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Abstract 

The macroscopic model of nuclear coalescence and reseparation is extended 

to noncentral collisions. The relevant degrees of freedom are the following 

ones: asymmetry, fragment separation, neck size, and the total amount of 

sliding that has taken place until the two nuclei clutched. It is shown that, 

within certain limits,.centrifugal force to a good approximation can be traded 

~or electric repulsion via an ••angular momentum f~action". The value of the 

angular momentum fraction predicted by the theory is consistent with the one· 

used to obtain the best fit to data. 



v 

-1-

1. Introduction 

The macroscopic model of nuclear coalescence and reseparation f11 

describes, in the first place, head-on collisions, although it ha~ been 

generalized schematically to include angular momentum. In the present work 

.ihe treatment of ref. [1] is extended to ~oncentral collisions by taking into 

~ account the relative angular momentum and the rotation of the individual 

nuclei, following the discussion of ref. [2]. 

The equations of motion remain sufficiently simple after the inclusion.of 

the angular momenta so that approximate solutions in closed form may still be 

found in several cases of interest •. In particular, the theory provides the 

normal modes of motion around the saddle points of the potential energy 

surface. The modes already present in the description of central collisions 

are unaffected. There is, however, one further normal mode emerging in 

connection with the inclusion of angular momenta. The characteristic time for 

this latter mode is connected to the transition from sliding to rolling, often 

referred to as the "c)utching" of the colliding nuclei. 

The predictions of the extra push model [1] have recently. been made the 

basis of a simple algebraic theory for the energy-dependence of the fusion 

cross section [3]. Recent experimental data [4] have been fit in terms of 

three parameters, the effective fissility, (Z2/A)eff' beyond which an 

extra energy over the interaction barrier (extra push) is needed to make the 

colliding nuclei fuse, the initial rate of increase of the extra push, a, and 

an "angular momentum fraction", f, the concept of which is based on the idea 

that centrifugal force cah be effectively traded for electrostatic repulsion. 

The physics connected with the parameters (Z2/A)eff and a is discussed in 

refs. [3], [5], and [6]. Here I am going to concentrate on the question of 

the angular m6mentum fraction f. In particular, I will present .a simplified 



-2-

treatment of the relative angular momentum and the rotation of the individual 

nuclei to examine whether the assumption of trading.centrifugal force against 

electrostatic·repulsion is justified. The results show that (at least in a 

reasonable range of colliding systems and for not too strong rotation) the 

above approximation can indeed be made. Furthermore, a theoretical value for 

the angular momentum fraction f is obtained, which wi11 be compared to the one 

used to fit the data. 

I do not attempt to be self-contained in the present report; since I will 

elaborate on one particular aspect of the extra push model [11, it appears to 

be convenient to use the general framework and notation developed earlier. 

The reader is referred to ref. [1] for details. 

In Section 2 the treatment of the angular momenta will be described, 

whi)e in Section 3 I will present some· instructive results of the model. In 

Section 4, I will draw a few general conclusions. 

2. Extension of the Extra Push Model for Noncentral Collisions 

There are three relevants degrees of freedom required for the description 

of head-on collisions: the asymmetry, &, the fragment separation, p, and the 

neck size, a. The precise meaning of these depends on the shape 

parametrization used to describe the system. I will use the parametrization 

and the variables which pertain to two spherical nuclei connected by a conical 

neck and are defined and discussed in ref. [1]: 

( 
sin e ) 

2 

a = Sln emax 
(1) 

with sin emax = (R1 - R2)/r referring to a fully open window. As in 

ref. [1], a = 1/2 will be taken to be the boundary between the "dinuclear" 

(necked-in shapes) and "mononuclear" regimes. The above shape-parametrization 

is illustrated in Fig. 1. 

-' 
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The main interest of the present work resides in the clutching of the c. 

colliding nuclei. This is expected to happen in the relatively early stages 

of the process, with the window less than half open (a < 1/2)~ Therefore, in 

what follows, attention will be focused on the dinuclear regime. This results 

in simplifications in the solution of the equations of motion. 

In addition to the shape of the system the relative rotation and the 

self-rotation of the two nuclei has to be characterized. These three 

rotational degrees of freedom have been introduced in ref. [2] as the angle of 

rotation, e, of the straight line joining the cehters of the colliding nuclei 

in some fixed inertial frame of reference, and the angles 81 and 82, 

describing the orientations of both nuclei relative to the same reference 

frame (see Fig. 1). 

