the Josephson frequency was near a subharmonic of the 

L C resonant frequency. The additional non-linearity of the I-V char
s 

acteristic caused mixing down of noise near higher harmonics of the 

Josephson frequency, thereby greatly enhancing the measured voltage 

noise. The measured spectral density of the noise was in good agreement 

with that of a computer simulation in which the values of L and C were 
s 

fitted to match the measured I-V characteristic. These data also 

clearly demonstrated the quantum corrections to the mixed-down noise, 

and, 1.n particular, the presence of the zero point term. 

1. Experimental Procedures 

A. Junction Fabrication 

To observe quantum no1.se effects, we requ1.re junctions with K > I. 

Writing K = (e/kBT)(Bc<P
0
j/2rrc)

112
, where j 1 is the critical current 

density and c is the capacitance per unit area, we see that junctions 

with high critical 'current densities are necessary to observe these 

ff . h 1" . d 4 4 2K . h B 0 2 e ects 1.n t e 1.qu1. He temperature range. At • , w1.t = • , 
c 

4 -2 -2 j
1 

= 10 A em and c = 0.04pF ~m we find K ~ 1.1. This is a con-

venient value of K, since, as the temperature is lowered to near lK, 

K increases so that quantum effects become dominant. 

Our Pbin-In
2
o

3
-Pb tunnel junctions, resistively shunted with 

CuAl films, were fabricated on glass substrates using the photolitho-

graphic lift-off techniques described by workers at IBM (Greiner, 

et ~' 80). The configuration is shown in Fig. 3.1(a). We first 

deposited a 10 ~m-wide Cu (0-3 wt.% Al) film 40 to 100 nm thick, and 

then evaporated a 10 ~m-wide, 250 nm-thick Pb (10 wt.% In) film at 



c 

Pb In- In2 03 -Pb 
Tunnel Junction 

Pb 
Counterelectrode 

Cu-AI Shunt 

Lt1 
R 

23 

{a) 

I 
I ___________________ J 

(b) 

Pbln Base 
Electrode 

Window in SiO 

IOfLm 
I I 

Preamplifier 

Mixer 

Computer 

XBL 818-6303Y 

Fig. 3.1 (a) Configuration of resistively shunted tunnel junction; 
(b) Schematic of measuring circuit; the dashed lines en
close the components immersed in liquid helium. 
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right angl~s to the CuAl strip. After another resi~t patterning, a 

SiO oxide layer, 100 nm thick, was deposited and two windows were 

opened by lifting off the SiO to expose the Pbln and CuAl films. 

After patterning the resist for the upper electrode, the exposed metal 

surfaces were cleaned by rf sputter-etching in Ar, the In
2
o

3 
oxide 

was grown thermally in a low pressure of oxygen, and the 400 nm-thick 

Ph counter-electrode was deposited and lifted off. A final protective 

layer of SiO was then evaporated. The diameter of the junction was 

about 2.5 ~m, and the critical current ranged from 0.1 to 2 rnA (0.2 

to 4 x 104 A cm- 2) at 4.2K, depending onthe oxidation parameters. 

The capacitance of the junction was estmated to be 0.5 pF (see Sec. 

III.2.D). The resistive shunt was about 5 ~m long and ranged in re-

sistance from 0.05 to 0.7Q , depending on the thickness and composition 

of the CuAl. The Ph counterelectrode formed a ground plane for the 

shunt, reducing its inductance, L , to about 0.2 pH. The critical 
s 

currents of these junctions proved to ~e quite reproducible for a 

given set of oxidation conditions, and the junctions could be recycled 

between room and liquid helium temperatures at least several times 

without significant deterioration. We found that storing the junctions 

at room temperature for (say) 24 hours caused their critical currents 

to decrease (up to a factor of 2), while annealing them at 70°C for 

(say) 1 hour caused their critical currents to increase. Thus, if 

necessary, we could adjust the critical current somewhat, as we did 

with junction 3. Leads were attached to the junctions with pressed 

In pellets. 
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Junctions fabricated with these techniques omitting the resistive 

shunts displayed excellent tunneling characteristics with little excess 

current at voltages below the sum of the gaps. 

B. Measurement Procedures 

Before measuring the noise of a g~ven junction, we plotted its I-V 

characteristic and dynamic resistance on a X-Y recorder, thus determin-

ing its critical current and the presence of any resonant structure. 

By applying an external magnetic field or by trapping the critical 

current to near zero we obtained the shunt resistance. 

The noise measurement procedures now to be described were those 

that we used in the later measurements where most of the data were col-

lected. Small modifications to the procedures used in the earlier work 

will be mentioned at the appropriate places in Sec. III.2. The circuit 

for measuring the noise across a junction is shown in Fig. 3.1(b). 

The bias current was filtered by two low-pass filters each consisting 

of a cooled 1.5 kn resistor, ~' and the cable capacitance, C • 
c 

The 

junction was connected across two cooled LC-resonant circuits with 

inductors Ltl' Lt 2 and capacitors Ctl' ct 2 (in fact, four-terminal 

connections were used). In a typical experiment, Ltl = 69 lJH, 

Lt 2 = 35 lJH, Ctl = 75 nF, and ct 2 = 21.5 nF, giving resonant frequen-

cies of 70 and 183 kHz. The leads across each tank circuit were con-

nected in turn to a Brookdeal 5004 preamplifier to measure the noise 

across the junction at the appropriate frequency. In addition, by 

connecting together the leads across the tank circuits at the top 

of the cryostat we could measure the noise at a third, intermediate 

frequency, about 106 kHz for the values given above. After further 
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amplification, the noise from the preamplifier was mixed down to fre-

quencies below 500 Hz using a PAR 124. After low-pass filtering, 

the spectral density of the no1se was measured using a PDP-11 com

puter. The junction, which was immersed directly in liquid He4 , was 

enclosed in a lead can, and the cryostat was surrounded by a mu-metal 

shield. The cryostat, bias supply, and preamplifier were enclosed 

1.n a shielded room. 

To make the noise measurements, we first adjusted the bias cur-

rent through the junction to obtain the required voltage, which was 

measured with a high-impedance voltmeter. We measured the voltage 

noise with the appropriate resonant circuit, using a typical averaging 

time of 10 m1n. The noise produced by the junction across the tank 

2 2 2 2 
circuit was Q Sv(O) = w Lt Sv(O)/Rd , so that the required quantity 

Sv(O)/R~ was independent of Q. We note that the predicted value 

os Sv(O)/R~ is virtually independent of Be in the range 0 < Be < 0.5, 

while the value of S (0) does increase significantly as B is increased 
v c 

in this range (Voss, 81). Thus, for B appreciably greater than zero 
c 

(junctions 2 and 3), it is much more reasonable to compare experimental 

and theoretical values of Sv(O)/R~, rather than values of Sv(O). How

ever, a knowledge of the tank circuit impedance, Q2~, was required to 

enable us to subtract the preamplifier current noise. We determined Q 

at each bias point by exciting the tank circuit inductively and measur-

ing the half-power frequencies, using a function generator. From time 

to time during the noise measurements, the ga1n of the preamplifier-

mixer-computer chain was calibrated by measuring the Nyquist noise 

across a room-temperature resistor R (5.1 kn) connected to the input c 
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of the preamplifier. We estimate the accuracy of the gain to be +2%. 

These measurements of the noise and of Q were repeated at each of 

the three frequencies for a series of voltages at each temperature 

and for a range of temperatures. Below 4.2K, the temperature of the 

helium bath was controlled by regulating the vapor pressure. 

We now discuss the various measured corrections to the noise: 

(i) The spectral densities of the voltage noise contributed by 

the preamplifier voltage noise (typically 6.1 x lo- 19 v2Hz-l at 183kHz) 

-26 2 -1 and current noise (typically 2.8 x 10 A Hz at 183 kHz) were sub-

tracted from the measured spectral density. The spectral density 

of the current noise was measured in a separate experiment by measur-

ing the voltage noise across a ~ooled LC-resonant circuit containing 

a known resistor. The spectral density of the voltage noise was ob-

tained during each set of measurements on a junction by shorting the 

input of the preamplifier. Because the current noise was checked 

less frequently than the voltage noise, we designed the tank circuits 

so that the contribution of the former was typically 25% of the latter. 

The total preamplifier noise was comparable with the junction noise 

at 4.2K, and as much as three times higher than the junction noise 

at 1.6K; the corresponding errors introduced by the correction varied 

from +5% to +15% of the spectral density of the noise in the junction. 

(ii) Losses in the tank circuit (for example, due to the presence 

of stray resistance) are a source of noise. The spectral density 

of this contribution was quite negligible (-0.1%) for the 70- and 

183-kHz tank circuits. However, the 106-kHz tank circuit contained 

two leads, parts of which were at room temperature. Their noise con-
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tribution was measured with the junction in the zero resistance state, 

and was typically comparable with the spectral density of the voltage 

noise of the junction. The error in the correction at 106 kHz was +5%. 

(iii) From the noise measurements at the three frequencies and at 

each bias voltage and temperature we determined that some junctions (2 

and 4) generated a 'small excess noise with a spectral density very 

close to 1/f. The spectral density was proportional to (av/ai ) 2, sug
o 

gesting that the noise arose from fluctuations in the critical current 

(Clarke and Hawkins, 76). For example, for junction 2 the 1/f noise at 

183 kHz was typically 5% of the spectral density of the voltage noise 

at the higher bias voltages, where av/ai
0 

became small. We subtracted 

the measured 1/f noise from the total junction noise at 183 kHz; even 

if the uncertainty in the noise was as high as 30%, the error intro-

duced was no more than +3%. 

