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ABSTRACT 

Three variations on the Dunham series expansion function of the 

potential of a diatomic molecule are compared. The differences among 

these expansions lie in the choice of the expansion variable, X. The 

functional form of these variables are X = 1-r /r for the Simon-Parr-
s e 

Finlan version, A - l-(r / r ) p for that of Thakkar, and 

X = l-exp(-p(r/r -1)) for that of Huffaker. 

A wide selection of molecular systems are examined. It is 

found that, for potentials in excess of thirty kcal/mole, the Huffaker 

expansion provides the best description of the three, extrapolating at 

large internuclear separation to a value within 10% of the true dis

sociation energy. For potentials that result from the interaction of 

excited states, ail series expansions show poor behavior away from the 

equilibrium internuclear separation of the molecule. This property can 

be used as a qualitative diagnostic of interacting electronic states. 

The series representation of the potentials of weakly bound mole

cules are examined in more detail. The ground states of BeAr , HeNe , 

NaAr, and Ar? and the excited states of HeNe , NaNe, and NaAr are best 
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described by the Thakkar expansion. Presumably this is because of 

the r" attractive forces that are responsible for the binding of 

these systems. Close examination of the potentials of the alkaline 

earth dimers suggests that covalent forces may be of importance in the 

bonding of these metals. 

Finally, the observation of laser-assisted excitive Penning ioni

zation in a flowing afterglow is reported. The reaction 

Ar( 3P 2) + Ca + hv -* Ar + Ca+(5p 2P ) + e" 

occurs when the photon energy, hv, is approximately equal to the energy 

difference between the metastable argon and one of the fine structure 

levels of the ion's doublet. By monitoring the cascade fluorescence 

of the above reaction and comparing it to the fluorescence from the 

field-free process 

Ar( 3P 2) + Ca -»- Ar + Ca+(4p 2P ) + e* , 
3 °2 a surprisingly large cross section of 6.7x10 A is estimated. 

Mechanisms responsible for the resonant excitation and the large 

cross section are considered. 
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Chapter I 

Introduction and Overview 

The main purpose of this work is to examine the nature of 

the bonding of weakly bound diatomic molecules. By "weakly bound", 

we mean binding energies of 30 kcal per mole or less. This energy 

regime is responsible for phenomena such as condensation, physical 

adsorption on surfaces, the adhesion in polycrystalline materials 

like cerauics, the binding in molecular crystals, the rates of 

ion-mclecule reactlous, and ever, the mechanism responsible fcr the 

high selectivity of enzymatic catalysis. He hope to shed some light 

on these kinds of forces by examining the attraction of the simplest 

of these systems; the weakly bound diatomic molecule. 

The quantity that best describes this interaction is the inter-

molecular potential. Although there have been significant advances 

in the ab initio calculation of this potential from first principles , 

they rely on the cancellation of electron correlation errors between 

the molecule and those of the separaced atoms. They generally tend to 

neglect spin-orbit interaction as well. Since such quantiti" re at 

least as large, and often larger, than the binding energies under con

sideration, the methods of empirically determining the potential 

function from experimental data, particularly spectroscopic data, must 

be used. 

Perhaps the simplest method is the fitting of a simple, empirical 
2 3 

potential function to spectroscopic , molecular beam scattering , or 
4 thermodynamic data . Familiar examples are the Morse, Lennard-Jont-J 6-2, 

and exponential-6 functions. The drawbacks are thai such functions 
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contain so few adjustable parameters that they may not describe the 

data to the accuracy known. Moreover, which functional form that 

seems suitable may depend upon the experiment performed. 

As an example, consider the dlmer of argon. Early spectroscopic 

work , dependent upon the curvature of the potential minimum, was 

interpreted in terms of a Morse function. In the high energy molec

ular beam scattering the data were more sensitive to the repulsive 

wall, ?nd the results were best described by a purely repulsive r 

or exponential function. Thermodynamic data tend to be biased toward 

the long-range interactions and workers in this field had found a 

Lennard-Jones 6-12 or the exponential-6 to be more appropriate. The 

situation was similar to the tale of several blind men describing 

the elephant. 

At the other extreme of potential determinations is the Rydberg-
g 

Klein-Reese, or RKR, method which does not produce an analytical 

potential at all. This algorithm determines the classical turning 

points of a potential from the spectroscopic data. The full potential 

is found by interpolation between the turning points. Although the 

method is limited to regions of the potential where data are available, 
9 new methods of extrapolation have been developed for extending the 

potential to the dissociation limit. 

The empirical t^hnique that is examined in this work is that 

of J. L. Dunham and uhe variations that have more recently appeared 

in the literature. Here the potential is expressed as a power series 

OP 

V(r) - a&XZ(r)(l + £ a^Cr)) 



where the expansion coefficients are determined frcm the spectros

copic constants of a molecule as appropriate to the particular 

functional form of X(r). The Dunham series uses the expression 

XCr) - r/re-l 

Because the radius of convergence of this series is limited to-

r < 2r , the potential is unsatisfactory for the description of 

any but the lowest vibrational levels of the molecule. Clearly, it 

cannot predict the dissociation energy. Moreover, since the number 

of spectroscopic constants that can be determined is limited-, the 

series must be truncated to a polynomial. Because the successive 

a 's for most molecules tend to increase, the radius of convergence 

is even further restricted. For these reasons most workers in the 

past have eschewed the Dunham potential in favor of the RKR method. 

It is unfortunate that .he Dunham series method fails so 

miserably, since it not only provides a means for converting spec

troscopic data into an analytical potential function but also gener

ates potential constants that can be used to compare bonding trends 
12 among diatomic molecules . Thus several workers have recently 

revived the series method by changing the form of X(r) and hence 
13 extending the radius convergence. Simons, Parr, and Finlan had 

rearranged Dunham's expansion variable by defining X(r) = 1-r /r. 
14 Thakkar had generalised the rearrangement by defining 

A(r) » sgn(p)Cl-(r/r )P>. Huffaker in turn had chosen the variable 
A(r) - l-e~p^r e~ since the leading term would be a Morse potential. 
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In Chapter II we review the method of Durham for determining 

a series potential from spectroscopic data- The R&R method and 

near-dissociation extrapolation are also briefly discussed since 

these are the. methods of choice by spectroscopists and are the yard

sticks by which all other potential methods should be compared. The 

newer series potentials are then described and their descriptions 

of several molecular systems are compared. Of particular interest Is 

the fact that the failure of these series potentials can be used as a 

diagnostic of interacting molecular states. This is true of sven the 

Huffaker series, which we find superior to all other series potentials 

for ground srate molecules bound by 50 kcal/mole or more. 

Chapter III is a more selective and more detailed examination 

of series potentials for weakly bound molecules. In contrast to tha 

results of Chapter II, we find that the Thakkar series gives the best 

description of weak binding in systems such as BeAr , NaAi/_ and Ar2* 

We draw on our experiences from Chapter II to suggest that alkaline 

earth binding might be more than just van der Waals attraction. 

Finally, we suggest a procedure which may be more appropriate for 

fitting a potential to a weakly bound molecule when the amount of 

experimental data is limited. 

Chapter IV is indirectly related to the previous two chapters 

in the sense thae it involves very long-range interactions. Here, we 

report the observation of the opening of a new channel o£ cxcitive 

Penning ionization of calcium by absorption of a photon while colliding 
3 with a metastable (. P 2) argon atom. The order-of-magnitude estimate 
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of this laser-assisted collisional cross section is in the neighborhood 

of thousands of square Angstroms, indicating some experimental support 

of previous theoretical speculation that this process should be long-

range in nature. The laser excitation spectrum also shows resonance 

behavior, and this aspect is discussed as well. 
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Chapter IX 

Diatomic Potential Determination and the Revival of the Series 

Potential 

A. Introduction 

The determination of the interatomic potential of a diatomic 

molecule from spectroscopic data is nearly as old as Quantum 

Mechanics itself. In fact, the standard RKR as well as the poten

tial series determination procedures ultimately have their roots 

in the "Old Quantum Theory" (i*e. the Bohr-Sommerfeld integral), 

which predates the formalism of Heisenberg and Schroedinger. 

In this chapter we will shake the dust from these roots and 

examine the semi-classical JHKB theory behind these potential 

determination procedures. Dunham's derivation of the relation between 

the series expansion parameters and the molecular spectroscopic 

constants is sketched and the limitations of his potential expansion 

are discussed. The alternative RKR method is reviewed and its limi

tations are considered. 

These reviews set the stage for the purpose of this chapter: 

reconsidering the use of series expansions for describing the diatomic 

potential. The analytical series provides a simple yet flexible repre

sentation of a potential. Moreover, the series can be extrapolated 

to energy levels, including the dissociation level, which are not 

observed directly. The limitations associated with the Dunham 

expansion can be overcome by judicious choice of the expansion 

variable, The modifications which we will consider in particular 

are those of Simons, Parr, and Finlan, of Thakkar, and of Huffaker. 
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These modifications will be qualitatively and quantitatively com

pared for a vide variety of diatomic molecules. 
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B. JWKB Solution 

Determination of the vlbrational-rotational energies of a diatomic 

molecule begins with the solution of the Born-Oppenheimer approximation 

of the radial Schroedinger equation for the motion, of the nuclei: 

_ B r 2 i ^ l + ; v ( r ) + B r 2 ' 2 ' ^ 
e e dr e e 

The quantity ij;(r)/r is the radial wavefunction foi nucleai motion. 
h 2 

The equilibrium rotational constant, B , is equal to r , where p 
e 2 u r e

z 

is the reduced mass of the nuclei and r is the internuclear separation 

at the potential minimum. The potential, V(r), is the sum of the 

Born-Oppenheimer electron energies, internuclear repulsion, and if 

present, spin-orbit interactions. We define V(r ) » 0 in this chapter. 

The eigenvalue is E . , where the subscripts indicate the dependence 
upon vibrational and rotational quantum number, respectively. 

2 
The quantity L is shorthand for the dependence of the centri

fugal repulsion" upon the angular momentum due to the rotation of the 
1 2 

two nuclei about the center of mass. For 2 molecules, L = J(J+1), 

where J is the total angular momentum of the molecule. For any other 

electronic state, the expression also depends upon the electronic 

orbital and spin momenta and how they art coupled to the nuclear 

rotation through the various Hund's coupling cases. For simplicity, 

we assume that the molecule is L in our discussion through this 

chaDter. 
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7a In 1932, the above equation was solved by J. L. Dunham by 
means of the semi-classical JWKB method. Briefly, he assumed the 

form 

(.i J y« iKr) - expU/ y(x)dx/h) 

and that y can be expanded in a power series in h: 

y " yo + 7 y i + (T> y2 + ••• 
The fact that he used h as an "expansion parameter" made this method 

a semi-classical one, i.e. as h •» 0 the system was more classical. 

The solution for y was 

y Q = ± /2u(E-U) 

*1 * of ' 4 < E " U ) 

y 2 - ± (5(|S)2 + 4 i | <E-U>/<32/27 (E-U)5/2) 
dr 

2 2 and so on, where U(r) = V(r) + B r J(J+l)/r . The general solution 

i|> - Caexp(i J ya(x)dx/h) + Cbexp(i f yb(x)dx/h) , 
P P 

where the a and b subscripts referred to the choice of upper and lower 

signs, respectively, for y's of even subscripts. The quantity P 

referred to some particular value of r. 



The problem with the general solution had been that it was not 

defined at the turning points and that values for C and C changed 

for different regions of the well; C or C had to be equal to zero 

inside or outside, respectively, of the potential well, where E - U < 

0, and both had to be nonzero within the well. Dunham required that 

•ijj be real and single valued and be related in the sense that the 

solution in the different regions have the common point P. By carry

ing the integration into the complex plane in order to avoid the 

singularities at the turning points he derived the quantization 

•condition 

h(v+l/2) -^/2u(E-D) dr - ^ = J&(^f) 2 (E-U) dr + ... 

where v = 0, 1, 2, ... 

It is noted that if one neglects the second and higher integrals 

in the equation above, one has the old Bohr-Sommerfeld condition. This 

latter relationship can be derived from the JWKB solution through 
g 

different means. This condition has been the basis for the RKH. method 

as well as the Dunham solution. 
9 

It has been pointed out that Dunham s y expansion is an 

asymptotic series in Planck's constant, h. Such a series is a sum 

of successive terms which at first decrease then increase and ultimately 

cause the series to diverge. By neglecting the successively increasing 

terms one obtains a polynomial which can be a good approximation to a 
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function onewishes to represent. Some workers ' have recommended 

that the third and higher JWKB terms be ignored, which would correspond 

to only evaluating the Born-Sommerfeld phase integral. Recently 

Kirschner and Leroy have examined the second and third Dunham phase 

integrals and have found that, for all reasonable molecular states, 

these, extra integrals provide an improved agreement between the true 

and semiclassical eigenvalues all the way up to the highest bound 

level. 
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C. The Dunham Solution 

Having established his cuantization condition, Dunham then 

proceeded by assuming the potential could be expanded in a power 

series 

V(r) - a A 2(l + a. A + a. A 2 + a, X 3 + ...) o .'. i. j 

where A » (r-r )/r . By next assuming that the energy could be 

expressed in the form 

Ev - £ Y (v + m^W-l))3 

ij 
he solved for the Y 's as functions of the a ' s. The expressions ij n 
£ « Y00> ho ~ Y40' Y01 " hi' \ 2 - Y22' ¥03 " Y13" a n d Y04 a r e 

documented in his work. The validity of his method has been confirmed 
12 by Kilpatrick, who obtained identical results using perturbation 

3 
theory on a harmonic oscillator, treating the a A and higher terras 

as perturbations. 

It should be noted that Dunham had generalized oi. an expression 

spectroscopists had customarily used at the time. The vibrational-

rotational energy of a molecule is expanded as 
E T = G + B J(J+1) - D J (J+l) + ... vJ v v v 

where G is the vibrational energy. 3 and D are the rotational and v v v 
centrifugal distortion constants respectively, and the subscripts 

indicate that these constants vary with vibrational quantum number v. 
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These terms are usually further expanded in the form 

G - "a "(v+1/2) - IU x (v+1/2)2 + 01 y (v+1/2)3 + 

B • "B - •• a (v+1/2) + 6 (v+1/2)2 + ... 

and so on. The relationship between the Y. 'sand the G expansion r 10 v -
seems apparent except for some subtle differences Dunham had dis
covered between Y, - and tn and between Y~., and B . 

10 e 01 e 
These differences can be seen from the general form (except 

£ ° r V ' 

- YiJ - V^'V*!' •-• V + ^U'"l W 

+ £ > V a i ' •••• an+8> + - - ] 

where m = /4B a , V = i + 2j-l, and n = 2(i-l) + j, such chat 

v > 0 and n > 1- If n is -1 or 0, f„. equals 1. Because B « u — — ij e e 
tor nearly all known molecules, the V..rs tend to decrease for higher 

Y..?s and the functions g.. and h.., the first and second order 

Dunham corrections, are of much less significance than f... 

It is found that although the f^.'5 are complicated algebraic 

functions of the lower a 's> they are linear in the highest terras, 

the a *s. This provides a means of solving for an a from its 

corresponding Y.. and the lower a 's. During the first Iteration 

the g.. and h.. functions are neglected and a set of a 's is determined. 
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When possible, the S*-'3 and h,. fs are calculated and subtracted from 

their corresponding ? 's and a new set of a 's are determined. The 

process is repeated until the set converges to one's satisfaction. 

Dunham's work provides enough expressions for the determination 

of the a 's up to a, and the calculation of the first order corrects r 6 
tions for Y _, Y--, Y ., Y.-, and Y Q„. This work has been extended 

13 
by that of Sandeman which permits the indirect determination of a_ 
and a,, the calculation of Y_ r t, Y,_, and Y,., and uiri^h reports the 

o jK) Oil 41 
expressions for more second order and a few third order corrections. 

14 Lauei- Wooley reported the simple expressions for a few more higher 

Y 's. Niay and coworkers and Bouanich have recently published 

direct relations between the Y,., and a_ and a r t, eliminating the need 
ij s 7 8 e 

for the calculation of the intermediate quantities in Sandeman's paper. 

Most recently, J. N. Huffaker has suggested a somewhat involved algo-
41 rithm for determining a sec up co a__. His work will be discussed in 

more detail later. 

As mentioned in the introduction, the fatal flaw of the Dunham 

potential series is its poor convergence properties. It has been 

pointed out that V(r) is infinite at r * 0 due to the Coulombic 

repulsion of the two nuclei. The Dunham series must therefore diverge 

for X * -1. A property of any series 

fw - f: b zn 

a> 0
 n 
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for complex z, is that if the series diverges for z * z , it can only 

converge for values of z such that jz|<|z J, making |z ] the "radius 

of convergence" of the series. Thus the Dunham series aust also 

diverge for X - +1, meaning that cb& series is only useful in the 

region 0 < r < 2r . Moreover, the values of the a rs for nearly 

all molecules tend to increase as n increases. Since there can only 

be a finite number of Y.,?s determined from a finite amount of spectro

scopic data, the Dunham series must be truncated to a polynomial, and 

the increasing value of successive a ' s limits the usefullness of this 

polynomial to a region far less than the theoretical radius of con

vergence. Needless to say the estimation of the molecular dissociation 

energy by extrapolating the function at large r is out of the question. 

Thus the Dunham potential was only of academic interest, except 

for calculating the properties of the lowest vibrational levels of a 

molecule whose outer turning ooints wereV7ell within the dreaded 2r 
e 

limit. Fortunately for spectroscopists, another approach was being 

developed at the time Dunham was publishing his work. 
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D. RKR Method 
Having evaluated the G , B , D , etc. constants from vibrational « v v v 

and/or electronic spectra, spectroscopists have traditionally determined 
17 18 the molecular potential by the Rydberg-Klein-Reese method. ' For 

vibrational number v the classical inner and outer turning points, 

r (v) and r (v), for the rotationless (J»0) molecular potential can 

be found from 

r+(v) = f(v)<[l+l/f(v)-g(v)]1/2 ± 1) 

where 

f(v) - ( B e r e
2 ) l / 2 f [G v-G v,] _ 1 / 2dv' 

-1/2 

g(v) » (B r V 1 / 2 f B ,[G -G ,]" 1 / 2dv' 
e v e e J V v v' ' 

-1/2 
and B is in the same energy units as B and G . Furthermore e v v 

f(v) = |(r+{v)-r_(v)) 

g(v) = |(l/r_(v)-l/r+(v)) 

Although the physical interpretation of g(v) is not obvious, it is 
clear that f(v) is the width of the potential well at energy E n. 

19 20 The f(v) and g(v) integrals are best evaluated numerically. * 
Although expressing G , and B ( in terms of Y..'s can facilitate this 
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21 computation, simple interpolation for non-integer v 1 can serve 
„ 18,20 equally well. 

This latter point is of importance since the determination of 
22 

a reliable set of Y.,'s may not be feasible. Cashion had found ij 

trying to fit a set to all 20 known vibrational levels of HF. 

It should be pointed out that the RKR method, like Dunham's, 

is based upon the semiclassical Bohr-Sommerfeld integral 

^T^[EvJ-u h(v+l/2) * /2p <b [E -U(r)]1/2dr 

23 
where U(r) is the same as in Section A. Indeed, others have shown 

the mathematical equivalence between the RKR and Dunham formulations. 

The main difference is the absence in the above expression of the 

higher order integrals Dunham had found. The most obvious breakdown 

is that E - 0 when v = -1/2. This is not strictly correct since 

Che t̂ rue expression is 
Evo = Gv = Y00 + ' V ( v + 1 / 2 ) " V e ( v + 1 / 2 ) 2 + ••• 

Most workers shore up the RKR method by evaluating Y and setting 

the lower limit of the f and g integrals to that value of v so that 
24 the proceeding equation for G is zero. Other workers have extended 

the RKR method to include the next Dunham integral. That such 
24c corrections are more important for HF than CO is in keeping with 

the premise that the setniclassical approximation is more successful 
for those molecules with larger reduced masses. 
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Although turning points can be extrapolated for vibrational levels 

above the highest observed level, their determination depends upon the 

reliability of the analytical expressions for G and B . A more 

physical extrapolation procedure has been suggested by Leroy and 
25 

Bernstein. They had assumed that the potential for the outer turn
ing points of the upper vibrational levels can be approximated by the 
long-range behavior 

C 
V(r) = D - -£ e n r 

. where D is the dissociation energy and where C and the integer n 

depend upon the atomic states into which the molecule dissociates. 

Further assuming that the inner turning point can be set to zero in 

the Bohr-Sommerfeld integral, they had arrived at the expression 

„ - C - [ ( , - , ) ! / u

1 / 2 . c 1 / n ] t o / ( , r f > 
e v D n n 

where H is a numerical constant and v , corresponding to the ficti

tious, non-integral vibrational "quantum number" at dissociation, is 

a parameter which must be evaluated from the upper G data. The 

quantities D and C could either be evaluated from the G "s or from e n v 
independent determinations, although some of the most accurate D 's 

have been made from the above or related expressions. 

This "near-dissociation" analysis is useful for extending the 

26 the potential. Recently, R. J* Leroy has found that the upper levels 
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accounts for only a fraction of the potential in the region considered. 

Thus a successful near-dissociation analysis does not imply that the 

potential has passed into the long-range regime. 

Although the inner turning points are not determined by the long-

range method, the inner repulsive wall can be adequately estimated by 

fitting a simple function such as a Norse potential to the known inner 

turning points. It has been our experience that the vibrational wave-

function and hence the physical properties it determines are far more 

sensitive to the shape of the outer attractive region than to the 

inner repulsive one. 
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E. The Empirical Series Strikes Back 

AXrhough it would seem that the RKR method is quite satisfactory 

for H.aterwlning the molecular potential and some extoll its exclusive 
27 application over any other method, there nevertheless remain some 

drawbacks. Since the method is numerical, the molecular information 

must be conveyed by tabulation of all the turning points, which can 

be quite lengthy. The only molecular parameters, useful for comparing 

bonding trends for different molecules, which can be readily determined 

are r g and sometimes D . Even D must be extrapolated from die upper G 's , 

a procedure which can be chancy unless a near-dissociation analysis 

is applied. As mentioned before, even a near-dissociation evaluation 

of D and C does not necessarily allow an immediately valid extension e n 
of the RKR potential (insertion of the near-dissociation expressions 

for G and B is not advisable since Leroy found that the ND expression v v 
for B to be unreliable). v 

Moreover, an error analysis is complicated by the numerical pro

cedure and would require the reporting of individual standard deviations 

for the turning points (increasing the amount of information to be con

veyed in literature), hence it Is rarely performed or repotted by most 

workers. Systematic errors of course remain hidden since the method 

is semiclassical, and first order at that. The numerical nature i* 

itself inconvenient; many workers continue to determine dipole moment 

functions using the Dunham potential a 's to evaluate perturbed harmonic 
11 28 oscillator wavefunctions. * 
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Thus the analytical potential function enjoys many advantages 

over the RKR potential. It is easy to work with. The number oi para

meters and associated errors that need to be reported are less than 

the number of turning points necessary. Moreover, the parameter errors 

yield uncertainty in the potential at a particular value of r, whereas 

the reverse is true of RKR; the former is more useful to users of a 

reported potential. The parameters themselves can have physical mean

ing and can be compared to establish relationships in bonding. Calder 
29 and Ruedenberg have examined the Dunham a. and a. for 160 diatomics 

and were able to establish empirical relationships among OJ , OJ x , B , 

and a for any atom-pair in the periodic table. Frost and Musulin 

also have examined a. and a. in search of a 'jniversal reduced diatomic 
1/2 

potential curve, discovering that (a Qa 2) /a- was equal to 0.86 within 

10% for 23 different molecules. When an analytical function has a 

physical basis, extrapolation of the potential in undetermined regions 

is more reliable than RKR. 

Of all analytical potential functions the series function is most 

suitable since it can be systematically improved *rith new data by 

adding higher order terms. Moreover, a series which is evaluated in 

the spirt of the Dunham method automatically incorporates the higher 

order WKB corrections hissed by RKR. The problem with the Dunham 
2 series Is that the leading term, a_A , is a harmonic oscillator. Thus 

one does not have to resort to a mathematical analysis to see why the 

series fails; the higher order terms can hardly be corrections in order 

far the series to simulate a realistic diatomic potential. 
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31 
Simons, Parr, and Finlan (hereafter known as SPF) suggested the 

modification X » 1 - r/r , for the series 

V(r) - b^Cl + 2 bn A*) 
n*l 

would extend the radius of convergence, since the pole in the true V(r) 

at r • 0 does not correspond to a finite X . By requiring that all 

derivatives of their series be equal to all derivatives of the Dunham 

series at r * r , they established the relationship 

b
D - a „ - E (-D i( , lt 1)b n , - <-l)n(n+l) 
a n i-1 t a- 1 

for n > 1 and b„ = a_, where (J is the binomial coefficient -.—. * . . — 0 0' j <m~j)!j! 
Thus having determined a set of Dunham a ' s„ they could successively 

determine a set of b 's quite easily. By requiring that the series 

have the correct r behavior at long range, i.e. setting the boundary 

conditions 

lim (r
z-S_v(r)) = 0 

r •* « dr 

they could easily generate up to m - 1 extra coefficients. 

This series expansion has been applied to not only diatomic mole-
32 33 cules, but to linear and bent triatomic molecules as well. More-

34 over it has been used to model chemisorption interactions. Bickes 
and Bernstein havt fitted the SPF expansion to pre-determined van der 
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35 Waals potentials and have used it to invert molecular beam elastic 

scattering data. The series' improved theoretical convergence 

radius, its versatility, and SPF's assertion that it had a theoretical 

basis made the SPF expansion seem very promising. 

From a pragmatic point of view, the leading term of the series 
37 is the Kratzer-Fues potential, which had been used as a model 

13 38 

potential by early spectroscopists. It is generally recognized, ' 

however, that the Kratzer-Fues function is not a very good representa

tion of true molecular interactions. This may explain why the SPF 

.series, although having a range of convergence larger than that of 

Dunham's, tends to diverge before 3*r , going to very, very large or 

sometimes even very negative values at A s* 1, or as r * ®. Although 

Simons and Finlan found that adding a few "boundary condition" co

efficients improved convergence, the number of extra terms taken is 

somewhat arbitrary. 
39 Thakkar generalized the Dunham and SPF series by defining 

X r = sgn(p)-(l - (-^)p) 

where 

sgnCp) { + 1, p > 0 

- 1, P < 0 

ao that the Dunham variable corresponds to p * -1 and the SPF variable 
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to p » +1. Thakkar then related the e 's of his expansion 

V(r> - eAl + £ e A») 

to the a ' s of Dunham in the same manner SPF had solved for their b ' s. n n 

His algebraic relations were much more complex and tedious than those 

of SPF and will not be reproduced here, except for the simplest rela

tions 

e = a /p 
o o r 

and 

e x - (a x + p + l)/(p-sgn(p)) 

The remainder are to be found in Thakkar's paper. Since there was one 

extra parameter, p, in this series expansion compared to those of 

Dunham and SPF, there was some ambiguity as to the choice of p. Thakkar 

argued that the optimal choice for p would be one that would eliminate 

the first correction term in the series, i.e. e. = 0, or 

p • - f l l - 1 

which of course led to nonintegral values. Nevertheless, Thakkar found 

that the behavior of this series for CO and HF was better than that of 

SPF. Moreover, the potential tended to a constant value at A = 1, i.e. 

it extrapolated to dissociation energies within 10% of the true values. 
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It should be noted that the leading term, 

I - e(tVp-2(V) o ™ o* * r 

is the same as the Lennard-Jones (2p,p) potential. Since the latter, 

especially £or p * 6, has been very successful in describing very 

weakly bound molecules, we should expect the Thakkar series to be a 

very promising tool for studying those systems. Indeed we have found 

this to be the case and will discuss it in greater detail in Chapter 3. 

Following this trend of using a simple potential function as an 

expansion variable, one would wonder how useful a series could be 

using a Morse potential, namely 

-p(r-r e)/r e 

Point of fact, Dunham himself had made just such a speculation in his 

original work. Because the Morse function had been so simple and so 

popular among spectroscopists, it is ccrious that no one had seriously 

investigated the series representation before the publication of J. N. 
40 Huffaker's first article in 1976. Using perturbation theory, Huffaker 

derived the relationships among the Y..'s and the c 's of the expansion 

By further requiring equality of the derivatives at r between his and 
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Dunham's series, as SPF and Thakkar had, and substituting the resulting 

expressions into his Y , formulations, Huffaker obtained Dunham's 

original equations between the Y .'s and the a ' s, thus showing the 

internal consistency of the method. More recently, by adopting the 
4la,d JWKB approach, Huffaker has developed an algorithm for calculating 

higher order c ' s, where the highest value of n is limited only by 

the amount of available data and the machine precision of the computer. 
41e Most recently, he has developed a generalized formula for finding 

the a *s and b fs from c 's (unfortunately, the relationship to the e 's 

was not so obvious and hence not reported). 

There are several similarities between the Thakkar and Huffaker 

expansions. First, the expansion variables contain two parameters, 

r and p or p. By hopefully optimizing the second parameter of the 

variable the first correction term in the series can be eliminated. 

Although the Huffaker-Dunham coefficient relations are not quice as 

complex as those of the Thakkar-Dunham, we only list the simplest ones, 

which are 

P 2 C 

"1 

p + 1 

These equations make Huffaker's lead ng term a Morse-Pekeris function, 

i.e. p is determined from a rather than cu x . r e e e 
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With a few exceptions, which we will note later and in Chapcer j, 

the Huffaker series appears to offer the most accurate description of 

a molecular potential of the four series we have discussed so far. We 

have found that the higher order correction terms are usually small 

(<0.2) and tend to decrease for increasing n. Even though the se.-.es 

must be truncated to a polynomial of order N, we have found that the 

extrapolated dissociation energy 

N-2 

n»2 

is almost always positive and approximates the known value within 10%. 
There' remains, however, a convergence problem to be addressed. 
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F. Further Convergence Considerations 

Although it seemed that the new expansion variables had extended 

the region of series convergence tc the domain 0 < r < «•, certain 

anomalies in the truncated polynomials became apparent. SPF noted 

that their function tended to converge slowly at r - -r r and sometimes 

had an artifice at r < r • quickly becoming negative at smaller values. 

We have seen these artificial maxima for many molecular states for 

the Thakkar and Huffaker series as well. It appeared that these new 

series expansions tended to diverge for some r < r . 

Thakkar speculated that his and the SFF aeries had a smaller con

vergence radius of -1 < A^< 1 because the theoretical justification 

for these expansions had been that A be a perturbation variable on the 
39 42 

electronic Born-Oppenheimer Hamiltonian evaluated at r . Beckel 

pointed out that if the potential V(r) has a term of the form exp(-ar), 

a being some constant, then VCr) has, for p > 0, an essential singularity 

at A_ = +1, i.e. for A_(r) = 1 - (r /r) p, the expansion in A T of the 
l i e l 

function 
a r 

exp(-ar) = exp( a - * T ) 1 / p 

has a singularity at X - 1. This therefore restricted rhc radius of 

convergence to JA_| = 1 , or rather the series ceased to be convergent 
at * T « -1 and r = r /2 1'* <with r « « r for the SPF case of p - 1). 
Although this particular problem can not occur for Huffaker's expansion, 
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X * 1 - exp<-p(r/r -1)), since 

;xp(-ar) - exp(-are)-(l-XH)are/p 

is analytic for positive a and p, we propose that any potential that 

has an r tens (which is sure to occur at longe range) is not analytic 

at L • 1 with respect to the Huffaker variable, because 

[r e(l-p' 1ln<l-A H))r r i 

has an essential singularity at \ * 1. This sets a radius of con

vergence of \\ | * 1 and explains why we have seen truncated Huffaker 

polynomials reach non-physical maxima and become negative for decreasing 

r, and why these maxima have appeared to correspond roughly to A - -1. 
H 

Since these convergence restrictions are in the region r < r 

they are not nearly as serious as the one placed on the Dunham series. 

Usually the artificial maxima occur at V(r) values of r D or greater, 

so we can fit a simple repulsive function to the inner wall to extend 

the potential function for V(r) > D . As mentioned before the eigen

values and eigenfunctions of the potential are more sensitive to the 

outer portion than to the inner wall, so the point of concern is the 

accuracy of these series representations for r > r . 
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G_^ The Program 

In order to investigate the behavior of the truncated polynomials 

of these series expansions for various molecular states, we have 

writter a FORTRAN program which will invert a set of Y^'s and ̂ 97's» 

where 1 <_ k <_ 4 and 0 £ £ <_ 3, to give Dunham, SPF, Thakkar and 

Huffaker polynomials up to the sixth order correction to the leading 

term, i.e. up to afi, etc. Although this program is listed and des

cribed more fully in Appendix A, a brief description of the general 

algorithm will be given here. 

Using Sandeman's notation, the Y 's can be expressed as 

Y.. - x,. + y., + z.. + ... 
ij ij 'ij ij 

where the x.., y.., z,. correspond to the f. ., g. ., and h,,, respec-

tively, of Section II, with the appropriate factor of (B /w ). As 

suggested in Section II, the assumption Y . = x., is made and a set 

of a 's is sequentially calculated. The order of calculation is 

illustrated in Fig. 1, which shows that the a 's for even n are deter-
n 

mined from the Y, „'s and those of the odd n are determined from the kO 
Y„ 's (if B , or rather r , may be considered "a . " ) . If a particular 

Y.. is not available it is set equal to zero and the corresponding a 

is determined (a practice we consider risky and we tend to avoid). If 
the set of a rs is sufficient to determine a particular v . the latter n 13 
is calculated, subtracted from Y.., and the new set of x 's is used to 

ij ij 
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determine the next iterative set of a 's. The process is repeated until 

the change in the next set is negligible. We have found that ten to 

twenty iterations are needed to give an average relative error of 

-7 x 10 . Out of over one hundred cases, we have found only two cases 

(a set of very non-physical Y . Ts for Be and Ar») in which the itera

tion actually diverged. 

The x 's and y..'s can be computed from Dunham a 's or Huffaker's 

c 's. Earlier, we had computed the former quantities with separate 

programs using these authors' equations and found the x.. and y sets 

to agree within machine precision. Thus ve are confident that these 

equations are faithfully coded. 

Since this program was written, the articles by Bouanich and 

Huffaker had appeared which permitted the calculation of higher a *s. 

We have not tried to recode our work for the following reasons: 

1. The higher equations are algebraically vary complex and their 

transcription to computer code would be subject to error. Indeed, 

Huffaker's formulas are a convolution of several sets of inter

mediate quantities requiring calculation. 

2. Our main interest is in weakly-bonded molecules which have only 

a few number of bound vibrational levels, hence the higher Y_,.'s 

needed by the higher a 's cannot be determined for lack of 

experimental information. 

3. Because the relative standard deviations of the a 's and Y..'s 
n ij 

increase with n and i respectively, the higher a ' s may be cal-
n 

culated in principle but will'remain indeterminate in practice. 
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4. The relationships between the a 's and Thakkar's higher e 's 
n n 

have not been published and we have found their derivation to 

be too tedious (in short, we tried but ran out of patience). 

He were thus less interested in making the program a state-of-

the-art instrument and more interested in spending Che time examining 

more molecular systems with the tools at brad. We felt we could 

calculate enough expansion parameters to determine several trends 

for the different potential series. 



35 

H . The Roads-Not-Taken 

It should be mentioned that there are two other series approxi

mations which we have net considered in detail. The first is the 
43 Ogilvie-Tipping, or OT, expansion, where 

X(r) - (r-r )/<r+r ) 

42 44 
As has been pointed out by Beckel and Engelke, for 0 < r < <°, 
-1 < A < 1 and hence the OT series should in principle be convergent 

44 for all r f 0. In fact Engelke has found that the OT series and 

his modifications are quite good in describing the ground and excited 

states of Rj . Although he gave a formulation for determining the OT 

coefficients from the a 's up to the fourth order correction, we have n 
found a general formula and will report it here. Given the OT expan
sion 

V(r) - d X2(l + £ dnX°) 
n=l 

4a o 

d = 1 + n + £ 2 m h+1) a n *-* \n-m/ m m=l > ' 

\n-mj is the binomial coefficient* 

file:///n-mj
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Because the d calculation was so straightforward we examined n 
the OT polynomials for HF(X1J:+), HFCBV*") , HI, CO, I ^ B 3 ^ ) , 

Li 2(A 12 +u), BeAr +, BeH +, A r ^ Mg 2 > Ca 2 > and NaAr<A 2II 3 / 2). 

Despite Engelke's work, we have found that for r > r the OT 

polynomial in general performed more poorly than that of SPF, Thakkar, 

or Huffaker. In none of the cases examined did the r -»• » extrapolation 

give a value within a factor of +2 of the known dissociation energy. 

It had the highest propensity over the other three to reach a non 

physical maximum and become negative for increasing r. It did demon

strate superior behavior for r < r , i.e. if the OT polynomial showed 

an artificial maximum along the inner wall of a particular mo'.ecule 

along, with the SPF, Thakkar, or Huffaker function, the OT maximum was 

at smaller r avid V(r) was largest. This last point was not as 

important for describing a true potential, as mentioned earlier. For 

these reasons, we did not investigate the OT expansion any further. 