The equations of motion are derived from the Lagrangian and the 

dissipation function, which contain the dynamical ingredients of the theory 

[1]:. a macro~copic potential energy in terms of Swiatecki's very elegant and 

useful simple parametrization, a macroscopic dissipation function in the form 

of the Wall-plus-Window formula, and inertias appropriate to two 

noncommunicating pieces (i.e. a reduced mass for the relative motion and 

{2/5)MiR~ for the moments of inertia of the individual nuclei, with Mi 

being their masses and Ri their radii). 

In terms of the variables 8, e1, and 82 th~ equations of motion 

governing the time development of the angular momenta can be written in a 

simple form. Neglecting rolling friction they read [2]: 

(2) 

(3) 

(4) 

~ 

,, 
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where L is the relative angular momentum, L1 and L2 are the spins of the 

two nuclei with radii R1 and R2, respectively. The quantity n is the neck 

'' 1/3 . 
radius andJ p V = ~~'If (j) {- is the constant characterizing the otie-s.ided 

·.· r . . . 0 

flux of particles through a unit area of the window in a unit time. (We shall 

use the Lysek i 1 va 1 ues of t~e nuc 1 ear paramefers, in particular r 
0 

= 1. 2249 

fm [ 8].) 

The equations (2)-(4) are easy to understand. Equation (2) expre~ses the 

conservation of angular momentum: if L1 and l~ are increased in the 

collision process by friction, L (and the centrifugal force) is bound to 

decrease accordingly. ·Equations (3) and (4) give the rate at which L1 and. 

o L2 are increased .as a conse~uence of ~a~ticle transfers through the window. 
. -

·.Since the square brackets represent the relative t~~gential velocity of the 

COlliding nuclei and 'lfn2 is the windOW area, 1/2 pV'Ifn 2 f J gives the 

tangential frictional fdrce. Upon multiplyin~ with the respecti~e arm lengths 

R1 and R2, one obtains the tot~ues responsible for the change of L1 arid 

L2 in time. Thus, the right-hand sides of eqs. (3) arid (4) describe sliding 

friction. Rolling friction is expected to be an order bf magnitude smaller 

than the contribution from sliding [2] and (as mentioned before) has been 

neglected in the present work. 

Note that the three degrees ~f freedom·8, 81, and 82 enter in the 

form of'the linear combination R1(·8- 81) + R2(8- 82) in eqs~ (B) and 

(4). As explained above, this variable is ~onnected ~ith sliding. Angular 

inOmentumconservation, on the other hand, manifests itself in the fact t~at 

the overall orientation of the system, 8, is a cyclic variable of the 

0 Lagrangian. The third rotational degree of freedom R1(8- 81)- R2(8- 82) 

~escribes rolling and is absent from eqs. (3) and (4) because rolling 

y 
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friction has been neglected. Under these condition~ there is only one 

relevant rotational degree of freedom and only one more equation of motion 

than in Ref. [1]. In order to obtain the additi·onal equation of motion from 

(2)-{4) L1 and L2 will be eliminated. 

. • L1 • L2 • L Us, ng e 1 = 1 , e 2 = y and e = 2 . , 
. 1 2 Mr(R1+R2) 

where :/i = i MiR~ are the moments of inertia ·of the individual nuclei, and Mr 

is the reduced mass of the system, leads to 

- 2 
L• 7 pV~n (L 5 L ) (5) 

=- 4 Mr - 7 o 

where L
0 

is the initial orbital angular momentum of the system. Integrating 

eq • ( 5 ) y i e 1 d s 

In addition to the "elegant variables" v and a, defined in Ref. [11 as 

(6) 

(7) 

(and reducing. to v ~neck radius , a= tip separation in the limit of a small · 
2'[ 2R 

neck with R = R1R2/(R1+R 2)) I will therefore use the new variable 

4 M 
7 - t 

__ PV~ f 
"-.?.+£e r o 
'P - 7 7 

n2 (t') dt' (8) 
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It is easy to show that (0 - 5/7) is propOrtional to the quantity in 

square brackets in eqs. (3) and (4}, which is th~ relative tangential velocity 

f t: 5 
of the two nuclei near contact. The quantity (0 - 7 ) dt represents 

. t 
0 

therefore the total amount of sliding that has taken place since time t o. 
Following Ref. [1] then leads to the following generalized equations of 

motion for v, a, and 0 in the dinuclear regime: 

