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ABSTRACT

Three variations on the Dunham series expansion function of the
potential of a diatomic molecule are compared. The differences among
these expansions lie in the choice of the expansion varisble, X. The
functional form of these variables are As = l-re/r for the Simon-Parr-
Finlan version, AT = l-(re/r)P for that of Thakkar, and
AH = l-exp(—p(r/re-l)) for that of Huffaker.

A wide selection of molecular systems are examined. It is
found that, for potentials in excess of thirty kcal/mole, the Huffaker
expansion provides the best description of the three, extrapolating at
large internuclear separation to a value within 107% of the true dis~
sociation energy. For potentials that result from the interaction of
excited states, all series expansions show poor behavior away from the
equilibrium internuclear separation of the molecule. This property can
be used as a qualitative dizgnostic of interacting electronic states.

The series representation of the potentials of weakly bound mole-
cules are examined in more detail. The ground states of BeAr+, HeNe+,

NaAr, and Arz and the excited states of HeNe+, NaNe, and NaAr are best
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cdegeribed by the Thakkar expansion. Presumably this is because of
the ™™ attractive forces that are responsible for the binding of
these systems. Close examination of the potentials of the alkaline
earth dimers suggests that covalent forces may be of importance inm the
bonding of these metals.

Finally, the observation of laser-assisted excitive Peuning ioni-
zation in a flowing afterglow is reported. The reaction

Ar(3P2) +Ca + hv » Ar + Ca'(5p ZPJ) +e
occurs when the photon energy, hv, is approximately equal to the energy
difference between the metastable argon and one of the fine structure
levels of the lon’s doublet. By monitoring the cascade fluorescence
of the above reaction and comparing it to the fluorescence from the
field-free process

Ar(3P2) + Ca=+ Ar + Ca'(4p ZPJ) +e ,
a surprisingly large cross section of 6.7X103 ;2 is estimated.

Mechanisms responsible for the resomant excitation and the large

cross section are coensidered.
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Chapger I
Introductinn and Overview

The main purpose of this work is to examine the nature of
the bonding of weakly bound diatomic molecules. By "weakly bound",
we mean binding ecrgies of 30 kecal per mole or less. This energy
regime is responsible for phenomena such as condensation, physical
adsorption on surfaces, the adhesion in polycrystaliine materials
like ceramics, the binding in molecular crystals, the rates of
ion~mclecule reactious, and ever. the mecharism responsible for the
high selectivity of enzymatic ratalysis. We hope to shed some light
. on these kinds of forces by examining the attraction of the simplest
of these systems: the weakly bound diatomic molecule.

The quantity that best describes this interaction is the inter-
molecular potential. Although there have been significant advances
in the ab initio calcwlaticn of this potential from first principlesl,
they rely on the cancellatior of electron correlation errors between
the molecule and those of the separated atoms. They generally tend to
neglect spin-orbit interaction as well. Since suchquantitis ve at
ieast as large, and often larger, than the binding energies under con-
sideration, the methods of empirically determining the potential
function from experimental data, particularly spectroscopic data, must
be used.

Perhaps the simplest method is the fittiag of a simple, empirical
potential function to spectroscopicz, molecular beam scat:eringB, or
thermodynamiz da:ak. Familiar examples are the Morse, Lemnard-Jones 6-2,

and exponmential-6 functious. The drawbacks are tha: such functions



contain so few adjustable parameters that éhey may 0ot describe the
data to the accuracy known. Moreover, which functional form that
seems suitable may depend upon the experiment performed.

As an example, consider the dimer of argon. Early spectroscopic
works, dependent upon the curvature of the potentizl minimum, was
interpr=ted in terms of a Morse function. In the high energy molec-
ular beam scatteringe the data were more sensitive to the repulsive
wall, »nd the results were best described by a purely repulsive rr
or exponentlal function. Thermodynamic data tend to be blased toward
the long-range interactions and workers in this ﬂ.eld7 had found a
Lennard-Jones 6~12 sr the exponential-6 to be more appropriate. The
situation was similar to the tale of several blind men describing
the elephant.

At the other extreme of potential determinations is the Rydberg-
Klein-Reese, or RKR, method8 vhich does not produce an analytical
potential at all. This algorithm determines the classical turning
points of a potential from the spectroscopic data. The full potential
is found by interpolation between the turning points. Although the
method is limited to regions of the potential where data are available,
new methods of exl:r:apcxlatic:n9 have been developed for extending the
potential to the dissociation limit.

The empirical techuique that is examined in this work 1s that
of J. L. Dunhamlo and Lhe variations that have more recently appeared
in the literature. Here the potential is expressed as a power series

©

V(e = ap? @+ 2 (o)

o=l



vwhere the expansion coefficients are deternined from the spectros~
copic constants of a molecule as appropriate to the particular

functional form of A(r). The Dunham series uses :hé expression
A(x) = rfz -1 .

Because the radius of convergence of this series is limited to.
r< Zre,ll the potential is unsatisfactory for the description of
any but the lowest vibrational levels of the molecule. Clearly, it
cannot predict the dissociation energy. Moreover, since the number
of spectroscopic constants that can be determined is limited;, the
series must be truncated to a polynomial. Because the successive
an’s for most molecules tend to_increase, the radius of convergence
is even further restricted. For these reasonas most workers in the
past have eschewed :hé Dunham potential in favor of the RKR method.
It is unfortunate that .he Dunham.series method fails so
miserably, since it not only provides a means for converting spec-~
troscopic data into an analytical potential function but also gener-
ates potential constants that can be used to compare bonding trends
among diatomic moleculeslz. Thus several workers have recently
revived the series metnod by changing the form of A(r) and hence
extending the radius convergence. Simons, Parr, and Finlan13 had
rearranged Dunham's expamsion variable by defining A(r) = l-re/r.
Thakkarlﬁ had generalized the rearrangement by defining
Ar) = sgn(p)(l—(r/re)p). Huffakerls in turn had chosen the variable

Mr) = l_e-p(r/re-l) since the leading term would be a Morse potential.



In Chapter TI we review the method of Durham for determining
a series potential from spectroscopic data. The RKR method and
near-dissociation extrapolation are also briefly dizcussed since
these are the methods of choice by spectroscopists and are the yard-
sticks by which all other potemtial methods should be compared. The
newer series potentials are then described and their descriptions
of several molecular systems are compared. Of particular interest is
the fact that the failure of these series potentials can be used as a
diagnostic of interacting molecular states. This is true of even the
Huffaker series, which we find superfor to all other series potentials
for ground srate molecules bound by 50 kcal/mole or more.

Chapter IIT is a more selective and more detailed examination
of series potentials for weakly bound molecules. In contrast to ths
results of Chapter II, we find that the Thakkar series gives the best
description of weak binding in systems such as BeAr+, NaAr, and Arz,
We draw on our experiences from Chaﬁ:er II to suggest that alkaline
earth binding might be more than just van der Waals attraction.
Finally, we suggest a procedure which may be more appropriate for
fitting a potential to a weakly bound molecule when the amount of
experimental data is limited.

Chapter IV is indirectly related to the previous two chapters
in the sense that it involves very long-range Interactions. Here, we
report the observation of the opening of a new channel of excitive
Penning lonization of caleium by absorption of a photon while colliding

with a metastable (3P2) argon atom, The order-of-magnitude estimate



of this laser-assisted collisional cross section is in the neighborhood
of thousands of squaie Rngstr'o'ms, indicating some experiuental support
of previous theoretical speculatisn that this process should be long-
range in nature. The laser excitation spectrum also shows resonance

behavior, and this aspect is discussed as well.
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Chapter II
Diatomic Potential Determination and the Revival of the Series
Potential
A. Introduction

The determination of the Interatomic potential of a diatomic
molecule from gpectroscopic data is nearly as old as Quantum
Mechanics itself. 1In fact, the standard RKR as well as the poten-
tial series determination procedures ultimately have their roots
in the "0ld Quantum Theory" (i.e. the Bohr-Scmmerfeld integral),
which predates the formalism of Heisenberg and Schroedinger.

In this chapter we will shake the dust from these roots and
examine the semi-classical JWKB theory behind these potential
determination procedures. Dunham’s derivation of the relation between
the series expanslion parameters and the molecular spectroscopic
constants is sketched and the limitations of his potential expansion
are discussed. The alternative RKR method is reviewed and its limi-
tations are considered.

These reviews set the stage for the purpose of this chapter:
reconsidering the use of series expansions for describing the diatomic
potential. The analytical series provides a simple yet flexible repre-~
sentation of a potential. Moreover, the series can be extrapolated
to energy levels, including the dissociation level, which are not
observed directly. The limitations associated with the Dunham
expansion can be overcome by judicious choice of the expansion
variable, The modifications which we will consider in particular

are those of Simons, Parr, and Finlan, of Thakkar, and of Huffaker.



These modifications will be qualitatively and quantitatively com-

pared for a wide variety of diatomic molecules.




E. JWKB Salution
Determination of the vibrational-rotational energies of a diatomic
molecule begins with the solution of the Born-Oppenheimer approximation

of the radial Schroedinger equation for the motion of the nuclei:

2
-t EHD v +e Bl - B, L #().

e e dr

The quantity Y{(r)/r is the radial wavefunction for nuclear mo%tion.

The equilibrium rotational constaat, Be’ is equal to 2:f 7 » where 1
1s the reduced mass of the nuclel and To is the internucfear separacion
at the potential minimum, The pétencial, V(r), is rhe sum of the
Born-Oppenheimer electron energies, internuclear repulsion, and if
present, spin-orbit imteractions. We define V(re) = 0 in this chapter.
The eigenvalue is Ev,L’ where the subscripts indicate the dependence
upon vibrational an¢ rotacional quantum number, respectively.

The quantity L2 is shorthand for the dependence of the "centri-
fugal repulsion" upon the angular momentum due to the rotation of the
twe nuclel abwut the center of mass. For 12 molecules, L2 = J(J+1),
where J is the toctal angular momentum of the molecule. For any other
electronic state, the expression also depends upon the electronic
orbital and spin momenta and how they are coupled to the nuclear

1,2 For simplicity,

rotation through the various Hund's coupling cases.
we assume that the molecule is lE in our discussion through this

chapter. B

10



11

In 1932, the above equation was solved by J. L. Dunham7a by

means of the semi~classical JWKB method. Brieflyr, he assumed the

form
Y(r) = exp(i/r y(x)dx/h)

and that y can be expanded im a powér series im h:

h h,2
y=yo+iy1+(I)y2+... .

The fact that he used h as an "expansion parameter" made this method
a semi-classical one, i.e. as h + 0 the system was more classical.

The solution for y was

v = *YB(ED

dU
Ot & ! 4(E-1)
av.2 ., d%u /2
y, = = G+ e G @un/orEm @n’'

dr

and so on, where U(r) = V() + Berezl(l+l)/r2. The general solution

was
T r
b = cexpld f 7, Cdx/) + Coexe(a [y, Godern)
P |4
where the a and b subscripts referred to the choice of upper and lower

signs, respectively, for y's of even subscripts. The quantity P

referred to some particular value of r.
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The problem with the general solution had been that it was not
defined at the turning points and that values for Ca and Cb changed
for different regions of the well; Ca or Cb had to be equal to zero
inside or outside, respectively, of the potential well, where E - U <
0, and both had to be nonzero within the well. Dunham required that
4 be real and single valued and be related in the sense that the
solution in the different regions have the common point P. By carry-
ing the integration into the complex plane in order to avoid the
singularities at the turning points he derived the quantization

‘condition

dau, 2

h{v+1/2) -f/zu(n—u) dr - — 9{(—- (E-u)""’2 d
32/2u F \dr r

+ ... .

where v = 0, 1, 2, ... .

It is noted that if one neglects the second and higher integrals
in the equation above, one has the old Bohr-Sommerfeld condition. This
latter relationship can be derived from the JWKB solution through
different means.8 This condition has besn the basis for the RKR method
as well as the Dunrham solution.

It has been pointed out9 that Dunham’'s y expansion is an
asymptotic series]'0 in Planck's constant, h. Such a series is a sum
of successive terms which at first decrease then increase and wltimately
cause the series to diverge. By neglecting the successively increasing

terms one obtains a polymomial which can be a good approximation to a
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. . 9a,b
function onewishes to represent. Some workers” °  have recommended

that the third and higher JWKB terms be ignored, which would correspond
to only evaluating the Born-Sommerfeld phase integral. Recently
Kirschoner and Leroyll have examined the second and third Dunham phase
integrals and have found that, for all reasonable molezular states,
these extra integrals provide an improved agreement between the true
and semiclassical eigenvalues all the way up to the highest bound

level.
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C. The Dunham Solution
Having established his quamtization condition, Dunham then

proceeded7b by assuming the potential could be expanded in a power

series

2 2 3
v(r) = aoA (1 +a;, A+ a, AS =+ a, AT+ L. .

where A = (r-re)/re. By next assuming that the energy could be

expressed in the form

- b N
E s E; Yij(v + 1/2)7(JL0D)) ,

he solved for the Yij's as functioms of the an's. The expressions

Y Y

for Y Y 3 and YOA are

00* Y10 ~ Y40* Yor ~ Yar» Yoz T Yoz Vo3 ~ Y1
documented in his work. The validity of his method has been confirmed
by Kilpa:rick,12 who obtained identical results using perturbation
theory on a harmonic cscillator, treating the alA3 and higher terms

as perturbaticns.

It should be noted that Dunham had generalized oun an expression

spectroscopists had customarily used at the time. The vibrational-

rotational energy of a molecule is expanded as

. 2 2
EvJ = Gv + BVJ(J+1; - DVJ (J4H)° + ...

where Gv is the vibrational energy, Bv and Dv are the rotational and
centrifugal distortion constants respectively, and the subscripts

indicate that these constants vary with vibrational quantum number v.
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These terms are usually further expanded in the form

6, = "ulwl/2) - wx /D% ¢ wy D w L

"Bt e 2
B, = 'Be ae(v+1/2)+6e(v+1/2) + v

0

seems apparent except for some subtle differences Dunham had dis-

and so on. The relationship between the Y:L s and the Gv expansion

covered between YJ.O and me and between Y01

These differences can be seen from the general form (except

and B .
e

for YOO)’

- w3 g NN S
B Yij we(me) [fij‘al’ oo an, + ("’e) gij ‘@), «ons am—b)

Be 4
+ (‘—“e_) hij(al’ cans ar‘.+8) + ... .

where wg = Y4B a s, V=1 + 2j-1, and n = 2(i-1) + j, such chat

e
v>0and n>1. Ifnis -lor 0, f . equals 1. Because Be << oo

ij e

for nearly all known molecules, the ‘:ij's tend to decrease for higher

Yij’s and the functions and hij’ the first and second order

gij
Dunham correctivns, are of much less significance than fij'

It is found that although the fij's are complicated algebraic
functions of the lower an’s, they are linmear in the highest terms,
the an's. This provides a means of solving for an a from its

corresponding Yij and the lower an's. During the first .lieration

the gij and hi.j functions are neglected and a set of an's is deterwined.



When possible, the gij's and hij's are calculated and subtracted from
their corresponding Yij's and a new set of an's are determined. The
process is repeated until the set converges to one's satisfaction.
Dunham's work provides enough expressions for the determination
of the an's up to ag and the calculation of the first order correc-
tions for YlO’ Y20’ Yol’ Yll' and YOZ' This work has been extended
by that of Sandeman13 which permits the indirect determination of a7
anq as, the calculation of YSO’ Y60’ and YAl’ and wi-ich reports the
expressions for more second order and a few third order corrections.

Lauver Wooleyla reported the simple expressions for a few more higher

Yi 's. Niay and coworkerslsa and Bouanichle have recently published

1
direct relations between the Yij;s and a, and ags eliminating the need
for the calculation of the intermediate quantities in Sandeman’s paper.
Most recently, J. N. Huffaker has suggested a somewhat involved algo-
rithmAl for determining a set up to 250" His work will be discussed in
more detaii later,

As mentioned in the introduction,‘the fatal flaw of the Dunham
potential series is its poor convergence properties. It has been
pointed out16 that V(r) is infinite at r = 0 due to the Coulombic
repulsion of the two nuclei. The Durhgm series must therefore diverge
for A = -1. A property of any series

<

£(z) = L b, 2" ,

u=0
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for complex z, 1s that 1f the series diverges for z = Z,s it can only
converge for values of z such that Izl(lzol, making lzol the "radius
of convergence” of the series. Thus the Dunham series aust also
diverge for A = +1, meaning that che series is only useful inr the
region 0 < r < Zre. Moreover, the values of the an's for nearly
all molecules tend to Increase as n increases. sihce there can only
be a finite number of Yij's determined from a finite amount of spectro-
scopic data, the Dunham series must be truncated to a polynomial, and
the increasing value of successive an's limits the usefullness of this
polynomial to a region far less than the theoretical radius of con-
vergence. Needless to say the estimation of the molecular dissociation
energy by extrapolating the function at large r is out of the question.
Thus the Dunham potential was only of academic interest, except
for calculating the properties of the lowest vibratiomal levels of a
molecule whose ocuter turning points werewell within the dreaded Zre

limit. Fortunately for spectroscopists, another approach was being

developed at the time Dunham was publishing his work.
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D. RKR Method

Having evzluated the G,» B,» D, etc. constants from vibrational
and/or electronic spectra, spectroacopists have traditionally determined
the molecular potential by the Rydberg-Klein-Reese method.17’18 For
vibrational number v the classical inner and outer turaming points,

ra(v) and r+(v), for the rotationless (J=0) molecular potential can

be found from

£ = EOH/EW s s .
where
() = BebHY? e 172y
v ee ./r v v v >
=-1/2

gw) = @ 7?2 f oo 0 e
272

and Be is in the same energy units as Bv and Gv. Furthermore
£v) = e (V-r_(v)
v PALIAA A )
: 1
g(v) = E{l/r_(v)-l/r+(v)) .

Although the physical interpretation of g(v) is not obvious, it is

clear that £(v) is the width of the potential well at energy Ev o
»

The f(v) and g(v) integrals are best evaluated numerically.lg'zn

Although expressing Gvl and Bv' in terms of Yij‘s can facilitate this
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computation,21 simple interpolation for non-integer v' camn serve
equally well.ls'20
This latter point is of Importance since the determination of

bed
a reliatble set of Y,.'s may not be feasible. Cash:i.ou"z had found

ij
this to be the case for Hz. We had found a similar problem in
trying to fit a set to all 20 known vibrational levels of HF,

it should be pointed out that the RKR method, like Dunham's,

is based upon the semiclassical Bohr-Sommerfeld integral

L 1/2
h(v#l/2) = V2u [E,;-U()] ™ “ar

where U(r) is the same as in Section A. Indeed, other523 have shown
the mathematical equivalence between the RKR and Dunham formulations.
The main difference is the absence in the above expression of the
higher order integrals Dunham had found. The most obvious breakdown
1s that Evo = 0 when v = -1/2. This is not strictly correct since

the true expression is

E = G =X

2
oo _
o - 00 + "u, (v+1/2) wexe(v+1/2) + ... .

Most workers shore up the RKR method by evaluating Y00 and setting

the lower limit of the f and g integrals to that value of v so that
the preceeding equation for Gv is zero. Other unrkersz4 have extended
the RKR method to include the next Dunham integral. That such
corrections are more important for HF than C()Zlbc is in keeping with

the premise that the semiclassical approximatior is more successful

for those molecules with larger reduced masses.



Although turning points can be extrapolated for vibratiomal levels
above the highest observed level, their determination depends upon the
reliability of the analytical expressions for Gv and Bv. A more
physical extrapolation procedure has been suggested by Leroy and
Bernscein.25 fhey had assumed that the potential for the outer turn-
ling points of the upper vibrational levels car be approximated by the

long-range behavior

(¢}

n
v(r) = DE - _; y

La}

. where De is the dissociation energy and where Cn and the Integer n
depend upon the atomic states into which the molecule dissociates.
Further assuming that the inmer turning point can be set to zero in

the Bohr-Sommerfeld integral, they had arrived at the expression

D, -6, = [y /e /m/ D)
where E; is a numerical constant and VD, corresponding to the ficti-
tious, non~integral vibrational "quantum number” at dissociation, is
a parameter vhich must be evaluated from the upper Gv data. The
quantities De and Cn could either be evaluated from the Gv's or from
independent determinations, although some of the most accurate De's
have been made from the above or related expressions.

This "near-dissociation” analysis is useful for extending the
potential if the upper vibratiomal levels are in the r? region of

the potential. Recently, R. J. Leroy26 has found that the upper levels

s o . s -n
may show near-dissociation behaviotr even when the limiting r term

20



accounts for only a fraction of the potential in the region considered.
Thus a successful near-dissociation analysis does not imply that the
potential has passed into the long-range regime.

Although the inner turning points are not determined by the long-
range method, the inner repulsive wall can be adequately estimated by
ficting a simple funciion such as a Morse potential to the known inner
turning points. It has been our experience that the vibrational wave-
function and hence the physical properties it determines are far more

sensitive to the shape of the outer attractive region than to the

inner repulsive one.

21
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E. The Empirical Series Strikes Back

Aithough it would seem that the RKR method is quite satisfactory
for dztencining the molecular potential and some extoll its exclusive
application over any other method,27 there nevertheless remain some
drawbacks. Since the method is numerical, the molecular information
must be conveyed by tabulation of all the turning points, which can
be quite lengthy. The only molecular parameters, useful for comparing
bonding trends for different molecules, which can be readily determined
are r, and sometimes %. Even De must be extrapolated from the upper Gv's R
a procedure which can be chancy unless a near-dissociation analysis
is applied. As mentioned before, even a near-dissociation evaluation
of De and Cn does not necessarily allov an immediately valid extension
of the RKR potential (insertion of the near-dissociation expressions
for Gv and Bv is not advisable since Leroy found that the ND expression
for Bv to be unreliable).

Moreover, an error analysis is complicated by the numerical pro-
cedure and would require the reporting of individual standard deviations
for the turning points (increasing the amount of information to be con-
veyed in literature), hence it israrely performed or reported by most
workers. Systematic errors of course remain hidden since the method
1s semiclassical, and first order at that. The numerical nature is
itself inconvenient; many workers continue to determine dipole moment
functions using the Dunham potential an's to evaluate perturbed harmonic

oscillator wavefunctions. 11,28



Thus the analytical potential furction enjoys many advantages
over the RKR potential. It is easy to work with. The number o1 para-
meters and associated errors that need to be reported are less than
the numbexr of turning points necessary. Moreover, the parameter errors
yield uncertainty in the potemtial at a particular value of r, whereas
the reverse is true of RKR; the former is more useéul to users of a
reported potential. The parameters themselves can have physical mean-
ing and can be compared to establish relationships in bonding. Calder
and Ruedenbetg29 have examined the Dunham al and a, for 160 diatomics
and were able to establish empirical relatfonships among W mexe, Be,
and ae for any atom-pair in the periodic table, Frost and Musulin
also have examined a, and a, in éearch of a n2niversal reduced diatomic
potential curve, discovering that (a0a2)1/2/a1 was equal to 0.86 within
10% for 23 different molecules. When an analytical function has a
physical basis, extrapolation of the potential in undetermined regions
is more reliable than RKR.

Of all analytical potential functions the series function is most
suitable since it can be systematically improved with new data by
adding higher order terms. Moreover, a series which is evaluated in
the spirt of the Dunham method automatically incorporates the higher
order WKB corrections amissed by RKR. The problem with the Dunham
series Is that the leading term, aOAZ, is a harmonic oscillator. Thus
one does not have to resort to a mathematical analysis to see why the

series fails; the higher order terms can hardly be corrections in order

for the series to simulate a realistic diatomic potential.

23
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Simons, Parr, and Finlar?l (hereafter known as SPF) suggested the
modification ks= 1- r/re, for the series

v = bpla + X b AY

0"'s n's
n=1
would extend the radius of convergence, since the pole in the true V(r)
at r = 0 does not correspond to a finite As' By requiring that all
derivatives of their series be equal to all derivatives of the Dunham
series at r = Tos they established the relationship
n=-1

b, = a -~ o ~DITHy - D @)
i1

£ > b .
or n > 1 and (e=3) 131

[}

Thus having determined a set of Dunham an's, they could successively

= ao, where (?) is the binomial coefficient

determine a set of bn's quite easily. By requiring that the series

-m
have the correct r behavior at long range, i.e. setting the boundary

conditions
k
vn 2 doven =0, k<m ,
T+ ® dr

they could easily generate up to m - 1 extra coefficients.
This series expansion has been applied to not only diatomic mole-
. 32 33 : .
cules, but to linear™ " and bent triatomic molecules as well. More-
4
over it has been usad to model chemisorption interactions.3 Bickes

and Bernstein have fitted the SPF expansion to pre-determined van der
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Waals po:entia1535 and hzve used it to invert molecular beam elastic
scattering data.36 The series' improved theoretical convergence
radius, its versatility, and SPF’'s assertion that it had a theoretical
basis made the SPF expansion seem very promising.

From a pragmatic point of view, the leading term of the series
is the Kratzer—Fues37 potential, which had been used as a model
potential by early spectroscopists. It is generally recognized,13’38
however, that the Kratzer-Fues function is not a very good representa-
tion of true molecular interactions. This may explain why the SPF
_series, although having a range of convergence larger than that of
Dunham's, tends to diverge before 3~re, going to very, very large or
sometimes even very negative values at Ag= 1, or as r + @, Although

b that adding a few "bouundary condition" co-

Simons and Finlan found31
efficients improved convergence, the number of extra terms taken is

somewhat arbitrary.

Thakkar39 generalized the Dunham and S?F series by defining
e
Ae = sgn(@)+ (L - (DD
whera

+1L,p>0

sgn(p) = { : ,
-1, p<0

so that the Dunham variable corresponds to p = -1 and the SPF variable
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to p = +1, Thakkar then related the en's of his expansion
V) = e @+ X ea®
o' T n r
n=1

to the an‘s of Dunham in the same manner SPF had solved for their bn's.
His algebraic relations were much more complex and tedious than those
of SPF aund will not be reproduced here, except for the simplest rela-

tious

and
e = (al +p + 1)/ (p-sgn(p)) .

The remainder are to be found in Thakkar's paper. Since there was one
extra parameter, p, in this series expansion compared to those of

Dunham and SPF, there was some ambiguity as to the choice of p. Thakkar
argued that the optimal choice for p would be one that would eliminate

the first correction term in the series, i.e. g = 0, or

which of course led to nonintegral values. Nevertheless, Thakkar found
that the behavior of this series for CO and HF was better than that of
SPF. Moreover, the potential tended to a constant value at Ar= 1, i.e.

it extrapolated to dissociatlon energies within 107 of the true values.
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It should be noted that the leading term,

e M = e (P - 2(8P 4 e
o o' 'Tr r 0

1s the same as the Lennard-Jomes (2p,p) potential. Since the latter,
especially for p = 6, has been very successful in describing very
weakly bound molecules, we should expect the Thakkar series to be a
very promising tool for studying those systems. Indeed we have found
this to be the case and will discuss it in greater detail in Chapter 3.
Following this trend of using a simple potential fumction as an
expansion variable, one would wonder how useful a series could be

using a Morse potential, namely

Ag= 1- P (r-Te)/Ta
Point of fact, Dunham himself had made just such a speculatiomn in his
original work.7b Because the Morse function had been so simple and so
popular among spectroscopists, it is c;rious that no one had seriously
investigated the series representation before the publication of J. N.
Huffaker's first article in 1976.40 Using perturbation theory, Huffaker

derived the relationships among the Yij‘s and the cn's of the expansion

o .
NIRRT WL
n=2

By further requiring equality of the derivatives at To between his and
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Dunham's series, as SPF and Thakkar had, and substituting the resulting
expressions into his Yij formulations, Hufifaker obtained Dunham's

original equations between the Y,.'s and the an's, thus showing the

13
internal consistency of the method. More recently, by adopting the
JWKB approach, Huffaker has developed an algorithmAIE’d for calculating

higher order cn's, where the highest value of n is limited only by
the amount of available data and the machine precisjfon of the computer.
Most recently,AIE he has developed a generalized formula for finding
the an’s and bn's from cn's (unfortunately, the relatiouship to the en's
was not so obvious and hence not reported).

There are several similarities between the Thakkar and Huffaker
expansions. First, the expansionm variables contain two parameters,
r, and p or p. By hopefully optimizing the second parameter of the
variable the first correction term in the series can be eliminated.
Although the Huffaker~Dunham coefficient relations are not quite as

complex as those of the Thakkar~Dunham, we only list the simplest ones,

which are
[ Co = a0
0D = -al
= p+1

These equations make Huffaker's lead ng term a Morse-Pekeris functionm,

i.e. p is determined from e, rather than W Xy»
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With a few exceptions, which we will note later and ia Chapcer .,
the Huffaker series appears to offer the most accurate description of
a molecular potential of the four series we have discussed so far. We
have found that the higher order correction terms are usually small
(<0.2) and tend to decrease for lncreasing n. Evenr though the sa: ‘es
must be truncated to a polynomial of order N, we have found that the
extrapolated dissoclation energy

. N-2
D, = e, (1% nf:‘z c)
is 21moést always positive and approximates the known value within 10Z.

There remains, however, a convergence problem to be addressed.
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E, Further Convergence Considerations

Although it seemed that the new expansion variables had extended
the region of series convergence tc the domain 0 < r < =, certain
anomalies in the truncated polynomials became apparent. SPF noted
that their function tended to converge slowly at r ~ % T, and sometimes
had an artifice at r < Tor quickly becoming negative at smaller values.
We have seen these artificial maxima for many molecular states for
the Thakkar and Huffaker series as well. It appeared that these new
series exparnsions tended to diverge for some r < r,.

Thakkar speculated that his and the SPF series had a smailer con-
vergence radius of -1 < Ap< 1 because the theoretical justification
for these expansions had been that AT bea perturbation variable on the
electronic Born-Oppenheimer Hamiltomian evaluated at re.39 Be(:ke.'l.['2
pointed out that i{f the potential V(r) has a term of the form exp(-ar),
o being some constant, then V(r) has, for p > 0, an assential singularity

at AT =41, 1.e. for AT(r) =1 - (re/r)P, the expansion in AT of the

function
ar,
exp(-ar) = exp(- ———=7")
(l-AT)I/p

has a singularity at AT = 1. This therefore restricted thc radius of
convergence to IATl = 1, or rather the series ceased to be convergent
at AT = =land r = re/21/i (with r = %'re for the SPF case of p = 1).

Although this particular problem can not occur for Huffaker's expansion,
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AH =1 - exp(-p(r/re-l)), since

expl-or) = exp(-ar )+ (1-a)%7e/®

is analytic for positive o and p, we propose that any potential that
has an r? term (which is sure to occur at longe range) is not analytic

at AH = 1 with respect to the Huffaker variable, because
O (1-p-11n(l-A nie
e H

has an essential singularity at AH = 1. This sets a radius of con-
vergence of IAHI = 1 and explains why we have seen truncated Huffaker
polynomials reach non-physical maxima and become negative for decreazsing
f, and why these maxima have appeared to correspond roughly to AH = -1.
Since these convergence restrictions are in the region r < r,
they are not nearly as serious as the one placed on the Dunham series.
Usually the artificial maxima occur at V(r) values of % De or greater,
g0 we can fit a simple repulsive function to the inmer wall to extend
the potential function for V(r) > De. As mentioned before the eigen-
values and eigenfunctions of the potential are more sensitive to the
outer portion than to the lnner wall, so the point of concern is the

accuracy of these series representations for r > re.



G . The Program

In order to investigate the behavior of the truncated polynomials
of these geries expansions for varlous molecular states, we have
writter a FORTRAN program which will invert a set of Yko's and Yll's’
where 1 < k < 4 and 0 < 2 < 3, to give Dunham, SPF, Thakkar and
Huffaker polynomials up to the sixth order correction to the leading
term, i.e. up to 36’ etc. Although this program is listed and des-
cribed more fully in Appendix A, a brief description of the general
algorithm will be given here.

Using Sandeman’'s notation, the Yi 's can be expressed as

%]

Y + 2z + ...

I E IR CH I

3 zij correspond to the fij’ gij’ and hij’ respec—

tively, of Section II, with the appropriate factor of (Be/me). As

where the xij’ ¥;

suggasted in Section II, the assumption Y_, = x,, is made and a set

ij ij
of an's is sequentially calculated. The order of calculation is
illustrated in Fig. 1, which shows that the an's for even n are deter-
mined from the Yko‘s and those of the odd n are determined from the

¥Y,.'s (1f Be, or rather re, may be considered "a_l"). If a particular

20
Yij is not availiable it is set equal to zero and the corresponding a,
1s determined {a practice we consider risky and we tend to avoid). If

the set of an's is sufficient to determine a particular yij; the latter

is calculated, subtracted from Yij’ and the new set of xij's is used to
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's. The process 1s repeated until

determine the next iterative set of an
the change in the next set 1is negligible. We have found that ten to
twenty iterations are needed fo give an average relative error of

~7 x 10-15. Out of over one hundred cases, we have found only two cases
{(a set of very non-physical Yij's for Be2 and Arz) in which the itera-
tion actually diverged.

The x 's and yij's can be computed from Dunham an's or Huffaker's

3
cn‘s. Earlier, we had computed the former quantities with separate
programs using these authors' equations and found the xij and yij sets
to agree within machine precision. Thus we are confident that these
equations are faithfully coded.

Since this program was written, the articles by Bouanich and

's.

Huffaker had appeared which permitted the calculation of higher a

We have not tried to recode our work for the following reasons:

1. The higher equations are algebraically wery complex and their
transcription to computer code would be subject to error. Indeed,
Huffaker's formulas are a convolution of several sets of inter-
mediate quantities requiring calculation.

2. Our main interest is in weakly-bonded molecules which have only
a few number of bound vibrational levels, hence the higher Yij's
needed by the higher an's cannot be determined for lack of
experimental information,

3. Because the relative standard deviations of the an’s and Yij's

increase with n and i respectively, the higher an's may be cal-

culated in principle but will remain indeterminate in practice.
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4. The relationships between the an’s and Thakkar's higher en's
have not been published and we have found their derivation to

be too tedious (in short, we tried but ran ogut of patience).

We were thus less interested in making the program a state-of-
the-art instrument and more interested in Spending the time examining
more molecular systems with the tools at brad. We felt we could
calculate enough expansion parameters to determine several trends

for the different potential series.
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H . The Roads~Not-Taken
It should be mentioned that there are two other series approxi-
mations which we have nct considered in detail. The first is the

Ogilvie—Tipping,43 or 0T, expansion, where
A(r) = (r—re)/(r+re) : .

As has been pointed out by Becke142 and Engelke,44 for 0 < r < =,

-1 < A < 1 and hence the OT series should in principle be convergent
for all r # 0. In fact Engelke has foundhh that the OT series and
his modifications are quite good In describing the ground and excited
states'of H2+. Although he gave a formulation for determiring the OT

coefficients from the an's up to the fourth order correction, we have

found a general formula and will report it here. Given the OT expan-

sion
2 n
V(&) = a AL+ 3, a4 ,
o n
n=1
we have
d = 4a
o (4]
n
¢ = l+n+ 3 2“‘(“+1)a .
n n-m/ m
m=1
where (2t;> is the binomial coefficient.
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Because the dn calculation was so straightforward we examined
the OT polynomials for HF(X'LY), ur(s'z™), mr, co, 1,8 ).
Liz(A12+h), BeAr+, BeH+, Arz, ng, Caz, and NaAr(A2H3/2L
Despite Engelke's work, we have found that for r > LR the OT
polynomial in general performed more poorly than that of SPF, Thakkar,
or Huffaker. In none of the cases examined did the r + = extrapolation
glve a value within a factor of +2 of the known dissociation energy.
It had the highest propensity over the other three to reach a non-
physical maximum and become negative for increasing r. It did demon=-
strate superior behavior for r < To» i.e. if the OT polynomial showed
an arcificial maximum along the inner wall of a particular mo ecule
along. with the SPF, Thakkar, or Huffaker function, the OT maximum was
at smaller r aad V(r) was largest. This last point was not as
important for describing a true potential, as mentioned earlier. For
these reasons, we did not investigate the OT expansion any further.

it is curious that our observations vary so markedly with
+ is unique; it has only one electron so

2
that the only interatomic repulsion effects are the Coulombic repulsion

Engelke's. It may be that H

of the two nuclel and the electron's averaze kinetic energy due to
particle~in-a-box type shrinkage.aj In terms of the reduced variables
r/re and V(r)/De, H2+ has one of the broadest wells. We tend to think
that H2+ is a chemical singularity and that the OT seriles has a2 smaller
radius of convergence in the empirical sense.

P &
The other approach we have neglected i1s the [N,N] Padé approximant.

The form for this function is
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vy = £ {1+ S P
24 o &4 o = En Ji ’

where X is the Dunham variable, r/re - 1. The desirable qualities are
that for small A it is a harmonic oscillator (which some workers prefer
for the latter's familiarity), it extrapolates to a finite value

as r + ©, and, by choosing N = m for r~m'asympto:ic behavior,

£ fy2/y

has a chance at recovering the long-range part of the potential. Jordan
and coworkers have applied this approximant to HZ+ 47 and the alkali
halides.48 The latter work had determined the'fn's and gn's by expand-
ing the denominator in a binomial expansion, multiplying the two series
together and equating the coefficients of An+2 to Dunham's an's.

The problem with this aﬁproach is that the relafionships of the
fn's and gn's to the an's change for different N. This makes the
algorithm incanvenient; the introduction of one higher Yij allows the
calculation of one higher a, and the iterative correction of the lower
an's from the one set of Dunham equations whereas a completely different
set of equations must be employed to find the new set of fn's and gn's.
The systematic improvement of the Padé approximants with new data is not
as straightforward as with the other series mentiomned.