It is curious that our observations vary so markedly with 

Engelke's. It may be that H_ is unique; it has only one electron so 

that the only interatomic repulsion effects are the Coulorabic repulsion 

of the two nuclei and the electron's average kinetic energy due to 
45 particle-in-a-box type shrinkage. In terms of the reduced variables 

r/r and V(r)/D , H» has one of the broadest wells. We cend to chink e e I 
that H„ is d chemical singularity and that the OT series has a smaller 

radius of convergence in the empirical sense. 
46 The other approach we have neglected is the [N,N] Pade approximant. 

The form for this function is 
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nr> - V 8 ( ^ g v n ) < l + i^ B ) 
where X is the Dunham variable, r/r - 1. The desirable qualities are 

that for small X it is a harmonic oscillator (which some workers prefer 

for the latter's familiarity), it extrapolates to a finite value 

f f„ „/g», as r •*• », and, by choosing N - m for r asymptotic behavior, o N—/ N 
has a chance at recovering the long-range part of the potential. Jordan 

+ 47 and coworkers have applied this approximant to H- and the alkali 
48 

halides. The latter work had determined the f *s and g *s by expand-
n n 

ing the denominator in a binomial expansion, multiplying the two series 

together and equating the coefficients of X to Dunham's a f s . 

The problem with this approach is that the relationships of the 
f 's and g 's to the a 's change for different N. This makes the n °n n 
algorithm inconvenient; the introduction of one higher Y,. allows the 

calculation of one higher a and the iterative correction of the lower n 
a 's from the one set of Dunham equations whereas a completely different 

set of equations must be employed to find the new set of f 's and g 's. 

The systematic improvement of the Pade approximants with new data is not 

as straightforward as with the other series mentioned. 

49 
Moreover, Bickes has demonstrated that he can fit an SPF poly

nomial more accurately and over a wider region of H_ than Jordan's 
[2,2] or [3,3]'s. Similar observations were made by Engelke concerning 
his expansions vs.. the [2,2] and [3,3]. An examination of these 
approximants for BeAr , discussed in Chaptei 3, showed che extrapolated 
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dissociation energies to be a factor of two too large. For these 
reasons we have not pursued the Pade approximants. 
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I. General Observations 

We have examined the behavior of the SPF, Thakkar, and Huffaker 

potentials for 31 molecules and 43 of their electronic states. Because 

the list is not exhaustive and is weighted by our own interests and 

prejudices we have not attempted a careful, systematic examination of 

the coefficients or the extrapolated dissociation energies. Neverthe

less we feel the list is fairly representative of the different kinds 

of molecular states known and that we can safely draw some qualitative 

conclusions. To our knowledge, no other work as extensive has appeared 

in print for thesie three potential series. 

The program described in Appendix A was run on the Lawrence 

Berkeley Laboratory's CDC 7600 and 6600 computers using single pre

cision (approximately 14 significant digits). The output of this pro

gram and plots of the potential polynomials and RKR tie-lines can be 

found on the microfiche attached to this publication. A few comments 

concerning output are in order: 

1. The first line is a title which identifies the data set and the 

corresponding plot. 

2. Th* second line is an abbreviated reference of the form: 

First Author/Journal and Volume/Pg. No./Year/Y.. Status, 

where the Journal code is CJF: Canadian Journal of Physics, 

CPL: Chemical Physics Letters, CRASB: Comptes Rendus de l'Academie 

des Sciences B, JCP: Journal of Chemical Physics, JMS: Journal o£ 

Molecular Spectroscopy, PR: Physics Review, PRA: Physics Review A, 

and PRL: Physics Review Letters. The Y . status is "Y" if Y 's 
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appeared in the reference, "S" if only G and B data are 

available. 

3. The dissociation energy need only be an estimate, since it is 

only used for scaling the vertical axis of the plot. 

4. Technically speaking, the Born-Oppenheimer approximation 

requires that one use the mass of the nuclei rather than the 

atomic masses. Hence the atomic masses are corrected for mass 

of the electrons. This fine point only shows up in calculating 

r . 
e 

5. The expression "CUT OUT AT IT » " indicates the iteration at 

which the a 's converged (maximum allowed - 30). This printing 

feature is removed from the latest version of the program. 

6. The X's and Y's refer to Sandeman's notation for the Y * s and 

the first Dunham correction. The leading integers correspond 

to i and j respectively. 

7. The first parameter for each series is the a , b , etc. The 
second is r for all of them. The third corresponds to a,, b,, e r 1' 1 
p, and p respectively. The rest are the succeeding correction 

terras, extrapolated D for all but Dunham's series, and the last 

Huffaker parameter is the a described in his first paper. 

8. For the first seven runs, the standard deviations for the Thakkar 

and Huffaker D 's and Huffaker's o were not calculated in the 
e 

strictly correct, mathematical sense and therefore tend to under

estimate the true standard deviations. The calculation of the 

standard deviation of the SPF-D is orograircrcing-error ridden and 
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is therefore meaningless. These errors are corrected in 

the final version of the program and all standard deviations 

for those molecules In the eighth run are correct. 

9. Ignore the "WMIN FAILED TO CONVERGE" message fcr NAH/X SIGMA+/; 

it really did converge. 

A few comments concerning the plots are; 

1. The code for the potential polynomials are Dunham: long dash, 

SPF; doc-dash, Thakkar: short dash, Huffaker: dots (or very short 

dashes), 

2. RKR tte lines correspond to the vibrational energies and their 

classical turning points. The highest level corresponds to the 

highest level to which Y,.'s were fitted. 

3. The horizontal tie line running across the center of the plot 

from r - T to 5 r corresponds to the estimated dissociation 

energy. 

4. The horizontal lines that occasionally appear crossing the 

r * 0 axis and running the length of the plot seem to be due 

to bugs in the LBL Computer Center's IDDS interface with the 

microfiche plotter; they did not appear in plots on other 

devices. 

5. For the molecular hydrides and HeNe in the first seven runs, 

the divisions along the r-axis should be in units of either 

0.2 A or 0.5 A. Because of a formatting error in the plotting 
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portion of the program, the r-axis labels are rounded Lo 

the nearest A and thus for HF, for example, two tick marks 

each are labelled "1." A*, "2." &, etc. 

The overall organization of the output is broken into 9 sets 

which can be identified by the "LOAD MAP" that precedes each. The 

sets are: van der Waals' molecules, the hydrogen halides and carbon 

monoxide, alkaline earth dimers, molecular Ions, alkali hydrides, 

alka*i dimers, an unclassified group of various molecular states, and 

a set containing correction runs of the former sets plus HD and D„, 

respectively. The correction run had been made in order to generate 

HeNe + 

oi: to correct for mispunched cards on the A 2 states of KH and CsH. 
3 

The data set for I„ B II 0 + , which also had a mispunched entry, was 

replaced with a data set containing newer, more accurate Y..'s. Cer

tain minor bugs in the program were fixed for the last rvn and a final 

listing is included, A complete listing of all molecules and states 

are to be found in-Table I. 

From these results we can make several qualitative, intuitive 

observations. Most noteworthy is that for molecules that are chemically 

bonded, i.e. have well depths of greater than 30 kcal/moie or 10,000 

cm , the Huffaker series is superior to any of the others. It generally 

converges uniformly, i.e. no non-physical maxima, to a positive value 

for increasing internuclear separation. The extrapolated dissociation 

energy is frequently within 10% of the true value. On those occasions 
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when it fails by running over 10% above or below the true dissociation 

or by reaching a maximum and going negative, the other series have 

also failed and have done so for smaller r. For r < r , the Huffaker 
e 

series occasionally turns over, but since these maxima tend to be well 

above D this is no great problem. Morecer, the correction terms of 

the Huffaker series are the smallest. This last point is a 1-ttle 

ambiguous since Huffaker's A *-pproaches one for increasing r more 

rapidly than the variables of SPF or Thakkar, i.e. the Huffaker 

correction terms are smaller but are called into play earlier. 

The Thakkar series potential has a greater tendency to turn over. 

For r < r , its maximum tends to be lower than Huffaker's. Although 

Thakkar's series also occasionally turns over for r > r whereas 

Huffaker's does so only rarely, when the former does turn over its 

maximum is closer to the true dissociation energy than Huffaker's 

extrapolated value. In these cases it would seem that the Thakkar 

function collapses at the finish line. When the Thakkar function does 

not go through a large r maximum its I) overestimates the true value 

where the Huffaker D is too low. This can be explained by tha fact 
e 

that the Thakkar potential has a long-range r term built into it, but 

we find p to be smaller than the true long-rarge n,and hence the 

potential rises too quickly and past the dissociation limit. On the 

other hand, if the Huffaker potential faithfully follows the RKR curve, 
49 it will asymptotically approach the same value as a Birge-Sponer 

extrapolation. The latter extrapolation is already ki*own to 
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underestimate the true value due to the neglect of long-range forces. 

These forces are neglected by the Huffaker potential as well. 

The SPF potential is, for large r, the poorest of the new series 

potentials; it diverges from the RKR curve first and turns over most 

often. When SPP and Thakkar both turn over, SPF flips over first. 

Clearly, the SPF series needs to include extra terms from the boundary 

conditions mentioned earlier. 

On the short range, repulsive wall side the SPF nay be slightly 

better in the sense that, when it does turn over, it does so well 

above the 2.5 D maximum of the plotting range. For that matter, in 

this region the Dunham potential is superior to all the others, since 

it turns over the least and always above the viewpoint of the plot. 

This may be because the Dunham series is well within its radius of 

convergence while the others are fast approaching theirs. It may, in 

fact, be a worthwhile study to compare the repulsive wall of the 

spectroscopically determined Dunham series to chose potentials derived 

from elastic scattering work. 

As far as spectroscopic work is concerned, the new series are 

definite improvements over the Dunham expansion. A visual inspection 

of the plots indicates that they agree fairly well with the RKR 

turning points up to the highest level. On closer examination, however, 

they do not provide as stringent quantitative agreement as demanded by 

the experimental accuracy of the original data. As an example, the 

G rs for HI have been calculated for the Huffaker and Thakkar expansions 
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by the Numerov-Cooley method. The corresponding B 's have then 

been determined from the resulting wavefunctions by the equation 

B r 2 A 2/r2 dT y« 
The results are tabulated in Tables II and III. 

Of particular note is the quantity 6Y,. given in Table XI. 

Although an accurate description of the upper G (v), where G (v) -

G - G , requires Y _, this last quantity Is not used in the deter

mination of the Thakkar and Huffaker potentials. Thus if these two 

series were to represent faithfully the input data, S(Thakkar) and 

S(Huffaker) should be equal to 5(Y..) rather than Y . In any case, 

the deviations of these two potentials are well outside experimental 

tolerances for the upper levels. In this rare cas&^ the Thakkar 

potential shows better agreement with the true values than does the 

Huffaker one. This is probably due to the fact that the former reaches 

a maximum at 3.S A that is <1% of the true D , coming closer to 

simulating the true potential within this range (see Fi£. 2). The 

decreasing portion of the potential is insignificant here,since the 

wavefunction is not calculated past 3.8 A. 

Despite the quantitative shortcomings the newer expansions provide 

at least a good approximate agreement in the range where the true 

potential is known and, with a few exceptions, a reasonable qualitative 

description over the entire range. Examination of these exceptions 

proves instructive and should be discussed briefly. 



One is the Ca, A Z state, which is one of the few cases where 

Huffaker turns over. Although workers had, by analogy to Mg«, 
1 52 53 54 

correlated this state to the P level of Ca, * Vidal correctly 

pointed out that an avoided crossing occurs and that Ca~* dissociates 

into a ground and an excited D atom. Thus this curve may be shallower 

due to this premature adiabatic termination. 

Another case of avoided crossing is the A £ state of the alkali 

hydrides recently studied by Stwalley and coworkers. Here a moder

ately weak diabatic covalent state of ground state atoms crosses a 

more strongly bonding ionic curve, creating a uniquely shaped, flat 

bottom-A state. As a result the values of w x and a are negative, 
e e e 

making this a very unique molecular state. This also leads to a 

Thakkar p < 0, which invalidates the higher coefficients since the 

Thakkar relations change with change of sign in p (the computer code 

assumes p > 0 always). 

The anomalous behavior of the series for the HF B I state may 

derive from two sources. Similar to the alkali hydride A I case, the 

B £ correlates to the ions H and F (although the adiabatic A £ 

state should avoid another crossing and dissociate into ground state 
2 hydrogen and an excited P alkali atom). For example we find the 

Thakkar p to be very small, around 0.2, and would expect poor behavior 
58 for this function. DiLonardo and Douglas, who reported the Y .* s 

we have used, have noted that the value D -G is very close to 
e v J 

2 e /r (v) for v = 14-26, where r (v) is the outer RKR turning. They 
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have also observed that above v * 26 the B 2 state is strongly per

turbed by the b"TI and other higher Rydberg states intersecting the B 

state along the inner wall. This is the second factor that could 

account for the series poor behavior. 

A further example of a perturbed state not lending itself to a 

series potential analysis is the N„ CTT level examined by Huffaker, 

where the higher order Morse terms are as high as 800 for the tenth 
4le order correction. He attributes this to the fact that the C state 

tends toward predissociation, i.e. is perturbed by other states. By 
59 1 the same token, predissociation into the II. state probably perturbs 

3 
the L ' B H + state badly enough to explain why we have seen all of 

the series functions fail to represent the potential of (he latter. 
41a Furthermore, Huffaker had found that even higher order coti.?.ctions 

than we have calculated became increasingly large and only degraded 

his series. 

All these cases where even the Huffaker potential fails correspond 

to excited electronic states which strongly interact with neighboring 

excited states or undergo avoided curve crossings. This failure is per

haps ultimately based on the fact that the leading term, or the primal 

function, is a Morse potential, which has been used primarily for des

cribing ground state interactions. Thus the Huffaker series is from 

the outset prejudiced toward ground state potentials and this is prob

ably the reason that it does so well for the case where valence bonding 

forces are at work. 
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When, in contrast* the bonding is dominated fay the weaker long-

range forces, aa will be considered in Chapter 3, the Thakkar function 

is superior. This success may again be rationalized by the fact that 

the leading Thakkar term has a built in prejudice for long-range 

interactions. Along this line of reasoning the SPF and Dunham expan

sions, based upon the unrealistic harmonic oscillator and Kratzer-

Fues potentials, respectively, cannot be expected to give equally good 

results in any case and, point of fact, do not. 

Thus for ground state potentials and those of excited electronic 

states which do not interact with neighboring excited states the 

Huffaker and/or Thakkar expansions provide a good qualitative descrip

tion and a reasonable quantitative description. Quantitative improvement 

can be made by employing still higher order corrections as Huffaker 

has done. Moreover the parmeters in these expansions can be subjected 

to physical interpretation and be used in denoting and diagnosing 

bonding trends such as will be done in the next chapter. 
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J. The Question of Higher a 's 

A point made earlier which we should address here is whether any 

of the higher order correction coefficients are meaningful. The 
22 

question had arisen when J. K. Cashion studied the potential for H»* 
He had found that the higher Y-.'s, such as Y„, and Y, Q needed in 

order to find a_ and a,, respectively, could not be meaningfully deter-
J o 

mined. This was in accord with the observations of Herzberg and co

workers, who found that these higher terms varied considerably with 

the number of vibrational levels used in their fit. The a- and a, 

coefficients could hence not be calculated with any reliability, and 

Cashion questioned whether these or higher coefficients ever could be, 

forming what today appears to be a concensus of doubt. 

The problem with using H ? as a model potential is that, with the 

smallest reduced mass and the smallest known value of r , it has an 
e 

exceptionally large B of 60.864 cm . The ratio (S /u> ) is therefore 

exceptionally high as well. This is a crucial ratio since Vc scales 

the values of the Y..'s. As noted in Section III, for fixed j each 

succeeding Y is smaller by (B fin ) so that, all other things being 

equal, molecular hydrogen's Dunham's Y . expansion in (v+1/2) should 

converge the slowest of all molecules. This situation can conceivably 

make the calculation of the Y ,'s impossible. 

Consider the extreme case of the ground state of KaAr; there are 

only two observed vibrational levels which give only a rough estimate 

of 0) and no determination of to x at all, although the latter and 
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higher Y rs are most likely significant. We propose that this may 

be the case for H 2, though less severe. There may simply be too few 

vibrational levels known to too low an accuracy to determine the 

number of Y, Ts necessary to describe the former. Ideally, one could 

use larger, fictitious masses to derive the "correct" Y..'s, and in 

fact Cashion had used this approach for the various isotopic species 

of H 2 to find the true a , a., and a_. This restriction to the 

naturally occurring isotopes may still be too limited as can be seen 

from Table IV for the (B /a) ) ratios of R„ to T„ compared to other, e e I L 
more "typical" molecules. Also listed is the Harrison and Bernstein 

"well capacity" parameter, 8 s D /B , which has been shown to be 
62 related to the number of bound vibrational levels of a potential, 

which is relevant since it indicates how much experimental information 

could possibly be available for a molecule. 

Herzberg and coworkers have also noted that the lower vibrational 
levels of H_, HD, and D„ are also unusual in the sense that the iB 2 2 v 

2 and L G functions have positive curvature. For these reasons we feel v 
that Cashion's "model calculation" was far too unique a model and that 

his conclusions concerning higher order coefficients need not apply to 

other, "normal" molecules. 

Perhaps the most compelling arguments for det .raining higher a fs 

are the recent results of several workers toward this end. J. P. 

Bouanich has fitted a set up to afl for CO, finding only a_ and a„ 

to be indeterminant, pointing out that this could be entirely due to 

experimental errors (Y,. was unknown and he had assumed to be zero in 
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order to calculate a, and a„). Niay and coworkers have circumver.ted 

the problem of determining the intermediate TE.'s by developing a 

non-linear least-squares method of calculating the a ' s directly 

from the measured absorption lines. Although this procedure required 

taking the derivative of the analytical expressions of the Y^-' s as 

a function of the a 's (hence the need to know the number of Y.. rs n ij 
was still present implicitly), they could bring the expressions for 

Y 0 2 * ^12* e t c ' * n t ° p l a y » which had not been dons before, as well as 

enjoying the application of Che original off-the-chart-paper data. 

They had found that they could derive a consistent set of a 's through 

a, for-H Br, through a for HI, and through a, for DI, that 

agreed with the same a *s detprmited by the traditional m lod. In 

those cases where the higher a ' s for the two methods disagreed (a_ 

and a f->r US' . a f i-a s for HI, and the difference between a 5 for HI and 

a. for DI,, tthey had found that in some cases these a 's were indeter-5 n 
minate due to experimental errors. In Che other cases they had 

speculated that even higher a fs not determined interferred with the n 
calculation of those a *s which had been found to be inconsistent, n 

It is also important to note that the relative standard deviations 

of the expansion coefficients of the newer series tend to be smaller 

than those of the a 's. A casual glance of the output microfiche 

(under appropriate magnification) will reveal that even when Dunham's 

a, has a standard deviation that makes it completely indeterminate, the 

values of e, and c. remain statistically significant. We therefore 0 b 
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conclude that determination of higher corrections far these series 

is still with merit and should be encouraged. We will also, at the 

end of Chapter 3, propose a method of determining higher a 's which 

will completely eliminate the need for the Tf../a relationships. 
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K. Conclusions 

From the various molecular systems examined and the discussion 

of higher order coefficient determination the following observations 

can be made: 

1. The newer series representations of a molecular potential have 

an extended range of good behavior over the old Dunham series. 

2. The Thakkar and Huffaker series, whose expansion variables are 

themselves based upon realistic molecular potentials, show the 

best behavior and are capable of describing the potential a!:; 

least qualitatively for very large Internuclear separation. Fo-

molecules bonded by wore than 30 Ucal/mole the Huffaker series 

appears to give the best representation, extrapolating to a 

constant value for large r that lies very close to the true 

dissociation energy. 

3. The series show the Poorest representation for electronically 

excited molecular states that interact with neighboring states. 

Even in these cases the series serve as a diagnostic of the extent 

of *.he interaction. (For example, we had suspected a pecularity 

in the assignment of the A Z state of Ca when the Huffaker 

representation failed, two years before C. R. Vidal pointed out 

the obvious concerning the correct correlation to excited 

atomic states). As far as seeking an accurate description of 

such states, one must resort to RKR methods, which are not 

biased by an assumed potential form. 
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4. It appears, that, in principle, quantitative improvement in 

the series can be had by deriving relations for the higher 

correction terms which, despite J. K. Cashion's doubts, can 

be determined reliably. 
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Table I. Enumeration of Molecular States that have been Calculated 

M o l e c u l e S t a t e S e t Number o f V a r i a t i o n s R e f e r e n c e s 

A r 2 s 1 9 1 

NaAr A \ / 2 1 3 2 

NaAr k \ / 2 
1 3 2 

NaNe k\l2 1 2 3 

HF xV 2 2 4 

HC1 xh+ 
2 1 5 

H 7 9 B r xh+ 
2 1 6 

H 8 1 B r ' xh+ 
2 1 6 

D 7V xh+ 
2 1 7 

D

8 1 B r X X I + 2 1 7 

HI xh+ 
2 2 8 , 9 

CO xh+ 
2 1 10 

Be., 
g 

3 7 11 

Mg ? x x s + 

g 
3 2 1 2 , 1 3 

Mg 2 U 
3 3 1 2 , 1 3 

C a 2 xh + 3 3 1 4 , 1 5 , 1 6 

C a 2 u 3 , S 2 1 4 , 1 6 

B e A r + xV 4 1 17 

BeH + xV 4 1 18 

HF + A V 4 1 19 

H , + x 2 r + 
4 1 20 



HeNe+ %h+ 
4,8 1 21 

HeNe+ 

B V 4 1 21 

°2 + *v 4,8 1 22 

< u 4 ,8 1 22 

6LiH jh* 5 1 23 

7LiH xV 5 3 23,24 
6LiD xV 5 1 24 

7LiD xV 5 1 24 

NaH xh+ 
5 1 25 

KH xV 5 1 26 

RbH xV 5 1 27 

6 LiH A V 5 1 23 

7 LiH AV 5 1 23 

6LiD A V 5 1 23 

7LiD A X E + 5 1 23 

NaH AV 3 1 25 

KH AV 5,8 1 26 

RbH AV 5 1 27 

C H . 
3 

A V 5,8 1 28 

L i , x4 + 

g 
A4 + 

U 

6 1 29 

L i , 

x4 + 

g 
A4 + 

U 

6 1 29 

N a 2 A 1 ! * 
U 

6 1 30 

NaK xV 6 2 31 

IbR xV 7 2 32 

h BVu 7,8 2 33,34 
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XeF X 2 Z + 

OH x2n 
OH AV 
HF sh 
LJ 6-12 Model 

HD X XI + 

S 
X 1 ^ g 

8 
D2 

X XI + 

S 
X 1 ^ g 8 

35 

36 

36 

37 

38,39 

40 

41 

Sec 1 - van der Waal's molecules; Sec 2 - Hydrogen halides and CO; 

Sec 3 • Molecular Ions; Sec 4 * Alkaline earch dimers; Sec 5 » Alkali 

hydrides; Sec 6 • Alkali dimers; Sec 7 - Various unclassified mole

cule: ; Sec 8 " Correction run. 
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Table II. Vibrational levels of HI calculated from series potentials. 

V »̂o Cv) /cm 
Observed3 

6-CY1;))b'C 6<Thakkar)b 6(Huffaker)b 

1 2229.581 .007 .006 .001 

2 4379.225 .074 .045 .067 

3 6448.036 .405 .276 .490 

4 8434.720 1.433 1.040- 1.896 

5 10337.487 3.917 2.920 5.366 

6 12153.971 9.026 6.777 12.540 

7 13881.140 18.420 13.777 25.721 

a) Calculated from constants cf P. Play, P. Bernage, C. Coquant, 

and A. Fr-;t, J. Mol. Spectrose. ̂ 2, 168 (1978). Uncertainties 

are not less than 0.003 cm . 

b) 6(x) • G (v) (calculated by method x) - G (v) (observed). 
o o 

c) 6(Y ) corresponds to "truncate'"' set of Y ,'s; i.e. Y_0 was 
known but not used in calculation of G (v) in order to remain 

o 
consistent with the fact it was not used in the calculation of 

the Thakkar or Huffaker series. Reference: P. Niay, P. Bernage, 

C. Couquant, and H. Bocquet, J. Mol. Spectrosc. 68_, 329 (1977). 



67 

Table III. Rotational constants of HI calculated from series potentials. 

o ( Y l j ) b , C 

•103 

0 6.42636 .99 

1 6.25528 -.27 

2 6.08296 -.28 

3 5.90878 -.51 

4 5.73187 -1.08 

5 5.55115 -1.93 

6 5.36528 -2.72 

-2.93 

a) Same referer.ee as Table 1(a). Uncertainties less than 0.0005 cm" . 

b) 6(x) • B (calculated by method x) - B (observed). 

c) T 's taken from same reference as Table 1(c). 

Observed' 

6.42636 

6.25528 

6.08296 
5.90878 

5.73187 

5.55115 

5.36528 

5.17271 

6(Thakkar) 
•103 

S(Huffaker) 
•10 3 

-.02 -.01 

-.19 - '2 
.00 .30 
.32 1.23 

.84 3.02 
1.83 6.36 
3.79 12.25 
7.34 22.00 

http://referer.ee
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Table IV. Some ( — 1 and B Values. 

alecule y 
(amu) e e (ea-1) 

B -10" z 

a 2 0.5036 .0138221 38292.7 0.6293 

HD 0.6714 .011969 38292.7 0.8388 
HT 0.7551 .011286 38292.7 0.9433 

D2 1.0068 .0097737 38292.7 1.2574 

DT 1.2074 .0089245 38292.7 1.5079 
T *2 1.5078 .0079857 38292.7 1.8831 
HF 0.9565 .003672 49380.0 2.3564 

Ar 2 19.9763 .001914 99.545 1.6655 

Be 2 4.505T .002358 813.825 1.2829 

H 2
+ 0.5036 .012893 22525.694 0.7517 

CO 6.8543 .0008901 90541.7 46.882 

N2 7.0015 .0008472 79890.0 39.980 
NO 7.4664 .0008780 53340.0 31.903 

°2 7.9975 .0009C98 42039.0 29.241 



69 

FIGURE CAPTIONS 

Fig. 1. Schematic procedure for determining Bunham series 

parameters from spectroscopic Y.'s. 

Fig. 2. Series potentials and RKR turning points for HI. 

Dunham, SPF, Huffaker, Thakkar. 

Horizontal bars are tan RKE tie lines calculated from 

the same Y..'s used to determine the analytical 

potentials. 
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Chapter III. 

Series Potentials Applied to Weakly Bound Molecules 

A. Introduction 

In this chapter we -Hi examine those diatomic molecules whose 

only source? of binding are the so-called long-range forces. In a 

nutshell, the elements in the Born-Oppenheimer Harailtonian that ac

count for one atom's electrons1 interaction with the other atom as 

well as the repulsion between the two nuclei are all perturbations 

of the Hamiltonians fwr the individual atoms. These interactions can 

thus be expanded in powers of r , where r is the internuclear separa

tion. First order perturbation for identical atoms, one of which is 

in an excited state, leads to the resonance interaction: 

V(r) - D e ~ C 3r~ 3 

and fo..- two atoms neither of which are in an S state, the quadrupole-

quadrupole interaction is obtained: 

V(r) - D e .. 35r"5 

where V(r ) = 0, the "~" means "is approximated by a large enough r," 

and C- and C,. can be positive or negative. When these first order 

terms are zero, second order effects become apparent, such as charge-

induced dipole attraction: 



73 

V(r) - D - - -I Z 2e 2or" 4 

e t 

where Z is the charge on the ion and a ts the static polarizability 

of the neutral atom, and the induced-dipole-induced dipole attraction 

(also known as van der Waals or London dispersion forces) 

V(r) - 0, - - C 6r" 6 

where Cft is always positive. Derivations of these expressions a" ":1A 

as evaluation schemes for the C 's are well covered by Hirschfelder, 
n 

Curtlss, and Bird . 

The last interaction, the van der Waals force, is responsible for 

the "physical" properties of matter, i;,.e_. condensation and freezing, 

the structure of molecular crystals, properties of glasses, and of 

course the "nonideal" behavior of gases. The attractive r potential 

is present in all atoms and molecules, whether they be in open or 

closed shells and in the absence of chemical interactions. Tradition

ally, these forces have been studied by means of the temperature depen

dence of thermodynamic and transport properties of gases such as second 

virial coefficients, viscosities, and thermal conductivities. Since 

these quantities are convoluted over a Boltzmann energy distribution 

of a particle temperature, one had been hard pressed to obtain a very 

detailed description of the potential. Generally, the data had al

lowed the adjustment of only a small number of parameters of a simple 

model potential function. The advent of crossed molecular beam elastic 

scattering has permitted finer control of energy and energy distribution 
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of the colliding particles . Perhaps the crowning achievement 

of this technique is the direct inversion of the differential cross 

section for He-Ne scattering to yield a numerical potential, free 
3 

of th^ prejudice of any empirical potential function . 

The spectroscopic investigation of these weak, long-range inter

actions has until recently been limited to the analysis of the topmost 

vibrational levels of chemically bound systems where the asymptotic 

part of the potential dominates in the region of the outer turning 

point. The study of diatomic molecules whose binding is entirely due 

to long-range forces has been limited by a number of practical experi

mental difficulties. The concentration of dimers is necessarily low 

compared to that of the monomers, requiring high pressures, low tem

peratures, and long absorption path lengths in order to achieve a 

detectable signal. Because the potential minimum lies at relatively 

large separations, the rotational constant is very small yielding 

rotational spacings small enough to challenge the dispersion limit 

of most monochromators. Couple this aspect with the small separation 

of vibrational levels and the high degree of vibrational and rotational 

excitation at even low temperatures and one is left with a very complex 

spectrum. The analysis is further plagued by presence of the ubiquitous 

atomic transition lying nearby from which the molecular transition is 

derived. 

The recent development of rare gas-halogen laser systems and the 

prospect of developing other rare gas excimer systems has stimulated 

interest in understanding these van der Waals molecules and their 

spectroscopic properties . The wish to understand further the line 
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broadening mechanisms of high pressure atomic lamps has also encouraged 

workers to study the diatomic potentials responsible for the broadening 

despite the cited difficulties. Moreover, the introduction of laser-

induced fluorescence with tunable dye lasers has provided the high 

resolution and high sensitivity necessary for those dimers with a 

visible absorption spectrum. The development of supersonic molecular 

beam sources bar further aided study of these dimers by producing them 

in a collision free environment (eliminating the problem of pressure 

broadening) and with an effective internal excitation of ca. 10 K, 

greatly simplifying the spectmrn . 

Our own motivation for examining weak diatomic molecules is twofold. 

One is to coordinate bonding trends for these systems in a systematic 

manner and hopefully arrive at some simple formulations for predicting 

their characteristic properties. Our second motivation is that this 

work is to complement the experimental work in progress in this labora

tory. The Molecular Beam Electric Resonance project is a powerful tool 

for determining the structure and properties of van der Waals molecules, 

and thus any insight in these weak interactions is certain to be useful. 

The other project is the investigation of the excitative Penning and 

the excitive associative ionization of alkaline earths in a flowing 

afterglow of metastable rare gaseu. The observation of the almost diffuse 

chemiluminescence of CaAr inspired us to examine the potential and 

spectroscopic properties of the analogous BeAr in order to facilitate 
7 8 the analysis of the data for the former ion * . 
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" Upon exciting with a microwave discharge BeCl2 or BeBr« vapor 
9 in a buffer gas of 200 torr of Ar or Kr, Subbaram and co-workers 

observed in emission a series of closely spaced, violet shaded vibra-
o 

tional bands around 4000 A. Because the bands showed an intensity 

dependent upon the pressure of the rare gas and whose band positions 

and spaclngs changed when changing from Ar to Kr and because the band 
2 2 showed II- £ transition structure, they concluded that the source of 

the emission was from BeAr and BeKr . Subsequent high resolution 

studies * permitted the evaluation of vibrational and rotational 

constants for the two states of these molecular ions. In both cases 
2 they found B and u to be larger for the excited A II state. 

+ 2 + 
.The BeAr X Z vibrational and rotational constants had been 

determined up to Y-- and Y._, respectively, providing enough informa

tion to make a reasonable potential series analysis. We would expect 

the binding of this molecule to be primarily due to the ion-induced 

dipole attraction and relatively free of interfering chemical inter

actions. This would make BeAr a "long-range molecule" in the sense 

that the long-range r potential should still be the predominant 

attractive interaction near r where the vibrational-rotational data 
e 

and hence the series cofficients are determined, making this a likely 

first test-case for the different potential series. 

The BeAr spectroscopic constants are listed in Table I, permit-
Table II. The [3,3] Pade approximant (PA) potential could be determined 
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as veil, and its coefficients are listed in Table III along with 

those of the SFF, Thakkar and Ku. faker potentials. The simple 

[2,2] PA expression 

V(r) - a0X2/(l-i!1A + (a* - a 2)A 2) 

does not require listing of its coefficients. 

By evaluating these potentials at the RKR turning points reported 

by Subbaram , we find the [2,2] and [3,3] PA's to be a little lower 

than G , by no more than 10 cm for v * 4, which is good compared to 

a 30 cm" underestimation by the Thakkar and Huffaker potentials. Tii«! 

situation is reversed for the v - 4 outer turning point, where the FA'S 

are 39 cm" high while the Thakkar and Huffaker values are only over 

by 11 and 5 cm , respectively. We expect this problem of PA overestima-

tion to grow worse for higher vibrationa? veis, since the dissociation 

limits, 

and 

e aoV 83 

are 8967.5 and 8971.2 cm" , respectively, which is more than twice 

Subbaram's estimate of 4100 cm" , indicating there is no hope for 

recovering the long-range portion of the potential with the (2,2] or 
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[3,3] approxioants. In principle, one would require a. [4,4] PA 
-4 to stimulate r behavior, but the similarities of the [2,2] and 

[3,3] approximants do not suggest the [4,4] would be drastically 

different. In any case, there is simply not enough data to construct 

a [4,4] for this test problem. 

In Fig. 1 we show the Dunham, SPF, Thakkar and Huffaker poten

tials plotted against the reduced coordinate r/r . Tie lines connec

ting the RKR turning points are also shown for comparison. The Dunham 

potential was not expected to perform very well, and, in fact, it 

failed to reproduce the v" » 3 and 4 levels on the outer branch. This 

failure is perhaps to be expected in molecules which have a strong 

long-range interaction, causing the outer turning points of even the 

lowest few vibrational states to extend well beyond r . The SPF po

tential recovers the RKR data somewhat better, being low by 61 cm 

at the outer turning point of v" " 4. This potential rapidly fails 

at larger r, howe-veri converging to a negative energy at r = °°. For 

BeAr n » 4, and we can generate up to focr additi-nal SPF coefficients 
-1 -3 by requiring the terms in r through r to have zero coefficients 

-4 
and by requiring the r term to have a coefficient given by the ion-
induced dipole interaction between a unit charge (Be ) and a polariz-
able sphere (Ar). One need not impose all constraints, of course, 
and thus four additional SPF potentials can be generated. As Table II 
shows, the highest-order SPF correction, b,, is very large and negative. 
This value may be poorlj' determined due to truncation of the series, to 
insufficiently precise spectral data, or to both factors. Neglecting 
b,, but imposing one to four boundary conditions will generate four 
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more SFF potentials (for a grand total of nine). 

He have generated all eight extended SFF potentials (in addition 

to the direct inversion potential shown in Fig. 1) based on boundary 

conditions and/or neglect of the b correction. Although the addition 

of each new coefficient extended the range of good behavior, none of 

the eight additional SFF potentials showed remarkable improvement over 

the initial SPF potential of Table III and Fig. 1. Including b, and 

adding one to four constraints yielded potentials which continue to 

show negative values for the potential in the region plotted in Fig. 1. 

As successive constraints are enployed to generate additional terms, 

the nonphysical maximum at r > r moves to larger r and attains a 

greater value for V before turning over. In contrast, neglecting b, 

and adding successive cc .raints yield four potentials which con

tinually rise over the r > r range, but to unphysi^ally large values. 

These eight potentials do not exhibit reasonable long-range behavior 

and are, therefore, not significant improvements over the simplest SPF 

function. More quantitative comparisons of these potentials are 

presented later. 

Clearly, the Th&kkar and Huffaker potentials have the greatest 

claim to validity at large r among these potentials. In order to 

examine their long-range behavior in detail, we have plotted in Fig. 2 

the quantity £V0») - V(r)]/V(°0 versus r/r on a log-log scale. The 

Huffaker potential, being based on Morse functions, does not yield a 

straight JJ^e. This function rises too quickly to yield the long-range 

form dominated uy a siujle term of the type r . Within the experi

mental errors of the spect roscopic constants (as indicated by the 
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dashed lines), the Thakkar potential yields very nearly a straight 

line of slope -3.74 at r/r » 1.3 and -3.27 at r/r » 5. This be

havior Is reinforced by comparison in Fig. 2 to the function 

2 
[V(-) - V(r)]/V(~) - - a e -2rV 

°3 -1 
' where a • 1.6421 A , the polarizabillty of Ar, and D * 4536.6 cm t 

the dissociation energy of the Thakkar potential. It is also important 

to point out that the outer turning point of the v" « 4 Isvel is at 

r/r - 1.239. The Thakkar potential is thus able to express the long-

' range nature of the potential from limited information localized abour 

the potential minimum. Such an ability is an important feature of any 

empirical potential fo-.- species which are weakly bound; the long-range 

behavior becomes a particularly telling feature of any derived potential, 

as other quantities, such as the dissociation energy, are usually not 

well-known. 