(iv) The noise measurements were all performed at bias voltages 

well below the sum of the gaps of the two superconductors. The quasi-

particle current contributes a noise with a current spectral density 

(Dahm, et al, 69) 2ei coth(eV/2kBT), where I is the quasiparticle 
-- qp qp 

current. Thus, the ratio of the spectral density of the quasiparticle 

noise to the predicted spectral density of the mixed-down noise is of 

order I /(V/R), which we estimate to be - 10-2 at 4.2K over the vol
qp 

tage range of interest. At the lower temperatures, the quasiparticle 

current is substantially reduced, and its noise contribution is even 

smaller. Thus, we have neglected quasiparticle noise. 

(v) The power dissipation in the shunt resistor caused its tempera-

ture to rise significantly above the bath temperature at the higher 
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bias voltages in some junctions. For each junction we determined the 

heating effect as a function of temperature by reducing the critical 

current almost to zero and measuring the Nyquist noise of the shunt as 

a function of power dissipation. At low bias voltages the measured 

no~se agreed with the Nyquist formula to within +3%. For most june-

tions the heating effect was important only at bias voltages V >>kBT/e, 

where the mixed-down term ~n Eq. (1.5) is nearly independent of the 

shunt temperature. Thus, it was sufficient to correct the data by 

subtracting the increase in the noise generated at the measurement 

2 
frequency, 4kB~T/R, from the measured value of Sv(O)/RD' where ~T 

is the temperature rise. In these cases, the heating correction was 

uncertain by !10% and was at most 30% of the total noise spectral 

density of the junction, thereby introducing a maximum error of +3% 

into the measurement. However, for junction 3, where the heating 

correction was particularly large, it was necessary to correct the 

* -1 mixed-down term as well by also subtracting (4hv/R) {[exp(hv/kBT )-1] 

-1 * - [exp(hv/kBT)-1] } from the data, where 1' = T + ~T. 

(vi) We took considerable care to shield the experiment from 

extraneous noise sources, and designed the measurement circuitry to 

avoid coupling significant 300K noise into the low-temperature cir-

cuitry. Measured values of the Nyquist noise ~n cooled resistors 

in the range 1.5 to 4.2K were within +3% of the predicted value. 

Furthermore, measurements on junctions .1n the classical limit eV < kBT 

showed the correct temperature dependence and were in excellent agree-

with theory (see Sec. III.2.A). Thus, we believe our measurements 

were not significantly influenced by extraneous noise sources. 
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2. Experimental Results and Comparison with Theory 

We report results on four different junctions that illustrate 

var1ous aspects of the theory. The essential parameters of the june-

tions are listed in Table 3.1. 

A. Junction., 1 

As a test of our measurement system and of the effectiveness of 

the shielding.we first investigated a junction in the limit K<< 1 1n 

which the Likharev-Semenov (1972) result, Eq. (2.1) .is applicable. At 

4.2K, the value of K was 0.066. The parameters B and s
1
. = 2'TrL I liP 

c s 0 0 

wer.e .. Q .• OQ3 and 0.2, respectively, so that. the I-V characteristic was 

very close to that for an ideal resistively shunted junction (see 

Sec. III.2.D for a discussion of the effects of the value of B
1
). 

The 1/f and heating corrections were negligible throughout the range 

of measur.ement, so that the only corrections to the measured data 

were for preamplifier and tank circuit noise. (In this experiment, 

the measurements were at two frequencies only, 30 and 100kHz.) In 

Fig. 3.2 we compare the measured noise with the predictions of 

Eq. (2.1). In plotting the theoretical points we used the predicted 

dynamic resistance (Stewart, 68; McCumber, 68). 

(3.1) 

so that only the measured values of R, I , I, and T were used. Thus, 
0 

we have neglected noise rounding, (Ambegoakar and Halprin, 69) and 

the predicted spectral density of the noise diverges as I ~ I • Above 
0 

the noise-rounded region, the agreement between theory and experiment 
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Fig. 3.2 Sv(O) vs. I for junction 1 at 4.2K, Solid circles 
are data with dashed line drawn through them; solidl--~--
line is prediction of Eq. (2.1). 
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is very good indeed. At very low voltages, the measured noise de-

creases as the current is lowered because the noise-rounded dynamic 

resistance decreases. 

The good agreement between theory and experiment for I > I ~n
o 

dicates very strongly that the contribution of extraneous noise sources 

~s negligible. 

B. Junction 2 

The parameters· of this junction (Table 3.1) were chosen to em-

phasize the quantum effects: Thus K increased from 0.99 at 4.2K to 

3.0 at 1.6K (the critical current increased slightly as the tempera-

ture was lowered). The values of Be and B
1

, about 0.38 and 0.31 at 

4.2K, respectively, were small enough that the deviations from the 

ideal resistively shunted junction were relatively m~nor. Figure 3.3 

shows I and dV/di vs. V at 4.2K. There is a small drop in dV/di at 

about 800 ]JV which we believe is associated with a resonance of the 

shunt inductance and the junction capacitance (see Sec. III.2.D). 

There 1s also some very fine structure and a dip at 300 ]JV of unknown 

origin. We emphasize that in comparing the quantity Sv(O)/~ with 

the theory, small deviations ~n 

provided the mixing coefficient 

R
0 

from Eq. 

(I2/2I 2) ~n 
0 

(3.1) will be suppressed 

Eq. (2.13) is not af-

fected by the additional non-linearity. Another deviation from the 

simple model arose because the shunt resistance, R, which was measured 

with the critical current suppressed nearly to zero, varied between 

0.65~ and 0.75~ as the voltage bias was increased from 0 to 1 mV. 

We believe this variation was the result of a proximity effect between 

the shunt and the electrodes, or possibly of diffusion of Pb into 
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the shunt. The measured value of R was used at each voltage bias 

when we compared theory and experiment. 

In Fig. 3.4 we plot measured values of Sv(O)/R~ vs. voltage 

(open circles) after the preamplifier no1.se has been subtracted. 

The solid circles are the noise after.the 1/f noise subtraction and 

the heating:correction have been made. At low voltages the correction 

is entirely due to 1/f noise, while at high voltages, the correction 

1.s largely due to heating. In the mid-voltage range, both corrections 

are small. The solid line through the solid circles is the prediction 

of Eq. (2.13) using the measured values of R; I , I, v, and T. The 
' ' 0 

upper dashed line is the predicted noise in the absence of zero point 

fluctuations, that 1s 

I 

s (0) 
v 
---= 4eV 

+ -
R - 1 

(3. 2) 

The triangles in Fig. 3.4 represent the measured mixed-down noise, 

which was computed by subtracting 4k
8

T/R from the solid circles. 

The solid line through the triangles is the mixed-down noise predicted 

by Eq. ( 2. 13), ( 2eV/R)( I
0
/I ) 2coth(eV/k

8
T), while the lowe-r dashed 

line is the mixed-down noise predicted by Eq. (3.2) in the absence 

2 -1 
of zero point fluctuations, (4eV/R)(I

0
/I) [exp(2eV/k8T) - 1] • The 

small discrepancies between the data and Eq. (2.13) at very low vol-

tages are possibly due to our neglect of noise rounding iri the theory. 

It is evident from Fig. 3.4 that both the total measured noise across 

the junction and the measured mixed-down noise are in excellent agree-

II' 
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ment with the theory that includes a contribution from the mixed-down 

zero point fluctuations, and are substantially higher than the predic-

tions of a theory that does not include this contribution. 

In Fig. 3.S we show the temperature dependence of the no~se for 

twelve bias voltages rang~ng from SO wv to SSO wv. The notation is the 

same as that in Fig. 3.4. The temperature T = 2eV/kB ~s indicated for 

the six lowest voltages; mixed-down noise at temperatures well above 

this temperature is in the classical limit eV << kBT' while that at tem

peratures well below this temperature is in the quantum limit eV >> kBT. 

The mixed-down noise at the six highest voltages is in the quantum 

limit at all temperatures measured. For all twelve voltages, the total 

junction noise is in good agreement with the predictions of Eq. (2.13), 

and substantially greater than the predictions of Eq. (3.2). The data 

at 300 wv, however, lie somewhat above the prediction. This discrepan-

cy arises from the structure at 300 WV (see Fig. 3.3) that increases 

the magnitude of the mixed-down noise above the value predicted by 

Eq. (2.13) (this topic will be discussed ~n detail in Sec. III.2.D). 

The mixed-down no~se at 3SO WV and above is independent of temperature, 

2 
and in excellent agreement with the value of Eq. (3.14), Sv(O)/R0 = 

(As the temperature was lowered, I increased slightly, 
. 0 

giving rise to the slight increase in the mixed-down noise that is evi-

dent in both the data and the theoretical prediction.) As the voltage 

is lowered the mixed-down noise becomes increasingly temperature depen-

dent, and remains in good agreement with the predictions of Eq. (2.13). 

·At SO wv, the mixed-down noise is in the classical limit for the whole 

temperature range, and proportional to T, as expected. This tempera-
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ture dependence demonstrates that the contribution of any extraneous 

noise was negligible. 

We can extract from our data the measured spectral density of 

the current noise SI(v) generated by the shunt resistance R at the 

Josephson frequency v = 2eV/h. We divide each value of the mixed-down 

noise by the mixing coefficient (I /I) 2/2, a procedure that converts 
0 

the mixed-down noise in Eq. (2.13) into Eq. (2.3). The results are 

plotted in Fig. 3.6 for 4.2K (solid circles) and 1.6K (open circles). 

The solid lines are the corresponding predictions of Eq. (2.3) using 

measured values of v = 2eV/h, R, and T. The slight increase of the 

data above the theory at the highest voltages may reflect the presence. 

of a resonance on the I-V characteristic. The agreement between the 

data and the predictions is rather good, bearing in mind that, once 

aga1n, no fitting parameters are used. By contrast, the dashed lines 

represent the theoretical prediction in the absence of the zero point 

]
-1 

term, (4hv/R) [exp(hv/kBT) -1 , and fall far below the data at the 

higher frequencies. The existence of zero point fluctuations 1n the 

measured spectral density of the current noise is rather convincingly 

demonstrated. 

