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DROPLET MODE!, PREDICTIONS OF CHARGE MOMENTS 

WILLIAM D. S1YERS 
Nuclear Science Division, Lawrence Berkeley Labora
tory, University of California, Berkeley, CA 94720 

Abstract The Droplet Model expressions for 
calculating various moments of the nuclear charga 
distribution are given. There are contributions 
to the moments frost the size and shape of the 
system, iron the internal redistribution induced 
by the Ccmlomb repulsion, and from the diffuseness 
of the surface. A case is made for the use of 
diffuse charge distributions generated by 
convolution as an alternative to Ferai-functions. 

INTRODDCTION 

The Droplet Model was originally developed to provide a 
macroscopic description of the binding energy and 
spatial distribution of a saturating, two-component, 

1 2 leptodermous system, ' and the model coefficients 
were later chosen to correspond to the values they would 

3 have in atomic nuclei. Like the liquid drop scdel 
that preceded it, the Droplet Model nuclear binding 
energy predictions agree with the measured values to 
within a percent or less for the heavier nuclei (10 MeV 
out of 1000 Me*). Similar accuracy (or even better) 
seems to be obtainable in the description of the density 
distribution as well. 
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The Droplet Model only predicts the spatial extent 
(size) of the neutron and proton density distributions 
and the relatively small amount of internal 
redistribution induced by the Coulomb field. It Bust 
be supplemented by information about the shape and 
diffuseness of the distribution before comparison can 
be made with measured moments. 

In the next sections the various contributions to 
the nonents of the charge distribution are enumerated, 
with special emphasis on the convenience and utility 
associated with diffuse distributions generated by 
convolution. 

DROPLET MODEL 

The single most significant feature differentiating the 
droplet Model frr-ri? earlier developments in the macro
scopic approach to nuclear properties is the neutron 
skin. Previously some measure of the nuclear size (the 
equivalent sharp radius, the 50Z density radius, or the 

1/3 RMS radius) was taken to be proportional to A (or 
1/3 an empirically determined polynomial in A )• The 

new procedure, in terms of the Droplet Model, is to 
express the volume energy of the nucleus in terms of 
the bulk neutron and proton densities and the surface 
energy in terms of their effective sharp radii. Then 
the actual values of the densities and radii are 
determined by minimization. One result of this 
approach is the prediction of a neutron skin for 
neutron rich nuclei similar to the predictions of 
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microscopic self-consistent calculations. (Myers 
and Swiatecki recently reviewed the "Droplet Model" 
Theory of the Neutron Skin", and the work described 
here extends that discussion. ) Figure 1 serves to 
further illustrate this point. 
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FIGURE 1 

In this figure, schematic neutron and proton 
208 density distributions for Pb are plotted vs the 

radial distance. The surfaces are drawn sharp (zero 
diffuseness) to help illustrate the points being made. 
Part (a) represents the strict "liquid drop model" in 
which Rj, - R z - R - r 0A 1 / 3. Part (c) represents 
the opposite extreme where the central neutron and 



-4-

W.D. MYERS 

proton densities are the sane and all the excess 
neutrons are placed in the surface. Part (b) represents 
the actual (intermediate) situation predicted by the 
Droplet Model, where the neutrons are partially pushed 
into the surface by the volume symmetry energy* To the 
right of part (b), in part (d),' the Droplet Model 
prediction for the central depression in the neutron 
and proton density distributions (caused by the Coulomb 
repulsion) is also shown. The diffuseness of the 
actual surfaces is given approximately by the dashed 
lines in part (d). 

In the discussion that follows a number of Droplet 
Model coefficients appear. One set of currently 

3 accepted values is : 
r • 1.18 fm, the nuclear radius constant, o 

3 2 = , " f (e I T ) » 0.7322 MeV, the Coulomb energy 
coefficient, 

a, • 20.69 MeV, the surface energy coefficient, 

J « 36.8 MeV, the symmetry energy coefficient, 
Q - 17 MeV, the effective surface stiffness, 
K - 240 MeV, the compressibility coefficient, 
L - 100 MeV, the density symmetry coefficient. 