.. 2· 2 
ua + v a = X - v + Y $ 

• '\) = 
2 2v-3v -a . 2 

4v(a+v ) 

7 T 2 
... 2u s v d-r 

0 = j + j e u o 

(9) 

(10) 

(11) 

where 
Mr 

u - -~--..----,r- is the dimensionless reduced mass, t is the 
- 21r( pv) 2 R4tr 

time measured in the natural time unit tu = p vR2/y, X is the effective 

fissility of the system, and the rotational parameter Y is defined as 

Now, for head-on collisions, the initial angular momentum L
0 

is zero, and 

eqs. (9) and (10) reduce to the equations of motion treated in Ref. f1]. 

(12) 

In the equati~ns of motion (9)-(11) there are three parameters u, X, and 

Y. Since the dependence of dynamical calculations on u (at least for head-on 

collisions [1]) is relatively slight for many systems 6f interest, the time 

. evolutions of dinuclear systems are expected to be approximately similar in 

practice,provided the effective fissilities X and the rotational parameters Y 

are the same. Moreover, on the basis of the idea that centrifugal force can 

• ( . 
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be effectively traded against Coulomb (electric) repulsion (outlined in refs. 

[1] and [3]) one e·xpects a much stronger approximate ''scaling rule 11
: the 

quantity approximately determining the dynamical behavior of dinuclear systems 

should be a linear combination of the form X + fY, where f is the 11 angolar 

momentum fraction 11
, used in Ref. [3] to fit experimental data. Comparing to 

eq. (9} it is seen that f describes an average value~of the quantity ~2 • 

In order to·obtain an approximate analytic solution to the equations of 

motion (9)-(11), I took the following simple steps (in close analogy with Ref. 

[1]): 

1. In the vicinity of the saddle points of the potential energy 

surface, where~~~= 5/7, the equations of motion have been linearized 

and their solution was written down in terms of the normal modes of 

motion. 

2. The small time limit (T << 1) of the equations (9)-(11) has been 

investigated and a solution has been found in closed form. Note that the 

small time behavior of eqs. (9)-(11) is more complicated than that of the 

equ~tions of motion in Ref. [1]. As a matter of fact, it was sufficient 

to assume a << 1 and ~2~ << 1 in Ref. [1] to arrive at an explicit 

solution, so that the resulting trajectory in configuration space could 

be used in the neighborhood of a= 0 (i.e. p = 1) with confidence. In 

the present case I have only been able to obtain a solution in closed 

form in the small time limit, T << 1. I will refer to the results based 

on T << 1 as obtained in the small-T approximation while a << 1 and 

v2~ << 1 will be denoted the small-a approximation. 

3. The solutions A and B have been matched at an intermediate time 

Tm. (The results are insensitive to the exact value of Tm. In the 

calculations Tm = 0.5 has been used.) The solutions obtained this way 
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repres~nt trajectories in the (p,a,A) configuration spa·ce. Some of the 

trajectories lead to the f~sion o~ the sy~tem, ·others to resepar~tion. 

For heavy or strongly rota~,ing systems bringing the two nuclei in contact 

(at rest) on the top of the interaction barrier does not atftomatical1y · 

lead to fusion; but an "extra push" (an extra energy over the barrier) is. 

necessary to form a compound nucleus. If, for a· ·gfven:;:X 'and Y, one wants 

the system to fuse, the dimensionless outward velocity a.t time t = 0 has 

to'b~ ~<;cor, equivalently, it is needed that the injection velocity 

_; > _;c' where _;c is the critical irijettion velocity (at T = 0) that 

wi 11 bring the trajectory to rest at the saddle point of the potential 

energy surface. The trajectory, characterized by .,.::;c separates the 

families of tra~ectories leading to fusion and r·eseparation, 

respectively, for the given X and Y. 