It is in fact, the estimation of the dissociation energy that is 

the most useful feature of these potentials. The estimated dissociation 

energies for the X-state of BeAr+ are 3778±68 and 4537±250 cm~ for th£ 

Huffaker and Thakkar potentials, respectively. Subbaram and co-workers 

had fitted their RKR points to two model potentials: a difference between 

two exponentials and an (exp, n) function finding D 's of 3900 and 

4300 cm , respectively, with n = 4.4+0.5. By taking an average, they 

had declared an estimate of 4112+200 cm . Since the average of our 

estimates, 4157±380 cm , only increases the uncertainty of D , it would 

seem that ou'. nalysis is a step backwards in the search for a better 



81 

estimate. 
12 Recently, however, LeRoy and Lam have made a new estimate, 

indicating that the Thakkar value should be the preferred one. Per

forming a variation on the old near-dissociation analysis, they had 
fitted the BeAl G values to the formula v 

D - H ( V V ) W ( " - 2 > « W e n D 

where 

F(v) - 1 + A^v^v) + A^Vp-v) 2 + 

F(v) - [1 + B1CvD-v) + B 2(v D-v) 2 + ...J 2 n / ( n" 2 ) 

By varying the number of coefficients in each expansion, they had 

arrived at a common value of 45D0±50 cm for D and 40.8±0.5 for v_. 
e D 

What is most notable is that the Thakkar D of 4537 cm lies comfortably 
e J 

within the limits of LeRoy and Lam's uncertainty, which is five times 

smaller than the standard deviation of the Thakkar value. This further 

indicates that the Thakkar function is the best choice for a weakly 

bound molecule. 

The most rigorous test of a potential derived from spectral data 

is the ability of ••he potential to reproduce the spectral constants 

observed. The proper way to apply.this test is to find the eigenvalues 

of the potential. We have found the lowest five eigenvalues of the vibra-
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tional motion for all the ground state potentials reported here 

(except the Dunhaa and FA potentials, but including a model potential 

discussed later)„ by integration of the radial Schrodinger equation 
13 as outlined by Cooley . The results are presented in Table IV as 

the differences between the calculated and observed eigenvalues. The 

superiority of the Huffaker and especially the Thakkar potentials is 

evident. The fact ihat the Huffaker potential consistently and increas

ingly underestimates the successive eigenvalues further indicates that 

Lts dissociation energy estimate should be too small. Table IV also 

quantitatively demonstrates that the successive improvement of the SPF 

potential through added boundary-condition coefficients still does not 

bring the latter potential into line with the two former ones. 

We should remark upon the misbehavior of the Huffaker and Thakkar 

potentials and just how serious this failure is. It is obvious from 

Fig. 1 that both reach nonphysical maxima at 0.791 r for the potential 

of Huffaker and 0.306 r for that of Thakkar. For this reason integration 

of the Schrodinger equation must begin at no value sjialler than 0.80 r 
e 

lest the wave function should begin to "feel" the attractive artifact 

of the potential. This proves to be no severe constraint as illustrated 

by the fact that, for v * 4 of the Huffaker potential, the wave function 

at 0.80 r is only 0.68% of its first maximum inside the well, suggesting 

that the wave function should be well characterized within the inner T-all 

given that the grid size is sufficiently small. For higher vibrational 

levels it will be necessary to attach smoothly a simple repulsive function 

such as an r or a Morse function. This practice is, of course, standard 

procedure for extending the inner portion of the RKR curve above the 
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dissociation limit. Moreover, misbehavior of the inaer wall is not 

unique to the series potentials; Tellinghuisen"1"** has noted that the 

inner RKR turning points near dissociation have a tendency to flair 

in or out and has discussed the necesstary remedies for this problem. 

Thus, if ve find a series potential turning over along the inner region, 

we are in no worse shape than with an RKR curve. 

It is also worth noting the Thakkar maximum occurs for A T =* -0.979, 

very close to the theoretical convergence radius. Although the Huffaker 

maximum corresponds to L • -1.384, the critical value of r is only 

0.015 r closer in than that of Thakkar. An improved radius of conver

gence in A-space does not necessarily imply an overwhelmingly improved 

radius of convergence in r-space. 

Since we regard the overall success of the Thakkar function as 
-4 evidence of the importance of the r attraction in the region of the 

potential minimum, we will consider a simple model potential 

-ft-r 2 ? 4 F(r) - Ae e r - (Z e a/2r ) 

where A and S are adjustable parameters, Z represents the "effective" 

charge of the beryllium ion as seen by the rare gas atom, and a is the 

polarizabillty of the rare gas. By requiring that this potential have 

a minimum at r and that it possess the same curvature at the minimum 

as all other potentials, we secure the values of A and 3 through the 

relations 

0 - Go2r3/4B Z 2e 2a) + (5/r ) e e e e 
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and 

A - (2Z 2e 2a/gr 5) 

tffc now vary Z in order to reproduce the Thakkar dissociation energy 

of 4537 cm~ , obtaining Z » 1.29 for the X state. From Table IV it 

is apparent that the calculated eigenvalues for this model potential 

•are comparable in their agreement with experiment to those of the best 

S1'P modifications. 
2 

Although there are not enough data known for the A IT state to 

permit an adequate series inversion analysis, there are enough for 

the evaluation of model potential parameters. From the Thakkar D 
2 2 

of the X state, the T from Table I, and the Be( E ,f S) transition 
15 _l 2 

energy of 31928.8 cm , (since the A H ,„ state correlates to 
+ 2 the Be p^ ,^ state) we derive a dissociation energy for the A state 

of 1189 cm _ i, which in turn yields a value of Z of 1.88. 

The values of the two Z's and the relative binding energies of 

tli«- two states can be rationalized in terms of the screening effect 
9 + of the remaining valence electron of the beryllium ion. The X"Z state 

corresponds to the outer Be electron being in a 2su molecular orbital, 

placing it between the Be core and the Ar atom's electron, screening 

tin: core by 71%. The excited state places this electron into a 2p^ m.o., 

which is mostly pure 2p and placed mainly on the beryllium ion, thus 

providing a poorer screen between the core and the Ar electrons. V\e. 

strength of polarization is thus larger, and because the outer 

"repulsive" valence electron is more out of the way, the ion-neutral 

approach is closer,^d lence the well depth for the excited state is 



85 

larger. 
It is also probab)± that Z > 1 atones for the sins of omission 

of the hyperpolarizability and higher order induction terms that are 
8 —1 certainly Important for field strengths on the order of 10 Volt cm 

The simple model potential nevertheless provides a chemist's quali

tative descripcion of the binding and a surprisingly good quantita

tive description of the ground state. 

In summary, the Thakkar potential augers well in this initial 

test ol: its description of a weakly bound diatomic molecule, recover-
-4 ing the long-range r behavior from spectroscopic data centered about 

the potential minimum. Moreover, it extrapolates to a limiting value 

that compares very well to recent, careful determinations of the dis

sociation energy. This latter value can be used to evaluate a simple 

model potential for the ground and excited states of BeAr , wh-*ch 

in turn gives a fair quantitative description of the ground state and 

an interesting qualitative explanation for the bonding of both states. 
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C. Other Molecular Ions 

Although BeECr has also been observed under high resolution, 
2 + like the A II state of BeAr not enough vibrational levels are ob-r ° 

served to warrant a decent potential inversion analysis. The three 

parameter model potential, however, requires only the experimental 

quantities OJ , B (hence r ), and D . The last piece of data is not 

known for either state, but Hartman ' has argued that, since the 

value of Z is a property of the beryllium ion alone, the Z~ and Z_ 
+ + quantities should be transferable from BeAr to BeKr , permitting 

an evaluation of the latter's D fs. One therefore finds D" - 5511 cm" 
e e 

for the X Z + state and D* * 13656 cm for the A TL ,„ state of e 1/ L 

AE + D" - D* 

—1 2 2 •+• 15 
where AE = 31928.8 cm is the P.,,- S energy of Be , one pre

dicts a T of 23784 cm which compares well to the observed value of 

23782.18 cm . Some of this good agreement stems from the luck of 

rounding the Z's to three significant figures, but even so only a 

rounding error of ±50 cm , or 0.2%, is present. 

Because of fhe success of this model Hartman * has applied 
2 

this potential Co the complex chemiluminescence of the A II state of 

CaAr with some success. 

It is intriguing to consider the application of this model Co 

BeXe , which has also been observed in emission by Coxon and co

workers • Unfortunately, because of blending of the rotational 

lines due to Che several isotopes of xenon and the limited amount of 



87 

run time they had due to the cost of xenon (they used a flow system 

for their microwave discharge), a high resolution rotational analysis 

and a determination of r was not possible. We can, however, take 

their values of the a) 's and estimate the model parameters in the 

following manner. The value of 3 can be estimated from the Zener 
18 approximation: 

e - (d 1 /K t o ) 1 / 2 + ( i 2 / v 1 / 2 ) / a 0 

where I, and I- are the ionization potentials of the rare gas and 
2 2 the beryllium ion in either the S or P, /« state as applicable, R w 

Bohr radius. Table V compares the Zener approximation to the model 

potential evaluations of 3 for BeAr and BeKr , indicating an average 
°-l + 

error of 0.05 A . By estimating the g's for BeXe and using the 
curvature equation, we find 

re = ha0RroZ2a(6re-5)/(uvr2c) 

where h is Planck's constant, cu and the Rydberg constant, R^, are 
-1 °3 

expressed in cm , a * 4.0444 A for xenon, and we take u to be the 
reduced mass for the 131 isotope of xenon. We find for the X state: 
r = 2.458+.016A and D = 6308±90 cm" , and for the A state: e e 
r = 2.348±.020 A and D = 14870+250 cm" , where the uncertainties e e 
are quoted only for the ±0.05 A uncertainty of the S's. These values 

follow the expected trend apparent from Table VI. The estimated T for 
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BeXe is 23367 cm , about 5.8% higher than Coxon's observed value 

of 22096 cm , but not unreasonable considering the assumptions made. 

In order to determine the range of applicability of the model 

potential, we list the Z values of various simple ion molecules in 

Table VII. We assume the polarizabilities of the rare gases to be 

0.2051, 0.3946, 1.6421, and 2.4794 A for He, Ne, Ar, and Kr, respec

tively. 

For the homonuclear rare gas ions, where exchange and chemical 

forces are important, the Z-values are obviously too large to be 

explained by any deshielding arguments and prove, as expected, that 

the model provides an inadequate description of the bonding. Similar 

is the case for the rare gas-proton pairs where the long-range force 

can only correspond to a bare proton, .i*e_. 2 = 1. Again, one expects 

chemical forces to be important in the region of the potential minimum. 

It appears that the model potential, like the Thakkar series, is useful 

for bound energies of less than 40 kcal mol 

The mixed rare gas ion pairs, on the other hand, show fairly 

reasonable Z-values that can be rationalized. In contrast to beryllium 

ion-rare gas cases, the molecular orbital angular momentum is derived 

not from a "repulsive" electron but rather from an "attractive*1 electron 
2 + 2 + 

hole. For example, the X Z and A H state of HeAr both correlate 
2 + 

to the P state of Ar . (Since the data for this system are from an 19 ab initio calculation , - we do not concern ourselves with spin-orbic 
interactions.) The X state has only one electron in the argon 3o 
orbital, and hence the helium atom sees an unscreened neon nucleus to 
the tune of Z = 1.20. The A state has two electrons in the 3pu orbital. 
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and hence the helium is more effectively screened from the neon 

charge, although Z = 0*95 is only a rough estimate since to must 

be evaluated from the Kratzer formula using the rotational and cen

trifugal distortion constants of the ground vibrational level. The 
+ 1 

value of Z * 1.07 for B state of HeNe , which correlates to Ne( S) 
+ 2 and He ( S) is most reassuring, since the remaining, very tightly 

bound electron of helium should quite effectively shield its alpha 

particle from the approaching electrons of neon. The importance of 

the ion-induced dipole interaction has been confirmed in the study 
20 + 

by Dabrowski and Herzberg . The Z-value for the observed HeNe 
2 A II- ,« state is, again, a rough estimate due to lack of data but 

nevertheless compares well to the corresponding A state of HeAr . 

The Z for the X state of HeNe seems unusually large for Ne 

and casts a shadow of doubt on the exponential-4 model, which is 

especially disappointing since the binding energy is comparable to 

molecular ions worth pointing out. First, only the top 15% of the 

well has been observed in Dabrowski and Herzberg's amission studies, 

subjecting cu and D to errors of extrapolation, whereas 34% of the 

bottom of the vibrational well is observed for BeAr . Second, the 
2 + 

A JIw2 state of BeAr , is well separated energetically from the 
ground state and does not interact through Kund's case (c) coupling 
perturbations, whereas the X and A states correlate to different 

+ 2 spin-orbit states of Ne ( P), the latter being split by only 
780.5 cm" . This coupling is seen through the "borrowing of 

2 + 2 intensity from the X state, making the B 2 to A H. ,« emission 
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possible in contrast to the complete lack of emission to the A TL ,-

state, which does not couple. Examination of Fig. 8 of Dabrowski 

and Herzberg's paper reveals that the region of closest interaction 

between the A and X states is the long-range portion of the X state. 

It is possible, then, that the A state perturbations are distorting 

the shape of the X state potential in the region where data are avail

able. 

We have examined the X and B states of HeWe more closely through 

a potential series inversion. We list the Y.'s and potential coef

ficients in Table VIII. The potential plots, shown in Figs. 3 and 4, 

further demonstrate that the Thakkar series is superior to the Huffaker 

series for qualitatively describing weakly bound systems, even more so 

in this ca.se, since the values of the dissociation energies are less 

at issue than with BeAr . Of particular note is the successively 

decreasing correction coefficients for the B state, indicating that 

the Thakkar function is well suited for describing this potential. A 

more quantitative test is in Table IV: the reproduction of vibrational 

and rotational data. The results for the B state appear tolerable, 

but the Thakkar values for the X state tend to be too large. These 

deficiencies may be attributed to the A state interactions and possibly 

the extrapolation problems cited earlier. Overall, however, the Thakkar 

series is the best available one for both states since that of Huffaker 

cannot even reproduce the bound states that were initially observed. 

One unique point definitely worth mentioning is the matter of 

p for these states. In general, we have observed that for most weakly 

bour*d molecules which have an r attraction dominating their binding, 

http://ca.se
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the value of p is on the order of n-1, such as 3.16 for BeAr . 

This is not the case for the X and B states of HeNe , where the 

p-values are 4.65 and 4.41, respectively. Although we might try to 

dismiss the X state anomaly as before, we remain perplexed with the 

case of the 3 state. To illustrate further the long-range deviation 

we plot [V(°°)-V(r)]/V(<») verses r in Fig. 5 as we have done in Fig. 2. 

For BeAr , the fact that p was one integer too small was compensated 

for by the higher order correction coefficients, yielding a reasonable 

long-range behavior. This is not possible for the smaller correction 

terms of the HeNe B state. It might be that the HeNe B state is so 
-4 close to a pure r molecule, having the least chemical interaction, 

that it is the exception that proves the rule and causes the Thakkar 

potential to overestimate the exponent of the long-range behavior. 
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D. NaNe and NaAr 

The line broadening mechanisms of the sodium D lines and the 

interatomic interactions between ground state and excited sodium atoms 

is of practical interest. One application is the high pressure sodium 

vapor street lamp which is fast replacing the familiar mercury vapor 

lamp, changing the nightime urban landscape from blue to pinkish crange. 
21 Another application is the suggested combination, of alkali metal 

atoms and S Q atoms to form excimer laser systems. One such set of 

candidates is the sodium-rare gas (Rg) pair. For these reasons the 

sodium-rare gas interactions have received quite a bit of theoretical 

and experimental attention. 

The analysis of NaRg pairs was our next logical step, since they 

are isovalent to the BeRg molecules we have discussed thus far. 

Indeed, the spectroscopic properties of BeRg resemble those of NaRg 

more than the other isovalent series, BeX, where X is a halogen, 

since the binding is through weak long-range physical forces rather 

than short-range chemical ones. The interesting difference here is 

that the nature of the long-range attraction for NaRg is the even 

weaker London dispersion r reaction. 

The experiments that concerned us most were the supersonic 

molecular beam laser induced spectroscopy studies of NaNe by Ahmad-Bitar, 
22 Lapatovich, Pritchard, and Renhorn (ALPR) and of NaAr by Smalley, 
23 Auerbach, Fitch, Levy, and Wharton (SAFLW) . Using Campargue-type 

24 nozzle sources , which are capable of producing internal molecular 

temperatures <1°K, they had formed, or "condensed'1, a reasonably high 

concentration of NaRg in a cold, collision-free environment. Crossing 
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this beam at right angles with a narrow bandwidth tunable cw dye laser 

permitted very high resolution, high sensitivity laser-induced fluor

escence studies of the dimer. The resulting spectral constants in turn 
2 

allowed us to make a potential series inversion, at least for the A II 
2 state. We had, in fact, done so and reported our results for the A It-., 

2 + 2 2 
state of NaNe and X L , A IL .«, and A fto/, s t a t e s o f NaAr. Since 
that time there have been more careful and definitive experimental 

studies on NaNe and on NaAr. 

Rather than repeat our earlier results, which are readily attain-
25 ctble in the literature , we will simply summarize and critique them 

with respect to the more recent experimental studies. 
2 

In our original study we had found for the A fio/l s t a t e °^ NaNe, 
+-like the X and B states of HeNe , the Thakkar function to be the best 

series representation of the potential. The Huffaker series had severely 

underestimated the well-depth and had again failed to reproduce the 

vibrational levels used to determine it. The Thakkar potential had 

ten bound levels with a dissociation energy of 149.70 cm , or 7% higher 

than ALPR's original estimate. Since we have already reported the G 's, 

B 's, and the RKR turning points, we only list the deviations between 

the observed and calculated quantities in Table X. The consistently 

larger AG(v+l/2)'s and larger B *s for the higher levels reaffirm our 

suspicion that the Thakkar potential probably overestimates D ; the 

fact that p=4.18 whereas the long-range n=6 suggests that the Thakkar 

potential should rise past the true dissociation limit, but probably 

not by the ten wave number discrepancy between our value and that of 

ALPR. 
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The initial report of ALPR was followed by Lapatovich, Ahmad-

Bitar, Moskowit2, Renhorn,, Gottscho, and Pritchard (LAMRGP) , 

yielding accurate values of D and r for the X, A, and B states. By 

means of a LeRoy and Bernstein near-dissociation analysis they obtained 

a dissociation energy of 140±5A, In an even more careful analysis by 
27 

Gottscho, Ahmad-Bitar, Lapatovich, Renhorn, and Pritchard (GALRP) ,-
2 

a Thakkar potential was fitted to the RKR turning points of the A IU/2 

state, yielding a dissociation energy of 144.4 cm" . This latter value 

is probably more realistic since the former was obtained by extrapolating 

the near-dissociation formula to"v * - 1/2, which is in a regime where 

the formula could not possibly be valid. We are, of course, reassured 

that their latter value agrees more closely (3.7%) to our original 

estimate. In Table XI we list the spectroscopic constants, our Thakkar 

coefficients and those of GALRP. The RKR turning points are also given 

there. 
2 

GALRP have found the A IL ., state to be badly perturbed by the 2 + B £ state and, anticipating poor behavior due to interacting states, 
we therefore do not consider fitting a Thakkar function to their data. 

In fact, GALRP have already performed an extensive deperrurbation cal

culation of the adiabatic A and B states, yielding results we consider 

instructive. In particular, they have found a shallow secondary minimum 
-1 ° 2 of 0.04 cm at 7.1 A of the A IT, ,„ state, lying between the outer 

turning points of v = 5 and v - 6 (see Fig. 7 of ref. 27). Although 

an RKR analysis would not have shown this minimum, the effects appear 

in the values of B and Franck-Condon factors. Any series potential 

function would be hard-pressed to reproduce faithfully this phenomenon 
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with only a few terms. We feel this may suggest why the series poten

tials fail to represent an excited, interacting state which, from a 

casual glance at the RKR curve, appears to be "normal". 

One other excited state interaction GALRP have studied more 

closely is the predissociation of the v * 4 and 5 rovibronic levels 

of the A "•2/2 8 t a C e i n t 0 c h e A ^1/2 c o n t i n u u m - It would be tempting 
to blame this effect on the fact that the deviation of B, in a least~ 

4 
25 

squares fit of Y ,*s is exceptionally large, as we had noted earlier , 

sociation line broadening of v = 5 is no less than that of v = 4. Unless 

further evidence indicates that the broadening should be asymmetric 

for v = 4, yielding an incorrect B,, there is no physical justification 

for the exclusion of B, in a least-squares fit of GALRP's newer, more 

accurate data. 
2 + As for the X Z state, there is only one bound vibrational level 

observed. Using the rotational data and the isotopic shift observed 
22 for Na Ne, GALRP have fit a function 

V(r) = C 8/r 8 - C 6/r 6 

yielding a dissociation energy 8.0+0.3 cm and an internuclear equi

librium separation 5.3±0.1 A. Although their fitted value of Cfi = 

7.092x10 cm A is considerably larger than Dalgarno and Davidson's 

estimate of 2.3X.1.0 cm A , the overall physical description of 

the potential is probably well within the uncertainties cited. 
2 + The same is true for the B I state. Only two vibrational levels 
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are observed. Since this stats is also strongly perturbed by the A 

state, a reliable Thakkar fit would be as unlikely as for the X state. 

GALRP's values for r and D are 7.9+0.5 A and 4.5+0.5 cm . e e 
In SALFtf's original analysis of NaAr laser-induced fluorescence, 

there was an uncertainty of the vibrational level assignment of the 
2 2 

A II states* the lowest for the A IL / 2 being either 6, 7, or 8, so 

we considered all three possibilities in our Dunham constants/series 

potential analysis. Since that time Tellinghuisen, Ragone, Kim, Auer-
29 

bach, Smalley, Wharton, and Levy (TRKASWL) have dispersed the laser-
2 + 

induced fluorescence of the A state tc the X £ state and have estab
lished that the lowest observable level is v * 7 by analyzing the 
bound-free fluorescence (which, incidentally, showed that the vibra
tional assignment of the excited state could be established by count
ing the number of nodes in the bound-free fluorescence and assigning 
them to the nodes of the excited state's vibrational wave function). 
We will therefore restrict ourselves to recording only the "x - 7" re
sults of our paper. 

2 2 
The mechanical constants for the A H, / 2

 a n £* A ^V2 s t a t e a r e 

listed in Table XII and the Thakkar potential coefficients in Table XIII. 

Since there are not enough data to perfonr a nominal least-squares fit 

(i_.e_. no degrees of freedom), it is impossible to establish an error 

bounds on the reliability of the individual constants, as was the case 

for NaNe. Moreover, we question whether the coefficients for the 

A iI-,/2 s t a t e a r e very reliable at all due to 1) the possible inter-
2 

action with the (unobserved) B Z state and 2) the fact that the values 
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set up to e,. The equal and opposite values of the e^/e, and e 5/e-

pairs hint that the higher order e f s may be nonphysical. Despite these 

problems, the Thakkar dissociation energy of 572.2 cm" compares well with 

TRKASWL's latest evaluation of i68.2 cm" , indicating that the Thakkar po

tential's gross description of the state remains satisfactory. The 

Thakkar D e is also within Che limits of the value of 550*30 cm from the 

argon pressure-broadening studies of York, Scheps, and Gallagher . All 

these results confirm our earlier suspicion that the theoretical SCF-CI 
31 

calculations of Saxon, Olsen, and Liu had determined a dissociation 

energy *15% too small, which is not a terrible indictment considering their 

project. 

The A u.9/2 state enjoyed a more quantitative success in reproducing 

the experimental values of SAFLtf. despite the fact that there was one 

fewer vibrational level observed. Part of the success may be attributed 

to the fact that, with one few_er observed level, we had not been tempted 

to overextend the degree, of the Thakkar polynomial, but surely the lack of 
2 B E_ ,~ interaction made a series description of this potential zsore appro-32 priate . The agreement between this potential and experimental resulrs 

2 Is better than that of the IL ,~ state as is apparent in Tables XIV and 
2 

XV. The Y..'sused to compute the IL ,- Thakkar functionalso determine an 13 2/3 
RKS potential which shows remarkable agreement - J is illustrated in Figure 6. 

Also shown is the Huffaker series and its repeated failure to reproduce 

the overall potential form. 

Some of this agreement may be due to a fortuitously good set of 

G Y„,. *s; the derivative of G with respect to v is zero in the neigh

borhood of the dissociation level, which is equivalent to saying that 
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the Birge-Sponer |.lot crosses the AG * 0 axis near dissociation. The 

RKR exprapolation therefore shows "dissociative" behavior at and above 
2 

v =» 17. (By comparison, the G expansion for the H-t/o s t a t e increases 

monotonically for positive v, Indicating no dissociation.) However, 

when we compare our value with the D *s obtained by others, we are en

couraged. For the A II-,- state, TRKASWL determine D to be 558.6 cm" . 
33 

Duren, Groger, Hasselbrink, and Liedtke , studying elastic scattering 
2 

of argon with laser-excited sodium in the P 3/ 2 state, have recently 

derived 562 cm for their pseudopotential and 551 cm ' for the Lennard-

Jones (3,6) model. 

The most significant development in NaAr since our original pub

lication is a better spectroscopic determination of the ground state. 

TRKASWL had observed fluorescence bands past v" » 4 into the continuum 

of the ground state, whereas only v" * 0 and 1 were observed in SAFLW's 

work. Although, the resolution of the dispersed fluorescence was not 

good enough to permit a rotational analysis of the vibrational levels, 

the accuracy of the determined vibrational energies permitted a near-

dissociation analysis evaluation of the dissociation energy, which was 

found to be 40.4±1 cm . Using this value, TRKASWL derived a potential 

for describing the bound-free Franck-Condon intensities. Since they 

were primarily interested in the repulsive part of the potential, they 

found a modified Morse to be an adequate description. 

possible. We have used these values to determine a new Thakkar function, 

yielding p => 4.0517, e 2 = -0.07770 and D = 55.668 cm~". Using p = 6, 
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we have found e 0 - 0.13431, e, • 0.32472, and D - 40.158 cm , We have i s . e 
examined this latter function more closely. The appropriate vibrational 

and rotational constants are reported in Table XVI and the p * 6 Thakkar 

function is plotted along with TRKASWL's modified Morse function and 
34 Duren and Groger's (DG) modified Lennard-Jones potential in Fig. 7. 

Examining the plot, one can see that in the bound region of the 

potential the Thakkar function follows the TRKASWL potential faithfully 
o 

up to 6.5 A, where it switches over and coincides with the long-range 
—1 °6 

portion of the DG potential. (Our C, coefficient is 1.5 cm A compared 
—1 °6 to 1.4 cm A for the DG potential, both of which are _ca. 50% larger 

28 
than the theoretical one .) Above dissociation the slowly ascending 

TRKASWL potential is to be preferred since it was fitted to continuum 

fluorescence up to 2500 cm above dissociation, where DG's scattering 

data employs collision energies of only 625 cm . Not apparent in Fig. 7 

is the crossing between the Thakkar and DG functions above 100 cm . The 

steepness of the Thakkar function is a tragic flaw which is not easily 

remedied. 

The RKR turning points using TRKASWL's Y 's are also illustrated. 

The poov behavior of the inner turning points can probably be blamed 

on an inadequate description of B for high vibrational levels, casting 

doubt on B and a . This in turn casts an aspersion on the Thakkar 

constants derived from these values. 

A closer, quantitative examination of the vibrational energies 

and rotational constants in Table XVII in fact reveals that the p = 6 

Thakkar potential to be, rather than the best of both worlds (̂.e.. TRKASWL 

and DG potentials), a weak compromise. We have calculated experimental 
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G0(v)'s from the band measurements of TRKASWL's Table I. The uncer

tainties are the standard deviations of the average G-(v) Ts listed. 

The experimental B ' s are those of SAFLW. It is apparent that the 

TRKASWL and DG potentials show considerable difference in Fig. 7, yet 

their vibrational energies are within experimental error. Although the 

p - 6 function is fairly close, the fact that Its vibrational energies 

are still outside the error limits is a direct result of the compromise; 

as the Thakkar function follows TRKASWL's repulsive wall and switches 

over to DG's potential for r > r a , the Thakkar function is wider than 

the other two potentials. Since, the vibrational energies are determined 

solely by the potential width (cf_. the SKR f(v) expression), the Thakkar 

G (v) values will lie lower than those of DG and TRKASWL. The B data, 

more dependent upon the centering of the potential at the correct r , 

shows the Thakkar potential to be a little better than that of DG, but 

still outside SAFLW's error estimates. 

It is worthwhile revisiting our original technique of fitting 

the Thakkar potentials to the data of SAFLW. We had taken the banc shift 
2 measurements from the P,,, l i n e o f Na for the rotatioi: ess vibrational 

2 levels of the v1 = 7 level of the IL .„ state and the v" = 0 and 1 
2 + levels of the £ state. Using our values from the integrated Thakkar 

potential for the upper state, we computed D 1 5 D' - G' and determined 

the constants D~ and DV from the formula 

D; = D} + A(v",7) 

2 15 
where A(v",7) is the (negative) band shift from the F-w2 H n e °f sodium 
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at 16973.379. By constraining (j) x " such that for any u" SAFLW's 

AG was reproduced, to" was iteratively varied so that resulting Thakker 

D", <JJ", and u x" yielded our computed values for Di; and DV. This was e e e e r 0 1 
done for Thakkar functions of variable p(TI) and p = 6 (Til), as well 

35 as several other model potentials 

The reported D 's for the Thakkar functions are, in light of 

TRKASWL's results, about one wave number high. Closer examination shows 

that our calculated values of D" and D" of 34.91 and 23.65 cm" , respec

tively, are 0.96 cm" higher than those calculated from TRKASWL's 

derived values. This can be further traced to an error in our extrapo

lated D' and, in fact, our D} of 145.625 e.m is 0.95 cm" higher than 

that predicted by Table II of TRKASWL's work. 

' Repeating our iterative algorithm on the D" and D" of Tellinghuisen 

et al., we find the m", a x", and D" of the standard, variable p Thakkar e e e e 
(Till) and p E 6 Thakkar (TIV) to be identical! This is in marked 

contrast to the preceding results using the "standard" Y.. potential 

determination. The spectroscopic quantities derived from these potentials 

and th^ Thakkar constants for TI - TIV are listed in Tables XVII and XIX, 

respectively. Most notable is chat che adjuscment of D~ and D" does 

bring the D" of Che Thakkar potentials into agreement with Tellinghuisen's 

value. 

This exercise illustrates more than just internal consistency. 
2 First, it reiterates the success of representing the A fl-w, state with 

a Thakkar function since our original, relative accuracy of better Chan 
5% for che X state hinged upon the 1 cm absolute accuracy of DA. 
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It shows that, given the right data and fitting procedure, the Thakkar 

function is also an appropriate one for the ground state as well, 

yielding fairly good quantitative results. The agreement between Till 

and TZV when compared to the disagreement between Thakkar functions 

using our tradiitional fitting procedure indicates that, when dealing 

with limited data, newer means of potential fitting incorporating all 

data available should be invoked. This point will be considered in 

more detail towards the end of this chapter. 

We also find a certain paradox in Table XIX. Although TI and TXI 
overestimate D by 1 cm , their G's are better than those of the e ' * 
corresponding Till and TIV. While this may warrant further study, we 

suspect that the expansion to e 2 is too limited to accommodate all the 

data. 

A final point to be made is the apparent ambiguity of choice of 

variable-p over p * 6 Thakkar functions. Our earlier experience with 

BeAr lead us to conclude that the variable-p was to be preferred. 
2 + 2 

In light of NaAr X 5! and the results of Gottscho e_t al. for A H_,2 

of NaNe, it may be that the two kinds of Thakkar functions should be 

examined on a case-by-case basis. As a matter of consistency, however, 

we will stay with our choice or variable-p for the remainder of this 

chapter. 
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We consider now the dimer of argon. The interaction and binding 
-1 ° of this nobel gas, 0.3 kcal mol at 3.8 A, should be considered the 

model system for studying van der Waals attraction. Argon, obtained 

by liquification of air, is readily available and has been the subject 

of extensive study in the past, and the thermodynamic and transport 

properties are well documented . Still another of its properties 

in nature that lends itself for microscopic study is the fact that it 

occurs almost exclusively (99.6%) as the 40-isotope: a boson. The Pauli 

Exclusion Principle requires chat only even angular momentum quantum 

numbers can occur for the ground state of the dimer, permitting a unique 

?nd detailed study of the differential elastic scattering cross section 

and the resolution of the rotational structure by vacuum ultraviolet 

absorption spectroscopy. 

As a result, a great number of potential functions have been 

derived of varying degrees of complexity. Recent examples are the 
37 numerical functions of Dymond and Alder and of Colbourn and 

38 Douglas > the piecewise continuous functions of Parsons, Siska, and 

Lee , of Aziz and Chen , and of Koida and co-workers , and 
42 the function of Barker, Fisher, and Watts which is analytic for all 

r, if somewhat unwieldy. Results of earlier and simpler potential 
43 functions are reviewed by Smith . Probably the best functions for 

describing the combined spectroscopic and thermodynamic data are the 

HC-D potential of Aziz 3nd Chen and potential 4 of Koida e_t al. We 

might also infer that their potentials could reproduce the elastic 

scattering data satisfactorily, but this test is yet to be made in 
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the literature. 

In light of this, no systematic study of potentials applicable 

to van der Waals molecules is complete without considering Ar_. Our 

purpose is not to propose a potential superior to any in. print but 

rather to deterime whether the Thakkar potential is suitable for this 

system. Ve find, In fact, that our standard procedure produces a poten

tial function that does not describe the argon-argon interaction to the 

accuracy that the true potential is known. This is not an indictment 

of the potential form so much as it is for the method of determining 
38 the potential; Colboum and Douglas (CD) found that the RKR method 

failed to produce a potential adequate for predicting the higher vibra

tional and highly excited rotational levels. In order to improve the 

Thakkar function we incorporate into the fit the elastic scattering 
39 data of Parsons, Siska, and Lee (PSL) , from which we derive a 

potential that is suitable for describing the spectroscopic, scattering 

and thermodynamic data available. Towards the end of this chapter we 

will describe a method for systematically varying a Thakkar or any other 

function using spectroscopic data alone which is more in the spirit of 

how CD derived their numerical potential from their initial RKR estimate. 

We find our initial, or nominal, Thakkar by first fitting a set 

of Y..'s to the G (v) and B values reported by Colbourn and Douglas. 

Since data are available for v = 0 to v = 5, we have enough values to 

perform a least-squares Y.. fit. This proves helpful since we can 

estimate the standard deviations of the Y..'s and hence the standard 

deviations of the Thakkar constants, which are reported in Table XX. 

Because of the relative uncertainties in the data, discussed in ref. 38, 
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and the low number of degrees of freedom (i._e. the differences between 

number of data and number of fitted parameters) in the least-squares 

fit, even a minimal set of Y.'s had fairly high standard devia-

44 

tions . In turn, the nominal Thakkar constants inherit large un

certainties; the well depth, D * is uncertain by 18% and in fact is 10% 

higher than the best determinations of the Ar„ bond energy. Because 

of t'iese uncertainties, the nominal Thakkar cannot reproduce the dialer's 

potential to the known degree of accuracy or even accurately reproduce 

the spectroscopic data from which the potential is derived. 

There are three reasons why our standard procedure failed to 

produce an agreeable potential. One, as mentioned before, is the 

uncertainty in the measured spectroscopic constants. Although listing 

their G_(v)'s to 0.001cm , CD expressed an actual confidence of 

0.1 cm up to 0.25 cm x for v - 5. Relative to the dissociation energy, 

this means an uncertainty of 1 to 2.5 parts per thousand. This is 

slightly less than the 2.5 parts per thousand from TRKASWL Ts measure

ments of the X statie of NaAr, where our standard Thakkar procedure pro

duced a potential whose dissociation energy was in error by 38%. By 

comparison, our more presentable results for BeAr , HeNe , NaNe, and 

NaAr involved relative errors in the range of 20 to 77 parts per mil

lion. 

only employ an expansion up to Y_« and Y-.. with any confidence, although 

the data encompassed almost the entire potential well. While a low order 

expansion may be appropriate for extracting the "true" Y..'s when only 

a fraction of the potential is sampled (such as with BeAr + and the 
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A IL j2 state of NaAr), the need of describing the entire potential 

will require a higher order expansion in Y.. rs. This is the same 

problem we cited for HF in Chapter II, and is endemic to the molecular 

system being considered. In all fairness, we should report that we 

have, in fact, examined higher order Y.. and hence Thakkar expansions 

(at the price of even higher standard deviations due to fewer degrees 

of freedom) and found no improvement in the nominal Thakkar function. 

We nevertheless feel that lack of available molecular information 

remains a source of error. 

To substantiate further this point, we came to the third reason. 

There is, in fact, "extra" information available which we do not employ: 

the 0*5. As discussed in Chapter II, our procedure does not employ 

the information available from the highly excited rotational states, 

except to derive more accurate B *s and hence Y 's. This point is 

equally true of the RKR procedure and, point of fact, is the reason 

that CD had scrapped the RKK. method. Citing the lack of G n(v)'s and 

B 's as well as the semiclassical approximation as the reasons their 

RKR potential couid not satisfactorily reproduce their observed levels, 

CD manually adjusted their initial RKR potential in order to reproduce 

the energies of the high J levels, thus arriving at their final numerical 

function. As mentioned before, we will discuss how to use this "extra" 

information later in this chapter. 