C. Junc'tion 3 

An alternative means of vary1ng the mixed-down noise between the 

quantum and thermal limits is to change I at fixed temperature. The 
0 

critical current was lowered by trapping flux 1n the junction. The 1/f 

noise 1n junction 3 at 183kHz wasinsignificant (<2%), but the heating 

correction at the higher voltages was substantial, so that it was 

necessary to correct the mixed-down noise in addition to the noise 
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generated at the measurement frequency. 2 In Fig. 3.7 we plot Sv(O)/RD 

vs. V at 4.2K for four values of I corresponding to values of K rang
e 

1ng from 0.65 to 0.07. J At the highest two values of I , the presence 
0 -

of a resonance near 200 ~V increased the magnitude of the measured 

noise somewhat above the prediction of Eq. (2.13). Apart from this 

discrepancy, the measured total noise and the measured mixed-down 

noise are in very good agreement with the predictions. For K~0.65, 

the data lie convincingly above the theory that does not include the 

mixed-down zero-point fluctuations, while forK = 0.07 the contribu-

tion of the zero-point term is less than our experimental error. Once 

again, the· correct observed dependence of the noise on I demonstrates 
0 

the absence of any significant extraneous noise. 

D. Junction 4 

As no~ed earlier, some junctions contain resonances that can 

affect the magnitude of the noise mixed down to the measurement fre-

quency. Junction 4 exhibited strong resonant structure, and we have 

investigated its origin and its effect on the noise in some detail. 

Figure 3.8 shows the I-V and (dV/di) - V characteristics at l.lK for 

four values of criiical current; the three lowest values were obtained 

by trapping flux in the junction. The structure arises from the re-

sonant circuit formed by the shunt inductance, L , and junction capaci
s 

tance, C; the equivalent circuit is shown in the inset in Fig. 3.9. 

The resonant circuit pulls the Josephson frequency slightly so that it 

becomes more closely a subharmonic of the resonant frequency. Hence, 

as the current bias is increased, the dynamic resistance will be alter-

nately increased and decreased as the Josephson frequency passes through 
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Fig. 3.7 Sv(O) vs. V for junction 3 at 4.2K for 4 values of I 0 • 

Notation is as for Fig. 3 .• 4 (a) • 
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each subharmonic frequency of the LCR resonance. The 1/n dependence of 

the dynamic resistance is shown clearly in Figs. 3.8 and 3.9 (n is 

an integer). 

The equations of motion are 

I = I sino + CV + I 
0 s 

(3.3) 

and 

V = I R + I L + VN , s s s (3.4) 

where Is is the current flowing through the shunt, and VN is the equi

librium noise voltage generated by R with spectral density 

2hv Rcoth(hv/2k
8

/T). We have computed the 1-V characteristics and 

the spectral density of the voltage noise across the junction, us1ng 

the procedure outlined in Appendix A. To obtain these curves, it 

was necessary to fit the values of L and C. From our simulations, 
s 

we conclude that the I-V characteristic will show substantial resonant 

structure when s
1 

= 2rrL I /¢ ~ 0.5 and the approximate Q of the LCR 
s 0 0 

circuit (S
1

/Sc)l/ 2 >> 1. The observed rapid decrease in the magnitude 

of the resonant structure as I is lowered is demonstrated in Fig. 3.8. 
0 

Figure 3.9 shows I and RD vs. V for junction 4 at l•4K, the tern-

perature at which the noise measurements were made. The computed 

dynamic resistance is also shown, using L = 0.23 pH and C = 0.81 pF; s 

these values are consistent with values expected from the dimensions 

of the sample. The agreement between the measured and computed values 

is quite good, although the measured structure at. the higher voltages 

is considerably more smeared than predicted, possibly because of noise 
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rounding. Furthermore, the measurements lie slightly below the 

computed values at lower voltages, even though noise rounding is 

negligible in this region. This discrepancy occurs because the mea-

sured shunt resistance at low voltages dropped somewhat below the 

high voltage value, a fact thit could not readily be.included in the 

computer simulation• 

This junction was investigated at an early stage of our work, 

and we measured the noise mostly at one frequency only, 98.6 kHz, 

with a few measurements at 31.6 kHz. We used the following procedure 

to subtract the 1/f noise in the range of voltage where the oscilla-

tions occured. First, if the 1/f noise arises from fluctuations in 

the critical current (Clarke and Hawkins, 76) the spectral density 

of the voltage noise should be proportional to (av/ar )2• At voltages 
0 

where the RSJ result, Eq. (2.2), is valid we find 

(3.5) 

Hence, the voltage noise ar1s1ng from 1/f fluctuations will be 

(3.6) 

1/f where s
1 

(v) is the spectral density of the 1/f fluctuations in 
0 

the critical current at the measurement frequency. Second, the mixed-

down noise in Eq. (2.1) for voltages well below kBT/e can be written as 

(2kBTR)(I
0

R/V) 2• Thus, at low voltages where the deviations from the 

RSJ model are negligible and for fixed values of I , R and T, the spec-a 

tra1 densities of·both the mixed-dowrt noise and 1/f noise (and their 
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sum) should be proportional to 1/V2• Figure 3.10 shows the spectral 

densities of the voltage noise across the junction for V < 100 ~V at 

98.6 kHz, and for two voltages at 31.6 kHz, with the direct term 

(4kBT/R)R~ subtracted out. At 98.6 kHz the plotted quantity scales 

with l/V2' suggesting that the 1/f noise scales as ('dV/'di )2. We then 
0 

assume that the spectral density of the excess no1se scales as 1/f, and 

from data at the two. voltages where measurements were made at two 

frequencies, calculate the spectral density of the 1/f noise in the 

critical current: si/f(98.6 kHz) = 5.5 x 10- 22 A2Hz- 1• By sub-
o 

tracting the 1/f voltage noise computed using Eq. (3.6) from the data 

at 98.6 kHz, we obtain the mixed-down noise shown in Fig. 3.10. The 

mixed-down noise is in excellent agreement with the predicted value. 

Thus, this procedure provides strong evidence that the spectral density 

of the excess noise at low voltages scales closely as l/f (as is the 

case for all junctions on which we have measurements at three fre-

quencies). We then calculated the 1/f voltage noise at the higher 

voltages (> 100 ~V) from measurements at 98.6 kHz, using the value of 

1/f above, together wih measured values of av/ar We also s
1 

quoted . 
0 0 

measured the noise at 31.6 kHz at several voltages between 100 and 

200 ~V, and obtained values that were consistent with those obtained by 

the above procedure. Since the overall 1/f correction was small, typi-

cally 15% or less of the total junction noise at 200 ~V, we believe 

that the error introduced by the correction is at most .:!:_5% of the 

mixed-down noise. 

As a further complication, we did not measure the heating correc-

tion on this junction, but rather on one fabricated simultaneously. 
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Fig. 3.10 Spectral density of total voltage noise across 
junction 4 at two fre1uencies in the region 
V < kBT/e with (4kBTR0/R) subtracted out (open 
and solid circles). Solid lines have slope- 2. 
Triangles are measured mixed-down noise assuming 
excess low frequency noise is proportional to 1/f; 
dashed line is prediction of Eq. (2.1). 
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As a result the heating correction had a higher uncertainty, which 

we estimate to be +6% of the total spectral density, than for the 

other junctions. 

Figure 3.ll(a) shows the spectral density of the measured voltage 

noise at 1.4K, together with the measured mixed-down noise computed 

2 by subtracting 4kBTR
0

/R, with the 1/f noise subtracted. The solid 

line shows the result of the computer simulation, with the zero point 

term included and with the values of L and C obtained by fitting 
s 

the model to the I-V characteristics ~n Fig. 3.10. The data tend 

to lie somewhat above the computed curve at voltages above 100 V. 

In Fig. 3.11(b) we have applied a heating correction by ~subtracting 

2 4kB6TR
0

/R from the solid circles ~n 3.ll(a). The agreement between 

the measured and computed values is now rather good, indicating that 

our model is a good approximation. 

Our computer simulation yields the magnitudes of the contributions 

of the noise generated at multiples of the Josephson frequency, as 

shown in Fig. 3.12. We define a mixing impedance, 1c' (Likharev and 

Semenov, 72) via the relation 

s (0) 
v 

00 

=L: 
k=O 

s (k) (0) 
v 

( 3. 7) 

where k = 0, 1, 2 ••• , and S(k) (0) is the spectral density of the 
v 

mixed-down voltage no~se due to no~se near frequency kv
3

• We note 

that IZ
0

1
2 = For Sc = 0.031 and f\ = 0.05, Ak is essentially 

zero for k;;., 2, and the deviations from the RSJ model are negligible. 

On the other hand, for s
1 

= 0.4 and 1.05, there are very substantial 
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Fig. 3.12 lzkl2fR2 for a junction with Be~ 0,031 for 
3 values of SL and a bias current I/I0 = 1,42. 
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contributions to the noise from harmonics out to the 5th and 9th, 

respectively, and the noise is considerably enhanced over the value 

predicted by Eq. (2.13). These results explain quantitatively the 

additional noise associated with the resonant structure, and, qualita-

tively, th~ additional noise observed on junctions 2 and 3 1n the 

vicinity of structure on the I-V characteristic~ In fact, ~he capaci-

tance and inductance of these two junctions were estimated from computer 

fits to this structure. 

Although the data obtained from junction 4 are considerably harder 

to interpret than those from the other junctions, the role of zero 

point fluctuations is even more important because of the large number 

of harmonics that contribute to the mixed-down noise. The noise gener-

ated at frequencies near the higher harmonics can be in the quantum 

limit even for junctions with K < 1. 