3. Results · 

3.1. Normal modes of motion around the saddle pointk 

The position of the conditional saddle points (where the potential energy 

is stationary with respect to small variations of p ahd a while the asymmetry 

A i~ frozen) in the presence of rotatton is 

(13) 

a = 2- 3-2 v - v 
' ; 

The number of normal modes of motion is increased by one, corresponding to 

the new variable ~. The normal modes already present in the description of 
' 

head-:-on collisions are unaffe~ted. The characteristic time, Tsl' for the 

additional normal mode, which describes the transition from sliding to 

rolling, is ·compared to the other characteristic times in .the binary regime of 
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the system on Fig. 2. One can see that for reasonably large systems Tsl is 

smaller than the characteristic times of other modes. In other words the 

clutching mode represents the fastest time sc,ale in these systems. 

3.2. Comparison of the small-a and small-T approximations for Y = 0 

The approximation based on matching the small-T solution against the one 

around the saddle yields slightly different results for the case of no rotation 

from the one using the small-a approximation. Since forT << 1 it follows 

that a << 1 and v
2; << 1, but not the other way around, it is clear that the 

small-a approximation is more precise than the small-T approximation. In 

order to get an idea about the quality of the present approximation (small-T), 

relative to the one used in Ref. [1] (small-a), the critical injection 

velocities, _;c' are compared in Fig. 3 as a function of the effective 

/ fissility, X, for the case Y = 0, where both approximations are feasible. 

One can see that the value of the critical fissiltty, above which an 

extrCi, push becomes necessary Xeff thr ~ 0.60 in the present approximation, 

rather than 0.57, the value obtained if the small-a solution is used tb start 

off the trajectories. 

On the other hand, the results differ only moderately if 1 ;cl is not 

too large. In particular, in the interval 0.4~ X~ 0.7 where l;cl is small 

and therefore the mode 1 is expected to work best, t.he sma 11-T approximation 

yields. somewhat smaller critical injection velocities than the small-a 

approximation, the agreement is, however, satisfactory. Now we turn to, the 

case Y * 0 in the small-T approximation. 

3.3. The critical injection velocity 

Figure 4 displays the critical injection velocities,-~c' for several 

values of the rotational parameter Yin the range of fi~silities 0.4 ~X~ 0.7. 
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Calculations have been performed for a large number of systems with different 

values of the asymmetry ~. The curves have been drawn on the basis of the 

points representing symmetric systems. One observes that, for a given value 

of Y, the results for different ~ fall approximately on the same universal 

curve as long as ~~cl is not too large. With increasing values of the 

critical injection velociti~s systematic deviations start to develop. I am 

going to focus attention on a relatively narrow strip around ~c = 0 (say 

-0.4 ~ -~c ~ 0.4). In that region the critical injection velocity appears 

to be well represented by a more or less parallel family of curves, labeled by 

the rotational parameter Y. This confirms the validity of the approximate 

scaling (mentioned in Section 2) expected on the basis of the idea of trading 

centrifugal force against Coulomb repulsion. 

To bring out this point clearly, on Fig. 5 I show the XY plane with locii 

of equal critical injection velocity, -crc. The heavy contour line divides 

the plane into a region of automatic capture (-~c < 0) and a region where an 

extra energy over the interaction barrier is needed to get the system to fuse 

(-~c > 0). (Figure 5 is based on calculations with symmetric systems, 

~ = 0.) The scaling rule stated at the end of Section 2 manifests itself in 

the approximately linear and parallel nature of the contour lines connecting 

locii of equal ~c· Except for the lightest systems (X~ 0.15) the contours 

are straight lines, the critical injection velocity is a function of X + fY 

only: 

-a = F(X + fY) c (14) 

where the angular momentum fraction f can be obtained from Fig. 5 as the slope 

of the contour lines. In principle, f characterizes the function F(X + fY) 

locally; in practice, however, with reasonable accuracy 

•• 
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f = 0.85 :1: 0.02 (15) 

This value is notably far from both f = 1, corresponding to a "mass-points" 

moment of inertia (and characterizing the system up to the moment of contact) 

and from the value corresponding to rigidly stuck spheres (f = 0.54 for a 

ratio of masses 208:50). On the.other hand, it compares reasonably well to 

the value f = 3/4 :1: 10%, used to obtain the best fit to experimental data in 

Ref~ [3]. It also· appears to be close to the mean of f = 1 and f = 5/7, the 

latter value characterizing two spheres rolling on each other without sliding. 