Moreover, B:Lckesl'9 has demonstrated that he can fit an SPF poly-
nomial more accurately and over a wider region of H2+ than Jordan's
[2,2] or [3,3]'s. Similar observations were made by Engelke concerning
his expansions vs. the [2,2] and [3,3]. Aan exarination of these

approximants for BeAr+, discussed in Chapte: 3, showed che extrapolated



dissociation energies to be a factor of two too large.

reasons we have not pursued the Padé approximants,

For these

38



I. General Observations

We have examined the behavior of the SPF, Thakkar, and Huffaker
potentials for 31 molecules and 43 of their electronic states. Because
the list 1s not exhaustive and is weighted by our own interests and
prejudices we have not attempted a careful, systematic examination of
the coefficients or the extrapolated dissociation energies. Neverthe-
less we feel the list 1s fairly representicive of the different kinds
of molecular states known and that we can safely draw some qualitative
conclusions. To our knowledge, no other work as extensive has appeared
in print for these three potential series.

The program described in Appendix A was run on the Lawrence
Berkeley Laboratory's CDC 7600 and 6600 computers asing single pra-
cision (approximately 14 significant digits). The output of this pro~
gram and plots of the potential polynomials and RKR tie-lines can be
found on the microfiche attached to this publication. A few comments
concerning output are in order:

1. The first line is a title which identifies the data set and the
corresponding plot.
2. Tha secend line 1s an abbreviated reference of the form:

First Author/Journal and Volume/Pg. No./Year/Yij Status,

where the Journal code is CJP: Canradian Journal of Physics,

CPL: Chemical Physics Letters, CRASB: Comptes Rendus de 1'Académie

des Sciences B, JCP: Journal of Chemical Physics, JMS: Jourmal of

Molecular Spectroscupy, PR: Physics Review, PRA: Physics Review 4,

and PRL: Physics Review Letters. The Yij status is "Y" if Yij's
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appeared in the reference, "N" if only Gv and B data are
available.

The dissociation energy need only be an estimate, since it is
only used for scaling the vertical axis of the plot.

Technically speaking, the Born-Oppenheimer approximation
requires that one use the mass of the nuclei rather than the
atomic masses. Hence the atomic masses are corrected for mass
of the electrons. This fine point only shows up in calculating
L

The expression "CUT QUT AT IT = " indicates the iteration at
which the an’s converged (maximum allowed = 30). This printing
feature 1s removed from the latest version of the program.

The X's and Y's refer to Sandeman's notation for the Yij's and
the first Dunham correction. The leading integers correspond

to i and j respectively.

The first parameter for each series is the ao, bo, etc. The
second 1is re for all of them. The third corresponds to al, bl,
p, and p respectively. The rest are the succeeding correction
terms, extrapolated De for z11 but Dunham's series, and the last
Huffaker parameter is the ¢ described in his first paper.

For the first seven runs, the standard deviations for the Thakkar
and Huffaker De’s and Huffaker's g were not calculated in the
strictly coyrect, mathematical sense and therefore tend to under-
estimate the true standard deviations. The calculation of the

standard deviation of the SPFDe is programming-error ridden znd

40
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is therefore meaningless. These errors are corrected in
the final version of the program and all standard deviations
for those molecules in the eighth rum are correct.

9. Ignore the "WMIN FAILED TO CONVERGE" message for NAH/X SIGMA+H/;

it really did converge.

A few comments concerning the plots are;

1. The code for the potential polynomials ave Dunham: long dash,

. SPF; dot~dash, Thakkar: short dask, Huffaker: dots (or very short
dashes). '

2. RKR tie lines correspond to the vibrational energies and theix
classical turning points.  The highest level corresponds to the
highest level to which Yij's were fitted.

3. The horizontal tie line running across the center of the plot
fromr = C to § re corresponds to the estimated dissociation
energy-

4. The horizontal lines that occasionally appear crossing the
r = 0 axis and»running the length of the plot seem to b: due
to bugs in the LBL Computer Cente:‘s IDDS interface with the
microfiche plotter; they did not appear in plots on other
devices.

5. For the molecular hydrides and HeNe+ in the first seven runs,
the divisions along the r-axis should be in units of either

0.2 & or 0.5 &. Because of a formatting error in the plotting
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portion of the program, the r-axis labels are rpunded ‘o
the nearest X and thus for HF, for example, two tick marks

cach are labelled "1." &, "2." &, etec.

The overall organization of the output is brcken into 9 sets
which can be identified by the "LOAD MAP" that precedes each. The
sets are: van der Waals' molecules, the hydrogen halides and carbon
monoxide, alkaline earth dimers, molecular fous, alkali hydrides,
alka” i dimers, an unclassified group of wvarious molecular states, and
a set containing correction runs of the former sets plus HD and D2,
respectively. The correction run had been made in order to generate
plots that had been scaled incorrectly for HeNe+ and the two 02+ states
or to correct for mispunched cards on the A12+ states of KH and CsH.
The data set for 12 83H0+u, which also had a wmispunched entry, was
replaced with a data set rontaining newer, more accurate Yij's' Cer-
tain minor bugs in the program were fixed for che last rvn and a final
listing is included. A complete listing of all molecules and states
are to be found in Table I.

From these results we can make several qualitacive, intuitive
observations. Most noteworthy is that for molecules that are chemically
bonded, i.e. have well depths of greater than 30 kcal/mole or 10,000
cm-l, the Huffaker series 1s superior to any of the others. It generally

converges uniformly, i.e. no non-physical maxima, to a po-itive value

for increasing internuclear separation. The extrapolated dissociation

energy is frequently within 10% of the true value. On those occasions



when 1é fails by running over 10Z above or below the true disse<iation
or by reaching a maximum and going negative, the other series have
also failed and have dome so for smaller r. For r < L the Huffaker
geries occasionally turns over, but since these maxima tend to be well
above De this is no great problem. Morzc.er, the correction terms of
the Huffaker serles are the smallest. This last point is a little
ambiguous since Huffaker's A wpproaches one for increasing r more
rapidly than the variables of SPF or Thakkar, i.e. the Huffaker
correction terms are smaller but are called into play earlier.

The Thakkar series potential has a greater teandency to turn over.
For r < L its maximum tends to be lower than Huffaker’s. Although
Thakkar's series also cccasionally turns over for r > r, whereas
Huffaker's does so only rarely, when the former does turn over its
mﬁximum is closer to the true dissociation energy than Hufiaksr's
extrapolated value. In these cases it would seem that the Thakkar
function collapses at the finish line. When the Thakkar function does
not go through a large r maximum its De overestimates the true value
where the Huffaker De is too low. This can be explained by th: fact
that the Thakkar potential has a long~range P term built into it, but
we find p to be smaller than the true long-rarge n,and hence the
potential rises too quickly and past the dissocilation limit. On the
other hand, i1f the Huffaker potential faithfully follows the RKR curve,
it will asymptotically approach the same value as a Bi:.-ge-Spcn'er:'g9

extrapola:ion.so The latter extrapolation is already knounzs to

43



a4

underestimate the true value due to the neglect of long-range forces.
These forces are neglected by the Huffaker potential as well.

The SPF potential is, for large r, the poorest of the new series
potentials; it diverges from the RKR curve first and turns over most
often. When SPF and Thakkar both turn over, SPF flips over first.
Clearly, the SPF series needs to include extra terms from the boundary
conditions mentioned earlier.

On the short range, repulsive wall side the SPF may be slightly
better in the sense that, when it does turn over, it does so well
above the 2.5 De maximum of the plotting range. For that macéer, in
this region the Dunham potential is superior to all the others, since
it turns over the least and always above the viewpoint of the plot.
This may be because the Dunham series is well within its radius of
convergence while the others are fast approaching theirs. It may, in
fact, be a worthwhile study to compare the repulsive wall of the
spectroscepically determined Dunham series to those potentials derived
from elastic scattering work.

As far as spectroscopic work is concerned, the new series are
definite improvements over the Dunham expansion. A visual inspection
of the plots indicates that they agree fairly well with the RKR
turning points up to the highest level. On cluser examination, however,
they do not provide as stringent quantitative agreement as demanded by
the experimental accurzcy of the origimal data. As an example, the

Gv's for HI have been calculated for the Huffaker and Thakkar expansions
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by the Numerov-Cooley method.50 The corresponding Bv's have then

been determined from the resulting wavefunctions by the equation

2 2,2
B, = Br, f Y, /" ar

The results are tabulated in Tables II and III.
Of particular note is the quantity 5Yij given in Table II.
Although an accurate description of the upper Go(v), where GO(V) =

[ Gu’ requires Y 0’ this last quantity is not used in the deter-

v 5

mination of the Thakkar and Huffaker potentials. Thus if these two
series were to represent faithfully the input data, &§(Thakkar) and
j) rather than Yij' In any case,

the deviations of these two potentials are well outside experimental

§(Huffaker) should be equal to 5(Yi

tolerances for the upper levels. 1In this rare case, the Thakkar
potential shows better agreement witﬁ the true values than does the
Ruffaker one. This is probably due to the fact that the former reaches
a maximum at 3.8 X that is <1% of the true De, coming closer to
simulating the true potential within this range (see Fiz. 2). The
decreasing portion of the potential is insignificant here,since the
wavefunction is not calculated past 3.8 &.

Despite the quantitative shortcomings the newer expansions provide
at least a good approximate agreement in the range where the true
potential is known and, with a few exceptions, a reasonable qualitative
description over the entire range. Examination of these exceptions

proves instructive and should be discussed briefly.
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One is the Ca AIZ: state, which is one of the few cases where

2
Huffaker turms over, Although workers had, by analogy to Mgz,
correlated this state to the lP level of Ca,52’53 Vidal54 correctly

pointed out that an avoided crossing occurs and that Caz* dissocilates
into a ground and an excited 1D atom. Thus this curve may be shallower
due to this premature adiabatic termination.

Another case of avoided crossing is the AlZ+ state of the alkali
hydrides recently studied by Stwalley and coworkers.s5 Here a moder-
ately weak diabatic covalent state of ground state atoms crosses a
more strongly bonding ionic curve, creating a uniquely shaped, flat

6 s
bottom-A state.5 As a result the values of WX and ae are negative,

e
making this a very unique molecular state. This also leads to a
Thakkar p < 0, which invalidates the higher coefficients since the
Thakkar relations change with change of signin p (the computer code
57
assumes p > 0 always).
The anomalous behavior of the series for the HF BlI+state may

derive from two sources. Similar to the alkali hydride AlZ+ case, the

1.+ + - . 1.+
B"L correlates to the ions H and F (although the adiabatic A'Z
state should avoid another crossing and dissociate into ground state
hydrogen and an excilted 2P alkali atom). For example we find the
Thakkar p to be very small, around 0.2, and would expect poor behavior
for this function. DilLonardo and Douglas,SB who reported the Yij's

we have used, have noted that the value De—Gv is very close to

2
e /r+(v) for v = 14-26, where r+(v) is the ovuter RKR turning. They
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have also observed that above v = 26 the BlE+ state is strongly per-
turbed by the b3H and other higher Rydberg states intersecting the B
state along the inner wall. This is the second factor that could
account for the series poor behavior.

A further example of a perturbed state not lending itself to a
series potential analysis is the N2 C3Hu level examined by Buffaker,blb
where the higher order Morse terms are as high as 800 for the temnth

le

order correction. He attributes :hisa to the fact that the C state

tends toward predissociation, i.e. 1s perturbed by other states. By

the same token, predissociation59 into the lnlu state probably perturbs
the IZ'BBH°+u state badly emough to explain why we have seen all of

the series functions fail to represent the potential of :he latter.
Furthermore, Huffaker had foundbla that even higher order corvactions
than we have calculated became increasingly large and only degraded

his series.

All these cases where even the Huffaker protential fails correspond
to excited electronic states which strongly interact with neighboring
excited states or undergo avoided curve crossings. This failure is per-
haps ultimately based on the fact that the leading term, or the primal
function, is a Morse potential, which has been used primarily for des-
cribing ground state interactions. Thus the Huffaker series is from
the outset prejudiced toward ground state potentials and this Is prob-

ably the reason that it does so well for the case where valence bonding

forces are at work.
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When, in contrast, the bonding 1s dominated by the weaker long-
range forces, as will be considered in Chapter 3, the Thakkar function
15 guperior. This success may again be racionalized by the fact that
the leading Thakkar term has a built ir prejudice for long-range
interactions. Along this line of reasoning the SPF and Dunham expan~
sions, based upon the unrealistic harmonic oscillator and Kratzer-
Fues potentials respectively, cannot be expected to give equally good
results in any case and, point of fact, do not.

Thus for ground state potentials and those of excited electronic
states which do not interact with neighboring excited states the
Huffaker and/or Thakkar expansions provide a good qualitative descrip-
tion and a réasonable quantitative deseription. Quantitative improvement
can be made by employing still higher order corrections as Huffaker
has done. Moreover the parmeters in these expansions can be subjected
to physical interpretation and be used in denroting and diagnosing

bonding trends such as will be dome in the next chapter.



J. The Question of Higher an's

A point made earlier which we should address here is whether any
of the higher order correction coefficients are meaningful. The
question had arisen when J. K. Cashion studied the potential for HZ.ZZ
He had found that the higher Yij's, such as Y31 and YAO needed in
order to find a; and 36,respec:ively, could not be meaningfully deter-
mined. This was in accord with the observations of Herzberg and co-
wo;kets,6l who found that these higher terms varied considerably with
the number of -ribratiorial levels used in their fit. The ag and ag
coefficients could hence not be calculated with any reliability, and
Cashion questioned whether these or higher coefficients ever could be,
forming what today sppears to be a concensus of doubt.

The problem with using Hz as a model potemtial is that, with the
smallest reduced mass and the smallest knoun value of re, it has an
exceptionally large Be of 60.864 cm_l. The ratio (Eelwe) is therefore
exceptionally high as well. fhis is a crucial ratio since it scales
the values of the Yij's. As noted in éection 111, for fixed j each
succeeding Yij is smaller by (Be/me) so that, all other things being
equal, molecular hydrogen's Dunham's Yij expansion in (v+1/2) should
converge the slowest of all molecules. This sitnation can conceivably

make the calculation of the Y, K 's impossible.

ij
Consider the extreme case of the ground state of KaAr; there are
only two observed vibrational levels which give only a rough estimate

of me and no determination of mexe at all, although the latter and
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higher Yno’s are most likely significant. We propose that this may
be the case for Hz, though less severe. There may simply be too few
vibrational levels known to too low an accuracy to determine the

number of Y,,'s necessary to describe the former. Ideally, one could

1j
use larger, fictitious masses to derive the "correct"” Yij's, and in
fact Cashion had used this approach for the various isotopic species
This restriction to the

of H2 to find the true ags a,, and a

1 2°
naturally occurring isotopes may still be too limited as can be seen
from Table IV for the (Be/ug) ratios of HZ to TZ compared to other,

_more "typical"” molecules. Also listed is the Harrison and Bernstein
"well capacity" parameter, Bz = De/Be' which has been shown to be
rela:ed62 to the number of bound vibrational levels of a potential,
which is relevant since it indicates how much experimental information
could possibly be available for a molecule.

Herzberg and coworkers have also noted that the lower vibrational
levels of HZ’ HD, and D2 are also unusual in the sense that the &Bv
and AZGV functions have positive curvature. For these reasons we feel
that Cashion's "model calculation" was far too unique a model and that
his conclusions concerning higher order coefficlents need not apply to

other, "normal" molecules.

'
n

Perhaps the most compelling arguments for det rmining higher a ‘s

are the recent results of several workers toward this end. J. P.
Bc.auar:\ich]'Sb has fitted a set up to ag for CO, finding only a, and ag
to be indeterminant, pointing out that this could be entirely due to

experimental errors (th was unknown and he had assumed to be zero in



T 51

order to calculate a7 and aB). Niay and coworkers have circumverted
the problem of determining the intermediate Yij's by developing a
non-linear least-squares method1sa of calculating the an's directly
from the measured absorption lines. Although this procedure required
taking the derivative of the analytical expressions of the Yij’s as

a function of the an's (hence the need tc know the number of Yij's
was still present implicitly), they could bring the expressions for
Y02’ le, etc. into play, which had not been don: before, as well as
enjoying the application of the original off-the-chavt-paper data.
They had found that theycould derive a consistent set of an's through
ag fot<H7gnr,15a through ag for HI.63 and through ag for DI,sa chat
agreed with the same an's determired by the traditiongl m 1wd. 1In
those cases where the higher an's for the two methods disagreed (a7
and ag for HE- ag-ag

for DI,, chey had found that in some cases these an's were indeter-

for HI, and the difference between ag for HI and
25
minate due to experimental errors. In the other cases they had
speculated that even higher an's not determined interferred with the
calculation of those an's which had been found to be inconsistent.

It is also important to note that the relative standard deviations
of the expansion coefficients of the newer series tend to be smaller
than those of the an's. A casual -lance of the output microfiche
(under appropriate magnification) will reveal that even when Dunham's

36 has a standard deviation that makes it completely indeterminate, the

values of e6 and e remain statistically significant. We therefore
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conclude that determination of higher corrections for these series

is still with merit and should be encouraged. We will also, at the

end of Chapter 3, propose a method of determining higher an's which

will completely eliminate the need for the Yij/an relatfonships.
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K. Conclusions
From the various molecular systems examined and the discussion

of higher order coefficient determination the following observations

can be made:

1. The newer series represeatations of a molecular potential have
an extended range of good behavior over the old Dunham series.

2. The Thakkar and Huffaker series, whose expansion variables are
themselves based upon realistic molecular potentcials, show the
best behavior and are capable of describing the potential at
least qualitatively for very large internuclear separatién. Fo~
molecules bonded by mcre than 30 %zal/mole the Huffaker series
appears to give the best tepreséntation, extrapolating to a
constant value for large r that lies very nlose to the true
dissociation energy.

3. The series show the joorest representation for electronically
excited molecular states that interact with neighboring states.
Even in these cases the series serve as a diagnostic of the extent
of ~he interaction. (For example, we had suspected a pecularity
in the assignment of the A12u+ state of Ca2 when the Huffaker
representation failed, two years before C. R. Vidal pointed out
the obvious concerning the correct correlation to excited
atomic states). As far as seeking an accurate description of
such states, one must resort to RKR methods, which are not

biased by an assumed potential form.
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It appears, that, in principle, quantitative improvement in
the series can be had by deriving relations for the higher
correction terms which, despite J. K. Cashion's doubts, can

be determined relfably.
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Table I.

Molecule
ATy
NaAr
NaAr

NaNe

HC1

BeAr+

BeH+

Enumeration of Molecular States that have been Calculated

State
X1z +

g
afn

AT

aln

1/2
3/2
3/2

Set

w

3,8

Number of Variations

9

References

7
8,9
10
11
12,13
12,13
14,15,16
14,16
17
18
19
20

-6l



LiH
LiD
LiD

Nal

RbH
LiH
LiR
LiD
LiD

NaH

RbH

Li
Li
Na
NaK

IbR

4,8

4,8

4,8

w

5,8

5,8

7,8

21
21
22
22
23
23,24
24
24
25
26
27
23
23
23
23
25
26
27
28
29
29
30
3
32

33,34
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XeF t 7 1 3s
o x2n 7 1 36
oH a2t 7 1 36
HF s'z 7 3 37
LI 6-12 Model 7 4 38,39 »
D xlzg+ 8 2 ' 40
D, xlzg+ 8 2 a1

Set 1 = van der Waal's molecules; Set 2 = Hydrogen halides and CO;
Set 3 = Mplecular fonsj Set 4 = Alkaline earth dimers; Set 5 = Alkali
hydrides; Set & = Alkali dimers; Set 7 = Various unclassified mole-

cule: ; Set 8 = Correction run.
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Table II. Vibrational levels of HI calculated from series potentials.

5
6

7

a)

b)

c)

somfeml  sqr,)bP0C 5(Thakkar)®  5(Huffaker)®
Cbserved? 4 :
2229, 581 .007 .006 L0851
4379.225 .074 .045 .067
6448. 036 405 .276 .490
8434.720 1.433 1.040- 1.89
10337.487 3.917 2,920 5.366
12153.971 2.026 6.777 12.540
13881.140 18.420 13.777 25.721

Calculated from constancs cf P. Miay, P. Bernage, C. Coquant,
and A. Fryt, J. Mol. Spectrosc. 72, 168 (1978). Uncertailnties
are not less than 0,003 cm-l.
S(x) = Go(v) {calculated by method %) - Go(v) (observed).

" il - taa i.e.
j) corresponds to 'truncatel" set of iij s; i.e YSO was

known but not used in caiculation of Go(v) in order to remain

s(Y,

consistent with the fact it was not used in the calculation of
the Thakkar or Huffaker series. Reference: P. Niay, P. Bernage,

C. Couquant, and H. Bocquet, J. Mol. Spectrosc. 68, 329 (1977).
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Table III. Rotational constants of HI calculated from series potentials.

v By/en L 8Crgp?° §(Thakkar) 6 (Huffaker)
Observed .103 -103 103

0 6.42636 .99 -.02 -.01

1 6.25528 -.27 -.19 -2

2 6.03296 -.78 .00 .30

3 5.90878 -.51 .32 1.23

4 5.73187 -1.08 .84 .02

5 5.55115 -1.93 1.8 6.36

6 5.36528 -2.72 3.79 12.25

7 5.17271 -2.93 - 7.34 22.00

a) Same refererce as Table I(a). Uncertainties less than 0.0005 om L.

b) §(xy = Bv (calculated by method x) - Bv (observed).

c) ¢, ,'s taken from same reference as Table I{(c).

ij
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Table IV. Some Ze and B, Values.
e
Molecule u B fu Do B 1073
(amu) e e (ea~1) z

4, 0.5036 .0138221 38292.7 0.6293
HD 0.6714 .011969 38292.7 0.8388
HT 0.7551 .011286 38292.7 0.9433
D, 1.0068 .0097737 38292.7 1.2574
DT 1.2074 .0089245 38292.7 1.5079
T, 1.5078 .0079857 38292.7 1.8831
HF 0.9565 .003672 49380.0 2.3564
ar, 19.9763 .001914 99.545 1.6655
Be, 4.5059 .002358 813.825 1.2829
n," 0.5036 .012893 22525.694 0.7517
co 6.8543 .0008901 90541.7 46.882
v, 7.0015 .0008472 79890.0 39.980
) 7.4664 .0008780 53340.0 31.903
0 7.9975 .0009¢98 42039.0 29.241

e ————— P —— T S —o———
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Schematic procedure for determining Dunham seriles

parameters from spectroscopic Yij's'

Series potentials and RKR turning points for HI,

Thakkar.

-=~- Dunham, °--°*SPF, — — ~— — Huffaker,
Horizontal bars are the RKR tie lines calculated from

the same Y . 's used to determine the amalytical

i3

potentials.
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Chapter III.

Series Potentials Applied to Weakly Bound Molecules

A. Introduction
In this chapter we slf{ examine those diatomic molecules whose
only sources of binding are the so-called long-range forces. In a
nutshell, the elements in the Born-Oppenheimer Hamiltonian that ac~-
count for ome atom's electrons' interaction with the other atom as
well as the repulsion between the two nuclei are all perturbations
of the Hamiltonians four the individual atoms. These interactions can
thus be expanded in powers of r-l, where r 1s the internuclear separa-
tion. First order perturbation for identical atoms, one of which is
in 2n excited state, leads to the resomance interaction:
~3
v(r) - De ~ C3r ’
and fo. two atoms neither of which are in an § state, the quadrupole-
quadrupole interactior is obtained:
- =5
v(r) - De ~ g7 R
where V(re) = 0, the "~" means "is approximated by a large enough r,"

and C3 and C. can be positive or negative. When these first order

5

terms are 2ero, secnnd order effects become z)parent, such as charge-

induced dipole attraction:
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1,22 =4 .
V(r)-—De..-—z-Zeosr N

where Z is the charge on the fon and g is the static polarizability
of the neutral atom, and the induced-dipole-induced dipole attraction
(also known as van der Waals or London dispersion forces)

-6

v(r) ~ Be - - C6r N

where C. 1s always positive. Derivations of these expressions a= -:l.

6
aslevaluacion schemes for the Cn's are well covered hy Hirschfelder,
Curtiss, and Birdl.

Tne last interaction, the van der Waals force, is responsible for
the "physical" properties of matter, i.e. condensation and freezing,
the structure of molecular crystals, properties of glasses, and of
course the "nonideal” behavior of gases. The attractive r-s potential
is present in all atoms and moclecules, whether they be in open or
closed shells and’ in the ahsence of chemical interactions. Tradition-
ally, these forces have been studied by means of the temperature depen-
dence of thermodynamic and tranmsport properties of gases such as second
viria; coefficlents, viscosities, and thermal conductivities. Siuce
these quantities are conveluted over a Boltzmann energy distribution
of a particle temperature, one had been hard pressed to obtuin a very
detailed description of the potuntial. Generally, the data had al-
lowed the adjustment of only a small number of parameters of a simple
model potential function. The advent of crossed molecular beam elastic

scattering has permitted finer control of energy and energy distcribution



of the coliiding par:iclesz. Perhaps the crowning achievemer:

of this technique is the direct inversion of the differential cross
section for He-Ne scattering to yleld a numerical potential, free
of thz prejiadice of any empirical potencial function3.

The spectroscopic investigation of these weak, long-range inter-
actions has until recently been limited to the analysis of the topmost
vibrational levels of chemically bound systems where the asymptotic
- part of the potential dominates in the region of the outer turning
point. The study of diatomic molecules whose binding is entirely due
to long-range forces has been limited by a number of practical experi-
mental difficulties. Tha concentration of dimers is necessarily low
compared to that of the monomers, requiring high pressures, low tem~-
peratures, and long absorption path lengths in order to achieve a
detectable signal. Because the potential minimum lies at relatively
large separations, the rotational constant 1s very small yielding
rotational spacings small enoughk to challenge the dispersion limit
of most monochromators. Couple this aspect with the small separation
of vibractional levels and the high degree of vibrational and rotational
excitation at even low temperatures and one is left with a very complex
spectrum. The analysis is further plagued by presence of the ubiquitous
atomic transition lying nearby from which the wolecular transition is
derived.

The recent development of rare gas-halogen laser systems and che
prospect of developing other rare gas excilmer systems has stimulaied
interest in understanding these van der Waals molecules and their

spectroscopic prOPEttiEqa. The wish to understand further the line
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broadening mechanisms of high pressure atomic lamps has also eﬁcouraged
workers to study the diatomic potentials responsible for the broadening
despite the cited difficulties. Moreover, the introduction of laser-
induced fluorescence with tunable dye 1aserss has provided the high
regsolution and high sensitivity necessary for those dimers with a
vigible absorption spectrum. The development of supersonic molecular
beam sources hze .urther aided study of these dimers by producing them
in a collision free environment (eliminating the problem of pressure
broadening) and with an effcctive internal excitatiom of ca. 10 K,

greatly simplifying the specctumﬁ.

75

Our own motlvation for examining weak diatomic molecules 1s twofold.

6ne 1s to coordinate bonding trends for these systems iIn a systematic
manner and hopefully arrive at some simple formulations for predicting
their characteristic properties. Our second motivation is that this
work is to complement the experimental work in progress in this labora-
tory. The Molecular Beam Electric Resonance project is a powerful tool
for determining the structure and properties of van der Waals molecules,
and thus any insight in these weak interactions is certain to be useful.
The other project is the investigation of the excitative Penning and

the excitive associative ilonization of alkaline earths in a flowing

afterglow of metastable rare gaseu. The observation of the almost diffuse

chemiluminescence of CaAr+ inspired us to examine the potential and

spectroscopic properties of the analogous BeAr+ in order to faclilitate

the analysis of the data for the former ion7’8.
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B. Bear'

- Upon excitiang with a microwave discharge BeCl2 or BeBr2 vapor
in a buffer gas of 200 torr of Ar or Kr, Subbaram and co~worker59
observed in emission a series of closely spaced, violet shaded vibra-
tional bands around 4000 R. Because the bands showed an intensity
dependent upon the pressure of the rare gas aund whose band positions
and spacings changed when changing from Ar to Kr and because the band
showed ZH-ZE transition structure, they concluded that the source of
the emission was from BeAr' and Bekr'. Subsequent high resolution

10,11 permitted the evaluation of vibrational amd rotaticnal

studies
constants for the two states of these molecular lomns. In baoth cases
they found B, and w, to be larger for the excited Azn state.

The BeAr+ x22+ vibrational and rotational constants had been
determined up to Y30 and Y21, respectively, providing enough informa-
tion to make a reasonable potential series analysis. We would expect
the b;nding of this molecule to be primarily due to the ion-induced
dipole attraction and relatively free of interfering chewical inter-~
actions. This would make BeAr' a "long-range molecule” in the sense
that the long-range r ™~ potential should still be the predominant
attr;ctive interaction near r, where the vibrational-rotational data
and hence the series cofficients are determined, making this a likely
first test-case for the different potential series.

The BeAr+ spectroscopic constantg are listed in Table I, permit-

ting the determination of the a; to a, Dunham coefficients, listed in

Table II. The [3,3] Padé approximant (PA) potential could be determined
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as well, and its coefficients are listed in Table III along with
those of the SPF, Thakkar and Hu. faker potentials. The simple

[2,2] PA expression
2 ) 2 2
V) = aok /(l'dlA + (al - az)A ) »

does not require listing of its coefficients.

By evaluating these potentials at the RKR turning points reported
by Subbaramlo, we find the [2,2] and [3,3] PA's to be a little lower
:ﬁan Gv’ by no more than 10 cm-l for v = 4, which is good compared to
a 30 co™} underestimation by the Thakkar and Huffaker potentials. T
situation 1s reversed for the v = 4 outer turning point, where the Pa's
are 39 cm-l high while the Th;kkar and Huffaker values are only over
by 11 and 5 cm-l, respectively. We expect this problem of PA overestima-

tion to grow worse for higher vibrationa! . wvels, since the dissuciation

limits,
(2,21 _ 2
De ap/(a; ~ ay)
and
(3,31 . . ;
b, 2,784 :

are 8967.5 and 8971.2 cm-l, respectively, which is more than twice
Subbaram's estimate of 4100 cm~l, indicating there is no hope for

recovering the long-range portion of the potential with the (2,2] or
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[3,3] approximants. In principle, one would require a [4,4] PA
to stimulate r‘b behavior, but the similarities of tie [2,2] and
[3,3] approximants do mot suggest the [4,4] would be drastically
different. In any case, there 1s simply not emough data to comstruct
a f4,4]) for this test problem.

In Fig. 1 we stow the Dunham, SPF, Thakkar and Huffaker poten-
tials plotted against the reduced coordinate r/re. Tie lines comnec-
" ting the RKR turning points are also shown for comparison. The Dunham
potentfal was not expected to perform very well, and, in fact, it
failed to reproduce the v = 3 and 4 levels on the outer branch. This
failure is perhaps to be expected in molecules which have a stromg
long-range interaction, causing the outer turning points of even the
lowest few vibrational states to extend well beyond r,. The SPF po-
tential recovers the RKR data somewhat better, being low by 61 cm_l
at the outer turning point of v" = 4. This potential rapidly fails
at larger r, howevcr, converging to a negative energy at r = =, For
BeAr+ n = 4, and we can generate up to four additinnal SPF coefficients
by requiring the terms in — through £73 to have zero coefficients
and by requiring the r-b term to have a coefficient given by the ion-
induced dipole interaction between a unit charge (Be+) and a polariz-
able cphere (Ar). One need not impose all constraints, of course,
and thus four additional SPF potentials can be generated. As Table II
shows, the highest-order SPF correction, b4, 1s very large and negative.
This value may be poorly determined due to truncation of the series, to
insufficiently precise spectral data, or to both factors. Neglecting

b4, but imposing one to four boundary conditions will generate four



more SPF potentials (for a grand total of nine).

We have generated all eight extended SPF potentials (in addition
to the direct inversion potential shown in Fig. 1) based on boundary
conditions and/or neglect of the b4 correction. Although the addition
of each new coefficien: extended the range of good behavior, none of
the eight additional SPF potentials showed remarkable improvement over
the initial SPF potential of Table III and Fig. 1. Including b4 and
adding one to four constraints ylelded potentials which continue to
show negative values for the potential in the region plotted in Fig. 1.
As successive constraints are enployed to generate additional terms,
the nonphysical maximum at r > T, moves to larger r and a:tains a
greater value for V before turning over. In contrast, neglecting b4
and adding successive c¢ :zaints yield four potentials which com-
tinually rise over the r > r, range, but to unphysically large values.
These eight potentials do not exhibit reasonmable long-range behavior
and are, therefore, not significant improvements over the simplest SPF
function. More gquantitative comparisons of these potentials are
presented later.

Clearly, the Thakkar and Huffaker potentials have rhe greatest
claim to validity at large r among these potentials, In order to
examine their long-range behavior in detail, we have plotted in Fig. 2
the quantity [V{(w) -« V(r)]/V(=) versus t/re on a log~log scale. The
Huffaker potential, being based on Morse functiomns, does not yield a
straight }inz. Thils function rises too quickly to yield the long-range
form dominatel by a single term of the type ™. Wichin the experi-

mental errors of the spectroscopic constants (as indicated by the
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dashed lines), the Thakkar potential yiolds very nearly a straight
line of slope =3.74 at r/re = 1.3 and ~3.27 ai ~:,/1.-'= = 5, This be-
havior is reinforced by comparison in Fig. 2 to the function
2
ae

[V(=) =~ W) 1/V(=) = =
2r‘De

. }
‘where & = 1.6421 A, the polarizability of Ar, and D_ = 4536.6 ca ",

the dissocilation energy of the Thakkar potential. It is also important
to point out that the outer turning point of the v" = 4 lavel is at
r/re = 1.239. The Thakkar potential is thus able to express the long-~

' range nature of the potential from limited information localized abou:
the potential minimum. Such an ability is an important feature of any
empirical potential fo-: species ;hich are weakly bound; the long-range
behavior becomes a particularly telling feature of any derived potential,
as other quantities, such as the dissociaticn energy, are usually not
well-known.

It is in fact, the estimation of the dissoclation energy that is

the most useful feature of these potentials., The estimated dissociation
energies for the X-srate of BeAr” are 3778:68 and 4537:250 el for the
Huffaker and Thakkar potentials, respecrively. Subbaram and co-workers
had fitted their RKR points to two model potentials: a difference between
two exponentials and an (exp, n) function finding Dd's of 3900 and
4300 cm_l, respectively, with n = 4.4£0,5. By taking an average, they
had declared an estimate of 4112:200 cm-l. Since the average of our
estimates, 4157+380Q cm-l, only increases the uncertainty of Da’ it would

secm that ou. wnalysis is a step backwards in the search for a better
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estimate.

__ Recently, however, LeRoy and Lamlz have made a new estimate,
indicating that the Thakkar value should be the preferred one. Per-
forming a variation on the old near-dissociation analysis, they had
fitted the BeAr+ Gv values to the forumula

2a/(n=2)

G, =D, - Hn(vD—V) x P(v)

where
F(v) = 1+ A (vv) + Az(vD-v)z -

or

F(v) = [1 + Bl(vD-v) + Bz(vD--v)2 + _.’]Zn/(n-Z) .

By varying the number of coefficients in each expansion, they had
arrived ac a common value of 4500%50 cm—l for D, and 40.8%0.5 for Ve
What is most notable is that tte Thakkar De of 4537 <:m-l lies comfortably
within the limits of LeRoy and Lam's uncertainty, which is five times
smaller than the standard deviation of the Thakkar value. This further
indicates that the Thakkar function is the best choice for a weakly
bound molecule.

The most rigorous test of a potential derived from spectral data
is the ability of rhe potential to reproduce the spectral constants
observed. The proper way to apply this test is to find the eigenvalues

of the potential. We have found the lowest five eigenvalues of the vibra-
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tional motion for all the ground state potentiais reported here
(except the Dunham and PA potentials, but including a model potential
discussed later), by integration of the radial Schrddinger equation
as outlined by Cooley 13 . The results are presented in Table IV as
the differences between the calculated and observed eigsnvalues. The
superiority of the Huffaker and especially the Thakkar potentials is
evident. The fact :hat the Huffaker potential consistently and increas~
ingly underestimates the successive eigenvalues further indicates that
tts dissociation energy estimate should be too small. Table IV also
quantitatively demonstrates that the succassive improvement of the SPF
poteatial through added boundary-condition coefficients still does not
bring the latter potential into line with the two former omes.

We should remark upon the misbehavior of tle Huffaker and Thakkar
potentials and just how serious this failure is. It is obvious from
Fig. 1 that both reach nonphysical maxima at 0.791 T, for the potential
of Huffaker and 0.806 L for that of Thakkar. For this reason integration
of the Schrédinger equation must begin at no valuc swaller than 0.80 r,
lest the wave function should begin to "feel" the attractive artifact
of the potential. This proves to be no severe constraint as illustrated
by the fact that, for v = 4 of the Huffaker potential, the wave function
at 0.50 T, is only 0.68% of its first maximum inside the well, suggesting
that the wave function should be well characterized within the inner rrall
given that the grid size is sufficiently small. For higher vibrational
levels it will be necessary to attach smoothly a simple repulsive function
such as an r ™ or a Morse functior. This practice is, of course, standard

procedure for extending the inner portion of the RKR curve above the

N
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4issociation limit. Moreover, misbehavior of the inper wall is not
unique to the series potentials; Tellinghuiseu14 has noted that the
inner RKR turning points near dissaciation have a tendency to flair

ia or out and has discussed the necessary remedies for this problem.
Thus, if we find a serles poteatial turning over along the inner region,
we are in no worse shape than with an RKR curve.