3. Concluding Remarks 

We emphasize that 1n compar1ng the data for junctions I, 2, and 

3 with theory we have used only measured parameters; there 1s no fit-

ting of the data. Thus, junctions 2 and 3 provide the main evidence 

for the accuracy of Eq. (2.13). We believe the results obtained from 

these junctions are a convincing demonstration first, of the existence 

of a zero point term in the spectral density of the current noise 

of a resistor in thermal equilibrium (Fig. 3.6), and, second, that 

these fluctuations give rise to the limiting voltage noise in a current-

biased resistively shunted Josephson junction 1n the quantum limit 

for I> I (Figs. 3.4, 3.5 and 3.7). Furthermore, the good agreement 
0 

between our results and Eq. (2.13) justifies our use of a Langevin 

-,. 
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equation together with a zero-point driving term to predict quantum 

noise effects 1n a current-biased Josephson junction in the overdamped 

limit when it is 1n the free-running mode I > I • We were not able to 
0 

exam1ne the validity of the theory in the noise-rounded case I < I 
0 

since quantum effects are negligible in this regime in the He 4 tempera-

ture range for the parameters of our junctions. 

The data from junction 4, which exhibited resonant structure, re-

quire a fitting of L and C to compare the experimental results with 
s 

the theory. However, we note that the values of L and C that yield an 
s 

excellent fit to the measured I and dV/di vs. V characteristics, also 

produce a very good fit to the noise data (Fig. 3.11). These results 

show very dramatically the strong effects of additional non-linearities 

on the voltage noise due to the mixing-down of higher order harmonics. 

Because quantum effects increase rapidly as the order of the harmonic 

increases, the role of zero-point fluctuations is even more pronounced 

in junctions with resonant structure. 

The fact that the zero-point fluctuations 1n the resistor can 

be observed at frequencies as high as 5 x 1011 Hz implies that a 

Josephson mixer using the ac Josephson· effect as the local oscillator 

is an ideal quantum-limited device at these frequencies. When an ex-

ternal local oscillator is used, however, the additional non-linearity 

induced on the I-V characteristic causes noise near the higher harmonics 

of the Josephson frequency to be mixed down, thereby greatly increasing 

the noise of the m1xer. This limitation of the Josephson mixer with 

an external local oscillator has been discussed extensively by other 

authors (Taur, 80; Claassen and Richards~ 78)~ 
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Finally, in accord with other observations, (Giffard et al., 

79; Claassen, et al., 74) we find no evidence for a contribution to 

the measured noise arising from the shot noise of p~irs tunneling 

through the junction. For example, in Fig. 3.4, the spectral density 

of a term 4el would be about 3.2 x 10-22 A 2Hz - 1 , a value at least 
0 

five time.s greater than the observed mixed-down noise ~t 1 mV. We 

emphasize, however, that this observation in no way·invalidates the 

theory of Stephen, (1969) which is applicable to a quite different 

situation. 

-. 
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Table 3 .1. f . a, b Parameters o Junct1ons. 

-
Junction 1 2 3 4 

Temperature (K) 4.2 4.2 1.6 4.2 1.4 

I (rnA) 
0 

0.32 0.51 0.60 0.36 1.53 

R (n) 0.075 0.67r2 at SOllV 0. 5Bn at 50).1V 0.084r2 at SOJ.lV 

0. 70r2 at 100llV 0.62r2 at 100pV 0.092r2 at 10~V 

0.75r2 at 400PV 0.68Q at 200lJV 

0. 77r2 at 400llV 
s 0.003 0.38 0.45 0.21 0.032 c 

1\ 0.20 0.31 0.37 0.22 1.05 Vl 
Vl 

K 0.066 0.99 3.0 0.62 1.17 

S~/f(A2Hz- 1 ) <2 X 10- 22 6.0 X 10-2J 3.0 X 10- 23 <3 X 10-24 5.5 X 10-22 

0 

(frequency) (100kHz) (183kHz) (183kHz) (183kHz) (100kHz) 

Heating (K/llW) <1 0.25 1.6 7 1.6 

a C = 0.5 pF for 1, 2, 3, 0.81 pF for 4; R taken at 100lJV. 

b L = 0.2 pH for 1, 2, 3, 0.23 pH for 4; taken at 100 ~V. 
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IV. DC SQUID THEORY 

Recent research on de superconducting quantum interference devices 

(SQUID's) has been directed toward the fabrication of a device limited 

in sensitivity by intrinsic quantum.mechanical noise processes. In 

this section we present a model calculation of the noise in the de 

SQUID that involves the complete quantum expression for the equilibrium 

noise in the shunt resistance of each junction. At T = O, where the 

sensitivity is limited by zero-point fluctuations in the shunt resis

tances, for an optimized SQUID we find an equivalent noise energy 

E/lHz = S1>/2L:::h, where SiP is the spectral density of the equivalent flux 

noise, and L is the SQUID inductance. When the SQUID is coupled to an 

optimized series-resonant input circuit, we find total equivalent noise 

power referred to the input to be hv, where v is the signal fre-

quency. This noise power represents the uncertainty principle limit 

for any linear amplifier, and thus the system operates nearly as an 

ideal amplifier at T = 0. We show that by proper choice of parameters 

it should be possible to approach this ideal behavior with a SQUID 

operated at 1 K. 

Tesche and Clarke (1977) calculated E/lHz for a SQUID incorporat-

1ng two resistively shunted Josephson junctions (RSJ) with zero capa

citance assuming that the only source of noise was thermal noise in the 

resistive shunts. Their predictions have subsequently been found to be 

in reasonable accord with experimental measurements (Clarke, 80). In 

the absence of any rigorous calculation of the limiting voltage noise 

in a current-biased RSJ at T = 0, they speculated that the ultimate 

sensitivity should be limited by pair shot noise in the tunnel june-
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tions. 2 Assuming a shot noise voltage spectral density 2ei R for a 
0 

junction with critical current I and shunt resistance R, they found 
0 

E/1Hz = h/2 for an optimized SQUID. However, we now suggest that the 

no1se 1n an overdamped RSJ at T = 0 is set by zero-point fluctuations 

in the shunt resistance rather than by an intrinsic shot noise 1n the 

junction itself (Gallop and Petley, 76). We now apply the zero-point 

fluctuation calculation, including the effects of junction ~apacitance, 

to the case of the SQUID. 

1. The Model 

·we begin by considering the isolated symmetric SQUID. Each of 

the two junctions has a critical current I , capacitance c, and shunt 
0 

resistance R. We introduce the dimensionless parameters 

2 
Bc=2ni

0
R C/¢

0
, B=2LI

0
/¢0 , K=ei0R/kBT and f=2nkB T/I0¢0 • The phase 

differences across junctions 1 and 2, <\ and o
2

, arid the voltage V( t) 

across the SQUID are related to the circulating current J(t) and ap-

plied flux ¢ by the equations 

B ~ c I 
0 

J/I
0 

= (o
1 

- o
2 

- 2TI¢/¢
0

)nB 

v = c8
1 

+ 82)¢
0

/4n, 

2 ( (~) + 81 ~) = .!. - J 2TIR 2TIR 2 

+ J -I 
Q 

sino 1 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Here, IN
1 

and IN
2 

are the equilibrium noise currents generated in the 

shunt resistors, each with a spectral density ( 2hV/R) coth (hv I 2kBT), 

-- ~-~·-- -~--'- -- ·- .. 
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which includes zero-point fluctuations. To find the limiting perfor-

mance, we first solve Eqs. (4.1)-(4.4) numerically to obtain £/1Hz 

and TN for a SQUID at T = 0 with Kf = 0.02 (R~40~) and B = 1; at T = 0, 

the spectral density of the current noise in each shunt resistor re-

duces 2hv/R. The computer techniques used were similar to those 

described for the single junction calculations. 

2. Results 

Figure 4.1(a)-(f) shows the time-averaged voltage V, the transfer 

function 3V/3@, the noise spectral densities SV' s
1

, SVJ' and £/1Hz 

vs @ for three values of Be where SV and s
1 

are the spectral densities 

of the voltage noise across and the current noise around the SQUID; 

SVJ is the cross-spectral density of these two noises (Tesch~ and 

Clarke, 79), and £/1Hz= S~/21, where S = S /(3V/3@) 2• The current 
~ @ v 

I, which has the same value of 1.63I for all the curves, has been 
0 

chosen so that the maximum in 3V/3@ always occurs near @ = @ /4. In 
0 

a separate investigation, we have found that this procedure produces 

the optimum performance. The peaks in the noise spectral densities 

occur at slightly different values of applied flux than the peak in 

av/a@. As B is increased from 0.25 to 1, the maximum values of aV/3@ 
c 

and SV' s1 , and SVJ all 1ncrease markedly. However, the minimum values 

of £/1Hz are remarkably close to each other, reflecting the fact that 

(3V/3@)
2 

and SV increase almost proportionately as Be is changed with 

R held constant. The minima 1n £/1 Hz, about h 1n all three cases, are 

much broader with respect to the applied flux than the peaks in av/3@ 

and the noise spectral densities. 
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We have not included in these calculations the possibility of 

Macroscopic Quantum Tunnelling which could permit the SQUID to tunnel 

between wells of metastable equilibrium that exist when III <I 
c 

(Tesche, 1981). One might expect this effect to be important s1nce 

the SQUID performance peaks approximately at I - I (I 1s the critical 
c c 

current of the SQUID for a given applied flux. I ~ 2I ). However 
c 0 

s1nce MQT is predicted to decrease rapidly as the damping increases, 

we do not expect it to make a significant contribution in the highly 

damped limit considered here. See Section II.2 for more details. 

