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Abstract

“ The macroscopic model of nuclear coalescence and reseparation is extended

to noncentral collisions. The relevant degrees of freedom are the following

ones: asymmetry, fragment separation, neck size, and the total amount of

sliding that has taken p1ace.unt11 the two nuclei clutched. It is shown that,
within certain limits,.centrifugal force to a good approximation can be traded
for e]ectric‘répulsion via an "angular momentum fraction". The value of the
angular momentum fraétion predicted by the theory is vconsistent with the one

used to obtain the best fit to data.



1. Introduct1on

The macroscopic mode1 of nuclear coalescence and reseparat1on Tl]
describes, in the first place, head-on collisions, although it has been

generalized schematically to include angular momentum. In the present work

.the treatment of ref. [1] is extended to noncentral collisions by taking into

account the relative angular momentum and the rotatfon of the indiyidua1
nuclei, following fhe discussion of ref. [2].

The equations of motion remain sufficiently simple after the inclusion of
the angular momenta so that approximate so1utionsAin closed form may still be
found in several casesvof interest. . In particular, the theory prevides‘the
norma1 modes of motion around the sadd]e points of fhe potentia] energy
surface. The modes already present in the description of central collisions
are unaffected. There is, however, one further normal mode emerging in
connection with the inclusion ef angular momenta. The characteristic time for
this latter mode is connected to the transitidn from s1iding to rolling, often
referred to as the "c]utch1ng“ of the colliding nuclei.

The pred1ct1ons of the extra push model [1] have recently been made the
basis of a simple algebraic theory for the energy-dependence of the fusion

cross section [3]. Recent experimental data [4] have been fit in terms of

'three parameters, the effective fissility, (Z TA) ccs beyond which an
eff

extra energy over the interaction barrier (extra push) is needed to make the

colliding nuclei fuse, the initial rate of 1ncrease_of the extra push, a, and

“an "angular momentum fraction", f, the concept of which is based on the idea

that centrifugal fohce cah be e?fectively traded for electrostatic repulsion.
The physics connected with the parameters (ZZ/A)e'ff and a is discussed in
refs. [3], [5], and [6]. Here I am going to concentrate on the question of

the angular momentum fraction f. In particular, I will present a simplified
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treatment of the relative angular momentum and the rotation of the individual
nuclei to examine whether the assumption of trading.centrifugal fdrce against
electrostatic ‘repulsion is justified. The results show that (at least in a
reasonable range of colliding systems and for not too strong rotation) the
above approximation can indeed be made. Furthermore, a theoretical value for
the angular momehtum fraction f is obtained, which‘w111 be éompared to the one
used to fit the data.

I do not attempt to be self-contained in the present report; since I will
elaborate on one particular aspect of the extra push model [11, it appears to
be convenient to use the general framework and notation developed earlier.

The reader is referred to ref. [1] for details.

In Section 2 the treatment of the angular momenta will be described,

whi]e in Section 3 I Qi]] present some'instructiye results of the model. In

Section 4, I will draw a few general conclusions.

2. Extension of the Extra Push Model for Noncentral Collisions

There are three relevants degrees of freedom required for the description
of head-on collisions: the.asymmetry, A, the fragment separation, p, and the
neck size, a. The precise meaning of these depends on the shape
parametrization used to describe the system. I will use the parametrization
and the variables which pertain to two spherical nuclei connected by a conical

neck and are defined and discussed in ref. [17:

A___RI—RZ . o=t 5 = sin o >2 (1)
IE1+R2 IE1+“2 SN 8pax

with sin Onax = (R1 - RZ)/r referring to a fully open window. As in
ref. [1], a = 1/2 will be taken to be the boundary between the "dihuc]éar"
(necked-in shapes) and "mononuclear" regimes. The above shape-parametrization

is illustrated in Fig. 1.
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The main interest of the present work resides in the clutching of the  «
colliding nuclei. This is eXpected to happen in the‘re1ative1y early stages
of the process, with the window -less than half open {a < 1/2). Therefore, in
what follows, attention will be focused on the dinuclear regime. This results
in simplifications in the solution of thé equations of motion.
In addition to the shape of the system the relative hbtation and the
self-rotation of the two nuclei has to be characterized. These three
~rotational degrees of freedom have been introduced in ref. [21 as the angle of )
rotation, 8, of the straight line joinfng'the centers of the colliding nuclei
in some fixed inertial frame of reference, and the angles 61 and 62,
describing the orientations of both nuclei relative to the same reference
frame (see Fig. 1).
. The equations of motion are derived from the Lagrangian and the
dissipation fdnction, which contain the dynamfca] ingredients of thé theory
[1]:. a macroscopic pofentiai energy in terms of Swiatecki's very elegant and
useful simple parametrization, a macroscopic dissipation function in the form
of the_Wa]]-p]us—andow formula, and inertias apbropriate to two
noncommunicating pieces (i.e. a reduced mass fof the relative motion and

(2/5)MR3

1.‘for‘ the moments of inertia of the individual nuclei, with M,

being their masses and Ri their radii);
In terms of the variables 6, 61,;and eé thg equations of motion
governing the time development of the angular momenta can be written in a

simple form. Neg]écting rolling friction'they read [2]:

L=+l o | @

<{

) = % o V rnl [Ry(8 - 6,) + Ry(6 - 6,)] Ry ' (3)

[,= 70V nn? [Ry(6 - 6,) +Ry(6 - 6,)TR, @
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where L is the relative angular momentum, L, and L, are thefﬁpins of the

‘two nuclei with radii Ry and Rz; respectively. The'quantityln is the neck

. — h X . i s L :
_radjus and?%vp V = %%; (3) T is the constant characterizing the ofe-sided y

flux of particles through a unit area of the window in a unit time. (WeYShatl

' usé the Lysekil Va]ues of the nucTear,pakameters;fin'partiéujar ro = 1.2249

fm [8].)

The equat1ons (')-(4) are eaSy'to‘undérstanﬂ - Equation (2) expresses the

' conservat1on of angular momentum if L1 and L2 are 1ncreased in the

' .co111s1on process by  friction, L (and the centrifugal force) is bound to

decrease accord1ng1y Equat1ons (3) and-(4) give the rate at which Li and |

»L2 are increased as a consequence of particle transfers through the window.

- Since the square‘brackets represeht’the'relative téﬁgentia1 velocity of the

CO1]iding nuclei and“inz'is“the window area, 1/2 Athz r ]-gites the
tangential frictional fdcce; ”Upon multiplying with the resﬁectiVe arm lengths
Ry and R,, one obtains the torqués-resbonsib1e foe the change of Ly and

L2 in time. Thus, the right-hand sides of egs. (3) and (4) describe sliding

friction. Rolling friction is expected to be an order of magnitude smaller

than the contribution from sliding [2] and {as mentioned before) has been

neglected in the present work.

Note that the three degrees of freedom e 91, and 92 enter in the
form of ‘the linear combination R (e -0 ) + R (e - 62) in eqs. (3) and &
(4). As exp1a1ned above, this variable is connected with s1iding. Angular

momentum. conservation, on the other hand, manifests itse1f in the fact that

the overall orientation of the syétém, e; is a cyclic variable of the

'Lagraﬁgian. The third rotational degree of freedom Rl(e -‘61) - Rz(e - 62)

describes rolling and is absent from eqs. (3) and (4) because rolling
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friction has been neglected. Under these conditions there is only one:
re]eva_nt rotational degreé of freedom and only one more equation of motion
than in Ref. [1]. In order to obtainv the additional equation of motion from

(2)-(4) L1 and Lé will be eliminated.
Using 6 | 71 ,92—?2- and’ =—(———)2*.

where 51. = %— M1.R1? are the moments of inertia-of the individual nuclei, and Mr
is the reduced mass of the system, leads to

b

—e

- 2

T | | 5
r : S

where L0 is the initial orbital angular momentum of the system. Integrating

eq. (5) yields

-

t
A J‘ n2(t')dt'
J .