It is also worth noting the Thakkar maximum occurs for AT =-0,979,
very close to the theoretical convergence radius. Although the Huffaker
maximum corresponds to AH = -1,384, the critical value of r is only
0.015 z, closer in than that of Thakkar. An improved radius of conver-
gence in A-space does not necessarily imply an overwhelmingly improved
radius pf convergence in r-gpace.

Since we regard the overall success of the Thakkar function as
evidence of the importance of the r-4 attraction in the region of the

potential minimum, we will consider a simple model potential
= 2
F(r) = a0 8T - (2PePusary

where A and B8 are adjustable parameters, Z represents the "effective"
charge of the beryllium ion as seen by the rare gas atom, and a is the
polarizabili:y of the rare gas. By requiring that this potential have
a minimum at To and that it possess the same curvature at the minimum
as all other potentials, we secure the values of A and B through the

relations

2.3 22
B = (were/!oaez e‘a) + (S/re>
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and

A= (ZZzeza/Br:) .

We now vary Z in order to reproduce the Thakkar dissociation energy
of 4537 cm-l, obtaining Z = 1.29 for the X state. From Table IV it
15 app.rent that the calculated eigenvalues for this model potential
are comparable in their agreement with experiment to those of the bestc
EPY modifications.

Although there are not enough data known for the AZTIr state to
permit 2 adequate series inversion analysis, there are enough for
the evaluatlon of model potential parameters. From the Thakkar De
of the X gtate, the '1‘e from Table I, and the Be(zl?ll.z-zs) transition

15

enc:rgy of 31928.8 cm-l, (since the a2n state correlates to

1/2
the Be+ 2Pl/2 state) we derive a dissociation emergy for the A state
of 1189 cm"l, which in turn yields a value of ZII of 1.88.

The values of the two Z's and the relative binding energies of
the two states can be rationalized in terms of the screening effect
of the remaining valence electron of the beryllium jon. The !(22+ state
curresponds to the outer Be+ electron being in a 2sg molecular nrbital,

2+ .
core and the Ar atom's electron, screening

placing it between the Be
the core by 71%. The excited state places this electron into a 2pw m.o.,
which is mostly pure 2p and placed mainly on the beryllium iom, thus
praviding a poorer screen between the core and the Ar elzctroms. The
strength of polarization is thus larger,and because the outer

"rupulsive” valence electron is more out of the way, the ion-neutral

approach is closer,and ience the well depth for the excited state is
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larger.

It is also probabl: that Z > 1 atones for the sins of omissinn
of the hyperpolarizability and higher order induction terms that are
certainly important for field strengths on the order of 108 Volt cm-l.
The simple model potential nevertheless provides a chemist's guali-
tative descripuion of the binding and a surprisingly good quantita-—
tive descripticn of the ground atate.

In summary, the Thakkar potential augers well in this initial
test of its description of a weakly bound diatomic molecule, recover—
ing the long-range z-.4 behavior from spectroscopic data centered about
the potential minimum. Moreover, it extrapolates to a limiting value
that compares very well to recent, careful determinations of the dis~
sociation energy. This lattetr value can be used to evaluate a simple
model potential for the ground and excited states of BeAx+, which

in turn gives a fair quantitative description of the ground state and

an interesting qualitative explanation for the bonding of both states.
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C. Other Molecular Ions

Although BeKr+ has also been obsetved11 under high resolution,
like the A Zﬂt state of BeAr+ not enough vibrational levels are ob-
served to warrant a decent potentlial inversion analysis. The three
parameter model potential, however, requires only the experimental
quantities Weo Be (hence re), and De' The last plece of data is not
known for either state, but Hartman7;16 has argued that, since the
value of Z is a property of the beryllium ion alome, the ZZ and ZH
quantities should be transferable from BeAr+ to BeKr+, permitting
an evaluation of the latter's De’s. One therefore finds D; = 5511 cn;l

for the X ZE+ state and Dé = 13656 cm-l for the A 2“1/2 state of

BeKr+. Since
= o v
Te AE + De De s

21’1/2-25 energy of Be* 15, one pre~

dicts a ’I‘e of 23784 cm-l which compares well ts the observed value of

where AE = 31928.8 cm > is the

23782,18 cm_l. Some of this good agreement stems from the luck of
rounding the Z's to three significant figures, but even sc¢ only a
rounding error of *50 cm-l, or 0.2%, 1s present.

7,8 has applied

Because of the success of this model Hartman
this potential to the complex chemiluminescence of the A ZHt state of
CaAr+ with some success.

It is intriguing to consider the application of this model to
BeXe+, which has also been observed in emission by Coxun and co-

workersl7. Unfortunately, because of blending of the rotational

lines due to the several isotopes of xenon and the limited amount of



run time they had due to the cost of xeron (they used a flow system
for their microwave discharge), a high resolution rotational analysis
and a determination of r, vas not possible. We can, however, take
their values of the me's and esiimate the model parameters in the
following manner. The value of 8 can be estimated from the Zener

approximation:18

/2)/30

8= (1, /R 4 (1ym)t
whére Il and 12 are the ionization potentials of the rare gas and
tae beryllium ion in either the 25 or 2P1/2 state as appl%ca&le, R,
is the Rydberg constant for infinite nuclear mass, and 3 is the
Bohr radius. Table V comparesvthe Zener approximation to the model
potential evaluations of B for BeAr+ and BeKr+, indicating an average

1

°—
error of 0.05 A ~. Ry estimating the B's for BeXe+ and using the

curvature equation, we f£ind
6 _ 2 22 )
T, = haoRmZ a(Bre-S)/(umen c) ,

where h is Planck’s constant, me and the Rydberg comstant, R_, are
- L]

expressed in cm 1, a = 4,0444 A3 for xenon, and we take 4 to be the

reduced mass for the 131 isctope of xenon. We find for the X state:

° -
T, = 2.458+.016 A and De = 6308%90 cm l, and for the A state:

T 2.348%,020 i and De = 14870+250 cm-l, where the uncertainties

e
are quoted only for the =+0.05 & uncertainty of the 3's. These values

follow the expected trend apparent from Table VI. The estimated Te for

a7
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BeXe+ is 23367 cm-l, about 5.8% higher than Coxon's observed‘value
of 22096 cm-l, but not unreasonable considering the assumptions made.

In order to determine the range of applicability of the model
potential, we list the Z values of various simple ion molecules im
Table VII. We assume the polarizabilities of the rare gases to be
0.2051, 0,.3946, 1.6421, and 2.&794 I for He, Ne, Ar, and Kr, respec-
tively.

For the homonuclear rare gas ions, where exchange and chemical
forces are important, the Z-values are obviously too large to be
explained by any deshielding arguments and prove, as expected, that
the model provides an imadequate description of the bonding.‘ Similar
is the case for the rare gas-proton pairs where the long-range force
can only correspond to a bare proton, i.e. Z £ 1. Again, onme expects
chemical forces to be important in the reglon of the potential minimum.
It appears that the model potential, like the Thakkar series, 1s useful
for bound energies of less than 40 kcal mol-l.

The mixed rare gas ion pairs, on the other hand, show fairly
reasonable Z-values that can be ratiohalized. In contrast to beryllium
lon-rare gas cases, the molecular orbital angular momentum is derived
not from a “repulsive” electron but rather from an “attractive"” electron
hole. For example, the X 22+ and A 2H state of HeAr+ both correlate
to the 2P state of Ar+. (Since the data for this system are from an
ab initio calculacionlg, - we do not concern ourselves with spin-orbic
interactions.) The X state has only one electron in the argon 30
orbital,and hence the helium atom sees an unscreened neon nucleus to

the tune of Z = 1.20. The A state has two electrons in the 3po orbital,



and hence the helium is more effectively screened from the neon
charge, although Z = 0.95 is only a rough estimate since Wy must
be evaluated from the Kratzer formula using the rotational and cen-
trifugal distortiom constants of the ground vibraticmal level. The
value of Z = 1.07 for B state of HeNe+, which correlates to Ne(ls)
and He+(zs) is most reassuring, since the remaining, very tightly
bound electron of helium should quite effectively shield its alpha
particle from the approaching electrons of neon. The impnartance of
the ion-induced dipole interaction has been confirmed in the study
by Dabrowski and Herzbergzo_ The 2-value for vhe observed HeNe+
A 2H1/2 state 1s, again, a rough estimate due to lack of daté but
nevertheless compares well to the corresponding A state of HeAr+.
The Z for the X state of-HeNe+ seems unusually large for Ne+
and casts a shadow of doubt on the exponential-4 model, which is
especially disappointing since the binding enerzy is comparable to
that of BeAr+. There are several differences between these two
molecular ions worth pointing out. First, only the top 15% of the
well has been observed in Dabrowski and Herzberg's emission studies,
subjecting Wy and De to errors of extrapolation, whereas 34% of the
bottom of the vibrational well is observed for BeAr+. Second, the
A 2H1/2 state of BeAr+, is well separated energetically from the
ground state and does not interact through Hund's case (c) coupling
perturbations, whereas the X and A states correlate to different
spin-orbit states of Ne+(2P), the latter being split by only
—l[lS].

780.5 cm This coupling is seen through the "borrowing of

intensity’ from the X state, making the B ZE+ to A 2Hl/2 emission

89
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possible in contrast to the complete lack of emission to the A 2H3/2
state, which does not couple. Examination of Fig. 8 of Dabrowski
and Herzberg's paper reveals that the region of closest interaction
between the A and X states is the long-range portion of the X state.
It is possible, then, that the A state perturbations are distorting
the shape of the X state potential in the region where data are avail-
able.
We have examined the X and B states of HeNe+ more closely through
a potential series inversion. We list the Yij's and potential coef-
ficients in Table VIII. The potential plots, shown in Figs. 3 and 4,
further demonstrate that the Thakkar series is superior to the Huffaker
series for qualitatively describing weakly bound systems, even more so
in this case, since the values of the dissociation eneégies are less
at issue than with BeAr+. 0f particular note is the successively
decreasing correction coefficients for the B state, Indicating that
the Thakkar function is well suited for describing this potential, A
more quantitative test is in Table IV: the reproduction of vibratiomal
and rotational data. The rusults for the B state appear tolerable,
but the Thakkar values for the X state tend to be too large. These
deficiencies may be attributed to the A suate interactions and possibly
the extrapolation problems cited earlier. Overall, however, the Thakkar
series 1s the best available one for both states since that of Huffaker
cannot even reproduce the bound states that were initially observed.
One unigue point definitely worth uwentioning is the matter of
p for these states. In general, we have observed that for most weakly

. ~-n. . - - . fa
bournd molecules which have an r attraction dominating their binding,
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the value of p is on the order of n-1, such as 3.16 for BeAt+.

This is not the case for the X and B states of HeNe+, where the
p-values are 4.65 and 4.41, respectively. Although we might try to
dismiss the X state anomaly as before, we remain perplexed with the
case of the B state, To illustrate further the long-range deviation
we plot [V(=)-V(r)]/V(«) versus r in Fig. 5 as we have done in Fig. 2.
For BeAr+, the fact that p was one integer too small was compensated
for by the higher order correction coefficients, yielding a reasonable
long~range behavior. This is not possible for the smaller correction
terms of the HeNe+ B state. It might be that the HeNe+ B state 1is so
close to a pure r—b molecule, having the least chemical interaction,
that ;t is the exception that proves the rule and causes the Thakkar

potential to overestimate the exponent of the long-range behavior.
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D. NaNe and NaAr

The line broadening mechanisms of the sodium D lines and the
interatomic interactions between ground state and excited sodium atoms
is of practical interest. Ome application is the high pressure sodi:
vapor street lamp which is fast replacing the familiar mercury vapor
lamp, changinz the nightime urban landscape from blue to pinkish crange.
Another application is the suggested21 coabilnation of alkall metal
atoms and 1SO atoms to form excimer laser systems. One such set of
candidates is the sodium-rare gas (Rg) pair. For these reasons the
sodium-rare gas interactions have received quite a bit of theoretical
and experimental attention.

The analysis of NaRg pairs was our next logical step, since they
are 1sovalent to the BeRg+ molecules w2 have discussed thus far,
Indeed, the spectroscopic properties of BeRg+ resemble those of NaRg
more than the other isovalent series, BeX, where X is a halogen,
since the binding is through weak long-range physical forces rather
than short-range chemical ones. The interesting difference here is
that the nature of the long-range attraction for NaRg is the even
weaker London dispersion r.6 reaction.

The experiments that concerned us most were the superscaic
molecular beam laser induced spectroscopy studies of NaNe by Ahmad-Bitar,
Lapatovich, Pricchard, and Renhorn (ALPR)22 and of NaAr by Smallev,
Auerbach, Fitch, Levy, and Wharton (SAFLW)23. Using Campargue-type
nozzle sourcesza, which are capable of producing internal molecular
temperatures <1°K, they had formed, or "condensed"”, a reasonably high

concentration of NaRg in a cold, collisiou~free environment. Crossing
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this beam at right angles with a'narrow bandwidth tunable cw dye laser
permitted very high resolution, high semsitivity laser~induced fluor-~
escence studies of the dimer. The resulting spectral constants in turn
allowed us to make a potential serles inversion, at least for the A ZHr
state. We had, in fact, done so and reported our results for the. A 2H3/2
state of NaNe and X ZZ+, A ZHI/Z’ and A 2H3/2 states of NaAr. Since

that time there have been more careful and definitive experimental
studies on NaNe and on NaAr.

Rather than repeat our earlier results, which are readily attain-
able in the 1i:erature25, we will simply summarize and critique them
with respect to the more recent experimental studies.

In our original study we had found for the A 2H2/3 state of NaNe,
like the X and B states of HeNe+, the Thakkar function to be the best
series representation of the potential. The Huffaker series had severely
underastimated the well-depth and had again failed to reproduce the
vibrational levels used to determine it. The Thakkar potential had
ten bound levels with a dissociation energy of 149.70 cm_l, or 7% higher
than ALPR's original estimate. Since we have already reported the Gv's,
Bv's, and the RKR turning points, we omly list the deviations between
the opserved and calculated quantities in Table X. The consistently
larger AG(v+1l/2)'s and larger Bv's for the higher levels reaffirm our
suspicion that the Thakkar potential probably overestimates De; the
fact that p=4.18 whereas the long-range n=6 suggests that the Thakkar
potential should rise past the true dissociation limit, but probably
not by the ten wave number discrepancy between our value and that of

ALPR.
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The initial report of ALPR was followed by Lapatovich, Ahmad-
Bitar, Moskowitz, Renhorn, Gottscho, and Pritchard (LAHRGP)Zs,
yilelding accurate values of De and T, for the X, A, and B states. By
means of a LeRoy and Bermstein near-dissociation analysis they obtained
a dissocilation energy of 140258, In an even more careful analysis by
Gottscho, Ahmad-Bitar, Lapatovich, Renhorn, and Pritchard (GALRP)27,
a Thakkar potential was fitted to the RKR turning points of the A 2H3/2
state, yielding a dissociation energy of 144.4 cm-l. This latter value
is probably mere realistic since the former was obtained by extrapolating
the near-dissociation formula to'v = - 1/2, which is in a regime where
the formula could not possibly be valid., We are, of course, réassuted
that thelr latter value agrees more closely (3.7%) to our original
estimate. In Table XI we list the spectroscopic constants, our Thakkar
coefficients and those of GALRP. The RKR turning points are also given
there.

GALRP have found the A 2H1/Z state to be badly perturbed by the
B ZZ+ state and, anticipating poor behavior due to interacting states,
we therefore do not conmsider fitting a Thakkar funcrion to their data.
In fact, GALRP have already performed an extensive deperrurbation cal-
culation of the adiabatic A and B states, yielding results we consider
instructive., In particular, they have found a shallow secondary minimum

°
1 at 7.1 4 of the A 2H1/2 state, lying between the outer

of 0.04 cm™
turning points of v = 5 and v = 6 (see Fig. 7 of ref. 27). Although
an RKR analysis would not have shown this minimum, the effects appear

in the valunes of B, and Franck-Condon factors. Any series potential

function would be hard-pressed to reproduce faithfully this phenomenon
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with only a few terms. We feel this may suggest why the series poten-
tials fail to represent an excited, interacting state which, from a
casual glance at the RKR curve, appears to be "normal".

One other excited state interaction GALRP have studied more
closely is the predissociation of the v = 4 and 5 rovibronic levels
of the A 2H3/2 gtate into the A 2“1/2 continuum. It would be tempting
to blame this effect on the fact that the deviation of BA ir a least-
équares fit of Yk,'s is exceptionally large, as we had noted earlierZ N
but this would not explain why BS is so well-adjusted while the predis-
sociation line broadening of v = 5 is no less than that of v = 4. Unless
further evidence indicates that the broadening should be asymmetric
'for v = 4, yilelding an incorrect B,» there is no physical justification
for the exclusion of BA in a least-squares fit of GALRP's newer, more
accurate data.

As for the X 22+ state, there is only one bound vibrational level
observed. Using the rotational data and the isotopic shift observed

for NazzNe, GALRP have fit a function
8 6
V(r) = Calr ~ 06/r y

vielding a dissociation energy 8.0:0.3 cm_l and an internuclear equi-

°
1ibrium separation 5.3%#0,.1 A. Although their fitted value of C6 =

1 e

7.092X105 cm L A 6 is considerably larger than Dalgarno and Davidson's
; 5 -1 ° 28 . f s

estimate of 2.3%107 cm ~ A , the overall physical description of

the potential is probably well within the uncertainties cited.

The same is true for the B 2Z+ state. Only two vibrational levels
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are observed. Since this state is also strongly perturbed by the A
state, a reliable Thakkar fit would be as unlikely as for the X state.
GALRP's values for r_ and D, are 7.9:0.5 A and 4.530.5 cm *.

In 5ALFW's original analysis of NaAr laser~induced fluorescence,
there was an uncertainty of the vibrational level assignmeat of the
A an states, the lowest for the A 2“1/2 being either 6, 7, or 8, so
we considered all three possibilities in our Dunham constants/series
pocentcfal analysis. Since that time Tellinghuisen, Ragone, Kim, Auer-
bach, Smalley, Wharton, and Levy (TRKASHL)Z9 have dispersed the laser-
induced fluorescence of the A state tc the X 22+ state and have estab-
lished that the lowest observable level is v = 7 by analyziné the
bound~free fluorescence (which, incidentally, showed that the vibra-
tional assignment of the excited state could be established by count-
ing the number of nodes in the bound-free fluorescence and assigning
them to the nodes of the excited state's vibrational wave fun:tion).
We will therefore restrict ourselves to recording only the "x = 7" re-
suits of our paper.

The mechanical constants for the A 251/2 and A 2H3/2 state are
isted in Table XII and the Thakkar potential coefficients in Tahle XIII.
Since there are not enough data to perforr a nominal least-squares fit
(1.e. no degrees of freedom), it is impossible to establish an error
bounds on the reliability of the individual constants, as was the case
for NaNe. Moreover, we question whether the coefficients for the
A ZJI1/2

action with the (unobsefved)BZZ state and 2) the fact that the values

state are very reliable at all due to 1) the possible inter-

for 121 and Y31 were set to zero in order to calculate a coefficient
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set up to eg. The equal and opposite values of the e31e4 and e_,’/e6

pairs hint that the higher order en's may be nonphysical. Despite these
prublems, the Thakkar dissociastion energy of 572.2 ! compares well with
TRKASWL's latest evaluation of 368.2 cm'l, indicating that the Thakkar po-
tential's gross description of the state remains satisfactory. The

1 from the

argon pressure-broadening studies of York, Scheps, and Gallagher30. All

Thakkar D), is alsowithin the Hmits of the value of 55030 cm”

these results confirm our earlier suspicion that the theoretical SCF-CI
calculations of Swxon, Olsemn, and Liu’u had determined a dissociation
energy ~15% too small, which is not a terrible indictment considering their
project.

The A 2“3/2 state enjoyed a more quantiiative success in reproducing
the experimental values of SAFLW. des,ite the fact that there was one
fewer vibrational level observed. Part of the success may be actributed
to the fact that, with one fewer observed level, we had not been temped
to overextend thedegree of the Thakkar polynomial, but surely tite lack of

B 21'.‘ interaction made a series description of this potential more appro-

1/2
priate32. The agreement between this pntential and experimental results

is better than that of the 21'[1/2 state as is apparent in Tables XIV and

XV. The Yij 's used to compute the 21'{2/3 Thakkar function also determine an
RKR potential which shows remrkable agreement - * is illustrated in Figure 6.
Also shown is the Huffaker series and its repected failure to reproduce
the overall potential form.

Some of this agreement may be due to a fortuitously good set of
Gv Y:.J.'s; the derivativ~ of (:‘r with respect to v is zero in the neigh-

borhood of the dissociation level, which is equivalent to saying that
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the Birge-Sponer plot crosses the AGv = 0 axls near dissociation. The
RKR exprapolation c¢herefore shows "dissociative” behavior at and above
v = 17. (By comparison, the Gv expansion for the 2ﬂ1/2 state increases
monotonically for positive v, indicating no dissociation.) However,
when we compare our value with the De's obtained by others, we are en=-

couraged. For the A 2H2/3 state, TRKASWL determine De to be 558.6 cm-l.

Diiren, Groger, Hasselbrink, and Liedtke33, studying elastic scattering
of argon with laser-excited sodium in the 21’3/2 state, have recently
derived 562 cm-l for their pseudopotential and 551 cm-l for the Lennard-
Jones (8,6) model.

The most significant development in NaAr since our origimal pub-
lication is a better spectroscopic determination of the groumnd state.
TRKASWL had observed flucrescence bands past v" = 4 into the continuum
of the ground state, whereas only v" = 0 and 1 were observed in SAFLW's
work. Althcugh the resolution of the dispersed fluorescence was not
good enough to permit a rotational analysis of the vibrational levels,
the accuracy of the determined vibrational energies permitted a near-
dissociation analysis evaluation of the dissociation energy, which was
found to be 40.4:z1 cm-l. Using this value, TRKASWL derived a potential
for describing the bound-free Franck-Condon intensities. Sirce they
were primarily interested in the repulsive part of the potential, they
found a modified Morse to be an adequate description.

The new vibrational data also made a determination of w, and WaXe
possible. We have used these values to determine a new Thakkar function,

yielding p = 4.0517, e, = -0.07770 and De = 55.668 cm-l. Using p = 6,
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ve have found e, = 0.13431, e, = 0.32472, and D_ = 40.158 cal. Ve have
examined this latter function more closely. The appropriate vibrational
and rotational constants are reported in Table XVI and the p = 6 Thakkar
function is plotted along with TRKASWL's modified Morse function and
Duren and Groger's (DG)34 modified Lennard~Jones potential in Fig. 7.

Examining the plot, one can see that ian the bound region of the
potential the Thakkar function follows the TRKASWL potential faithfully
ﬁp to 6.5 ;, where it switches over and coincides with the long-range
portion of the DG potential, (Oux 06 coefficient is 1.5 cm—l ;6 compared
to 1.4 cm-l ;6 for the DG potential, both of which are ca. 50% largex
than the theoreticel onezs.) Above dissociation the slowly ascending
ERKASHL potential is to be preferred since it was fitted to continuum

1

fluorescence up to 2500 cm abeve dissociation, where DG’s scattering

data employs collision energies of only 625 cm-l. Not apparent in Fig. 7
is the crossing between the Thakkar and DG functions above 100 cm-l. The
steepness of the Thakkar function 1is a tragic flaw which is not easily
remedied.

The RKR turning points using TRKASWL's Yij's are alsc illustratad.
The poor behavior of the immer tivning points can prabably be blamed
on an inadequate description of Bv for high vibrational levels, césting
doubt on Be and oy This in turn casts an aspersion on the Thakkar
constants derived from these values. »

A closer, quantitative examination of the vibrational energies
and rotaiional constants in Table XVII in fact reveals that the p = 6
Thakkar potential to be, rather than the best of boéh worlds (i.e. TRKASWL

and DG potentials), a weak compromise. We have calculated experimental
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Go(v)'s from the band measurements of TRKASWL's Table I. The uncer-
tainties are the standard devliations of the average Go(v)'s listed.
The experimental Bv's are those of SAFLW. It 1s apparent that the
TRKASWL and DG potentials show considerable differemce in Fig. 7, yet
their vibrational energies are within experimental error. Although the
p = 6 function is fairly close, the fact that its vibrational energiles
are still outgide the error limits is a direct result of the compromise;
vas the Thakkar function follows TRKASWL's repulsive wall and switches
over to DG's potemntial for r > Ty the Thakkar function is wider than
the other two potentials. Since zhe vibrational energies are determined
solely by the potential width (cf. the RKR f(v) expression), the Thakkar
.Go(v) values will lie lower than those of DG and TRKASWL. The Bv datca,
more dependent upon the centering of the potential at the correct Tos
shows the Thakkar potential to be a little better than that of DG, but
still outside SAFLW's error estimates.

It is worthwhile revisiting our original technique of fitting
the Thakkar potentials to the data of SAFLW. We had taken the banc shift
measurements from the 2P1/2 line of Na for the rotation ess vibrational
levels of the v' = 7 level of the 2H3/2 state and the v'' = 0 and 1
levels of the 22+ state, Using our values from the integrated Thakkar
potengial for the upper state, we computed D; = Dé - G; and determined
the constants Dji and D; from the formula

o

D! = D} + AV, T) ,

where A(v",7) is the (negative) band shift from the 293/2 line of sodiunla5



at 16973.379. By constraining mexe" such that for any m; SAFLW's
AG was reproduced, m; was iteratively varied so that resulting Thakker
D;, m;, and mex; yielded our computed values for Da and DI. This was

done for Thakkar functions of variable p(TI) and p = 6 (TII), as well
as sevaral other model po:entialsas.
The reported De's for the Thakkar functions are, in light of

TRKASWL's results, about one wave number high. Closer examination shows

that our calculated values of DE and D'i of 34.91 and 23.65 cm-l, respec-

tively, are 0.96 c.m-'l higher than those calculated from TRKASWL's

derived values. This can be further traced to an error in our extrapo-

lated Dy 1i60.95 cat higher than

that ptedicted by Table IT of TRKASWL's work.

and, in fact, our D; of 145.625 em

‘Repeating our iterative algorithm on the D(')' and DI of Tellinghuisen
et al., we find the m;, wex:, and D; of the standard, variable p Thakkar
(TIII) and p = 6 Thakkar (TIV) to be identical! This is in marked
contrast to the preceding results using the "standard" Y:Lj potential
determination. The spectroscopic quantities derived from these potentials
and tha Thakkar constants for TI - TIV are listed in Tables XVII and XIX,
respectively. Most notable is that the adjustment of Db' and D; does
bring the D; of the Thakkar potentials into agreement with Tellinghuisen's
value.

This exercise illustrates more than just internmal consistency.
First, it reiterates the success of representing the A 2]13/2 state with
a Thakkar function since our original, relative accuracy of better than

1

5% for the X state hinged upon the 1 cm T absolute accuracy of D;.



102

It shows that, given the right data and fitting procedure, the Thakkar
function is also an appropriate one for the ground state as well,
yielding fairly good quantitative results. The agreement between TIII
and TIV when compared to the disagreement between Thakkar functions
using our tradiitional fitting procedure indicates that, when dealing
with limited data, newer means of potential fitting incorporatimg all
data available should be invoked. This point will be comsidered in
more detail towards the end of this chapter.

We also find a certain paradox in Table XIX. Although TI and TII
overestimate De by 1 cm-l, their G's are better than those of the
corresponding TTII and TIV. While this may warrant further study, we
suspect that the expansion to ey is too limited to accommodate all the
data. .

A final point to be made is the apparent ambiguity of choice of
varlable-p over p = 6 Thakkar functions. Our earlier experience with
BeAr' lead us to conclude that the variable-p was to be preferred.

In light of YaAr X 25* and the results of Gottscho et al. for A 2H3/2
of NaNe, it may be that the two kinds of Thakkar functions should be
examined on a case-by-case basis. As a matter of consistency, however,

we will stay with our choice of variable-p for the remainder of this

chapter.
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E. Ar2
We consider now the dimer of argon. The interaction and binding
of this nobel gas, 0.3 kecal mol-l at 3.8 ;, should be ccnsidersd the
model system for studying van der Waals attraction, Argon, obtained
by liquification of air, is readily available and has been the subject
of extensive study in the past, and the thermodynamic and transport
properties are well documentedaﬁ. Still another of its properties
in nature that lends itself for microscopic study is the fact that it
occurs almost exclusively (99.6%Z) as the 40-isotope: a boson. The Pauli
Exclusion Principle requires rhat only ever angular momentum quantum
numters can occur for the ground state of the dimer, permi::ihg a unique
end detailed study of the differential elastic scattering cross section
and the resolution of the rotationmal structure by vacuum ultraviolet
absorptinn spectroscopy.
As a result, a great number of potential functions have been
derived of varying degrees of complexity. Recent examples are the
37

numerical functions of Dymond and Alder and of Colbourn ard

Douglas 38, the plecewise continuous functions of Parsons, Siska, and
Leesg, of Aziz and ChenAO, and of Koida and co—worker541, and

the function of Barker, Fisher, and Wattsl‘2 which is analytic for all
r, if somewhat unwieldy. Results of earlier and siuplet potential
functions are reviewed by Smich43. Probably the best functions for
describing the combined spectroscopic and thermodynamic data are the
HC~D potential of Aziz 3nd Chen and potential 4 of Koida et al. We

might also infer that their potentials could reproduce the elastic

scattering data satisfactorily, but this test is yet to be made in
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the literature.

In light of this, no systematic study of potentials applicable
to van der Waals molecules is complete without considering Arz. OQur
purpose is not to propose a potential superior to any in print but
rather to deterime whether the Thakkar potential is suitable for this
system. We find, in fact, that our standard procedure produces a poten-~
cvial function that does not describe the argon-argon interaction to the
accuracy that the true potential is known. This is not an indictment
of the potential form so much as it is for the method of determining

38 found that the RKR method

the potential; Colbourn and Douglas (CD)
failed to produce a potential adequate for predicting the higher vibra-
tional and highly excited rotational levels. 1In order to improve the
Thakkar function we incorporate into the fit the elastic scattering
data of Parsons, Siska, and Lee (PSL)39, from which we derive a
potential that 1is suitable for describing the spectroscopic, scattering
and thermodynamic data available. Towards the end of this chapter we
will describe a method for systematically varying a Thakkar or any other
function using spectroscopic data alone which is more in the spirit of
how CD derived their numerical potential from their initial RKR estimate.
We find our initial, or nominal, Thakkar by first fitting a set
of Yi.'s to the Go(v) and Bv values reported by Colbourn and Douglas.
Since data are avallatle for v = 0 to v = 5, we have enough values to
perform a least-squares Yij fit. This proves helpful since we can
estimate the standard deviations of the Yij's and hence the standard
deviations of the Thakkar constants, which are reported in Table XX.

Because of the relative uncertainties in the data, discussed in ref. 38,
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and the low number of degrees of freedom (i.e. the differences between
number of data and number of fitted parameters) in the least-squares

fit, even a minimal set of Y, 's had fairly high standard devia-

ij
tion544. In turn, the nominal Thakkar constants inherit large un-
certainties; the well depth, Dg 1s uncertain by 18% and in fact is 102
higher than the best determinations of the Ar, bond emergy. Because
of tliese uncertainties, the nominal Thakkar cannot reproduce the dimer's
potential to the known degree of accuracy or even accurately reproduce
che spectroscopic data from which the potential is derived.

There are three reasons why our standard procedure falled to
produce an agreeable potential. One, as mentioned before, is the
uncertainty in the measured spectroscopic constants. Although listing

l, CD expressed an actual confidence of

their Go(v)'s to 0.001l cm
0.1 cm-l up to 0.25 cm.—1 for v = 5. Ralative to the dissociation energy,
this means an uncertainty of 1 to 2.5 parts per thousand. This 1is
slightly less than the 2.5 parts per thousand from TRKASWL's measure—
ments of the X state of NaAr, where our standard Thakkar procedure pro-
duced a potential whose dissociation energy was in error by 38%. By
comparison, our more presentable results for BeAr+, HeNe+, NaNe, and
NaAr involved relative errors in the range of 20 to 77 parts per mil-
lion.

A second reason for the Arz failure is the fact that we could
only employ an expansion up to Y30 and Y21 with any confidence, although
the data encompassed almost the entire potential well. While a low order
expansion may be appropriate for extracting the "ctrue" Yij's when only

a fraction of the potential is sampled (such as with BeAr® and the
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A 2H3/2 state of NaAr), the need of describing the entire potential

will require a higher order expansion in Yij's. This 1s the same
problem we cited for HF in Chapter 11, and is endemic to the molecular
system being considered. 1In all fairmess, we should report that we
have, in fact, examined higher order Yij and hence Thakkar expansions
(at the price of even higher standard deviations due to fewer degrees
of freedom) and found no improvement in the nominal Thakkar function.
We nevertheless feel that lack of available molecular information
renains a source of error.

To substantiate further this point, we come to the third reason.
There is, in fact, "extra" information available which we do not employ :
the Dv’s. As discussed in Chapter 1I, our procedure does not employ
the information available from the highly ex:ited rotational states,
except to derive more accurate Bv's and hence Yil's. This point is
equally true of the RKR procedure and, point of fact, is the reason
that €D had scrapped the RKR method. Citing the lack of Go(v)‘s and
Bv's as well as the semiclassical approximation as the reasons their
RKR potential could not sacisfactorily reproduce their observed levels,
CD manually adjusted their initial RKR potential in order to reproduce
the energies of the high J levels, thus arriving at their final numerical
function. As mentioned before, we will discuss how to use this "extra"
information later in this chapter.

We have taken cnother tack for increasing our data set. Using
the nominal potential to geperate the diffesrential elastic scattering

cross section for Ar for comparison with the high resolution data of
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PSL, we have systematically varied the nominal constants throughout
their calculated uncertainties in an attempt to improve the differential
croas section. This adjustment was not done in a least~squares fitting
sense; rather a set of calculations was made for various parameter
values, and the RMS deviation of the calculation from the experimental
data was iteratively lowered until the agreement was significantly
improved. Thus, it is possible that these refined constants could be
rniore highly refined by methods such as suggested by Bickes and
Bernstein“s, but the rapid convergence of our iterative method made
further refinement unwarranted.

We give the refined potential constants in Table XXI, and plot
the differential cross sections computed from the nominal and refined
Thakkar potentials as well as the Morse-Spline-van der Waals (MSV III)
potential of PSL in Fig, 8. All calculations shown were done with the
same degree of angular and velocity averaging to allow easy visual
comparison among the fits. As a result, the symmetry oscillations at
large angles (due to the even J parity property of Ar2) are somewhat
enhanced by incomplete averaging.

A qualitative glance at this figure shows that the nominal
Thakkar provides an unsatisfactory description; the calculated raimbow
scattering appears too large an angle, indicative of too deep a poten-
tial well. Although the counstamnts of the refined Thakkar are remarkably
similar to those of the nominal, the improvement in the calculated cross
section is dramatically evident. While the MSV III potential gives
better agreement at scattering angles slightly less than the primary

rainbow, the overall fits of the refined Thakkar potential and the
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MSV III potentisl are comparable.

As a final check of the validity of the refined Thakkar potential,
we have calculated the second virial coefficient using the standard
expression including the first quantum correctionks. The results of
these calculations for the nominal Thakkar, the refined Thakkar, the
MSV III and the Colbourn and Douglas potentials are shown in Fig. 9,
as a plot of differences from the experimental data of Levalt Sengers
et El'47 For this calculation we have connected the table of points
given by Colbourn and Douglas with spline functions and extended the
potential in reglons gutside of their table with a Morse function and
with the expression

C C
VR) = - = - =
R R

at short and long ranges, respectively. The average RMS deviations,
evaluated every 100K, of the refinmed Thakkar, MSV IIT, and Colbourn
and Douglas potentials are 2.06, 2.34, and 1.17, respectively. When
calculated every 2K from 80K to 120K the average RMS deviations are
3.84, 8.41, and 4.46. The low deviations for the potential of Colbourn
and Douglas are of no surprise, since they had adjusted their values
of De.and Ce to improve agreement between experimental and calculated
second virial coefficlents.

In Fig, 10, we plot the four potentials for Arz of immediate con-
cern. These are the nominal and refined Thakkar potentials, the MSV IIT

potential, and the CD potential. We have chosen these latter two poten-—
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tials since the authors, who have taken the data sets we have employed,
have found these potentials best represented their respective data
setsaa. The refined Thakkar has a well depth of 100.37 cm—l. Other
A:r:2 potentials have well depths only slightly less than this. PSL re-
port 97.83 en © for MSV ITI, C as well as Aziz and Chen employ

l, and Koida et al. find 99.58 em? as their optimum. While

99.55 cm
both Thakkars employ an To value of 3.758 R, the other values are

ﬁSV II1: 3.760 ;, Koida et al.: 3.7545 ;, and CD and Aziz and Chen:
3,759%,005 ;.

Therefore, these most recent and elaborate functions, including
the refined Thakkar potential, are In excellent agreement regarding
.:bese two main parameters of the interatomic potential. They disagree
mainly in the shape of the repulsive wall at energies several times the
well depth. The Thakkar potential rises much more steeply than a Morse
finction, while both the MSV and the Colbourn and Douglas potentials
have single Morse function repulsive walls. The repulsive portion of
Aziz and Chen's potential, adjusted to fit the Hartree-Fock porential
calculated by Wahl and co-workers, may be equally good, but we have not
examined this.