4. Conclusion 

In the present work I have suggested a simplified scheme to include 

angular momenta in the macroscopic model of nuclear coalescence and 

reseparation (extra-push theory) [1]. In the framework of the model I have 

been able to calculate the characteristic time for the clutching of the 

colliding nuclei and found clutching to happen fast compared to characteristic 

times of other normal modes of the system for not too light projectile-target 

comb in at ions. 

Within the model I have proved that centrifugal force can indeed be 

traded for ~lectric repulsion via an "angular momentum fraction" to a good 

approximation at least in the region of fissilities and rotations close to the 

threshold, where an extra push first becomes necessary. Furthermore, the 

actual theoretical value of the "angular momentum fraction", deduced in the 

model, is in reasonable agreement with the value obtained from the best fit to 

experimental data.~ 



. -12-

A:cknowl edgements 

It is. a· great pleasure to thank W.J. Swiate.cki for his help and 

encouragement in the course of this work. It is obvious that .without his 

earlier efforts and continuous involvement in the present project this work 

would never have been completed. 

This work was done in the Nuclear Science Division of the lawrence 

Berkeley laboratory and -w.as supported by the Director; Office of Energy 

Research, Division of Nuclear Physics of the Office of High Energy and Nuclear 

Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 

References 

~· ·. 

1. .W.J. Swiatecki, lBl--10911 (1980); Physica Scripta 24· (1981) 113. 

2. C.F. Tsang, Physica Scripta lOA (1974) 90. 

3. W.J. Swiatecki, Nucl. Phys. A376 (1982) 275. 

4. ,H. Sann, S. Bj~rnholm., R. Bock, Y.T. Chu, A. Gobbi, E. Grosse, U. lynen, 

E. Morenzoni, W. Muller, A. Olmi, D. Schwalm, and W. Wolfli, Proc. Int. 

Conf. on Nucl~ Physics, lBL-11118; 

··H. Sann, R. Bock, Y.T. Chu, A. Gobbi, A. Olmi, U. lynen,. W. Muller, S. 

Bj~r!Jholm, and- H • .Esbensen, Phys. Rev. lett. 47 (1981) 1248. 

5. F. Beck, J. Blocki, and H: -.Feldmeier, Proc. of. the. 11 Internati.onal 

Workshop on Gross Proper,ties of Nuclei and Nuclear Excitations X11
, 

Hirschegg, 1982. 

6. B. Sikora, J. Bisplinghoff, M. Blann, W. Scobel, M. Beckerman, F. Plasil, 

R.L. Ferguson, J. Birkelund, and W. Wilcke, Phys. Rev. C25 (1982) 686. 

7. J. Randrup and W.J. Swiatecki, Ann. Phys. 124 (1980) 193. 

8. W. D. Myers and W. J. Swi ateck i, Ark. Fys. 36 . (1967) 343. 

J 



-13-

Figure Captions 
) 

Fig. 1. Definition of the degrees of freedom employed. The nuclear 

configuration is parametrized by two spheres connected by a conical 

neck. The asymmetry is specified by 6, the center separation by P, 

and the degree of window opening by a. The rotational degrees of 

freedom are introduced as the angles 8, 81, and 82 in a fixed 

inertial frame of reference. 8 describes the overall orientation of 

the system, while 81 and 82 give the orientation of the 

individual nuclei. 

Fig. 2. The characteristic times of the normal modes of motion around the 

saddle point in the dinuclear regime. The light curves depict the 

normal modes already present in the description of head-on 

collisions (the fission mode with a characteristic time Tf and the 

oscillating transverse mode with a perio~ 2•Tosc and a 

characteristic damping time Tt) and are identical to the ones 

given in Ref. 1~ The heavy curve represents the additional normal 

mode with characteristic time Tsl' connected with the transition 

from sliding to rolling . 

. Fig. 3. The critical injection velocity as a function of the effective 

fissility X for the case of no rotation (Y = 0) in the small-T and 

small-cr approximations, described in the text. 

,~ Fig. 4. The critical injection velocity as a function of the effective 
) 

fissility X for different values of the rotational parameter Y. 

Calculations have been performed for several values of the asymmetry 

A (different symbols), while the curves have been, drawn on the basis 

of the points representing symmetric systems (A= 0). 

Fig. 5. Contour lines of the function -~c = F(X,Y) in the (X,Y) plane. 

The curves are labeled with their critical injection velocity in 

units of 2y/pV[. 
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