3. Ultimate Performance at T = 0 

The quantity E/lHz is a convenient parameter for compar1ng the 

performance of isolated SQUID's, but does not completely specify the 

sensitivity of the device. In practice, the SQUID must be coupled 

to an input circuit, and one must take into account not only SV' but 

also SJ and SvJ· The current noise of the SQUID couples back to the 

input coil, producing a real voltage noise at the input terminals, 

while the voltage noise of the SQUID can be regarded as an effective 

noise referred to the input. In Clarke, Tesche, and Giffard (CTG) 

(1979), it was shown that the tuned input circuit shown in Fig. 4.2 

has a higher sensitivity than an untuned circuit. For a given source 

resistance R., the values of L. and C. have been optimized for a signal 1 1 1 

frequency v << 2eV/h. From Eqs. (15) and (16) of CTG, it is straight-

forward to show that the SQUID introduces (in a weak coupling limit, 

a 2 = M2/(LL.) << 1,) a total effective voltage noise referred to the 
1 

input terminals of the voltmeter with a spectral density. (See the 

appendix for the corrections in the tightly coupled case a
2 

- 1). 
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(4.5) 

We define the quantity n(s\v = S(s)(V)/4R. as the effective 
v 1 

mean photon power per hertz in the input c:Lrctii t due to intrinsic 

SQUll):noise• Thus: 

(4. 6) 

(s) 
In Fig. l(g), we plot n vs <I>. We.see that for S = 0.25 and 0.5, c 

(s)h. h · · 1 f 1/2 h ·.f. a 1 h · · n as t e m1n1mum. va ue o - , w ereas or f..> = , t e m1n1mum 
c 

has a somewha't higher value. Thus for S = 0. 25 and 0. 5, an optimized c 

tuned voltmeter at T = 0 has a mean input noise due to the intrinsic 

SQUID noise of 1/2 photon at the measurement frequency. At a signal 

frequency v; we add the SQUID noise in the input circuit, hv/2, to 

the zero-point fluctuations of the input resistor, hv/2; their sum, hv, 

approximately equals the minimum value for any linear phase-preserving 

amplifier. (Louisell, et al, 71; Gordon, et al, 63; Caves, preprint). 

The intrinsic noise can be expressed alternatively as a noise· 

temperature. We equate the sum, hV, to the thermal noise power per 

Hz available from .. the resistor. at an effective temperature TN' namely 

hv/[exp(hv/kBTN)- 1]. We thus obtain 

the optimum value for any linear amplifier (Louisell et al; 61). 

• 
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4. Results for T f 0 

We now consider briefly the experimentally realistic case T f 0. 

In Table 4.1 we list values of av;a¢, E/lHz, and n(s) for a SQUID with 

an inductance of 1 pH and a capacitance of 0.5 pF per junction (corre

sponding to a junction area of about 10Vm
2
), for specified values ofT, 

B, I
0

, Be and R. We also list KV/I0R, the parameter characterizing the 

relative importance of the quantum and thermal noise sources, and 6¢/¢ , 
0 

a measure of the applied flux over which the quoted sensitivity can 

be obtained. For the computations at 4.2 K we used the classical 

limit 4 kBT/R for the spectral density of the current noise 1n each 

shunt, whereas at the lower temperatures we used the full expression 

(2hV/R)coth(hV/2k
8
T). At 4.2 K, the values of E/1Hz range from about 

( s) 
3h to 1lh, while the values of n range from about 4.5 to 9. The 

lowest values of n(s) due to the effects of current noise. We have 

also computed the sensitivity at T = 0.9 and 0.45 K for the values 

B = B = 1, and find n(s) = 2.0 and 1.5, respectively. It is inter
c 

esting to note that the SQUID approaches the quantum limit when 

KV/I R:::1, as we would expect from our analysis of the single junction. 
0 

As one goes to lower temperatures, the range of applied flux, 6¢/¢ , 
0 

over which the best sensitivity is obtained narrows from 0.005 at 4.2 K 

to 0.001 at the lower temperatures. 

5. Concluding Remarks 

In conclusion, we have shown that at T = 0 a de SQUID coupled to a 

tuned input circuit has a noise temperature of hV/kBln2, corresponding 

to an intrinsic photon power per Hz of hv, when the parameters are 

properly optimized. At a temp~rature of 1K, one should be able to 



Table 4.1. Parameters for SQUID with L = 1 pH and C = 0.5 pF. Computed values accurate + 15%. 

T 13 Io 13c R pV/d<l> £/1Hz (s) 
(K) (rnA) (Q) KV/1 R (mV/<I> ) (h) n !::,.<I>f<l> 

0 0 0 

4.2 0.5 0.5 1.0 1.13 0.23 27 6 6.0 0.003 

4.2 0.5 0.5 0.5 0.80 0.07 8 6 7.';> 0.003 

4.2 0.5 0.5 0.25 0.56 0.05 5 7 9.0 0.003 

4.2 1.0 1.0 1.0 0.80 0.19 27 3 5.0 0.005 

4.2 1.0 1.0 0.5 0.56 0.09 9 7 6.5 0.005 

4.2 1.0 1.0 0.25 0.40 o.o6 6 9 8.0 0.005 0\ 
.p. 

4.2 3.0 3.0 1.0 0.46 0.25 16 7 4.5 0.01 

4.2 3.0 3.0 0.5 0.33 0.15 9 7 5.5 0.01 

4.2 3.0 3.0 0.25 0.23 0.11 6 11 7.0 0.01 

0.9 1.0 1.0 1.00 0.80 0.60 57 1.1 2.0 0.001 

0.45 1.0 1.0 1.00 0.80 1. 20 80 0.6 1.5 0.001 

•'' 
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achieve a photon power per Hz of about 2hv, us~ng junctions with a 

8 -2 
critical current density of 10 Am Junctions with a smaller area 

and a higher critical current density should enable one to achieve an 

even better performance, provided that heating or other nonequilibrium 

effects do not become important. The near-ideal performance for a 

given bias current is obtained over a relatively narrow range of flux, 

typically 

<I> Hz -1/ 2 , 
0 

10-3-10-2¢ . However, s~nce the flux no~se ~s typically 10-8 
0 

the dynamic range of the amplifier can still be considerable, 

at least 105 in a unit bandwidth. The limited working range of the 

SQUID makes it most attractive as a small-signal amplifier, without 

flux modulation or negative feedback, although operation in a flux-

locked loop with near-ideal sensitivity may not be out of the question. 

In our calculations we have entirely neglected the contributions of 1/f 

noise which will, of course, degrade the performance at low frequencies. 

On the other hand, the quoted performance should be obtainable up to 

high frequencies, say 1/10 of the Josephson frequency or about 10 GHz 

for the devices listed in Table 4.1. 

We also remark that it may be difficult to achieve a high coupling 

coefficient a between a SQUID with an inductance as low as lpH and an 

input inductance large anough to be useful in many applications. In 

principle, since a does not appear in Eq. (4.6), a low coupling effi-

ciency does not have a deleterious effect on the noise temperature, 

but, in practice, a low value of a may lead to undesirable values of 

R. and/or C. (Tesche and Clarke; 79). However if one were to reduce 
~ l. 

the junction area to 0.1 ~m2 , one could increase L to the more useful 
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value of 100 pH and still achieve comparable performances to those 

listed in Table 4.1. 
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V. DC SQUID MEASUREMENTS 

Recently, there have been substantial improvements in the sens~-

tivity of de Superconducting QUantum Interference Devices (SQUIDs). 

Generally, the performances have been in reasonable agreement with the 

prediction for an optimized SQUID, (Tesche and Clarke, 77) E/lHz=s¢/21 

~ 10 kBT(1C) 1/ 2 (for f = 2TikBT/I
0

¢
0 

= 0.05), where E/1 Hz is the flux 

no~se energy. Here, S¢ is the spectral density of the equivalent flux 

noise of a SQUID of inductance 1, and C ~s the capacitance of each of 

the Josephson tunnel junctions. This result assumes that the flux 

noise arises from thermal noise in the resistors shunting the junctions. 

The lowest noise energy reported so far, approximately 6h, has been 

achieved by Voss et ~· (1981) and by Cromar and Carelli (1981). In 

Section IV we computed the noise energy when quantum corrections to the 

noise generated in the shunts near the Josephson frequency, v
3

, become 

important. This noise is mixed down to the measurement frequency (<<vJ) 

by the non-linearity of the junctions. In the limit T = O, the noise 

in the shunts reduces to zero point fluctuations, and the limiting 

noise energy is E/1 Hz ~ h. In this section, we report measured noise 

energies of de SQUIDs in the 1 to 4.2K temperature range that, after 

subtraction of a 1/f component, are within a factor of two of the 

theoretical limit for T = 0. These measurements were done primarily 

by Professor Dale Van Harlingen. 

1. Experimental Procedures 

The SQUIDs were designed to have very low values of 1 and C and 

the optimized values B = 21I /¢ ~ 1 and Be = 2 I R
2
C/¢ = 1, where I 

0 0 0 0 0 

and R are the critical current and shunt resistance of each junction, 
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and ¢ is the flux quantum. The configuration is shown inset in 
0 

Fig. 5.2, and 1s similar to that used by Cromar and Carelli. Two 

Pb(20 wt. % In) - In
2
o3 - Pb tunnel junctions of nominal diameter 211m 

and separation 30 ]liD were defined by lifting off windows 1n an SiO in-

sulating layer. Additional windows determine the length of a 10 ]1m-wide 

CuAl'resistive shunt for each junction. The capacitance of each June-

tion is estimated to be 0.3 pF, while the SQUID loop, consisting of the 

insulating layer separating the upper and lower electrodes, has a self-

inductance of about 2 pH. The SQUID inductance, L, was estimated 1n 

two ways. In the first, we measured the mutual inductance with respect 

to a current along the counter electrode, and assumed this value to be 

L/2. In the second, we measured the maximum and minimum critical cur-

rents, and estimated S from Fig. 4 of Tesche and Clarke (1977). The 

two methods agreed to within 4% and 7% for SQUIDs A and B. We have 

used the first method to obtain the values quoted in the tables. We 

did not measure C and R directly, and the errors in the quoted values 

may be as high as +50%. The SQUID may be flux-modulated by passing a 

current along the counter-electrode. 