We have taken r.nother tack for increasing our data set. Using 

the nominal potential to generate the differential elastic scattering 

cross section for Ar for comparison with the high resolution data of 
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PSL, we have systematically varied the nominal constants throughout 

their calculated uncertainties in an attempt to improve the differential 

cross section. This adjustment was not done in a least*squares fitting 

sense; rather a set of calculations was made for various parameter 

values,and the RMS deviation of the calculation from the experimental 

data was iteratlvely lowered until the agreement was significantly 

improved. Thus, it is possible that these refined constants could be 

more highly refined by methods such as suggested by Bickes and 
45 Bernstein , but the rapid convergence of our iterative method made 

further refinement unwarranted. 

We give the refined potential constants in Table XXI, and plot 

the differential cross sections computed from the nominal and refined 

Thakkar potentials as well as the Morse-Spline-van der Waals (MSV III) 

potential of PSL in Fig. 8. All calculations shown were done with the 

same degree of angular and velocity averaging to allow easy visual 

comparison among the fits. As a result, the symmetry oscillations at 

large angles (due to the even J parity property of Ar„) are somewhat 

enhanced by incomplete averaging. 

A qualitative glance at this figure shows that the nominal 

Thakkar provides an unsatisfactory description; the calculated rainbow 

scattering appears too large an angle, indicative of too deep a poten

tial well. Although the constants of the refined Thakkar are remarkably 

similar to those of the nominal, the improvement in the calculated cross 

section is dramatically evident. While the MSV III potential gives 

better agreement at scattering angles slightly less than the primary 

rainbow, the overall fits of the refined Thakkar potential and the 
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MSV III potential are comparable. 

As a final check of the validity of the refined Thakkar potential, 

we have calculated the second virial coefficient using the standard 
46 expression including the first quantum correction . The results of 

these calculations for the nominal Thakkar, the refined Thakkar, the 

MSV III and the Colboum and Douglas potentials are shown in Fig. 9, 

as a plot of differences from the experimental data of Levalt Sengers 
47 et al. For this calculation we have connected the table of points 

given by Colbourn and Douglas with spline functions and extended the 

potential in regions outside of their table with a Morse function and 

with the expression 

R 6 fi8 

at short and long ranges, respectively. The average RMS deviations, 

evaluated every 100K, of the refined Thakkar, MSV III, and Colbourn 

and Douglas potentials are 2.06, 2.34, and 1.17, respectively. When 

calculated every 2K from 80K. to 120K the average RMS deviations are 

3.84, 8.41, and 4.46. The low deviations for the potential of Colbourn 

and Douglas are of no surprise, since they had adjusted their values 

of D and C g to improve agreement between experimental and calculated 

second virial coefficients. 

In Fig. 10, we plot the four potentials for Ar« of immediate con

cern. These are the nominal and refined Thakkar potentials, the MSV III 

potential, and the CD potential. We have chosen these latter two poten-
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tlals since the authors, who have taken the data sets we have employed, 

have found these potentials best represented their respective data 

sets . The refined Thakkar has a well depth of 100.37 cm" . Other 

Ar„ potentials have well depths only slightly less than this. PSL re

port 97.83 cm" for MSV III, CD as well as Aziz and Chen employ 

99.55 cm" , and Koida et̂  aJU find 99.58 cm as their optimum. While 
o 

both Thakkars employ an r value of 3.758 A, the o ther va lues a re 
o o 

MSV III: 3.760 A, Koida et, al.: 3.7545 A, and CD and Aziz and Chen: 

3.759+.005 A. 

Therefore, these most recent and elaborate functions, including 

the refined Thakkar potential, are in excellent agreement regarding 

these two main parameters of the interatomic potential. They disagree 

mainly in the shape of the repulsive wall at energies several times the 

well depth. The Thakkar potential rises much more steeply than a Morse 

function, while both the MSV and the Colbourn and Douglas potentials 

have single Morse function repulsive walls. The repulsive portion of 

Aziz and Chen's potential, adjusted to fit the ffartree-Fock potential 

calculated by Wahl and co-workero, may be equally good, but we have not 

examined this. 

It is noteworthy that the MSV and Thakkar functions begin to 

deviate only at energies of -300 cm . The collision energy used in 

the scattering measurements of Ref. 39 was only 500 cm . Colgate, e£ 
49 al. reported high energy Ar-Ar scattering results which are in much 

better agreement with the exponential (Morse-like) repulsion of the MSV 

potential than with the Thakkar potential. We conclude that the repulsive 
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wall of the Thal&ar function is in serious error, but only at energies 

of several times the well depth. 

While the repulsive wall is not well determined above some energy 

(and probably so for all the potentials discussed here), it is inter

esting that the refined Thakkar function gives the best calculated 

second virial coefficient at high temperatures (Fig. 9). The repulsive 

wall tends to dominate B(T) more at these temperatures, which are well 

above the Boyle temperature of ca_. 400K. This indicates that the repul

sive wall misbehavior of the Thakkar is not serious enough to prevent 

prediction of high temperature thermodynamic properties. 

Finally, we list in Table XXII the energies of the bound vibra

tional levels, G , and the corresponding rotational constants, B , 

for the potentials. The G fs were computed by numerical solution of 

the radial Schroedinger equation. Using the resulting wave functions 

for each vibrational level, the B 's were calculated by th^ expression 

B - B r 2 <v|r"2]v> 
v e e ' ' 

The MSV III potential has been similarly analyzed by Docken and 

Schafer . We have repeated their calculation in order to have a 

consistent evaluation of the B 's and to extend their precision. 
v 

The experimental quantities are for the Colbourn and Douglas 

(CD) potential for v = 0-5. The refined Thakkar and MSV III B y 

values agree with the CD values to better than 0.001 cm , well within 

the spectroscopic uncertainty. The G values, or more correctly, the 
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level spscings (AG.!/?) are in similarly good agreement. THE MStf 

III AG .,,'s a r e uniformly smaller than the CD values by, on average, 

-0.29 cm . The refined Thakkar AG - , 's are both greater and smaller 

than the CD values. The average error is only -0.01 cm" . More com

prehensive examinations of the spectroscopic constants of other poten

tials are available in references 40 and 41. 

One point well worth noting is that, in Table XXII, B 5 for the 

CD potential (0.0289 cm" ) differs from the one listed in ^able I of 

their paper (0.0298 cm~ ). This is not a typographical error; we have 

found that CD's reported B 5 and D g fit the eight observed rotational 

lines in the least-squares sense. This does not mean that their J* is 

the true mechanical constant and reiterates the problem we cited 

earlier concerning one's ability- to extract good spectroscopic constants 

from a limited set of data 

An important question is whether B is a reliable parameter for 

measuring rotational energies at these nigher vibrational levels. Our 
_2 

definition of B , as a quantum mechanical average of r , is correct 

if the centrifugal potential is a perturbation on the vibrational 

Hamiltonian. For J = 10, v = 5, the rotational energy becomes com

parable to the splitting between the rotationless v = 5 and v = 6 

levels. Under these conditions perturbation theory becomes a poor ap

proximation, and hence B alone provides an inadequate description of 

the potential under the influence of angular momentum. We"thus report 

the higher B !s merely as a stylized comparison of potentials. A more-

rigorous comparison should report the rotational energies themselves. 

Returning to our discussion of the Ar_ potential, we feel it is 
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Important to note that this potential does not behave solely as r 

in the region where the spectroscopic data are pertinent. Indeed, 
—8 the r contributions to the binding at the outer turning points of 

v = 4 and 5 are 18% and 15%, respectively. We are therefore not par

ticularly troubled that the refined Thakkar potential approaches its 

asymptotic value as r * instead of r as long as the potential 

shows the correct behavior _in the region of interest. In this region 

the higher order terms correct for any deficiency in the true asymptotic 
—8 

behavior in the same manner that the r and higher terms correct for 

the erroneous assumption that the potential is purely r" . 

It is clear, then, that the Thakkar function is a suitable func

tional form for describing the dimer of argon :.d, by implication, 

most van der Waals' molecules. Although there are some inherent weak-

aesses in the potential, such as "impure" r behavior and a repulsive 

wall that ultimately rises too sharply, such weaknesses do not prevent 

the potential from predicting available experimental quantities. The 

derived vibrational and rotational energy levels, differential elastic 

scattering cross sections, and second virial coefficients are reliable 

at temperatures from 0°K to 500°K. What is apparent is that one may 

have.to use potential-determining algorithms other than the Dunham 

method, which in this case has a tendency to amplify experimental un

certainties. Further improvement of the Ar~ Thakkar potential may be 

possible in order to improve further agreement wich spectroscopic 

and scattering data, but at this point our goal has been achieved. 
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F. Alkaline Earth Dimers 

Up to this point we have only considered weakly bound diatomic 

molecules where one or both partners are rare gas atoms. With all its 

valence orbitals filled, the rare gas atom should see no "chemical" 

forces in effect and only simple polarization, long-range forces should 

contribute to the binding. A similar situation exists for the dimers 

of the alkaline earths, where the outer ns valence orbitals have been 

filled and mimic the helium configuration. The measured dissociation 

energies * of these homonuclear dimers (1-3 kcal per mole) are 

characteristically smaller than those of the neighboring alkali dimers 

(9-24 kcal per mole) or those of the transition element dimers (iO-120 

kcal per mole). Most workers therefore consider the alkaline earth, 
52 or Group II A, dimers to be bound only by van der Waals forces .This ' 

claim is further substantiated by the similar binding energies of the 

Group II B dimers Zn?* Cd2 and Hg„ (4, 2, and 1.8 kcal per mole, 

respectively * ,) indicating that the filled ns (n-l)d config

uration leads to no chemical binding, either. 

Despite these trends, we expect the nature of the bonding in the 

bulk solid to be due to more than dispersion forces. The solids have 
53 cohesive energies twenty times that of argon , are metallic, and 

54 melt above 650°C . Some of these properties must ultimately be 
derived from the vacant, nearby np orbitals and, for calcium and higher, 

(n-l)d orbitals that participate in the covalent and metallic bonding. 

We will show that there are subtle indications that there is mixing of 

these vacant orbitals in the ground state of even the dimers, a quality 

not readily apparent from dissociation energies. 
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The spectroscopy and diatomic potentials for the ground states 

of Mg ? and Ca ? are now well-determined quantities. The original high 

resolution Mg. absorption data of Balfour and Douglas has been 

augmented by the analysis of Li and Stwalley and the dispersed 

fluorescence of the argon ion laser excitation data of Scheingraber 

and Vidal ," The ensuing analysis by Vidal and Scheingraber es

tablishes the dissociation energy, 430 cm , to within one wave number 

and provides an accurate set of Dunham Y.. constants. Similar laser 
59 excitation-dispersed fluorescence experiments by Wyss and by 

Vidal have extended Balfour and Whitlock's (BW) absorption 

work on Ca 2. Vidal's data analysis for Ca_ is as careful and thorough 

as that for Mg_, yielding a very good set of Y.. constants and a valje 

for D of 1095.0±0.5 cm" 1. 
e 
In recent years a small controversy has erupted concerning the 

ground state of Ca„. Sakurai and Broida observed an anti-Stokes 

59 

continuum in their laser-excited fluorescence of Ca„ and Wyss ob

served molecular fluorescence far to the red of BW's banJ. system. 

These workers concluded that the green band of BW was originating 

from an excited state, with the true ground state being the source 

of the red band. Failing to reproduce Wyss 1 band system, Vidal 

has since concluded that the red band was an experimental artifact. 

Liao and Scheingraber and Vidal have also explained the blue 

continuum as free-bound-free excitation/fluorescence. It appears, 

then, that the original assignment of BW has been confirmed and the 

argument laid to rest 
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Returning to our own studies of these systems, we have taken 

the Y,. constants of Vidal and Scheingraber and of Vidal for Mg„ and 

Ca«, respectively, and have performed our usual series-inversion 

procedure. The constants are listed in Tables XXXII and XXIV. These 

functions, along with the smoothly connected turning points of Vidal's 

IPA potentials, are plotted in Figs. 11 and 12, illustrating the success 

of the Huffaker series over those of Thakkar in the region of r > r 

(the artificial maxima at small r is of less concern here). As we have 

noted in Chapter II, the Huffaker series potential provides a better 

description for those molecules bound by chemical forces. Although 

it does not seem that such forces could be responsible'for the small 

binding energies, we suggest that they still may be influential enough 

to shape the potential in the region of the equilibrium internuclear 

separation. We reiterate that it is this region which is the most 

strongly weighted in our series-determination routine. 

Further examination of Tables XXIII and XIV indicates the reason 

for the Thakkar deficiencies. For both dimers p - 3.58. This is much 

smaller than the anticipated exponent cf 6 for van der Waals attraction 

and smaller than any of the p's encountered for neutral molecules in 

this chapter. This explains the Thakkar tendency to "overshoot" the 

dissociation energy by so much. The relatively large correction con

stants with oscillatory signs for both Ca„ potentials also indicate 

some convergence problems and are probably responsible for the artificial 

maxima at small r. 

The low value of p is also further evidence of incipient cova-

lency. A. Thakkar and J. S. Winn have listed a variety of 
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p-values for chemically bound diatomics, ranging from 1.0 - 2.5. For 

our van der Waals systems, we have observed values from 4.2 - 5.6. 

The magnesium and calcium dimers thus have p-values that show more 

favor toward a chemically bound system. 

The level of analysis of the spectroscopy of Sr« is not as 

detailed as that of the preceding dimers. Wo high resolution absorption 

data of the quality of Balfour and co-workers have baen taken, and the 

situation is further complicated by the fact that the rotational con

stant is less than half that of Ca» due to the mass alone. Working 

with half the dispersion of Vidal and colleagues, Bergemati and Liao 

could only resolve the vibrational progressions and bound-free undula

tions from their laser-excitation/dispersed fluorescence spectra of 

strontium dimer. 

Despite these limitations, they have carefully adjusted two 

Morse potentials for the ground and excited states in order to dupli

cate the observed vibrational progressions and Franck-Condon inten

sities. They derived the quantities LU = 36.9±1 cm and D = 1100± 

100 cm for the ground state. If we accept their extrapolated r of 

4,5±0.2, we can derive an effective p of 3.4±0.30 through second 

derivative relations between simple Morse and Thakkar functions. 

Considering the suitability of the Huffaker series for Mg„ and Ca 2, 

Bergeman and Liao's Morse potential and hence our derived value of p 

are not far from reality, and we therefore see that Sr„ follows the 

same trend in p-values set by Mg„ and Ca~. 

It is unfortunate that no data at present exist for the barium 

dimer. There have been suggestions * ' that Ba_ should be 
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bound more strongly than the other Group II A dimers due to interac

tions other than van der Waals forces; the participation of the nearby 

6s5d and 6s5p configurations in a more covalent bond. Because of the 

still larger mass and the multiplicity of natural isotopes, we should 

not impatiently await a forthcoming analysis. 

We save our analysis of the beryllium dimer for last. It is unique 

among the alkaline earths, possessing nearly double the cohesive energy 

in the solid and hence a very high melting point with a correspondingly 

low vapor pressure at high temperatures. Couple these properties with 

its known toxicity and one has a dearth of experimental information on 

this element. On the ocher hand, the small number of electrons makes 

the dimer amenable to accurate theoretical calculations. 

The state-of-the-art calculations for Be 2, are unfortunately, con

tradictory. Chiles and Dykstra have recently considered a nuiabei or 

configuration interaction (CI) approaches to the problem, comparing 

their results to previous work in the literature. Their results span 

the array of reported values, which can be broken into two groups: those 

with a minimum of £a. 0.15 kcal/mole at 4.5 A and those binding Be« by 

2-8 kcal/mole at 2.5 A. Of these references we carefully choose the 

interacting correlated fragments (ICF) results of Liu and McLean . 

Their companion results for He„ and Mg_ predict values for D and r 

that agree with experimental results within 2%* Chiles and Dykstra 

also point out that the 7s5p4d2f Slater type atomic orbital set used 

in the Be„ ICT calculation is the largest set used to date. The 

well depth of the ICF potential is 0.23 ± 0.02 kcal/mole 
-1 ° 

(807 cm ) and r = 2.49 ± 0.02 A, matcing this one of the more 
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strongly bound of the theoretical potentials. 

We begin our analysis by smoothly connecting Liu and McLean's 

reported potential points with a spline fit and solving Schrodinger's 

equation for the vibrational levels and rotational constants, which 

we report in Table XXV. For this potential, we extrapolate 813.825 cm" 
o 

for D and 2.49114 A for r . We plot the interpolated potential in 

Figure 13 along with the determined Huffaker and Thakkar potentials. 

The results are, besides disappointing, unusual. Both the Thakkar and 

Huffaker potentials recover only 50% of the potential before reaching 

their asymptotic limit. The exceptionally high Thakkar p of 8.76 indi

cates a very high reduced curvature. 

To ascertain that this phenomenon is not due to the lack-of-infor-

mation problem with Ar2» !.•&_• too few levels to get the true Y. /s, we 

increase the nuclear isotopic mass of Be to values of 543 and 5433 amu, 

which conveniently correspond to a B of 0.01 and 0.001 cm , respec

tively. The results show no quantitative improvement of the series 

potentials, although the Thakkar p seems to converge to a value of 

4.7, giving a reduced curvature of 6.5. The reduced curvatures of 

Mg„, Ca?, and Sr~ are 33, 42, and 38, respectively. The values of the 

various Be. potential coefficients and their plots can be found on 

the attached microfiche. 

To be sure that our procedure is not in error, we have repeated 

the same calculations on Liu and McLean's potential for Mg ? . Even 

though the number of theoretical points is fewer, v* obtain results 

that are substantially in agreement with the experimental values. 
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We conclude that the problem lies with the Be. potential itself. 

The probable cause of this ill series-potential behavior can 

be attributed to the near-zero convexity of the potential between 

3.3 and 5 A apparent in Figure 13. As we have shown in Chapter II, 

any "true" Born-Oppenheimer potential that shows some discontinuous 

change in shape due to interaction with other states, such as ci rve-

crossing, will cause the fitted series potentials to behave erratically. 

To investigate further the "kinks" at 3.3 and 5 A, we least-squares 

fit simple Thakkar functions to the inner and outer regions of the 
o 

Liu and McLean points. For the equilibrium region of r<3.4 A, with r 

and D constrained i_o Liu and McLean's values, we obtain the constants e * 

p = 4.939, e Q = 993.400 cm" 1, and e =« -0.18. For the outer tail 

region, a very simple Thakkar function with p =• 5.69, e_ = D = 

230 cm" and r = 3.7 A proved sufficient. These two functions, along 

with the ab_ initio points employed, are illustrated in Figure 14. 

The fact that the p of the "tail" fit Thakkar function is close 

to 6 indicates that Liu and McLean points follow the correct long-

range behavior. Moreover, the Cfi of 0.975x10 cm A we find by 

fitting the outer two afa initio points Co a C./CQ expansion compares 
— • - - • o o 

well with the semi-empirical value of 1.06x10 cm A calculated from 
72 oscillator strengths , further reinforcing this point. 

It is the inner portion of this potential that makes Liu and 

McLean's work unique among all other calculations and, if correct, 

Be 2 unique among alkaline earth dimers. Although the Be^ binding 

energy is nearly twice that of Mg„ and is hence out of step with the 
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trend of increasing D of the dimers with increasing atomic number 

and polarizability, so is the cohesive energy of bulk beryllium as 

well. The enhanced bonding of Be„ is no doubt due to admixture of the 

2p orbital to the (bonding) 2a molecular orbital. It would be temp-
1 + 

ting to invoke curve-crossing by the A 2 state, analogous to the 
73 

case of BeH , to explain the radical change in shape of the ab initio 

curve, but the very high energy of the P state discourages this. 

Another point that also contributes to the increased bonding 

is the "late" occurence of the repulsive wall. The r of 2.49 A of Se_ 

is remarkably smaller than the 3.9 - 4.5 A distances that characterize 

the other dimers. This anomaly is similar to the unusually small 
53 ° 

nearest-neighbor distance of 2.20 A in crystalline beryllium com
pared to the 3.2 - 4.4 A values of the other alkaline earths. The 
smaller hard-sphere diameter permits the two Be atoms to approach 
each other close enough for the covalent forces to take effect, a 

2+ feature that also distinguishes the chemistry of the Be ion from 
74 that of the Group IIA ions . The rapid rise of this hard, compact 

wall is the major source of the large reduced curvature. This in turn 

gives rise to the relatively large p of 4.94 (which incidentally agrees 

with our "converged" value for large isotopes) and not the usual long-

range effects. 

The preceding discussion is based upon the assumed accuracy of 

the a_b initio potential. Chiles and Dykstra feel that the system is not 

yet a closed book. Since Liu and McLean's value of -29.23 Hartrees 

for the asymptotic energy has a correlation energy of 1.4 eV from the 
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known Ionization energies of two Be atoms , there is some room for 

doubt. To date, the only observation of Be, in absorption is in rare 

gas matrices, as reported by Brom, Hewett, and Weltner . They 

observe a vibrational progression at 350 run which is much narrower than 

that of Mg,, indicating a smaller difference between the r' and r" for <£ e e 
Be,. If similarities in r imply similarities in potential curves, 

then the fact that they estimate D' > 14360 cm" (D' - 9412.5 cm for 
e e 

Mg-) augers well for a more strongly bound ground state. 
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G. Direct Fit 

As we have mentioned several times in this chapter, our standard 

procedure for finding series potential parameters for weakly-bound 

molecules leaves something to be desired, especially when the available 

data are limited. Three steps are involved in going from the raw spec

troscopic data to the final potential function. First, the basic con

stants G . B , D , etc., must be calculated for the ground and excited 

v* v' v* e 

states from the observed spectral lines. This compounds the initial un

certainty in the line frequency with the inherent uncertainties of the 

fitting procedure. The next step is to fit a set of Y..'s to the 

G 's and B 's, further compounding the error. By the time we determine 

the final potential, the honest uncertainty of the derived parameters 

makes the potential a poor predictor of the original data. This is 

best illustrated by Ar 2, where the ±11 cm error of e Q is a far cry 

from the 0.1 cm precision of the vibrational-rotational levels 
38 reported by Colbourn and Douglas 

Besides the multi-stage amplification of error, there is the 

problem of limited amounts of data. In. the cases of the grouiid states 

of NaNe and NaAr, the problem is one of technology; only one excited 

vibrational state at most is populated in a supersonic nozzle expansion/ 

condensation. The other problem is endemic to the molecular system 

itself, where there are simply too few vibrational levels to "inter

rogate" the shape of the potential. This problem has been discussed 

for Ar 2» demonstrated for Be„, and is best illustrated by NaNe, which 

has only two vibrational levels. When there is a deficiency of vibra-



tional data, one must examine the rotational data for high J more 

closely. As we have pointed out, the Dunham equations do not lend 

themselves as easily to a B v/D v fit as for a Gv/\ fit. There is the 

strong correlation between B and D such as for v - 5 of Ar„ that 

also makes the Dunham approach less attractive. 

What we propose is a means of fitting the potential function 

directly to the vibrational-rotational energy levels of the molecule. 

This eliminates at least one step, the Y determination, and the un

certainties that go with it. The G /B /D set can simply be treated 

as a set of numerical fitting constants, and one need not worry about 

whether they are the "true" mechanical constants. In many cases the 

relative energy levels of each of the electronic states can be deter-

directly from the spectral line positions through the combination 

relacions , thus eliminating the G /B /D determination step. 

The fitting method is simply a nonlinear least-squares refine

ment of a set of potential parameters, (9,K T h e observed relative 

energy levels are denoted by y. and the energy levels calculated from 

the potential by £,{?J), where subscript i refers Co the vibrational 

and rotational quantum numbers involved. We take an approximate set 

of potential parameters, {8. }, and the approximate energies and 

parameter derivatives to be f and (3t /98.) , respectively. We can 

show that a refined set of parameters, {6 } » {0 } + (A8 }, can be 

found by solution of the matrix equation: 
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The refinement is iterated until one has a convergent {9, } set or the 

y-f. differences are less than the experimental error. 

In order to find the coefficients of {A6, }, we must evaluate 

the derivatives (3E(v,J)/39. ) . This can be done by employing the 
79 Hellmann-Feynman Theorem: 

,3Ei.O ^.0, ,3H .0, .0 ̂  

where H is the radial Hamiltonian for internuclear motion. If the 

kinetic energy is independent of potential parameters, then we can 

further simplify by: 

,3H .0 ,9V ,0 
k k 

The Hellmann-Feynman Theorem is very important in reducing the amount 

of computer time needed; the alternative is to evaluate the derivatives 

rumerically. For K parameters, we can replace N energy evaluations with 

N integral summations. This is an important savings since the integrals 

are a one-shot evaluation, whereas the Numerov-Cooley solution of the 

radial equation (Appendix II) is an iterative one. Also, the energies 

need n-*t be evaluated as precisely in order to produce a reliable 

numerical derivative, so the number of Numerov-Cooley iterations might 

be reduced. We say "might be" since we have not examined the relation

ship between the tolerances of the wave function necessary for the 
80 integral and the tolerances of the energy 
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There are several advantages to this method. The first is that 

one obtains an analytical potential function that, can reproduce the 

experimental energy levels. This method is applicacle to any analytical 

potential function, although the desirability of a flexible series 

potential is apparent. All rotational information is employed airectly 

rather than through derived parameters. The ground state dissociation 

energy can be employed more directly, as could have been done with 

NaAr. Moreover, the Dunham method tends to prejudice the potential 

toward the bottom of the well, whereas h^re the energy levels near 

the top are put on a more equal footing. Finally, one need not worry 

about the "second order WKB effects" since the Numerov-Cooley'solution 

is a quantum mechanical, not semi-classical, one. 

Certain disadvantages are obvious, too. Since the procedure is 

iterative and all the rotational energy levels must be evaluated, a 

_ t of computer time is required. This clearly restricts the method 

to systems of limited amount of data such as the van der Waals mole

cules we have studied. It may also be possible to evaluate only a 

few of the rotational levels at well-selected intervals. If the potential 

function has a tendency to misbehave, as we have s. sen for the Thakkar 

and Huffaker functions, then the iterative improvement must be moni

tored to assure that nonphysical singularities do not interfere with 

the energy and wave function evaluation. A reasonable starting set of 

potential parameters is necessary for rapid convergence, but our 

Dunham procedure can probably provide that for the series potentials. 

Perhaps the biggest disadvantage is that the method is untested, 

and hence we have no knowledge of r.he convergence properties. We feel 
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that this merits study and hope to do so in the future. If it can 

be shown that this algorithm converges for a model system, then we 

can perhaps have the final word on the suitability of the Thakkar 

function for certain weakly-bound molecules. If it is not, then we 

still have a direct method for testing other, possibly more suitable, 

forms without repeating the algebraic drudgery of relating their coef

ficients to those of the Dunham potential. 

We close noting that the Thakkar function has an edge over the 

Huffaker function using this algorithm. Since the initial Thakkar 

from our routine procedure tends to overestimate the true dissociation 

energy some, it possesses all the observed bound levels and then some. 

Thus the initial Y., estimate can be used as the initial guess. Not 

all of the observed levels are bound in the Huffaker estimate as we 

have seen in this chapter, so the algorithm would have to be tailored 

to add experimental data after consecutive iterative improvements. 
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H. Conclusion 

We have investigated the suitability of the Thakkar and Huffaker 

series functions towards describing the potentials of weakly bound 

diatomic molecules. We have found the Huffaker series to be a rather 

poor function for modelling these potentials as it badly underestimates 

the dissociation energy. We ascribe this deficiency to the Morse po

tential nature of the Huffaker series, which approaches its asymptotic 

form much too rapidly to accommodate the long-range r attraction 

which influences a large percentage of the potential well. 

Thus it is the r p nature of the Thakkar series that is responsible 

for its success in describing the molecular ions and rare gas containing 

dimers discussed in this chapter. When spectroscopic data are sufficient 

in quantity and accuracy, the Thakkar function cat* give results as reli

able as an RKR curve. When accuracy or quantity of the spectroscopic 
2 + data is not available, as with Ar_ and the X Z state of NaAr, other 

sources of experimental information can be employed to bring the 

Thakkar function into line. 

The advantages of the Thakkar series are many. Since it is analytic 

throughout the region of interest, it is suitable for use in studies 

involving first or higher derivatives, such as the Virial Theorem. 

This property has been realized and put to good use in describing the 
81 nature of van der Waals bonding in comparison to the chemical forces 

The potential parameters can provide a means of comparing bonding 

trends, sometimes subtle as with the alkaline earth dimers, among dia

tomic molecules of disparate bond energies and bond lengchs . From 

the form of the Thakkar function, the trends concerning the value of p, 
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and the Thakkar tendency to overestimate the dissociation energy as 

ve have seen in this chapter can suggest methods of approximating 

molecular properties, as we have done elsewhere for the dissociation 
82 energy . 

Finally, we have presented a method other than our usual Dunham 

fitting procedure for determining potential parameters directly from 

the spectroscopic data. Although the algorithm is useful for any ana

lytical potential in general, the Thakkar series enjoys certain initial 

advantages. This procedure certainly merits study in the near future. 

One question we have not resolved here is final choice between 

integral and nonintegral p. Although we have employed the nohintegral 

p result in examining the bonding nature in the alkaline earths, the 

p = n restriction for an r attraction enjoys some advantages, such 
2 as a somewhat better representation of the A IU.2 state of NaNe and 

2 + the Y. "fit X E state of NaAr. It also apparently lacks the annoying 

tendency of turning over at r<r . One other advantage is that it will 

probably appeal to the Chemistry Community in general since it has 

the r behavior built in, even if the pure long-range attraction is 

not in effect in the region of experimental interest. 



129 

REFERENCES 

1. J. 0. Hirschfelder, C. F. Curtiss, and R. M. Bird, Molecular 

Theory of Gases and Liquids (Wiley, New York, 1954), Chapter 13. 

2. H. Pauly, in Atom-Molecule Collision Theory, edited by R. B. 

Bernstein (Plenum, New York, 1979) pp. 11-199. 

3. R. B. Gerber, M. Shapiro, U. Buck, and J. Schleusener, Phys. 

Rev. Lett. 41, 236 (1978). 

4. Excimer Lasers, edited by Ch. K. Rhodes (Springer-Verlag, Berlin, 

New York, 1979). 

5. J. L. Kinsey, Ann. Rev. Phys. Chem. 28_, 349 (1977). 

6. D. L. Levy, Ann. Rev. Phys. Chem. 3_1, 197 (1980). 

7. Dennis C. Hartman, Ph. D. Dissertation, University of California, 

1979. 

8. D. C. Hartman and J. S. Winn, J. Chem. Phys. 7^, 4320 (1981). 

9. K. V. Subbaram, J. A. Coxon, and W, E. Jones, Can. J. Phys. 5_3_, 

2016 (1975). 

10. K. V. Subbaram, J. A. Coxon, and W. E. Jones, Can. J. Chem. 54, 

1535 (1976). 

11. J. A. Coxon, W. E. Jones, and K. V, Subbaram, Can. J. Chem. 55, 

254 (1977). 

12. R. J. LeRoy and tf.-H. Lam, Chem. Phys. Lett. _7_i> 544 (1980). 

13. J. W. Cooley, Math. Computation 15, 363 (1961); J. K. Cashion, 

J. Chem. Phys. 39, 1872 (1963). 

14. J. Tellinghuisen, J. Quant. Spec. Radiat. Transfer 19, 149 (1976). 

15. C. E. Moore, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 35 

(1971). 



130 

16. J. H. Goble, D. C. Hartman, and J. S. Winn, J. Chem. Phys. b7_, 

4206 (1977). 

17. J. A. Coxon, tf. E. Jones, and K. 7. Subbaram, Can. J. Chem. 53, 

2321 (1975). 

18. C. Zener, Phys. Rev. 37_, 556 (1931). 

19. R. E. Olson and B. Liu, Chem. Phys. Lutt. 5J_, 537 (1978). 

20. I. Dabrowski and G. Herzberg, J. Mol. Spectrosc. T3_, 183 (1978). 

21. A. Gallagher in ref. 4, pp. 135-174. 

22. R. Ahmad-Bitar, W. P. Lapatovich, D. E. Pritchard, and I. Renhorn, 

Phys. Rev. Lett. J39, 1657 (1977). 

23. R. E. Smalley, D. A. Auerbach, P. S. H. Fitch, D. H. Levy, and 

L. Wharton, J. Chem. Phys. bb_, 3778 (1977). 

24. R. Compargue, Rev. Sci. Instrum. 35_, 111 (1964); R. Compargue, 

J. Chem. Phys. 52, 1795 (1970); R. Compargue and A. Lebehot, in 

Rarefied Gas Dynamics. Pioc. Int. Symp. :2, Cll-1 (1974). 

25. J. H. Goble and J. S. Winn, J. Cbem. Phys. _7°.. 2051 (1979). 

26. W. P. Lapatovich, R. .'hmad-Bitar, P. E. Moskowitz, I. Renhorn, 

R. A. Gottscho, and D. E.Pritchard, J. Chem. Phys. 22.. 5419 (1980). 

27. R. A. Gottscho, R. Ahmad-Bitar, W. P. Lapatovich, I. Renhorn, 

and D. E. Pritchard, J. Chem. Phys. J5_, 2546 (1981). 

28. A. Dalgamo and W. D. Davidson, Adv. At. Mol. Phys. j2, 1 (1966); 

A. Dalgarno, Intermolecular Forces, edited by J. 0. Hirshfelder 

(Interscience, New York, 1967) pp. 143-166 (Vol. XII of Advances 

in Chemical Physics series). 

29. J. Tellinghuisen, A. Ragone, M. S. Kim, D. J. Auerbach, R. E. 

Smalley, L. Wharton, and D. H. Levy, J. Chem. Phys. 71, 1283 (1979). 



131 

30. G. York, R. Scheps, and A. Gallagher, J. Chem. Phys. j>3, 1052 
(1975). 

31. R. D. Saxon, R. E. Olson, and B. Liu, J. Chem. Phys. 6]_, 2692 

(1977). 
32. SAFLW estimated the separation of the B-state and the observed 

2 vibrational levels of the A DJ/J S C a t e t c vary between 80 and 
500 cm , to be compared with the 17-46 cm for NaNe. We 

therefore expect the B-state interaction/interference to be less 

for NaAr. 

33. R. Duren, W. Groger, E. Hasselbrink, and R. I.iedtke, J. Chem. Phys. 

74_, 6806 (1981). 

34. R. Duren and W. Groger, Chem. Phys. Lett. 5_6_, 67 (1978). 

35. He should point out that our statement in ref. 25 that 

a • 0.005588 cm for the p = 6 Thakkar (T II) was in error; 

the experimental ct of SAFLW must be used in order to generate 

the T II potential. We also note a calculation error in the vi

brational energies of the T I potential In Table IX of ref. 25. 

The correct values are given in Table XVIII. 

36. See ref. 1, pp. 204-205, pp. 589-596 and references therein. See 

also refs. 40 and 41 below. 

37. J. H. DyoondandB. J. Alder, J. Chem. Phys. M., 309 (1969). 

38. E. A. Colbourn and A. E. Douglas, J. Chem. Phys. 65_, 1741 (1976). 

39. J. M. Parson, P. E. Siska, and Y. T. Lee, J. Chem. Phys. 56_, 1511 

(1972). 

40. R. A. Aziz and H. H. Chen, J. Chem. Phys. &]_, 5713 (1977). 



41. A. Koide, W. J. Meath, and A. R. Allnatt, Mol. Phys. 39, 895 

(1980). 

42. J. A. Barker, R. A. Fisher, and R. 0. Watts, Mol. Phys. Zl, 657 

(1971). 

43. For a review, see E. B. Smith, Ann. Reports 6_3, 13 (1966); 

G. C. Maitland and E. B. Smith, Chem. Soc. Reviews 1_, 181 (1973). 

44. For a discussion of standard deviations in a least-squares fit 

see D. L. Albritton, A. L. Schmeltekopf, and R. N. Zare, 

Molecular Spectroscopy: Modern Research, Vol. II. K. Narahari Rao, 

Ed. (Academic Press, N.Y., 1976) pp. 1-67 or A. A. Clifford, 

Multivariate Error Analysis (Applied Science Publiahars LTD, 

London, 1973). 

45. R. W.Bickes, Jr., and R. B. Bernstein, Chem. Phys. Lett. 26_, 457 

(1974); J. Chem. Phys. 66, 2408 (1977). 

46. D. A. McQuarrie, Statistical Mechanics (Harper and Row, N.V., 

1976), p. 242. 

47. J. M. H. Levelt Sengers, M. Klein, and J. S. Gallagher, AIP 

Handbook (McGraw-Hill, N.Y., 1972). 

48. Not shown is the nominal Huffaker potential. Although its failure 

here is not as catastrophic as with previous weakly bound mole

cules (D » 91.3±11.4 cm ), we do not expect much more improve

ment in this potential due to its long-range behavior, or rather 

lack thereof. Its plot can be reviewed and compared with the 

nominal Thakkar on the microfiche. 

49. S. D. Colgate, J. E. Jordan, I. Amdur, and E. A. Mason, J. Chem. 

Phys. 5_1, 968 (1969). 



