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OBSERVATION OF A POMEAU-MANNEVILLE INTEffi~ITTENT ROUTE TO CHAOS IN 

A NONLINEAR OSCILLATOR 

Carson Jeffries and Jose Perez 

Materials and Molecular Research Division, Lawrence Berkeley 

Laooratory, and Department of Physics, University of 

California, Berkeley, California 94720, U.S.A. 

(Received ) 

For a driven nonlinear semiconductor oscillator which 

shows a period-doubling pitchfork bifurcation route to chaos, 

we report an additional route to chaos: the Pomeau-Manneville 

intermittency route, characterized by a periodic (laminar) 

phase interrupted by bursts of aperiodic behavior. This 

occurs near a tangent bifurcation as the system driving 

parameter is reduced by € from the threshold value for a 

periodic window. Data are presented for the dependence 

of the ave~age laminar length <t> on €, and also on additive 

random noise voltage. The results are in reasonable 

agreement with the intermittency theory of Hirsch, Huberman 

and Scalapino. The distribution P(tl is also reported. 

PACS numbers: 05.40.+j, 05.20.Dd, 47.25.-c 
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For nonlinear di·ssipative systems there are many routes to chaos, 

i.e., patterns of behavior as the system is driven from stable smooth 

laminar motion into seemingly erratic . or chaotic motion. In a ·recent 

review,1 Eckmann discussed three routes, or "sceoartos", that have recog

nizable characteristics, are reasonably well defined, and may, in fact, 

be considered universal; no doubt other universal routes will also be 

discovered, both theoretically and experimentally. In this paper we 

report detailed measurements on a real physical system that appears to 

follow one of the routes, the intermittency route originally proposed by 

Pomeau and Mann.evill e (P-M). 2 Full theoreti ca 1 treatments have been 

given by H1'rsch, Huberman and Scalapino,3 Eckmann, Thomas and Hittwer, 4 

Hirsch, Nauenberg and Scalapino, 5 and Hu and Rudni~k.s The P-M inter

mittency arises when a tangent bifurcation occurs and is usually modelled 

by a one-dimensional discrete dynamical equation of the form xn+l = f(xn), 

where, e.g., f(x) is assumed to have a.single quadratic maximum, as in 

· the logistic equation 

(1 ) 

As the driving_ parameter :x is increased from zero to :xc = 3. 5699 ... , a 

cascade of period doubling pitchfork bifurcations 1 ' 7-9 occurs with onset 

of aperiodicity, i.e .. , chaos, at the accurpulation point :xc. 

In the chaotic regime Ac ~ A ~ 4, tangent bifurcations give rise to 

periodic windows of finite width with definite sequence and pattern -

the U sequence of Metropolis, Stein and Stein.IO 

For example~ Fig. 1 is a plot of the fifth iterate f 5 (x) vs x for 

the logistic function f(x) = A(x- x2 ) computed for A5 = 3.73775, where 

fS(x) just becomes-tangent to the 45 degree line, giving rise to five 
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fixed points, x1 = f 5(x1,A. 5), and a period 5 window. Define e: = A. 5 - L 

For a small positive value of e:, the neighborhood of a (attracting) 

fixed point, Fig. 2, presents a small gap through which a trajectory must 

traverse, as shown by a large number of successive iterates from point 

A to point B, during which the system appears periodic, i.e., is in a 

11 1aminar11 phase. At point B the iterates move chaotically about the map, 

corresponding to an intermittent 11 burst 11 phase, then reenter at some 

point A near some attracting fixed point, etc. To summarize, as t is 

increased by reducing the driving parameter one expects to experimentally 

observe a P-M transition to chaos characterized by periodic wave trains 

increasingly intermittently interrupted by aperiodic bursts. The average 

periodic length <1> decreases with e:, with scaling behavior2,3 

(Q,) a: e:-0.5 

for Eq. (1), or more generally, as <t> a: 1/e:l-l/Z for the nonlinear 

function f(x) = 1 - aJxiZ assumed by Feigenbaum9 [Z = 2 for Eq. (1)]. 

