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ABSTRACT 

· Within the framework of a general semiclassical theory that combines 

exact classical dynamics and quantum superposition it is shown how a certain 

averaging procedure allows one to treat some degrees of freedom in a strictly 

classical sense while others are quantized semiclassically. This enormously 

simplifies the application of the theory to three-dimensional collision 

systems and also leads to an interesting formal structure in the theory: the 

quantum-like degrees of freedom are quantized semiclassically via use of 

double-ended boundary conditions, while the unquantized classical-like degrees 

of freedom enter only through a phase space average over their initial 

coordinates and momenta. Preliminary results for vibrational excitation of 

112 by He are presented and compared with available quantum mechanical 

calculations. 

I. ·INTRODUCTION. 

The last several years have seen an increasing use of classical trajectory 

calculation~ in describing inelastic and reactive molecular collisions1,
2 • 

The advantage of classical approaches is that the equations of motion can 

always be solved (at least numerically) without the necessity of introducing 

any dynamical approximations, whereas this is generallynot the case for a 

quantum description. The shortcoming nf a classical theory is, of course, 

that real molecules obey quantum rather than classical mechanics. 

The object of our research in recent years has been to show how exact 

classical dynamics (i.e., numerically computed trajectories) can be used as 

i t t 1 i 1 i 1 h l,4 . Th i ' 1 h i 1 id i npu o a genera ~em c ass ca t eory • e pr nc1pa p ys ca ea s a 

. 5 
natural extension of the Ford and Wheeler treatment of potential scattering, 
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namely that one uses a quantum mechanical formulation of the sc~ttering 
' 

problem (so as to incorporate quantum superposition of probability. amplitudes)) 

but evaluates the dynamical parameters of the theory within the classical 

limit. For a collision between species which . possess internal degrees of 

freedom the result of this semiclassical theory is a prescription for how 

one uses classical mechanics to construct the classical-limit of S-matrix 

elements, the "classical S-matrix", which are simply the probability ampli-

tudes for transitions between specific quantum states of the collision 

3 partners. In a number of examples it has been seen that this combination 

of "classical dynamics plus quantum superposition" accurately describes the 

quantum effects in molecular collisions;. 

One of the most practically important aspects of classical S-matrix 

theory is the ability to analytically continue classical mechanics in such a 

way as to describe classically forbidden-processes, i.e., those which do not 

take place yia ordinary classical dynamics; Section II discussesj such processes 

in detai.l. This paper describes a feature of the theory that is particularly 

useful when some of the internal degrees of fre~dom are very classical-like, 

but others are highly quantized. This is common in an atom-diatom collision, 

for example, where there are typically a large number of rotational states 

that are strongly coupled and may thus be treated by strictly classlcal mc.thods, 

but only a few vibrational states are involved so that this degree of freeJom 

is highly quantum-like. _The 'partial averaging' approach allows one to use a 

strictly classical Monte.Carlo treatment of the classical-like degrees of 

freedom while the quantum-like degrees of freedom are-quantized semiclassically-

all without introduchig any dynamical approximations into the theory. Pre-

limi.nary results for vibrational excitation of H
2 

by lle are presented in Section III. 
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II. SUMMARY OF THE THEORY. 

A. Classically Allowed Transitions. 

All formuhe in this paper will be Written explicitly for non-reactive 

collisions of atom A and diatomic molecule BC. The cross section for colli.., 

sional excitation of BC from initial vibration-rotationstate (n
1
,j1 ) to final 

state (n2,j 2), su~ed and averaged over them-components of the rotational 

states of BC, is given by 

1T o . (E ) = -=-..:.;_ __ 
n2j2 + nlJl 1 k. 2 (2j 1) 

1 1 + 
r 
J 

(2J + 1) 

where S j . . (J,E) is the s..,matrix element for the A+ BC collision 
n2 2 R-2 'nl J 1 R-1 

I 2 2 
system; E

1 
is the initial.collision energy, k

1 
= 2llE

1
/tl , E is the total 

(2.1) 

energy, J is the total angular momentum, and R, is the orbital angular momentum 

for relative motion of A and BC. 

The classical limit of a particular S-matrix element is given by 

where ¢(n2j 2t 2 ,n1j 1 .t1 ) is the classical action along the classical trajectory 

that is determined by the indicated double-ended boundary conditions (unHs 

are used such that fi ~ 1); sp~cifically, 

"'( -j II j II ) :: _OOL dt[-R(t) d!?) "'n2 2 ... 2,nl 1 ... 1 
_ q (t) dn(t) 

n dt 
( t). dj(t) 

qj dt 

where (R,P) are the translation.:tl coordinates and mot11Cnta for radial motion of 

(2. 2) 

(2. 3) 

-~ \ 
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A and BC, and (q ,n) (q. ,j), (q 11 , R,) a:r;e the ~ction....angle varia~les for these 
1 n J ..., · 

I 
degrees of freedom; the initial and final values. (n1j 1t 1) and (n2j 2t 2))are 

required semiclassically to be integers. The pre-exponential factor in 

Equation (2) is the Jacobian r~lating the final values (n2j 2t 2) to the con

jugate initial values (q ,q. ,q1 ) which lead to these specific final values; 
nl J1 1 

i.e., with (n1j 1 t 1) fixed, one varies (q q. q1 ) to cause (n2j 2t 2) to take on 
nl J1 1 

their desired final integer values. 