133 

50. K. K. Docken and T. P. Schafer, J. Hoi. Spectrosc. 46, 454 (1973). 

51. This seems to cast further aspersions on the Y,. expansion, but 

generating a new set of Y.-'s with the new B- does not markedly 

change the nominal Thakkar. 

52. a) Karl A. Gingerich, Faraday Symposia #14, Diatomic Metals and 

Metallic Clusters, (Royal Society of Chemistry, London, 1980), 

pp. 109-125; b) L. Brewer and J. S. Winn, ibid., pp. 126-134; 

c) A. R. Miedema ibid., pp. 135-148. 

53. C. Kittel, Introduction to Solid State Physics. 5th edition 

(Wiley, New York, 1976) pp. 30-38. 

54. F. A. Cotton and G. Wilkerson, F. R. S., Advanced Inorganic Chem

istry, 3rd edition (Interscience, New York, 1972) p.206. 

55. W. J. Balfour and A. E. Douglas, Can. J. Phys. ̂ 8_, 901 (1970). 

56. K. C. Li and W. C. Stwalley, J. Chem. Phys. 5_9_, 4423 (1973). 

57. H. Scheingraber and C. R. Vidal, J. Chem. Phys. 66_, 3694 (1977). 

58. C. R. Vidal and H. Scheingraber, J. Mol. Spectrosc. 65_, 46 (1977). 

59. J. Wyss, Ph.D. dissertation, University of Cs.'ifornia at Santa 

Barbara, 1978; J. Chem. Phys. 2ii 2 9 4 ' (1979). 

60. C. R. Vidal, J. Chem. Phys. 7_2_, 1864 (1980). 

61. K. Sakurai and H. P. Broida, J. Chem. Phys. 65_, 1138 (1976). 

62. P. P. Liao, private communication, 1977. 

63. What remains to be determined is the identity of the carrier of 

Wyss' red system. His determined molecular constants (D- * 

2075 cm and fc> * 73 cm ) do not correspond to any any chemically 

bound calcium impurity. This appears to be due to a weakly bound 

system and warrants further study. 



134 

64. A. Thakkar, J. Chem. Phys. 62, 1693 (1975). 

65. J. S. Winn, Ace. Chem. Res. _14, 341 (1981). 

66. T. Bergeman and P. F. Hao, J. Chem. Phys. 22.. 8 ° 6 (1980). 

67. R. 0. Jones, J. Chem. Phys. 71.> 1300 (1979). 

68. A. Miedema and J. W. F. Dorleijn, Phil. Mag. B. ̂ 3_, 251 (1981). 

59. R. A. Chiles and C. E. Dykstra, J. Chem. Phys. 7±, 4544 (1981). 

70. B. Liu and A. D. McLean, J. Chem. Phys. _72> 3418 (1980). 

71. B. Liu, private communication, 1980. 

72. L. N. Shabanova, Opt. Spectrosc. 27_, 205 (1969). Employing the 

"American" oscillator strengths of W. L. Wiese, M. W. Smith, and 

B. M. Miles, Natl. Bur. Stand. U.S. Circ. J2_ (1969), we obtain 
6 1 °6 a C, of 0.925 10 cm" A , so that the theoretical value is 

well within the "error bounds". 

73. G. Herzberg, Spectra of Diatomic Molecules. 2nd edition (Van 

Nostrand, New York, 1950) pp. 357-358. 

74. Ref. 54, pp. 206-209. 

75. J. M. Brom, Jr., W. D. Hewett, Jr., and W. Weltner, Jr., 

J. Chem. Phys. 62, 3122 (1975). 

76. Ref. 73, pp. 175-192. 

77. N. Aslund, J. Mol. Spectrosc. ̂ 0, 424 (1974). 

78. A. A. Clifford, ref. 44. 

79. H. Hellmann, EinfUhrung in die Quantenchemie (Deuticke, Leipzig, 

1937) p. 285; R. P. Feynman, Phys. Rev. 56_, 340 (1939); see also 

I. N. Levine, Quantum Chemistry. 2nd edition (Allyn and Bacon, 

Boston, 1974) pp. 371-374. 



135 

80. We have investigated the error of the energy in terms of the 

theoretical Numerov error at the "matchpoint" (see Appendix II) 

and found that the iteration uncertainty in the energy is due to 

the accumulation of the error in the computed vave function. 

Since the signs of the error change at different points along 

the potential, the accumulated error may cancel. Generally, 

we find the actual error- of integrated quantities such as B 

to depend more on the number of grid points. 

81. J. S. Winn, J. Chem. Phys, 2i» 6 0 8 (1981). 

82. J. H. Goble and J. S. Winn, J. Chem. Phys. 7p_, 2058 (1979). 



Table I. Molecular constants for BeAr 

136 

e e 
a) y e ' e 
A 

e 
B 
e 

a 
e 

105Y 

r- (A) 

x 2 r + 
A 2 H 

r 
0 24576.5 

362.7 5 8 3 . 2 b 

8.92 6 . 7 0 b 

0.033 -
- 42.68 

0.5271 0.6124 

0.0145 0.0089 

6.5 -
2.0855 1.9348 

Values in wave numbers (cm ) , Ref. 10 . 

Value corrected from a calculation error in Ref. 10. 
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a 2 + + Table II. Dunham coefficients for X I BeAr . 

a Q 62445. cm_1(18) 

a.± -4.156 (22) 

a 2 10.31 (22) 

a 3 -14.2 (16) 

a 4 -39. (18) 

Numbers in parenthesis are one standard deviation corresponding 

to the last digits of each coefficient. 

Table HI. Huffaker, SPF, Thakkar, and PA coefficients for 
2 + + n BeAr 

Huffaker SPF Thakkar PA [3,3] 

p - 4.156(22) b Q = 62445.(18) p = 3.1*6(22) f =» 62445. 

cQ= 3615.(38) b - -2.156(22) eQ= 6267.5(864) f 2 - -97.70 

o = 19.92(15) b 2 = 0.843(162) e » 0 gx = -93.5 

c2= 0.013(7) b 3 = 6.11(92) e 2 - -0.115(13) g 2 - -399. 

c 3 =0.079(9) b 4 = -43.4(6.5) e 3 = 0.0661(215) s 3 = -680. 

ĉ  - -0.047(10) e 4 - -0.227(29) 

lumbers in parenthesis are one standard deviation corresponding 

to the last digits of each coefficient, c , b , e , and f, are in " o' o' o 1 
wave numbers. 
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Table IV. Potential function eigenvalues (cm- ) as E
c a l c

- E
 b 

2 + + for the lowest vibrational states of X £ BeAr 

v 0 1 2 3 4 

E . 179.19 524.17 851.61 1161.67 1454.58 

Thakkar -0.02 -0.03 -0.02 0.08 0.31 

nuffaker -0.02 -0.03 -0.10 -0.29 -0.76 
„ -4 Exp -0.22 -1.94 -5.31 -10.22 -16.58 

SPF(4,0,ia -0.03 -0.26 -1.65 -6.44 -18.65 

SPF(3,1) 0.09 0.78 2.97 7.89 16.74 

' SPF(4,1) -0.03 -0.19 -1.18 -4.50 -13.12 

SPF(3,2) 0.08 0.67 2.52 6.58 13.76 

SPF(4,2) -0.03 -0.14 -0.82 -3.07 -8.74 

SPF(3,3) 0.07 0.58 2.17 5.60 11.56 

SPF(r.e) -0.02 -0.10 -0.56 -2.04 -5.67 

SPF(3,4) 0.06 0.51 1.89 4.83 9.87 

SPF(4,4) -0.02 -0.07 -0.37 -1.29 -3.51 

SPF(n,m) means terms through b (Table III) plus m constraints 

were used. 
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Table V. Theoretical and fitted 6 parameters for Be ii and BeKr . 

Zener Formula Fitted from Spectroscopic Constants 

BeAr+ X h + 4.220 4.186 

A ^ 3.968 4.069 

BeKr+ X V " 4.103 4.083 

A2!! 3.851 3.795 

Ionization potentials used taken from James E. Hulwey, Inorganic 

Chemistry: Principles of Structure and Reactivity. (Harper and Row, 

New York, 1972), p. 46. 
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Table VI. Fundamental potential constants of BeEg 
(Rg - Rare gas). a 

State Molecule r D u T Ref. e e e e 
X Z Z + BeAr+ 2.0855 4537 362.7 0 b 

BeKr+ 2.2201 (5511) 367.14 0 c 

BeXe+ (2.4578) (6308) 367 0 d 

A 2n BeAr+ 1.9348 11888 583.27 24576.5 b 

BeKr+ 2.0674 (13656) 554.47 23782.14 c 

BeXe+ (2.3478)(14870) 545 22096 d 

Quantities in parenthesis calculated from model potential. 

K. V. Subbaram, J. A. Coxon, and W. E. Jones, Can. J. Physics, 
54, 1535 (1976). 

J. S. Coxon, W. E. Jones, and K. V. Subbaram, Can. J. Physics, 

55_, 254 (1977). 

J. A. Coxon, W. E. Jones, and K. V. Subbaram, Can. J. Physics, 

_53, 2321 (1975). 
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Table VII. Z-values of the model potential for ion molecules 

Involving rare gases. 

Molecule State Reference 

BeAr + X V 2.086 4537 363 1.289 1 

BeAr + A 2n 
r 

1.935 11889 583 1.884 1 

HeAr + x V 2.492 443 1546 1.201 2 

HeAr+ A 2 I t 2.990 106 - 8 3 a 0.952 2 

HeNe+ X V 1.300 6216 1308 1.469 3 

HeNe+ A 2n 
r 

2.319 347 ~184 b 1.081 3 

HeNe+ B V 2.648 364 153 1.069 3 

HHe+ x V 0.774 1645S 3228 1.299 4 

HNe+ xh+ 
0.996 18390 2896 1.512 5 

HAr+ x 2 r + 1.286 32720 2723 1.716 6 

HKr+ x V 1.419 38770 2561 1.886 5 

w x V 
u 

1.081 19914 1699 2.727 7 

N e 2

+ X V u 1.75 10740 510 3.051 8 

^Estimated from the Kratzer formula, w =4B IV , using the centrifugal 

distortion constant, P_, of reference 2. 

Estimated from AG(l/2) for HeNe of reference 3 and employing 

isotopic relations for AG(l/2) = w - 2u) x . 

References: 

1. This work. 

2. R. E. Olson and B. Liu, Chem. Phys. Lett. _56_, 537 £1978). 

3. I. Dabrowski and G. Herzberg, J. Mol. Spectrosc. 21» 1 8 3 (1978). 
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Table VII. (continued) 

4. K. P. Huber and G. Herzberg, Constants of Diatomic Molecules. 

(Van Ifostrand, NY, 1979) pp. 300-301. 

5. P. Rosmus, E.-A. Reinsch, Z. Naturforsch. 35a. 1066 (1980). 

6. P. Rosnrds, Theor. Chim. Acta (Berlin) .51, 359 (1979). 

7. K. P. Huber and G. Herzberg, ibid., p. 298. 

8. K. P. Huber and G. Herzberg, ibid., pp. 451-453. 
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Table VIII. Dunham and Thakkar expansion coefficients for the X 
4 -f3 

and B states of HeNe 

Dunham Thakkar 

i ai ei 
X State 

0 14262.05 cm"1 6608.82 cm'1 

1 -5.645 p - 4.6455 
2 20.945 0.0219 

3 -70.565 -0.0602 

4 293.907 

B State 

0.0568 

0 8101.96 cm"1 417.36 cm - 1 

1 -5.406 p - 4.4060 

2 16.431 -0.1246 

3 -25.378 0.0122 

4 -50.600 -C.0042 

vibrational and rotational ^ . j * 3 from Dabrowski and Herzberg, 
Ref. 20. 
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Table XX. Vibrational irtervals and rotational constants of 
4 + HeNe and differences calculated from the Thakkar 

potential 

AG(v+l/2) 

(cm ) 

o(Thakkar) 

(cm - 1) (cm'1) 

S(Thakkar) 

(cm ) 

X State 
6 341.59 43.79 1.58983 0.10341 

7 233.42 66.95 1.35755 0.13629 

8 146.27 80.62 1.09037 0.20589 

9 0.8431 

B State 

0.2584 

0 112.46 2.08 0.67529 0.08183 

1 78.09 0.65 0.57898 0.00182 

2 49.72 1.47 0.47463 0.00360 

3 28.64 1.93 0.3644 

0.2614 

0.0107 

0.0123 

Observed values from I. Dabrowski and G. Herzberg, Ref. 20. 
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v AG(v+ l /2 r <S(Thakkar) 

/ - I N (cm ) 

3 15.33 0.11 

4 10.25 0.13 

5 6.37 0.10 

a Observed val ' . es -rom ALPR, 

6(Thakkar) same as defined 

B a S(Thakkar) 
i "IN (cm ) 

0.13068 -0.00032 

0.10480 0.00144 

0.08230 0.00065 

0.05826 0.00281 

:. 22. 

Chapter II. 
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2 Table XI. NaNe A II,,, mechanical constants, Ihakkar potential 

parameters, and RKR potential. Energies are In cm ; 

distances are in A. 

This work Ref. 27 
B - 0.216308 e 
a - 0.02464 
e 

Y - 5X10"5 

'e 
u ' 47.6 
e 

d) x =5.24 e e 
(i) y - 0.2 e'e 
R = 2.6955 

e Q - 150.07 

p - 4.184 

e, - o. 

2.1314x10 -3 

1.442x10 

-1.904x10 

-2 

D - 149.70 

118 .8 

4 .532 

0 .127 

2 80900x10 

-2 40327x10 

8.465427x10' 

144 4 

,-3 

0 2.49517 3.03620 22.655 

1 2.39854 3.43327 60.425 

2 2.35025 3.84439 89.515 

3 2.31986 4.32583 111.125 

4 2.29981 4.92757 126.455 

5 2.28938 5.72353 136.705 
6 2.29623 6.83467 143.075 
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Table XII. Mechanical i n s t a n t s of the NaAr ATI s l a t e s . a 

Energies are in cm ; distances are in A. 

k\n 
Be 0.136656 

Gl 
e 

0.006721 

u e 80.897 

e e 3.661 

0) y 0.0365 

U) Z 
e e 

8.75X10"4 

k\n 
0..'36656 

0.C06721 

80.720 

3.859 

0.0606 

2.9074 2.9074 

"Ret.. 29. 

2 Table XIII. Thakkar potential constants for the HaAr A II states. 

k \ / 2 A\/2 

e 0(cm" L) 510.481 508.794 

4.839 

8.3948X10 - 2 

-8.7053*10 - 2 

p 4.841 

e7 0.12587 

e3 -3.380*10~ 2 

e4 3.500X10"2 

e5 -1.797X10" 2 

e6 1.175xl0"2 
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Table XIV. Experimental* AG(v+l/2)'s for the NaAr ATI states 

and calculation differences. 6" * calculated-experimental. 

Values in cm . 

A \ / 2 A 2n 
A i l 3 / 2 

V AG(v+l/2) 6 iG(v+l /2 ) 6 

7 31 .130(19) b 0.204 30.635(25) -0.177 

8 26.429(19) 0.231 26.006(13) -0 .184 

9 22.136(12) 0.227 21.747(20) -0 .263 

10 18.272(16) 0.178 - -
Values from Ref. 23 
Numbers tn parenthesis refer to experimental uncertainty in last two 
digits. 

a 2 
Table XV. Experimental B 's for the NaAr A II states and calculated 

differences. Values in cm . 

A l / 2 A 2 n 3 / 2 

V B 
V 

O-10* B 
V 

o-10 4 

7 0.086019(39) 3.0 0.086511(45) -4 .2 

8 0.079287(35) .'i.2 0.079759(30) - 4 . 8 

9 0.072579(23) c 0.072921(26) - 4 . 8 

10 0.065942(24) c 0.06630(37) - 7 . 0 

11 0.059253(83) c - -

* References and notes as in Table XIV. 
Values not calculated. 
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—1 2 + 
Table XVI. Spectroscopic constants (in cm ) for the X 2 

state of NaAra 

13.557 B - 0.046372 
e 

1.155 a - 0.003856 

aRef. 29. 
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Table XVII. Comparison of experimental B rs and G-(vVs (In cm" ) 
with those calculated from several model potentials. 

Thakkar 
p-6 

TRKASWL* DG b Experimental 
Bv 

0 0.044284 0.044522 0.042761 0.044442(18) 

1 0.39797 0.040518 0.038473 0.040585(64) 

2 0.034768 0.036017 0.034366 

3 0.029185 0.030798 0.029326 

4 0.023005 0.024374 0.024027 

G0(v) . Gv--Go 
1 11.189 11. JM 11.013 11.183(147) 

2 19.894 20.149 20.264 20.329(315) 

3 26.190 26.889 27.339 26.740(623) 
4 30.296 31.404 32.169 31.400(794) 

From the Morse potential of ref. 29. 

From the potential of ref. 34. 

Numbers in parenthesis correspond to the uncertainty of the last 

digits. 



Table XVIII. Thakkar constants for potentials fitted to D n and D. 
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TI Til Till TIV 

e0(.cm"h 60.358 28.744 60.358 31.399 
p 4.3131 6 4.3264 6 
e. 0 0.30991 0 0.27873 
e, -0.30868 0,33424 -0.32445 0.01992 
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Table XIX. Spectroscopic constants (in cm"* ) derived from the 

four Thakkar functions fit to D n and D . 

Quantity Experimental TI Til Till TIV 

B0 0.044443 0.04449 0.04429 0.04455 0.04442 

Bl 0.040593 0.04082 0.03985 0.03995 0.04005 

AG 11.2613 

11.247b 

11.239 11.452 11.441 11.580 

D0 33.941b 34.991 34.841 34.045 33.948 

Dl 22.694b 23.752 23.389 22.604 22.368 

D 
e 

40.430b 41.727 41.511 40.775 40.776 

^rora SAFLW, ref. 23. 
bFrom TRKASWL, ref. 29. 
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Table XX. Nominal Thakkar potential constants for Ar,. The 
uncertainties relate to the final digits of the 
respective constants. 

R - 3.7576(50) A 

B » 0,0597676 cm - 1 

e 
4) - 31.22802 cm - 1 

e 

e Q - 134.12(10.90) cm"1 

p * 5.515(152) 

e 2 » -0.2045(555) 

e 3 - -0.0888(156) 

e^ 0.1059(303) 

.0 - 108.99(19.72) cm - 1 



Table XXI. Eieflned Thakkar potent ia l constants fur Ar. 

R " 3.758 A 
e 

e . - 140.38 cm' 

p « 5.62 

e 2 - -0.235 

e 3 = -0 .07 

e, - 0.02 
4 

D - 100.37 cm" 
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Table XXII. Vibrational energy levels, C , and rotational constants, 

S , for various Ar 2 potentials. All values are In cm 

G 
v 

V 
Nominal 
Thakkar 

Refined 
Thakkar CD a MSVIII b 

0 14 .87 15 .41 14 .80 14 .58 

1 40 .58 41, .92 40 .53 40 .07 

2 61 .09 62, .58 60. .94 60, .21 

3 76, .93 77. .82 76, .55 75, .28 

4 88, .74 88. .27 87.46 85. .91 

5 97. .16 94. 79 94. .24 92. .59 

6 102. ,81 98. 35 97. .85 96. .14 

7 106. .26 99. 91 99. ,28 97. ,55 

8 108. ,09 100. 35 ' c c 

B v 

0.057778 0.057795 0.057777 0.057758 

0.053379 0.053439 0.053359 0.053491 

0.048507 0.048351 0.048467 0.048329 

0.043279 0.042486 0.042841 0.042718 

0.037779 0.035872 0.036400 0.036267 

0.032053 0.028623 0.028904 0.028870 

0.026127 0.020919 0.020740 0.020706 

0.020025 0.012935 0.011789 0.011709 

0.013795 0.004812 0.001370 0.001225 
a) Colbouni and Douglas potential of Ref. 38. b) Scattering potential 
of Ref. 39. See also Docken and Schafer, Ref. 50. c) v=8 is bound 
by less than 0.001 cm" 1. 
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Table XXIII. Thakkar and Huffaker potential constants for 

Mg_ X Z . Standard deviations In parenthesis 

refer to last two digits. 

Thakkar 

e Q - 545.6(2.9) cm" 

p - 3.5897(95) 

e 2 - 0.0620(48) 

e 3 - 0.0777(92) 
e, - -0.119(13) 4 
e s = -0.104(20) 

e, - 0.052(25) 

Huffaker 

c Q - 333.7(1.4) cm 

p - 4.5897(95) 

c 2 - 0.1106(29) 

c 3 - 0.0837(44) 

c 4 * -0.0039(50) 

c 5 - 0.0076(65) 

c g - 0.0320(59) 

-1 

528.7(42.2) cm" 410.5(9.9) cm" 

Experimental values : D - 430±1 cm . r « 3.88941(15)A 

aFrom ref. 58. 



Table XXIV. Thakkar and Huffaker potential constants for Ca, 

xV. Standard deviations the same as Table XXIII. 
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Thakkar 
1812.74(.S2) cm 

3 * 3.55688(51) 

h -0.25518(31) 

*3 = -0.39506(33) 

: 4 ' 0.43595(45) 

! 5 = 1.0613(75) 

!6 " -1.14370(96) 

Huffaker 

c 0 ' 1104.43(.25) 

P - 4.55688(51) 

c 2 " -0.0823(17) 

c 3 " -0.14104(15) 

c 4 - 0.17448(15) 

c 5 " 0.2864(22) 

c 6 = -0.2343(22) 

D - 1274.9(33.3) cm -1 D - 1108.0(5.6) 

Experimental values : D - 1095±0.5 c m . r = 4.2785227(46)A. 

'From ref. 60. 
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XXV. Vibrational levels and rotational constants derived from 

Liu and McLean's Be, potential. 

G (cm"1) 
V 

Bv(cm"1) 

116.690 0.58280 

318.931 0.53413 

471.892 0.46928 

573.119 0.39008 

638.876 0.32999 

689.913 0.28901 

732.182 0.25333 

765.752 0.21453 

790.312 0.17241 

805.787 0.12321 

812.567 0.06611 
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FIGURE CAPTIONS 

Fig. 1. Thafckar, Huffaker, SPF, and Dunham potentials for BeAr . 

Tie lines connect the RKR turning points of the first 

five vibrational levels. The heavy solid tine indicates 

those regions where two or more potentials are superposed. 

Fig. 2. Log - 'log plot of the long range behavior of the Thakkar 

and Huffaker potentials of BeAr . The dashed lines bound 

the range of the Thakkar potential when varied over the 

experimental uncertainties of the molecular constants. 

The straight line labeled "ion-inducad dipole" is for the 
-4 "pure" r interaction discussed in the text. 

2 + + 
Fig. 3. The X I state of HeNe . Solid line is the Thakkar function, 

dashed is that of Huffaker. Horizontal bars are the RKR 

tie line-. 

2 + + 
Fig. 4. The li Z state of HeNe . Assignment of lines are the same 

as in Fig. 3. 

Fig. 5, Log - log plot of the long-range potentials of the B state 

of HeNe . The up; x line is the Thakkar function, the 
-4 lower line is for a pure" r potential. The heavy dots 

are the outer turning points of the RKR curve. 



Potential functions and RKR tie lines for the A II3/2 

state of NaAr. The potentials are Thakkar( ), 

Huffaker( ), Dunahm ( ), and SPF (— - . -) . 

Vibrational levels are the horizontal, RKR tie lines. 

Note that the Huffaker potential was constructed from 

data on v' • 7-10, but it does not have these levels 

bound. 

2 + 
Some potential functions for the X £ state of NaAr. 
The potentials illustrated are the p = 6 Thakkar (—) 
the TRKASWL's Morse (••-•), and Duren and Grog-.r's 
potential < ). The dissociation energy (long horizontal 

line) as well as the Y 's used to calculate the RKR tie 

lines are from TRKASWL. Note that even the standard RKR 

procedure does not produce a reliable potential towards 

the top of the well. 

Calculated elastic differential cross sections for Ar 

compared to the measurement of Ref. 39. Curve (a) is 

calculated using the MSV III potential; curve (b), the 

nominal Thakkar potential; curve (c), the refined Thakkar 

potential. 

Deviations of calculated second virial coefficients for Ar 

from the measurements of Ref. 47. Curves are for the CD 
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potential ( ), Che MSV III (•••). the nominal ( ) 

and refined (-•-) Thakkar potentials. 

Fig. 10. Comparison of the CD potential ( ), Che MSV 111 

potential (•••), the nominal Thakkar potential ( ), 

and the refined Thakkar potenti.,l (-•-) for Ar,. Note 

the change in the ordinate scale ac 10 cm . 

Fig. 11. Potential functions for Mg_. The solid line is the RKE 

potential from Ref. 58. The analytic funccions fics are 

the Thakkar function (—) and Che Huffaker-Morse function 

( ) • 

Fig. 12. Pocencial funccions for Ca2- The solid line is the RKK 

potential from Ref. 60. The analytic functions are denoced 

as in Fig. 11. 

Fig. 13. Thakkar(- •--), Huffaker ( ), and the spline-interpolated 

ab initio potential of ref. 70 ( ) for Be . Note che 

abrupc change in convexity of Che theoretical potential at 

3.5 and 5 A . 

Fig. 14. Ab initio potential poincs(.) for Be, (from Ref. 70) compared 

Co a. Thakkar funccion fie Co Che well region (solid line) and 

the long-range tail (dashed line). 
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Chapter IV 

Laser Assisted Penning Ionization 

A. Introduction 

Absorption of light by colliding atomic and/or molecular 

species is hardly a new phenomena, as it is tbe source of pressure 

broadening of resonant absorption, and emission lines and collision-
2 induced absorption . What has generated much interest of late is 

the absorption of light, nonresonant with respect to the reactants, 

which changes the state of internal excitation of the products. 

The simplest of these processes is laser-induced energy 
3 4 transfer as studied by Harris and co-workers * for the Sr/Ca pair 

and by Cahuzak and Foschek for Eu/Sr. An e^amp1 » is the system: 

Sr(5p XP) + Ca + hv(4977 A) •*• Sr + Ca<4p2 is) 

2 1 1 ° 

where the 4p* S •*• 4s4p P emission is monitored at 5513 A. The 

unique point here is that the photon does not correspond to a 

resonant absorption of Ca or Sr, but makes up for the energy deficit 

for the St 5p P excitation and the Ca 4p2 s level. In effect, the 

photon is resonant with the transient "collisional complex" of 

Sr* and Ca, and the absorption is fairly broad (14 cm~ FWHM) due 

to the short lifetime of the pair as they pass by each other. 

Still other related phenomena are the laser-jssisted excitive 
-j. 4 6 charge transfer between Ca and Sr ' , collisional fluorescence 

* 4 7 between two Ba acorns ' and laser-assisted intermolecular energy 
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transfer between CO in the ground state and another CO in the 

v « 5 level of the A Tl state to yield one CO in the B 2 + 

8 * 
state . He have already discussed photoassociation of Mg» and 
* 

Ca ? in the previous chapter and should also point out that photo-
* 9 

association of Hg„ has been observed . 

These absorption phenomena are not strictly limited to par

ticles that are passing in close proximity of each other; absorption 

and emission of light by a chemical transition state, or activated 

complex, have been observe Hering and co-workers note that 

absorption of the complex for K + HgBr„ opens up a new channel for 

chemllumlnescence of HgBr . Arrowsmith and colleagues have studied 

chemiluminescence ox the transition state from the F + Na„ reaction. 
12 Similar effects have also been observed for CI 4- Na 2 • Xhtre have 13 been theoretical speculations concerning the modification of other 

chemical reactions by radiation field effects on the transition 

state. 

The system we will bv. considering is more along the lines of 

the atom-atom energy transfer scheme, but a bit more interesting. 

We refer to the effects of light absorption on a Penning ionization 

collision. Penning ionization (Pgl) corresponds to the transfer o£ 

electronic excitation energy from one species to another, leading 

to ionization of the Jatter: 

A* + B •*• A + B + + e" 
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A similar phenomenon is associative ionization (AI), where the 

colliding species "stick" to form a molecular ion: 

14 Niehaus has recently reviewed the Pgl phenomena. 

To date, Weiner and co-workers have recently observed 

laser-assisted Fgl and AI in collisions of two Li and in two 

Na atoms, where the excitation energy is in the 2p and 3p levels, 

respectively. The two excited atoms together do not possess 

enough energy to ionize one of their kind, so the energy deficit 

must be made up by photon absorption during collision. The processes 

of laser-assisted and -enhanced collisional ionization have gener

ated much theoretical interest and speculation, ranging from the 

perturbation treatments of Geltman , o£ Weiner , and of Nayfeh 
18 and Payne to the full-blown second-quantization calculations o± 

13 19 20 George and co-workers * . What we find intriguing is 

George's prediction that the ionization collisional cross section 

should be enhanced by the presence of the radiatiun field. 

These reactions may be more than just a theoretical curiosity. 

Energy transfer and ionization in the presence of a high intensity 

radiation field are of importance in laser-produced plasmas, such 

as in welding or annealing processes, or in plasma-produced lasers, 

such as excimer or ion lasers. The field-enhanced collisional 

cross sections can be of considerable importance with respect to 

thcs ever-increasing energy densities used in inertial confinement 
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fusion experiments. 

We believe we have observed just such an effect in the system 

we are to discuss. The field-free reaction. 

Ar('P 2) + Ca -»• Ar + Ca +(4p 2 P ) + e" 

21 22 has been previously studied in this laboratory by Hartman ' 
2 2 Monitoring the fluorescence intensity of the P3/9 a n (i pi/2 l ^ n e s 

e 

at 3934 and 3968 A, respectively, Hartman found a 5:1 propensity 

for excitive Penning ionization of the J * 3/2 state. This could 

be rationalized in terms of electronic angular momentum conserva-
23 

tion . He also determined absolute reaction rate constants of 
1.6*10 and 3.2X10 - 1 1 cm molecule" 1 sec" 1 for the J = 3/2 and 

2 
1/2 P levels, respectively, by comparing the intensities to that 

of the 7602 A emission of Kr from the known rate of energy transfer 
* 

from Ar to Kr. These rate constants yield thermally averaged 

cross sections of 28 and 5.5 A . Emission from the A ~H- state 

of CaAr by excitive AI was also observed and estimates of the well 

depths of the ground and excited states were made. 

We report here the first observation of a resonant, field-

modified excitive channel In this system. The new channel described 

here, 

Ar*( 3P°) + Ca + hv * Ar + Ca +(5p 2P) + e" 
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has beea discussed as a likely one for the study of field-modified 
24 collisional ionization . In this process, hv equals (approximately) 

if 2. + 

the energy difference between Ar and the 5p P state of Ca , as 

illustrated in Fig. 1. 

The new channel can be viewed as the excitive photoionizatiou 

of the (autoionizing) quasi molecule CaAr from a continuum state 

to an excited (and also unbound) state of CaAr that correlates to 

Ca+(5p P) + Ar( S). This state of Ca + has a radiative lifetime 

of 34 neec. It decays predominantly (80%) to the 5s level, which 
o 

subsequently decays to the 4p doublet at 3737 and 3706 A. These 
2 

latter emissionj determine the number of 5p P ions formed (see 

Fig. 1). 

What we expect from this view of the process is laser-excited 
* + 2 

fluorescence from the photoionization of CaAr to yield Ca (5s 5), 

whose energy threshold corresponds to a photon wavelength of 

12003 A. As the exciting radiation is scanned through shorter 

wavelengths, there should be a stepwise increase in fluorescence 

intensity at 5988 A and 5960 A as the thresholds of the 5p ^P-./2 

and "PQ/2 are, respectively,attained. What is in fact observed are 

resonances at these thresholds. We also estimate the laser-assisted 

collision cross section to be 250 times that of the field-free 

reaction. 
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B. Experimental 

Our experiment employs the flowing afterglow apparatus used 

by Hartman. Argon is passed through a CaSQ, drying tube and then 

through a liquid nitrogen trap to remove H,0. It is then passed 

through a 19 mm pyrex tube which encloses a hollow cathode discharge 

maintained at 275 V. The ions and excited states of argon recombine 
3 0 

and decay to Che ( P 2; 4s[3/2J2) state, which is stable with respect 
9 10 -3 

to radiative decay. This afterglow contains £a. 10 -10 cm meta-

stables in a one torr bath of argon. The metastables flow down the 

remaining 35 cm o£ the pyrex tube and into the interaction region at 
3 

a measured flow velocity of 7*10 cm/sec. 

The interaction region is a stainless steel cross, with six 

two inch diameter side arms, in which the target gas is introduced. 

In this case the target gas is atomic calcium produced in an oven 

beneath the cross. The calcium vapor is entrained in a second flow 

of argon, introduced from beneath the oven, bringing the Ca into the 14 3 cross at a density of greater than 10 atoms/cm anu producing P 
red-violet, conical flame at the mouth of the pyrex tube. The visible * 1 fluorescence is predominantly due to production of neutral Ca (4s4p P 

3 
and P) by various secondary processes such as ion-electron recombi
nation and excitation of neutral calcium by Penning electrons. After 
passing through the interaction region the flow proceeds through the 
foreline port of the cross, in line with the afterglow tube, and on 
to the 1000 £/min Welch 1375 mechanical pump. 

The calcium oven is a stainless steel crucible, 3/4" diameter 
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and 3" deep, which is radiatively heated by a surrounding foil 

heater. The heater is 0.010" tantalum foil about 10" long and 

around 3-1/2" wide, rolled lenghtwise into a cylinder. About 5" 

of this cylinder is cut lengthwise into six strips of equal width. 

The strips are bent out and down to form a concentric outer cylinder. 

The inner and outer cylinders are connected to two water-cooled cop

per bus lines that carry 400 amps of current at one volt a.c. poten

tial difference. The crucible rests inside the inner tantalum cylinder 

and can be heated to 800°C. The entire assembly is held in place 

inside a 3 liter stainless steel chamber which is bolted to the inter-
21 action cross. Further details of the apparatus are given by Hartman . 

The pulsed laser beam passes through the flame perpendicular to 

the axis of the pyrex tube. The laser .entrance port is Brewster angle 

window on a six inch sidearm, epoxied to a stainless steel flange. 

The "aperture" in the flange (actually a 1/8" NPT hole originally 

drilled through for a thermocouple gauge) proved to be a little small 

for the laser beam, so the beam is brought to a focus at the aperturfc 

by a 50 cm focal length lens. This leads to a 6.7 mm beam diameter 

in the flame region. After crossing the flame, the beam exits through 

a similar window arrangement and the average power is monitored by 

a Scientech power meter. 

Fluorescence from the flame is collected from the port directly 

above the flame and oven. The fluorescence first passes through a 

bandpass filter (Oriel G-774-4000) centered at 4000 A with a width 

of 8Q0 A. The light is then passed through a 0.25 meter Jarrell-Ash 



183 

O 

monochromator, centered at 3737 A, with the slits removed (aperture 

width of 12 mm). These measures effectively eliminate background 

radiation of the oven, scattered laser radiation, and most of the 

fluorescence from neutral calcium excitation. 

Since all six ports of the cross are employed, the preceding 

discussion may still be confusing. A block diagram of the experi

ment, illustrated in Fig. 2, should help. 

The filtered signal is detected by a cooled RCA C31034 photo-

multiplier, amplified by a fast discriminator (PAR 1120, 30 nsec 

ECL pulse width), and counted by both a gated Ortec 770 counter and 

an ungated Intel 8253 counter interfaced to a computer. The gated 

counter is enabled for 1 usee after a 10 nsec delay. The ungated 
+ 2 2 

counter monitors the background emission (Ca C4p ?o/?) "*" (4s S) at 

3934 A) which is responsible for 30% of the ?ated signal. Signal at 

each wavelength is accumulated for 1200 laser shots (2 min). 

The laser system used for this experiment was on loan from the 

San Francisco Laser Center. The second harmonic from a pulsed 

Quanta Ray DCR YAG laser (with amplifier) was used to pump Rhodamine 

101 in a Quanta Ray PDL-1 dye laser. This produced tunable radiation 
o 

in the region of 5975 A at 12 mJ per pulse with a pulse duration of 

around 10 nsec and a repetition rate of 10 Hz. There is a 20% atten

uation of the beam by reflection losses of all the optics used to 

channel the beam into the chamber. Including the losses and the es

timated beam diameter, we find a power density of 2.8*10 W/cm in 

the flame. 

The wavelength of the dye laser grating drive was calibrated to 



184 

0.05 A against atomic neon emission on a 1.5 meter Jobin-Yvon 

monochromator. For operation without an etalon, Quanta Ray specifies 
a bandwidth of 0.4 cm and we have found it to be less than our 

-1 instrumental bandwidth of 0.7 cm . 
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C. Signal Treatment and Results 

During the course of our two minute data collection interval, 

there is a very large background of (2-5) xlO counts. With the mono-

chromator set at 3737 A and an effective slit width of 12 ran, the 
o 

primary source of this background is the 3?34 A line from field-free 

excitive ionization. This background proves to be a mixed blessing. 

On the one hand, it is a monitor of the flame intensity, which varies 

with Ca concentration due to oven temperature fluctuations. On the 

other hand, with a gated counter duty cycle of 1*10 , it also con

tributes 20-50 events recorded by the Ortec counter. 

tn order to obtain a corrected signal, S, we must subtract 

the product of the background, B, and the duty cycle, D, from the 

number of gated counts, G. Since the signal is proportional to the 

calcium concentration, we correct for fluctuations by normalizing 
o 

with respect to the background. The 5975 A region is on the blue 

side of the Rhodamine 101 gain curve and we found the power to fall 

off rapidly. For a single-photon process we expect the signal to be 

proportional to the intensity, so we also divide the corrected signal 

by the monitored laser power, P. We finally derive the corrected, 

normalized signal, 

S - (G - DxB)/(BxP) 

The uncertainty, O(S), is the standard counting uncertainty, v'S", 

normalized with respect to background and laser power. 
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The.results of this data massaging are presented in Fig. 3. 