The Size 
The first step in constructing the Droplet Model nuclear 
density distributions is to calculate the size of the 
system (neutrons and protons together) from the 
expression 

R » r A 1 / 3 (1 + ?) , (1) 
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where r is related to the density of infinite (N • Z) 
nuclear matter by the expression 

Po-(i-o)" 1 . <» 
and the small quantity E is a measure of the dilatation 
(or squeezing) that occurs for finite nuclei. For a 
spherical nucleus the quantity R calculated in Eq. (1) 
is the equivalent sharp radius of the nuclear density 
distribution. For a deformed nucleus we can still use 
Eq. (1) with the understanding that the volume enclosed 
by the equivalent sharp surface is given by 

V - j nR 3 , and ~p - A/V , (3) 

where ~p is the average value of the density in the bulk. 
The quantity ~z in Eq. (1) can be calculated from 

the Droplet Model expression 

e - (-2.2A'1/3Bs • L f * c l Z V 4 / 3 B c ) / K , (4) 

where the first term represents squeezing by the surface 
temtion, the second dilatation due to the neutron 
excess, and the.third dilatation due to Coulomb repul
sion. The compressibility K in the denominator acts to 
resist these changes. (The quantity B is the ratio 
of the surface area of a deformed nucleus to that of a 
sphere with equal volume, and B is the analogous term 
for the Coulomb energy.) The quantity T appearing in 
Eq. (.h) is the bulk average of the local nuclear asym
metry 6 » (p -p_)/(p_+P_). It is related to the 

n z n z 
global nuclear asymmetry 

I - (N-Z)/A , (5) 
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by the Droplet Model expression, 

I + 3y ( C l/Q) ZA- Z / 3 B v 

6 • 5 ^75 , (6) 
1 + I (J/0) A i / J B a 

where B is another shape dependence related to the 
Coulomb energy. 

Equation (6) is a little harder to analyze than 
Eq. (A) because of the denominator that should not be 
expanded (an essential feature of the Droplet Model). 
But we can expand it for pedagogical purposes, yielding 

7 * I + | ( I C l z A - 2 / 3 B v - 3 JIA- V 3 Bg)/Q . (7) 

In this expression we see that the bulk nuclear asymmetry 
~E is increased above the value I by the first term in 
parentheses (a Coulomb term that tries to expand the 
proton distribution leaving, the neutrons behind). The 
second term in parentheses reduces the value of 7 
(because the bulk symmetry energy tries to equate the 
neutron and proton densities, by pushing the excess 
neutrons into the surface) and the coefficient Q in the 
denominator resists both of these effects. The quantity 
7 is usually smaller than 1, and a neutron skin (of 
thickness t) is produced (except for some very light 
nuclei where Z > N), because of the geometric 
relationship, 

t - | R (I -D/lf . (6) 

Once Eqs. (1 and 8) have been used to calculate R 
and t, the separate effective sharp radii for the 
neutron and proton distributions can be calculated from 
the expressions, 
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R - R + f t n A 

- 5 « 
(9) 

The Shape 
A simple, useful representation for the shape of the den
sity distribution is in terms of Legendre polynomials, 

r - nR (1 + a 2P 2 + a ^ ) , (10) 

where volume normalization is insured by setting 
n ' ( 1 - ¥1 - m& + h£ - iVk - K - M » > 

In terms of this expansion the shape dependences above are 

R 1 1 2 2 3 253 4 4 2 4 2 
v 5°2 " lO?1^ " m " ? ^ ~ 105a2a4 9 a4'" 

The Redistribution 
Once the Droplet Model size of the distribution has been 
determined, and some other source has been consulted 
for information about the shape (for example the recent 
Holler and Nix compilation of predicted masses and 

7 8 deformations ' ), we can proceed to the next level of 
refinement. The protons (and neutrons to nome extent) 
are pushed toward the surface by the Coulomb repulsion 
and the small increase in binding that results is 
included in the Droplet Model energy expression. The 

2 corresponding change in the density is given by 
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where v is the deviation of the Coulomb potential from 
its average value over the bulk. 