It is noteworthy that the MSV and Thakkar functions begin to
deviate only at energies of ~300 cm_l. The collision energy used in
the scattering measurements of Ref. 39 was only 500 cm-l. Colgate, et
élfg reported high emergy Ar-Ar scattering results which are in much
better agreement with the exponential (Morse-like) repulsion of the MSV

potential than with the Thakkar potential. We conclude that the repulsive



wall of the Thakitar function is in serious error, but only at en;argies
of several times the well depth.

While the repulsive wall is not well determined above some energy
{and probably so for all the potentials discussed hure), it is inter-
esting that the refined Thakkar function gives the best calculated
second virial coefficient at high temperatures (Fig. 9). The repulsive
wall tends to Aominate B(T) more at these temperatures, which are well
above the Boyle temperature of ca. 400K. This indicates that the repul~
sive wall misbehavior of the Thakkar is mot serious enough to prevent
prediction of high temperature thermodynamic properties.

Finally, we list in Table XXIT the energies of the bound vibra-
tional levels, Gv’ and the corresponding rotatiornal constants, BV,
for the potentials. The Gv's were computed by numerical solution of
the radial Schroedinger equation. Using the resulting wave functions
for each vibratrional level, the Bv's were calculated by thr~ expression

B, = Berz <vlr—2|v> .
The MSV IIT potential has been similarly analyzed by Docken and
Schaferso. We have repeated their calculation in order to have a
consistent evaluation of the Bv's and to extend their precision.

The experimental quantities are for the Colbourn and Douglas
(CD) potential for v = 0=5. The refined Thakkar and MSV III Bv
values agree with the (D values to better than 0.001 cm-l, well within

the spectroscopic uncertainty. The Gv values, or more correctly, the
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level spacings (AGv+1/2) are in similarly good agreement. THE MS¢
11 AGV+1/2'5 are uniformly smaller than the CD values by, on average,

1

-0.29 em ~. The refined Thakkar AGv+1/2's are both greater and smaller

than the CD values. The average error is only -0.01 cm-l. More com-
prehensive examinations of the spectroscopic constants of other poten-
tials are available in references 40 and 41.

One point well worth noting is that, ia Table XXII, Bs for the
CD potential (0.0289 cm-l) differs from the one listed in :able I of
their paper (0.0298 cm-l). This is not a typographical error; we have
found that CD's reported BS and D5 fit the eight observed rotational
lines in the least-squares sense. This does not mean that their Bs is
the true mechanical constant and reiterates the problem we cited
earlier concerning one's ability to extract good spectroscopic constants
from a limited set of daca51.

An important questicn 1s whether Bv is a reliable parameter for
measuring rotational energies at these nigher vibrational levels. Our
definition of Bv, as a quantum mechanical average of r-z, is correct
if the centrifugal potential is a perturbation on the vibrational
Hamiltonian. For J = 10, v = 5, the rotational energy becomes com-
parable to the splitting between the rotationless v =5 and v = 6
levels. Under these conditions perturbation theory becomes a poor ap-
proximation, and hence B, alone provides an inadequate description of
the potential under the influence of angular momentum. We thus report
the higher Bv's merely as a stylized comparison of potentials. A more

rigorous comparison should report the rotational energies themselves.

Returning to our discussion of the Ar, potential, we feel it is
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important to note that this potential does not behave solely as r_6
in the reglon where the spectroscopic data are pertiment., Indeed,
the r-B contributions to the binding at the outer turning points of
v = 4 and 5 are 18% and 15%, respectively. We are therefore not par-
ticularly troubled thai the refined Thakkar potential approaches its
asymptotic value as r-5'6 instead of r_6 as long as the potential

shows the correct behavior in the region of interest. In this region

the higher order terms correct for any deficiency in the true asymptotic
behavior in the same manner that the r-s and higher terms correct for
the erroneous assumption that the potential is purely r‘6.

It is clear, then, that the Thakkar function is a suit;ble func~
tional form for describing the dimer of argon -:.d, by implication,
most van der Waals' molecules. Although there are some inherent weak~
uesses in the potential, such as "impure® r_6 behavior and a repulsive
wall that ultimately rises too sharply, such weaknesses do not prevent
the potential from predicting available experimental quantities. The
derived vibrational and rotational energy levels, differential elastic
scattering cross sections, and second-virial coefficients are reliable
at temperatures from 0°K to 500°K, What is apparent is that one may
have to use potential-determining algorithms other than the Dunham

o
method, which in this case has a tendency to amplify experimental un-
certainties. Further improvement of the Arz Thakkar potential may be
possible in order to improve further agreement with spectroscopic

and scattering data, but at this point our goal has been achieved.
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F. Alkaline Earth Dimers

Up to this point we have only considered weakly bound diatomic
molecules where ome or both partners are rare gas atoms. With all its
valence orbitals filled, the rare gas atom should see no "chemical”
forces in effect and only simple polarization, long-range forces should
contribute to the binding. A similar situation exists for the dimers
of the alkaline earths, where the outer ns valeace orbitals have been
filled and mimic the helium configuration, The measured dissociation
euergiessza’b of these homonuclear dimers (1-3 kcal per mole) are
characteristically smaller than those of the neighboring alkali dimers
(9-24 kcal per mole) or those of the transition element dimer; {i0~-120
kecal per mole). Most workers therefore consider the alkaline earth,
or Group II A, dimers to be bound only by van der Waals Eorcessz.'Thib -
claim is further substantiated by the similar binding energies of the
Group 1T B dimers an, Cd2 and ng (4, 2, and 1.8 kcal per mole,
respectively 22'® )  indicating that the filled nsZ(n-1)d® config-
uration leads to no chemical binding, either.

Despite these trends, we expect Ehe nature of the bonding in the
bulk solid to be due to more than dispersion forces. The solids have
cohesive energies twenty times that of argon53, are metallic, and
melt above 650°C5a. Some of these properties must ultimately be
derived from the vacant, nearby np orbitals and, for Eflcium and higher,
{n~1)d orbitals that participate in the covalent and metallic bonding.
We will show that there are subtle indications that there is mixing of

these vacant orbitals in the ground state of even the dimers, a quality

not readily apparent from dissociation energies.



The gpectroscopy and diatomic potentials for the ground states
of Mgz and Ca2 are now well-determined quantities. The original high
resolution ng absorption data of Balfour and Douglas55 has been
augmented by the analysis of Li and Stwalley56 and the dispersed
fluorascence nf the argon lon laser excitation data of Scheingraber
and Vid3157.‘ The ensuing analysis by Vidal and Scheingrabet58 es-—
tablishes the dissociation energy, 430 cm_l, to within one wave number
and provides an accurate set of Dunham Yij constanta. Similar laser
excitation~dispersed fluorescence experiments by Wy5559 and by
Vidal60 have extended Balfour and Whitlock's (Bw)61 absorption
work on Caz. Vidal's data analysis for Ca2 is as careful and.thorough
as that for Mgz, yielding a very good set of Yij ccnstants and a valie
for D_ of 1095.020.5 ™' : ;

In recent years a small controversy has erupted concerning the
ground state of Caz. Sakural and Broida61 observed an anti-Stokes
continuum in their laser-excited fluorescence of Ca. and Wy5559 ob-
served molecular fluorescence far to the red of BW's ban. system.
These workers concluded that the green band of BW was originating
from an excited state, with the true ground state being the source
of the red band. Failing to reproduce Wyss' band system, Vidal60
has since concluded that the red band was an experimental artifact.
Liao62 and Scheingraber and Vid3157 have also explained the blue
continuum as free-bound-free excitation/fluorescence. It appears,
then, that the original assignment of BW has been confirmed and the

argument laid to res:63.
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Returning to our own studies of these systems, we have ﬁaken
the Yij constants of Vidal and Scheingraber and of Vidal for Mgz and
Caz, respectively, and have performed our usual series-inversion
procedure. The constants are listed in Tables XXITI and XXIV. These
functions, along with the smoothly comnected turning points of Vidal's
IPA potentials, are plotted in Figs. 11 and 12, illustrating the success
of the Huffaker series over those of Thakkar in the region of r > Te
(the artificial maxima at small r is of less concern here). As we have
noted in Chapter II, the Huffaker series potential provides a better
description for those molecules bound by chemical forces. Although
it does not seem that such forces could be responsible for the small
binding energies, we suggest that they still may be influential enough

to shape the potential in the region of the equilibrium internuclear

separation. We reiterate that it is this region which is the most
strongly weighted in our series-determination routine.

Further examination of Tables XXIII and XIV indicates the reason
for the Thakkar deficiencies. For both dimers p . 3.38. This is much
smaller than the anticipated exponent cf 6 for van der Waals attraction
and smaller than any of the p's encountered for neutral molecules in
this chapter. This explains the Thakkar tendency to "overshoot" the
dissociation energy by so much. The relatively large correction con-
stants with oscillatory signs for both Ca2 potentials also indicate
some convergence problems and are probably responsible for the artificial

maxima at small r.

The low value of p is also further evidence of incipient cova-

lency. A. Thakkarea and J. S. winn65 have listed a variety of



p-values for chemically bound diatomics, ranging from 1.0 - 2.5. For
our van der Waals systems, we have observed values from 4.2 - 5.6,
The magnesium and calcium dimers thus have p~values that show more
favor toward a chemically bound system.

The level of amalysis of the spectroscopy of Sr2 is not as

detailed as that of the preceding dimers. WNo high resolution absorption

data of the quality of Balfour and co-workers have been taken, and the
situation is further complicated hy the fact that the rotationzl con-
stant is less than half that of Ca2 due to the mass alone. Working
with half the dispersion of Vidal and colleagues, Bergemarn and Liao66
could only resolve the vibrational progressions and bound-free undula-
tions from their laser-excitation/dispersed fluorescence spectra of
strontium dimer.

Despite these limitations, they have carefully adjusted two
Morse potentials for the ground and excited states in order to dupli-
cate the observed vibrational progressions and Franck-Condon inten-
sities. They derived the quantities w, = 36.9%1 cm_1 and De = 1100+
100 cm-l for the ground state. If we accept their extrapolated r, of
4.,5t02, we can derive an effective p of 3.4:0.30 through second
derivative relations between simple Morse and Thakkar functions.
Considering the suitability of the Huffaker series for Mg, and Caz,
Bergeman and Liac's Morse potential and hence our derived value of p
are nunot far from reality, and we therefore see that Sr2 follows the
same trend in p-values set by Mg2 and Caz.

It is unfortunate that no data at present exist for the barium

52b, 67,68

dimer. There have been suggestions that Ba, should be
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bound more strongly than the other Group II A dimers due to interac~
tions other than van der Waals forces; the participation of the nearby
655d and 6s5p configurations in a more covalent bond. Because of the
still larger mass and the multiplicity of natural isotopes, we should
not impatiently await a forthcoming analysis.

We save our analysis of the beryllium dimer for last. It is unique
among the alkaline earths, possessing nearly double the cohesive energy
in the solid and hence a very high melting point with a correspondingly
low vapor pressure at high temperatures. Couple these properties with
its known toxicity and one has a dearth of experimental information on
this element. On the ccher hand, the small number of electrons makes
the dimer amenable to accurate theoretical calculations.

The state-of-the-art calculations for Bez, are unfortunately, con-
tradictory. Chiles and Dykstra69 have recently considered a number of
configuration interaction (CI) approaches to the problem, comparing
their results to previous work in the literature. Their results span
the array of reported values, which can be brokenm into two groups: those
with a minimum of ca. 0.15 kecal/mole Qt 4.5 ; and those binding Bez by
2-8 kcal/mole at 2.5 Z. Of these references we carefully choose the
interacting correlated fragments (ICF) results of Liu and M:Lean7 .
Their companion results for He, and Mgz predict values for De and T,
that agree with experimental results within 2%. Chiles and Dykstra
also point out that the 7s5p4d2f Slater type atomic orbital set used

in the Be, ICF calculation is the largest set used to date. The

2
well depth of the ICF potential is 0.23 = 0.02 kcal/mole

- o
(807 cm l) and r_ = 2.49 £ 0,02 A, making this one of the more



strongly bound of the theoretical potentials.

We begin our amalysis by smoothly connecting Liu and McLlean's
reported potential points with a spline fit and solving Schrodinger's
equation for the vibrational levels and rotational constants, which
we report in Table XXV. For this potential, we extrapolate 813.825 e+
for De and 2.49114 Z for L We plot the interpolated potential in
Figure 13 along with the determined Huffaker and Thakkar potentials.
The results are, besides disappointing, unusual. Both the Thakkar and
Huffaker potentials recover only 50% of the potential before reaching
their asymptotic limit. The exceptionally high Thakkar p of 8.76 indi-
cates a very high reduced curvature.

To ascertain that this phenomenon is not due to the lack-of-infor-
mation problem with Ar,, i.e. too few levels to get the true %d's, we
increase the nuclear isotopic mass of Be to values of 543 and 5433 amu,
which conveniently correspond to a Be of 0.01 and 0.001 cm-l, respec-—
tively, The results show no quantitative improvement of the series
potentials, although the Thakkar p seems to converge to a value of
4.7, giving a reduced curvature of 6.5. The reduced curvatures of
Mgz, Caz, and Sr2 are 33, 42, and 38, respectively. The values of the
varilous Be2 potential coefficients and their plots can be found on
the attached microfiche.

To be sure that our procedure is not in error, we have repeated
the same calculations on Liu and McLean's potential for Mg27l. Even
though rhe number of theoretical points is fewen v~ obtain results

that are substantially in agreement with the cxperimental values.
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We conclude that the problem lies with the Eez potential itself,

The probable cause of this ill series-potential behavior can
be attributed to the near-zero coanvexity of the potemtial between
3.3 and 5 ; apparent in Figure 13. As we have shown in Chapter II,
any "true"” Born-Oppenheimer potential that shows some discontinuous
change in shape due to interaction with other states, such as cirve-
crossing, will cauge the fitted serles potentials to behave erratically.
To investigate further the "kinks" at 3.3 and 5 Z, we least-squares
fit simple Thakkar functions to the inner and outer regions of the
Liu and McLean points. For the equilibrium region of r<3.4 3, with T,
and De constrained ¢o Liu and McLean's values, we obtain the constants
p = 4.939, e - 993.400 c', and e, = ~0.18. For the outer tail
region, a very simple Thakkar function with p = 5.69, e = De =
230 cm-l and r, = 3.7 ; proved sufficient. These two functions, along
with the ab initio points employed, are illustrated in Figure 14.

The fact that the p of the "tail" fit Thakkar function is close
to 6 indicactas that Liu and McLean points follow the correct long-
range behavior. Moreover, the C6 of 0.975*106 cm-l ;6 we find by
fitting the outer two ab initio points to a l26/C8 expansion compares
well wich the seml~empirical value of 1.06X106 cm—l 36 calculated from
oscillator strengths7z, further reinforecing this point.

It is the inner portion of this potential chat makes Liu and
McLean's work unique among all other calculations and, if correct,

Be2 unique among aikaline earth dimers. Although the Be2 binding

energy 1s nearly twice that of Mgz and is hence out of step with the
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trend of increasing De of the dimers with increasing atomic number
and polarizability, so is the cohesive energy of bulk beryllium as
well., The enhanced bonding of Bez is no doubt due to admixture of the
2p orbital to the (bonding) 208 molecular orbital. It would be temp~
ting to invoke curve~crossing by the A 1:; state, analogous to the
case of BeH73, to explain the radical change in shape of the ab initio
curve, but the very high energy of the lPo state discourages this.

Another point that also contributes to the increased bonding
is the "late" occurence of the repulsive wall. The r, of 2.49 ; of Bez
is remarkably smaller than the 3.9 - 4.5 ; distances that characterize
the other dimers. This anomaly is similar to the unusually small
nearest-neighbor distance53 of 2.20 R in crystalline beryllium com-
pared -to the 3.2 - 4.4 R values of the other alkaline earths. The
smaller hard-sphere diameter permits the two Be atoms to approach
each other close enough for the covalent forces to take effect, a
feature that also distinguishes the chemistry of the Bez+ ion from
that of the Group IIA ions74. The rapid rise of this hard, compact
wall is the major source of the large reduced curvature. This in turn
gives rise to the relatively large p of 4.94 (which incidentally agrees
with our "converged” value for Large isotopes) and not the usual long-
range effacts.

The preceding discussion is based upon the assumed accuracy of
the ab initio potential, Chiles and Dykstra feel that the system is not
yet a closed book. Since Liu and McLean's value of -29.23 Hartrees

for the asymptotic energy has a correlation energy of 1.4 eV from the
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known lonization energies of two Be atomsls, there 1s some room for
doubt. To date, the only observation of Be2 in absorption is in rare
gas matrices, as reported by Brom, Hewett, and Weltner75. They
observe a vibrational progression at 350 nm which is much narrower than
that of Mg, , indicating a smaller difference between the ré and r; for
Be,. If similarities in L imply similarities in potemtial curves,

then the fact that they estimate Dé > 14360 cm-l (Dé = 9412.5 cm-1 for

Mgz) augers well for a more strongly bound ground state.
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G. Direct Fit

As we have mentioned several times in this chapter, our standard
procedure for finding series potential parameters for weakly-bound
moleculeg leaves something to be desired, especially when the available
data are limited. Three steps are involved in going from the raw spec-
troscopic data to the final potential function. First, the basic con-
stants Gv’ Bv’ D, etc., must be calculated for the ground and excited
states from the observed spectral lines. This compounds the initial un-
certainty in the line frequency with the inherent uncertainties of the
fitting procedure. The next step 1s to fit a set of Yij‘s to the
Gv's and Bv's, further compounding the error. By the time we &etermine
the final potential, the honest uncertainty of the derived parameters
makes the potential a poor predictor of the original data. This is
best illustrated by Arz, where the #11 cm-l error of g is a far cry
from the 0.1 cm”t precision of the vibrational-rotational levels
reported by Colbourn and DouglasBs.

Besides the multi-stage amplification of error, there is the
problem of limited amounts of data. In the cases of the grouud states
of NaNe and NaAr, the problem is one of technology; only one excited
vibrational state at most is populated in a supersonic nozzle expansion/
condensation. The other problem 1s emndemic to the molecular system
itself, where there are simply too few vibrational levels to ‘'inter-
rogate"” the shape of the potential. This problem has been discussed
for Arz, demonstrated for Bez, and is best illustrated by NaNe, which

has only two vibrational levels. When there is a deficiency of vibra-



tional data,one must examine the rotational data for high J more
closely. As we have pointed out, the Dunham equations do not lend
themselves as easily to a Bv/Dv fit as for a GV/Bv fit. There is the
strong correlation between B; and Dv such as for v = 3 of Ar2 that
also makes the Dunham approach less attractive.

What we propose 1s a means of fitting the potential funmction
directly to the vibratiomal-rotational energy levels of the molecule.
This eliminates at least one step, the Yij determination, and the un-
certainties chat go with it. The GV/BV/Dv set can simply be treated
as a set of numerical fitting constants,and one need not worry about
whether they are the 'true" mechanical constants. In many cases the
relative energy levels of each of the electronic states can be deter-
directly from the spectral line positions through the combination
rela.cion576’77, thus eliminating the Gv/Bv/Dv determination step.

The fitting method is simply a nonlinear least-squares refine-
ment7B of a set of potential parameters, {ek}. The observed relative
energy levels are denaoted by ¥i and the energy levels calculated from
the potential by fi(ﬁk), where subscript i refers to the vibrational
and rotational quantum numbers invelved. We take an approximate set
of potential parameters, feg}, and the approximate energies and
parameter derivatives to be fg and (ati/aek)o, respectively. We can
show that a refined set of parameters, {ek} = {62} + {Aek}, can be

found by solution of the matrix equation:

f
L lz (ae L (ac 49500, = [z, (aej) (v,~£0] :
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The refinement is iterated until one has a convergent {ek} set or the
xcfg differences are less than the experimental error.

In order to find the coeffi.ients of (Aek}, we must evaluate
the derivatives (az(v,s)/aek)o. This can be dore by employing the

Hellmann-Feynman79 Theorem:
3E
1.0 0, 9H_,0; 0
o) = <vilGe) 14y > .

where H is the radial Hamiltonian for internuclear motion. If the
kinetic energy is independent of potential parameters, then we can
further simplify by:

3890 - &° _ :

13 13

The Hellmann-Feynman Theorem is very important in reducing the amourt
of computer time needed; the alternative is to evaluate the derivatives
rumerically. For ¥ parameters, we can replace N energy evaluations with
N integral summations. This is an important savings since the integrals
are a one-shot evaluation, whereas the Numerov-Cocley solution of the
radial equation (Appendix II) is an iterative one. Also, the energies
need ﬁﬂt be evaluated as precisely in order to produce a reliable
numerical derivative, so the number of Numerov-Cooley iterations might
be reduced. We say "might be" since we have not examined the relation-

ship between the tolerances of the wave function necessary for the

integral and the tolerances of the energyso.
-~
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There are several advantages to this method. The first is that
one obtains an analytical potemtial function that can reproduce the
experimental emergy levels. This method is applicahlé to any analytical
potential function, although the desirability of a flexible series
potential is apparent. All rotational information is employed airectly
rather than through derived parameters. The ground state dissociation
energy can be employed more directly, as could have been done with
NaAr. Moreover, the Dunham method tends to prejudice the poteatial
toward the bottom of the well, whereas “cre the energy levels near
the top are put on a more equal footing. Finally, one need mot worry
about the "second order WKB ef<ects" since the Numerov-Cooley solu:ion
is a quantum mechanical, not semi-classical, one.

Certain disadvantages are obvious, too. Since the procedure is
iterative and all the rotational energy levels must be evaluated, a
2+t of computer time is required. This clearly restricts the method
to systems of limited amount of data such as the van der Waals mole-
cules we have studied. It may also be possible to evaluzce only a
few of the rotational levels at well-selected intervals. If the potential
function has a tendency to misbehave, as we have s:en for the Thakkar
and Huffaker functions, then the iterative improvement must be moni-
cored.co assure that nonphysical singularities do not interfere with
the energy and wave function evaluation. A reasonable starting set of
potential parameters is necessary for rapid convergeuce, but our
Dunham procedure can probably provide that for the series potentials.

Perhaps the biggest disadvantage is that the method is untested,

and hence we have no knowledge of rhe convergen-~e properties. We feel
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that this merits study and hope to do so in the future. If it can
be shown that this algorithm converges for a model system, then we
can perhaps have the final word on the suitability of the Thakkar
function for certain weakly-bound molecules. If it is not, then we
still have a direct method for testing other, possibly more suitable,
forms without repeating the algebraic drudgery of relating their coef-
ficients to those of the Dunham potential.

We close noting that the Thakkar function has an edge over the
Huffaker function using this algorithm. Since the initial Thakkar
from our routine procedure tends to overestimate the true dissociation
energy some, it possesses all the observed bound levels and then some.
Thus the initial Yij estimate can he used as the initial guess. Not
all of the observed levels are bound in the Huffaker estimate as we
have seen in this chapter, so the algorithm would have to be tailored

to add experimental data after comsecutive iterative improvements.
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H. Conclusion

We have investigated the suitability of the Thakkar and Huffaker
series functions towards describing the potentials of weakly bound
diatomic molecules, We have found the Huffaker series to be a rather
poor function for modelling these potentials as it badly underestimates
the dissoclation energy. We ascribe this deficiency to the Morse po-
tentlial nature of the Huffaker series, which approaches its asymptotic
form much too rapidly to accommodate the long-range r " attraction
which influences a large percentage of the potential well.

Thus it is the r P nature of the Thakkar series that is responsible
for its success in describing the molecular lons and rare gas'containing
dimers discussed in this chapter. When spectroscopic data are sufficient
in quantity and accuracy, the Tﬁakkar function can give results as reli-
able as an RKR curve. When accuracy or quantity of the spectroscopic
data is not avallable, as with Arz and the X ZE+ state of NaAr, other
sources of experimental information can be employed to bring the
Thakkar function into line.

The advantages of the Thakkar seriles are many. Since it is amalytic
throughout the region of interest, it is sultable for use in studies
involving first or higher derivatives, such as the Virial Theorem.

This property has been realized and put to good use in describing the
nature of van der Waals bonding in comparison to the chemical forcessl.
The potential parameters can provide a means of comparing bonding
trends, sometimes subtle as with the alkaline earth dimers, among dia-
tomic molecules of disparate bond energies and bond leng:hsss. From

the form of the Thakkar function, the trends concerning the value of g,
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and the Thakkar tendency to overestimate the dissociation energy as
we have seen in this chapter can suggest methods of approximating
molecular properties, as we have done elsewhere for ghe dissociation
energyaz.

Finally, we have presented a method other than our usual Dunham
fitting procedure for determining potential parameters directly from
the spectroscopic data. Although the algorithm is useful for any ana-
lytical potential in general, the Thakkar series enjoys certain initial
advantages. This procedure certainly merits study in the near future.

One question we have not resolved here 1s final choice between
integral and nonintegral p. Although we have employed the nonintegral
p result in examining the bonding nature in the alkaline earths, the
P = n restriction for an r-n atirac:ion enjoys some advantages, such
as a somewhat better representation of the A zn3/2 state of NaNe and
22+

the Y,  ~fit X state of NaAr. It also apparently lacks the annoying

i3
tendency of turning over at r<r,. One other advantage is that it will
probably appeal to the Chemistry Community in general since it has

the r © behavior built in, even if the .pure long-range attraction is

not in effect in the region of experimental interest.



129

REFERENCES

1.

10.

11.

12,

13.

14,

15,

J. 0. Hirschfelder, C. F. Curtiss, and R. M. Bird, Molegular

Theory of Gases and Liquids (Wiley, New York, 1954), Chapter 13.

H, Pauly, in Atom-Molecule Collicsion Theory, edited by R. B.

Bernstein (Plenum, New York, 1979) pp. 11-199.
R. B. Gerber, M. Shapiro, U. Buck, and J. Schleusener, Phys.

Rev, Lett. 41, 236 (1978).

Excimer Lasers, edited by Ch. K. Rhodes (Springer-Verlag, Berlin,

New York, 1979).

J. L. Kinsey, Ann. Rev, Phys. Chem. 28, 349 (1977).

D. L. Levy, Ann. Rev. Phys. Chem. 31, 197 (1980).

Dennis C. Hartman, Ph. D. Dissertation, Unlversity of California,
1979,

D. C. Hartman and J. S. Winn, J. Chem. Phys. 74, 4320 (1981).

K. V. Subbaram, J. A. Coxon, and W, E. Jones, Can. J. Phys. 53,
2016 (1975).

K. V. Subbaram, J. A. Coxon, and W. E. Jones, Can. J. Chem. 34,
1535 (1976).

J. A. Coxon, W. E. Jones, and K. V, Subbaram, Can. J. Chem. 355,
254 (1977).

R. J. LeRoy and W.-H. Lam, Chem. Phys. Lett. 71, 544 (1980).

J. W. Cooley, Math. Computation 15, 363 (1961); J. K. Cashion,

J. Chem. Phys. 39, 1872 (1963).

J. Telilnghuisen, J. Quant. Spec. Radiat. Transfer 19, 149 (1976).
C. E. Moore, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 35

(1971).



16.
17.
13,
19.
20.
21.
22,
23.
24,
25,
26.

27.

28.

J. H. Goble, D. C. Hartman, and J. S. Winn, J. Chem. Phys. 67,
4206 (1977).

J. A. Coxon, W. E. Jones, and K. V., Subbaram, Can. J. Chem. 53,
2321 (1975).

C. Zener, Phys. Rev. 37, 556 (1931).

R. E. Olson and B, Liu, Chem. Phys. Lutt. 56, 537 (1978).

I. Dabrowski and G. Herzberg, J. Mol. Spectrosc. 73, 1B3 (1978).
A. Gallagher in ref. 4, pp. 135-174.

R. Ahmad-Bitar, W. P. Lapatovich, D. E. Pritchard, and I. Renhorn,
Phys. Rev. Lett. 39, 1657 (1977).

R. E. Smalley, D. A. Auerbach, P. S. H. Fitch, D, H, Levy, and
L. Wharton, J. Chem. Phys. 66, 3778 (1977).

R. Compargue, Rev. Sci. Instrum. 35, 111 (1964); R. Compargue,
J. Chem. Phys. 52, 1795 (1970); R. Compargue and A. Lebehot, in
Rarefied Gas Dymamics, Pioc. Int. Symp. 2, Cll-1 (1974).

J. H. Goble and J. S. Winn, J. Chem. Phys. 70, 2051 (1979).

W. P. Lapatovich, R, !hmad-Bitar, P. E. Moskowitz, I. Renhorm,

130

R. A. Gottscho, and D. E,Pritchard, J. Chem. Phys. 73, 5419 (1980).

R. A. Gottscho, R. Ahmad~Bitar, W. P, Lapatovich, I. Renhorn,
and D. E. Pritchard, J. Chem. Phys. 73, 2546 (1981).
A. Dalgarno and W. D. Davidson, Adv. At. Mol. Phys. 2, 1 (1966);

A, Dalgarno, Intermolecular Forces, edited by J. O, Hirshfelder

(Interscience, New York, 1967) pp. 143-166 (Vol, XII of Advances

in Chemical Physics series).

J. Tellinghuisen, A. Ragone, M. S, Kim, D. J. Auerbach, R. E.

Smalley, L. Wharton, and D. H. Levy, J. Chem. Phys. 71, 1283 (1979).



30.
3l.

32,

33.

34,

35.

36.
37.
38,

39,

40.

G. York, R. Scheps, and A. Gallagher, J. Chem. Phys. QQ,VIOSZ
(1975).

R. D. Saxon, R. E. Olson, and B. Liu, J. Chem. Phys. 67, 2692
(1977).

SAFLW estimated the separation of the B-state and the observed
vibrational levels of the A 2H1/2 state to vary between 80 and
500 cm Y, to be compared with the 17-46 cmt for Na¥e. We
therefore expect the B-state interaction/interference to be less
for NaAr.

R. Diiren, W. Groger, E. Hasselbrink, and R. iiedtke, J. Chem. Phys.
74, 6806 (1981).

R. Duren and W. Groger, Chem. Phys. Lett. 56, 67 (1978).

We should point out that our statement in ref, 25 that

2, = 0.005588 cux-1 for the p = 6 Thakkar (T II) was in error;

the experimental N of SAFLW must be used in order to generate
the T II potential. We also note a calculation error in the vi-
brational energies of the T I potential in Table IX of ref. 25.
The correct values are given in Table XVIII.

See ref. 1, pp. 204-205, pp. 589-596 and references therein. See
also refs, 40 and 41 below.

J. H. Dymond and B. J. Alder, J. Chem. Phys. 51, 309 (1969).

E. A. Colbourn and A. E. Douglas, J. Chem. Phys. 65, 1741 (1976).
J. M, Parson, P. E. Siska, and Y. T. Lee, J. Chem. ?hys. 56, 1511
(1972).

R. 4. Az1lz and H. H. Chen, J. Chem. Phys. 67, 5719 (1977).



41.

42,

43.

44,

45,

46,

47.

48,

49.

132

A. Koide, W. J. Meath, and A; R. Allnatt, Mol. Phys. 39, 895
(1980) .

J. A. Barker, R. A. Fisher, and R. 0. Watts, Mol. Phys. 21, 657
(1971).

For a review, see E. B. Smith, Ann. Reports 63, 13 (1966);

G. C. Maitland and E. B. Smith, Chem. Soc. Reviews 2, 181 (1973).
For a discussion of standard deviations in a leagt-squares fit
see D, L. Albritton, A. L. Schmeltekopf, and R. N. Zare,

Mplecular Spectroscopy: Modern Research, Vol. II, K. Narahari Rao,

Ed. (Academic Press, N.Y., 1976) pp. 1-67 or A. A, Clifford,

Multivariate Error Analysis (Applied Science Publishars LTD,

London, 1973).
R. W.Bickes, Jr., and R. B, Bernstein, Chem. Phys. Lett. 26, 457
(1974); J. Chem. Phys. 66, 2408 (1977).

D. A. McQuarrie, Statistical Mechanics (Harper and Row, N.Y.,

1976), p. 262.

J. M. H. Levelt Sengers, M. Klein, and J. S. Gallagher, AIP

Handbook (McGraw-Hill, N.Y., 1972).

Not shown is the nominal Huffaker potential. Although its failure
here is not as catastrophic as with previous weakly bound mole~
cules (De = 91,3%11.4 cm_l), we do not expect much more improve-
ment in this potential due to its long-range behavior, or rather
lack thereof. Its plot can be reviewed and compared with the
nominal Thakkar on the microfiche.

S. D. Colgate, J. E. Jordan, I. Amdur, and E. A, Mason, J. Chem.

Phys. 51, 968 (1969).



50.

51.

52.

53.

54.

55.
56.
57.
58.

59.

60.
61.
62.

63,

133

K. K. Docken and T, P. Schafer, J. Mol. Spectrosc. 46, 454 (1973)-.
This seems to cast further aspersioms on the Y_tl expansion, but
generatling a new set of Yﬂ's with the new 35 does not markedly
change the nominal Thakkar.

a) Karl A. Gingerich, Faraday Symposia #l4, Diatomic Metals and

Metallic Clusters, (Royal Society of Chemistry, Londom, 1980),

pp. 109-125; b) L. Brewer and J. S. Winn, ibid., pp. 126-134;
c) A. R, Miedema ibid., pp. 135-148.

C. Kittel, Introduction to Solid State Physics, 5th edition

(Wiley, New York, 1976) pp. 30-38.

F. A. Cotton and G. Wilkerson, F. R. S., Advanced Inorganic Chem-
istry, 3rd edition (Interscilence, New York, 1972) p.206.

W. J. Balfour and A, E. Douglas, Can. J. Phys. 48, 901 (1970).

K. C. Li apd W, C. Stwalley, J. Chem. Phys. 59, 4423 (1973).

H. Scheingraber and C. R. Vidal, J. Chem. Phys. 66, 3694 (1977).
C. R. Vidal and H. Scheingraber, J. Mol. Spectrosc. 65, 46 (1977).
J. Wyss, Ph.D, diasertation, University of Cz ifornia at Santa
Barbara, 1978; J. Chem. Phys. 71, 2949 (1979).

C. R. Vidal, J. Chem. Phys. 72, 1864 (1980).

K. Sakurai and H. P, Broida, J. Chem. Phys., 65, 1138 (1976).

P. ¥. Liao, private communication, 1977,

What remains to be determined is the identity of the carrier of
Wyss' red system. His determined molecular comstants (D0 =

2075 au-l and w, = 73 cm-l) do mot correspond to any any chemically
bound calcium impurity. This appears to be due to a weakly bound

system and warrants further study.



64.
65.
66,
67.
68.
89,
70.
1.

72,

73.

74,

75.

76.
77.
78.

79.

134

A, Thakkar, J. Chem. Phys. 62, 1693 (1975).

J. S. Winn, Acc. Chem. Res. 14, 341 (1981). )

T. Bergeman and P. F. Liao, J. Chem. Phys. 72, 886 (1980).

R. 0. Jones, J. Chem. Phys. 71, 1300 (1979).

A. Miedema and J. W. F. Dorleijn, Phil. Mag. B. 43, 251 (19381).
R. A. Chiles and C. E. Dykstra, J. Chem. Phys. 74, 4544 (1981).
B. Liu and A. D. Mclean, J. Chem. Phys. 72, 3418 (1980).

Liu, private communication, 1980.

-]

L. N. shabanova, Opt. Spectrosc. 27, 205 (1969). Employing the
"American" oscillator strengths of W. L. Wiese, M. W. Smith, and
B. M. Miles, Natl. Bur. Stand. U.S. Circ. 22 (1969), we obtain
a Cg of 0,925 10% et Xs, so that the theoretical value is

well within the “error bounds”.

G. Herzberg, Spectra of Diatomic Molecules, 2nd edition (Van

Nostrand, New York, 1950) pp. 357-358.

Ref. 54, pp. 206-209,

J. M. Brom, Jr., W. D. Hewett, Jr., and W. Weltper, Jr.,
J. Chem. Phys. 62, 3122 (1975).

Ref. 73, pp. 175-192.

N. Aslund, J. Mol. Spectrosc. 50, 424 (1974).

A. A. Clifford, ref. 44.

H. Hellmann, Einfilhrung in die Quantenchemie (Deuticke, Leipzig,

1937) . 285; R. P. Feymman, Phys. Rev. 56, 340 (1939); see also
I. N, Levine, Quantum Chemistry, 2nd edition (Allyn and Bacon,

Boston, 1974) pp. 371-374,



80.

81.

82,

"We have investigated the error of the energy in terms of the

theoretical Numerov error at the "matchpoin:” (see Appendix II)
and found that the iteration uncertainty in the énetgy is due to
the accumulation of the error in the computed wave function.
Since the signs of the error change at different points along
the potential, the accumulated error may cancel. Generally,

we find the actual error- of Integrated quantities such as Bv

to depend mozre on the number of grid points.

J. S. Winn, J. Chem. Phys. 74, 608 (1981).

J. H. Goble and J. S, Winn, J. Chem. Phys. 70, 2058 (1979).

135



Molecular constants® for BeAr+

Table I.
2t A%n
|9
T, 0 24576.5
w, 362.7 583.2P
w % 8.92 6.70°
e
6, ¥, 0.033 -
A - 42.68
e
B, 0.5271 0.6124
o, 0.0145 0.0089
5
10 Yo 6.5 -
ré(f\) 2.0855 1.9348

3yalues in wave numbers (cm-l), Ref. 10,

bValue corrected from a calculation error in Ref. 10.
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Table II. Dunham coefficients® for X°3' Bear'.