ﬁ;’
L=L |2+2¢ (6)
o |7 7
In addition to the "elegant variables" v and o, defined in Ref. 17 as
: -2° \
(and reducing to v » neck radius = - tip separation ;. tpo 1imit of a small
: ' 2R R
neck with R = R1R2/(R +R )) I will therefore use the new variable
— t :
%-;;—‘if n? (t) dtt - (8)
rog ~ _

.
1]
~jun
+
~ o
®
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U It is easy to show that (¢ - 5/7) is proportional to the quantity in

square brackets in egs. (3) and (4), which is the relative tangential velocity

. . t
of the two nuclei near contact. The quantity _f (¢ - ;) dt represents
- . : t

_ 0
therefore the total amount of sliding that has taken place since time.to

Following Ref. [1] then leads to the following generalized eduations of

motion for v, o, and ¢ in the dinuclear regime:

uo + vzé =X-v+Y ¢2 (9)
2

. 2v-3v =g 111

v =———-—T‘ (10)
4y(atv©)
T
7 2
- vodt
=77 7¢ .
Mr ' .
where . U= is the dimensionless reduced mass, T is the

20(ov)° Ry v ‘
~ time measured in the natural time unit tu =0 VﬁQ/Y, X is the effective
fissility of the system, and the rotational parameter Y is defined as

' 2 - ’

4uyM R(R *R,)

L

Y

Now, for head-on co]]isions, the initial anéu]ar momentum Lo is zero, and
eqs. (9) and (10) reduce to the equations of motion treated in Ref. [1].

In the equations of motion (9)-(11) there are three parameters u, X, and
Y. Since the dependence of dynami§a1 calculations on u (at least for head-on
collisions [1]) is relatively slight for many systems of interest, the time
.evolutions of dinuclear systems are expected to be approximately similar in
practice,provided the effective fissilities X and the rotational parameters Y

are the same. Moreover, on the basis of the idea that centrifugal force can

— .
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be effectively traded against Coulomb (electric) repulsion (outlined in refs.

[1] and [3]) one expects a much stronger approximate "scaling rule": the

quantity approximately determining the dynamical behavior of’dﬁnuc1ear systems

shoul

d be a Tinear combination of the form X + fY, where f is the "angalar

momentum ffattion", used in Ref. [3] to fit experimental data. Comparing to

eq. (

9) it is seen that f describes an average valuesof the quantity ¢2.

In order to-obtain an approximate analytic sd1ution to the equatibns of

motion (9)-(11), I took the following simple steps (in close analogy with Ref.

[1]1):

1. - In the vicinity of the saddle points of the potential energy
surface, where ¢ z-z = 5/7, the equations of motion have been linearized
and their solution was written down in terms of the'norma1-modes of
motion. ‘ _

2. The small time limit (T << 1) of the equations (9)-(11) has been
investigated and a solution has been found in closed form. Note that the
small time behavior of eqs. (9)-(11) is more complicated than that of the
equations of motion in Ref. [1]. As a matter of fact, it was sufficient
to assume o << 1 and vZs << 1 in Ref. [1] to arrive at an explicit
solution, so that the resulting trajectory in configuration spaée could
be used in the neighborhood of ¢ =0 (i.e. p = 1) with confidence. 1In
the present case I have only been able to obtain a so]dtioﬁ in closed
form in the small time limit, T << 1; I will refér to the results based
on T << 1 as obtained in the small-t approxihatidn while ¢ << 1 and

25 << 1 will be denoted the small-o apprdximatioh.