Typically, however, there is more than one classical trajectory that 

satisfies these double-ended boundary conditions; Equation (2)·is then a sum 

of similar terms, one for each such trajectory. In forming the square modulus 

of the S-matrix element as it appears in Equation (1) interference terms thus 

result. In the co-linear A + BC collision these interference effects are 

quite prominent (and are accurately _described by classical S-matrix theory), 

but it has been noted that the sums that occur in Equation (1) d :iminish their 

effect for a three dimensional A+ BC system; i.e., the interference terms are 

quenched. 

If the interference terms are neglected, then it is easy to see that 

Equations (1) and (2) give 

fdJ(2J + 1) Jdt2 Jdtl 
1. 

where it is assumed that enough integer values of J, t
1

, and t
2 

contribute 

to justify replacing the sums over them by integrals. If many integer values 

of n2 and j 2 are acce~sible from the initial sta~n1j 1 , then it is also 

convenient to average Equation (4) over a quantum munber increment about n
2 

-; 
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CIO 

fdJ (2J + 1) 
0 

-1 

t (2.5) 

. where the limits of the j 2 ·and n2 integral are the integers plus and minus 1/2. 

In Equation (5) one can now change integration variables from (n2j 2i 2) to 

(qn qj qi ); this eliminates the Jacobian .from the integrand, giving 
1 1 1 

Q) 

1T 
=--;:-2---~ 

kl (2jl + 1) 
J dJ 
0 

fd (q. /21T) 
Jl 

where the limits.of the integral·over q , q. , and q 11 · are values such that 
· nl J1 .J,l 

the final values of n and j are in the increment (n2 + 1/2, n2 - 1/2) and 

(j 2 + 1/2, j 2 - 1/2), respectively. 

The.simplest way to evaluate Equation (2.6) is to sweep q , q. , and 
111 Jl 

(2.6) 

qi through their complete domains (0, 2n), putting the outcome of each trajec
l 

tory into a quantum number 'box' labeled by the closest integer value of the 

final values of nand j; this is essentially what is done in a standard Monte~ 

Carlo calculation for this type of quantity. If interference effects are 

neglected, therefore, classical S-ma.trix the.E_EL_for classically -~llowed_ 

processes reduces to standard Monte-Carlo methods. 

As an aside regarding the above strictly classical expression, it is 

actually more consistent if one also averages the cross section over a quantum 

number width of the !_~:1 Ual quantum numbers n
1 

and j 
1

; this gives 
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'IT 
2 ' 

~ {2jl + 1) 

the form of a complete -phase space average over initial conditions; the limits 

of the n1 and jl integrals are the initial integer values plus and minus 1/2. 

This latter expression, which treats initial and final states on an equal 

footing, satisfies microscopic reversibility. 

B. Classicallv F~rbiddcn Transitions.-

In some cases there may be no classical trajectories (at the given 

energy) that connect the specific initlal and final states (n
1

j
1

) and (n2j 2); 

the transition is then said to be classically forbidden which in practice simply 

means that the process is 'weak', i.e., has a small transition probability. 

Vibrationally inelastic transitions in low enerey collisions tif light diatomics 

with atoms are usually such processes. Other important examples of classically 

forbidden processes are tunneling in reactive systems that have activation 

barriers and electronic transitions between different adiabatic electronic 

sta tcs. 

Although there are no ordinary classical trajectories that contribute to 

these processes, it is in general possible to analytically continue classical 

mechanics and find complex-valued trajectories that do so. This can actually 

be accomplished by integrating the quations of motion with complex initial 

conditions and with a complex time variable. Along such complex-valued 

trajectories 

'' 
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the action integral 4>. is complex, so that the S-matrix element in Equation 
I , 

(2.2) has an exponential damping factor, exp(-Im4>); classically forbidden 

processes are thus a generalization of the cencept of tunneling in one-

dimensional systems. 

Just as for classically allowed processes, there may be several different 

classical trajectories {complex-valued ones) that contribute to the specific 
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s-matrix element in Equation (2.2); because of the sums that apper in Equation 

(2.1), however,· it is still reasonable in most cases to disregard interference 

between these different trajecto:des. Furthermore, evert though the n1 jl -+ n2~2 

transitions is classically forbidden for n
1
;n

2
, it will typically be tru~ that 11\any 

different J2 values have comparable probability. In such cases it is thus 

possible to average over a quantum number width of j 2 as in Section IIA 

(replacing sums by integrals) but not for n2• 

Changing from integration over final values to integration oyer initial · ,, 

values as in Section IIA, thus gives 

CIO 

f dJ (2J + 
0 

(2.7) 

where 

. -1 

l

an2 I . 