62645, cm T(18)

)

a; -4.156 (22)
a, 10.31 (22)
ay -14.2 (16)
a, -39, (18)

“Numbers in parenthesis are one standard deviation corresponding

to the last digits of each coefficient.

Table III. Huffaker, SPF, Thakkar, and PA coefficients® for

2%z* peart

Huffaker SPF Thakkar PA [3,3]

o = 4.156(22) by = 62445.(18) p = 3.1%6(22) £, = 62445,
cp= 3615.(38) by = ~2.156(22) ey= 6267.5(864) £, = ~97.70
o = 19.92(15) b, = 0.843(162) e =0 g = -93.5

= 0.013(7) by = 6.11(92) e, = -0.115(13) g, = -399.

e, =.0.079(9) b4 = «43,4(6.5) ey = 0.0661(215) &y = -680.

e, = =0.047(10) e, = -0.227(29)

aNumbers in parenthesis are one standard deviation corresponding
to the last digits of each coefficient. Cys bu’ eo, and fl are in

wave numbers.
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-1
Table IV, Potential function eigenvalues (cm ) as Ecalc Eobs

for the lowest vibratiomal states of XZE+ BeAr+

v 0 1 2 3 4
Eobs 179.19 524.17 B851.61 1161.67 1454.58
Thakkar -0.02 -0.03 -0.02 0.08 0.31

" nuffaker -0.02 ~0.03 -0.10 -0.29 -0.76

4 -0.22  -1.94  -5.31 ~10.22  ~16.58

Exp-
SPF(4,0)® -0.03  ~0.26  ~1.65 <-6.46  -18.65
SPF(3,1) 0.09 0.78 2,97 7.89 16.74

' S§PF(4,1) -0.03 -0.19 ~-1.18 -4,50 -13.12

SPF(3,2) 0.08 0.67 2.52 6.58 13.76
SPF(4,2) -0.03 -0.14 -0.82 ~3.07 -8.74
SPF(3,3) 0.07 0.58 2,17 5.60 11.56
SPF(r,e) -0.02 -0.10 -0.56 =2.04 -5.67
3PF(3,4) 0.06 0.51 1.89 4.83 9.87
SPF(4,4) -0.02 ~0.07 -0.37 -1.29 -3.51

2SPF(n,m) means terms through bn {Table III) plus m conscraints

were used.
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Table V. Theoretical and fitted B parameters for Be.urt and BeKr+.

Zener Formula® Fitted from Spectrescopic Constants

Bear’ x 2z¥ 4.220 4.186
A% 3.968 4.069
Beke' X ZF 4.105 4.083
Al 3.851 3.795

annization potentials used taken from James E. Huheey, Inorganic

Chemistry: Principles of Structure and Reactivity. (Harper and Row,

New York, 1972), p. 46,



Table VI. Fundamental potential constants of BeRg'+
(Rg = Rare gas).a
State Molecule L De me Te Ref.
x Xt BeArt  2.0855 4537 362.7 0
BeKr® ~ 2.2201 (5511)  367.14 0
pexe®  (2.4578) (6308) 367 0
aln Beart  1.9348 11888 583.27  24576.5
BeKs®  2.0674 (13656)  554.47 23782.14
Bexe?  (2.3478)(14870) 545 22096 d

aQuan:icies in parenthesis calculated from model potential.

b

54, 1535 (1976).

5. s. Coxon, W. E. Jones, and K. V. Subbaram, Can. J. Physics,

55, 254 (2977).

d

53, 2321 (1975).

K. V. Subbaram, J. A. Coxon, and W. E. Jomes, Can. J. Physics,

J. A. Coxon, W. E. Jones, and K. V. Subbaram, Can. J. Physics,

140



141

Table VII. Z-values of the model potential for ion moleculeé

involving rare gases.

Molecule State L De we 2 Reference
Bear’ x 2" 2,086 4537 363 1.289 1
Bear* A 2rlr 1.935 11889 583 1.884 1
Hear” x 22" 2.492 443 1546 1.201 2
. Hear' alm 2.990 106  ~83%  0.952 2
HeNe™ x 20" 1,300 6216 1308 1.469 3
HeNe® alm 2319 %7 .184°  1.081 3
HeNet B 2rt 2.648 364 153 1.069 3
e’ x 2t 0.774 16455 3228 1.299 4
HNe® x %% 0,996 18390 2896  1.512 5
Har” x %% 128 32720 2723 1.716 6
R x 2t 1419 38770 2561 1.886 5
e, x%f L8l 19914 1699 2.727 7
Ne, X 22: 1.75 10740 510  3.051 8

2Estimated from the Kratzer formula, m}t.si/ve, using the centrifugal
distortion constant, DO’ of reference 2.

bEstimated from AG(1/2) for 3HeNe+ of refe.ence 3 and employing
isotopic relations for AG(1/2) = W, = Zmexe.

References:

1. This work.

2. R, E. Olson and B, Liu, Chem. Phys. Lett. 5_6_, 537 (i978).

3. 1I. Dabrowski and G. Herzberg, J, Mol. Spectrosc. 73, 183 (1978).
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Table VII. (continued)

4,

K. P. Huber and G. Herzberg, Constants of Diatomic Molecules,

(Van Nostrand, NY, 1979) pp. 300-301.

P. Rosmus, E.-A. Reinsch, Z. Naturforsch. 35a, 1066 (i980).
P. Rnsm';:s, Theor. Chim. Acta (Berlin) 51, 359 (1979).

K. P. Huber and G. Herzberg, ibid., p. 298.

K. P. Huber and G. Herzberg, ibid., pp. 451-453,
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Table VIII. Dunham and Thakkar expansion coefficients for the X

and B states of 4HeNe+a

Dunham Thakkar

i ay ei

X State
0 14262.05 ca”t 6608.82 cu™ >
1 -5.645 P 4.6455
2 20.945 0.0219
3 -70.565 A -0.08602
4 293.907 0.0568

B State
) 8101.96 cu ! 417.36 cot
1 -5.406 p=  4.4060
2 16.431 -0.1246
3 -25.378 0.0122
4 -50.600 -C.0042

&yibrational and rotational Yij's from Dabrowski and Herzberg,

Ref. 20.



Table IX. Vibrational irtervals and rotational coustants® of

aﬂeNe+ and differences calculated from the Thakkar

potential

v AG(v+1/2) &§(Thakkar) B, 6(Thakkar)
(b (™l (e} (en™d)
X State
6 341.59 43.79 1.58983 0.10341
7 233.42 66.95 1.35755 0.13629
8 146.27 80.62 1.09037 0,20589
S 0.8431 0.2584
B State
o] 112.46 2.08 0.67529 0,08183
1 78.09 0.65 0.57898 0,00182
2 49,72 1.47 0.47463 0.00360
3 28.64 1.93 0.3644 0.0107
0.2614 0.0123

3observed values from I. Dabrowski and G. Herzberg, Ref. 20.
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v AG(w1/2)®  §(Thakkar)® s 2 &(Thakkar)
(™) ten
3 15.33 0.11 0.13068 -0.00032
4 10.25 0.13 0.10480 0.00144
5 6.37 0.10 0.08230 0.00065
0.05826 0.00281

80bserved val.es .rem ALPR, Ref., 22,

va(Thakkar) game as defined in Chapter II.



146

Table XI. NaNe AZII3 /2 mechanical constants, Thakkar potential

parameters, and RKR potential. Energies are in cm-l;

distances are in A.

This work Ref., 27
B, = 0.216308 eq = 150.07 118.8
o, = 0.02464 p = 4.184 4.532
: 5
Yo = 5x10 e = 0. 0.127
w, = 47.6 e, = 2.1314x107 2.80900x10™>
wx = 5.24 e, = 1.442x1072 -2.40327x107%
e'e 3
wy =0.2 e, = ~1.904x1072 8.465427x107%
e’ 4
R = 2.6955 D = 149,70 144.4
e e
v R R, E
0 2.49517 3,03620 22.655
1 2.39854 3.43327 60.425
2 2.35025 3.84439 89,515
3 2.31986 4,32583 111.125
4 2.29981 4.92757 126.455
s 2.28938 5.72353 136,705

6 2.29623 6.83467 143.075




Table XII, Mechanical r..nstants of the NaAr AZT[ states.?

Energies are in cm ©

a
distances are in A.

2

a%m, n ny,,
B, 0.136656 0.136656
o, 0.006721 0.006721
w, 80.897 80.720
w,x, 3.661 3.859
Wy 0.0365 0.0606
e’ e
wgz, 8.75x10™" -
R, 2.9674 2.9074
3pef. 29,

Table XIII. Thakkar potential ccaustants for the NaAr A2H states.

A2“1/2 2y,
eplen™)  510.481 508.794
P 4.841 4.839
e 9.12587 8.3948x10"°
e -3.380x10” -8.7053x1072
e, 3,500x10” 2.3971x1072
e -1.797x1072 -
1.175x10" -
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Table X1V, Exper:l.mentala AG(v+1/2)'s for the NaAr A?Hstates

and calculation differences. § = calculated-experimental.

Values in cm-l.

£y, ATy
v AG(v+1/2) § AG(v+1/2) 8
7 31.130(19)° 0.204 30.635(25) -0.177
8 26.429(19) 0.231 26.006(13) -0.184
9 22,136(12) 0.227 21.747(20) ~0.263
10 18.272(16) 0.178 - -

4Yalues from Ref. 23

bNumbers in parenthesis refer to experimental uncertainty in last two
digits.

Table XV. Exper:l.mentala Bv's for the NaAr AZH states and calculated

differences. Values in cm .

2 2
A I[1/2 A H3/2
v B s010* B §+10%
v v
7 0.086019(39) 3.0 0.086511(45) -4.2
8 0.079287(35) 4.2 0.079759(30) -4.8
9 0.072579 (23) c 0.072921(26) -4.8
10 0.065942(24) c 0.06630(37)  -7.0
11 0.059253(83) c - -

a’bReferences and notes as in Table XIV.

®Values not calculated.
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Table XVI. Spectroscopic congtants ({in cm_l) for the X°ZT

state of Naar®

w, = 13.557 Be = 0,046372

w x = 1.155 a, = 0.003856




Table XVII. Comparison of experimental Bv’s and Go(v)'s (in l:m.l)

with those calculated from several model potentials.

Thakkar TRRASWL? pe? Experimental®
p=6 o
0 0.044284 0.044522 0.042761 0.044442(18)
1 0.39797 0.040518 0.038473 0.040585(64)
2 0.034768 0.036017 0.034366
3 0.029185 0.030798 0.029326
4 0.023005 0.024374 0.024027
GO(V) = Gv-Go
1 11.189 11, &8 11.013 11.183(147)
2 19.894 20,149 20.264 20.329(315)
3 26.190 26.889 27.339 26.740(623)
4 30.296 31.404 32.169 31.400(794)
2Fron the Morse potential of ref. 29.
b

From the potential of ref. 34.

C. .
Numbers in parenthesis correspond to the uncertainty of the last

digits.



Table XVIII. Thakkar constants for notentials fitted to Do and Dl'

TL TII TIV
eglea™ 50,358 28.744 31.399
P 4,3131 6 6
e 0 0.30991 0.27875
-0.30868 0.33424 0.61992
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Table XIX., Spectroscoplc constants (in cm-]') derived from the

four Thakkar funmctions fit to D, and Dl'

Quantity Experimental T1 T1I TIIT TIV

B, 0.044442 0.04449  0.04429  0.04455  0.04442
B, 0.040592 0.04082  0,03985  0.03995  0,04003
4G 11.2612 11.239 11.452 11.441 11.580

11.247°

D, 33.941° 34.991 34,841 34,045 33.948
D, 22.694° 23,752 23,389 22,604 22,368
D 40.430° 41.727 41.511 40.775 40.776

8From SAFLW, ref. 23.

b

From TRKASWL, vef. 29.
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Table XX. Nominal Thakkar potertial comstants for Arz. The

uncertainties relate to the final digits of the

respective constants.

o
3.7576(50) A

0.0597676 co -

31.22802 cal

134.12(18.90) ca
5.515(152)
-0.2045(555)
-5.08R8¢255)
0.1059(303)

108.99(19.72) cu *




Table XXI.

Refined Thakkar potential constants for Ar,

2"

o
R = 3.758 A

e, = 160.38 ot
p = 5.62
e, = -0.235
ey = -0.07
e, = 0.02
1

D = 100.37 cm |
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Table XXII. Vibrational energy levels, Gv, and rotational constants,

Bv' for various A!:2 potentials. All values are in cm_l.

G
Nominal Refi:ed a b

v Thakkar Thakkar CD MSVIII
1} 14,87 15,41 14.80 14.58
1 40,58 41.92 40,53 40.07
2 61.09 62.58 60.94 60.21
3 76.93 77.82 76.55 75.28
4 88,74 88.27 87.46 85.91
S 97.16 94.79 94,24 92.59
6 102,81 98.35 97.85 96.14.
7 106.26 99.91 99.28 97.55
8 108.09 100.35° c c

B‘V
Y] 0.057778 0.057795 0.057777 0.057758
1 0.053379 0.053439 0.053359 0.053491
2 0.048507 0.048351 ) 0.048467 0.048329
3 0.043279 0.042486 0.042841 0.042718
4 0.037779 0.035872 0.036400 0.036267
5 0.032053 0.028623 0.028904 0.028870
6 0.026127 0.020919 0.020740 0.020706
7 0.020025 0.012935 0.011789% 0.011709
8 0.013795 0.004812 0.001370 0.001225

a) Colbourn and Douglas potential of Ref. 38, b) Scattering potential
of Ref. 39. See also Docken and Schafer, Ref., 50. c¢) v=8 is bound
by less than 0.001 em~L,



Table XXIII. Thakkar and Huffaker potential constants for

Mg, xlz;’. Standard deviations in parenthesis

refer to last two digits.

Thakkar
-1

e, = 545.6(2.9) cn L
p = 3.5897(95) p
e, = 0.0620(48) <,
ey = 0.0777(92) cq
e, = -0.119(13) <,
eg = -0,106(20) Gg
g = 0.052(25) c6
D = 528.7(42.2) cm L D
e e

Experimental values®: De = 4301 cm_l

Huffaker
333.7(1.4) cat
4.5897(95)
0.1106(29)
0.0837(44)
-0.0039(50)
0.0076(65)

0.0320(59)

410,5(9.9) em ™t

o
O 3.88941(15)A .

3From ref. 58.
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Table XXIV. Thakkar and Huffaker potential constants for baz

X12+. Standard deviations the same as Table XXIII.

Thakkar
e = 1812.74(.52) ca™*
p =  3.55688(51)

e, = ~0,25518(31)
e, = =-0.39506(33)
e, = 0.43595(45)
= 1.0613(75)

e, = =1,14370(96)

D = 1274.9(33.3) cw *

-Experimental values®:

p =

Huffaker
1104.43(.25)
4.55688(51)
-0.0823(17)
-0.14104(15)
0.17448(15)
0.2864(22)

-0.2343(22)

1108.0(5.6)

.
D, = 109520.5 ea ', r_ = 4.2785227(46)A.

9From ref. 60.



XXV. Vibrational levels and rotational constants derived from
Liu and McLean's Be2 potential.

v Gv(cmﬂl) Bv(c.m-l)
] 116.690 0.58280
1 318.931 0.53413
2 471.892 0.46928
3 573.119 0.39008
4 638.876 0.32999
5 689.913 0.28901
6 732,182 0.25333
7 765.752 0.21453
8 790.312 0.17241
9 805.787 0.12321
10 812.567 0.06611
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FIGURE CAPTIONS

Fig. 1.

Fig., 2.

Fig. 3.

Fig. 4.

Fig. 3.

Thakkar, Huffaker, SPF, and Dunham potentials for BeAr+.
Tde lines connect the RKR turning points of the first
five vibrational levels. The heavy solid (ine indicates

those regions where two or more potentials are superposed.

Log ~ log plot of the long range behavior of the Thakkar
and Huffaker potentials of BeAr+. The dashed lines bound
the range of the Thakkar potential when varied over the
experimental uncertainties of the molecular constants.
The straight line labeled “iom-induced dipole® is for the

-4 X
"pure” v = interaction discussed in the text.

159

The X22+ state of HeNe+. Solid line is the Thakkar function,

dashed is that of Huffaker. Horizomtal bars are the RKR

tie line-.

+ +
The AZZ state of HeNe . Assignment of lines are the same

as ir Fig, 3.

Log ~ log plot of the laong-range potentials of the B state
+

of HeNe . The up; :r line is the Thakkar function, the

lower line is for a "pure" r~4 potential. The heavy Jdots

are the outer turning points of the RKR curve.



Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Potential functions and RKR tie lines for the A2n3/2
)i

state of NaAr. The potentials are Thakkar(
Huffaker («~=--), Dunahm (—=—), and SPF (— . . —).
Vibrational levels are the horizontal, RKR tie lines.
Note that the Huffaker potential was constructed from
data on v' = 7-10, but it does not have these levels

bound.

+
Some potential functions for the xzz state of Naar.
The potentials illustrated are the p = 6 Thakkar (—)

the TRKASWL's Morse (»-+), and Duren and Groger's

potential (---). The dissociation energy (long horizontal
line) as well as the Yij's used to calculate the RKR tie

lines are from TRKASWL. Note that even the standard RKR

procedure does not produce a reliable potential towards

the top of the well.

Calculated elastic differential cross sections for Ar
compared to the measurement of Ref. 39. Curve (a) is

calculated using the MSV III potential; curve (b), the

nominal Thakkar potratial; curve (c), the refined Thakkar

potential.

Deviations of calculated second virial coefficients for Ar

from the measurements of Ref. 47, Curves are for the CD
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Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. l4.
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potential (——), the MSV III (:-.), the nominal (=---)

and refined (=--) Thakkar potentials.

Comparison of the CD potential (——), che MSV III
potential (+--}, the nominal Thakkar potential (---),
and the refined Thakka: potentisl (=---) for Arz. Note

the change in the ordinste scale at 10 cm T.

Potential functions for Mgz, The solid line is the RKR
potential from Ref. 58. The analytic functions fits are
the Thakkar function (--) and the Huffaker-ﬁorse function

(—-—).

Potential functions for Ca,. The solid line is the RKR
potential from Ref. 60. The analytic functions are denoted

as in Fig. 11.

Thakkar ¢(- —--), Huffaker (---), and the spline-interpolated
ab initio potential of ref. 70 ¢ ) for Be,. Note the

abrupt change in convexity of the theoretical potential at

3.5 and 5 & .

Ab initio potential points(e) for Be, (from Ref. 70) compared
to a Thakkar function fit to the well region (solid lime) and

the long-range tail (dashed line).
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Chapter IV
Laser Assisced Penning Ionization

A. Introduction

Absorption of light by collidisg atomic and/or molecular
gpecles Is hardly a new phenomena, as it 1s the source of pressure
broadening of resonant absorption and emission linesl and collision-
induced absorptionz. What has generated much interest of late is
the absorption of light, nonresonant with respect to the reactants,
which changes the state of internal excitation of the products.

The simplesv oi these processes is laser-~induced energy
transfer as studied by Harris and co-w0rkers3’4 for the Sr]Ca pair

and by Cahuzak and Foschek5 for Eu/Sr. An e.:amp': is the system:

o
Sr(5pP) + Ca + hv(4977 A) ~ St + Ca(4p2ls)

o
lP emission is monitored at 5513 A. The

where the 4p2 15 + 4sbp
unique point here is that the photon does not correspond to a
resonant absorption of Ca or Sr, but makes up for the energy deficit
for the St 3p Lp excitation and the Ca 4p2 1g level. In effect, the
photon is resonant with the transient "collisional complex" of
Sr* and Ca, and the absorption is fairly broad (14 :m-l FWHM) Que
to the short lifetime of the pair as they pass by each other.

Still other related phenomena are the laser-issisted excitive

4,6

+
charge transfer between Ca’ and Sr , tollisional fluorescence

& 4,7 .
between two Ba acoms ’° and laser-assisted intermolecular en.wgy
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transfer between CO in the ground state and z2nother CO in the
v = 5 lavel of the A Tl state to yield one CO in the B ‘t*
statee. We have already discussed photoassociation of Mg; and
Ca; in the previous chapter and should also point out that photo-
association of Hg; has been observedg.

These absorption phenomena are not strictly limited to par-
ticles that are passing in close proximity of each other; absorptiom
and emission of light by a chemical transition state, or activated
complex, have been observi .. Hering and co—workersl0 note that
absorption of the complex for K + HgBrz opeas up a new channel for
chemiluminescence of HgBr*. Arrowsmith and colleagues have studied
chemiluminescence ¢of the transition state from the F + Nazll reaction.
Similar effects have also been observed for Cl + Nazlz. There have
been theoretical specula:ionsl3 concerning the modification of other
chemical reactions by radiation field effects on the transicion
state.

The system we will be considering is more along the lines of
the atom-atom energy transfer scheme, but a bit more interesting.

We refer to the effects of light absorption on a Penning ionization
collision. Penning ionization (PgIl) corresponds to the transfer of

electronic excitation energy from one species to another, leading

to lonization of the Jatter:

A* + B+ A+ Bt + e .



4 similar phenomenon is associative ionization (AL), where the

colliding species "stick” to form a molecular ion:

A* + B+ apt «e-

Niﬂ.hausl4 has recently reviewed the Pgl phenomena.

To date, Weilner and co-workersl5 have recently observed
laser-assisted Pgl and AI in collisions of two Li* and in two
Na* atoms, where the excitatilon energy is in the 2p and 3p levels,
respectively. The two excited atoms together do not possess
eposugh energy to lonize one of their kind, so the energy deficit
must be made up by photon absorption during collision. The processes
of laser-assisted and -enhanced collisional ionization have gener-
ated much theoretical interest and speculation, ranging from the
perturbation treatments of Geltmanls, of Heinerl7, and of Nayfeh

and Payne18 to the full-blown second-quantization calculations ot

13'19’20. What we £ind Intriguing is

George and co-workers
George's prediction that the ionization collisional cross section
should be enhanced by the presence of the radiaticvn field.

These reactions may be more than just a theoretical curlosicy.
Energy transfer and ionization in the presence of a high intensity
radiation field are of importance in laser-produced plasmas, such
as in welding or annealing processes, or in plasma-produced lasers,
such as excimer or ion lasers. The field-enhanced collisional

cross sections can be of considerable importance with respect to

the ever-increasing energy densities used in inertial confinement
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fusion experiments.

We believe we have observed just such an effect in the system

we are to discuss. The field-free reaction,

Ar(sz) + Ca + Ar + Ca+(4p 2PJ) + e~ N
has been previously studied in this laboratory by HartmanZl’zz.
Monitoring the fluorescence intensity of the 2P3/2 and 2Pl/2 lines
at 3934 and 3968 ;, respectively, Hartman found a 5:1 propensity
for excitive Penning ilonization of the J = 3/2 state. This could
be rationalized in terms of electrunic angular momentum coﬁserva-
tion23. He also determined absolute reaction rate constants of

u cm3 molECule-l sec-l for the J = 3/2 and

1.6x10710 agd 3.2x10”
/2 2P levels, respectively, by comparing the intensities to that
of the 7602 ; emission of Kr* from the known rate of energy transfer
from Ar* to Kr. These rate constants yield thermally averaged
cross sections of 28 and 5.5 RZ. Emission from the A ZHQ state
of CaAr+ by excitive AI was also observed and estimates of the well
depths of the ground and excited states were made.

We report here the first observation of a resonant, field-

modified excitive chamnel In this system. The new channel described

here,

*
Ar (3Pg) + Ca+ hy > Ar + Ca+(5p 2P) + e” R
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has beea di;cussed as a likely one for the study of field-modified
collisional ionizationZA. In this process, hv equals (approximately)
the energy difference between Ar* and the 5p 2P state of Ca+, as
illustrated in Fig. 1.

The new channel can be viewed as the excitive photoionization
of the (autoionizing) quasi molecule CaAr* from a continuum state
to an excited (and also unbound) state of caar’ that correlates to
ca*(sp 2p) + ar(Ys). This state of Ca’ has a radiative 1ifetime’’
of 34 neec. It decays predominantly (80%) to the 5s level, which
subsequently decays to the 4p doublet at 3737 and 3706 3. These
latter emission; determine the number of 5p 2P ions formed (see
Fig. 1).

What we expect from this view of the process is laser-excited
fluorescence from the photolonization of CaAr* to yield Ca+(55 25),
whose energy threshold corresponds to a photon wavelength of
12003 ;. As the exciting radiation 1s scanned through shorter
wavelengths, there should be a stepwise increase in fluorescence
intensity at 5988 ; and 5960 R as the thresholds of the 5p 217]_/2

2
and "P are, respectively, attalned. What is in fact observed are

3/2
resonances at these thresholds. We also estimate the laser-assisted
collision cross section to be 250 times that of the field-free

reaction.
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B. Experimental

Our experiment employs the flowing afterglow apparatus used
by Hartman. Argon is passed through a CaS0, drying tube and then
through a liquid nitrogen trap to remove HZO. It is then passed
through a 19 mm pyrex tube which encloses a hollow cathode discharge
maintained at 275 V. The ions and excited states of argon recombine
and decay to the (SPZ; 45[3/2]2} state, which is stable with respect
to radiative decay. This afterglow contains ca. 107-201° cn~3? geta-
stables in a one torr bath of argon. The metastables flow down the
remaining 35 cm of the pyrex tube and into the interaction region at
a meavured flaw velocity of 7><103 e/ sec.

The interaction region is a stainless steel cross, with six
two inch diameter side arms, in which the target gas is introduced.
In this case the target gas 1s atomic caleium produced in an oven
beneath the cross., The calcium vapor is entrained in a second flow
of argon, introduced from beneath the oven, bringing the Ca into the
cross at a density of greater than 1014 atoms/cm3 ana producing &
red-violet, conical flame at the mouth of the pyrex tube. The visible
fluorescence is predominantly due to production of neutral Ca*(éshp lP
and 3P) by various secondary processes such as ion-electron recombi-
nation and excitation of neutral calcium by Fenning electTrons. After
passing through the interaction region the flow proceeds through the
foreline port of the cross, in line with the afterglow tube, and on
to the 1000 £/min Welch 1375 mechanical pump.

The calcium oven is a stainless steel crucible, 3/4' diamerer
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and 3" deep, which is radiatively heated by a surrounding foil

heater. The heater is 0.010" tantalum foil about 10" long and

around 3-1/2" wide, rolled lenghtwise into a eylinder. About 5"

of this cylinder is cut lengthwise into six strips of equal width.

The atrips are bent out and down to form a concentric outer cylinder.
The ianer and outer cylinders are connected to two water-cooled cop-
per bug 1lines that carry 400 amps of current at one volt a.c. poten-
tial difference. The crucible rests inside the inner tantalum cylinder
and can be heated to 80G°C. The entire assembly is held in place

inside a 3 liter stainless steel chamber which is bolted to the inter-

action cross. Further details of the apparatus are given by Hattmagl.

The pulsed laser beam passes through the flame perpendicular to
the a%is of the pyrex tube, The'laserAentrance port is Brewster angle
window on a six inch sidearm, epoxied to a stainless steel flange.
The "aperture" in the flange (actually a 1/8" NPT hole originally
drilled through for a thermocouple gauge) proved to be a little small
for the laser beam, so the beam is brought to a focus at the aperture
by a 50 cm focal length lens. This leads to a 6.7 mm beam diameter
in the flame region. After crossing the flame, the beam exits chrough
a similar window arrangement and the average power is monitored by
a Sﬁientech power meter.

Fluorescence from the flame is collected from the port directly
above the flame and oven. The fluorescence first passes through a
bandpass filter (Oriel G-774-4000) centeved at 4000 Z with a width

o
of 800 A. The light is then passed through a 0.25 meter Jarrell-Ash
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monochromator, centered at 3737 ;, with the slits removed {aperture
width of 12 mm), These measures effectively eliminate background
radiation of the oven, scattered laser radiation, and most of the
fluorescence from neutral calcium excitation.

Since all six ports of the cross are employed, the preceding
discussion may still be coafusing. A block diagram of the experi-
ment, illustrated in Fig. 2, should help.

The filtered signal is detected by a cooled RCA C31034 photo-
multiplier, amplified by a fast discriminator (PAR 1120, 30 asec
ECL pulse width), and counted by both a gated Ortec 770 counter and
au ungated Intel 8253 counter interfaced to a computer. The gated
counter is enabled for 1 usec after a 10 nsec delay. The ungated )
counter monitors the background emission (Ca+(4p 2P3/2) + (4s 2S) at
3934 R) which is responsible for 30% of the ated signal. Signal at
each wavelength is accumulated for 1200 laser shots (2 min).

The laser system used for this experiment was on loan from the
San Francisco Laser Center. The second harmonic from a pulsed
Quantz Ray DCR YAG laser (with amplifier) was used to pump Rhodamine
101 in a Quanta Ray PDL-1 dye laser. This produced tumable radiation
in the region of 5975 Z at 12 mJ per pulse with a pulse duration of
around 10 nsec and a repetition rate of 10 Hz. There is a 20% atten-
uation of the beam by reflection losses of all the optics used to
channel the baam into the chamber. Tncluding the losses and the es-

2

timated beam diameter, we find a power demsity of 2.8*106 W/em™ in

the flame.

The wavelength of the dye laser grating drive was calibrated to



-]
0.05 A against atomic neon emission on a 1.5 meter Jobin-Yvon
monochrorator. For operation without an etalon, Quanta Ray specifies
a bandwidth of 0.4 cm-l and we have found it to be less than our

instrumental bandwidth of 0.7 cm .
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C. Signal Treatment and Results

During the course of our two minute data collection interval,
there 1s a very large background of (2-5)x106 counts. With the mono-
chromator set at 3737 ; and an effective slit width of 12 mm, the
primary source of this background is the 3734 ; line from field-free
excitive lonization. This background proves to be a mixed blessing.
On the one hand, it is a monitor of the flame intensity, which varies
with Ca concentration due to oven temperature fluctuations. On the
other hand, with a gated counter duty cycle of 1x10'5, it also con-
tributes 20-50 events recorded by the Ortec counter.

In order to obtain a corrected signal, S, we must subtract
the product of the background, B, and the duty cycle, D, from the
number of gated counts, G. Since the signal 1s proportiomal to the
calcium concentration, we correct for fluctuations by normalizing
with respect to the background. The 5975 ; region is on the blue
side of the Rhodamine 101 gain curve and we found the power to fall
off rapidly. For a single-photon process we expect the signal to be
proportional to the intensity, so we also divide the corrected signal
by the monitored laser power, P. We finally derive the corrected,

normalized signal,
S = (G - DxB)/(BxF) .

The unéertainty, 0(S), is the standard counting uncertainty, vG,

normalized with respect to background and laser power.



186

The, results of this data massaging are presented in Fig. 3.

The signal level for this experiment is very low; our largest signal
at 5958 R corresponds to 97 event, 1/3 of which is background. The
repeated scan in Fig. 3b is an indication of the reproducibility of
the signal, Attempts to improve on the red band at 5989 ; proved
unsuccessful.

Table I lists the observed resonances and their bandwidths,
along with anticipated frequencies based on asymptotic energy dif-
ferences. Although we list two maxima for the 2Pl/2 excitation,
the statistics of the data do not warrant the resolution of this band
into a doublet; we note the average position (16 691:5 cm-i) paren-
thetically in the Table. The maxima occur very close to the asymp~-

L to che biue of

totic predictions, with the 2P3/2 signal about 7 cm
its expected location. This shift is not exceptional, compared to
the observed 68 cm-l blue shift of laser-assisted charge transfere.

We were, of course, careful to ascertain that this signal oc-
curred in the presence of both calcilum and metastable argon. When
either the discharge or the oven was off, no signal appeared on the
gated counter.

Not shown in Fig. 3 is a very large signal at 6001 ; due to two-
photon excitation of meutral Ca to the (4s5s lS) level. Subsequent
cagcade to the (4s4p 1P) level produces a 4227 ; signal which is
20 strong that, even though the line is outside the monochromator
bandpass, scattered light produces signal orders of magnitude larger,
even with 250 y slits in place. We are fortunate that this ahsorption

is out of the regioun of interest,
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One further bugbear is the two-photon absorption of argon
metastables to produce argon in the n = 15-20 Rydberg states. If
this were to happen, a collisional ionization would produce an
excited calcium fon which would ultimately cascade to the 5s level
we monitor. These Rydberg levels Fave not been observed to date,
so we have computed the supposed resonances by quantum defect esti-
mations (good to %1 cm-l). We do not find these resonances in Fig. 3

and dismiss this mechanism.
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D. Discussion

We have estimated a 10 nsec delay to occur following the end
of the laser excitation pulse. This is based upon the conversion of
the photodiode pulse to a TTL signal which controls the Ortec counter
gate, which s.would take >20 nsec. The transit time of the photo-
multiplier tube and the response time of thke PAR ECL discriminator
should be on the order of 10-15 nsec, giving a net delay difference
of 5-10 nsec. This assignment of delay is critical because it is
conceivable that Ca+(55 2S) could be formed directly, with the excess
energy of the photon going into Penning electron kinetic energy.
Since the lifetime of this state is 5 nsec, any formed directly
wou;d have completely decayed before gated counting began. Similar
liﬁetime arguments hold for laser enhancement of the 4p level.
Emissions from 4d 2D levels occur outside the bandpass of our filter-
monochromator. Thus our experiment would be sensitive to the 5p “P
cascade exclusively.

The most remarkable feature of Fig. 3 is the apparent resonance
behavior. This feature 1s worth some consideration. We should first
point out that our experiment is sensitive only to the probability
of ionization that leads to a Sp ZPJ excitation. Thus it is possible
:h#t the total laser-assisted ionization may be constant, for example,
and we are only seeing a resonance in the branching ratio.

Assuming that we are, in fact, seeing all of the laser-assisted
processes through fluorescence detection, we note that the bandwidths
of 11-14 cm’l are characteristic of Harris’ fly-by timeac, or the

duration of the collision. The fact that the resonances occur in very
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close proximity to the expected wavelengths for the 2Pl/2 and 2P3/2
channeals supports our premise that we are observing a collision
complex absorption.

Anocher possibility which could explain the resonance effect
is laser-assisted collisional energy transfer to an autoionizing
state of atomic calcium, which spontaneously ionizes to form 5p 2Pcih
Although autofonizing states of calciun have been studied through
photoionization of ground state 6326, the region of Interest to us
(910 ; for photoilonization of the ground state) is yet to be studied.
Thus the presence of these hypothetical autojonization states can
neither be confirmed nor denied. The wavelengths of these resonances
seem very fortuitous unless the autoionizing states are of the form
5pnl, where nl corresponds to a Rydberg level. Cooke and
Gallagherz7 have studied the 6p20s states of barium, and we note that
the observed autolonizing linewidths of 3-11 cm_l could contribute to
the broadening we see in our lines.

We can take advantage of the fact that we are monitoring the
field-free lon preoduction in order to estimate a collisional cross
section. Since our background is primarily due to the 3934 ; line
from field-free Ca+(4p 2P3/2) production, the ratio of the number of
field-assisted events per laser shot to the average number of field-
free events per shot is proportional to the ratio of the field-
assisted cross section to the field free cross section (known to
be 28 22). The average number of field-free collisions is found by

multiplying the average background count rate by the 10 nsec duration
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of the laser pulse. In this ratio we are neglecting a proportionality
constant that accounts for a geometrical correction of the laser beam-
flame intersection fraction and the efficiency of 3934 ; transeission
by the filter/monochromator arrangement. These two effects cancel one
another, and we assume this factor to be close to unity. The ratio

itself is 225%93, implying a field-assisted cross section of (6.3

3

L
+2,6)%10 Az at a power density of 106 W/cmz, where the uncertainty

is the standard deviation of four separate measurements.
Although we are confident of the qualitative result that the
field-assisted rate exceeds the field-free rates by a significant

amount, we should be more circumspect of the exact magnitude. George

13,20

and co-workers have indicated that long range radiative coupling

between the two atoms should increase the PI cross section. Cross

3

°
sections of 10 Az have been reported for collisional energy trans-—

erab’4 at hundreds of times higher power demsities. At powers

15,17

£
similar to ours, however, Weiner and co-workers find a PI cross
section 0.1 22. The resonance structure is most likely the key to
these very large cross sections,

If the postulate for energy transfer to an autoionizing state
of calcium is born out, we may have the necessary rationalization
for our estimated cross section. The photon does not ionize the
complex directly but rather excltes it to a state that correlates
to a relatively large, doubly excited calcium atom. Such a mechanism

would put thls system on the same footing as those studied by Harris

and co-workers.
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We present one other alrernate interpretation which we wouid
like to ignore, but as scientists must consider. Because of the
numerous secondary processes occurlng, such as ion-electron recombi-
nation, there will be a small concentration of neutral calcium atoms
in excited Rydberg levels. These levels can be excited to tite auto-
ionization states mentioned in the previous paragraph through a two
or three photon process. If this is the case, then our observations
are not of a collisional photon absorption at all., This possibility
can be tested by carefully monitoring our signal as a function of
laser power. We have observed the 5958 ; peak at two different power
levels, and there appears to be very little power dependence in the
net signal. Since ion-electron recombination is second order in
metastable concentration, we can determine the dependence of the signal
on [Ar*] by varying the current to the hollow cathcde discharge.

Resolution of this question must awalt further experiments.