For e: = 0, the P-M scenario can be induced by additive random noise, 

(2) 

represented by adding a term g.;(t) to the right side of Eq. (1) where 

t(t) is a white noise source and g is the standard deviation. The pre

dicted3 scaling behavior is 

( Q,) a: g- 2/3 ( 3) 

for Z = 2, and more generally, <t> a: g- 2(Z-l)/(Z+l). The probability 

distribution P(!) is also predicted, with and without additive noise. 

Although onset of chaos via some kind of intermittency has been quali-

tatively observed in many nonlinear systems, detailed measurements 

demonstrating Eqs. (2) and (3) have not been yet reported to our knowledge. 

However, Pomeau et ~.11 interpret an intermittency in a chemical oscil

lator as belonging to this class. 
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We report here the observation of a P-M intermittency route to chaos 

in reasonable agreement with Eqs. ( 2) and ( 3) for a driven asCi 11 a tor 

whose nonlinearity is a p-n junttion diode, similar to that pteviously 

reported. 12 We have shown that this system follows the universaFperiod 

doubling bifurcation route to chaos. 7-9 Good agreement is found between 

theory and measurements for five universal numbers: convergence rate 

o;1 2 pitchfork ratio a; 1 3 p~wer spectral ratio;1 2 wide band noise scaling 

factor s; 13 and noise sensitivity factor K. 14 Almost all observed 

window periods and patterns agree with the U sequence.1 5 The bifurcation 

diagram is quite similar to that of Eq. (1 ).1 2 These data characterize 

the system fairly well: to a good approximation it is describable by 

Eq. (1}. However, direct observatio.n of the return map and the Poincare 

section, which are more sensitive probes of the system dynamics, reveals 

a Henan-like two-dimensional character, 16 expected for the second order 

differential equation for the LRC oscil,.ator; this approaches the one-

dimensional map as R + =. To this approximation we consider the system 

to be a good candidate for observation of the ·p-M i'ntermittency route, 

in addition to the period doubling route. 

The system is a series connected inductance L, resistance R, and 

junction diode; driven by an oscillator V0sin{21Tt/T), where the period 

T = (_80 kHz)-l' = 12.5 ~sec, selected to be near the riatural resonance 

period of the LRC.circuit. The nonlinearity is provided by the diode 

which has non 1 i near conductance and capacitance, both in fon<~ard and 

in reverse 6ias. 17 To take measurements on the system, we do real time 

analysis of the series current I(t) and the voltage Vc(_t) across the 

diode. To a first approximat.ion we assume that the system dynamical 
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variable is the diode voltage Vc(t) and make the correspondences: 

Vc(t) +~- xn; Vc(t+mT) +~- xn+m; and IV
0

1 +~-A., to relate measured quantities 

with xn and A. of Eq. (1). Alternatively, we can also assume the series 

current I{t) is the dynamical variable with the correspondences: I(t) +~- xn; 

I(t+mT) +~- xn+m; and IV
0

1 +~-A. Both assumptions are reasonable because 

Vc and I each show essentially the same bifurcation diagram, both very 

similar to that computed from Eq. (1). By using a sample and hold circuit 

and oscilloscope intensity strobing, we plot directly the first iterate, 

or return map, I(t+Tl vs I(tL Fig. 3, which corresponds to the map 

xn+l vs xn. Although it is not the simple parabola of Eq. (1), to first 

approximation it has a single quadratic maximum; the small splitting is 

a consequence of higher dimensional character. 