2 For a spherical distribution, 

•-j?[i -1(f)2] • 
z 

1 Zt f 3 / r \ 2 l 
v - 2 r U ' (i) J • 

i d i s t r i b u t i o n wh< 

? 4i - KF) V 3v.) • &-)\ 
X ] ( k - l ) ( | r ) P k(c^<22k>+a 2o 4<24k>)I (IS) 

and for a d i s t r i b u t i o n whose shape i s given by Eq. ( 1 0 ) , 

%\ 

- 6 Ze _ . _ -v «-=•=— B and v • v - v 3 R c 

where R1 • nR . and n is given by Eq. (11). 
The N-symbol brackets in Eq. (15) have the values 

<220> » <22> * 2/5 , 
<222> - <224> - <242> - 4/35 , 
-:244> - 40/693 , 
<240> » <24> » 0 . 

Then the change in the proton density can be written 

P r - \ P Q c' f(rji , (16) 

where 

2̂K. — 
c' • ¥k> h ¥- • <"> 

* 0.0156 Z A " 1 / 3 
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and for a spherical nucleus 

f(r) - [3/5 - (r/Rz)2J . (18) 

For a deformed distribution the function f(r,6) can be 
inferred froa Eqs. (IS). 

Part (d) of Figure 1 shows how the redistribution 
creates a central depression in the proton density dis
tribution (and a smaller one in the neutron distribution 
because of the change of sign in Eq. (13)). The upper 
part of Figure 2 is also meant to convey the idea that 
charge is moved outward from the center toward the 
surface. The lower part of. Figure 2 shows how 
redistribution increases the charge on the ends of a 

FIGURE 2 
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deformed nucleus, leading Co an enhancement of the 
quadrupole moment. 

The Diffuseneas 
Once the size, the shape, and the redistribution have 
been combined, the last step in the determination of the 
Droplet Model prediction for the density distribution 
is to Add the diffuseness. The customary procedure of 
using Fermi functions is awkward snd inconvenient 
(especially when the density is deformed and redistrib
uted) and so we will use convolution to create the 
diffuseness. When a normalized, spherically symmetric, 
ahort-ranged function is folded into our sharp-srrfaced 
distribution the resulting diffuse distribution still 
has the same volume integral (contains the same number 
of particles). What is most significant is the fact 
that the multipole moments of the distribution are 
unchanged and the radial moments (and moment of inertia) 

9 10 simply increase by a known constant. So, we do 
not have to actually perform the convolution integral, 
unless we want to plot the density distribution itself. 

A proposal for ci bating the diffuseness in this way 
was made by Helm, in connection with the interpreta
tion of elastic electron scattering measurements. More 
recent work along these same lines has been done by 

12 13 Friedrieh and Voegler. * They find that "Helm 
Kjdel" effective sharp radii extracted from experiment 
behave much as the Droplet Model says they should and 
that the variance of the gaussian folding function, 

g(r) - (2iro 2r 3 / 2 exp (-r2/2o2) (19) 
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is nearly constant throughout the periodic table except 
for some evidence of shell structure. Usir<g Figure 3, 

13 which is iron their work, we can deduce a • 0.95 fm 
as a reasonable average value for use in the remainder 
of our calculations. 
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It should he mentioned in passing that a * b and 
that the geometrical relationships between the surface 
location C, the effective sharp radius R, the etfective 
RMS radius Q, and ttu. surface width b have been discussed 

14 15 
by ttiissmann and other authors. The advantages of 
the folding method have also received recent 
attention.9'10'16 

Once the charge distribution has been determined 
various moments, can be calculated for comparison with 
the measured values. This is relatively simple since 
Che quantities of interec factorize into contributions 
from the size, the shape, the redistribution, and the 
diffuseness. 
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RADIAL MOMENTS 

The most frequently measured quantity, the mean square 
2 radius <r >, can be calculated fron the expression 

2 2 2 1 ~' ~ <r > « <r > + <r > + <r >. , (20) 
u r d 

where (the subscript Z, indicating protons, is dropped 
here since these expressions are completely general) 

< r 2 > u « | R2 (1 + 0t2 + | o t 2 • . . . ) (21) 

is the contribution from the size of the uniform 
distribution and its shape. The next tern, 

.A- |f_ CV«-J$ ̂  + |» ^ + ...> (22) 

is the contribution from the redistribution, and its 
shape dependence. The last tern, 

<r2>. - 3a 2 or 3b 2 (23) 
1 

is the contribution from the diffuseness. It is 
interesting to note that the diffuseness correction has 
no shape dependence and that it is the same for all 
nuclei (so long as we assume that the diffuseness 
itself is a constant). 