Figure S.l(a) shows the voltage~ v, vs. th~ applied flux, ¢, for a 

typical SQUID. The structure on the v-¢ characteristic arises from 

resonances excited when the Josephson frequency is a subharmonic of 

the LC-resonance frequency. Figure S.l(b) shows oV/o¢ and the dynamic 

resistance RD = oV/oi vs. ¢. Both quantities show sharp peaks when 

the bias current is just above the critical current. This sharp re-

sponse and the large values of 3V/o¢and RD are obtained b~cause the 

noise-rounding in the I-V and V-¢ characteristics is rather small for 
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Fig. 5.1 (a) Voltage-flux characteristics for a typical SQUID at 4.2K 
for 8 values of bias current; (b) transfer function aV/3~ 
(solid line), and dynamic resistance, RD (dashed line), vs. 
~/~0 for the SQUID in (a) at 4.2K with I= 2.70 mA. 
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the high critical current junctions used. It is interesting to note 

that av/a¢ scales almost exactly with RD when av;a¢ exceeds about 

1.5 mV/¢ • 
0 

To measure the spectral density of th~ voltage noise, SV' we 

coup1ed th.e· SQUID to· a low-noise preamplifier v1.a one of two cooled 

LC~tank circ4~ts. By connecting. the two tank circuits together· at the 

top of the cryostat we obtained an intermediate resonant frequency. 

The noise·at each measurement frequency wasmixed down to frequencies 

below 1kHz, and the low-frequency spectral density was measured with 

a. computer. The gain of the preamplifier-mixer-computer chain was 

calibrated against the thermal noise of aresistor at the preamplifier 

input. The preamplifier noise temperat.ure, abbut 2. 8K, was negligible 

compared with the effective output temperature of the SQUID, SV/4kBRD' 

which was typically 70K. The noise contributed by the tank circuits 

separately was negligible, but the noise of:the combined tank circuit, 

which contained leads at room temperature, was typically 10% of the 

SQUID noise, and was subtracted from the total measured noise. We 

-4 measured av;a¢ by applying a 1 kHz flux with an amplitude of 10 ¢ 
0 

or less, and measuring the vbltage across the SQUID with a .lock-in 

detector. 2 
We then computed s¢ = Svl<av/a¢) • 

This technique for measuring S ¢ can lead to substantial. er~.prs, if 

the I-V characteristic is slightly hysteretic, because one can obtain 

an artificially high value of av/ a¢. To guard against this problem, 

we applied a very small flux noise (comparable to the intrinsic flux 

noise) to the SQUID at the measurement frequency, and observed the 

increase in the voltage noise. For SQUIDs with. large v~lues of av;a¢~ 
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we were able to measure S¢ directly in this way, obtaining values 

that were within ~30% of those obtained by the alternative method. 

However, for small values of 'dV/CJ¢, where it was necessary to apply 

a larger amplitude of flux noise to produce an observable effect, 

there was significant inductive coupling of the noise to the leads 

attached to the SQUID. In this case, the method could not be used 

to measure S¢' but could still be used to che~k for the absence of 

hysteresis. 

2. Results 

We report here on only two of several SQUIDs studied, with para-

meters given in Tables 5.1 and 5.2. For both SQUIDs, the critical 

current increased by about 20% when the temperature was lowered to 

1.4K. In addition, both the maximum value of (JV/(J¢ and RD increased 

as the temperature was lowered, largely as a result of the reduction 

~n the noise rounding of the I-V characteristic. The characteristic 

of SQUID B became hysteretic at about 3K, so that data could not be 

obtained at temperatures much below 3.4K. 

The measured values of E/1 Hz vs. T for SQUID A are shown in 

Fig. 5.2. The noise at each measurement frequency decreases roughly 

linearly as T is lowered. We estimate the accuracy of each point 

to be +5%. The lowest measured value of E/1 Hz obtained at 1.4K and 

202 kHz was 3.2 ~ 0.2h, corresponding to an equivalent flux noise 

' 1/2 -8 -1/2 
of S = (1.7 + 0.1) x 10 ¢ Hz • It is evident from Fig. 5.2 

0 

that there exists a substantial frequency-dependent contribution to 

the SQUID noise. From noise measurements at the three frequencies 

we determined that the spectral density of the excess noise exhibited 
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Table 5.1. Performance of SQUID A (At 4.2K, L = 1.9 pH, C ~ 0.3 pF, 
I = 0.55 rnA, R ~ l.Jn, 13 = 1.0, 13 ~ 0.9). 

0 c 

T 'dV/'d<P RD c./1Hz (li) 

(K) (rnV/<P ) W) 220kHz 149kHz 112kHz white 1/f (100kHz) 
0 .. 

4.2 6.8 4.7 14.4 18.2 23.2 3.6 + 3.0 21.6 + 4.7 

2.8 9.4 6.4 8.6 10.6 13.2 2.8 + 1.8 11.6 + 28 

l.8' 1.2.5 8.9 4.5 6.9 1.5 + LOa 6-•. o + 1.5 

1.4 13.9 11.1 3.2 4.0 5.1 0.8 + 0.7 4.8 + 1.0 

Table 5.2. Performance of SQUID B (At 4.2K, L :;:; 2. 5 pH, c ~ 0.3 pF, 
I = 0.38 rnA, R ~ 1.6rt, 13 = 0.9, 13 ~ 0.9) 

0 ·Cc · 

T 'dV/'d<P RD c./1Hz (li) 

(K) (rnV/<P ) (n) 118kHz 
0 

34kHz white a 1/fa (100kHz) 

4.2 6.5 3.2 5.2 11.5 2.7 + 0.6 3.0 + 0.4 

3.8 11.3 4.5 4.5 10.6 2.1 + 0.5 2.7 + 0.4 

3.4 22.0 7.7 3.7 8.7 1.7+0.4 2.3 + 0.3 

a Measurements made at two frequencies only: 
Excess noise is assumed to scale as 1/f. 
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Fig. 5.2 Measured E/1 Hz vs. T at three frequencies for SQUID A, 
with + 5% error bars. Inset shows SQUID configuration. 
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a power law variation close to 1/f. This conclusion ~s supported by 

low frequency measurements which show E/1 Hz scaling accurately at 1/f 

over four decades of frequency between 0.1 and 1000 Hz. The measured 

magnitude of the 1/f contribution below 1 kHz agrees with the value 

extrapolated from the high frequency data to within 20%. The measured 

noise can thus be resolved into white noise and 1/f noise components, 

with the values listed in Table 5.1. 

In Fig. 5.3, we plot E/1 Hz (including 1/f noise) vs. ~ for 

SQUID A. Although av/3~ is sharply peaked in ~, with a peak width 

-3 less than 10 ~ , we see E/1 Hz is roughly constant for a range of 
0 

order 0.1 ~0 • This result is expected since S~ varies as 

R~/(aV/3~) 2 , and RD scales closely with 3V/3~ [Fig. 5.1(b)]. Thus, 

although we have not attempted to do so, it should be possible to 

operate these SQUIDs in a flux-locked loop without significant loss 

of sensitivity. 

Data for SQUID B were obtained only at two frequencies, 34 kHz and 

118 kHz, so that we had to assume that the spectral density of the 

excess no~se was proportional to 1/f. For this SQUID, the magnitudes 

of the white noise and 1/f noise at 100 kHz were comparable. The 

lowest observed noise energy was (3.7 + 0.2)h at 118kHz and 3.4K, a 

value that yields a white noise energy of (1. 7 + 0.4)h. 

3. Concluding Remarks 

Given the substantial errors, the measured values of the white 

noise energy for both SQUIDs are in reasonable agreement with the 

predictions. For a device with L ~ 2 pH, C ~ 0.3 pF, Be ~ 1, and B ~ 1 

we expect E/1 Hz to be about 3h at 4.2K, decreasing to a little more 



-
N 

::c -
' w 

74 

10 • 

• • 

6 • 
• 

• • 
• ... . 

~ .. • 
• 

2~~--~--~~----~~~--~~ 

-0.05 0 0.05 0.10 0.15 

6<P/<Po 
XBL8112-12872 

Fig. 5.3 Measured E/1 Hz vs.,M>/<P0 for SQUID A at 202 kHz 
and 1. 4K. .M> is measured relative to the flux 
for which 'dV/'d<P is a maximum. 
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than h at lK. We believe that the best measured white noise energy at 

1.4K was below th, but, given the large error bars, we cannot determine 

whether or not the noise was beginning to level off as the temperature 

was lowered. I personally believe the SQUID had reached the "quantum 

limit". 

The present ser~es of SQUIDs is not appropriate for quasistatic or 

low frequency measurements ~n v~ew of the high level of 1/f noise and 

very small in input inductance. However, they may be useful as high fre

quency amplifiers, in a stripline configuration. Since the Josephson 

frequency at the operating voltage is typically 25 GHz, one might ex

pect the high sensitivity to extend to frequencies of at least several 

GHz. 
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APPENDIX A. 