E. Theoretical Considerations
Siance part of the motivation of this experiment is inspired by
theoretfcal speculations, it behooves us to at least ocutline the
theory behind Pemuing ionization and consider the effects of the radi-
atjon field. We start with Hiller;s classical expression29 for the
probability of lonization, or "opacity", Pb:
w
B, = 1 - exp{-2 ar T(x) (av, ()™} e
To
In this expression b is the classical impact parameter, I'(r) is che
autolonizacion width, and vy s the classical velocity between the

two api-oaching atoms with initial kinetic energy, E

v, =BV, (r)/E~(b/2)7) @,

where V_ (r) is the potential between the two atoms before
Penning ionilzation, and Ty correspounds to the classical turning point,
vb(ro) = 0.

The totzl ilonization cross secrion, GroraL® 3% be found by
integrating Pb vith respect to the area elemeut, 27bdb. The equivalent

quantum mechanical evaluation can be made by substituring the relacion

b = (l+1/2)/k° (3)

and

Ky = n/(2uEy L2 (4;

192
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to obtain the sum

2 <«
UporaL = (/ky) I (2UDEy ).
=0
Since we are examining a system with more than one ionization
channel, the above formulss must be modifiec. The autoionization

widzh must be resolvedlk into the individual channels
I(r) = EiTi(r) 6).

The expression for Pi(r) can be obrained from the "Golden Rule”

formulasoz

r () = 2ﬂo.|<¢|H-E|Xi>|2 N

where Xi is shorthand for the producc of the wave functions of the
unbound Penning electron and the discrete electroni: states of the
ion and ground state rare gas. H is the electronic Hamiltcaian, and
£ is the total electronic energy of the . atoms in state ¢ before
the collision. If the wave functicn of the departing electron is
nermalized as that of a spherical Bessel function (i.e., has uanits
cf reciprocal lengthk), then the demsity of states, p; = (8me/hzei)1/2,
where o, and €, are the mass and kinetic energy of the electronm,
respectively.

In order to find the probability of producing channel i, we must

. 29
use the expression :



P;(r) - (ZI‘i(t)/'L\vb(r))exp{- dr'(I'(r')/hvb(r'))} x
To
T
cosh { dr"(r(r")/hvb(r"))} 3.
To

Integration of this expression with respect to r from Iy to infinity
does not give the simple closed form of Eq. (1) since the argument

of the hyperbolic cosine (the latter being called the "survival
funceion" in the literature) is the total ionization width, whereas

the factor is the width of the individual channei. Following the radial
ilntegration, the resultant Pz 1s treated as before to obtain the

cross section of this individual channel, Oy

Niehaus14 has discussed ﬁhg problems of determining branching
ratios, g(r)/F(r), from cross section ratios, concluding that doing
so is not a good idea unless (1) the ratios do not vary significantly
with r and (2) the opacity function is much less than one. Moreover,
we measure rate constants, or veloclty averaged cross sections, :and
these latter quantities can show very- strong velocity dependenceéA’SI.
Because of the convolutions and assumptions invelved (assumption (2)
is probably not valid in our case), we hesitate to determine dymamic,
micrgscopic branching ratios from our measurements.

Up to this point, we have only discussed field-free Penmning
ionization. For field-modified processes there are two elements in
the Hamiltonian that couple the discrete electronic states of the
coll’ding atoms to the ilonization continuum of the products. The first

is the electronic Hamiltonian irself, or the Coulombic coupliag, which
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i3 responsible for the field-free ionization as expressed in the
iondzation width of Eq. (7). The s=cond interaction term is that
of the atoms wirh the radiation field. This interaction is usually
represented in the dipole approximation as —E'E, where £ is the
oscillatory electric field and ﬁ is the dipole moment of the electrons
and nuclei A and B: -ef T 42, 6T +Ze T,.

The treatment of this process follows two schemes. The first is
perturbation theory, and we will concentrate on John Weiner's workl7
as an example. The other is the more elegant treatment by Bellum and
George13’19, which uses second-quantization treatment for the radiation
field and a set of coupizcd-inannel equations for the actual collision
dynamics {as opposed to the classical treatment presented here earlier).
Since these methods are a bit sophisticated, we will only qualitatively
discuss their results.

“leiner considers laser-assistad collisional ionization relevant
to his experiments (where field-free ionization does not occurs in
terms of second order perturbation theory. The first order corresponds
to laser excitation of the diatomic system from state 1 to state 2. It
is important to note that state 2 is a discrete excited state, so
that this process is a resonant transition. The second eorder pertur-
bation is the coupling of state 2 to ionization continuum, i.e.
Penning ionization. Using Miller's theory and the small opacity ap-

proximation, he obtains the expression for the cross section. It is:

o = 4 {uy ,E/20u) *4B%exp(-by/B) (b /5+1) /hv ®,
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#here hAw is the energy difference between state 2 and the molecular-
ion potential, v is an average velocity, and the autoionization width

is

F{r) = A exp(-r/B) ao),
which has been shownl4 to be a reasonable functional form. He chooses
a .alue of 2 ; for bO’ which is a minimum impact parameter. Using 3
Debye for the transition moment, ¥i9s and the Pgl parameters for the
H/He(3s) system, he finds a cross section of 0.10 ;2 for a laser
power of 106 H/cmz.

§ellum and George consider fileld-modified processes (i.e. where
the system also lonizes under field-free conditions) as well as the
field-assisted processes above (although resonance excitation is not

necessary). They argue that the dipole coupling element,
W) = <l g,

should die off more slowly with increasing r than the fieid-free
Coulombic matrix element. Their rationale is that the Coulombic term
only.becomes appreciable when the electron clouds of the two atoms
start to overlap at close distances, whereas the above function may
still be appreciable at larger separations. Although their arguments
may be plausible, an ab initio calculation of Eq., (11) would be far
more compelling. They report a numerical calculation of ficid-modified

PgI of Ar by HE(JS)SZ, but Eq. (11) is purposely parameterized as a
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function of r to support their qualitative conclusions. Moreover,
the calculated field-modified cross sections are at best only
comparable to the field-free processes, even for laser intensities
of 109 W/cmz. The cross sections (or rather differential cross sec-
tions as a function of emitted electron emergy) appear in Fig. 4 of
ref, 32. We estimate from this figure field-modified cross section
of <1 RZ.

It would seem that theory does nmot bear out the amount of enhance-~
ment seen in our experiment. This makes our alternate proposal of
laser-assisted energy transfer to a discrete, autoionizing state of
calcium seem somewhat more desirable. Harris and colleagues observg’
collision cross sections comparable to the one we estimate, but
theirs are for power densities of lcilwlcmz. Due to our ignorance
of the autoionization states in this energy regime, this particular

interpretation must remain only speculation.



F, Future Considerations

There are several experimental improvements that could enhance
the signal and make more reproducible and refined measurements pos-
sible. One would be a collection lens that would focus the fluor-
escence onto the monochromator slit. Care should he taken in the
choice of the lens so that the magnification factor places the
flame image within the slit size and that the angle of divergence
following the slit matches the throughput, or f#, of the monochro-
mator. This would permit better dispersion. Since the regilon being
monitored lies in the ultraviclet, an RCA 8850 photomultiplier
would be more appropriate, and less sensitive to oven background
and scattered laser light, than the red-sensitive 31034. The ef-
fective lifetime of the 5p 2P cascade 1s less that 100 nsec, so chat
either a faster discriminator or a gated integrated would be
in order. The gate trigger used in this experiment had a minimua
enable time of 1 psec. Clearly, a shorter gate time would signif-
icantly reduce the background.

Some of these modifications were employed in later attempts to
reproduce the signal. These efforts were hampered by breakdown of
the laser, oven, and photomultiplier tube (occurring consecutively
in order to maximize frustration). To date, our best data are from
our iuitial measurements.

There are at least two other systems which lend themselves to
study. Excitation at 5634 ; of Sr in collision with Ar* would 1lead

2
to production of the 7s “S ion state. This cascade is best observed

198
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by monitoring the 6s 2S + 6p 2P3/2 1line at 4305 Z, which is also
present in the field-free flame. Absolute rate comstants have not
been measured for this system, but relative rate constants for the
field-assisted reaction would be instructive. Another scheme in-
volves excitation of the 3p ng levels of Hg+ at 5759 ; and 5729 ;
during the collision of Mg with Kr(aPz). Since Kr* produces no
excitive ionization of Mg, the appearance of the resonance lines
at 2796 and 2803 ; would present a clear-cut demonstration of the
laser assisted process. The 3.7 nsec radilative lifetimes prohibit a
counting system since a discriminator would only record one event
per laser shot.

In light of the results reported here, it would also be worth-

while considering energy transfer to known autolonizing states of

the alkaline earths.
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G. Conclusion

We have observed the opening of a new exciciye Penning ioniza-
ion channel by laser excitation of the nascent ionization complex
of Ca and Ar*. Cascade fluorescence from the 5p ZPJ states, unexcited
in the field-free case, is monitored as a function of laser excitation
wavelength., The excitation signal showed resonances at wavelengths
corresponding to the excitation of the 2P1/2 and 2P3/2 levels with
a small blue-shifting of the 2P3/2 resonance.

3 °2
A" has been estimated

A laser-assisted cross section of 6.7%10
from this work. While the magnitude of this cross section should be
confirmed or adjusted through further work, there cam be no question

that the field-assisted reaction proceeds at a faster rate than the

field-free production of Ca+(4p 2PJ).
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Table I. Expected and observed transitions for laser-assisted
excitative Penning ionization of calcium by metastable

argon, (FWHM is full width at half maximum.)

Y observed Vv observed Vv expected FWHM
Ca state ) Cen D (enl) ey
S5p 2P1/2 5991,5988 16 687,16 695 16 695.19 5.6, 1.39
(16 691%5)

Sp 2P3/2 5958 16 780 16 773.44 11.3
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.

Energy level diagram for Ca+ + Ar relative to

Ca(452 lS) + Ar(ls). The dashed line locates the energy
of Ar*(3Pg). Wavelengths (in &) of the transitions are:
(a) 5958, 5988; (b) 11 836, 11 947; (c) 3706, 3737;

(d) 3934, 3968; (e) 3159, 3179, 3181. Energy level

values are from Ref. 28.

Block diagram of flowing afterglow/laser excitatiom
apparatus, A-argon flow, B-hollow cathode D.C. discharge,
C-calcium crucible (tantalum oven assembly not shown),
D-exhaust to 1000 %/mir pump, E-dye laser beam, F-power
met.er, G-fluorescence, H-bandpass filter, I-0.:5 meter

monochromator, J-cooled PMT, K~to countlng instruments.

Laser excitatiom spectrum of Ca+(5p ZP) fluorescence
resulting from Ca + Ar* + hv collisions. (a) Complete
excitatlon spectrum. (b) Second scan of blue portion of
spectrum to illustrate the degree of reproducibility.
Error bars represent * one standard deviation due to

counting statistics.
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APPENDIX I.

This appendix provides "black box" directions for using the
program DUNPOT to calculate the series potential coefficients. A
sample set of control cards for use on the Lawrence Berkeley
Laboratory's CDC 7600 computer is given, as well as a sample input
deck. A listing of the program is also provided.

Since the program was never annotated with any comment cards,
the listing is pretty cryptic. The brief subroutine-by-subroutine
descriptions that follow are in order.

I. Main Program:

DUNPOT (INPUT,OUTPUT,COFOUT,FILM,TAPE9,TAPE10)

_This is the controlling program and reads all the input data.
Except for the RKR result$, it .is also the source of all the data
on the output and COFOUT files. COFOUT is a file of all the series
potential parameters to be viewed as an abbreviated output of this
program or to be used as an iunput file for other programs. FILM is
the output file containing plotting information to be disposed to
the appropriate plotting hardware. TAPE9 and TAPELQ are scratch
files used by the BKY plotting software.

. The ordering of the Yij's in the array, YIJ(I) is in the manmner
outlined in Chapter II, i.e. YIJ(l)-BE, YIJ(Z)sme, YIJ(3)=-uaxe’ £,
There are also two arrays, YNQ(I) and YNI(I) containing the Gv and
Bv expansions, respectively, that are used later by the RKR sectiomn.
The arrays X(I),Y(I}, and Z(I) contain Dunham's resolution of the &j%

into first order terms and higher order corrections. Z(I) is not used



by the program but is included in anticipation of future expansion.
YIMP(I), XT(I), etc., are temporary arrays used in the error analysis.

The Dunham coefficients are contained in the AA(I) array, where
A(l)-ao, A(Z)-re, A(3)-al, etc. B(I), E(I), and C{I) refer to the
SPF, Thakkar, and Huffaker potentials, respectively. The arrays in
common block /ERRSTUF/ coatain the Jacobians, varlance matrices, and
scratch arrays of differentials used in the error analysis. The min~
imum number of an's to be calculated is up to a, (there is no point
in using the program for any fewen ., The maximum numher of an’s is
up to ag. “Extra' Y:Lj's’ up to YJ.O,O and Y9,1' can be read in and
used by the RKR section.

The outputting of the potential coefficients is done by one of
two sections, depending ;\Don'whether an error analysis was performed.
The next two sections call the option RKR and plotting routine pack-
ages. The last section writes out the potential parameters and RKR
turning points, if calculated te the file COFOUT.

II. The a, algorithm:

SUBROUTINE KALKAN

This is the workhorse of the program, iteratively calculating
the an's from the Yij's. The maximum number of iterations is 30,
fawer if the sum of the relative changes of all the an's is less than
2-47. The b_'s and e_'s are calculated from a_'s. The ¢_'s are

n n n n
determined directly from the second-order-corrected Yij‘s using

Huffaker's published relaticns (J. N. Huffaker, J. Chem. Phys. 64,

3175 (1976)).
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ITI. Error Analysis:
SUBROUTINE ERRANS

This routine calculates the deivatives, ﬂn/ Yi 's, in order

3
to form the Jacobian, AJ(I,J). The numerical differentiation is

8

performed by adjusting the relative value of each Y , by 1X10 .

13
The a, variance matrix, AV(I,J), is calculated from the Yij variance
matrix by SUBROUTINE JVJ. AV(I,J) is then rescaled so that the a,
standard deviations lie on the diagonal and off-diagonal elements
correspond to the correlacion coefficients (See A. A. Clifford,
ref, 44 of Chapter III, for dafinitions of the terms used here).
IV. RKR Package:

SUBROUTINE RKMSKR

This set of routines uses the RKR algorithm suggested by
M. E. Kaminsky, J. Chem. Phys. 66, 4951 (1977). The above subroutine
prints out a table heading and coordinates the other routines.
WMFIG determines v such that Gv=0. ABNK calculates some intermediate
coefficients and KMNSKI evaluates the fv and g, integrals and prints
out the results. BLOCK DATA RKRQD contains the set of 50 Gaussian
quadrature point pairs, in octal, used in the integral evaluation.

Most likely the number of points used is a factor of 2-10 larger

than necessary.
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V. Plotting Package:

SUBROUTINE PLOTPOT:

The above routinme calculates an array of points to be plotted
for each of the series potentials and the RKR turning points. It
employs FUNCTION VOFR to evaluate the potential for each value of r.
The ordinate 1s scaled from - % De to 2% De and the abscissa for 0 to
5 T where De is supplied from the input deck and T, is determined
by the program. The appropriate increments by which the abscissa
and ordinate should be labelled are determined by SUBROUTINE TICKGEN.

The actual plotting instructions are made by a series of calls
to the BKY IDDS package, making this part of the program "site
dependent". The program exploits one of the BKY features by deter-
mining whether the plots are being made on a Tekironix interactive

terminal and, if so, requesting interactive inmstructions from the

terminal to determine the time of viewing.



A sample control card sequence for running on the CDC 760C

and plotting on the Calcomp pen plotter would be as follows:

(jobecard)

$ID=password

FETCHPS (JSWB , DUNPLOT ,DUNPLT7)
FETCHPS(GPACBN7,GPAC, CCBN)
FETCHPS(IDDS,ULIB,ULIBX)

LINK, X, F=DUNPLOT, F=GPAC,P=ULI3.
RETURN, DUNPLOT ,GPAC,ULIB,FTN4LIB.
DISPOSE, FILM=PL.
FETCHPS(JHG,COFISH, COFISH)

COPY (COFISH,OF,NULL)

COPY (COFOUT/RB, CR, COFISH)
LIBRITE(JSW,COFISH/RB,COFiSH,395,W={GOBLE])
EXIT. -
DUMP(Q)

FIN.

END.

(7/8/9 card)
{datadeck)
(6/7/8/9 card)
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The following is a description of the input structure and a sample
input deck.
(TITLE(K),K=1,8)
FORMAT(8A10)
One card, or BO characters, giving a label for the data set.
{LITCHER(K) ,K=1,8)
FORMAT (8410)
Another card of alphanumeric characters giving reference
source for the Yij data. The form is: First Author/Journal and

Volume/Pg.No./Year/Yij Status. Further details are given in

Chapter II.

RML,RM2,21,22,DSUBE
{Free format)

The first two values are the atomic masses (in amu's), the
atomic numbers, and the estimated dissociation energy in cm—l
(for scaling the plot).
(IFL(J),J=1,16)
FORMAT (16 I5)
Various integers and flags for controlling the program.
The purposes are:
IFL(1) : Number of Dunham corrections calculated. Minimum is 2,
maximum is 6.
IFL(2) : Option flag for an error an.lysis. If IFL(2)=0, the
Y j‘s uncertainties are read aud an error analysis

i

performed.
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IFL(2) Also controls printing options, which are:
IFL(2) = 1: Only an's standard deviations are printed.
= 2: The an's correlation matrix is also printed.
= 3: Correlation and Jacobian matrices are printed.

IFL(3): Determines whether RKR turning points are computed or
read in.

IFL(3) < 0: Read in G, and the turning points for | IFL(3) |
number of energies.
= 0: No RKR turning points read in or computed,
> 0: Calculate the RKR turning points for IFL(3)
energies (maximum is 49).

IFL(4): Number of turning points calculated for each vibrational
level, i.e. if IFL(4) = 3, turning points are calculated for
each level and for two energies between each level. IFL(4)
ignored if IFL(3) < O.

IFL(5): 1If > 0, a plot is produced.

The remaining 11 integers are not used by the program at this time.

IJ YLI(K)
FORMAT(4(212,E16.9))

No particular ordering of the Yij’s is necessary. If a set
of I,J, and YIJ is blank, the program skips that set and goes on
to the next. When the last I,J,YIJ set is read in, the aext I1,J

pair should be "-1-1" in order to terminate the input routine.



21e

I JKLYVM) (For IFL(2) > ¢, only)
FORMAT (4(412,E12.5))

Data input needed to comstruct the Yij variance matrix.

1f I=K and J=L, YV should be the standard deviation of YIJ'
Otherwise, YV should be the correlation coefficient between
and Y, . As with the Yij's’ order is not important. Data

iJ KL
read-in is termipated by "-1-1-1-1" for I,J,K, and L.

Y

GRKR(K) ,RKR1(K),RKRZ(K) (For IFL(3) < 0, only)
FORMAT (F10.3,2F10.7)

These values are the Gv’ inner and outer turning points

to be read in. There should be |IFL(3)| levels.

If a new data set 1s to be processed, repeat the above beginning

with the title card. If no new data sets remain, add a card with

"$TCe™ on it, with 8" in the first column.



AR2/TO A4/BEST OF NOMINAL REVISITED (ERROR WITH CORRELATION)
COLBOURN, DOUGLAS/JCP 65/1741/76/N
39.9623842 39.9623842 18. 18. 99,545

4 3 6 0 1

1 0 31.333584 2 0 -2.8994762 3 0 .058648148 00

0 1 .059773839 11 -3,785 E-03 2 1 -3.0535714 E~-04-1-1

1010 .1174310 2020 .0456292 30 30 .0050164 1020 -.976687
10 30 .937665 2030 ~.,989455

0101 1.52616E-04 1 1 11 1.19277E-04 2 1 2 1 1,93155E-05 0 1 1 1 -.879247
0121 .769924 1121} -.971625 -1-1-1-1

STOoP

1 I04NAQ 03 ¥oep 3ndur atdues v sy BupMoIToF 2yl

Lie



AR2/TO A4/BEST OF NOMINAL REVISITED (ERROR WITH CORRELATION)
COLBOURN, DOUGLAS/JCP 65/1741/76/N
99.545 3,757579780737 39.9623842 39,9623842 18. 18,
31.2280199187 .05976763028925 -,09070218154745
1 6
4.07908605E+03 3.75757978E+00-6.51476496E+00 2,07110471E+01-2.17597211E+01
-1.26214542E401 5.97676303E~02
2 6 8
4.07908605E403 3.75757978E+00~4,51476496E+00 4.16675228E+00 2,59958778E+01
2.55427624E+01 5.97676303E~02 2,12890060E+05
3 6 8
1.34124727E402 3.75757978E+00 5.51476496E+00-2.04469944E-01-8.87692408E~02
1.05850079g-01 5.97676303E-02 1.08991215E+02
4 6 9
9,61092889E+01 3.75757978E+00 6.51476496E+00-9.53504890E-02-1,93977773E-02
6.49804578E-C2 5.97676303E-02 9,13261402E+01 6.15532391E+00
10 7 ’
14.859 3.5660978 4,0476667
40,584 3,4676561 4.3791809
61.038 3,4194167 4.7202768
76.573 3,3915963 5.1252004
87.540 3,3718093 5.6543510
94.292 3,3394837 6.4519330
99.545 0, 18.7878989
STOP

IN0300 °TT3 uoO uUlITiM ST MOT3q

uofIPMIOIUT AYI *passavoad st oop ndup Suipscsad ayl 0IIV

8tz
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2550
2500

FPROGRAF CUNPOT (INELT«CUTFUTICOFOUTFILY +TAPESSTAPELD,

1 TAFEL2INFLT.TAFE2=CUTFLT,TAFEL=COFOUT)
COMPON/OLNCOF/ACLE) oI 140 oEL24) 4 CI2 4D 4ROUN
CCMPON/RKRYTJ/ZYNCILC P oGy YNL (200 oN3, V0L
CCMPCRIY TIZYTIILGY oX KL 6) V014D pZ 0240 ¢ YTHP (14D oXT (14) oYT £16) 427 (14)
CCMMCN/ERRSTUF/ AJ (14034 9BJ (L o2h) yEJ(L0e24) oLIiShyl4d s

1 AVIQUedd) yBVI16,14) sEV (10ald)sCVILialsd ¥V (1hyshd oSCRTCH LM oLu)y

2 DAT16)4CBC2L) 4EECLLY SO (14}

INTEGER TITLE () JIBFUG)oJBF (&) oKBF (L) 4LAFLH) s IFLILE) JNHFPT (246)
INTEGER LITCHER{A)

FEAL ME.XBF (L1 RKRLI203) 4RXR2(102),GPKR (302)

CATA PE/.0(0S6E579/

cata (hrFFT(i'K).K 14€)/ LOMDUNHA P CIZ, 10MFFICIENTS o

t G tioF
CATA (hrFHT(Z'KI.x:t-ﬁl/!ﬂﬁ!lﬂﬂﬂ-’dlk.RBF-F!NLAN €Oy 1QNEFFICIENTS o

1 10% AND OSUBE.2®(10H Y4
CATA (MPFMT(I,K) (K=2246)/2CNTHAKKAR COo30HEFFICIENTSe20H ANC OSURE,

1 3%¢10r Y4
CATA (APFMT(LoK) oKzlv6) /7 3AMNUFFAXER ColOHOEFEICIENT s {0HSs OSUSE 4,

1 LOPNC SIGMA  ,2%112H 1/ .

CATA (hrFHT’S.K!.Kll-ﬁ)liﬂHDLNHAH CIELLOHFFICTIENTS 410HAMD ST CE,

1 10FVIATION, ,2°{109
CATA (nFFHT(E.K).K:x-ﬁ)IIUF‘IHON-FIRR'10H-F!NLAN COs 10MEFFICTENTS,

$ 20ty CSLOE AN»20MC STE CEVI,1IHATIONS
BATA (AFFMT(74K) ,K21s6) /1 QHTHAKKAR ~u.1anz==:c1¢nfs.:nn. OSUSE - AN,

1 101G STC DEVILLEMATIONS «104 ’

CATA (NFFHT(R KD )K=1eE)/ ITHHUFFAKER quﬂHOEFFIC!ENfuxﬂNEo OSUBE,

1 10WSIGMA AND +1(FSTC CEVIAT.IOMIONS
RSUEE (X} = SORTICNVPY/RML/X)

CNVAT 2 E62.617E%E. L7204 /(8.9(3.241592€535828109252, 39752458}
FORPAT (8510)

FCRPAT (& FSTOPY

FORWAT (LET5)

FCPMAT (4 (212, ELE.91?

FCRVAT th (412, E12.51)

FORMAT (1F1420X0 82100

FCREAT(21X,8210)

FORPAT (6 11 X0 1PEL34E47XY)

FCRMAT (/720X *THE YN3*S®/)

ECRPAT /720Xy *THE YN1'S®/)

FORPAT (21542 (2X 4 LPE20413))

FORPAT (10 ¢ IXsLPE22.5))

FORMAT (//12X*ATC bIC MASSES, ATOMIC NUMEERS, ANC ESTIPATEC 0ISSCOIA
1TIOR ENEFGY®/)

FERPAT (/11X®41y #2, AND MY (IN AMJ'S} CORRECTEC FOR ELECTRONS® MAS

LSES/Y
FCRPAT (/72 (X
FCRMAT (13(2Xs

YOG 2*vFikelle)
o£1Y

2701 FORPAT (/71X ,%+ees¢ bARNINGS NAXIMUN NUMSER OF OLNMEM FARAFETERS =
18 AT THIS TIME#+44¢5/1X0 44440 NOUN SET TO 8 veseeds)

2702 FCRMAT (/7iX*%eeeqs RAPNIAGS MANIYUM NUMEER QF YNG™S 3 10 ssesed/qX
19s04¢e IXTRA YNL®S £PE [GNCFED +e+ees)

2703 FCRMAT(/1X%+e+4s WAFNINGS MPAYIMUM NUMBER OF YNL*S 3 10 esseed/tX
19¢004e EXTRA YNL*S A2E ICNCEED ++éees)

3003 FORPAT (7/742IX+"LATEST X AAL YaS%,/)

3006 FORMAT(7Z0XeEA20/7¢1511X,1PE20.13N))

I0L0 FORPAT (731X, *YIJ VARTAMCE PATRIX*/)
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00
301
9600
LLLL

"

10

11
12

13

ik
1%
16
17

220

FCRPAT (711X *JACCETIAN PATRIN®/Y
FORVPAT (/12 X *CORRCLATICH NATRIX®S)
FCRPAT 4315/, (19, EE15.3V)

FORPAT IF1043¢2F2L.7)

CghTIM.E

TV = 0, 8 YTJI(I) = Re

0.
REAL 1601, (TITLE(KY. % = 3,8
IFSTITLE $2).£0 44 FSTOP} STLR
PRINT 2001 {TITLE(KI, Wal,8!
REAC 3003, LITCHER
PRINT 28¢2, LITCHES
READS, RF4,RMZ21,22.05VER
FRIM 222%
PRINT® O b1 PM2¢21¢22+05LEE
RN1aRNi=71%E § RRZzAM2e7aemE
RMYZANLS N2/ ERNT ¢PN2Y
ERIN 223D
FRIAT®, RhL,FN2,FM
REAL 1101, (IFL1J) sa2L0l ) .
NOUR=IFL (4002
IF{NDUNSGT 2} NOUN2S
TFOMUBGT  B) FRIKT 2701 -
TJHC = NC a NB = @
IFNE = 1FNG = O
0 16 ¥x=i,p .
REAC 24020 ((IBF(KDs JEFIX), XIFUIN}), Kmiyh)
£O 3% Kzish
IJ = 2IEFIXY + JBF{(X)
IFLlar 27,1512
IFCTINDL LT oXJF TING = 14
IFLJBF IR )Y 13413,42
18 = 19FIXY ¢ 1
IFCISLCET10) IFNE=Y
IF{18,ET.10} GETCLE
YNL (133 2 XBF(X)
IFIID.GT.NEY NB=1B
GC 10 14
I6 = I9F X}
IF{16,GT.16) IFNG=g
TFCIG.CT 203 GUYCLE
YNORIGY 3 XBF{x)
IFLIG,.GTNG) NG=IG
YIJ (T4 = ¥BFEXA
CCNTINLE
CCHTIME
CENTINLE
EAINT 2300 % PRINT®, (YR{1K),X 35405}
ERIM 2408 § FRIAT®, (YALIIKYX=1.43)
IFLIFNGLEC W) FRINT z'nz
IFCIFNE.EQ.) PRINT 170
caLL :anAN(v!J.x.v.z.n'E-E.E.Nuuunl-i
PRIM 2003
O 33 IJat NCUN
1402 = 1ys2 ) I = 14L2
1J02T2 = I.JO2%2
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50
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76
75

1]
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IF{1J=130272) 30.30.31
J=2D ] G0 YC 32

J=1

CCNTINUE

PRINT 24CX.Ie Jo X(IJ)y YI(IN)

CONTIMNUE

Y00 = o125%X(1 )4 (T A(G=1.7%04 (3950 (3))

PRINT 22204 vOO

SIGPA = CL2)

B0E=1,4¢8¢3) § ECE=(OE=L,

CO 35 IskshOUN

PLE=SCESELYY ¢ ECEzEDRESE (I} ICOEaCDE*+CLIY
CCNTINLE

B0EaB(1)°8LE ¢ ECE=E(L1°ECE ¢ COE=C(L)*CCE
At2ImB(2)=E(2)2C(2)=ASUBE (X))

IFLIFL{2)) LO.40,450

PRIATIO06s (NHF NT (L oX) oXx 2060 4 {4{K} 1<z NOUNY
PRIATINI &y INMFNT (24K) oK2 1961 403K 4224 KQUNHT 4 ECE
PEIATI00 by (NMFNT (T 4K) X2 1960 4 (ECKI 4221 NQUNY JECE
PRIAT3I004s (INMFNT (hoX1 Kz 14€) 410 (KD K31y NCUND yCLELSIGFA
Ga 1O 208

€0 52 I=1,MUN

CO $2 Jx14MOUN

YV Isd1=Ca

00 %5 XX314250

HEAC 2604y ((IF (KD oJOF (X3 4XBF (KD oL IF (XD XSF(K)) X u1,is)
£9 %6 Kalel

TJ2%LEF (K)eJBFIK) § KL=Z*KEFIKILBF LX)

IFLIS) SEetLe®]

IFUIJaGT wIJND LR XL GToTINT) S0TO S

YV LI KL IZ YW {KL o IJ)=XBF (%)

CCONTINLE

CCNTINLE

CCNTISLE

ACNisPCUI=1

€O 75 I=1.N0M1

IP1aIsd

CO 76 J=IP1.NOUM
AALRSTIER LN NREA LN 2D S LA LANINE)
AALETRSLAL R ENE | -

TVLTe =¥V IZoIdeYVIL, I)

YV (ML MOUNY 3 YV [NCURGATL MY * YV (NQUNy NOUNY
PRINT 2910

CC 79 I=1,M0UN

PREINT2500s (YVITouledzlehluny

CALL ERRANS(CNYRToRPUGACLA, 2D
DBDE=(CI{L1)*BDE/ELL)I 2921252+ B(3)502
CECE={LE (1 )*EDE/E (1) %52)%°2
CCDE=(CC{1ISCCEZC (1Y *%2) 72

€0 102 T4, NOUM

QBCE=CBDE+ (D3 (I3 ) "2
CEDE=DECE * (DE () )*2
CCOE=CCLE+ (DC (1Y )oe2

CONTIANLE

ISGFx (5 °0CLY /CLLIIS2Z+ ICCI2) /CIZIISR2HIDL 32013 ) "2
DSGP=SIGFASSQR TCCSGMY
CBOE=@ {1 )%SQRT (CSDE)

22;



CEDE=E t1 1*<QPT {CENE}
DCDE=C {1 ) €ART (CCCE)
FRIMTIDO L, ENHFNT {S4K) JXn tebi o (ALK) » Xz 14 NOUN)
PRINT2202, (DALK) (X2l o NOUMY
IFLIFL{Z 3«2} 1201155131
112 PRIMTLCOC
Q0 112 I=xi,NOUN
112 PRINTZSOC, (AJ(T,JIsJ21.ACUND .
115 FRINTLLOM
00 116 Ts1,NODM
116 PAIRTZEODs (AV(T4ddedzis])
120 PRIMTICO by [NMFNT 16 ,X) 3X3 )96 o I2INY o Kx1e NDUN) o ECE
PATNT2202, (09K} (Kx14NELD) (Q2DE
IFCIFL12122) 2301250128
122 FRIMTLGOC
LD 122 I¥3,NDUN
222 PRIHTZ50Cy (3J{TsJletnJeNIURY
12% FRIMNT6E01
CC 126 Ia1,NOUM
126 PRINT2EQC. (VI Jiededel)
130 PRINTI0O &y (NNFPT (74X X 246) 4 [EIK} e Culo NOUN) +ECE
ARENT 2200 (OF LRI 4zl o NOL 1) 4 LEDE
IFLIFLI21+2) 140+1235,423
131 PRINTLCOQ
. €0 132 Ia1,NDUM
132 PAINT2%0G, tEJLI oJ):txd o NCUNY
13% FRIATA03L
- QG 13€ I*1,NCUN
136 PFINT2£08, (EVI(IJ)eJ2Sel)
160 FREATICI Gy (NMEFY (04178 oK3 1968 » (C(K) 9 Cx2y NOUNT +CDELSIGPFA
FRINT2202, (DG LK) K24+ NOLPY 4CCOELDSGM
IFCIFLE21«2) 1%Da1bBe20d
FRINTLEGO
LD 142 I=1:NOUM
262 PRIATZZ98s (CH{TodlodmiACUN}
185 FRIATLCO1
CO 14E T=1.,NOUM
14€ PRINT2E0Ce (CV L Ieddodxi,el)
153 CCNTIMLE
200 CEHTIALE
TFLIFL (T 1o6T20) CALL RRPASKRUA{ZYoM 1) o IFLEII=LoIFL LU o NP TN JAKRY,
1 RKRZ,GPR)
IF(IFLIIILLELQY GOTO 23F
IRKR==IFL{T)
€Q 204 w=1 IRKK
PEAC €500y GRKR{K)FERIIK) JRXKRZI1)
204 CONTINLE
205 CCHTINUE
IFLIFLE534GTe0) CALL PLCTFOTITITLE JAC21,DSUBE IFLLTI 4RI, AKR2Ze
1 GRXR)
WRITE{4.1001) TITLE
WATTE (410015 LITCHER
HRTTE (4o ™) JSUIESA(2) y7¥1eRNZs 22472
WRITE (4o ) XT2)eXi2)sVED
WATTE (4s 57000 LohCLNGACUR #10 (A 1K) oKz 2o HOUND oX (1)
WRITE (he 50000 2, ADUNGNCUN 324 (BIC) Kal o NDUN) ,X 119 4BOE
WAZTE the 500 JoACUNJMEUP424(EIKD 4Kz2 ¢ RCUNY o X (1) ,EQE

»

»
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WRITE (4e5303) 2ehDUNNCUN €3 (CIXD +K324 KCUND 94X (22 yCLE+SIGPA
IF{IFLI31,EQ.0) GCTO 210

INKRaTABS(IFL {31

WRITE (4e1101) 1d.IFL(IV el

WATTE (4. £000) (C(CFKF (K)4AXRIOC)4RXR2IKI ) 4=y TRKR]
WRITE (44 €000) CELEEsQ.+5%4(2)

WRITE {44100%)