In order to msaes* the relative importance of the 
238 different terms we can consider the example of U. 

The spherical Droplet Model value of R is 7.030 fm, 
and this becomes 7.027 fm when the effect of deformation 
(using the values o, • 0.139 and a, " 0.065 provided 
by Holler ) on the size of the distribution is included 
via the B's Eqs. (4, 6, and 8). The mean square radius 
of such a distribution is 29.627 (1+0.0216) foi2, where the 
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first part coaes froa the size and the second from the 
2 shape. The redistribution contribution is 0.879 fa > 

2 2 
and the diffuseness contribution is 3(0,95) * 2.707 fa , 

2 for a total of 33.860 fa • The predicted RMS radius is 
5.819 fa, which is to be coapared with the experimental 
value of 5.843 + 0.012 fa. 1 7 

The three parts of Figure 4 show a broader 
comparison between aeasured and calculated values. 18 These plots, which were aade by Schaidt, used 
somewhat different a's for calculating the aean square 
radius fron those provided by Holler. The upper plot 
shows the difference that reaains when the aeasured RMS 
radii are coapared to liquid drop aodel predictions 
(with deformation corrections included). The downward 
slope to the right for each isotopic sequence is removed 
when the Droplet Model is used, as can be seen in the 
second plot. At the bottom of this figure the same 
comparison is aade but without corrections for 
deformation and redistribution. 

The first few even moments of a uniform spherical 
distribution made diffuse by folding with a gaussian are 

<r2> - | R 2 (1 + ,'5B2) , 

<r 4 > - j R4 (1 • 14B2 + 35B 4 ) , (24) 

<r6> - | R 6 (1 • 27B2 • 189B4 • 315B6) , 
where 

8 • O/R. 

To the best of ay knowledge, the contributions to the 
higher aowents from deformations and redistribution 
have not yet been worked out. 



- 1 4 -

W.D. MVERS 

"7" 

1 1 1 — 

J typical absolute uncertainty 

/ 

«a *o to DO 

neutron number 

FIGURE 4 



-15-

DROPLET MODEL 

MULTIPOLE HOHEHTS 

Using the definition, 

QJJ, - 2 J TlVt d 3r , (25) 

we can derive expressions for the aultipole moments 

analogous to Ec. (20). Thus, 

where Q* is the contribution from the uniform 
distribution, Q« the contribution from redistribution, 
and (as we mentioned before) Q. is the contribution 
from the diffuseness, which is identically zero. For 
the quadrupole moment, 

« 2 - f f 5 C ' Z R 2 < a 2 + " > • 
and for the hex«decapole moment, 

The reader is warned that these expressions may not be 
accurate enough if the as are not sufficiently small. 
Another, more serious problem is that expressions like 
these are sometimes used to infer values of a and a 
(or related deformation parameters) from measured Q's 

1/3 under the assumption that 1*1,2 t fm. In the 
238 case of D the Droplet Model (and measurements of 2 <r >) favor a value of R that is about 6Z smaller, 

z which would increase ct- by 123! and a. by 24Z. 
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SUMMARY AND CONCLUSIONS 

We have shown how the Droplet Model, when supplemented 
with infomation about the shape and diffuseness of the 
nucleus, can provide moments of the density distribution 
in good agreement with the Measured values. The accu
racy obtainable by this method seems to be about 0.01 fm 
(or 10 am), which corresponds to 0.2X in the RMS r-" s 
for a heavy nucleus. This is almost as good as the 0.12 
accuracy (1 MeV out of 1009 MeV) that can be obtained 
for the binding energy, when the macroscopic approach 
is supplemented by shell corrections. 

Indeed, the one thing missing here is some sort of 
phenomenological estimate of the contribution to the 
density distribution from the quantum nature of the 
system. Since we were mainly concerned here with 
moments, it wasn't necessary to consider the small 
wiggles in the density distribution that have been 
observed in electron scattering. These wiggles have a 
wavelength corresponding to the Fermi energy and their 
sign and magnitude probably depend mainly on whether or 
not an s-state has just been filled. At present only 
Hartree-Fock calculations are capable, in principle, of 

. 1 9 describing such wiggles. 
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