The signal level for this experiment is very low;, our largest signal 
a 

at 5958 A corresponds to 97 event, 1/3 of which Is background. The 

repeated scan in Fig. 3b is an indication of the reproducibility of 

the signal. Attempts to improve on the red band at 5989 A proved 

unsuccessful. 

Table I lists the observed resonances and their bandwidths, 

along with anticipated frequencies based on asymptotic energy dif-
2 

ferences. Although we list two maxima for the P-,/2 excitation, 

the statistics of the data do not warrant the resolution of this band 

into a doublet; we note the average position (16 691±5 cm ) paren

thetically in the Table. The maxima occur very close to the asymp-
2 -1 

totic predictions, with the P3/5 signal about 7 cm to the blue of 

its expected location. This shift is not exceptional, compared to 

the observed 68 cm blue shift of laser-assisted charge transfer . 

We were, of course, careful to ascertain that this signal oc

curred in the presence of both calcium and metastable argon. When 

either the discharge or the oven was off, no signal appeared on the 

gated counter. 
o 

Not shown in Fig. 3 is a very large signal at 6001 A due to two-

photon excitation of neutral Ca to the (4s5s S) level. Subsequent 
1 ° 

cascade to the (4s4p F) level produces a 4227 A signal which is 

so strong that, even though the line is outside the monochromator 

bandpass, scattered light produces signal orders of magnitude larger, 

even with 250 ji slits in place. We are fortunate that this absorption 

is out of the region of interest. 
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One further bugbear is the two-photon absorption of argon 

metastables to produce argon in the n » 15-20 Rydberg states. If 

this were to happen, a collisional ionization would produce an 

excited calcium ion which would ultimately cascade to the 5s level 

we monitor. These Rydberg levels bave not been observed to date, 

so we have computed the supposed resonances by quantum defect esti

mations (good to ±1 cm ). We do not find these resonances in Fig. 3 

and dismiss this mechanism. 
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D. Discussion 

We have estimated a 1C nsec delay to occur following the end 

of the laser excitation pulse. This is based upon the conversion of 

the photodiods pulse Co a TTL signal which controls the Ortec counter 

gate, which s.iould take >20 nsec. The transit time of the photo-

multiplier tube and the response time of the PAR ECL discriminator 

should he on the order of 10-15 nsec, giving a net delay difference 

of 5-10 nsec. This assignment of delay is critical because it is 
+ 2 conceivable that Ca (5s S) could be formed directly, with the excess 

energy of the photon going into Penning electron kinetic energy. 

Since the lifetime of this state is 5 nsec, any formed directly 

would have completely decayed before gated counting began. Similar 

lifetime arguments hold for laser enhancement of the 4p level. 
2 

Emissions from 4d D levels occur outside the bandpass of our filter-
2 monochromator. Thus our experiment would be sensitive to the 5p P 

cascade exclusively. 

The most remarkable feature of Fig, 3 is the apparent resonance 

behavior. This feature is worth some consideration. We should first 

point out that our experiment is sensitive only to the probability 
2 of ionization that leads to a 5p P excitation. Thus it is possible 

that the total laser-assisted ionization may be constant, for example, 

and we are only seeing a resonance in the branching ratio. 

Assuming that we are, in fact, seeing all of the laser-assisted 

processes through fluorescence detection, we note that the bandwidths 
-1 3c 

of 11-14 cm are characteristic of Harris1 fly-by time , or the 
duration of the collision. The fact that the resonances occur in very 
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2 2 close proximity to the expected wavelengths for the P,,- a n d p 3 / 2 

channels supports our premise that we are observing a collision 

complex absorption. 

Anoeher possibility which could explain the resonance effect 

is laser-assisted collisional energy transfer to an autoionizing 
2 + state of atomic calcium, which spontaneously ionizes to form 5p P Ci. 

Although autoionizing states of calciun have been studied through 
26 

photoionization of ground state Ca , the region of interest to us 

(910 A for photoionizatlon of the ground state) is yet to be studied. 

Thus the presence of these hypothetical autoionization states can 

neither be confirmed nor denied. The wavelengths of these resonances 

seem very fortuitous unless the autoionizing states are of the form 

5pnl, where nl corresponds to. a Rydberg level. Cooke and 
27 Gallagher have studied the 6p20s states of barium* and we note that 

the observed autoionizing linewidths of 3-11 cm could contribute to 

the broadening we see in our lines. 

We can take advantage of the fact that we are monitoring the 
field-free ion production in order to estimate a collisional cross 

section. Since our background is primarily due to the 3934 A line 
+ 2 from field-free Ca (4p Pr>/?) production, the ratio of the number of 

field-assisted events per laser shot to the average number of field-

free events per shot is proportional to the ratio of the field-

assisted cross section to the field free cross section (known to 
°2 be 28 A ). The average number of field-free collisions is found by 

multiplying the average background count rate by the 10 nsec duration 
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of the laser pulse. In this ratio we are neglecting a proportionality 

constant that accounts for a geometrical correction of the laser beam-
e 

flame intersection fraction and the efficiency of 3934 A transmission 

by the filter/monochromator arrangement. These two effects cancel one 

another, and we assume this factor to be close to unity, the ratio 

itself is 225*93, implying a field-assisted cross section of (6.3 

±2.6)*10 A at a power density of 10 W/cm , where the uncertainty 

is the standard deviation of four separate measurements. 

Although we are confident of the qualitative result that the 

field-assisted rate exceeds the field-free rates by a significant 

amount, we should be more circumspect of the exact magnitude. George 13 20 and co-workers * have indicated that long range radiative coupling 

between the two atoms should increase the PI cross section. Cross 
3 °2 

sections of 10 A have been reported for collisional energy trans-
3b h fer at hundreds of times higher power densities. At powers 

similar to ours, however, Weiner and co-workers ' find a PI cross 

section 0.1 A . The resonance structure is most likely the key to 

these very large cross sections. 

If the postulate for energy transfer to an autoionizing state 

of calcium is born out, we may have the necessary rationalization 

for our estimated cross section. The photon does not ionize the 

complex directly but rather excites it to a state that correlates 

to a relatively large, doubly excited calcium atom. Such a mechanism 

would put this system on the same footing as those studied by Harris 

and co-workers. 
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We present one other alternate interpretation which we would 

like to ignore, but as scientists must consider. Because of the 

numerous secondary processes occuring, such as ion-electron recombi

nation, there will be a small concentration of neutral calcium atoms 

in excited Rydberg levels. These levels can be excited to the auto-

ionization states mentioned in the previous paragraph through a two 

or three photon process. If this is the case, then our observations 

are not of a collisional photon absorption at all. This possibility 

can be tested by carefully monitoring our signal as a function of 

laser power. We have observed the 5958 A peak at two different power 

levels, and there appears to be very little power dependence in the 

net signal. Since ion-electron recombination is second order in 

metastable concentration, we can' determine the dependence of the signal 
* on [Ar ] by varying the current to the hollow cathcde discharge. 

Resolution of this question must await further experiments. 
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&. Theoretical Considerations 

Since part of the motivation of this experiment is inspired by 

theoretical speculations, it behooves us to at least outline the 

theory behind Penning ionization and consider the effects of the radi-
29 at ion field. We start with Miller's classical expression for the 

probability of ionization, or "opacity", P : 

P « 1 - exp{-2 
a 

dr rCrXUv^r))" 1} (1) 
r 0 

In this expression b is the classical impact parameter, TCr) is Che 

autoionizacion width, and v, is the classical velocity between the b 
two apt--oaching atoms with initial kinetic energy, E 

v b -^uEU-V^/E-Cb/rr) (2), 

where V^Cr) is the potential between the two atoms before 

Penning ionization, and r Q corresponds to the classical turning point, 

w • °-
The total ionization cross section, cr T f v r,, , can be found by 

integrating P. v'th respect to the area element, 27rbdb. The equivalent 

quantum mechanical evaluation can be made by substituting the relation 

<e+l/2)/k0 €3) 

k Q = h/ ( 2 u E ) I / 2 (4) 
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Co obtain the sum 

' 'TOTAL- ( 7 r / k o > I <?***?p£ (5). 

Since we are examining a system with more than one ionization 

channel, the above formulas must be modified. The auColonization 
14 width must be resolved into the Individual channels 

T(r) - Z±T±M (6). 

The expression for T.(r) can be obtained from the "Golden Rule" 

formula : 

rt(r) - 27rp.l<(t,|(/-E|xi>t2 C7), 

where X- is shorthand for the produce of the wave functions of the 

unbound Penning electron and the discrete electroni: states of the 

ion and ground state rare gas. H is the electronic Hamiltcnian, and 

£ is the total electronic energj of the , atoms in state 9 before 

the collision. If the wave functicn of the departing electron is 

normalized as that of a spherical Bessel function (i.e., has units 
7 1/2 of reciprocal length), then the density of states, p. = (8m /h~£ ) , 

where m and £. are the mass a.iid kinetic energy of the electron, 

respectively. 

In order to find the probability of producing channel î, we must 
• 2 9 

use the exoressxon : 
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Pfa(r) - (2ri(r)/avb(r))exp{- j dr'a^O/hv^r'))} * 

cosh { dr"(r(r")/hvb(r"))} (8). 

Integration of this expression with respect to r from r Q to infinity 

does not give the simple closed form of Eq. (1) since the argument 

of the hyperbolic cosine (the latter being called the "survival 

function" in the literature) is the total ionization width, whereas 

the factor is the width of the individual channel. Following the radial 

integration, the resultant P. is treated as before to obtain' the 

cross section of this individual channel, o*. 
14 Niehaus has discussed the problems of determining branching 

ratios, I\(r)/T(r)? from cross section ratios, concluding that doing 

so is not a good idea unless (1) the ratios do nor vary significantly 

with r and (2) the opacity function is much less than one. Moreover, 

we measure rate constants, or velocity averaged cross sections, and 
14 31 these latter quantities can show very- strong velocity dependences * 

Because of the convolutions and assumptions involved (assumption (2) 

is probably not valid in our case), we hesitate to determine dynamic, 

microscopic branching ratios from our measurements. 

Up to this point, we have only discussed field-free Penning 

ionization. For field-modified processes there are two elements in 

the Hamiltonian that couple the discrete electronic states of thrt 

colliding atoms to the ionization continuum of the products. Tho first 

is the electronic Hamiltonian itself, or the Coulombic coupling, which 
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is responsible for the field-free ionization as expressed in the 

ionization width of Eq. (7). The sscond interaction term is that 

of the atoms with the radiation field. This interaction is usually 

represented in the dipole approximation as -P'E, where E is the 
-*• oscillatory electric field and y is the dipole moment of the electrons 

_ -*• -*• - j -and nuclei A and B: -ei-r.+Z,er.+Zeer+,. i i A A B B 
The treatment of this process follows two schemes. The first is 

perturbation theory, and we will concentrate on John Weiner's work 

as an example. The other is the more elegant treatment by Bellum and 
13 19 George ' , which uses second-quantization treatment for the radiation 

field and a set of coupled-Channel equations for the actual collision 

dynamics (as opposed to the classical treatment presented here earlier). 

Since these methods are a bit sophisticated, we will only qualitatively 

discuss their results. 

Veiner considers laser-assisted collisional ionization relevant 

to his experiments (where field-free ionization does not occur; in 

terms of second order perturbation theory. The first order corresponds 

to laser excitation of the diatomic system from state 1 to state Z. It 

is important to note that state 2 is a discrete excited state, so 

that this process is a resonant transition. The second order pertur

bation is the coupling of state 2 to ionization continuum, i.e. 

Penning ionization. Using Miller's theory and the small opacity ap

proximation, he obtains the expression for the cross section. It is: 

cr - 4ir(y E/2hAw)2AB3exp(-b /B)(b /B+i)/hv (9), 
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rfhere hAui is the energy difference between state 2 and the molecular-

ion potential, v is an average velocity, and the autoxonization width 

is 

T(r) - A expC-r/B) (10), 

14 which has been shown to be a reasonable functional form. He chooses 
0 

a ,alue of 2 A for b Q ) which is a minimum impact parameter. Using 3 

Debye for the transition moment, ii12» and the Pgl parameters for the 
3 °2 

H/He( S) system, he finds a cross section of 0.10 A for a laser 
6 2 power of 10 W/cm . 

Bellura and George consider field-modified processes (i.e. where 

the system also ionizes under field-free conditions) as well as the 

field-assisted processes above (although resonance excitation is not 

necessary). They argue that the dipole coupling element, 

u(r) * «fr|]i|X> 01), 

should die off more slowly with increasing r than the field-free 

Coulombic matrix element. Their rationale is that the Coulombic term 

only becomes appreciable when the electron clouds of the two atoms 

start to overlap at close distances, whereas the above function may 

still be appreciable at larger separations. Although their arguments 

may be plausible, an ab initio calculation of Eq. (11) would be far 

more compelling. They report a numerical calculation of fi^ld-modified 
3 32 Pgl of Ar by He( S) , but Eq. (11) is purposely parameterized as a 
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function of r to support their qualitative conclusions. Moreover, 

the calculated field-modified cross sections are at best only 

comparable to the field-free processes, even for laser intensities 
9 2 

of 10 W/cm . The cross sections (or rather differential cross sec
tions as a function of emitted electron energy) appear in Fig. 4 of 

ref. 32. We estimate from this figure field-modifled cross section 
°2 of £ 1 A . 

It would seem that theory does not bear out the amount of enhance

ment seen in our experiment. This makes our alternate proposal of 

laser-assisted energy transfer to a discrete, autoionizing state of 
3 4 calcium seem somewhat more desirable. Harris and colleagues observe * 

collision cross sections comparable to the one we estimate, but 

theirs are for power densities of cm . Due to our ignorance 

of the autoionization states in this energy regime, this particular 

interpretation must remain only speculation. 
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F. Future Considerations 

There are several experimental improvements that could enhance 

the signal and make more reproducible and refined measurements pos

sible. One would be a collection lens that would focus the fluor

escence onto the monochromator slit. Care should be taken in the 

choice of the lens so that the magnification factor places the 

flame image within the slit size and that the angle of divergence 

following the slit matches the throughput, or f#, of the monochro

mator. This would permit better dispersion. Since the region being 

monitored lies in the ultraviolet, an RCA 8850 photomultiplier 

would be more appropriate, and less sensitive to oven background 

and scattered laser light, than the red-sensitive 31034. The ef-
2 

fective lifetime of the 5p P cascade is less that 100 nsec, so that 

either a faster discriminator or a gated integrated would be 

in order. The gate trigger used in this experiment had a minimum 

enable time of 1 usee. Clearly, a shorter gate time would signif

icantly reduce the background. 

Some of these modifications were employed in later attempts to 

reproduce the signal. These efforts were hampered by breakdown of 

the laser, oven, and photomultiplier tube (occurring consecutively 

in order to maximize frustration). To date, our best data are from 

our initial measurements. 

There are at least two other systems which lend themselves to 

study. Excitation at 5634 A of Sr in collision with Ar would lead 
2 to production of the 7s S ion state. This cascade is best observed 
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2 2 ° 
by monitoring the 6s S -*• 6p p„ ,„ line at 4305 A, which is also 

present in the field-free flaate. Absolute rate constants have not 

been measured for this system, but relative rate constants for the 

field-assisted reaction would be instructive. Another scheme in-
2 + ° * 

volvea excitation of the 3p P.. levels of Mg at 5759 A and 5729 A 
3 * 

during the collision of Mg with Kr( P„). Since Kr produces no 
excitive ionization of Mg, the appearance of the resonance lines 

Q 

at 2796 and 2803 A would present a clear-cut demonstration of the 

laser assisted process. The 3.7 nsec radiative lifetimes prohibit a 

counting system since a discriminator would only record one event 

per laser shot. 

In light of the results reported here, it would also be worth

while considering energy transfer to known autoionizing states of 

the alkaline earths. 
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G. Conclusion 

We have observed the opening of a new excltive Penning ioniza-

lon channel by laser excitation of the nascent ionization complex 
* 2 

of Ca and Ar . Cascade fluorescence from the 5p P states, unexcited 

in the field-free case, is monitored as a function of laser excitation 

wavelength. The excitation signal showed resonances at wavelengths 
2 2 

corresponding to the excitation of the P 1 .„ and P3/2 levels with 
2 

a small blue-shifting of the P3/9 resonance. 3 °2 A laser-assisted cross section of 6.7x10 A has been estimated 
from this work. While the magnitude of this cross section should be 

confirmed or adjusted through further work, there can be no question 

that the field-assisted reaction proceeds at a faster rate than the 
+ 2 

field-free production of Ca (4p P.). 
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Table I. Expected and observed transitions for laser-assisted 
excitative Penning ionization of calcium by metastable 

argon. (FWHM is full width at half maximum.) 

Y observed \J ob&erved v expected FWHM 

Ca state (A) ,(om~ ) (cm~ ) (cm- ) 

5p 2 P 1 / 2 5991,3988 16 687,16 695 16 695.19 5.6, 1.39 

(16 691±5) 

5p 2P,,, 5958 16 780 16 773.44 11.3 r3/2 
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FIGURE CAPTIONS 

Fig. 1. Energy level diagram for Ca + Ar relative to 
2 1 l Ca(4s S) + Ar( S). The dashed line locates the energy 
* 3 0 ° 

of Ar ( P„) . Wavelengths (in A) of the transitions are: 

(a) 5958, 5988; <b> 11 836, 11 947; (c) 3706, 3737; 

(d) 3934, 3968; (e) 3159, 3179, 3181. Energy level 

values are from Ref. 28. 

Fig. 2. Block diagram of flowing afterglow/laser excitation 

apparatus. A-argon flow, B-hollow cathode D.C. discharge, 

C-calciuta crucible (tantalum oven assembly not shown), 

©-exhaust to 1000 £/mir, pump, E-dye laser beam, F-power 

meter, G-fluorescence, H-bandpass filter, 1-0.25 meter 

monochroraator, J-cooled PMT, K-to counting instruments. 

+ 2 Fig. 3. Laser excitation spectrum of Ca (5p P) fluorescence 
* 

resulting from Ca + Ar + ho collisions, (a) Complete 

excitation spectrum. (b) Second scan of blue portion of 

spectrum to illustrate the degree of reproducibility. 

Error bars represent ± one standard deviation due to 

counting statistics. 



206 

E/eV 
ro OJ — O a> CO 1^ to 
• ~ • "~* ~— 1 i 1 l 1 i 1 1 

lO 

o TJ * T3 
IM <3" < IO 

+ 

a> 
a o 

Q_ a. a a. 
CM to t 

\ ^ r ^ - ' ^ o 
•o 

if) V) </> 
CM in 

i 1 ' 1 1 1 1 1 
o o o 

0) 
o 
CO 

o o 
<0 

o m 

( ,_u« E 0l) /3 



207 

- K 

XBL 824-8984 

Figure 2 



208 

T r -i 1 1 r 

(a) 

in 
c 

a> 
> 
93 

I I I »l 
H h H 1 K 

(b) 

• M * 0 I 
5940 5960 5980 

X ( A ) 
6000 

» l 8111-12«63 

Figure 3 



209 

APPENDIX I. 

This appendix provides "black box" directions for using the 

program DUNPOT to calculate the series potential coefficients. A 

sample set of control cards for use on the Lawrence Berkeley 

Laboratory's CDC 7600 computer is given, as well as a sample input 

deck. A listing of the program is also provided. 

Since the program was never annotated with any comment cards, 

the listing is pretty cryptic. The brief subroutine-by-subroutine 

descriptions that follow are in order. 

I. Main Program: 

DUNPOT (INPUT,OUTPUT,COKOUT,FILM,TAPE9,TAPE10) . 

This is the controlling program and reads all the input data. 

Except for the RKR result£, it .is also the source of all the data 

on the output and COFOUT files. COFOUT is a file of all the series 

potential parameters to be viewed as an abbreviated output of this 

program or to be used as an input file for other programs. FILM is 

the output file containing plotting information to be disposed to 

the appropriate plotting hardware. TAPE9 and TAPE10 are scratch 

files used by the BKY plotting software. 

The ordering of the Y 's in the array, YIJ(I) is in the manner 

outlined in Chapter II, Ue_. YIJ(1)-B , YIJ(2)*UJ , YIJ(3)*-w x e, aec. 

There are also two arrays, YNO(I) and YN1(I) containing the G and 

B expansions, respectively, that are used later by the RKR section. 

The arrays X(I),Y(I), and Z(I) contain Dunham's resolution of the Y. .'s 

into first order terms and higher order corrections. Z(I) is not used 
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by the program but is included in anticipation of future expansion. 

YTMP(t), XT(I), etc., are temporary arrays used in the error analysis. 

The Dunham coefficients are contained in the A(I) array, where 

A(l)-a0, A(2)-r , A<3)«a.,, sec. B<1), E(I), and C(I) refer to the 

SPF, Thakkar, and Huffaker potentials, respectively. The arrays in 

common block /ERRS1UF/ contain the Jacobians, variance matrices, and 

scratch arrays of differentials used in the error analysis. The min

imum number of a 's to be calculated is up to a, (there is no point 

in using the program for any fewer). The maximum number of a * s is 

up to a . "Extra" Y 's, up to Y.~ Q and Y„ ,, can be read in and 

used by the RKR section. 

The outputting of the potential coefficients is done by one of 

two sections, depending opon whether an error analysis was performed. 

The next two sections call the option RKR and plotting routine pack

ages. The last section writes out the potential parameters and RKR 

turning points, if calculated to the file COFODT. 

II. The a algorithm: 

SUBROUTINE KALKAN 

This is the workhorse of the program, iteratively calculating 
the a 's from the Y..'s. The maximum number of iterations is 30, n ij 
fewer if the sum of the relative changes of all the a 's is less than 

n -47 2 . The b ' s and e 's are calculated from a *s. The c 's are n n n n 
determined directly from the second-order-correctad Y 's using 

Huffaker's published relations (J, N. Huffaker, J. Chem. Phys. 6£, 

3175 (1976)). 
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III. Error Analysis: 

SUBROUTINE ERRANS 

This routine calculates the deivatives, i / Y 's, in order 
n ij 

to form the Jacobian, AJ(I,J). The numerical differentiation is 
—8 performed by adjusting the relative value of each Y by 1x10 

The a variance matrix, AV(I,J), is calculated frcss the Y . variance 

matrix by SUBROUTINE JVJ. AV(I,J) is then rescaled so that the a 

standard deviations lie on the diagonal and off-diagonal elements 

correspond to the correlation coefficients (See A. A. Clifford, 

ref. 44 of Chapter III, for dafinitions of the terms used here). 

IV. RKR Package: 

SUBROUTINE RKMSKR 

This set of routines uses the RKR algorithm suggested by 

M. E. Kaminsky, J. Chem. Phys. ̂ 6, 4951 (1977). The above subroutine 

prints out a table heading and coordinates the other routines. 

WMFTG determines v such that G =0. ABNK calculates some intermediate 
v 

coefficients and KMNSKI evaluates the f and g integrals and prints 

out the results. BLOCK DATA RKRQD contains the set of 50 Gaussian 

quadrature point pairs, in octal, used in the integral evaluation. 

Most likely the number of points used is a factor of 2-10 larger 

than necessary. 
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V. Plotting Package: 

SUBROUTINE PLOTPOT: 

The above routine calculates an array of points to be plotted 

for each of the series potentials and the RKR turning points. It 

employs FUNCTION VOFR to evaluate the potential for each value of r. 

The ordinate is scaled from - •=• D to 2-=- D and the abscissa for 0 to 
5 e 5 e 

5 r , where D is supplied from the input deck and r is determined 

by the program. The appropriate increments by which the abscissa 

and ordinate should be labelled are determined by SUBROUTINE TICKGEN. 

The actual plotting instructions are made by a series of calls 

to the BEY IDDS package, making this part of the program "site 

dependent". The program exploits one of the BKY features by deter

mining whether the plots are being made on a Tektronix interactive 

terminal and, if so, requesting interactive instructions from the 

terminal to determine the time of viewing. 
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A sample control card sequence for running on the CDC 7600 

and plotting on the Calcomp pen plotter would be as follows: 

(jobcard) 
$ID-password 
FETCHPS (JSWB, DUNPL0T.DDHPLT7) 
FETCHPS(GPACBN7,GPAC,CCBN) 
FETCHPS(IDDS,ULIB,ULIBX) 
LINK.X.F-DUNPLOT.F-GPAC.P-ULIi. 
RETURN,DUNPLOT,GPAC,ULIB,FTN4LIB. 
DISPOSE, FILM-PL. 
FETCHPS(JHG,COFISH,COFISH) 
COPY(COFISH,OF,NULL) 
C0PY(C0F0UT/RB,OR,COFISH) 
LIBRITE(JSW,C0FISH/RB,C0F'i;SH,395,W-[G0BLE]) 
EXIT. 
DUMP(O) 
FIN. 
END. 
(7/8/9 card) 
(datadeck) 
(6/7/8/9 card) 
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The following is a description of the input structure and a sample 

input deck. 

(TITLE(K),K-1,8) 
FORMftT(8A10) 

One card, or 80 characters, giving a label for the data set. 

(LITCHER(K),K-1,8) 
FORMAT (8A10) 

Another card of alphanumeric characters giving reference 

source for the Y.. data. The form is: First Author/Journal and 

Volume/Pg.No./Year/Y.. Status. Further details are given in 

Chapter II. 

RM.,RM2,Z1,Z2,DSUBE 
{Free format) 

The first two values are the atomic masses (in amu's), the 

atomic numbers, and the estimated dissociation energy in cm 

(for scaling the plot). 

(IFL(J),J=1,16) 
FORMAT(16I5) 

Various integers and flags for controlling the program. 

The purposes are: 

IFL(l) : Number of Dunham corrections calculated. Minimum is 2, 

maximum is 6. 

IFL(2) : Option flag for an error analysis. If IFL(2)=0, the 

Y..'s uncertainties are read and an error analysis 

performed. 
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IFL(2) Also controls printing options, which are: 

IFLC2) - 1 
- 2 

- 3 

Only a 's standard deviations are printed. 
The a fs correlation matrix is also printed. n 
Correlation and Jacobian matrices are printed. 

IFL(3) : Determines whether RKR turning points are computed or 

read in. 

IFLC3) < 0: Read in G v and the turning points for |IFL(3)| 

number of energies. 

- 0: No RKR turning points read in or computed. 

> 0: Calculate the RKR turning points for IFL(3) 

energies (maximum is 49). 

IFL(4): Number of turning points calculated for each vibrational 

level, .!.£• if IFL(4) * 3, turning points are calculated for 

each level and for two energies between each level. IFL(4) 

ignored if IFL(3) £ 0 . 

IFLC5): If > 0, a plot is produced. 

The remaining 11 integers are not used by the program at this time. 

I J YIJ(K) 
F0RMAT(4(2I2,E16.9)) 

No particular ordering of the Y,,'s is necessary. If a set 

of I,J, and YIJ is blank, the program skips that set and goes on 

to the next. When the last I,J,YIJ set is read in, the next I,J 

pair should be "-1-1" in order to terminate the input routine. 
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I J K L YV(M) (For IFL(2) > 0, only) 
F0RMAT(4(4I2,E12.5)) 

Data input needed to construct the Y.. variance matrix. 

If I-K and J-L, YV should be the standard deviation of Y . 

Otherwise, YV should be the correlation coefficient between 

Y T j and Y„. . As with the Y.. * s, order is not important. Data 

read-in is terminated by "-1-1-1-1" for I,J,K, and L. 

GRKR(K) ,RKR1(K),RKR2(K) (For IFL(3) < 0, only) 
FOKMAT(F10.3,2F10.7) 

These values are the G , inner and outer turning points 

to be read in. There should be |lFL(3)| levels. 

If a new data set is to be processed, repeat the above beginning 

with the title card. If no new data sets remain, add a card with 

"STOJ?" on it, with "S" in the first column. 



AR2/T0 A4/BEST OF NOMINAL REVISITED (ERROR WITH CORRELATION) 
COLBOURN, DOUGIAS/JCP 65/1741/76/N 
39.9623842 39.9623842 18. 18. 99.545 

4 3 6 0 1 
1 0 31.333584 2 0 -2.8994762 3 0 .058648148 0 0 
0 1 .059773839 1 1 -3.785 E-03 2 1 -3.0535714 E-04-1-1 
1 0 1 0 .1174310 2 0 2 0 .0456292 3 0 3 0 .0050164 1 0 
1 0 3 0 .937665 2 0 3 0 -.989455 
0 1 0 1 1.52616E-•04 1 1 1 1 1.19277E-04 2 1 2 1 1.93155E-05 0 1 
0 1 2 1 .769924 1 1 2 1 -.971625 - 1 - 1 - 1 - 1 

2 0 -.976687 

1 1 -.879247 



AR2/T0 A4/BEST OF NOMINAL REVISITED (ERROR WITH CORRELATION) 
COLBOURH, DOUGLAS/JCP 65/1741/76/N 

99.545 3.757579780737 39.9623842 39.9623842 18. 18. 
31.2280199187 .05976763028925 -.09070218154745 

1 6 7 
4.079O8605E-H13 3.75757978E4OC-6.51476496E+O0 2.07110471E+O1-2.17597211E+O1 

-1.26214542E+01 5.97676303E-02 
2 6 8 

4.07908605E+03 3.75757978E+O0-4.51476496E+O0 4.16675228E+00 2.59958778E+01 
2.55427624E+01 5.97676303E-O2 2.12890060E+05 

3 6 8 
1.34124727E+02 3.75757978E+O0 5.51476496E+O0-2.O4469944E-O1-8.876924O8E-02 
1.05850079E-01 5.97676303E-O2 1.08991215E+02 

4 6 9 
9.61092889E+01 3.75757978E+00 6.51476496E+O0-9.535O489OE-O2-1.93977773E-O2 
6.49804578E-C2 5.97676303E-O2 9.13261402E+01 6.15532391E+O0 

10 7 
14.859 3.5660978 4.0476667 
40.584 3.4676561 4.3791809 
61.038 3.4194167 4.7202768 
76.573 3.3915963 5.1252004 
87.540 3.3718093 5.6543510 
94.292 3.3394837 6.4519330 
99.545 0. 18.7878989 

STOP 
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FBOGmc CUkPOT <nF<.T .CUTFI !T > C0F0UT,F IU ' ,T»PE9,T»PEl» . 
1 T»FEl»:»PtT.T*FEJ=CUTFtT,T«FEl. iCOF0UTl 

COHI 'ON/Ol .NCOF/» ( l» l i3< l< l ) .E IH . l iC ( l l . l ,KDUN 
C C H H O N / R K P Y I J / Y K C d O . H G . Y N H l O . m . Y O C 
C C M P C * / r l J / T I J C l < . l , X l l l | , r ( l » l , Z l l l . l . T T I 1 P l l l . > . » T < l l > ) , Y T I l l i l , Z T « H i l 
CCHHCN/EFRSTUF/ 'J<] . *» I4: )<BJ l l U . l t ) • E J I l t > . l » l f C J I l t t l « l t 

1 JSV ( l t . l t ) , S V I I t . 1 ' ) .EV < 1 1 . I t ) . C V f i t . I t ) ,YV I I t , l t l . S e R T C I H l U . l t > . 
2 0« <lt) .CBClt),CE<lU>.OC(lt> 

INTEGER TITLE IE ) . I B F I t ) , j e F C t t . K B F I t ) . l . a F m i , I F l C i e - ) . N l i F F T U . e ) 
IKTEGEF LITCHERI9) 
PE«L HE. X9F(tI .RKRt (1051 .RKR2I102I .SPKR 1102) 
C»T* HE/ .0005USS19/ 
C»T» UHFHTU.K) iK=1.6>/ :0HDU:<HAP C3etlOHFFICI£.NTS . 

t fc*ltOH 1 / 
C*T« ( M ' F M T l 2 t « > . » ' I > S I / 1 0 H S I W a « - P 4 » ? . U ( ' - F I N U I ( CO.lOHEFFICIEItTS. 

1 10H AM) CSU9E.2M10H 1 / 
C»T» C M F N T C K ) .K=t.6>/1CHTFAKKAR C0.10HSFFICIEKTS.10H INC OSUtE. 

1 3M10 I - ) / 
CAT* RHFHT[U.K), IC=1.6>/10HMUFF*<E* Ct lOHaEFFICIENT. lOHS. CSUEE 1 . 

1 10HNC SIGH* , 2 ' t l O H ) / 
0»T» (M>FHT'5.KI.X>1.6)/10HOUNHSM CJEtlOHFFICIENT? , 1 0 H l f C STC CE. 