3. The so1dtions A and B have been matched at an intermediate time

Tm.' (The results are insensitive to the exact value of T In the
calculations To = 0.5 has been used.) The solutions obtained this way
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represent trajeetories in the (p,a,A)‘COnngurdtidh space. Some of the
trajectories lead to the fusion of the system, -others to'reseparation.
For heavy or strongly rotat1ng systems: br1ng1ng the two nuclei in contact

(at rest) on the top of the 1nteract10n barr1er does not automat1ca11y

Tead to fus1on;vbutwang"extra push" (an extra'energy over ‘the barrwer) is .

necessary to form a cnmpound nucleus. If for a g1ven X and Y, one wants

the system to fuse, the d1men51on1ess outward velocity at tine t = 0 has

" tobeo <o or, equ1va1ent1y, it is needed that the injection velocity

c

‘-& > -éc, where —&c is the cr1t1ca1 1n3ect1on ve1oc1ty (at T = 0) that

will bring the trajectory to rest at the saddle point of the potential

.-enérgy surface. The trajectory, characteriied‘by eéc’separates:the

families of trajectories leading to fusion and :reseparation,

respective]y, for the given X and Y.

Results

Normal modes of motion around the saddle points

‘The position of the conditional saddle points (where the potentiéT‘energy

is stationary with respect to small variations of o and a while the asymmetry

o is frozen) in the presence of rotation is

vex+2v |
' (13)
5= - 5

The number of normal modes of motion is increased by one, corresponding to

. the new variable ¢. The normal modes already present in the descr?ption of

head-on collisions are unaffected. The characteristic t1me T

si» for the

additional normal mode, which describes the transition from sliding to

rolling, is compared to the other characteristic times in the binary regime of

R

W5
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the system on Fig. 2. One can see that for reasonably large systems Tcy is

smaller than the characteristic times of other modes. In other words the

c1utchiﬁg mode represents the fastest time scale in these systems}

3.2. Comparison of the small-¢ and small-t approximations for Y = 0
The approximation based on matching the small-t solution against the one
around the saddle yields slightly different results for the case of no rotation

from the one using the small-o approximation. Since for T << 1 it follows

that o'<< 1 and'vzé << 1, but not the other way around, it is clear that the

small-o approximation is more precise than the small-t approximation. In
order to get an.idea about the quality of the present approximation (small-t),
relative to the one uséd‘in Ref. [1] (small-¢), the critical injection
velocities, -&C, are compared in Fig. 3 as a function of the effective
fissility, X, for the case Y = 0, where both approximations are feasible.

One can see that the value of the critical fissility, above which an

.extrq push becomes necessary Xeff the =~ 0.60 in the present approximation,

rather than 0.57, the value obtained if the small-o solution is used to start
off the trajectories.

On thevother hand, the results differ only moderately if |8C| is not
too 1argg. In particular, in the interval 0.4 < X < 0.7 where IBCI is small
and therefore the mo&e] is expected to work best, the sma11-r approximation
yields. somewhat sﬁa]]er critical injection velocities than. the sma11—§ |
approximation, the agreement is, however, satisfactory. Now we turn to- the

case Y £ 0 in the sma]]—rrapproximation.

3.3. The critical injection velocity

Figure 4 d{sp1ays the critical injection Ve]ocities,-& for several

c’
values of the rotational parameter Y in the range of fissilities 0.4< X ¢ 0.7.
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Calculations have been performed for a large number of systems with different
values of the asymﬁetry A. The curves have been drawn on the basis of the
points representing symmetric systems. One observes that, for a given value
of Y, the results for different a fall approximately on the same universal
curve as long as léc’ is not too 1§rge. With increasing values of the
critical injection velocities systematic deviations start to develop. I am
going to focus attention on a relatively narrow strip around éc = 0 (say
-0.4 <§—5c=< 0.4). In that region the critical injection velocity appears
to be well represented by a more or less parallel family of curves, labeled by
the rotational parameter Y. This confirms the validity of the abproximate
scaiing (mentioned in Section 2)‘expected on the basis of the idea of trading
centrifugal force against Coulomb repulsion. : ' -

