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Abstract 
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Harry F. King 
Department of Chemistry 

State University of New York at Buffalo 
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Symmetry methods employed in the ab initio polyatomic program HONDO. 

are extended to the coupled perturbed Hartree-Fock (CPHF) formalism, a 

key step in the analytical computation of energy first derivatives for 

configuration interaction (CI) wavefunctions, and energy second 

derivatives for Hartree-Fock (HF) wavefunctions. One possible 

computational strategy is to construct Fock-like matrices for each 

nuclear coordinate, in which the one- and two-electron integrals of the 

usual Fock matrix are replaced by the integral first derivatives. 

"Skeleton•• matrices are constructed from the unique blocks of electron 

repulsion integral derivatives. The correct matrices are generated by 

applying a symmetrization operator. The analysis is valid for many 

wavefunctions, including closed- or open-shell spin restricted and spin 

unrestricted HF wavefunctions. To illustrate the method we compare the 

computer time required for setting up the coupled perturbed HF equations 

for eclipsed ethane using D3h symmetry point group and various 

subgroups of D3h. Computational times are roughly inversely 

proportional to the order of the point group. 



iv 

Keywords: symmetry, coupled-perturbed Hartree-Fock, energy derivatives, 

HONDO. 



,,. 

'~ 

l 

I~ Introduction 

The coupled perturbed Hartree-Fock (CPHF) theory outlined by Gerratt 

and Mills1 for the calculation of one-electron second-order properties 

is a key step in the analytical computation of the energy first deriva

tives for configuration interaction (CI) wavefunctions 2' 3' 4' 5 and of 

the energy second derivatives for Hartree-Fock (HF) wavefunctions. 5 

The CPHF equations provide the derivatives of the molecular orbital 

coefficients with respect to the nuclear coordinates. The original 

formulation of the CPHF formalism for closed-shell HF wavefunctions1 

has been extended to open shell spin unrestricted HF wavefunctions by 

Pople, et a1. 5 to open-shell spin restricted HF wavefunctions by 

Osamura, et a1. 3 and to general multiconfiguration Hartree-Fock (MCHF) 

wavefunctions by one of us (MD). 6 

A possible and efficient computational strategy for setting up the 

CPHF equations involves constructing Fock-like matrices for each nuclear 

coordinate. In closed-shell HF cases (extension to open-shell HF cases 

is straightforward), these Fock-like matrix elements have the form 

-F (A,a) 
).1\1 

where qA· represent the ath cartesian coordinate (a= 1,2,3) of ,a 
center A. In Eq. (I-1) <lJihlv> represents the usual bare nucleus 

hamiltonian operator integral, <lJvllpa> the usual two-electron repulsion 

integral, and D is an electron density matrix element. The formal 
pa 

expression of F (A,a) is closely related to the closed-shell Fock 
).1\1 

matrix element 



2 

The one- and two-electron integrals of Eq. (I-2) have have replaced by 

their derivatives with respect to the cartesian coordinate qA,a in Eq. 

(I-1). Note that there are 3N such matrices,. one for each nuclear 

coordinate, where N is the number of nuclei. 

(I-2) 

The purpose of this paper is to show that the symmetry methods?,a,g 

employed in the ab initio polyatomic program HONDO can be extended to 

reduce the work required-for the construction of the matrices ?(A,a). In 

Section II we present the key equations for the calculations of the 

energy first and second derivatives along with the CPHF equations. The 

reader is referred to refs. (1) and (5) for their derivations. In 

Section III we define the nomenclature closely following the notations of 

refs. (7), (8), and (9). In Section IV we define the projection op~rator 

which allows us to take advantage of symmetry in the construction of the 

Fock-like matrices of Eq. (I-1). In Section V we present some results of 

test calculations showing the computational savings. In what follows we 

will adhere to the following convention: the pair of indices 11A,a11 

represents the 11 ath .. coordinate of center A; p,v,p,a ••• represent 

atomic basis functions; i,j,k, 1 ••• represent molecular orbitals; 11 q11 

stands for any nuclear displacement. 
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II. Energy Derivatives and CPHF Equations 

a) First and second energy derivatives for HF wavefunctions 

Let F denote the closed-shell HF Fock matrix with 

F = <J.d hi v> + 2: D [2<J.tvll pa> - <J.tpll va> J , 
J.l\1 pa 

p,a 

where the density matrix element is expressed as a function of the 

molecular orbitals coefficients {C .}: 
J.tl 

ace 
D = ~ 2C .C . 