The period-three window has a measurable hysteresis12 (a consequence 

of higher dimensional character), and the P-M intermittency is not 
. \ 

observable at this window. However, the first period-five window has no 

observable hysteresis, and displays an intermittency as A. is decreased 

from the periodic to the chaotic state. Figure 4(b} shows the observed 

fifth iterate for this window at A. chosen very slightly less than 

A.s = 3.737 at the start of intermittency, so that the five stable fixed 

points of Fig. 1 are all visited and can be photographed. The points lie 

on th.e straight 1 ine I{_t+STl = I(t}. Figure 4(a) shows the observed fifth 

iterate for A. less than A.S, well into the chaotic region, where the 

complete return map is sampled more uniformly; The points of tangency 

to the diagonal correspond to t~e fixed points of Fig. 4(_b) and Fig. 1. 

The curve of Fig. 4(a} has a reasonable correspondence with that of 

Fig. 1, except for a splitting due to the higher dimensional character. 
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Since this splitting does not intersect the diagonal line, and the syst~m 

has experimentally well defined fixed points and displays tangent bifur

cation, we consider the period five window a suitable system for observa-
.' ·<. 

tion of a P-M intermittency. 

To take quantitative data to compare to Eqs. (2) and (3) we do real 

time analysis of the diode voltage Vc(t}, shbwn in Fig. 5 for E = 0. The 

diode forward conductance clamps the positive voltage, allowing observation 
' . . ·. : ·, ; 

of volt~ges pulses Vc corr~sponding to four.of the five fixed points; the 

pattern of Fig, 5 is RLRR(R), as expected,1o The largest pulse of Vc(t) 

is sampled by a window comparator, which.outputs an 11 event 11 pulse P, 

Fig. 5, if the pulse height is within 1% of the periodic {9r lamiriar) pulse 

height. The l% window was selected to facilitate comparison with the 1% 

gate width used in the theory of Hirsch, Huberman and Scalapino.3 This 

is further illustrated in Fig. 6 which shows Vc(t) forE> 0, i.e. for 

intermittency. The dots immediately below the p~aks are the event pulses 

recorded simultaneously with Vc(t) on a dual beam oscilloscope; they are 

also represented schematically by the pulse sequence P(t). Additional 

logic circuitry detects the beginning of a periodic train and outputs a 

pu'lse B; and it detects the end of th~ train and outputs a pulse E. 

These p~lses, P(t), B(t}, and E(t), are drawn schematically on Fig. 6, 

and are the signals used to quantitatively characterize the intermittency. 

Figure 7 is a representative group of intermittency signals Vc(t), 

with event marker pulses P, shown as dots just below the periodic maxima. 
. . . 

Here E = 0 and the intermittency is induced by a random noise voltage Vn 

added to the driving voltage v.o· Figure 7(a). shows periodic trains of 

lengths 2, 1, 1, 2, 2, 4, and 2 (in uriits of 5T = 62.5 11sec). 
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Figures 7(b) and (c) show longer lengths for decreasing values of Vn. 

We note the occurrence of some structure occasionally observed in the 

bursts; e.g., at region S in Fig. 7(a) there are 14 oscillations of 

approximately constant amplitude at period 2T; bursts of period T and 4T 

were also occasionally observed, with random amplitudes. 

For a fast measurement of <t> we read with a two-channel frequency 

counter the ratio of [f(P) = frequency of pulses P] to [f(B) = frequency 

of pulses B]. Then, in units of 5T sec, the average periodic length is 

<t> = frequency of periodic events _ f(P) 
frequency of periodic trains - f1BT (4) 

The average length is measured as a function of E, defined experimentally by 

E = >-s- >-o = (vos- vo)(~OJ (5) 

where V05 is the measured driving oscillator voltage for the period five 

window threshold; and V
0 

is the voltage just below threshold; a Fluke 

8520A six-digit recording voltmeter was used. The scaling factor 

(6>./6V
0

) is used to establish a measured local correspondence between V 

and >- in region of interest: the measurement 6>. = >.10 - >. 5 is computed 

from Eq. (1) where >. 10 is the threshold for bifurcation to period 10, 

6V0 is the measured voltage increment between the same thresholds. For 

our system. (6>./6V
0

) ::: 0.103 volt-1. ~Je varied E by varying V
0 

by a 

three-stage helipot attenuator driven by a digitally controlled stepper 

motor, with ~ resolution of lo-s in E. To record <t> vs E this method 

was used: The P- pulses were inputed into a multichannel scaler, which 

was advanced by one channel for every 2048 B- pulses; the stepper motor 

then advanced to E + 6E, etc. The result is a well-averaged plot of 
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<t> vs e:. A very similar procedure \vas used to measure <t> vs Vn, where 

the noise voltage Vn was slowly varied, V
0 

being held fixed at e: = 0. 