2TT Clqnl/ · exp[-2ImQ>] (2.8) 

P + . is essentially a one dimensional-like vibrational transition. probability 
n2 nl 

that depends parametrically on the initial conditions of the other degrees of 

freedom and is calculated by ~1olding the initial conditions (.ll.
1

j
1

,qR. q. } 
1 Jl 

constant while q. is vad.ed to make n
2 

equal to the desired integer value. 
nl 

The important practical advantag~ in this 'partial averagi~g' scheme is that 

one must deal with double-ended boundary conditions (through a root search 

procedure) only for the vibrational degree of freedom, the one that is being 

quantized scmiclassically, with the orbital and rotational degrees of freedom 
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entering only through a phase space average over their initial conditions. 

The four dimensional integral in Equation (2.7) can now be evaluated by 

Monte Carlo methods. Furthermore, one can obtain all partial cross sections 

i.e., the distribution. in final rotational quantum number j 2 and/or the 

distribution in scattering angle (the differential cross section) in the 

usual Monte Carlo fashion by assigning the numerical value of the integrand 

in Equation (2.7) to the appropriate 'box' labeled by j
2 

and scattering angle. 

In summary, the only approximations involved in Equations (2.7) and (2.8) 

beyond classical S-matrix theory itself are {1) neglect of interference between 

different trajectories that lead to the same final values of t
2 

and j
2

, and 

(2) replacement of sums over integer values of t
2

·and j
2 

by integrals. As has 

been noted, the interference terms would essentially average to zero even if 

they were included, and one only needs a few integer values of t
2 

and j
2 

to 

justify replacing the sums by integrals. The important practical advantage of 

this partial averaging approach is that double-ended boundary conditions (and 

the related root search) are required only for the quantized degrees of freedom 

(i. c., vibration), while the other (unquantized) degrees of freedom enter only 

tlrrough a phase space average over their initial conditions. 

III. RESULTS FOR He + H2 COLLISIONS. 

Calculations based on Eq~ations (2.7) and (2.8) are being carried out for 

the He + H2 collision systerr, and its isotopic var:iants. The :interaction 

6 potential is that of Gordon and Secrest , and the H
2 

potential is the accurate 

7 fit of Waech and Bernstein to the Kolos-Wolni.ewicz potential. 

Figure 1 shows our preliminary results for the total 0 ~ 1 vibrationally 

inelastic cross section as a function of the initial collision energy; i.e., 

the quantity shown is 

' ·.! 

'"i 
! 
' 

. ( 
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(3.1) 

Although these results are not final, they should be the correct semiclassical 

values to within at least a·factor of 2. At 5 eV collision energy the 0 + 1 

transition is still classically forbidden; i.e., with E
1 

= 5 eV, n1 = jl = O, 

there are no values of J, 1
1

, q
11

, qj
1 

for which a real-valued classical 

trajectory leads to n2 = 1. 

8 Fremerey and Toennies have. recently carried out coupled channel (i.e., 

quantum mechanical) calculations for this system and find a value of - 1.0 x 

10-4 A2 for the total 0 -r 1 cross section at E = 1. 09 eV. l-1ithin the uncer
o 

tainty in our preliminary semiclassical results, therefore, there is excellent 

agreement witl1 tld.s quanttnn mechanical value. 

Figure 2 shows the quantity o1j ~- 00 as a function of j 2 at E
0 

= 3 eV 
2 

collision energy; i.e., this is the distribution in final rotational state 

.that accompanies vibrational excitation from the ground state. A~though 

j
2 

:: 0 is the single most probable final rotational state, there is a signifi

cant <~mount cif rotational excitation which accompanies the 0 + 1 vibrational 

excitation. 

Further calculations for this system are in progress and more details of 

the calculaUonnl procedure w111 be presented in a later r<'port. 

1'hi.s wo1·k lws he en f:upp1n~ted by. tlw Na tiona 1 Sc :fence Found a tj_on and t lie 

U. S. Atomic Energy CommissJ.on~ Appreciation is also expressed to Dr. C. Sloan 

for helpful discussions. 
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FIGURE CAPTIONS 

1. The cross section for excitation of n
2 

(by collision with He) from its 

ground state (n1_ = j 1 = 0) to its first excited vibrational state (n2 = 1), · 

swmned over all final rotational states. as a function of initial collision 

energy; the quantity shown is defined by Equations (3.1) and (2.1). The 

arrow indicates the energetic threshold for this transition. 

2. The distribution in final rotational states j 2 that accompany the 0·-+ 1 

vibtational excitation in He+ n2 collisions, cr1j
2 

+ 00 ,·as defined by 

Equation (2.1). The initial collision energy is 3 eV. 
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