TWO METHODS OF COMPUTING I-V CHARACTERISTICS 

AND NOISE IN RESISTIVELY SHUNTED JUNCTIONS 

In this appendix, we outline two methods of computing the I-V char-· 

acteristics and spectral density of the voltage noise for resistiv~ly 

shunted junctions. The first method calculates the I-V characteristics 

and RD' including noise-rounding, and can also be used to compute the 

spectral density of the voltage noise, although the last calculation 

is rather slow. Unfortunately, for reasons that we will explain, this 

method is not useful for computing the noise in a junction with resonant 

structure, such as junction 4. The second method calculates the noise 

very efficiently at voltages where noise rounding is negligible. With 

the model of the junction we have used, this method appears to account 

for most of the data observed on junction 4 satisfactorily, although 

higher order corrections might provide a better fit at voltages above, 

say 500 ~v. 

Method 1 

The model circuit, inset in Fig. 3.9 is described by Eqs. (3.3) 

and (3.4). We rewrite these equations Ln dimensionless units v = V/I R, 
0 

i = I/I , s =I /I , and 8 = t/(¢ /2rri R), and use was a dimensionless 
0 s 0 0 0 

angular frequency to obtain: 

and 

L = sino + B 6 + s 
c 

+ v 
n 

(Al) 

(A2) 
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. 
where o _ ao/ae, etc., and we have used 2eV = hao/at. As usual, S = 

c 

2TII R2C/~ and SL :: 2TIL I /~ . The instantaneous state of the junction 
0 0 s 0 0 

is specified completely by 8, o and s. Using Eqs. (A1) and (A2) one 

can compute s and o and the higher order derivatives of o and s, 

for example: 

.. 
SLs = o - s 

s 0 = 8 coso - s 
c 

(A3) 

(A4) 

and so on. We have neglected all derivatives of v • Once the deriva
n 

tives have been evaluated numerically for the existing values of o, 

6, and sat time e, we compute the new values of o
1

, 6
1

, and s
1 

at 

a later time, 8 + T, by using a fifth-order Taylor expansion: 

+ • • • + (AS) 

(A6) 

and 

(A7) 

To predict the average voltage for i > 1, we set,v = 0, integrate 
. n 

Eqs. (A1) and (A2) numerically over exactly one Josephson cycle, mea-

sure the required time 8, and compute <V> = <o> = 2TI/8. This proce-

dure was used to compute the values of RD in Fig. 3.9, with values 

of L and C chosen to fit the data. 
s 

The results were independent of the length of the time step, T, 

provided T was less than the smaller of Sc or SL. To check that the 
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presence of noise did not affect the characteristics for i > 1, we 

varied v in time to simulate noise from the resistor while the ]unc
n 

tion was allowed to evolve over many Josephson cycles. The resulting 

values of the voltage were identical to those with v = 0. n 

To obtain a time-representation of v (8) with a white power spec
n 

trum, Sw(w), we used a pseudorandom number generator to produce 
v 

voltage pulses that were gaussian distributed in amplitude and uncor-

related in time. 
nw 

A non-white power spectrum, S (w), could be 
n 

generated, when necessary, by convolving this time representation with 

an appropriate filter function. This filter function was chosen so 

that its transfer function in the frequency domain, T(w), satisfied 

snw(w) 
v 

(A8) 

The high-frequency cut-off, w~, of vn(8) was always chosen to be large 

enough that the predicted average voltage and noise voltage were inde-

pendent of the value of wH when the latter was varied over a factor of 

20 or more. Furthermore, when the noise near the Josephson frequency 

was non-white, we took account of the implied non-zero correlation time 

by ensuring that the correlation time of the filter was much larger 

than 1 /V J. 

To obtain «5>, the computed values of 6 (8) were filtered with 

a low-pass gaussian filter with a roll-off frequency, w
1

, of 0.03 to 
. 

0.1 wJ· The fluctuations in the filtered values of <o> were used to 

compute the low frequency spectral density of the voltage noise. This 

spectral density was independent of the roll-off frequency of this low-

pass filter. 
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This method was used to predict <6> and the fluctuations in 6 

1n single junctions and de SQUIDs, including low-voltage regions of the 

I-V characteristics where there is significant noise rounding. However, 

when we tried to use this method to predict the noise in junction 4, 

which has substantial resonant structure, we obtained very poor results. 

The essential problem was that the resonant frequency, w
1

C = (LsC)- 112 , 

was typically 5 to 20 times higher than w
3

, while WH was necessarily at 

least several times greater than WLC. Thus, s1nce WL was typically an 

order of magnitude less than w
3 

the ratio of WH/WL was typically 103 • 

Consequently, the ratio of the "input" noise power to the "output" 

noise power for "f-noise" was typically 10
6 • The computed spectral 

densities of the noise proved to be erratic with such large ratios, 

possibly because of our neglect of the derivatives of v 1n Eq. (A3). 
n 

As a result, we had to abandon this technique for junctions with reso-

nant structure. 

Method 2 

Above the noise-rounded region of the I-V characteristic, we 

used a more accurate but more complicated method to calculate the 

noise in resonant junctions. In this region, following the perturba-

tion approach of Likharev and Semenov (1972), we can expand 8 and s: 

8 (8) -

and 

s(8) = 

8 (8) + 8(8) 
0 

s (8) + s(8) 
0 

(A9) 

(A10) 
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where o and s are the noise-free solutions for the phase and shunt 
0 0 

current, and o and s represent small departures from o and s due 
0 0 

to noise. Substituting these exprssions into Eqs. (Al) and (A2), 

we find 

0 = ocoso + Be 0 + s 
0 

(All) 

and 

. --
0 = s + S1s + v n (Al2) 

We Fourier transform these equations over the range - oo < w < oo to 

obtain 

0 = ~
00

F(w•J6(w- w')dw' +Be(- w2 J6(w) + s(w) (Al3) 

-oo 

and 

-jwo (w) = (l+jwB
1

)s(w) + vn(w) (Al4) 

where F(w') is the normalized Fourier transform of coso (8). Since 
0 

coso (8) is a periodic function, F(w') consists of a series of spiked 
0 

functions centered at w = 0 and spaced at intervals of wJ. Setting 

w' = kwJ' where k is an integer, we can transform the integral to a 

sum, replace F(kwJ) with Fk, and eliminate s between Eqs. (Al3) and 

(Al4) to find 

00 

( 

jw 
+ ~1 + jwB1 

o(w) = 
v (w) 

n (AlS) 
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In subsequent calculations, we have shown that there exists a 

maximum value of lkl, km' above which the noise at frequency kWJ is not 

significantly mixed down to the measurement frequency. Cutting off the 

summation at + k , we are left with 2k + 1 inhomogeneous equations 
- m m 

with unknown phases cS(w- Q,mwJ)' ••• , 8<w + Q,mwJ)' where 1£1 ~ km. To 

solve these, we first compute the coefficients Fk using method 1 (with 

v = 0). The required fluctuations in the 6<w- ILwJ) are then obtained 
n 

by a conventional matrix inversion of Eq. (A15). We find 

+k Lm Ar;, k v (w + kWJ) (A16) cS (w + £wJ) = ' n 
k=-k 1 + j(w + kWJ)S1 m 

= =-1 = 
where A - B ' and B is the matrix representation of Eq. (A1 5): 

Fn + On JV-k JV,k 
(A17) 

.• 

In Eq. (A17), cSIL,k is the Kronecker delta. Since the v at different 
n 

frequencies are independent, the noise at the measurement frequency 

can be .obtained from Eq. (A16) with lwl<< I wJI and Q, = 0: 

where 

k Lm 
k=-k 

m 

z (w + £w ) 
k J 

(A18) 

(A19) 
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is the complex dimensionless impedance that mixes noise from (w + kw ) 
J 

to (w + ~w1 ), and Si (w + kw
1

) is the dimensionless spectral density of 

the noise current in the resistor. We obtain Eq. (3.7) from Eq. (A18) 

by replacing w with v, setting v = 0, using positive frequencies only, 

and assigning appropriate dimensions. In dimensioned units, at fre-

quencies small compared with Z
0

/Ls' Z
0 

1s just the dynamic resistance. 

Thus, the method can be tested by comparing the value of Z with the 
0 

value of~ obtained with method 1. The computed values of Z(w) were 

shown to be independent of w for w << w J, and w/w J was chosen to be 

between 1/30 and 1/10. The value of k , typically 16 to 25, was chosen 
m 

so that kmw J >> w
1

C; the value of km was varied to show that the values 

of Z(w) did not depend on it. 

The method was used to compute the spectral density of junction 4 

shown in Fig. 3.11, and the corresponding values of !zk!
2 

in Fig. 3.12. 

The complexity of the method does not easily allow the value of R to 

be voltage dependent, and the noise in Fig. 3.11 was computed with 

R = 0.092Q for all voltages. This approximation gave rise to the 

discrepancy between the measured and predicted noise at low voltages 

in Fig. 3. 11 • 
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APPENDIX B. NOISE IN TIGHTLY COUPLED SQUIDS 

We wish to analyze the problem of a SQUID tightly coupled to an 

input coil. The appendix was motivated by C. Tesche (1982) who first 

worked out the problem incorrectly 1.n a different way. The effect 

of the input circuit shown in Fig. (4.2) can be added to the SQUID 

equations (4.1) to (4.4) with the change that equation (4.1) becomes 

~Po jwM2J(w) 
iP ( w) - ( 6 

1
-6 

2
) + L J ( w) - = 0 

2'1T z + jwL. 
l. 