1 MFVIJT IOte . t2»(10H 1 / 
C*T» () .FFHT(e.K>.K = 1.6>/lJHSIHON-P*».R,10H-FIHt.A.N CO.10HEFF1CHNTS. 

1 10t-i CSLBE AN.10HC STC CEVI.IOHATIOKS / 
D»T* |M-FHT(7 ,K! ,IT:=1.6>/iaHTH«<»:«R SO. IQHEFFICIEhTS. lOH. D ' U S - M , 

1- lOf-0 STC OEVI . ICMTICNS .10H / 
C»T» I h C f H T I i t K I .K=1.61/:3HHIFFAKE* C. 10MOEFFIC tENT. lOHS. OSUSE. , 

1 10HSIGHA ANO .1CHSTC CEVIAT.lOHIONS / 
RSUbECX) = SORTICNVPT/RHl/X) 
CNVRT » e 6 2 . 6 1 7 6 » E . C 2 E 0 t f / < 8 . « ( 3 . 1 » 1 5 « e 5 3 S S « a M » 2 » 2 . M ? « t S 8 > 

H O t FORPATISA10) 
1005 FCRHATlthSTOP) 
1101 FORH«T 11615) 
I t O l FCPHATlt (212, E16 .91 ) 
tent FCRHATIt ( t I 2 , E12. :>> 
eaoi FCRHATUH,2CX.««II!I 
2002 F C R » > T ( 2 I X , 9 A I O > 
2 2 0 2 F O R H A T ( « I I X . I P E I S . E . ' X I I 
2 3 0 0 F C R H * T 0 2 C X . » T K E Y N 0 * S « / > 
2*00 FCRHATIZ/SOX-'ThE M l l " S » / > 
2U0S FORfAT ( 2 : 5 , 2 < 2 X , J P E 2 0 . 1 3 > ) 
2S00 F O R H A T ( I O ( K . I P E I 2 . 5 I > 
2525 FCRH«T(/ /11X*ATCHC HASSES. AT0HIC NUHEEK?, AHC EST1FATEC OISSCCIA 

1TIOK E(.ESGY"/> 
25J0 F C R H A T I / U X ' H l , P2, 4N0 It! ( IN 4MU"SI CCRRECTEC FOR ELECTRONS* P*S 

1 S E S V I 
2S50 FCRHAT(>/2CX,*Y0C » « . F l t . l O . / > 
2E00 FCRHAT(13(2X,Ft.6>> 
2T01 F 0 R H « T < / 1 X , • » • • • » URNIHGS H4XIHUH NUMBER OF OtHMH F«R*rtT£RS • 

18 AT T H i T I H E * * * * « * > 1 X « 4 * « * . NOUN SET TO 5 » * 4 . . V 1 
2702 FCRHATI /1X»»«*« fclPK»C= H»XrUJH NUHSER OF YN0"S » 10 • • • • • • / 1 X 

! • » • » . . *XTRA YNO'S A = E I0NCFED * • « • » » ! 
2703 FCRHAT(/1X«»»»« «F* I I>G = HAXI1UM NUHBER OF I N l ' S = 10 . • • • . • / 1 X 

1 * * . * + . EXTRA YN1*S A3E ICNCEED • * • • • * ) 
3003 FORrtT t/ / / .2!]X»"t.ATEST X A)-C Y - S » . / l 
3004 F O R H A T ( / 2 0 X i 6 A 1 0 / / , ( 5 ( I X » 1 P E 2 0 . 1 3 ) ) ) 
3010 F C R H A T I / l l X . ' Y I J \IAPIA)CE r A T R I X V ) 

http://llU.lt
http://lt.lt
http://ltl.SeRTCIHlU.lt


»««« FCRMT(/UX,«J«CC8I»M M1R««/» 
tOOl FORMTI/llSf.'CaeeCLWICH MTSIX' / I 
soon FC«MTii j5/ . t i" .se is . ; ' ) 
tOOO FORMTtFl».J»ZFSC.T> 

1 CCKTthU 
CO 10 f l > M 
> I : I » o. s turn * • . 

10 Y ( l l • 0 . 
BMC 1S01. (TITieCKl. r, » i,a> 
JFtmUll>.EO.»>-STOf>! STCF 
MINT ZOBit ( T m S t r i , ** t ,» l 
RE«G 1001. LITCfEB 
FKItT SBCS, LITc*«P 
M»C», S » i , * « . 2 1 , 3 8 . 0 5 U M 
FRUT 2!2» 
F«i(T»,i>n,F.H2,ji,zi.o;i;te 
BNI*8HI-H«HE i ei\z»»««is»if: 
MINT ! ! ! l 
F«I*T», SM.BHZ.fPU 
«c«e urn . (!Fiui,j<i.i<i 
M(lttfc>lflU>»Z 
IF«*DUH.ST.J> NCW*« 
IF<hDU>«GT«»l FSJI.T 2701 
IJNC • « ! > «6 > 1 
IFNC * IfNG * 0 
co i t « n . # 
BE«C 1401. K ISFIKI , JeFIKI, X 9 F I O I , K>t,VI 
CO 15 K«l.<. 
IJ » 2«IEFIK> i J8F«» 
1FUJ1 i r . s s . l l 

U tF<IJHO.i.T.t-lt tJNC » 1J 
IFIJBF(Fl) 13 . IS ,12 

12 IB * ISFIiel • 1 
IFII8 .aT. l0 ) IFKBsl 
iFue,«.io) SCTCIS 
TM1II31 » XBF«K» 
IFIJS.CT.NB) NB.IB 
GC TO iii 

13 15 » IS<M<1 
IFtXG.GT.»> IFtiGil 
3FC1G.GT.10I GrTClE 
YWOIIGI . X9FKI 
IF(I6.GT.N«t NG.IG 

Ik T I J H j ) - X8F<<« 
15 CONTINUE 
16 CCNTIM.E 
IT CCNTtNVE 

PHtkT 2300 * PRUT*. ITI.C(K1,S»1«N5I 
« I k T JktS t FF«T». «TM(Kl.l!=t.S3» 
IFIIFHG.E0.tl FHINT 2*02 
tFUFNB.EO.H PBIHT ;?03 
C»IL K«l.<ON(YIJ,x,Y.?,»,E.£,C.NOUN, t i ) 
P*t>t 3003 
CO 33 tJ»l.NDU» 
IJD2 = I J / 2 t I « I J U 
IJ08T2 > IJU2»2 

http://IFII8.aT.l0
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IFUJ-IJC2T2) 33.30.31 
30 J • 9 f GO TC 32 
31 J * l 
32 CCNTINliE 

FFINT 2 I . C 3 . I . J . X I I J I , 1 I I J I 
33 CONTINUE 

TOO » , 1 2 5 " X I 1 ) « < 3 . " » l l l - 1 . 7 ! » » < 3 I « « I 3 1 I 
FKIKT js!o . "oo 
S I O M > C12I 
E 0 E * l . « a ( 3 l 5 ECE*CO£* l . 
CO 35 I»»,KOUh 
e o E " E C t » E l l l t ECE=EQE»CII) 1C0E>C3!>CIII 

39 CCNTINCE 
8 0 E > B ( l l « a C E t ECE«Etl l"EOE t COE«C«l l 'CC£ 
• «2 >«e (2 l»E(21 *C (21 »«SUEE IX I I I I 
I M 1 F U 2 I I 1.0, ".0.50 

l>0 P « H T I 0 O * i 1NHFCT ( l , K I , « . l . f ) , ( 1 (>C),<= t.HOUN) 
P B I M 3 0 J I , l N M F h T ( 2 , K I . K » 1 . 6 l . < « [ K J i < * l . K 0 U H I , B C E : 
P F I M 3 0 0 I , (N fF I -T (3 ,« l . K * l . t ) . ( E t t l . < » l . N C U M ) , E C E 
PRI*T3CO<i , IKHFM-CI . .K l i IC . l ,4» , {C(KI ,<» l»NCU>l l ,CCE.S IGr» 
CO TO 29« 

SO CO 52 t - l ,M>UN 
co n j>i.hauN 

S3 TV| I ,J )« t . 
00 15 KO1.250 
HE>C 1 6 0 1 , ( I I 9 F | I C I . J ! ! F I « l , « S F t K I , L 3 F ( X ) , X 9 F ( K ) l « < > l . i l 
CO !•• « » » t * 
I J » 2 » I E F I K ! » J E F I K I t K | , *2 a KEFIO» l .3F (C l 
t F I I J I « ! . «< . . 53 

S3 I F ( I J . G T . : j K O . C R . K l . . G T . I J K n l SOTO 51, 
» V l t J , « L ) « l T V ( K I . , I J ) « < e F l « l 

51. CONTINUE 
55 CONTINUE 
56 CCNTIIit.E 

HCF1*»CUF-1 
CO 75 1 = 1 . « J " ! 
I P l i I « l 
co 7<> J=IPI .NOLI> 
V\I I1,J1=»\I( I ,JI 'Y«(I , I I»1V(J J I 

74 V V ( J , I I » 1 V ( I , J 1 
75 Y V t l i X ) » ? V ( I . I > « ' r V I I . Z ) 

TV ( M i l l 1 , •OtN) = WII.CUN,Ml.H]"lrv1NOUtl»NOUN) 
PRINT 3010 
CO 79 1 = 1 , NOUN 

79 PFJ.HT2S00. 1YV ( I ,J ! ,J*1 .1>CUN1 
C1LL ERR*NSIC*VRT,RK;l^Ct.!<,lfr» 
0 « O E - I C a ( l l » 9 0 E / E ( l l " 2 1 « » 2 » C B ( 3 l » » 2 
C E 0 E » < C E < 1 1 » E 0 E / E I 1 I " J I " 2 
C C 0 E » I C C < 1 > » C C E / C I 1 1 " £ > " 2 
CO 102 I« , ,NOl ' l i 
0»CE»C80E» 1 0 9 ( I ) ) " 2 
CEOE*DECE»<0E(I1>"2 
CCnE"CCCE«IOC( I I ) "2 

102 CCNTIM.E 
0 S G F * < . 5 « 0 C < 1 1 / C < 1 M » « 2 « I C C ( 2 ) ' C I 2 H " 2 H 0 C I 3 » J C I 3 > I " 2 
OSGl"*SIGr»»SORTICSGI"l 
CBOE*e<ll»SQRT(C50E1 
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MDl»fliI»SOFTlCSOEl 
DC0€-C!1)»SQP.T(CCCE) 
»«iKT:oai. iNHFî r (s.i-) . I C . I . D I .ti:Ki,«»i.HOUKi 
MtNTSJOJ, <0*I<» .Ol.NOUH 
irt»lKi-n i 2 o . i i s . u i 

111 P m n i c o o 
00 112 1*1.NOUN 

112 PRIKT2SO0. ( tJU.JI .J' l . fcCUNl 
115 FBIKTHOl 

00 116 Isl.NOUh 
116 P«HiT2f.0C, t»V ( I , J I . J « 1 . I ) 
120 PP>m3C0t, (NMFI<T(6.:O.lt»l,6t.(eiK>.<»l.N0Ultl,tCe 

P«NT2202.[09<K).IC»l,NCCH,OeoE 
IFCFI.I2)-2I 130.125.121 

121 FPIhTkCOC 
CO 122 H1..TO0N 

122 PRtKT250C. l3J(I.J).J»l.NCUi.< 
129 FRtkTfeOOl 

co 12a i»i.NOUh 
126 f«IhT2tOC. (9VII ,J1.J»J.I> 
130 PRHT3001. (NnFPT(7,KI.Ksl,6).(EIKt.(>l.K0UH),ECE 

PMKT220 «.10F(X),K*1.Not»)»CEOE 
IFUFL(21-2> 140,135.133 

131 PKIMI.COC 
. CO 132 I.l.NOUH 

132 MXIiTJSOS. «*J«I.J»!J*1.I>C«*1 
IS! PBt*iTI.001 

• 00 136 I*1,N0UK 
13« PPtNT2C0I. ( E V ( I . J ) . J i l . I ) 
1*0 P»t>f30!!l., (NHFrf (8,K),K»1.6t.(CU»,<»l,N0UM),C0e.SlSF« 

FPINT220J,(001KI,K«1.Not f t.CCDE.OSGH 
IF(1FL<21«2( l!t l . l<.5.1l i l 

1M FRIKTktOa 
CO 1»2 I'ljNOUH 

i*z « t m » i t , (CJ(I.JI.J»I,*CUNI 
K.5 FRIkTtOOl 

co t « :=t.Nou> 
1*{ PPtNTZtOC. !CVU.J>.J*1,I> 
ISO CONTINUE 
200 CENTIME 

IFIIFM3 I.GT.OI CJU. IKMSKPt*l2>.*U!.IFU3>-l.IFLH>J«ltl'IH.It*m. 
1 RKR2,6P«tRJ 

IF|2FS.131.CE.«1 SOTO 29f 
IRKRi-JFL131 
CO 20"i «=i.IR<« 
PE»C 6000. GR<F(i:),F<Nl !«),e>:«2(l) 

20» COXTINIE 
205 CONTINUE 

IFUFU5I.GT.0I C«ll PUTFflT(TITlS,112»,BSIlM,JFI.(3l,WC>(5,S*f!2. 
1 GR*R> 

KRJTEUt.lOOK TITLE 
MITEI*.10011 UTCFER, 
" B l f E C . ' l aSUSE.J<21.RM,St!2.U.*2 
kRITEU.M XtSl.XID.YCl 
I.BITE (4.53 00) l.ftCl.N.«C(jf>l. li!K) .K=l.nCONI ,X(1I 
• RITE (I.. 50«0> 2.NDCN.NCt»<2.<B<O.K*l>H0UN>.X<l).80E 
HRITEU. 50 001 3,M!i:N,liei;i«2»fE(KI,<UillCUN> .Xdl.EOE 

http://i2o.iis.ui
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U R I T E ( 4 . 5 0 0 0 ) i .hOl 'N.UZVhU.ICCKJ.<»! •NOUN) . X 1 1 ) . C C E t S I G ' A 
I F I I F L O . E O . O ) GCTO 210 
I K I I . H e S d F U J ) ) 
WHITE (I . , 11011 1 0 , I F L C 3 » » 1 
MUTE I t . CO 00) ( < G S « F . I I C I , S K R l « ) , R I « J I I C I l , < » l , I l i K i ; i 
H R I T E C . 6 0 0 0 ) C S i e E . O . . 5 * 4 ( 2 ) 

210 H M T E I 4 . 1 0 0 5 ) 
GO TO 1 

ENC 



SUBHOUlItE <«!•«»MTU,*,»,Z,».!.E.:.NDUN,NDI*> 
CIPEKSICF r:j(Kc]M),x[K:i<)firiNoiNi,2(Naitt 
CIHENSIOF <INOIF).a(Hall<lt£(M>tH).C(NO:i<> 
MAI HACfEP 
rACFEF » J.«f -<.7) 
CC1 I .1 .M3UH 
X l l l s f t J I I ) 

t t r t i ' O . 
C050 IT*i.30 
CHE6A > >[2) t SSUJF > X I I I 
C« » AESUAID-CFECAI/CFEGA) • A6SttH2)«6SUtE>/ESUaE> 
M i l » CFEGA t 112) > 3SU3E 
<JE « 2.'ESUBE/0I'EG» I WE2 * UE'UE 
HE3 • IE2*UE f UE". * UE3»Ui 
11 • 2.»>C3>/CFEGA/l'E2/3. - 1. 
ci « ies(( i (3)-<i i / i i ) • ci 
MJ) * 11 

tFINCUf - 41 10,2,2 
2 12 » 1.2E»U»A1 « <..«Xt4l/0hEGA/UE/J. 

CI » AeSt<AI4)-A2)/12> • CI 
K i l l < 12 

IFfNCU) - 5) IT ,3 .3 
3 A3 « ) -5 , • 3.»12 • A IM-10 . » 13."12 « 7,5»11»U. • 1111 • 

1 "..'X I51/CEGA/UE3/3.1/E. 
T ( l ) . 9SUEE».125'UE2»(1!. - 9.»32 » I S . ' I J , Al<(14. - 23.»1Z » 

1 10.!"11«11. • 11)11 
XC1I » TIJ( l ) - TCI) 
Dl * AeSI(At5)-A3)/A3l » CI 
A(5I * 13 

iFincui - f) ic,4,i. 
4 A4 = <11«I35.»13 « ll«<>;e.2!«12 • 7 0 5 . a l l * t l / 3 2 . l > < «.'«12"«2 » 
l t.•x<e)/oreci/i.E2i/iD. 

Y(2) i CFECA»UE2M2J„"«li - 16.75»12»12 » SlM-47.5»«! • 11»( 
1 459 .M2 /9 . - l lE« .» l l> l l /e4 .111 /16 . 

XI2I * VIJ<2) - »(2) 
oi = «est<AC6i-i4i/A4i • ei 
1(E) » At 

tFchcui - 7) i e . ; , 5 
5 IS > I11M-21 . • «E.»12 • 10!.*A3/». • 2!.5*14 - 1.11.'»2'1Z/«. » 

1 A1M-22S. / ' . • 94S.»12/1E. - »35.»«3/e. • l l < l - ! U . f t , • 
2 1509.'12/16. - 36C7.»11«I1. * 1D/12S. ) ) ) t 1£'(8.S • 22.5-13 . 
3 5 l . * 1 2 / t . ) - 11.'13 • ».•«!<• - 7. , .1'X<71/CrEG«/UEH/7. 

Y(3) - ;SUeE»UE?".125»(17S. » 190.»«3 - 112.S»«4 » 17«.»J5 » 
1 12»t-16!.5 - 357.«A3 » 1DQ*.•A2/1.) » U M 2 8 5 . • A2»{-4!«. • 
2 46J7.«12/e,> « 356.25»13 - 397.5"14 » U»<229S./0. - 9639.«12/16. 
3 • e i t i . ' l S / S . • A1M2ES.75 - l ' i259, , 12/16. • J11S5."AI , (1 . » A l l / 
4 1 2 9 . ) ) ) > 

X(3) » TTJI3) - 113) 
CI ' AESHAI71-1S1/15I . ci 
1(71 > I I 

IFINCU) - a) 1C.E.6 
i I t > 2.«<A1M1S.7!»AS - te3.*12*13/9. » l l * t - ; ( 3 . a 1 4 / U . • 

1 1.959.•12»»2/6i.. * »l"<l*E3.»«3/32. » l l»l-23265.»A2/2! ' . . 
2 • 231S1.»»1»A1/1C2I..IIII , A2»<S.25»«« - 7S.»12'12/16. I • 
3 7,!75»«3«A3 » l . E ' X d )/CPEGl/UE3)/7. 

» ( * ! » CFEGA»UE3M24S.»lf. - 271.2S»»3«A3 • 124(-442.E*14 « 1707.• 
1 12*12/9.) • »l"[-6!2.5»e5 • 1533.75»12«A3 • 11 • 1853E."«"./«• -



2 2 5 

2 6 2 t l 3 . » « 2 a » 2 / 3 2 . 4 A l » ( - 2 3 9 t 5 . " » 3 / l S . 4 » l » ( 2 3 9 « 6 5 . M 2 / 1 2 9 . -
3 2 0 » 0 ! S . 4 « i a i l / 5 l 2 . ) ) l ) ) / 3 Z . 

*( •>) • T I J U 1 - Y ( » ) 
c* » ies([jKa>-«6)/*6) 4 oi 
1 ( 0 ) > i t 

10 CONTINIE 
IF(C«.l.T.(FLO»T(M:i;N>">>aCPEP)l SOT060 

50 CCKTIKie 
SO CCNTIM.E 

M l ) a .2?'0HEG14C>-EG»/e:USE 
e ( l ) • X I I < E(2) • t ( 2 l 
5 ( 3 1 a « | J | 4 2 . 
( ( •> ) . l t d 4 3 . • • ( 3 ) . ! . 
IFlNOL'k-!! 1 1 1 . 1 0 3 . 1 0 3 

1 0 3 2 1 5 1 a » [ S > 4 k . « E C ) - e . * E ( 3 ) 4 » . 
iFd.oui.-ei UI.IC«.IO<I 

10t i ( 6 ) a 416 ) 4 S . 4 a ( a ) . I 0 . 4 P U ) 4 1 0 . 4 9 ( 3 ) - 5 . 
I F O D U 4 - 7 ) U l . l t ! . i : i 

1 0 5 * < 7 I • a ( 7 ) 4 6 . 4 6 ( 6 ) - < 5 . " g l 5 ) 4 2 0 . • • 1 * 1 - 1 « . " S ( 3 I 4 E . 
IF (KOI . ) - ! ) 1 U . 1 C 6 . U 6 

106 2 ( 6 1 ' » ( 0 I 4 7 . « e ( 7 l • 2 1 . * e ( 6 ) 4 3 5 . 4 6 ( 5 1 • 3 5 . ' 6 < a > 
1 4 2 1 . 4 ° ( 3 ) - 7 . 

I l l CCNTINIE 
• P a • 1 ( 3 ) • 1 . 

P2 * P " J • ! = »2»P t P» a P 2 « 2 
PS a P3»F2 t P C P3«P3 
6 ( 1 ) ' t ( l > / ° 2 t F ( 2 ) a I I ! ) 
E<3) • 0 
E l k ) a ( M i ) • 1 1 . / 1 2 . • P * ( 1 . S 4 7 . a p / 1 2 . l l / P 2 
I F U D U I - S ) 1 2 1 . 1 1 5 . 1 1 5 

1 1 5 E ( 5 I a ( 4 ( 5 1 4 5 . .T6. 4 P M 1 . 7 5 4 P - ( 2 . ' r . ( < . > 4 7 . / 6 . 4 P « ( 2 . < E « > I 
1 4 . 2 S | | | | / P 3 

lF{l>0U4.-6> 1 2 1 . 1 1 6 . 1 1 6 
116 E ( 6 I a ( . 1 6 ) - 1 3 . 7 / H . . p a n . ( 7 5 4 f ( 1 7 . « E l . ) / 6 . 4 1 1 9 . / 7 2 . 4 

1 P 4 ( 5 . * S i k l - 2 . 5 « E ( 5 > 4 . 6 2 5 4 " a ( 1 3 . » E ( a l / 6 . - 2 .5»EC5> 4 
2 3 . 1 / 3 6 . 1 ) I ) > / P k 

IFIMHJk-71 1 2 1 , 1 1 7 . 1 1 7 
117 E ( 7 I a ( 1 ( 7 ) 4 . 7 4 " ( 2 5 . / J , ' . 4 <>•< J . S'EII. > 4 < i ? . / 2 a . 4 p a ( 2 5 . 4 

1 ( E C t / 3 . - E ( 5 1 / 6 . 4 t./ZU.) 4 P " ( 6 . 5 " E ( 1 . ) - 7 . 5 ' E ( 5 I 4 3 . « E I 6 > 
1 4 3 . 1 / 1 i . . P * ( ; . • ( £ ( ! . ) - 2 . 4 C ( 5 l | / 3 . . 3 . > E ( 6 ) 4 . 0 2 5 ) I > 11 l / P S 

IF(KCUI<-9> 1 2 1 . I K . 1 1 9 
I I S E(BI " U . 5 I - 3 6 . 3 / 5 6 . • P » ( « 6 . 9 / 2 » . 4 P » ! 9 « » 7 » E ( « l / 2 * . « 

1 6 7 « . « / 2 f S . 4 P ' ( 3 5 . " I E C i ) - . 5 » E ( 5 I 4 . 1 2 5 1 / 3 . 4 P« 
2 ( 2 ? 9 . ' E ( " . ) / Z » . - 1 < . . 3 7 5 » E ( 5 I 4 5 . 7 5 « E ( 6 ) 4 7 1 . 3 / 1 » » . 4 F« 
3 ( 3 ! . 4 ( . • • £ « > ) - E ( 5 l ) / 3 i 4 1 0 . 5 » E ( 6 ) - 3 . 5 * E ( 7 > 4 , 0 8 7 5 4 

. H P» ( I . 0 1 £ 5 ' E C I - 3 . 1 ! S » E ( 5 ) 4 » . 7 5 » E ( 6 I - 3 . 5 « E ( 7 ) 4 1 2 . 7 / 2 0 1 6 . 
5 ) l l l l l l / » 6 

121 CCNTTNLE 
SHO a 1 . - X ( 2 1 « » ( 3 ) / » ( 3 ) / » ( l ) / 6 . 
RHOJ » PKJ4RHO t FH03 • FHC2"RHO t P.H0". a FH02*ID<(I2 
KHOS a P>0»4PHC f RK06 a fiHOJ-RHOI | RHC9 a P.HC«<P.HO* 
T»U a * ( 2 > 4 X I 2 1 / * ( l > / R K C 2 / > . . 
S a 2 . 4 T J U / X ( 2 I 1 SJ a S»S I S3 a S2»S I S* a S2»S2 
SS a S2*E3 I Sc a S3»S3 I 57 a Sk«S3 C 39 a S*»S» 
C ( 3 I a 91-0 I C ( l ! a T» l t C(2 ) a S 

I F I N C l n - I.) 2 1 0 . 2 0 * . i l l 
20a Ck a 2 . » ( 1 . 4 S 2 « X K . 1 / T « l ) / 3 . 

http://iFd.oui.-ei


226 

Clfcl > Ct 
IFINCIN - 51 ZlC.20f.ZCf 

205 C5 « 1-5. » ."HO'UD. • RI-CM-5.7S » 7.MHO/6.1) - 3.«RH02»I«1IC - 1 
t . I ' M » 2.»S»"RH)««X«SI/3./TAUI/5/RH0J 

cts i • c; 
IPINDIN • 61 21C.20C.c0t 

20C Ct s -C5 • IC *» f l . » «.2f>Ck) • I . ' S J M lO/THUI / f . 
ciei * ce 

IF(NCUN • 71 210.207,207 
207 C7 * t - H . • RH0«tliZ. • RH0'( - t39. /5 . < »HO«(2;. » RM1«<«10»./M. » 

1 » RKCI11I - »."»HC*MRI"C - l.)»C6 • RH03»<-2«. • RhC*(30. - S.« 
2 »HC/J.II*C5 » F W ( 1 7 . • RHJM-31.. » RH0M17.75 - 13.«t'H0/6. > I • 
3 »5.»RH33»C5 • 12.75»RHC2«llfH> - l.l"CM»C» » .8"»HOe»Sf»Xt7J/ 
k TIC1/H./SHC5 

CC7I > C7 
IMNCtN • 91 21t.209.2K 

ZOO C« » -C7 » I3.MCS • C6» • 15.7!»CS»0! > Ck*<U.S«(Cf » « J • 
1 CI.M-3.25 - 7».*CW5.1> • 1.6*SI>»K<S)mUl/7. 

CI9I s C! 
210 CCNTIKIE 

RtTlRN 
ENC 

http://ZlC.20f.ZCf
http://21C.20C.c0t
http://21t.209.2K


2 2 7 

SCBROliTThE ERRANSICNVRT.H-U.MlUN.NOm 
C C t l P O » / T l J / r l J f l » > I . X I l » » , ' « l l l i . , 2 1 1 » l , r T HP (!»>>.XT I 1 » > . » T I 1 » » , Z T I 1 » ) 
CCHPONSERRSTUF/ AJ I l< t , l< i ; . B J I l O . l b l t £ J t l k , l « l ,CJ<1*.1<>> , 

1 A V IH,141 ,3»IH. l l l ,EVI l< , , l l . t .CVl l» .14| ,»Kl l ' . t l ' . ) 1 SCRTCK(l l . , i i . . 
2 O A l i l i l . C B l l H . C E t l f c i . O C C i l . i 

C I « N S 1 C » 0 L A I 1 ' > > , C R A I 1 I | ! , C I S I 1 I . » . 3 R B U H , 0 L E ( 1 * . , 0 P J M 1 < . > . C L C < 1 M , 
1 DRtll<i> 

RSUBEIX) « SORTICHVRT/BKl/X) 
hCnimhCUk-1 
CC 1 :*1.NCUN 

i rTcni)»viJt:> 
CO 5 J.1.A0UN 
YTHPl I t » Y I J f I I « t l . . l . £ • ! ! • ) 
CALL HAKAMYTrP.XT. rT .ZT .ClA.OLS.DLE.ClC.NDUK.NOI ! , 
CLAIZ )>CLB( ! l>CLEIZ )<CLC(Z>< l !SUeElxr i l l ) 
TTHPCIJ s » I J I I > * ( l . - l . E - 0 8 > 
CALL IIAKAMYTl'P.XT.YT.ZT.nRA.ORB.ORE.CPC.NOUN.riCHI 
CRA (Z ) » 0 f 3 (Z l-CRE IZ)»0«C IZ>»SSUBE KT 1 1 1 ! 
CC ". Jzl.KOUN 
A J I J . I ) * I 0 L A I J 1 - C F A I J I l " ? . £ » 0 7 / Y I J ( I I 
e j ( J . I ) * ( D L B I J ) - C F 5 I J ) l ' ; . E t 0 7 / T I J ( H 
E J I J . I ) < I 0 L E I J 1 - C R S I J I 1 « S . E » ( ! 7 / Y I J < I I 
C J U . I I • I O L C t J > - C R C t J > 1 » 5 . E t 0 7 / Y I J l I I 

» CCHTIHIE 
S Y T H P d ) » T I J I I I 

CALL JVJ<AJ,YV,AV.SCRTCH.HOU>,ll.i 
CALL JVJtBJ.YV.f.V.SCRTCH.f.Ol'K.H.I 
CALL JVJ lEJ.YV.EV.ECRTCH.^OCK.l ' . . 
CALL JVJ ICJ«TV,CV.SCPTCH.liClih.il>) 
CC 10 1-1.NOUN 
CAi r i .SCRTCAVCl . i l> 
caitisscpr iBvii.ii) 
CE( I I 'SOPT(EVI : , : I ) 
CCCI>»SCRT (CVC1.J1I 

10 CCNTIM.E 
CC IB I=i.M>Hl 
IP i»I» l 
CO 15 J a l F l . N D U * 
A V C l , J > * e V I I . J > / C M I ) / C A I J I 
A V U . K x I V I I . J ) 
evt! . j>=Evit . j> /ce<i i /cE( j> 
5v( j , : i»sv c i . j i 
E V I I . J 1 - t V I t . J l / C E I I I / C E CJI 
E V I J , I > * E V I I . J I 
CV( I ,J )<CVI : .J ) /CCI IWDCIJ) 

' is CV(J . I I *CV<I .J ) 
A V I I , S > * I . 
evti,i>»i. 
E U ( I . I ) x ) . 

is c v i i . i i . : . 
AVCHOL'f . fOimMV INCUR,KlH>*EVim)UN,NOIJN>»CVI*CUI ' , I IOlNt* l . 
RETURN 

ENC 

http://CV.SCPTCH.liClih.il
http://CAiri.SCRTCAVCl.il
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susfoume J"J (xj.»v.xv,sc,kc.«) 
OIHENSIO XJ(N,NI ,1TV[N,M,XVIN. N ) , S C ( » . N ) 
CO 1 I » 1 . N 0 
CO 1 J a l i N O 
> V ! l , J l . i . 

1 S C I I i J I ' O . 
CO 12 1*1•NO 
00 12 J » l t N 3 
CO 11 ttl.M) 

u S C I I I J I » S C U > J > » X J ( I . K ) « » V < I C . J I 
12 CCKTIME 

CO 22 1*1.NO 
CO 22 J . l . N D 
CO 21 K*1.K0 

21 X V I 1 . J > = > V I I . J > « S C < I . X I « » , J < J , K I 
22 CCNTIHIE 

RETURN 
ENO 



229 

SU8I!0UTII>E RKHNSKR(RSUEE,eSl.?E.H»XV, I N C H E N M K I I - . f N . I O . C V I 
CCMMH/ISKPVIJ/YJIC1101 .KG.YN1 (10 ) . N 3 . 1 0 1 
COOOK/ai '40/Nt] iXC(«01 ,HC C O ) 
ClftHSIOf R N ( 1 0 2 I . F X ( 1 0 J ) , C V ( 1 3 3 ) 

2000 fORK*T i/10X»G«U»S-l'E»LES OjiCRITURE FOE *<CR Ci lCUV-TIOH USED * I 3 > 
1 FOINTS ' / I 

3000 F O R M T I l C X . ' P H I r . , FM»X. 0 CF V, F, IND G»/> 
MmjOOO.Ml 

1 IFIINOEI'.EO.OI If.CHEf>l 
NIEV « IkCSEMMUXVUI 
CALL WfFICIHMIM 
C»LL »EMic<1.0UK.ESUBEJ 
3INCVRS » 1. /FLC1T<INCREM 
V • - 1 . 0 
PKKT 3000 
CO 1 I L E \ > l .NLEV 
V » V • RINCVRS 
« * V • .5 
C ' l l 4EMKI2.i l .aSLSEI 
C1LL Kl-NEKKH.Fh I K E V ) . R X I L E V I , G V < I L E V » . H I " I N , R S U ! E . t S U e ( l . 

9 CONTINLE 
ENC 

http://4EMKI2.il


2 3 0 

suBRoume *MFIG<»HN> 
coHFon/CKRrrj/rHo(ioi,NG.r«itia I , « a , roo 
OIMNSICH TPPI10I 

3090 FeRr»TI/20X»w«IK FAILEC TC CCNVERG!. FINISHED HtTN"/l«.ZOX««MN « 
1 •E1S.?.!X»ANI! ThE LAST CORRECTION • >E1S.7/) 

TINT • 5.E-15 < WHIN : 0. 
CD 1 1*1,NG 

1 YPRII) * FLOAT (I (••'NO II) 
CO 3 IT <t,200 
f « FF • 0 . J I t t • »G 
00 1 1*1,NG 
F » HKXN'IVNOtlCT) • Fl 
FP • TFRIICT) » H"IN»FP 

2 ICT • ICT - 1 
f m F » TOO 
OtlTA * F/FP 
»NIH * HHTN • CEITA 
IFIiaSICELTJ/H^IM-TTNTI <..t.J 

3 CCNTIHE 
PRUT3000. Hf-IN.CEITI 

<• RETURN 
ENC 



231 

CCMfGN/RKRYrJ/YN0U0>tl tGtYNlt lQ)iN3»Y00 
COHPOfc'NBTkEEN/ At5* t ,B(J ,31 
C1KNS]C» E IN I5E) 
C»TJ e i H / l . , 2 . i l , , J . . 3 . . J . . " . . . 6 . , » . , l . . ? . . 1 0 . , 1 0 . . 5 , , l . , ( . . i ; . . 

1 2 0 . . i ; . . 6 . , l . . ? . , : i . , J » . , 3 5 . , 2 1 . . r . . l . . S . . 2 a . . 5 6 . . 7 t . , 5 « . , 2 S . , 
2 8 . , l . , ? . .36 . ,5 ' - . ,126 . , i :6 . , t l . . , 36 . .9 . , l . , 10 . . l . ; . -12II-, 210..2S2.. 
I 210».120. ,»5.- l t . ,1 . / 

I M I F L - 2 1 1 0 0 i 2 0 C 2 0 3 
100 CO 1 J«1.NG 

1 VHO U l a YNIHJI/BSU9E 
oo 2 J»I,NE 

2 Y N U J I a YNKJ>/95Uf<E 
CO 3 I»1 .NG 
CO 3 J * i . I 
I J a ( I ' l t - I M / Z * J 

3 » i r j > a S I M U I ' I K C t l ) 
•ETlf iN 

200 CC S l a l i N G 
e t l l i 3 . 5 JCT a NG 
CO <l Ja l .NG 
JCTJ a C J C T M J C T - l l t / 2 » I 
e<n « »(JCT:I • !(:,!•« 

<. JCT » JCT - 1 
9 CONTINIE 

RETURN 
ENC 



232 

SUSdOUTIhE <MNS«: t * .RN,R>,GV.MI ( IN .RSU9£.9SU«t 
CCHP'OII/«ieRYIJ/»NCtl<ll.P'G.YNH13>,N3.r(IJ 
CCIII'CN/Ct.AC/NGltSS.XGtSO) ,HG(50 I 
CCIO-OK/NETVEEN/O [55) . 3 I 1 C I 

3001 F ( lR I "»T t5S ,2<F ia .7 ,2X I .F tC .J . lP>2C2X .E15 .»>> 
F « G • 0 . T "TOP s H • HMIN 
SOMTP I SQRTtHTCFI 
CO 2 I«1.NG»USS 
X I . H T a P » , > s » l x G t I > « l . l " 2 
IIP • H - X I 
SV • P » 9 . I JCI a M 
CO 1 J i l . N G 
p • a i j c i ) - P * > I 

1 JCT » JCT - 1 
JCT * N3 
CC K J . l . N B 
(V » 1 M (JCT) • EV«W° 

<• JCT » JCT - 1 
HT * H G I I l / S a R T I B I 
F i F t « 
G s G < WT"3V 

2 CCHTIKCE 
F > SCkTF«F»PSl]EE 
G i SCWTF'G/P.SUEF. 
RN « F ' l S C R M i . • l./FfSt - I . I 
>X > liK • 2 .»F 
«V • 0 . 1 JCT * KG 
CO 3 Js l .NG 
GU * IGV • TNO t J C T H ' V 

3 JCT « JCT - 1 
GV - TOO » BSUeE'GV 
PRINT3001. RN,B>,GV.F,G 
RETCRH 

ENC 
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CLOCK CAT* RKPCC 
CCHKON/QUO/NO iXC (501.HCtSOt 
C»T» NC/SO/ 

C»T» XC/ 

•6080000*5112 4*7705*23.606001! 30 34367*0161 *4a.6060007S7y2 3«*0*2«5S . 
•60600157113*045030353.606002615613300362603.60600*033503154063253. 
•60600!**01736507eO£63.eoeiOr2ia4638SFZ22*29.6160»2(II21577ti43«Zsa. 
»60601332l31*10 62 67H9, f0 6C:'.5623531247*?22 53,6060702613222176060*3. 
•606 02306 3*165**747579,606 126013*53244506729.SSr,iJ106«2456*0725«B. 
•606 03*2570 226166506 S3. 60 CO 37555721.572 857759, e06i06?3137372700613D, 
•6061155111161623 71203,606 125034517650375173<60613*5*"132*55621463. 
•6 062105*7377557261023,60 623026213*353777769,6 06 320226637177605**9. 
•6C65002370165731443S3,1712775*07612046*4553.171*S755114060017353B, 
•1715*751564342 4C0C323.171567230400220 517Z18.1.'ie(. 32726*5322156 5JB, 
•17165271.32601271.02773,1716622666316151.0 66 79,1716714 4640*03077177B. 
•1717*0 2220 5320 5120173,1717*3520 755161127123,17171671115 3213705273, 
•17175176*324533271123,1717S471U361233030119.171757513*55560171^79, 
•17176215121.653030 5553,1717{**St 463672510148.1717665763620073*7463, 
•1717705473141225SSJ63.171772337604127017378,17177374427232371**69. 
•17177S1621S4477415CS5. 17177620 66*37 327473 08.171777 OM0522337J500B. 
•17177747*3*1037616123,171777732665330072133/ 

CJITJ kC/ 

•17375751722657*057*59,171067300S16171121*58.171153301772572137S6B. 
•171172716612671 *f7262,171245063425*6*02'<05S.iri2!4*e€1730072510 5B. 
•1712637*0*577*5*7*01.3 . 1712730*40 442113'.:573.1713*0771212 (4636*1.78, 
•1713**237125111167559,1713«737S10561I«.r 5343. 17135241467T73231667B. 
•171355310301656263013,171360051760*673>1373, 171362*9*2*33*1015229, 
•17136*7123S6152575553.171366777653216602*48.171373710204137332248, 
•171372*37773612125*39,171 37*003561656714*5B.171 J75160I|5537«*4651B , 
•1713761*11*071**03639,17137673*45633*277773,17137733025**00356269, 
•171377 526350343*24713, 1713775263503*3*25348, 171377 3302S440C. 355353, 
•17137673*456334275739,171376144140714*0 3503,171375160**;:-r 5* 51179, 
•17137400£561^5671*763.171372*37773612122269.17137071020*137333313. 
•1713667776332166 GO 219,171364712356152574643,17136245*243341017373, 
•17136O05176046 73*1533,1713SS3103016562(2013,1713!2*H677732320159, 
•171247375105611430323,1713**237125111167173.1713*0771212 6*6363763, 
•1712730*10*4211326659,171263740457745*7*0*B•17125**66173007253*73, 
•1712*506 342546*032*33,171172716612671*63073,17115330177267212*019, 
•1710673005161711155*9,17E75751'22657366363B/ 
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SUBSOUTIkE PL0TOCTtMSG,SE.0E.IP.KR.R<Rl,m<l<2.GRK«> 
COMPCN/IGSZZZ/Z12001 
COHHOfc/TeNAHE/LT6/TXNAHe/lTX/TlCNAHE/LTIC/TTNAI'e/LTT 
c m N S i o k P ( I O O O I , V C I O O I : > , L B L X < 2 ) , L 3 L Y < 2 > . H S G ( J > , N P A T < 2 . * > 
REAL RKR1C102I,R«R2I10S1,GRKR<102>.TKSI50I 
LOGIC*!. I IHE 
EXTERNAL FCHT2 
OTA I k T P L T / D / 
OATA LELX/«R ( A t l t » f 8 « . « ) 1 * f L ' > 
CAT» LELY/«\( (JLCHtUt* .«<«!«»> « / 
CAT? k F A T / « / / / / « " « / / t , « / / " • • / / / / « . « / / / / / • • / • • » . « / / / / / • • / • • « , 

1 < / / / / • / . ' / / • » , * / / / / » / / / / • » - . ! / • / • / • / • / • « # < / • / « / • / • / • * / 
1000 F C R M T I ' H T AHY KEY*/»Alit •«ETURN"»/»TC CONTINLEM 
1001 fC»MTIH10l 