G0 T0 1

ENC

T 223



SUBEQUTIME XALNARCYTI X sV eZshe BeE ol e NDUN4ND IN)
CIPENEICH YIJONDIMIoX (MCINYoYINOINY 4 ZINQINY
CIMENSION AINOIF) A(NOIMYE{NDIMICINDIF}
REAL MACIEP
PACHEF 3 2.%%{e4?)
€CLi Is1,A0UN
X(IV=YIS(I)
A(Ti=0,.
COS0 IT=1,30
CHEGA = (2} t BSUSE a2 X(1}
CA 3 ABS{(A{1)~CFEGAY/CFEGAY ¢ ABS((A(2)<8SURE)/ESURE)
A133 = CFEGA % A(2) = BSU3E
UE = 2.°BSUBE/OFEGA ¢ UE2 = UE®UE
UEJ = LEZ*UE 1 LE& = UE3®*UZ
Al w 24%2(3V/CPEGA/UER/T, = 1o
CA = ABS(CA(3)~-AL1}/41) ¢ CA
33 3 M
EFINCU = &) 104242
2 A2 3 1.2E%31%A1 + L. *X(&)/OMEGA/UE/ S,
CA = ABS[(ALL)I=AZYI/A2) o CA
Atb) = A2
TFINCUS = 51 10.3,3
3 AT = (5, & JoPEC ¢ A1%(e10, ¢ 13.%R2 = 7,5%81°(1, ¢ £1)) ¢
1 ko™X (5)/CHMEGA/UEI/I. )/
T Y(1) = QSYEES,12E%LE2%(
1 10.5%A1%(2. ¢ AL)))
XLy = YIg(1) = Y[
OA = ABS((A(S)I=A3)I/7A3) &+ QA
A{5) = a2
IFINCUP =~ E} 1Cekeke
b Ab = (ALT(35,%43 4 A19(eCE,25002 & 705,%A1%01/32,1) ¢ B,85%02%2 ¢
1 2o 9XL{E)/QPEGA/LUEZ) /104
Y(2) = CPECABUEZ™{2%, %Ak « 1E.75%A2%M2 ¢ A1%(«k7.5%A2 ¢ 21%(
1 659,%82/94 = 1255.,%A1%01/€4s))17160
xX(2) = ¥YIJ(2) =~ Y(2)
04 = L8S((AC6)=AL)saul ¢ CA
ALEY = AL
TFIACUP = 7} 3Ce%.5
S A5 3 (AL9(e2ls # 45,%22 o 10%:*A3/%a + 2B.5%\k = 411.%A2%22/8, ¢
1 ALP(=22%./%: » SLS.PAZ/3E, = 435,%23/78, ¢ A1¥(=lbl,./k. ¢
2 1503.%22/16¢ = IRLT.PAL19010 ¢ AL1/12840)) ¢ A2%(8.5 ¢ 22,5%A3 =
J E14OR2/1a) = 14a%A3 ¢ o= = 70 ¢ JASX(7)1/0NECA/UVELY /TS
Y3} = 2SUPESUET".125%(175. ¢ 190.%AF = 112,5524 ¢ 175, %45 ¢
1 A2%(ei63e5 = IFT4EPAT ¢ 2100%5.°A2/34) o AL2{28%, ¢ ATH{~4f0, ¢
2 6677722782} ¢ TTEL2T%AT = 3I7.5%A3 » A1%(2295./8. = 9639,%A2/16.
T ¢ TI6%. VA8, ¢ AISI2EELTT o 14259."A2/16e + 12385.7A1°%(1, + A1}/
& 126400
X(3) 2 YIJII) - YDy
0A = ABSE(ACT)I=A%)1/A5) & CA
Alry = as
IFINCUP = 8) 1feEes
6 A6 2 2,%(ALT(L1E,7E0LE o LATLPAZOAT/D, 4 AL%laBihT ®AL/il, ¢
1 L9B9.%A2%82/EL. ¢ ALS(1CEIL¥AZ/32, & AL1%(-2326%.%A2/2%%.
2 ¢ 23161 .%A1%A1/710Z0e103) v £2°(8.25%04 = TS, %32%A2/16.) ¢
3 7.075%ASAT & 1,.EX (8 )/CMEGAZUES)I /T,
Y() 3 CPEGABUEI®{245,% A€ = 271.25%A3%A3 » A25(=L&2.5%6& ¢ 1707,°
1 A2%A2/84) ¢ B1T(=ER2,5%L5 ¢ 133I,75%A2°43 + ALT(B5TE,"A4/8, =

"

o = Fe®i2 ¢ 185.%A3 ¢ A1%({1ke = 23.%A2 »
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SA2/732, + AL%(=2T8E5.%43/16, ¢ ALS({239¢85.%427128, ~
A1sL1/%12499011/22,
ltbl s YIJ(e) = Y(&)
Cé = AES({A(3)=AG}/AE) ¢ DA
At8) = A€
10 CONTINLE
IF(CI.LT.(FLDITIAELN)'PICFEPlI GOTI50
56 CCNTING
L1 CCNT!NLE
A1) = 2TSOMEGASQONEGA/ESUEE
B(L1) = AlL) & E(2) = A(2)
2(3) = A(3) » 24
B(s) = A(0G) » 3.%0(3) = 2,
IF{NDUN=2) 11142034203
303 BES) = A(S) + uaSP(L) « E.98(F) & 3,
TF(PDUR=E) 111,1Cke104
106 8(6) 3 A(6) » 5,98(5) = 10.79(4) + 10,%4¢3) - 5.
IF(ODUN=7) 11142(5.135
108 B(T) = AU7) + 5oPL(6) o 154%BI5Y » 20,%B(k) «15,98(3} ¢ 6,
IF(NDUM=E) 111+31CE,106
106 B(8) = A(8) » T.I0(7) =« Z1.°C(6) + 35,°8(5) « 3I5,%8{s)
L % 21499¢3) = 7.
11; CCNTINLE
P s ACI) = iy .
P2 a P g 03 x 029 t P4 3 P2ePz
PS = PI*F2 ¢ Pe = P3PS
ElL) = A(2I/92 ¢ F(2) = A2
E(3) = 2
Elh) = (ACL) = 11./120 = PO(1.5 & 74%P/124)1/P2
IF(MDUM=S) 121,215,115
218 TU5) 3 (A(S) & S,/€s ¢ PP(Ls75 ¢ PP(2,%E(L} o 7,76 ¢ P¥{Y, 5E(0)
1 ¢ 259003 /P3
IF{ADUN=E) 12141264116
116 ecsv 2 {2{E} = 13,7718, = PR(1,078 & PO(IP,*C (L) /ks ¢ 119.172. +
PSS i) =2457E(5) ¢ L62% o OS{LIPEL{L)/60 = 225ELS)
z ..1/35 111)) /8%
IFEMDURNTY 12241174247
117 E(7) = {A(T) ¢ o7 ¢ OA(29,/15e ¢ POUTS5E{L) & LTes2he + PP{25,%
1 E)/3. = E15V /64 ¢ 10/720a) ¢ PRI6.5%E{U) = 7.57E(S) ¢ Y, SE(B)
1 ¢ 017800 o POTE,S(E(L) « 2,%E(5)1/3, o 3.9%EL6) ¢+ «025301))3))/P8
IFCACUM=2) 1224218.118
118 E(B) 2 {2:2) = VE,2/56, = P%(u6.F/24s ¢ PP{IS 7PE(43/260e ¢
1 ETE.S/2%50 ¢ PR(3E,"IE(L) = o5SE(S) # +1251/3. ¢ PS
2 (299,%E(L)/206¢ = LLJITEFE(S) o 5.753E(6) ¢ 71,3/1bkk. ¢ F8
3 [3%2,%(.%E(L) ~ EXS513/3, » 10.5%E(6) = 3,5°E17) &+ 0875
b PRUL,01255%E(L) » T,12€%E(5) ¢ L 7SPE(6) = I.S59E(T) o 12.772016,
5 YR N /RE
121 CCNTINLE
RHO = 1. = X(2ISXE3I/A(3D/013)/6q
RHO2 » PFQ®RHO ¥ F403 = FHC2*RHE t RHO6 = FHG2®RKO2
KHOS x RFOW*PHG § PHOE = RMOS®RHOS & RHOS = RHCWSPHOG
TAU 3 XCZ)SX[21/% (1} /RHC2 fba
§ ® 2,°TAU/X(2) ¢ S2 = §% 8 53 o2 §2%5 § Sk = S2°%82
§8 x §2%53 § S = SIPST [ S7 = SLeSY t 58 = SkSk
C{3) = QkF0 8 C(1) = TAL 8 (12} = §
IFANCLN ~ 4} 21(0e204e208
208 CL x 2.l » SIOX(LIZTACI/T,

- 225
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- 226

Cih) = Ch
IF(NCLN = %) 21C.50%,2C0°
205 CS = (5, ¢ OHO® 110, ¥ RECP({=5.75 & 7,90H0/64)) = 3¢ 'RHO2*(MNC = 2
L o)3Ch ¥ 2.554°RFOE*X(S) /3 /TAUY/S/RHES
ci{s) = C*
IFINGLN = 8) Z210,20&,20¢
206 C6 = «CS 4 (CL®{ls ¢ 4:299CH) * 2,5S3%N(GM/TAU) /%

IF(NCUN = 7V 240,207,207
207 C? x {eite & RNQ%(L2e ¢ RHO® (=1 39784 § RHOSU28, + RI)S(2109,/19. ¢
L 4 RHO1)I) = O,"RNCLE(RMC = 1.)3C6 ¢ RHOI®{ =284 + RACS{I0s = %o*
2 FHO/3L1%CS ¢ FRQ2%(L7e ¢ FRO® (3G, & AHO®(17,7% = 13.%'HO/64)) ¢
3 @B PREOIACS ¢ 12,TE RHCZOIRHD = 14)°CHITCH ¥ L B*PHOESSI*XNLTY/
& TAL)I /1Y «/RHCS
ciry = C7
IF(NCUN ~ 8) 21(.2084208
208 CB 3 «C7 + (3,%(C5 ¢ C6) ¢ 15.750C50C5 & CLO(1&,5°(CT + C6F ¢
X CHP(=3428 = 78e%CL/%e]) 3 2,62545X(8)/TAUI /T,
clay = c8
210 CCNTIKLE
RETLRN
ENC
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SUBROUTIMNE ERPANS [CNVAT , FHULMOUN NI MY
COMMONZYIIZYTII14) eX 114D ¢ Y010 s Z(10) , YTHP (146D oXT (163 +YT (2463 ,2T (14)
CCMPON/ERRSTUF/ AJ(109142 ¢BJ(L0010] ¢EJ11ks14) oCIlLbelb)y
1 AVUILL,24) BV LLL e ) oEVILael0)sCVILieldd oYV L1bgll) oSCRYCH{LUyioN s
2 DAtL4390B{16)4CE(ILISDCLIL)
CIMENSICH OLATIL)GCRACLIHLCLEC14)oDRBI16IDLE (16),0RE {14),DLLI16Y,
1 DRCUW)
RSUBE(X) = SDRTICNIRTIRNLIX)
LOLEE LIS
€C 1 I=1,NCUN
YTRE(IIaYIID)
CO 5 Ial,hOUN
YTHPR(IY = YIJ(II®(i,%1.E=00)
CALL KALXAR(YTPPXToYT 42T ,CLALOLS+DLE 4 CLCoNOUK,NOH)
CLA(2)sCLB(21=CLE(2)=CLL (2¥=RSUBEIXT (1))
YIMPIIY = YIU(ID¥(l.=1.E~08)
CALL KALKAMYTFRXT YTy ZT yLRACORBeIRE 4 [PCeNOUNy NCHS
CRA (21=0FR (2)=CRE (2)=DFC (2Y3RSUBE{XT (1))
CC & J=1,KDUN
Ad€JeI) = (OLA(JI=CFACJIISS EeAT/YII(T)
BJtJe3) 3 (DLBCJY-CFEWY) E¢07/YIJC(TY
EJEJeI} » (OLE(II=CREAJIISS E6QT/YIILT)
CJCJeI) = (DLCUJI=CRCIJIISEELQ7/YIILTY
CCNTINLE
YTHPL(I) = YIJU(IY
CALL JVI(AJe YV, 8V, ECRTCE s ADUPsLH)
CALL JVJ{BJeYV4EV,SCRTCK 4 ADUKsLE)
CALL JYJI (EJyYVSEV, SCRYCK o MOUNs 14)
CALL JVWJ(CJoYV4CVeSCRTCHsACUMNLG)
LC 10 I=1,NOUN
CAII)=SCRT AV(I,10)
CACII=SCRT IBY (T4 1Y)
CE{I)aS0RT(EVLILT))
CCEIIsSCRT(CV (T 1D}
CONTIMLE
CC 16 I=i,NOML
IP2aTes
CO 25 JaIFL.NOUM
AVLETeJ )=V (Ted VTRV /EA (YD)
AVEITIzAV (TIed)
BV LTy JI=EV(IsJI/CR(DY /CELY)
EVJ,II=BV (I, 1)
EV(IsJ =€V (24J)/CELDV /CEY)
EV(JeI)2EVIIL I
CVLI4d)=CV (T, J¥/CCHIV /DL LYY
CVLJeId=CV (Isd)
AViTeZ)=l.
EVilellate
EViIoIixda
CVITeldats
AV CNOU P POUNI 28V (NCUN4ACL N} 2EV INDUMy NOUNYaC YV (KCUP,NOUNY =S,
RETLRN
ENC
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12

21
22

SUBKROUTINE JYI(XJsYVeXVsSCoACoa)

OIMENSION XI(NeNIoYVININIoXV Ny N} oSCINsN)

CC 1 I=1,ND

CO 1 Jml.ND

XVLTed )=l

SC(I:d)=0,

CO 12 I=1.ND

00 12 J=xisND .

£0 11 x=i,.NQ
SCUTeJI=SCITvJ I ENJIToKIVIV(KeS)
CCNTINLE

O 22 I=140N0

00 22 J=i1,NO

CC 21 Xz1.,AD
XVETeJIZXVITeJIeSCIT K IPNJIIeK)
CCNTINLE

RETLRN

END

228
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SUSKOUTINE RuMNSKR (RSURE 4BSL2Es HAXY. INCREM, WHIN ENyRI oG V)
CCMPON/RXRYII/ZYNGLI0Y oAGo NI 10 NI, YO R
CCMPOR/OLAD/NQ4XCCEDS (WC (£0)
CIPENSIOM AN(202)4FX1102)¢GV0I02)
2000 FORPAT (/10X®GAUSSePENLER CUACRATURE FQF RXR CALCU.4TION USEQ *I3*
1 FQINTS*N)
3000 FOQRPAT (1CX+*FHIK, FMAXs G CF ¥y Fy AND G®/)
FRIAT200C.NQ
L4 IFUINCIEPERe O} INCREN2Y
NLEY = IMCREM® (MAXVeL)
CALL WPFIG(NMIN)
CALL AENX(2,0UM.ESUBEY
AINCYRS = 1./FLCAT{(INCREP)
V= =1.0
SRINT 3000
€0 9 ILE\ 3 1,NLEV
¥ = ¥ ¢ RINCVRS
LI A Y )
CALL ABNX[24HWsdELEE)
CALL XPASKICHo PHATLEN) o FY CILEVY o GV(ILEV) »WNINFSURE, FSUEEY |
9 CONTINLE
ENC
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SUBROUTIME MMF IG IWFIN)

COMPON/RXRYTS/YNG (20T JNGo YNLCLTT N3, Y00

CIMENSICA YPP (10}

FCRFAT l/20¥*WNIN FAILEC TC CCNVERGZ. FIKISHED WITH®/1P,20X5WNIN =
P2 EX2AN0 THE LASYT CCRFECTION a *E15.7/)

TINY s B,EatS ¢ WHIN z O

00 1 I=i4NG

YPR{I) = FLOAT(I}®YNO (D)

€C 3 IT =21,200

¥ a FF a0, 3 ICT a G

Ul 1 NG

F = WMINS{YND(ICT) » )
FP = YFRIICT) ¢ WKMIN®FP
ICT = ICT « o

XF(ISS!EELTI/HPXB)-TINY! LT I*§
CCRTIME

PRIMTI000, WMINOCELTA

RETURN
END



100

N

200

I
5

SUBRQUTINE ABNXIIFL,H.ESLEED
CCHMFON/RKRYIJSTNO(1079AGoTR1(2D34N32 700
COMPONINETHEEN/ A1S51,BC13)
CIPENSICH EIN(SS)

2adl

o2 2
2 !-vl-y.--35..85-.126-.1;S-of&-‘350'9onl.'10--ﬁ!o\lZﬂe:Z!ﬂocZ!Z.-
3 2100¢2204 shSa-d10ede/
IFLIFL-2) 200420C,202
€O 1 J=

1 +NG
4 YNOUJY = YMD(JIZBSUSE

00 2 JwisNE

YNLEJ) 2 YNL(J)/SSUSE
€O 3 Iw14NG

o 3 Jai,l

IJ x (1%12=201/2 ¢ J
ALTJ) 3 EINETII®IRC(T)
RETLEN

CC § IaleNG

() 2 3. § JCT a NG
€0 4 J3XI,NG

JETT 3 (JCTS{JCTe1)072 ¢ 1
B(1) = A(JCTI) ¢ BUI}*W
JCT = JCT = 2

CONTINLE

RETUPN

ENC

231
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SUBROUTINE KMNSKItWoRN(RY ¢GYWNIN,RSUSE,ASUSE)
CCNMON/RKRYIS/YREC10) MGy YNL{LD D oNBYOT
CCMPCN/CLAL/NGALSS NG {50) yHG(50)
COSsPON/NETREENZA (85) ,3(1C)
FORPAT (SN 20FL0a742X 1 ¢F L0 o T30 1P+ 2(2X4E1547))
F 256G s 0. % HTQP = W « WMIN
SQWTP 3 SQRTIWTCF)
€0 2 I=1,NGAUSS
X1 3 HTOP®,252 (XG(IVe14)%%2
WP m H e XI
=P 30, § JCT = MG

CO 1 Jag.NG

P = BLICT) = POXI

JCT * JCT = 2
JCT = N3

CC & J=1NB

BV = YNL{JCTY & Bvawe

JCT 2 JCT - 2

NT = WGLI)/SORT(F}

F 3 F WY

G =6 ¢+ WT*3Y

CCNTINLE

F = SCATFSF*PSUEE

G = SCWTFOG/RSUEE

FN s FP(SORT (e ¢ 1o/7F/7G) = 24}
RX 3 RN ¢ 24°F

GV »w 0s 8 JCT =z AG

CO 3 JziNG

GY = (GV + YNOUICTIIoN

JCT 2 JCT = ¢

GY = YOO & BSUBE®GV

PRINT3I0DLs RNyRY4GV,F 4G

RETURN

ENC



ELOCK CATA RKRGEL
CCMMON/QUAD/NQsXC (S0 o NG (50Y
CATA NGZ%d/

CATA XC/

SEO6J0006 212246677042, EQCA0L0 3436750164 4uB 060007377257 000NE2ER,
SE060015712 6065030253, €0€002EL5E133003E2€E03,60€0040375058%40632%0,
*e 060054602 7IE507€EQEEALENE00P23I0ETSSE2T24L20,£T€01120122 5770430258,
SE06NL232E3262062€7K13,60€60%562T531207472252,E060702€6832224 7606040,
SEQE02I0ETLI6544L24TETVENECIETLIILSI2LL50672A &7 yT106€62LE6L0T72548
AB0E03IN22 70225 EESUE 52 E0EQITI55TR4572857750, EDE LTS3 27372 700€138,
SE06119%5111(€1623712034€0€32503651765037517I(£0€1345002324L95€214€3,
SEQE2105uT3 775572610236 0€2302521343537777£0.60632022€€3T7177€0%L48,
SE0650022701657314643524171277%0761206644553,471447551460€00172538,
S 171847 L 60326000 22T41720€72304002205472184272€63272€45T2219€438,
S171€527L 320127402779, 17 2E6226E63161500E6TD1T1ETINLELDAQSQT77L77E,
®1747402220%3205220179,27370L352075%482127423447270E74148323770%278,
S1T4751764326533271223 547 1754740361233030119, 171757 512455C€0174778,
B171762156246530309%53,1717€4451 6636725101441 72 7€ES7€562007 347460,
STk T316122% 80763447177 233760612701737841717737462T723237144E0,
BLT747751621CLLTTUL505D0172177620E6L3TI2747/308,172777040052233735008,
S1T17T74T4AI0L037€1E123,4747777326623300722337

CATE WG/ .

81707%87927226570L05745%53,17406730052617122145841711532017724721375¢8,
S2172172 7L EEL2672UETC624171245063L25460L02%058,1712904€€1730072%4028,
S 171263 TMCLITTLSLTUCLT e 2T7127300000422137 CST3 0272340771222 ¢4EICLLTEY
S 471364k 2374251111€67553, 1723473751056 14J534R, 171 ISECLILETTT7IZILECTH,
5171362310301 65€263013,1713E00517C0L67381373,1713€2450L26334201%229,
81713667123 %6152% Be1?L 3EEIT V6532466020489 174370710206 437232242
BT 724377 7361222543447 13TU00356165671465B01713751€604%2272A4ES1D,
ATAI7ELEAI0714k03€3T4 1783 2E 73045633627 7T7391713777302%043035€2¢€0,
SATLI77E2EITAILINEGTLIZ9 171377526350 363423340 171377 3T0254400 I5E3E8,
BT LI TN EETIL2TETIT 171 I7ELLL1L0710L4D3503,17137 516065537 5451179,
SLTLITL Q0T E LFET7LLT6T 9171 3724377736421222€69,171370740204¢3733T3L6
171 YEETTTESIZIEECQZ12,1713€4T71235615257L€ELB,1T713620542Z0L3341017378,
S171 TE005 7 EOLETIL183T41713583103016562¢2013,17139202466777232320153,
AL7L6TITELC56110L3029+37 33442374251 114€67173,1723407T1212€6LETEITES,
L7127 3000201 ZEEST, 1712637006577 05674048 2712%0L0EELTI007295473,
17106806 2425LE6032L3301741727156126714E3078,171153302772572124018,
S171QE720051617 113550,170757C1 7226573683630/

ENC

233



1000
1001

60
65

102
103

194

109

234

SUBROUTIME PLATPLTIMSGoAE s OEIRXRyRKRL4RKR2 o GRKR)
CCMMCN/ICS222/721290)
CONMON/TENAMEZLTE/TXNAPE / LTX/TXNARE/L TR /TTNAFEATT

CIMEKSIOM RLL000},VI10G0) sLOLX(224L3LY{2),4SG(2INPAT (204}
REAL RXR1(102)4RXRZC10Z) ¢GRERL02YTXSISDY

LOGICAL LIVE

EXTERNAL FONT2

CATA INBLT/0/

CATA LELX/2R (ASL{eg8sy201%%L) -

CATA LELYZ2V (ILCPIUSEyzielis™) t/

CAT. NFATZ277779%%%772 3277%3%8 011724017 /7/%%7%%2 27727/ %%/%%2,
PR A e S N R R AT AL RV LA A A DY VAT AN A 2/

FORMAT (*FIT AMY KEY®/®ARL °RETURN®®/*TC CONTINLE®}

FCRPAT (42101

IFUINTFLT.EQel) CALL FRAPE § TIF(INTPLT.EQ.1) GC TO 50
LIVEsFALSEe § CALL TVIAIT

!:;L;:.NE «2HTE o ARD LTNoAE a2HTXANDoLTKo NE L2 HTK . ARDLLTT. KELZHTT)
1

LIVEZ.TRUE. & CALL CCAMECT(LLFILMY § CALL CGMNECT(SLTAPED)
CALL CCMMECTIELTAFELD)

CALL HCDESGIZe2v0) § CALL SETSMG(ZeSio1e) % CALL VECTG(Z.FCNT2,0}
CALL SETSMG(Zs128,.25) {1 INTOLTal

CALL CBIITG(Zo2%09Z549100ev2%.) 3 CALL SETSMG(2,178,04}
Xiz0s § X275.%RE t Y1x=sZ®0E § Y222,2%2E

CALL SLBJEGIZyX14Y1oX2,Y7) § CALL GRIODG(ZeBuolerlel)

CALL TICKGEN(X1eX2,204¢TXSohXTX ¢ XTLoNXXP)

CALL TICKGEN(Y2197Y2¢2%0¢TKSoNYTEYTK HYXP)

CALL SETSMGIZ,102,14) ¢ CALL SETSMG(Z,19341.)

FET =542 & CALL LABELGI(Zy0oXTK,DoFHT)

FHT=?.0 § CALL LAEELG(ZyleYTKeO4FNT)

CALL SETSMG(Z,104,145) caL SETSFGIZ.!O!.!.!'

CALL SETSHGIZ4178.424) CALL SETSHGUZ 405424

CALL LABELGIZyQe7TKe24G) T TALL LASELGILZ YTK
CALL SETSNG(Ze10U,=1,%) ¢ CALL SETSPG(Z.in!'-x.E)
NCHR=z40

€0 €0 =248

IF(PSG(I1EQ. 20K )} GO TO &%

ACHR=20~1 N
CCNTINLE

COLL TYTLEG(Zo2E4LELX s SE4LELY, NCHR, HSG)

CALL SETSMGIZs4S+24)

FINC={x2-X21/1C0C0, * ULET=(RE®, 1-X1)®1508.7(X2=X2}
MJLET=JIFIY (OLFT) § WFTS=3301«NJLET

€O 2105 NRT=leb

CUMZ2VL VR (QUML 4R KTY

RT53PE®,1=RINC ¢ MCAT=0

"CO 104 WNPTS

RTSaRTSHEING

VTS3VCFF IRTS.NRT)

TFOVTS=Y1) 106e203,102

IFIVTS~Y2) 10T 41¢(3+104

hCAT=A0ATSL

RINCAT)=RTS 8 VIACATI=VTS

CCATIALE

CALL CASIGIZINCAT,FyVsdFATCLNRT) 920 0e3B9o5)
CONTINLE

RlillaXl § F(2)=XZ § V(1)aV(2)=0E
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290

208
303

CALL LINESGIZs24R4V)

1F(3IPKA) 300,380,200

£0 20% I=1,IRKR

KL JaRKR1C) ¢ R(2IxRKB2UTI ¢ ¥(1)=v (2D =GRERCI)
CALL LINESG(Ze24R4V)

CCNTINLE

CALL EXITG(2Y

IF(LIVE) WAITE(1C,1000)
IFC(LIVEY READ (9410010 MAPECUM
RETLRN

ENC
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1090
2900

1

-
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SUBKRGUTIME TICKGEM(MIN,FAX, MAXTICK, TICK, hOTICK . VAL TICK o NEXP )
CIMENSICM TICX(¥C)MULTIFLID)
REAL YINSMAXSHAXTICK

CATA MLLTIPL/L 42485/

FCRFAT (1FE8.1)

FORPATIIDY

FANGE = PAX = WIM
ENCCOE (A 52040, IATME) RAN(E
REXFCHE = SHIFTCINTMD, 1)
CECCCE (3 42000 s hEXPCHRY ANEXP
CIAS » 1G*=NEXP

VALPATE = ANS(RANGE/2IES,/FAXTISK?
SCALE = .01

€0 2 Inl.b

CO 1 Jui,3

TEST = SCALE*FLLATIMULTIFLISNY
IFCVALFPTK=TEST) 3,3,
CCNTINLE

SCALE = 10.*SCALE

VALTICX = TESTe®IAS

WTGFP » IMTIMAX/VALTICK) 3 8
MTICK = O

£C & I=1,50

TIKTEST = FLOATINTCP-T)®0sLTICK
IF(TIKTESTGE.¥2)) GO TC &
IFCTIKTESTLEL,FTMY GO TC ¢
NOTICX = NCTICX & 1

TYCK(NCT ICK) = TIKTEST
CiTIME

CONVINLE

ENO
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00

DNo0

104

103
104

119

i

161
303
304
110

FUNCTICN VCFPU(RYINET)

CCMPONM/CUNCOF/AL56) o NCUS

OIMENSIOM LCT(&)
CATA LCT/0+2G0284427

ENTFY yOFR

ReRVORRE

IFANRT=C) 101,182,203
t GO TC 140
$ GO TC 118

Xz R = 1.
X = 3¢ = Le/R
IFINRT « 31 10&,1C%.10%

X 3 24 = Lle/ROSF

X = l- = EXPISNL®I247K1))

F =

0a 11: I2ASTRTMCUN
Il = MPLUS « T

F 3 X%(F ¢ a(1I))

VOFR » (1. ¢ 3TRASF)"4()01%X%52

RETURN

THIE ENTRY INITIALIZES

ENTAY VUUR
ANE=L /A 12}

IF(NRT=3) 301,283,334

NSTRT = 3

P x (32

RMO = &({u5)

¢ YTRA = X % GO TO 118
$ ATRA = X

SEVERAL PARAMETERS TC 2E USEC ASCVE

$ ¥TRA = i, 8 GO TO 310
NETRY = & ¢ GG TO 310
PETOT x &4

NPLUS=NSTRTNOUMSLCTIMIT) € NO=LeLCTCPRT)

VOFR =
RETURR
END

Te

237



238

APPENDIX II

This appendix is a synopsis of the program ERWIN (in honox of
Erwin Schroedinger) which, like DUNPOT, is bereft of comment cards.
The theory behind the algorithm and the mechanics of the program
are briefly described, the formatting of the data input is outlimed,
and sample control card and input decks along with a program listing

are provided.

For a siuple 12 state of a diatomic molecule, the radial

equation is of the form:
2, 4 2, 2 :
(" /2UR)=—, (RY) + (V(R)+(H"/2uR7)J(J+1)-E)Y = O .
dR

If we measure our reduced variable r in units of Re and measure
the reduced energy € in units of Be’ and let the function P = Y/r,

the above equation reduces to

d2
——pP(z) = (u(r)-e)P(r) f
dr

where
u(r) = VR)/B, + 33+ /22 .
These reduced variables take the mass and equilibrium and inter-

nuclear distance out of the picture and have some other useful

application. For one, the Bohr-Sommerfeld quantization becomes:
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I

ve12 . 2 r-m dr .
t-

Moreover, the reduced well-depth, De/Be’ becomes the Harrison-

Berusteinl well capacity parameter. The LeRoy-Berns:ein2 quantity,

/2, and a 1ist of

v, scales (within a factor of unity) as (De/Be)l

D
these scaling factors are given in Table I, The point here is to
hopefully provide some insight into how the vibrational levels are
spaced according to the well depth, independent of isotopic mass.
It should be noted that the RKR f and g integrals are also
.simplified in these units.

The Numerov3 solution to the radial equation\assumes that P(r)

is koown at r_, and Tia1 and the function at Ti4p can be approximated

i
by
¥, = 2Y,-Y, . +6%(u -e)B
i+1 i "i-1 i i *
where P, 2 P(r,), ete., Y, = (1- l—6?(u ~€))P,, and § = |r -r |
i~ 172 R | 12 i i’ i "i-1

(equally spaced r, points). The use of Yi instead of Pi in the
difference equation reduces the error from 54 to 66.

) In the Cocley procedure3 for finding the vibrational energy
from some initial guess, the wave function 1s set to some small
number in the nonclassical region of the potential (EV < ¥(r)),
the wave function at the next point is estimated by the JWKB approxi-
mation, and the succeeding values at smaller r are calculated by the

Numerov procedure until one arrives at the outer, absolute maximum,
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or "matchpoint”, of the wave function. The procedure is repeated
starting from the inner nonclassical regiom until the outer, abso-
lute maximum is achieved. The energy is systematically adjusted

in order to improve the continuity of the derivative of the wave
function at this matchpoint.

The notation used in the program code is actually that of
BIattA, where Ti §.52(u1-s)/1z. The intention is to incorporate
some of his suggested modifications. Other future modifications
should incorporate the higher order extension of the Numerov method
outlined by Rcothaan and SOukdps. At present, the program runs fast
enough for oﬁ: purposes, but the above modifications would facilitate
the direct-fit discussed in Chapter III.

The program itself is written for the ad hoc purposé of calcu-
lating the vibrational energy levels and rotational constants for
one potential only, where the parameters in the calculatlon are
internally scaled by Be and L) Although this scaling is aesthe-
tically pleasing to this author, it should be modified for calcu-
lating Franck-Condon factors, where two potentials (and hence two
sets of N and re) must be considered.

The potential used by the program is determined by the function
routine VOFR(R), where R is in units of - The routine must return
the value of the potential in units of Be. The routine also calcu-
lates the derivative through the entry VPRIME. A final entry, VUVR,
is used at the beginning of the program to inicialize the parameters

used by the routine and returns the value of Be to the main program
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so that the program can output the energies in units other than Be.
The routine also calculates the centrifugal portion of the potential
for 12 states, l.e. the quantum number dependence is simply J(J+1).

The function routine provided with the main program can calculate
the potential energy for the Dunham, SPF, Thakkar and Huffaker series,
but the modular form of this routine allows for substitution with a
routine of any other functional form at linking time. An example
is provided in the sample control card listing.

One of the weak points of the Numerov-Cnoley algorithm is that
Ehe procedure converges on the energy level closest to the initial
guess and pays no heed to the vibrational quantum number, v. A
pre-processor, subroutine ENEW, estimates the energy level for a
glven v by iteratively solving the Bohr-Sommerfeld quantization con-
dition mentiumed earlier. This routine ua:s the auxiliary routine
TP, which calculates the classical turning points for a given energy,
and VOFR, The Gauus-Chebyshev quadrature point56 used for calculating
the Bohr-Sommerfeld integral and its energy derivative are tabulated,
in octal, in BLOCK DATA CHEBYQD. Thé advantage of this pre-processor
is that any energy guess can be given to this routine and, for a
given v, an estimate correct to within 1% or less of the true value
can be quickly made. In the event the iteration fails to converge,
which occasionally happens when close to the top of the potential
well, the routine returns the initial guess to the main program.

The subroutine, CASHION, is with a few minor modifications an
unabashed copy of the function SCHR written by J. K. Cashion7. This

is the Numerov-Cooley algorithm that determines the quantum mechanical



242

energy and wave function for the potential. It utilizes the sub-
routines TP, NRMLZ, and CALNODE. NRMLZ normalizes the converged
wave function using a Simpson's rule integration. CALNODE, another
Cashion creation, counts the number of nodes in the wave function in
order to confirm that the emergy for the correct v had been calcu-
lated.

Other subroutines are SETUPU, BSUBV, and EXTR. SETUPU calcuy-
lates the array qu(ri)/IZ used by CASHION. BSUBV calculates the
rotational constant for each vibratiomal level by Simpson integration
of w2/r2. EXTR is a dummy routine which can be replaced at link~time.

All ipput is read in through the main program ERWIN. Output
is generated by ERWIN, ENEW, TP, and CASHION., Other I/O files in
the program header card are ETCTRA, USW, and PSI. The first two of
these files are unused and can be incorporated into a replacement
routine for EXTR. PSI is a file to which the energies and wave

functions may be written out (in binary) by routine CASHION.



Sample Control Decks
The following is for running on the 7600 with nc program
modifications:

(jobcard)

$ID=password
FETCHPS (JSWB, LGO, NEWN782)
LGo.

EXIT.

DUMP(0)

FIN.

END.

(7/8/9 card)
(data deck)
(6/7/8/9 card)

The next set compllies replacemexv files for the program's

function routine, VOFR, and the subriutine EXTR. The latter
will produce an auxiliary output file in the I/0 file ETCTRA.

(jobcard)
$ID=password
FIN4,OPT=2,ROUND, B=VOFR.

- FTN4 ,0PT=2 , ROUND, B=EXTR.
FETCHPS(JSWB,ERWIN,NEWN752)
LINK,F=ERWIN, R=VOFR, R=EXTR,PP={, ,ETCTRA]}.
RETURN, ERWIN, VOFR, EXTR,FTN4LIB.
DISPOSE(ETCTRA=LP, T=.'FXTRA/OUTPUT])

EXIT.
DUMP(0)
FIN,
END.
(7/8/9 card)
(new VOFR function FORTRAN deck)
(7/8/9 card)
(replacement FORTRAN subroutine for EXTR)
(7/8/9 card)
(data deck)
(6/7/8/9 card)

roucine
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The following i1s a description of the input structure and a

sample input deck.

(TTITLE(I),I=1,8)
FORMAT (8A10)

One card of 80 characters, or fewer, labelling the data set.

NRT, KPR
FORMAT (1615)

NRT: A flag determining which series potential 1s being used.
The values 1,2,3, and 4 are for the Dunham, SPF, Thakkar,
and Huffaker potentials, respectively. NRT is not used if
a replacement function 1s used at link-time.

NPR: The number of potential parameters used in the potential

function.

(A(I) ,I=1,NPR)
FORMAT (5E15.9)

These are the potential parameters used by function VOFR.

RCN, RCX
FORMAT (8F10.5)

These are the innermost and outermost values of r (in units

of re) in which the potential is valid.
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NEN, NPRIN,NCA, NGRID, IPRIN, NODE,NBV,NUMEROV.
FORMAT(1615)

These are various integer flags and parameters. Their
functions are:
NEN: The maximum number of iterations allowed to routine ENEW.
If NEN=0, the pre-processor is not used.
NPRIN: Printing options in ENEW, which are:
= 0 : Only the converged energy is printed.
= 1 : Energies, corrections, etc., for each iteration are
printed.
= 2 : Same as 1, ex;ept the classical turning points (in
re) are printed for each iteration.
NCA: The maximum number of iterations allowed to CASHION. If O,
the routine is not eﬁployed.
NGRID: The number of grid points in the Numerov solution of
the wave function. Maximum aumber is 5000, recommend more
than 250.
IPRIN: Printing options for CASHION.
=0 : Only the converged energy and the classical turning
points are printed.
= 1 : Same as 0, except the energy, corrections, ete.,
are printed for each iteration.
NODE: Flag for the node counting routine.
= 1 : Number of nodes for each wave function are counted.

= 0 : The routine is skipped.
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NBV: Flag for calculation of the rotational constant for each
vibration evel.

=1: Bv is calculated.
= 0 : Not calculated.

NUMEROV: Flag for printing out the wave functions (in binary)
on I/0 file PSI. Options are the same as NODE and

NBV.

NV,NJ,TEQ, TEPSWKB, TEPSNUM, TRN, TRX, TRTN, TRTX
FORMA™ (215, 3E10.4,4F10,5)

This data card is repeated for every emergy level that is
to be calculated.

NV: The vibrational quantﬁm number.

NJ: The rotational quantum number.

TEO: Initial guess of the energy.

TEPSWKB: Convergence toler ice for ENEW. Energy units are the
same at TEQ. The energy units should be the same
as that of Be used in VOFR.

TEPSNUM: Convergence tolerance for CASHION.

" TRN: Ianermost point (in units of re) for the Numerov solution.

TRX: Outermost point for the Numerov solution.

TRTN: Inner classical turning point estimate for TE (in
uniils of re).

THTX: Outer classical turning point estimate for TEO,
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Note: The above varlables which have a "T" prefix must be given
values for the first energy level, For the supceeding levels,
1f any or all of these variables are left blank, the refined
values from the previous energy level calculation are used.
To terminate a data set and start a now oué, insert a "-2"

for NV and follow this card with the ITITLE card of the next data

set. If a "-1" is inserted, a different series poteniial for the
same molecule and the new data set should begin with the KRT. ¥PR
card.

If no new data sets are to follow, imsert a "-2" for NV and

"STOP" for the title card, with the "S" beginning in the first

csiumn,
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The

The following is a sample input deck to program ERWIN.

potential is the nominal Thakkar function for Arz. The "blank input"

option described earlier is used extensively.