figure 8 is a representative plot of log10 <t> vs log10 e:. After an 

initial steep slope, the data are fit by <t> o:: l/e: 13 , where 13 = 0.43 is 

the slope of the drawn line. From othe~ similar runs an ~verage value 

fo~ the slope is fotind to be i = 0.45 ± 0.05~ The initial steep slope is 

not believed to be an sxperimental artifact. Figure 9 is a representative 

plot of loglO <t> vs log10 g, with e: = 0, where g is proportional to the 

additive noise voltage Vn. The data are fit by <t> o:: 1/g'Y, where y = 0.65 

isthe slope of the dra~tln dashed line; the fit is fairly good exceptat 

large values of g. Other runs give an average value y = 0.65 ± 0.05. 

A plot of the probability distribution P(t) was directly measured in 

this way: pulse B trigged a linear ramp VR = K(t - t 8) and pulse E 

sampled the ramp voltage VR = K(tE - t 8), and generated a pulse with 

magnitude just proportional to the length t = tE - t 8; pulse E also reset 

VR to zero, ready to be trigged by the next B pulse, etc. This sequence 

of pulses is inputed into a pulse height analyzer which displays directly 

Plt) vs L Figure 10 shows data for the unnormalized probability P(i) 

vs t (in ·units of 5T = 62;5 llS) fore:= 2.5 x 10- 4 • After an initial 

steep decaY there is a ~light hump at t = 9 a~d then a fast fall-off to 

very sma:ll values of P(.i) for large L Although t as large as 5000 

occurred, the probability is too small to appear on Fig. 10. This 

figure is to be compared to the theoretical expectation {Fig. 7 of 

Ref. 3) which shows P(t) peaked at small and large values of 1, with a 

dip at t : 10 : <1>; however, if a small random noise voltage is added, 
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then the computed P{t) has a hump at 1 = 10 and the peak at large 1 is 

washed out. This is qualitatively similar to our data of Fig. 10, \'lhich 

therefore may be explained by the presence of noise or other 

spurious signals in the nonlinear circuit. Data taken at s = 8 x lo-s 

show P(~} vs 1 extending to 1 = 5000, but with modulation at 60 Hz: 

at such a small value of s, the intermittency is extremely sensitive to 

spurious amplitude modulation of the driving voltage V
0 

at the power 

line frequency, which could not be eliminated. 

The probability distribution was also measured for s = 0 and an 

additive random noise voltage of standard deviation g = 10-4, with results 

shown in Fig. 11; there is a very slight hump at 1 = 10. For g = 3.5 x 

10- 4 , P(t) falls off more rapidly with no hump. 

To summarize, we note the reasonable correspondence between the data 

(!} a: 8 -(0.45 ± 0.05), (6) 

and 

(!}a: g-(0.65 ± 0.05), (7) 

and the predictions of Eqs. (2) and (3). Furthermore, the observed dis

tributionsP(t) vs sand P(t) vs g are qualitatively similar to theoretical 

expectation. We have no ready explanation of the small consistent devi

ation from s-0· 5 of the observed scaling of <t> with s. · The initial 

steep decay of <t> with s (Fig. 8) and the absence of a second peak at 

large 1 in the probability distribution P(t) (Fig. 10) could be due to a 

very small spurious 60 Hz component of the signal Vc(t); other possible 

causes are an (unmeasurably) small hysteresis in the period-five window, 

and higher dimensional effects. These intermittency measurements are 
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the most detailed to be reported and, we believe, establish the existence 

of a Pomeau-Manneville intermittency route to chaos in our driven non

linear oscillator. 