(B1) 

where Z is the impedence of the input circuit excluding the input 

coil and the reflected SQUID impedence, and we have set V. = o. We 
l. 

now add an additional flux soutce in the SQUID loop only with a spec-

tral amplitude 

(B2) 

this source exactly cancels the effect of the input circuit and effec

tively reduces the self-inductance of the SQUID from L to L (l-a2). Now 

solve the SQUID equation for .the bare SQUID with the reduced inductance, 

and call results S bare S bare vbare v the 
v ' J ' ' 

etc. Now IP (w~w 
3

) = o, 

provided I Zl << w3Li which is usually true, which means we can remove 

the additional flux source at high frequencies (w~3 ) leaving everything 

unchanged. Secondly removing the additional source at low frequencies 

has two effects: (1) the input circuit source- w
2
M

2
J(w)/(Z + jwL.) 

l. 

is restored and (2) we have an effective flux source 1.n the SQUID 

~Pe(w) = a 2LJ(W) at low frequencies (w << w
3

). The resulting output 
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noise from this source can be analyzed linearly because it's only 

non-zero at low frequencies. Hence when w << wJ 

where 

V(w) = V(w)bare + (av/a~) a2 LJ(w)bare 

J(w) J(w) bare ( 1 + a?L/L ) . c 

(B3) 

(B4) 

(BS) 

_ ~~ j~J and R is the lossy part of this response (see the 
a c 

end of this appendix). We find 

2 o,bare 
a L SVJ 

(B6) 

(B7) 

(B8) 

The first order current source ~n the input circuit from the SQUID 

is -jWMJ/(Z + jWL.), but we need to consider the second order current 
~ 

source in the input circuit, which is the extra current source in the 

input from the change in flux in the SQUID introduced by the first 

order current source in the input, this is: 

•.. 



... 
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Adding all orders of current noise in the input we have 

I total 
-jwMJ =· -:----"'=~-:-

(Z + jwL.) 
1 

~(z -jwMJ 
(Z + jwL.) 

1 

-jWMJ I 
(Z + jwLi) 

1 - (Z 

1 

r . M2 JW 
+ jwL. )L 

1 c 

= 
-jWMJ 

2 
jwM z + jwL. - jWM 

+ jwL. )L 1 L 
1 c c 

(B9) 

2 

The reason for doing this is because we are not solving directly the 

equation of motion for the tightly coupled SQUID, but only treating 

the input as a perturbation; hence we must take the total effect 

of the input into consideration. The effect can be visualized as 

a reflected SQUID impedence of: 

. 2/ Z = -JWM L R c 

The values of LD and Rc' the dynamic low-frequency inductance and 

resistance to an applied flux will depend on the SQUID bias point 

(B10) 

and the SQUID readout system (Rc = O(LDR/L) for normal SQUID operation). 

Clarke, Tesche, and Giffard (1979) ( CTG) used w2M2 /4RD for the reflected 

SQUID impedence, where they should have used ZR. Also their equation 7 

has the wrong sign -for the current noise term, hence the sign of _YVJ 

needs to be taken as negative in the remainder of the paper. 
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2 
The formalism in CTG may be used in the large-a limit by simply 

changing from the bare values of L, SV, SJ, etc. to the tightly coupled 

values and making the change to the proper value of the reflected SQUID 

2 
impedence, ZR. In the small-a limit, CTG is unchanged as expected. 

This. approach to the tightly coupled SQUID should be good as long as 

the input circuit looks inductive at the Joseph~on frequency or higher. 

. .. 
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APPENDIX C 

MACROSCOPIC QUANTUM EFFECTS 

Appendix C concerns itself with converting the microscopic Hamil-

tonian picture of a shunted current-biased Josephson junction to the rna-

croscopic 'cos o' potential. In this way the microscopic meaning and 

existence of macroscopic quantum effects in Josephson junctions can be 

clearly interpreted. 

Lets start with the Hamiltonian for the junction without a bias 

current or resistor added. It is simply: 

(Cl) 

Here nR(n
1

) is the number operator for pairs on the right (left) side of 

- + the junction, C is the junction capacitance, and HT(HT) transfers a pair 

across the junction from right to left (left to right). 

presented as 

H+ can be re
T 

(C2) 

where N is the total number of pairs, EJ is the tunnelling energy and 

+ aR creates a pair on the right side, etc. The basis states used to re-

present the system are pair number states 

(C3) 

N is very large so we have-N ~m ~ N, for any of the physically import-
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ant excited states (m =I= 0). 

The eigenenergies are calculated by writing the eigenfunctions as 

linear combinations of the lm> states 

(C4) · 

The Schrodinger equation for an eigenstate, operated on by the bra <nl 

from the-left: 

<niH llji >, J Q, 
(C5) 

can be evaluated term by term to find the recursion relation for the bQ, 
n 

and the eigenenergy for the Hh state: 

(C6) 

At this point we could work backward to show this is equivalent to 

the 'cos o' Hamiltonian but it is easier to start with the 'cos o' Ha-

rniltonian and show it leads to the same eigenfunctions with identical 

eigenenergies. Imagine a particle in a one dimensional potential 
I cp 

0 0 ---
21T 

ccp2 
cos x with a 'mass' -1 

41T 

with the commutator 

The Hamiltonian is 

[x,P] 

I cp 
0 0 

---COS X 
21T 

ih ' 

(C7) 

(C8) 

... , 
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a p = - ih 
<tx 

(C9) 

The units of P are action and x is dimensionless (P will later be pro-

portional to the charge on the capacitor P = ~ Q/2n = ~ CV/2n). The ba-
o 0. 

sis states we will expand in to find the eigenstate ~t(x), are linear 

combinations of plane waves 

(ClO) 

.. -iqx 
The Schrodinger equation for ~t when multiplied by e . and integrated 

by x from - 00 to 00 is: ( _oo ~ q. ~ oo) 

1
00 

-iqx 100 

-iqx e:£ 
00 

~£ (x)e dx = 
00 

H
3

e dx. (Cll) 

Again expanding the terms of (Cll) term by term one finds that Eq. (Cll) 

now looks like this: 

(Cl2) 

and it dictates the eigenenergies and expansions in terms of plane waves 

of the eigenfunctions of the 'cos o' potential. Notice here that be-

cause we have let both x and P run from - 00 to 00, and not just 0 to 00 or 

0 to 2n etc., there are no problems w~th the hermicity of x or P and 

the correctness of the commutator. The eigenfunc.tions are specified in 

terms of£ (the band index) and the smallest value of q, q .. , (the re
ml.n 
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ciprocal lattice vector) in the series of b£(q) that are linked together 

by the bi(q ± 1) terms in Eq. (Cl2). If when solving the system we only 

choose initial states whose q • vectors are zero there will be a one to 
lll.l.n 

one correspondence between these states and the eigenstates dictated by 

the microscopic Hamiltonian (Cl), because Eq. (Cl2) with q • equal to 
lll.l.n 

zero is the same.as (C6) when I ~ /2TI = E
1

. 
0 0 

Importantly, if we allow a slightly more general wavefunction solu-

tion to the~micro- andmacroscopic junction Hamiltonfans: 

and 

I b In> + I b In + a> n n n n 

I b einx 
n n 

+ eia:x I b einx 
n n 

(Cl3) 

(Cl4) 

(In Eq. (Cl4), the solutions are expressed in terms of the basis states, 

which are greatly reduced for the 'cos o' Hamiltonian because of the con-

dition for equivalence that q • = 0.) we will have a general solution 
llll.n 

to the system including the bias-current and resistor Hamiltonians. 

When specifying the initial eigenstate we choose q . = 0 and a arbi
ml.n 

trarily so the wavefunction magnitude is periodic in 2TI and always stays 

that way. 

Since the 'cos o' Hamiltonian, e~en with a restricted subset of ei-· 

genfunctions, shows tunnelling and it is a different representation of 

the microscopic Hamiltonian, one could expect tunnelling (MQT) theore-

tically starting from the macroscopic picture. Since the wavefunction 

magnitudes are all periodic in 2TI, the event of tunnelling cannot be in-
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terpreted as the junction phase increasing by 2n, but the voltage across 

the junc-tion, P, increasing beyond what would otherwise be expected. 

This is what is actually measured. There is a packet in every well, 

all packets are created equal, and they stay that way, and tunnelling 

means they all move downward together. Here we imagine the situation 

when the coso potential is tilted by an external bias current. Even in 

this case, if before applying the bias current the wavefunction magni-

tude is periodic in 2n, it still will be periodic after the current is 

applied. 

This model of the junction tunnelling predicts interference effects 

since the probability density entering a well from an uphill well will 

interfere with that density remaining in the well. At present it is not 

known if this increases or decreases the average tunnelling rate or not, 

but this effect could test the "in every well" model presented here. 

We now ask for a microscopic picture of macroscopic quantum tun-

nelling. The junction macroscopic wavefunction ~(K) consists of many 

delta functions, since ~(x) is periodic, and each delta function corre-

sponds in the microscopic picture to a particular number of pairs across 

the barrier, m. The voltage across the junction, P = CV~ /2n, in
o 

creases because of the tunnelling, which means <~jPj~> = h<~jKj~> is 

bigger. Macroscopically this just means the amplitudes of these delta 

functions shift to a higher value of K or microscopically that the num-

ber of pairs on one side of the junction increases. Its really very 

simple; put current through the junction, and many pairs move across the 

junction and some stay across. 

2 The ideal Josephson junction has <ton > extremely large since the 

charging energy per pair moving across the junction is vanishingly 
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small. As I C + 0 the charging energy per pair becomes significant forc
e 

h • f 2 d h b • • A 
2 

ing t e s1ze o <t:.n > to ecrease t ere y 1ncreas1ng <ox > Hence we 

have the broadened wave packet of phase in the macroscopic picture. As 

I C + 0 the response of the pair current for I < I goes from the ideal 
0 0 

reactive response (the Josephson inductance) to a real and reactive re-

spence, V partially in phase with I, to finally a totally real response, 

i.e., a lack of coherence across the junction. 

One should not confuse the tunnelling phenomenon with the effect of 

tunnelling on an hysteretic junction. The voltage across the junction 

from the tunnelling means the junction has gained kinetic energy. If 

the junction is sufficiently under damped, so this energy is not direct-

ed to the resistor the system can evolve, possibly with the help of self-

interference, into the so-called free running mode. 
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