*10dNng weadoad Ko IG00D 9TFF uo paiindino se °x pue Ua o7 pescddo se

E) E)
€ pue “m 218 2Aoqe sidjouelwd Teriusiod om3 3ISITI 9Yy3 IBYI BI0N

d01s
-
"ot 0 L
‘9 0 9
S'S 0 [
'S 0 1]
0 €
Ty 0 Z
0 T
€1 G8° 3 L* 603 'T.20-9 ‘T [ A ] 0
0 1 T 1 0002 02 T 0z
‘ST T
6860T"
69.880°~ LY%0T° - 9L%1S°S 9L9L6S0° 82Z°1¢
9 [

43 OL/AVIDAIVHL TYNTHON/ 29V
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Table I. Ratios of (vD+l/2) to the well capacity, (De/Be)l

for several model potencials.a

Potentdal (vt / 0, 13 ?
Muffin-Tin® (s/r)/m
Sutherland-n {r(n/2-1)]7}
-6 0.15916
Lennard-Jones (m,n) 1L (a-m)™ 3/2(11 Byl 2la-m)) g (m/2 13’2)
(12,6) " 0.23858
Exp - 3¢ 0.94749
-4 0.648178
-5 0.326404
—.6 0.24436
Morse p-l ¢

3gvaluated from the Bohr-Sommerfeld intergral for E = ]Je and r, = .

l:'Square well with infinite inner wall, width of b, and outer "plateau"

of De' LA lies somewhere in the well.
“B(x,¥} = TGIT(y) /T (xty)

CLI.-‘cnr Exp-n: V(r) = De[exp(Zn(l-r))-Zr-u], r measured in units of T,

eo 1s the saiu: as in the Huffaker-Morse potential of Chapter II.



300k FCRMAT (/7/50X*FCF ¥ 2®I3® /7 J = 3I3//7% GUESS € = SF15.5% CMey ANO £

~

-

&

FROCRAY ERWIN{INFUT,QUFFLUTETCTRACJSHFST,

4 TAPEISETCYRA, TEPE22USh, TAFEL29ST)
CCHFONICPEEV/NCFE!-!:!(&(ﬂ!-HC.(10:)-XQII(lﬂOlyICIIIiﬂI)
CCHPON/CCFISH/ZACLIbo YL oA FR4MRT s FLN2
CCMPCN/LLE LPOT /K bk oH2, KB 4RY
CCHMPCN/OCTLUK/P{EE00) (U (%000)
COMPCA/PCTLUR/A(500A0) L (500007
LEVEL2, FslU
CCMMON/CLTOFF/RCA ALK
CCHPON/ZEITRAZXTR (SC), IXTR (500
GIMENSJOM ITITLE (8)NAPE (L)

CATA NAME/EHOUNHAN, JHSBF , THTHAKKAR SHHUFFAKER /

CATA FLN2/0s/

FORWAT 8210)

FORMAT {L£EI%)

FORPAT (8F1Gs5)

FORPAT {TE1 8, 94

FORPAT 12315,3E1 0, ke 4F10. %)

FORVAT (1F1,40X28107)

FCRPAT (/1M SMUPRER OF TEERS IN GAUSSIAM QUADFATURE =v15/)
FCRPAT 120X PUSING THE *AL0%FOTENTIAL WITH®IS® FAFAMETERS®/)
FGRPAT X *PCTENTIAL IS VALID BETWEEN®F10.6% AND *F10.£/)
FORPAT IXONEN  s®IS¢18X?APRIN a*15,10X3NCA  =%15.10X*NGRID 2815,

L /LX7iFRIN s®I5,18X*NCCE  =%T5,10X%NAV =815, 10XONULERCY =21%/)

LFSILONS = *LP2(F10434X)1/70PXSRANGE OF INTEGRATICH SETMEEN #F10.6,
2 % ANC *,F10.4/% GUESS TURNING POINTS BETHEEN F10.6% ANC *F10,6/)
FORPFAT(LF8 (4XE1%.2))

READC 1C00. (ITITLEII) Iz 48Y

IFCTTITLEC(L1.S Qo4 HETIFE STOP

REINT2000+ (ITITLE(T) +Ix1,8)

FPIAT300C. NCMEE

REAC 101Gy NRT, KPF

FRINT300Ly NAPE(NRT). NOE

REAQ 10304 (A{2),I21,NPR)

FRINTIC3C, tA{I)5IaL,NPR)

BSUBE = VUVR(DUMPY)

REAC 1028+ RCN+ FCX

PRINTIBOZs» RCNe FCX

REAC 1Ci8e NENe APETHe NCAy AGRIDs [PRIN, NODEs MBVs NUNERQV
IFTNUPERCY S5TL0) WEITE(L) ITITLEMAT,KPRyAWNGRIL

FRIATI002y NENy MFRINy ACAy KGOIDa-IPRINs NODEs MBVe NUMERCYV
NEAD 1041¢ HVy NJo TEDe TEPSWKB, TZPSNUPy TRNe TEX, TRTN, TRTX
TFLN2 = FLN2 8 FLNZ = FLCATINJ®INJ#L))

JFUTEQWNEF.Co) EGaTED

TF{TEPSHKU 4NE o fo ) EPSWXExTEPSHKA

IFCTEPSNLMGNE «>) EPSHUP=TEFSNUN

IF{TRNJNE. fo? ANzTRN

IFUTRY NE:le) RXaTRYX

ICLTRTACM } RIM=TRIN

IF (TRTXGH o) RTX=TOTX
IFIHVe1) L4240

FRINT 2404 NVy NJy Ede EFSWNE, ZPSNUMe RNe RXs KTHe RTX
TFIMEN) Ec€eS

CHLL ERERCNENGNFFINGNVE [oEPSHE D4 BSUBEJRTNeRT X4E)
IFINCAY 24307

E 2 &9

251



[4:74

IN3
£ 0520
{3LLI
SANITINSCLUSNIN ANNSS T 3°33NSB AT SIIONC PN AV QLA BILT 1IVI
SOANITNANIAESSICONCINSAN () 3214M (D°1S°ADSINNNIAT
LAZ*IBNSE*OIEONI AINSE 1IN (I°L2%AaN1al
4dDLSICLYVISN S ZOCHOIAINI FIINIVI 19D (0°13°3I0N) 4T
BTG v/ ENE-KIN)IXIJT=dDLISN & dHII‘E-Ml!))‘IiI‘lE;li;
. =|

8'6°L (VNDVIIN)4L
(ASD %4 IBNSTRANSAZ 4D X LU H LU TIINCYINCNT 58 1INITI 5YD 1D
(039593 NdALIS TIVD (2N ° 3N *2SN124°30° *3* INKYL *30° *) ~ IN*NuL) 31

©

-



2999
3000
3081
30v2
3003
3006

"

-

18

« ~

o W &

SUBFOUTIME ENEW(MCPORGMF FINONVEDJEPS BSURE JRTNGFTXE)
CCMMON/CHERY/NCFEEXCIC1C0) ¢ WCT 1133) 4 XCIT(1003 WCIT 100
CCHPON/CTFISH/ZAT10)s YO0 sAFRoNRT o FLN2

CIMENSIOM PARK(LO)

CATA MARX/30(3Ho) s

CATA PI/73,141592¢5358987

FCRVAT (/730X IALITIAL JWKE GLESS GF E%/3)

FORMAT (2X3TTRH ¥ X *E &1 2X Y CCRRECTION® X THTEGRAL®3X®DERIVATIVE#/)
FCRPAT (X18,1P4 (2¥E15.8))

FCRFAT (1F, /20X °FAILED TC CONVERGE. GAVE E = SEZ20.13" ANYNAYS/)
FORMAT (LF/710X1081,3X*CCAVERCED TO E » *E20,13,3X1041/)
FCRPAT(/720X®>»>>» E = V wi§ MEGATIVE OR 2ERQ. RESET € = E0e coce®

fal
VAH = FLCATINY) 3 ,F ] TPT = 2,°FL L £ = E07BSUBE
EPSTEST = EPS/8SLEE
PRINT2%9S
IF{MPRINLECL,D) GC TO 2
PRINT JOCC
CCNTIKNLE
tLt % Isi,NCMCR
CALL TPIEGRTNsRTUSNPRINY
REEL = ,E*(RTX=PTN) 3 RAV u 5% (RTNeRTX)
RINT = RINP 3 0,
€0 2 K=z1,NCHES
PCL = XCIMXISROFL » RAY g RC2 » XCIT(KISRDEL & RAY
€0IF = £ = VOFR(FCLY
IF (EDIF) 8.8,9
GRANDL = SQRTIEDIF)
E0IF = E = VOFF(FC2}
IFCEDTF) @8,8+10
GRAMD2 = SCRTC(EDIF)
RINT 3 PINT & WCIT(XISCRANGQ2
FINP = FINP ¢ WCI{K)/CRANCL
EINT = RCEL*RINT/PI 1 RIN® = RCEL'RINP/TFL
CE = {VPr = PINTI/RINP
IF(APRIK) &ebs3
CFRIN = CE®OSUSE
EFRIN = (E}*OSURE
FRINTIC01, I+ EFRINe OFRINe RINTe RINP
IFCABS(CE) = EFSTESTY €e6,5
E= € 4+ (E
EFRIN = E®ESURE
PRIMIAZ, EPRIM
E = L£%ESLBE
RETURN
CON 7 INE
EPRIN = E*ESUBE
FRIAT3003, MARY, EFF.INe WARK
E = E*ESL3E

1

FRIM 300
FETURN
€NC



8LOCK CATA CHE2YCD
CCMFON/CHERY/NCHESXCI(10E24MCI (2000, XCIT(100) »HCIT (100
CATA MNCHEB/1007/

CATA (XCIIVeZal 5027

818 TP I7B2LT A0 803000 278777 73TLT7L0264R16T0,21 717 TTESITILIN2TL00E3,
R17477764220715422712093717772710€6(500202570,171777030037745507028,
BT TTE 2 TAI0LEELT0LIN 17 177€16€6TH13T7IATITALLT7LTISTECLTLLLEE1TESN,
R 7L 772736706 E7I0¢ 172 77443126E6326616048,171773€74502837234270,
R174773101536362121929,1717722596715052E7220,1717713624426724¢€1130,
R TL7704371 €667507516T 91717 €7605720620254045T12 52717 €C44T240152240%30«
AL TG IS P05 DS 24€E20¢371764271002617212€78,2717€E313404217€502638,
SLTLTELTLEL 12610%11€52,171760524L7671)3€75728,17275725416€%1004E573,
B PL T ILL000CLSL2EI 2T LT EAL235272S43 2537, 2727 03062%22423E822018,
€702, 372750C07747062032%38,27174623264363720€638,
€73530172743206302320079198,171741346122€7217242705,
R YTIE77I2€3 0204 7EET I AT IETITL2177 100220469, L71670237EC4 752025520,
S173€CLET 1002040230728 271CE07670251527252184172€ 551722674677 5467
SLr1E513%L20076704CILI ST 1€LEI062640622T7€08,171€681€1913€237455218y
1728 73€1€125231237523,3715€723571014633€78,1735%60070864€7 344538,
BLTL56000461 5146710 EX6TT42714702350427256323279,2714502274%10434€2073,
$3212602712€1667241508,2712002262626823032387

CATA (XCI(IVeIun52,20007

SEDESITESLIE BACELTITELD L E0 41 TE06516330560D7A,606027€S032623432€608,
SE06Y07ELLIEIG0S1€EEEIT7, €0€2TI7IIC2LI0E712€653,60€223778722210433603,
SE0622L0SL20676 2154408 ,60€20L171662646560620, EDEL1TEL62RL1540322748,
*E06132271€1372 5960240 ,€E0€22€623577020737€03,€60€222€025202108222%3,
SE062170103C262 0 2709, E0€ S1T2LET7IIITEATLEILEO0EIRT7ILL123024752510,
SEOEL0KIGSEQ067 ISEIELS,60E200451675632201 339, £0E036LIEL105€60932219,
SEOE0IUETIN7EMTT7027374€0( 1231461 64535720%29,6060334453304240572222,
SE0B02777C00307857LE223,£0€02C23€705637762170,60E0567325€5412E5078,
*€060233%625054 422519, €0€CC202k337771326518,60€6020523€122€7731273,
SE0E0L72%3010674202230€E0€CIELI26EEIE72€EL70,60E014€E0I7ITEA127T410
SEQECLICOEETSIE IS EE163, ECE0124D42072722832304 606012 334537E25%537329,
SE06020 3205 35352332143, 6060070061217 2702€53,60€00€& 15 3I8I0€3 L6708,
BEOEQUEE2T16627 Z61CELIA ELENDUETE2L1LRLESE27RL60EOCLL0327T40543%4B,
*E0600324€572 6512 €176 ,E0E002€650 ba6107310529, C0€6002212302€€11£01E8,
*ED6002€L 1303660434423 ,ECEC0LI5I6L73L26074034 ECE00074T740032270778,
SENBCCOE0ETL7L77E3CC1 2, ECELCCINSTOERE550EE0D,EREOCILLER0ELITHEIT2B,
*€0600006230063235€13,€0€000004025€0672346737

CATA (hCIC(I)oSx1,501/

® 1702602581077 2TREEAD A7 CEE0ITRIEO23717054B, 17CT7S0TICLE23275013248,
SLT07703€E7II7€0€I17324171 0442062101 317€L258,1710%427€575123210043,
S LTLCELLL0ETICT07 27094271 C70LCS0L7II66T27050,172242791002827€EET774B,
BT LALSESLLEETTIL 712594171161 536756657166108,17115537020723711€7338,
172161278550 7%050716301711€47501667103254609,272270470762410324273,
®17127 41500606 2225118,171177€02622170440578,171264147621802573%6£0,
S L7126 24 71576 CLILEY,171244T756613354077€3,1712365070227207040€3,
1713501845703 27273€6€34171251€22067602090038,272253232275C1502%2¢%By
®LT1254ELE DG EIELLS,17125E150L03L07707348, 171257454725 641221668,
1712€0731220751C5305,171262454733207%22629,1722¢€3T47147037124029
S1712CUS0TIELLEE402108,171265€2511723201310B,3712¢€EE675222670226¢€B
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871 2€7T0€3L51E032%30937127CE70T7TESSITTTUBI 172272 €2¢€3T7732173220,
B1P127250 7 I63ECII2I7N A7 27 I42332552503018,1722761373047E2154700,
471274 E757 3461 I5TETS5417127237 9560787229065 447227€03€340012€677178,
8474270437627777413€3B¢ 1712770016267 03064L31R,171277I0IF2LETLOT76TE,
1712775 E2E11 T2€ 5L T127TT4HT0IN6IT7LE0008,27230400441877€7126178,
1743401025525 T€LA3113927 1348124 7SULH0UT€57I/

CATA (MCI(I),I=%1,100)/

S 271340126754 1404TEE0D 171 200106552556443118,171348064257T7€711€208,
17127776 70306374£60010,471277 54526213265£2%3,17127730T3524€1€07463,
1712770024 267030€4220027127CLIT62777711 3648, 17227€LTE300031€677219,
7127827 ESENTET 22510027227 4€P5TIL613076778,1722761373067£2154738,
SLPI2TIL I EE2E0I0ET 47 1272207336380 332443 5371271 €1€68377331732€3,
172270€707 755537 717132,1712€770636518032515641722€8€67522267032748,
S1712€%61%1172320171624272266T07360166L02163,1712€334T167027424070,
S 1712621057 33107522€72,1712€60731220751293138,1712974547228422127¢8,
S1712%€2150LCIH0TTL7400273250€106000022641%8417229323227%01 2035458,
$171251€220E676020%501330172220164570327233793,517124€507022730704158
S 271264 775ELL33 L1058 17224L3265715765561570,17120147431002%73€008,
L7417 EDZE221TONAL03%027 117415900540 2322328,171170470741410714519,
817326470 024E7100 EAET3+2732€1276550750547218,1722853742473721 £7628,
82714524347 ER65T1E622%0 171 145€844L26771671048,1714427510028175670108,
44710740504 733€£7 20102017 1054L6IETI070743408427200427€27%521223310348,
SLPL 040 E22G13LTENELDITA77IGETIITE06I244B 1767 50306623275814€28,
SL70€€0 3703 £6237202029,170940255620772340€487

CATA [(ACIT(TY¢In1y500/

S1T7.777TECIH0L0G1573F,17 TTTTO0LT20657L626B17177756236012707€078,
BLPLTTT L0 T LSTES1 54732017 177716L402302€43220427177€7TETTIEI6QLIBAL,
SLPATTENT2 0152756509, 17277€01655475 1603420, 172 77540427€€04230039,
LTI ITATIINALL26TIEMTI 17177422465 0202502670 04 7177T4S7SETTICLITELB,
L APATTZESERT0LN J€6 056417177 2015662046 3E0328,171771122457024132738,
PL747702710267642109531717€720 4bE034230020801717€6164E35€6E332540,
1737651121166 31735320371 7€6.05131265392323,1717€2E4€336005420218,
S17L7ELLSEMLL0T 0222622227 1TE0236023I7I€T4208,427175CTETSDZITHE 74540,
LT LEE T LTS 32300 771N 7SI 641 SETTI3,1717425C 202 E2T26E4058,
STLT5 11622 536003052032727675343620630€5030,1717460630%1716231228
S PN YEEE R 2B TGET0T 1T ITH2EB0T EIBTE4022€3,17270122071300€627407T,
$171CT6€€1623601272720,27157 3262516150 7L4000,171€E7€2€076050600368,
ST 1CELITETT01051722409171€EENLL370004322 4278, 171€%4€4370€20275€708,
S17LE5L041506T€L221423+172€4021403020 4022400027 2€6L342T7745479%2520,
'171'7'136!7&270‘76533;!TIEE J2013€6256106100171553452123%501353348,
L R EAIITI0TITENI A TIAETIO24AL5BL, F320342T14ATELL2€5370424508,
-171!'7en~71535&:7571=.xr:xr7=ueaasrzssehnaa/

CATA (XCII{IYel25142000/

SE06E002913720€L2207E,EQEAT0173002427501€6B,E60€63302E351 2407253978,
SEDENL0279ITI2LITUL25TE06226221 JHM0S7H4067I C0E224T2%ETo27€4245T8,
SE062146s7C0L13821ETE13,€60€200EL3203507201578,60€135463200323022532¢8,
SE061328E 2747 STITEELSY,E0€22€673L2 71061 355¢€673,60612323€6071€75022143,
BE061L7I293773LEE (0E252E62027672656718,£0E110353701727177%29,
SE061045152€16270€ €LE1012161%5 376605130, E0603€€670€46773507228,
S€0603512746107012352 EDEO361113%5320672113¢E0€C0T1724T2EHELEQESLD .
E0E0I0cuTL1STI4TII00ERECCEELER0I7TLT2E5D,6060252143614605212798,
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SE0602366 0282138220077, EQE0C2I12030724524320,60€0210122724L03203268
S6CEQ0L7ELL7SLLCA1CTEQT,E0E01€T21TEETHUIGSE0LB,6CEQISITINALTTZ2IEILE,
SEO60LITTIELEEL242647F,C0EN12665661306042479,60£02261T2021214452¢8,
SE0ELL0072333L3%477€13,60€007¢E0€ETHIVLESE I20UB,60EHLEESEITOITICLE07E,
PEOE00STEZ1157I 2037069, 50 €00812280T370127253,.E060063202127426¢E062598,
SE0C003SEII2TSIN27E31T, EAEUOI0LLIIOISIHA2T20£06 002373501173 %6TT4E
PEQA600176122302€174339,£CE00L4D5527525023300,6060020710046161764208,
SANE000ES II 567 FLINEGI,€0€00037 9232012623053+ E0EQ0021 EQI7ES0IAL708,
PEL8000077305TLI20€2229, €0 ECELOL76E3T3736 20087

CATA (WCII(I)el=1,50)7

SLP09272L 3101652023212, 270€6772733327074676069,47028PI7074730270017%,
81707774745 26351526€23¢171047360417233616070,1710%872271713223€5018,
BLTLCETG2FI182422232.%,37107€€02271352201000, 27 1243247675237360528,
S1TL44ETT ReT620LT7420003,171 1525762362471 724124 1713803526036 2042579,
®1711€2100246201612283,17 1165576 7T67074L25€68,17117123703153322526b-
S1714474€6u556000237(72,17120040€1005752%6n%8,1712641€517642422227€T,
TL71263372043661623819,17126%0784516103%1429,1712069528521524 22648,
B LP4250211516337%5€1039,171251€21517436514220,1712%32047 57004224440,
PLTL RN ENCETITTNTERZITI AT 1256052006026 T7T€L63,472297333371 842337388,
$174260%6072076770773941712€61766142161703¢78,17121313€69577¢6Q75368,
BL71264205T7I066GE 22130, 2721265343207 776021778 ,4712¢6I78725T00 465608,
S171267378546240635153, 1712703617 707462E69B41721271252252757¢70%78,
®17127242€21264 7327309417 127276331356273I6678,17127352726467 54722518,
1712742835052 36E6 55T ,17 927 4762130121701223,17127537 3€798€6611120,
174279762 ATATMUET 102427127 EIL 73606021 4 E538, 171276€1254772€€50368,
17427705 0€87314226340,17127724€5TA3056617€0,17127740020781447€538,
S1712775002527T0E26023¢ 27227 TRIT0LMLTH2EE4D

CATA (RCITCTYoIn22,1000/

S171277563700617426€68,271277 50425277 0636820,17127760%20741447€528,
SLT427720E5 7130 26461772, 171277050€57322225353,17127¢€613THTT1EL%0378,
S174Z7E31 T3E06021460543427 2270766247134 06E7153,1722753723672¢841113B8,
SATLRPGTSZ125121701223,435712706253545234C45620,171273%272u8 794722528,
1742727653 13CE273IET03,171272425242647327219,1712712%2288727€70625,
SL71270361 77507 42847241 712€737F5LE2L06TI51EB,171226I7%7253404 65658,
PLT12€EGTI077760TZC27,1722€02557105650852148,17128213¢€28577€E075408,
S1712€17€E€142184703739,1792€05647207467707783,172257333378 642337418,
B17125€052¢A0T2GTTEED2, 2T 1254502553770 62308, 2712532047504 4S244TE,
$171251€21547134%44239,1712502015163375€61079,17420€5%25%112%452703,
C1T2AMECT(GSLF LT t1GET 17124 TTIP7FILTSE1523 500, 17224 1€337E42L2213029,
®17124040€100575254522,471176E40556000537478,171171237021 22%4k8,
SLTLLEE TRV TATLTNGETI T, AT 116210026F201622403 ¢ 3722 5EI52E42004L27T8,
1741527 ERN526T172073,17116E7PLLT20T1202856,17114L314676752373¢80528,
S17407€EQ 2272301202203, 174CEP026315042220030,2710572171312821€22¢3,
S1710672€0617203€1€409, 27077747 4926351 527€38, 1707 47370747302700278,
SL70E7727 3332707502059, 470577 713102658027518/
ENC
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SUBROQUTIME TP(E.FTA42TX4MFPIN}
COMMCHICLTCFF/ZECNFCX
3000 FORFPAT(TEX*R-INMER CCANVEFCEC QN®II® TQ $F10.&)
3002 FORMAT (7EX®R=QUTER CONVEFCEL ON®IJ® TQ SF10,.€)
ATNL = RTN ¥ ATX2 = ATY
CO 2 122,50
IF(RTAL=RCPE 13,413,120
11 IF(RTAl=2, } 1Z2,13,13
12 CEL » (E~VCFR{KTM N /VPR IHE(RTN1)
IFCABSICEL/RTNLIY = 1.E«1d) 3,3.1
KTN1 = RIN1 ¢ CEL
IcT = 1
CENTIME
A = RCA 1 8 = 3.
€0 17 Isi,200
ICT = ICT ¢ 1
ATNL = (A¢8Y72,
ITC(B=AV/RTHLI=1,E=lb) 247024
16 F = (E-VCFF(A} )% (E=VCFR(KTN1))
IFLFY 1843416
15 & = RTM
Ge 10 17
1% A 3 RTML
17 SCNTINUE
3 RTH = RTM |
IFINPRIN=L) Sefysk
& FRIM3ICO0C, ICT ATH
5 QC 7 l=1,50
IF(RTX1=RCX) 1%,20.20
18 IF(ATX1=1, ) 20,20,19
19 CEL = (E<VOFR{FTX1))/VvPE IPE(RT L)
IF(ABSCCEL/RTXL) = 14E=14) 84848
5 ATXL = RTX1 ¢ DEL
ICT = 2
7 CONTINLE
20 A= 1, 8 = RCX
o 2 1=l'¢ﬂn
ICT = I1CT » 1
RTX1 = (Re€)/2.
IFL48=A) JRTXL =1, F=lte) £yL.20
21 F = (E-VCFR(A))® (E«VAFR(FTALYY
lFlFl ZZoOoZ!
[ )
Ga 70 2&
23 4 x RTXL
2% CINTINLE
8 RTX s FTH1
IFIMPRINSLY 1041Ce2
PRINTZ001,ICT (RTY
RETURN
ENC
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SUBROUTINE CASHIOMIIORIM yNCPCRoNsRTHoRTXEDEPSyESUBELNFL)
CEMPEN/LCCLPOT /M V¥ H2y B b oF X

CCHECA/OCTLUX/F(SACOY UL CRR)

CCHMPCKR/PCTLUK/P (50600 YL (20000)

LEVEL2, F,L

CIMENSION MARK1LCT

CATA MAR%/40(1He}/

FCRPAT [/5G2CCCLEY INTEGFATICN RESULT®/)

FORPAT (2X*ITRN 9 YESL2) P CORRECTIONCLLIXPFo 1IN F=PRIFE®PXSRATCHFQINTY
1%/)

FCRMAT (1FXIS.4 (ZYELS.8Y2X1E)

FCRFAT (/10X1041, IX2CAMEFGEDL TO E » *1PE20423,3X10A27)

FCRMAT (20X THE TUFPING FCIMTSE ARE *F10.6% ANC *F18.6/)

FORPAT (LF/720X30CFSe E SLCSMED QOVER TO SE1£.3¢)

FCRMAT (20X *RENCRPMALIZEC AT F x315)

FCRMAT (20X *QUTHAFL INTEGRATICN GAVE A ZERG AT THE MATCHPCINY ON IT
1RN*15)

FCRPAT (/20X*FAILEL TG COMVERCE, £ z *1PE20,13/)

NEL 2L

FRINT1¢€9¢

IFLIPRINY 24241

BRIAT 2000

CE = 0, § E = E0°PV/ESURE ¢ EPSTEST = EPSISHV/RSURE

CUFLG s 1.E+100 ] PL = PN z 1,E-50

O 119 IT=1,NQNCK . .
IND = PN 3 SUNCUT = SUMIN =2 D,

TN = U(N) = £ ] TI = UlNe1) = €

IF/TW) 200+400+102

EPILIY a E®ESUBE/FY

PRINT2100, EPPIN

E0 = E*3SUBE/RY

hFLa=3

RETLRN

PIN=1) = PINI®(TAsTII®® 295 AP(SARTIZ, *TN) +SORT (3. °TI))

YL s {2.-TMSPN

¥Z 3 (1.-TI}2P(N=1;

s N=Z

Y3 5 Y2 ¢ ((Y2=¥2} ¢ 1Z.°TI*PIN+1))

TI s L(M) = E

F(M) & vI/(L.-TI)

IFCABS (F (M)} =0VFLO) 104,150,150

FM 2 R{M)

£O 103 xaMN

PIX) 3 PIX)/PH

Y2 3 Y2/FM t Yi = Y3/Pm

PPINT 2101, ¥

IFLABSIPINYY = AET(P(FeL1)}) 1074107,10Y
IF(M=5) 107,207.10€

YL = ¥2 s Y2 = ¥?

Pat~1

GO TG 102

PHIN = P IM} t MTCH =3 M 3 YIN = Y2/PMIN
FPL = ped

CO 108 Iz=MFL,N

SUBIN = SUFIN ¢ FIT)%P1T)

SUFIN a SUPIN/PFIN®s2

TL s uUll) -£ t T2 =L(2) ~-E ¢ P{1) = P}
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10

151
119

111
142

113

114
11

11&
140

119
119

120

20 § Y2 3 [1.~T1)%M]
ISTIRT =z 2
IFC(T2oLEW0) GC TO 189

‘s TI e T2

P(2) = PIF(TL/T2)B4,259EXF(SORT (3,07 1) oSART (340T2))

Y4 2 Y2 8 Y2 T {LeeT2)™Hi2)

ISTART = 3
€0 312 I=ISTARTP

$ Tl = UM ¢

Y = Y2 4 ((Y2eY1) ¢ 11 ,%TI%9(I=1))

TI = UsI) = €
(I = YI/1.

=TI1!
IF(ARS (PIINI=0VUFLCT 11142214250

PT a2 P(I)

CC 120 X=1,l
Pix) = P(K)/PT
Y2 = Y2/FT t
FRINTZ2104: I

YL = Y2 ® Y2 = ¥3
CONTINLE

PHOUT a £(M)

TFLFNCUT) I1lb,11Y,456

Y3 3 ¥3/RY

F = QUFLC s FOEP a oF

CE = +001%E

PRINT 2102, IT

GO TQ 11¢

YOUT = Yi/¢NOUT )
€O 115 Ixi.M

SUMCUT = SUMOUT & FLIY*AAD)
SUNCUT = SLMONT/ENMCUT#®2

Fou (2.%0P -~ YIN « YOUT}/ 22,
FRRF & SUNIN ¢ SLMCUT

CE = F/TERY

IFCIPRIND 118,118,117

®PRIN = E*ESUSE/PV

CPRIN x CE=BSURE/HV

PRINT2881s ITe EFRINe OPFINy Fy ¥-Me NTCH

£ sE ¢ (E

Y 3 Y2/PMOUT

.71

IFCABS(CEY = EFSTEST) 12041200119

CCRTINCE
€0 « EFAIN = C=esSUEE/HY
FRINT2102, SPRIN

NFLsD

RETURN

CALL MGFLZ (NoM,FPCLT PPIN}
EPRIN = ESESUIE/FY 1

FRIM20DZ, MARK, EFRIN, PARK
CALL TFULE,RTNyETX,40)
PRINT2003. RTH, FTX
€0 = E*ASUEE

RETURN

ENC
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SLEROQUTIME SETLFLIN)
CCMPONZLCCLAPOT /M \ ol sH2 4R A oRY
CCMPCh/PCTLUXZP(SICDY WU L2000)
CCHPON/PCTLUS /P CE0C00 ) ,L 120000}
LEVEL2, Foi

H = (RX=RNI/FLCAT(N=L)}

HZ = H'M & HV = H2/12,

k= WN

60 2 Isi N

UtI) = HVY*VOFR (M)

R a2 RN ¢ I

REZTURN

ENG

260
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SUBRQUTIRE NRMLZ(N NJPMC4PMI)
CCMPON/LCCLPOT /l v ok s N2y RN +RX
COMPCN/PCT LUK/ PISDTRY,U(S000)
CEMMCN/PCTLUK/ZP (20000 ) L (30000)

LEVEL2, Fol

€1 * €2 3 0L = C2 5 Qo § PMI2 = PNQPPN( € Fi]2 = RNT*PKT
MFL a M « 1 3 FPl z M ¢ 3 8 NML = N = §
CQ 3 I=a3.Mri,2 .
01 = 01 ¢ PUII*E(])

Iy = 1 ¢ 2

€1 = E1 ¢ FIIPLI*P(IP1)

IF(P = M2 « MIZ) 24243

€2 = PLFILI®PIVFIY)

FCNTK = b ¢ 3

GO TO &

3 C1 = G2 + PeMEeO (M)

-

~ -

FCATK s P & 2

CO 5 I3MCNTNJNP1,2

€2 = 82 ¢+ PUII*FID)

Ing = I = 4

E2 = £2 4 P(INMII®F(IN1)

TACKON = (PC(117P (1) & S(Z)OR(21)%H/2,/PN02
C 3 01/PFQ2 ¢+ C2/FPYI2

€ a EL/PPO2 ¢ E2/PFTI2

SIHP 3 (PL21%P(2)/PM02 + PINISPINI/EMIZ & Go%0 & 2,%E)%H/3.
FNDRM = SOFT(SIFF ¢ TACKCN}

PHC = FMEAFNORNM §  PNY = PWISONCRY

CO € IaisN

F(I) = P{T)}/PNO

CO 7 I=MFL,N

PLI) * PITIIPNT

RETURN

ENC
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SUBSRCUTIMIE CALNCCEINSNICESoNSTART,NSTOP)
CCHMPCH/PCTLUK /R LEAEA) U (RCE0T)
CONFCN/RCT LUK ZFL50400% 4L (S060?
LEVELZ,y Fol
CINENSION WARKIID)
CATA MARKs2D%(iN1Y 2/
2000 FORPAT (10X 44022+ 2N*NUPFCEP OF NODES = *I3,20X018A1/0
NCOES = §
BO 10 JENSTARTHASTCP
IFERTSNY 24343
TREFTI=23) 3420410
IFLFLJe1)Y 20,7,
TFEPLIe1)) 10sbkeds
TF{RIJ=21} 9ell,30
TF(RtIALY) 8416410
IFLALI=2)) 101049
TR{PJOL )T 891G.20
IFIPL=21) 1041049
NOBES = PODES » 1
CChTINLE
PRINT2700 ) MARK yHCOES s PARK
RETLRN .
ENC
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SUBROUTIME DSUEY IK,5SURE,BV)
CCMPON/LLCLOOT /B Vo s H2o R P oRX
CCHPON/PCTLUX/P(E0A0Y (L (S000)
CCMPCN/PCTLUK/PLE000G Y (L L9 CQD)
LEVEL2, FoU

CIFPENSICH PAPK (10}

CATA PARK/10%(1PZ)/

2000 FORMAT (10X+20A 10 IXRCTATICNAL 3V = S1PE28,13,3X, 1041/)
BY s E 304 $ F 28N o Jo%F § T 3 (PII)/(NNI2,"H1IOE
NM2 = b - 2
TACKON = ((P{L1I/RNYISB2 o (P(2)/(RNIM)DIIS2)01s2,

CC 1 I=b.NK2,2
€ xE ¢ (PIII/RY®"2
Cz 0 ¢ IPIIeL)/{RIHI)ITNE
1 N3 R s 2%
BY u ((P(2I/ERNEETIZ+42 ¢ 440 @ 2,°F ¢ (PINJ/RXI®*S2)"H/3, ¢ TACKON
BV = BSUEE "8y
PRINT2000s MARKEV,MARK
RETURN
ENC



Q0

101
102
103
106
108
i10

111

20
202

203
204

o900

3061

33

FUNCTIC(N VCFR(R)
CtHPCNICtFISFIlIIGl-'ﬂnulilnhkanLNZ
CIPENSICH AP(10Q)

ENTEY VOFR
ANG = FLN2/(R°F)
IF(NRT=2) 20103024203

IflhiT - SI 1056 ¢21CLe 10’
X 3 1s © 1./R%5¢F

XTRA = ¥

G0 TO 119

X m ls » EXPLFHCR(1,o0))
ATRA 2 3

F s 0.

B0 111 I=sNSTRT,MPF

IT = APLUS - 1

F = X®(F ¢ 201I0)

VOFR = (1. ¢ ATRAPFIOALSX482 o ANG
RETURS

ENTEY VPRIPE
ANGP = =2 ,5FLN2/IK*ROR)
IFIMAY - 29 201,202.203

X = 1e = 12/F L CICR = 1,/78582
G0 19 210

IF(NRT - 3) zns.z:b-zcs
X X 1, o 34/7R%%F

XTFA = X

GO T0 210

X = 1s » EXPIRFCT(L,2R)) s OXOR 2 RHO®(1.~X}
XTRA =2 X .

F = 0.

00 211 I=ASTRT,MPF

11 = MLUS = I

F = X*(F ¢ AP(IID)

VOFR ¥ (24 o JTRASFIVALOXNNYDR ¢ ANGP
RETURN

CXDR » PS¢21, = X)/R

THIS EMTRY INITZALIZES SEVEFAL PARAMETE(I TO €L USEC AEBCVE

ENTRY VUNR
IFANRT=2) 301303304
BSLBE = A(2) s ll = (4(2)7{2.,%9SURE))I®42
MSIRT = 3 $ RA = 1, T CXOR = 1.
Y00 T £2,%1s) = 1.7!'!(3)"2 + (NRT=1)%2,8C1,=AL(3V 0072,
GO0 TO llﬂ
P = A(X) ESUEE = &(2)

AL = (“1”(ZQ.EQEBE.",..2

YO0 = (1e ¢ PR{2, ¢ 2.20¢0)*P)D/8,
FSTRT 2 &

G0 YO 310

. 264
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04 RHC = A(3) 1
OSULE = 5 (11752 1
Y80 = 3.°RHO®*244(0)/8.

310 00 311 I=pSTRT,MPF

311 AP(I) = FLOATITI®A(I)

HPLUS = KSTRT + APR
VOFR = ESUBE

RETURN

ENC
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NETRT = &
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SUBROUTIME EXTRINeAVoNJ o ACOESeIVoOSUSEsEsEPS+RTNRTXeNFL,
SITITLE)
CIPENSICH ITITLE (3)

THIE IS A4 OUMMY SUEPCUTIME. REPLACE IT AT YOUR KHIN WITH
YCUR VERSIONe SUGGEST YCU CCNPILE YAUR VERSICA AND PEFLACE
THIS ONE WITH A *Re<3INAFY FILENAME>® IN THE LINK CORTROL CARC

RETURN
ENC
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