I F I 1 N T F L T . E 0 . 1 ) CALL FRArE t I F ( I N T F L T . E Q . l ) GC TO 50 
L I V E . . f U S E . t CALL T V I M T 
i n i T 6 . N E . 2 H T 6 . l K 0 . L T X . k E . i H T X . A N 0 . L r i t . K E . 2 H T K . A k 0 . L T T . HE. 2HT1) 

1 CO TO 1.0 
L I V E ' . T R U E , t CALL CCAkECTHiLFILS) 1 CALL CC>NECT(fLTAPE9) 
CALL CC"kECT(6LTAFEia> 

«0 CALL KCOESGCZ.2,01 < CALL SETSMGCZ.Jl . l .» J CALL VECIGIZ.FCNT2.0 I 
CALL SETSHG(Z,12S,.25> < IkT=LT»l 

50 CALL C S J < T G ( Z , 1 ! . , 2 5 . , 1 0 C . . ? 5 . ) f CALL SETSHG 1 2 , 1 7 J . 0 . 1 
X1.0. I »2r%»RE t Yli- .J'OE I Y2»2.2»0E 
CALL S l E J E G I Z . X l . Y l . X Z . Y J ) t CALL 3 f t I O G < Z , 0 . , 0 . . ( . 0 1 
CALL TlCKGENtXl .X2,20. .T«SikXT'<.XT<. .NXXPI 
CALL TICKGENtYl ,Y2,2J. ,TKS 1 KYTK.YT<.NYXP> 
CALL SETSHGIZ,102,1.> I CALL SETSHG(Z ,103 ,1 . ) 
F K T . 5 . 1 J CALL LASELG<Z.0.XTK,O.FHT) 
FHT.Z.O 1 CALL LASELG(Z,1.YTK.O.FHT] 
CALL SETSHG(Z,10". ,1.SI f CALL SETSHG ( 2 , 10 5 , 1 . SI 
CALL SETSHG1Z,178,1.) t CALL SET3HGIZ.45.2 . 1 
CALL L A e E L G ! Z , 0 , > T * , l , G I I CALL L A S E L G ( Z , l , Y T K . 1 . 0 ) 
CALL SETSHGCZ,10i , -1 .5> C CALL S E T S H G ( 2 , 1 0 5 . - 1 . •) 
NCHffxlO 
CO EO 1 x 2 , 8 
I F t k S G I I I . E Q . 10H 1 GO TO 6'.S 

SO kCHR.lO-'l 
65 CONTINUE 

CALL T V T l E d ( 2 , 1 6 . L 6 L X . i e . L E L Y , HCHB.HSG) 
CALL SETSHGIZ.HS. l . ) 
R I N C s l X S - X l l / l C C C . t 5 1 E T = I R E » . 1 - X 1 I « 1 C 0 » . / ( X 2 - X 1 ) 
kaLST=IF]» (OLFT) t NFTS=1301-NOLET 
CO 105 NFTsL.k 
CUH23VLVR(OUH1,kRT> 
RT5»PE".1-SINC I kCAT'O 
CO 10* I s l .NPTS 
FTS»RTSKIkC 
VTS'VCFC IRTS.kRT) 
IFCVTS-Y1) i a k , l C 3 , 1 0 E 

102 IF1VTS-Y2) 163,113.10* 
103 »CAT=kCAlH 

RINCATIstTS ! VtkCATIsSTJ 
10* CCKTIkLE 

CALL CAS>G(Z ,NC<T ,R ,4 ,»F1T<1 .NRT) ,20 , . !D , . 5> 
109 CONTINUE 

R C l l a X l f F (2 )>X2 f V ( D s V (2 >sOE 

http://iniT6.NE.2HT6.lK0.LTX.kE.iHTX.AN0.Lrit.KE.2HTK.Ak0.LTT
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CALL LINEfGCZ.Z.R.VI 
IFMPKBI 3UB.3:C.ZCC 

200 CO ZOf I«1,IRKS 
NUl .RKRK. ) t RlZl iRKRZIII I <(D>«l21sGRlCRIII 

205 C»IL 11NESG<Z.2.6,V> 
303 CCN1XME 

O I L EXITS <Z) 
IF (LIVE I HRITEIIG.100UI 
I F f L I V E ) READ(9.10011 S««CUH 
SETLRN 

ENC 
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sustcuTtKC rtcKCE»iHiN,Ftx.p<xT:cK.ric«<kariCK.v<i.Tzcx<NEXPi 
CIPEKSICF TICK(!G>.mjlTIFLt3l 
HEAL SIN.PIX.HAXTICK 
CAT A KLLTIFL/1 •J .S / 

1000 FCXrlTllCE9.il 
2100 FOUCATtlll 

PANGE > PAX • "IK 
ENCODE<».1000.IKTPC1 R»N(£ 
JEXfCHF * SMIFTCIKTHIJ.IOI 
c:ccDE(3t2ami.NEX'CH0i kcx* 
EIAS » ic-NrxP 
VALPPTK « AiSCSAhGE/'IAS/PAXTISiel 
SOLE > .01 
CO 2 L I . * 
CO 1 J>1.3 
TEST » SCALE*FLCAT(MULTIFL<J»t 
IF(VALFPTK-rEST) 3 , 3 . 1 

1 CCHTIM.E 
2 SCALE • iO.«SCALE 
3 VALTICK » TEST•• IAS 

NTOP » TkTIMJX/VALTICK) • 1 
kOTICK » 0 
CC » 1*1,50 
TIKTES1 « FLOAT I>TCP-U»\«LTT« 
IFCTIKTEST.CE.CO) GO TC » 
IF<TIKTEST.U.MM GO TC ! 
NOTIC« * »CTIC« • 1 
TTCX<KCT1CKI * TIKTEST 

» Ci.-TINLE 
5 CON'IdlE 

ENO 

http://FCXrlTllCE9.il
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FUNCTION vcFP<m,Nm 
cCHraN/ciKCOF/ticeitNCUit 
OIHEKSia* ICT<4I 
O T t L C T / 0 . 1 < . . 2 S . i > 2 / 

c 
C ENTRY VOFR 

R»RV»RRE 
I F ( N » T - ; » 1 0 1 . 1 C 2 . 1 0 3 

1 0 1 X « R - 1 . J GO TO 1 1 0 
102 X « t . - l . / R ! GO TC 111 
103 IF1NRT . 3) 1 0 4 , 1 c . . 1 0 ! 
lot x » i . - I . / » » « F s *TR» « x t GO TO H I 
1 0 : X « 1 . - E X P t R C C ' l l . - R I ) J XTRA * X 
110 F • 0 . 

00 1 1 1 I»!.STRT,*CtN 
n « M>IUS - : 

u i F » X«(F « « i n n 
VOFR . I I . • * T S * » F l " 4 ( h 0 ) » X » » 2 
RETURt. 

C 
C T H t ! E U S t I N 1 T K L I 2 E S JEVER«L P«R»HETERS TC eE USEC »»CVE 
C 

ENTKV VUYR 
R R E * 1 / » ( 2 I 
IFIHBT-31 3 0 1 , 1 ( 3 , 3 3 * 

301 hSTRT » 3 » XTRJ < 1 . t GO TO 310 
303 F i i i : : l t KSTF.T » t t GO TO 3 1 0 
30» RHO . 1 ( 1 . 5 3 | h«T">T * 1. 
310 UPLUS'KSTRT.NDLI'.LCTIKXT) t N0»l»LCTtFRTI 

VOFR . 7 . 
BETURt. 
ENO 
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APPENDIX II 

This appendix is a synopsis of the program ERWIN (in honor of 

Erwin Schroedinger) which, like DUNPOI, is bereft of comment cards. 

The theory behind the algorithm and the mechanics of the program 

are briefly described, the formatting of the data input is outlined, 

and sample control card and input decks along with a program listing 

are provided. 

For a simple Z state of a diatomic molecule, the radial 

equation is of the form: 

2 
-(1i2/2uR)—-(R^) + (V(R)+Cfi2/2uR2)J(J+l)-E)i(i - 0 

dR 

If we measure our reduced variable r in units of R and measure 
e 

the reduced energy z in units of B , and let the function P - i)j/r, 

the above equation reduces to 

,2 
•2-,P(r) « (u(r)-e)P(r) 
dr 

where 

u(r) - V(R)/B e + J(J+l)/r 2 

These reduced variables take the mass and equilibrium and inter-

nuclear distance out of the picture and have some other useful 

application. For one, the Bohr-Sommerfeld quantization becomes: 
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v + 1/2 - ^ 1 ^ + 

•u(r)-e dr 

Moreover, the reduced well-deptht D /B , becomes the Harrison-
1 2 

Bernstein well capacity parameter. The LeRoy-Bernstein quantity, 
1/2 v_, scales (within a factor of unity) as (D /B ) , and a list of 

these scaling factors are given in Table X. The point here is to 

hopefully provide some insight into how the vibrational levels are 

spaced according to the well depth, independent of isotopic mass. 

It should be noted that the RKR f and g integrals are also 

simplified in these units. 
3 The Numerov solution to the radial equation assumes that F(r) 

is known at r and r. ,, and the function at r. - can be approximated 

by 

Y i + i • 2 W i + A v e ) p i 

where P E P(r.), etc., Y ± = (1- j^& (u.-e))P , and 6 = |r.-r | 

(equally spaced r. paints). The use'af Y. instead of P. in the 
4 6 difference equation reduces the error from 6 to 6 . 

3 
In the Cocley procedure for finding the vibrational energy 

from some initial guess, the wave function is set to some small 

number in the nonclassical region of the potential (£ < V(r)), 

the wave function at the next point is estimated by the JWKB approxi

mation, and the succeeding values at smaller r are calculated by the 

Numeroy procedure until one arrives at the outer, absolute maximum, 
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or "matchpoint", of the wave function. The procedure Is repeated 

starting from the inner nonclassical region until the outer, abso

lute maximum is achieved. The energy is systematically adjusted 

in order to improve the continuity of the derivative of the wave 

function at this match-point. 

The notation used in the program code is actually that of 

Blatt , where T. =.t5 (u.-e)/12. The intention is to incorporate 

some of his suggested modifications. Other future modifications 

should incorporate the higher order extension of the Numerov method 

outlined by Rcothaan and Soukup . At present, the program runs fast 

enough for our purposes, but the above modifications would facilitate 

the direct-fit discussed in Chapter III. 

The program itself is written for the ̂ d hoc purpose of calcu

lating the vibrational energy levels and rotational constants for 

one potential only, where the parameters in the calculation are 

internally scaled by B and r . Although this scaling is aesthe

tically pleasing to this author, it should be modified for calcu

lating Franck-Condon factors, where two potentials (and hence two 

sets of B and r ) must be considered, e e 
The potential used by the program is determined by the function 

routine VOFR(R), where R is in units of r . The routine must return 
e 

the value of the potential in units of B . The routine also calcu

lates the derivative through the entry WHIME. A final entry, VUVRf 

is used at the beginning of the program to initialize the parameters 

used by the routine and returns the value of B to the main program 
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so that the program can output the energies in units other than B . 

The routine also calculates the centrifugal portion of the potential 

for £ states, ,!.•£• the quantum number dependence is simply J(J+1) . 

The function routine provided with the main program can calculate 

the potential energy for the Dunham, SPF, Thakkar and Huffaker series, 

but the modular form of this routine allows for substitution with a 

routine of any other functional form at linking time. An example 

is provided in the sample control card listing. 

One of the weak points of the Numerov-Cnoley algorithm Is that 

the procedure converges on the energy level closest to the initial 

guess and pays no heed to the vibrational quantum number, v. A 

pre-processor, subroutine ENEW, estimates the energy level for a 

given v by iteratively solving the Bohr-Sommerfeld quantization con

dition mentioned earlier. This routine us<:s the auxiliary routine 

TP, which calculates the classical turning points for a given energy, 

and VOFR. The Gauis-Chebyshev quadrature points used for calculating 

the Bohr-Sommerfeld integral and its energy derivative are tabulated, 

in octal, in BLOCK DATA CHEBYQD. The advantage of this pre-processor 

is that any energy guess can be given to this routine and, for a 

given v, an estimate correct to within 1% or less of the true value 

can be quickly made. In the event the iteration fails to converge, 

which occasionally happens when close to the top of the potential 

well, the routine returns the Initial guess to the main program. 

The subroutine, CASHION, is with a few minor modifications an 

unabashed copy of the function SCHR written by J. K. Cashion . This 

is the Numerov-Cooley algorithm that determines the quantum mechanical 
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energy and wave function for the potential. It utilizes the sub

routines TP, NRMLZ, and CALNODE. NBMLZ normalizes the converged 

wave function using a Simpson's rule integration. CALNODE, another 

Cashion creation, counts the number of nodes in the wave function in 

order to confirm that the energy for the correct v had been calcu

lated. 

Other subroutines are SETUPU, BSUBV, and EXTR. SETUPH calcu-
2 

lates the array <S u(r.)/12 used by CASHION. BSUBV calculates the 

rotational constant for each vibrational level by Simpson Integration 
2 2 

of ij? /r . EXTR is a dummy routine which can be replaced at link-time. 

All input is read in through the main program ERWIN. Output 

is generated by ERWIN, ENEH, TP, and CASHION. Other I/O files in 

the program header card are ETCTRA, USW, and PSI. The first two of 

these files are unused and can be incorporated into a replacement 

routine for EXTR. PSI is a file to which the energies and wave 

functions may be written out (in binary) by routine CASHION. 
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Sample Control Decks 

The following is for running on the 7600 with nc program 

modifications: 

(jobcard) 
$ID*password 
FETCHES (JSWB,LG0,NEWN7S2) 
LGO. 
EXIT. 
DUMP(O) 
FIN. 
END. 
(7/8/9 card) 
(data deck) 
(6/7/8/9 card) 

The next set compiles replacement: files for the program's 

function routine, VOFR, and the subroutine EXTR. The latter routine 

will produce an auxiliary output file in the I/O file ETCTRA. 

(jobcard) 
$ID-password 
FTN4,0PT«2,ROUND,B-VOFR. 
FTN4,0PT-2.ROUND,B=EXTR. 
FETCHPS(JSWB,ERWIN,NEWN7S2) 
LINK, F-ERWIN, R-VOFR, R=EXTR, PP- [ ,, ETCTRA]. 
RETURN, ERWIN, VOFR, EXTR, FTN4LIB. 
DISPOSE(ETCTRA»T.P,T*rFXTRA/OUTPUT]) 
EXIT. 
DUMP(O) 
FIN. 
END. 
(7/8/9 card) 

(new VOFR function FORTRAN deck) 
(7/8/9 card) 

(replacement FORTRAN subroutine for EXTR) 
(7/8/9 card) 

(data deck) 
(6/7/8/9 card) 
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The following is a description of the input structure and a 

sample input deck. 

(ITITLE<I),J>1,8) 
FORMAT (8A10) 

One card of 80 characters, or fewer, labelling the data set. 

NRT.NP'i 
FORMAT(1615) 

NRT: A flag determining which series potential is being used. 

The values 1,2,3, and 4 are for the Dunham, SPF, Thakkar, 

and Huffaker potentials, respectively. NRT is not used if 

a replacement function is used at link-time. 

NPR: The number of potential parameters used in the potential 

function. 

(A( I), 1=1, NPR) 
FORMAT(5E15.9) 

These are the potential parameters used by function VOFR. 

RCN.RCX 
FORMAT(8F10.5) 

These are the innermost and outermost values of r (in units 

of r ) in which the potential is valid. 



NEN, NPR1N, NCA, NGRID, IPRIN, NODE, NBV, NDMEROV. 
FORMAT(16l5> 

These are various integer flags and parameters. Their 

functions are: 

NEH; The maximum number of iterations allowed to routine ENEW. 

If NEN-0, the pre-processor is not used. 

NPRIN: Printing options in ENEW, which are: 

• 0 : Only the converged energy is printed. 

- 1 : Energies, corrections, etc., for each iteration are 

printed. 

• 2 : Same as 1, except the classical turning points (in 

r ) are printed for each iteration. 

NCA: The maximum number of iterations allowed to CASHION. If 0, 

the routine is not employed. 

N6RID: The number of grid points in the Numerov solution of 

the wave function. Maximum number is 5000, recommend more 

than 250. 

IPRIN: Printing options for CASHION. 

= 0 : Only the converged energy and the classical turning 

points are printed. 

• 1 : Same as 0, except the energy, corrections, etc., 

are printed for each iteration. 

NODE: Flag for the node counting routine. 

= 1 : Number of nodes for each wave function are counted. 

• 0 : The routine is skipped. 
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NBV: Flag for calculation of the rotational constant for each 

vibration 7 evel. 

- 1 : B is calculated. 

- 0 : Hot calculated. 

NUMEROV: Flag for printing out the wave functions (in binary) 

on I/O file FSI. Options are the same as NOSE and 

NBV. 

NV.NJ.TEO,TEPSWKB,TEPSNDM.TRN,TEX,TRTN.TRTX 
FORMA",(2I5,3E10.4,4F10.5) 

This data card is repeated for every energy level that is 

to be calculated. 

NV: The vibrational quantum number. 

NJ: The rotational quantum number. 

TEO: Initial guess of the energy. 

TEPSWKB: Convergence toler ice for ENEW. Energy unite are the 

same at TEO. The energy units should be the same 

as that of B used in VOFR. 
e 

TEPSNUM: Convergence tolerance for CASHION. 

TRN: Innermost point (in units of r ) for the Numerov solution. 

TRX: Outermost point for the Numerov solution. 

TRTN: Inner classical turning point estimate for TE (in 

uniis of r ) . 

TKTX: Outer classical turning point estimate for TEO. 



247 

Note: The above variables which have a "T" prejfix muse be given 

values for the first energy level. For the succeeding levels, 

if any or all of these variables are left blank, the refined 

values from the previous energy levtl calculation are used. 

To terminate a data set and start a ncv ^s.. insert a "-2" 

for NV and follow this card with the ITITLE card of the next dai:a 

set. If a "-1" is inserted, a different series potential for the 

same molecule and the new data set should begin with the NRT. £??B 

card. 

If no new data sets are to follow, insert a "-2" for NV and 

"STOP" for the title card, with the "S" beginning in the first 

column. 
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The following is a sample Input deck to program ERWIN. The 

potential is the nominal Thakkar function for Ar . The "blank input" 

option described earlier is used extensively. 
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Table I. Ratios of (v^+1/2) Co the well capacity, (D /3 ) u e e 
for several model potentials. 

1/2 

Potential (vD+l/2)/(De/Be) 1/2 

Muffin-Tin 

Sutherland-n 

-6 

Lennard-Jones (m,n) 

(12,6) 

Exp - 3 d 

- 4 
- 5 

-6 

(b/r )/ir 
,-1 Mn/2-1)] 

0.15916 

^ 1 ( n - m ) - 3 / 2 ( n n / m
m ) 1 / < 2 ( n - m » B ( S £ 2 ^ 3 / 2 ) c 

n—m , 
0.23858 

0.94749 

0.48178 

0.32404 

0.24436 

-1 

Evaluated from the Bohr-Soinmerfeld intergral for E * D and r - m . 

Square well with infinite inner wall, width of b, and outer "plateau" 

of D . r lies somewhere in the well, e e 
cB(x,y) •= r(x)r<y)/r<x+y) 

T'or Exp-n: V(r) = D [exp(2n(l-r3)-2r~n], r measured in units of r . 

p is the sa-̂ c as in the Huf faker-Morse potential of Chapter II. 
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•1712703*177507*626*79,1712 e73755462*063316B,17126637«7253*0**56SB, 
•1712653*310777(022027,17126*2557106606521*8,171263136557766075*08. 
•1712617661*2161703739,17126066*7207*77077*3,1712573333716*2337*19, 
•171256052<-«?2*778SJ», 171254 5*2 653770762309,17125320*7530**52**76. 
•17125162151713*514239,171250211516337561079,1712*655555115S»52705, 
• 1712*507 <*51« 103!1*63.1712(33753*35615235*9. 1712*165176*2*2213929. 
•1712*010 610057525*525, 17117*64*5560005 3717B ,1711112370 315332254*8, 
•17116557*7767*7*25733,1711621002*62*1612*03.1711563528*53*5**2 709, 
•171152 5762 362*7172473,17114677**^2*7120158,171143147*752373 60528, 
•17107660 2271331201203,1710670263151*2223*38,1710 '7217131352165269, 
•1710*7360*1720 3616*01.17C77717*52635152763B, 17C7!73707*7302700179, 
•1706772733327075C2C5",170577313101651023518/ 

ENC 



SUBKCUTIfE T P < E , F ™ , R T X , K F P I > I » 
C0HPCI</C1.TCFF/FC»,FCX 

3000 FcRi>»T<Tex«R:-mEs CCKVEFCEC o«»i3» *o « F I O . £ > 
3001 FoawiTi7ex"R-oi;TEi! COKVEFOEO O N » I 3 « TO ' F i o . e t 

(TNI > RTN f RTX1 * »TX 
CO I la l .SO 
IFUTM-SCM 13,13 .11 

11 IFIF.TK1-1. ) 12,13.13 
12 CEL • (E-VCFRIKTMII/VPP^EIRTHl) 

IFI.eSICEt/RTNl) . l . E - 1 ' 1 3 , 3 . 1 
1 KTN1 i STN1 » CEL 

ICT . I 
2 CCNTIM.E 

13 « « RCk I 9 ' 1 . 
CO 17 !> 1,200 
ICT « ICT » 1 
RTNl . ( 1 , 8 1 / 2 . 
i r ( r e - « i / R T B i - i . E - i 4 i i , ; , i * 

1» F » lE-VCFSUI >«(E-VCF»IF.TN1»( 
IFIF) IS ,3 ,16 

15 B » RTH 
SO TO 17 

l'« A » RTH 
i? :CNT:NUE 

3 RTH » BTM . 
IFCHPRIN-ll ! , « , ! . 

* FRmSOOCICT.P.TI. 
5 CC 7 I « l , 5 0 

IF(RTX1-«CX» 1».20.20 
19 IFIPTX1-1. ) 2C2B.19 
19 CEL * (E-»CFRtFT)in/v«irc(RTXll 

IF(»8SfCEl/RTXll • l . E - l t l 0 ,9.6 
6 «TX1 a RTX1 • OEl 

ICT • I 
7 C0NTIM.E 

Zl 1 < 1. 1 0 » RC» 
CO 2» 1*1,200 
ICT > ICT » 1 
RTX1 • U » e i / 2 . 
IFIIE-A^RTXl- l .E- lU C C . i l 

21 F • <E-VCFRC«> l»(E-VOFF.(FTSl>l 
IFIFI 2 2 , 9 , 2 3 

22 E » RTX1 
GO TO 2". 

2 3 • » RT>1 
2«. CJNTINLE 

9 RTX • FT>1 
I F t H P R I N - l l 1 0 . 1 C . 9 

9 PSINTIOOl.ICT.RTH 
10 RETURN 

ENC 

http://CC.il


2 5 8 

SUBROUTINE C»SHIOMIPRI* ,NCPCS.N.RTN.*TX,EO,EPS,ESUeEiNFl> 
CCXrCNyLCCLPOT/HV.I'.HZ.Ft.FX 
ccnFCK/FCTLUic/Fr;aoo>iUi!eoo) 

t CCMFCK/PCTlUlt/PtSOGOOtitCCOOCOt 
IEVE12 , F , t 
OWENS 10 > M R r l i J " 
C»T» M l F - ' . / l O U H , ! / 

M M FCRMTI/oiiS'CCCLET INTEGMTICN RESJLT»/I 
2000 F0«F»T(2X»:TFN>?»«E»12>«CCRRECTI0N»liX , F»"3X»F-»SIHE»TX»F«TCHFeiKT 

l » / l 
2001 FCRP«T11FXIS.<>(2XE15.S>2XI6> 
2002 FCRF»T</10X10A1.3X«C0HVEFGEO TO E » » l P E 2 0 . 1 3 . J X 1 0 « l / > 
2003 FGRFATIZCX'THE U F U N G PCIFTS IRE » F 1 0 . « * »KC • F 1 0 . 6 / 1 
2100 FORP»T«1F/20X»OCFS» E SICSHEO OVER TO »E15 .S . ' I 
2101 FCRP»T<20X«RENCFF»LIIEt JT I- » » I 5 ) 
2102 FCRP»TI20X«OUTH»FC IKTEGF»TIC» G*VE » IERS 4T THE M T C H P C W ON I T 

1RN»I5> 
2103 FCRF»T(/20X»F«II .£C TO COHEFGE. E i • 1 P E 2 0 . 1 3 / ) 

NFI.»1 
P R I N T I M ? 
I F U P F 3 N I 2 f 2 , l 

1 PRIKT 2000 
2 CE « 0 . I E * EO'HI/eSUEE t EPSTEST - tPS'HV/eSUEf 

CVFIO » 1 . E H 0 0 « P I • »H • l . E - 5 0 
CO 119 IT-l .NCNCR 

IH> > n i SUHCUT « SUHIM * o. 
TN > l i (N) • E 1 T I « U l N - t l - E 
I F ' T X I 1 0 0 . 1 0 0 . 1 0 1 

100 t9l.lt: > EMSUBE/KV 
P R I M 8 1 0 0 . E°F1K 
EO » E»9SUBE/H« 
l i F L » - l 
RETURN 

101 P I N - l l i P < N ) » < T S / T I I " . 2 1 * f X P t S 0 R T I T . » T N > » S 0 R T ( 3 . » T I > l 
T l » l l . - T M « P N 
»2 « ( l . - T I ( » P I F - i : 
P » N - I 

102 »3 « Y2 I K Y 2 - T 1 1 • l S . ' T I ' P I N U ) ! 
TI « U « > - E 
F I M I • » I / ( 1 . - T I ) 
t F O B S I F I H I I - O V F L O l 10» ,150 ,150 

ISO FN » F(F> 
CO 103 K»J1,N 

103 P t K I * P<K>/PH 
T2 » Y2/FH « » : • T3/PH 
PRINT 2 1 0 1 , « 

10k X F I I S S I P f H l l • *ES(P<P»1I>> 1 0 7 , 1 0 7 . 1 0 0 
1 0 ! IF<P-5> 1 0 7 . 1 0 7 . 1 0 C 
106 Y l » Y2 $ Y2 » Y3 

f » It - 1 
GO TG 102 

107 FHIN » P IM> t >TCH » H t U N • 12/PHIN 
FP1 » F»l 
CO 100 I i n F l . N 

100 SUPIN » SUFIN • P | I I « » ( I I 
SUFIN • S U P I W / P P ] N « 2 
T l » U ( l l - E t T2 » CI2 ) - E I F ( l ) » PI 

http://t9l.lt


»1 » C. < TZ » I1.-T1>»»1 t TI • TZ 
ISTSRT * 2 
IFCTZ .LE .O . I GC TO 199 
P<2I • 0 1 « ( T l / T Z I " . Z 5 « E X P ( J ( » T ( 3 . » r i ! » s a i l T t 3 . « T 8 l l 
»1 * 12 J »2 » < l . « T 2 l " i M 2 l t T I • U I 1 I - t 
ISTIRT i 3 

109 CO H Z t» IST»RT.F 
r j » 12 * <(tz-»i> • I : . M I « I T . - I > > 
TI • U.I I - E 
H I ) * T 3 / U . - T I 1 
IF(»S: IPtlll-OVfICl 111,151,151 

151 Pt i P II I 
CO 110 ( s i , I 

110 P<K t . P ( K ) / » I 
TZ » T2/FI t Y3 • Y3/RI 
FRIhTZlOl. I 

111 VI * YZ * YZ » T3 
112 CONTINLE 

MOUT • M M 
I f«FFCUT| I l k , 1 1 3 , 1 1 H 

111 F » CYFLC I « R F » - F 
ce > ,SOI*E 
HINT Z1BZ, IT 
CO TO l i t 

11% TOUT « Yl/FHOUT ( I N i TZ/RHOUT 
CO 115 1*1,(1 

I I S SUHCUT = StMOUT • R I I M R I I I 
SUN CUT i Sl'IO'JT/tKCUTFFZ 
F • ( 2 i M I > ' TIN - Y0UT1/12 . » T I 
FPRF » StMIM » SljHCUT 
CE • F/ fFRF 

U S I F ( I R R I N ) 119 ,119 ,111 ' 
1 . . FPR1N > E^eSUOE/VV 

CRRIN » CE'SSUSE/HV 
RKIKTZOOli I T , ERR1N. 0R«IHt F, I ,-*.M. KTCH 

119 E • E » CE 
I F I I B S I C E ) - EFSTESTI i Z 0 , l Z 0 o l l » 

119 CCKTXKCE 
EO < EFR1N » C-eSUEE/HV 
P R I F T Z I O ! . EPRIK 
MFLsO 
RETURN 

120 C»1A 0 6 r t Z < H , M , P f C U T , P » t M 
ERRIN * E*SSUSEfl-V I E i C/HV t CO 
RRIfTZODE, H«RK, EFPIN, FtRK 
GILL TFtE.RTN.STX.OI 
PRINTZ003, RTN, RTX 
EO > E»9SUEE 
RETURN 

ENC 



260 

s ienoutm S C T I F W K I 
CCMfON/LCCLPOr/HV.H.HS.ISt.RX 
CCHPCk/PCTUir/PtSOCO) •IM'OOO) 

* ccHcon/PcriUK/Pca too ),u 1900001 
ICV(12. fii! 
H « (R»-RN1/FLG»TtK-ll 
H2 • H"M f HV • H2/12. 
P. • UN 
00 i I.I.N 
U<I) « HV»VOFR(M 

i i • mi • I«H 
•STURN 
ENC 



261 

SL'BPOtimE NRHt.2<N, t t iPM.PKI I 
C C » P O N / I . C C I . P O T / H I . K . H 2 , I ^ , R X 
coHPCN/p<T iu i t /p i ; i i i i o ) ,u ( :aDa) 

t ccKPC»/PCTu!K/F<;oi]oai i iM;i! i ]oi) i 
IEVEL2, f i t 
E l » EZ » 01 » C2 * 0 . f PP02 ' P»0*PPC « Ffii m PHT'PPI 
DPI « B - 1 t ffl > « • 1 f N i l i H - 1 
CO 1 I«3.HP1.2 
01 » 01 • P(U««<II 
IP1 . I • 1 

1 El > El • F d P l l ' P d P l I 
I f l P - «/2 - K/2) 2,2,3 

2 C2 » P i m i ' P I H l l 
PCNTK » f • 3 
GO TO * 

J CI « 01 • P<HI«"(Pt 
PCMH » • • 2 

» CO 5 I*KC»TN,NP1,2 
C2 « C2 » P«II»F(II 
IH1 • I - 1 

9 EZ > EZ • PCIPD'PCIMl) 
UCKOk i I P d J ' P t l l • P ( S I « P ( 2 l ! » H / 2 , / P M 0 2 
C » 0 l / » » 0 2 » C2/PPI2 
E • E l / P f 0 2 • E 2 / P H 2 
SXHP » I P ( 2 l * P t 2 ) / P N 0 2 • P(N>»PIN) /»MI2 • » , » 0 • 2 . » E I « H / 3 . 
PNOPK > SOFTISIPP • TJkCKCKI 
PNC « FK!»f«0PP « PNI « P P I « N O H 
CO 6 I . I . N 

t PCI I > P l t l / P K O 
CO T I » H f l , N 

r P I U » PI : I /PNI 
RETURN 

ENC 



262 

suanGtime caiKcs <N,NCC£5,I>ST»I?T,NSTOI»I 
ectiMN/pcnuic/Pctflcodutsiiooi 

t conccii/PCTiUK/Pisociiai.cisoocoi 
U V E U , F.l 
CIHCNStO* f»R<(10) 
MT» it»R«/i0MSm>/ 

2000 fORMT<18X,10*l,3X,»ml>eei" Of HOOtS « •H ,20X , l«» t /> 
•iCOES > 0 
CO 10 JMSMRT.fcSTCP 
XF<FUI> 2)1 .1 

1 I K M J - l l l 3.18,18 
2 J f tMJ-1 ! ) 10,7,« 
) I F ( f ( J « l ! l lO.k.k 
* tF(P(J-2l l S . l t .10 
S I f l P t J I l l ) 8,10,10 
* SFIKJ-21) 10.10,9 
* I H M J « l > t ». 18.18 
0 J M M J - 2 I I 10.10,4 
9 NODES * fOOtS > 1 

10 CCfcTJMjE 
MI<.T2!0J,MRK.«C0ES,W«« 
WTUUt 
ENC 



263 

j i a s o u m E esvev iK .ssueCrey ) 
CCHPOII/l.CCt.»OT/HV.I-,H2.R^«X 
CCNPON/PCTIUIC/PIEOOOI.UCSOOOI 

< ccxrc i f /PCTiuK/PCOoooi i t isocom 
l f V E i . 2 . F.U 
C I P E N S ^ P A P K C I O I 
C A T * P < P . K / 1 0 M 1 H = I / 

2 0 0 ) F O B H A T C I O X . I O A I . J X ' R C T A T I C N A I . 3 V « » 1 P E 2 I . 1 3 . 3 X , 1 0 1 1 / 1 
IV « E • 0 . t p » RN • 3."H ( 3 * I P ( 3 l / C » h » 2 . • ( ! ! ) • • « 
KPZ « f> • 2 
T«CKOH i ( ( " ( 1 I / P N ) » » Z • I P ( S ) / < R N » * > > " » 2 ) « H / 2 . 
CO 1 I *1 . .NP2,2 
E * E • I P I I 1 / R 1 " ! 
C « 0 • I P ( » l l / < R « H I I » t 

1 « » K • J 'H 
BV • M P < Z t / I P N » H l l * * 2 « « .»0 • Z.»E • I P « l / R X I « Z ) « H / 3 . » TACTOH 
BV > 0SUEE-3V 
P P I K T Z O O O I MapiC,EV,l««RK 
RETURN 

ENC 



2 6 4 

Fl iXCTI lN VCF»(R> 
C C H P C K / C C F l S H / i l l O l . t O O . h H . m r . F L N I 
CtfEHSICH l » ( 1 0 > 

c 
c emir vera 

INC • F ( . N 2 / t K ' « l 
I F C M T - 2 1 i a i . t C 2 . 1 0 3 

1 1 1 X • R - 1 . 
GO TO 1 1 0 

102 X « 1 . - 1 . / R 
GO TO 110 

1 0 3 IFIIiRT • 31 1 0 k . l C k . 1 0 ' 
10". X > 1 . • l . / M » F 

XTR» » > 
GO TO 110 

109 X » 1 . • E X P ( F f C ' ( l . - » ) I 
XTR« * > 

110 F « 0 . 
DO 111 I.KSTRT.hFR 
I I » M>IUS - 2 

111 F ' X»(F • « ( I I > » 
VOfR » ( 1 . • XTR»"F>»»1»X«»2 • «NS 
RETURk 

C • 
iHTRT VFBIFE 

1HCF • - 2 . » F I N S / « • » • « ) 
2F(hRT - 21 201 .2C2 .203 

201 X • R - 1 . 
liO TO 210 

202 X • 1 . • l . / F « OCR > ! . / * • • £ 
GO TO 210 

203 IFIKRT - 3) 2 0 t . 2 C k . 2 C J 
20k X » 1 . • l . / « " F I CXOR • M f l . - X l / K 

X T M > » 
GO TO 210 

209 X » 1 . • E X F I R K M l . - R I I < OXOR > R H O M 1 . - X I 
XTB« a > 

£10 F a 0 . 
00 211 I»NSTRT,hFP 
I I • »PIUS • I 

211 F > X M F » « P U I I I 
VOFR » < 2 . • »TF»"F)"»1»»»CSW • »»GF 
RETURN 

C 
C THIS EMRY I N 1 T H L I Z E S 5EVEBHL P«R»NETErj TO et USEE AOCVE 
C . 

£*r«r vt/vR 
IF(NRT-3> 301,3C3.30<> 

301 aSl'BE - 1 ( 2 ) S « 1 * ( 1 ( 1 1 / 1 2 . • S S U 8 [ I > " 2 
kSTRT x s t >TR< s i . t DXOR > 1 . 
TOO * ( ! . » « l « l - 1 . 7 5 « « ( 3 I « 2 » l « r - l > » 2 . " ( l . - A U > l l / i . 
GO TO 310 

! I ! P • » ! ! C ESUEE = «C2t 
A l » ( A ( 1 ) / I 2 . « B S I B E " F 1 I » » 2 
Y00 » ( 1 . • F " ( l . • 3 . « « U I « P I > M . 
•S1RT 3 k 
GO TO 310 

http://iai.tC2.103
http://10k.lCk.10'
http://20t.2Ck.2CJ


265 

30k KHC * »<3> f » 1 « (»<2 >»«H3»»»2 
esi'ee • i i n / u t KSTRT • t 
r«o » ! . « « K O " J ' « H ) / I . 

310 00 311 I»hSTRT,fPF 
311 » ' ( I 1 • F L 0 t T ( I I M i : > 

* n U S » KSfRT • »P» 
VOFK • ESC8E 
« T U R * 
EHC 



266 

suanaumc ExTRo.iMf.fu.ncoEs.jv.esifse.E.ePS.HTNtitTXiKPL. 
t IT IT lE I 

CI»ENSm IT ITL IU) 
C 
C THIS IS t OUMHY SUEPCU1IM. REPLACE IT »T TOUR tHIH H W 
C TCUK VERSION. StSGEST TCU CCH»It£ taut ¥E«SIC» t»0 PEFUCE 
C THIS OfE KITH J •R.OIN/UY FILEN*I*E>' IN THE LINK COHBOL CMC 
C 

RETURN 
EHC 