We thank J. E. Hirsch, B. A. Huberman, D.·J. Scalapino, Roger Koch, 

and M. Nauenberg for helpful discussions. This work was supported by 

the Director, Office of Energy Research, Office of Basic Energy Sciences, 

Materials Sciences Division of the U.S. Department of Energy under 

Contract Number DE-AC03-76SF00098. 
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FIGURE CAPTIONS 

Fig. 1. The fifth iterate f 5 (x) vs x for the logistic function f{x) 

= A(X- x2)., computed at AS= 3.737 where five extrema of the 

iterate just become tangent to the 45° line. This tangent 

bifurcation gi_ves rise to .five stable fixed points x1 and a 

period-S window. 

·Fig. 2. An enlarged ~iew of Fig. 1 in the neighborhood of a fixed 

point x1 for A slightly less than A5, showing a gap. The 

staircase line between the iterate and the 45° line indicates 

succe~sive iterations of Eq. (1). A trajectory entering at A 

will appear to have approximately 12 period-5 cycles of a 

laminar phase oefore it exits at B, where it displays an 

aperiodic burst. 

Fig. 3. Observed current I(t + T) vs I(t) for the nonlinear oscillator 

at A slightly less than A3 = 3.828 (threshold for period-3 

window), where T is the period of the driving oscillator. This 

corresponds to a plot of the first iterate f(x) vs x and shows, 

to a first approximation, a single maximum. The faint splitting 

is due to some higher dimensional character. 

Fig. 4. Oscnloscope trace of the curreryt I(t + 5T} vs I(t) corresponding 

to the fifth iterate f 5(x) vs x, for: (a) A less than A5, in 

the chaotic regime; (b) A very slightly less than A5. The five 

points x. lie on the straight drawn dotted line, defined by 
l 

I(t+5T) = 

Fig. 1. 

I(t), and correspond to the five fixed points x1 of 
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Fig. 5. 

Fig. 6. 

Dual beam oscilloscope trace of diode voltage Vc(t) (curve A) 

for the period-5 window, and event pulses (curve P) that detect 

the largest peak of Vc(t). The P-pulses are separated by a 

time 5T = 62.5 ~sec. 

Dual beam oscilloscope trace (curve A) of Vc(t) for E : 10- 3 , 

showing intermittency: periodic regions (and event dots P 

immediately below) and aperiodic bursts. The schematically 

drawn pulse trains P(t), B(t), and E(t) show, respectively, the 

pulses for laminar events, the beginning of a laminar region, 

and the end of a laminar region. 

Fig. 7. A representative group of dual beam oscilloscope traces of 

Vc(t) as in Fig. 6 showing intermittency in the period-S window 

(E = 0}, indUCed by a random nOiSe VOltage Vn added tO the 

driving voltage. Traces (a), (b), (c) cor~espond, respectively, 

to reduced values of Vn, and longer laminar lengths. 

Fig. 8. Points: plot of 1og10 (,Q,) vs 1og10 <E> for observed intermittency 

near period-5 window. Dashed line through data has slope 

-0.43. 

Fig. 9. Points: plot of log10 (,Q,) vs log10 (noise voltage) for observed 

intermittency in the period-S window with E = 0. Dashed line 

through.data has slope -0.65. 
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Fig. 10. Relative probability distribution P(1) vs laminar length 1 

(in units of ST = 62.5 llSec) for intermittency near the 

- peri·od-5 window; e: = 2.5 x 10-'+; 

Fig. 11. Rela~ive probability distribution P(1) vs laminar length 1 

(in units of ST = 62.5 llsec) for intermittency in the 

period-S window (e: = 0), induced by an. additive random noise 

voltage with standard d~viation g = 10-'+. 
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