To bring out this point clearly, on Fig. 5 I show the XY plane with locii

of equal critical injection ve]ocity,v-é The heavy contour line divides

c

the plane into a region of automatic capture (-Bc < 0) and a region where an

extra energy over the interaction barrier is needed to get the system to fuse

(—Bc > 0). (Figure 5 is based on calculations with symmetric systems,

A = 0.) The scaling rule stated at the end of Section 2 manifests itself in

the approximately 1ineaf and parallel nature of the contour lines connecting

locii of equal BC. Except for the lightest systems (X £ 0.15) the contours

are straight lines, the critical injection velocity is a function of X + fY

only: I
-5, = F(X + fY) | (14)

where the angular momentum fraction f can be obtained from Fig. 5 as the slope
of the contour lines. In principle, f characterizes the function F(X + fY)

locally; in practice, however, with reasonable accuracy
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f = 0.85 * 0.02 4 | (15)
This.va1ue is notab]y far from both f = 1, corresponding to a "mass-points"
moment of inertia (and'characterizing the system up to the moment .of contact)
and from thevva1ue corresponding to rigidly §tuck spheres (f = 0.54 for a
ratio of masses 208:50). On the other hand, it compares reasonably well to -
the value f = 3/4 * 10%, used to obtain the best fit to experimental data in
Ref. [3]. It also appears to be close fo the mean of f =1 and f = 5/7, the

latter value characterizing two spheres rolling on each other without sliding.

4. Conclusion
In the present work I have suggested a simp]ifiéd scheme_to'inc1ude
angular momenta in the macroscopic model of nuclear coalescence and

reseparation (extra-push theory)'[l].. In the framework of the mode] I have

‘been able to calculate the characteristic time for the clutching of the

colliding nuclei and found clutching to happen fast compared to characteristic
times of other normal modes of the system for not too light projectile-target

combinations.

Within the model I have proved that centrifugal force can indeed be

-traded for electric repulsion via an "angular momentum fraction" to a good

‘ approximation at 1east in the region of fissilities and rotations close to the

thresho1d, where an extra push first becomes necessary. Furthermore, the
actual theoretical value of the "angular momentum fraction", deduced in the
model, is in reasonable agreement with the value obtained from the best fit to

experimental data.:

~
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Figure Captions

Fig. 1. Definition of the degrees of fr;edom emb1oyed. The nuclear
configuration is parametrized by two spheres connected by a conicaT
neqk. The asymhetry is specified by a, the center séparation by o,
and the'degree,of window opening by a. The rotational degrees of
freedom are introduced as the and]es 6, 64 and 62 in a fixed _
inertial frame of reference. 6 deséribes the overall orientation of
the system, Whj]e éi aﬁd-ez give the orientation of the
individual nuclei.
Fig. 2. - The characteristic'times’of the normal modes of motion around the
saddle point in the dinuclear regime. The light curves depict the
ndrma1 modes already present in the description of Head—on
collisions (the fission mode with a_characterisfic timé waand the '
osci11ating transverse mpde with a périoq ZwTosc and a
characteristic damping time T,) and are identical to the ones
gfven'in Ref. 1. The heavy curve répresenfs the additional normal
mode with charactéristic time TS], connected with thektransition
from sliding to rolling. |
~Fig. 3. The critical injection velocity as a‘funttion of.the effective
fissility X.for the case of no rotation (Y = 0) in the small-t and
small-g abbro*imations, described. in the text. |
Fig. 4. The critical injection velocity as a function of the effective
| fissility X for different values of the rotatibné] parameter'Y.
CQ]cu]ations have been performed for éeveré1 values of the asymmetry
a (different symbols), while thé curves have been, drawn on the basis
~of the points representing symmetric syétems (o = 0).

Fig. 5. Contour lines of the function -éc = F(X,Y) in the (X,Y) plane.
The curyes are labeled with their critical injection velocity in

units of 2y/ovR.
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