pa L..J pl al 

The energy of a closed-shell HF wavefunction has the form 

VNUC being the nuclear repulsion energy. EHF may be written 

(II-1) 

(I I -2) 

(I I-3) 

EHF = 2: Dl-1" <J.tl hi v> + i 2: DJ.t}pa [ 2<J.tvllpa>- <J.tpllva>]+ VNUC (II-4) 
J.l\1 J.l\lpa 

The first derivative of EHF with respect to the nuclear coordinate q is 

given by 

( II-5) 
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where W is the energy weighted density matrix element 
~'\) 

occ 
w =~2£.c.c. 

~'\) L..J 1 ~ 1 'V1 
i 

(II-6) 

<~I'V> represents the usual overlap integral, and £i is the energy of 

the ith molecular orbital. At this point it is convenient to define a 

-quantity F (q) given by 
~'\) 

- a L: a [ J F (q) = - <~I hi "V> + D - 2<l.t'VII po> - <~_ pii"Vo> 
~'\) aq po aq po 

(I I-7) 

It can easily be seen that the derivative of F of Eq. (II-1) is equal 
~'\) 

to 

a - ~ a0 
[ ] - F = F ( q) + LJ .--.E2. 2<~"VIIpo> - <~P II"Vo> aq ~'\) ~'\) aq po 

In practice F (q) is used to set up the CPHF equations which in turn 
~'\) 

(II-8) 

provide a~ Dpo and make it possible to calculate a~ F~'V· For this reason 

-we will refer to F (q) as a 11 Fock matrix derivative 11 element. 
~'\) 

Using this notation the second derivative of EHF with respect to 

nuclear coordinates p and q is 

L a
2 

1 a
2 

[ J = D -- <~I hi "V> + - "'""' D D 2<~"VII po> - <~pll "Vo> 
~'\) apaq 2 LJ ~'\) pa apaq 

( II-9) 

.. 
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lJ\.1 lJ\.1 

To calculate the last two terms of Eq. (II-9), one needs to know the 

derivatives of the mol~cular orbital coefficients with respect to the 

nuclear coordinates. These derivatives are provided by the CPHF 

equations. 

b) First energy derivatives for CI wavefunctions 

The general form of a configuration interaction (C.I) energy is 

ace ace 
ECI = _Lrij <ilhlj> +~ _L rijhl <ijllkl> 

i ,j ijhl 

Following refs. (2) and (6), we have 

ll" a h 1 Y - <lll I v> + '?;' aq c. 

+ L U;j 
i,j 

ij 
e:: 

~vpa _a <JJvll pa> 
aq 

(II-:10) 

(I I-ll) 

In Eqs. (II-10) and (II-11) yij and rijhl are the one- and two-particle · 

density matrix elements of the CI wavefunction expressed in the molecular 

orbital basis, yll" and rll"Pa are the one- and two-particle dens~ty 

matrix elements expressed in the atomic orbital basis. The matrix Uq is 

the matrix of molecular orbital coefficient derivatives given by the CPHF 

equations. 
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c) The CPHF equations 

In the CPHF theory we assume that the molecule with molecular 

orbitals 0(o) is subjected to a small change in nuclear coordinate q. 

The matrix Uq is defined in first-Order approximation by: 

C(q) = C(o) [ 1 + q!:!_q] (II-12) 

Where C is the matrix of molecular orbital coefficients. For a closed--
shell HF wavefunction the CPHF equations are 

uqa,· (£
1
. - £a) = F .(q) -sq.£. 

a1 a1 1 

ace 

-2: s~n [2<aillmn>- <amllin>] 
m,n 

ace virt 
+ 2: 2: [ 4<aill bj> - <abll ij> - <ajll bi>] u~j ' 

j b 

where Fai(q) is given by 

Fai(q) = 2: ella Fll)q) c . ' Vl 
lJV 

and 

(II-13) 

( II-14) 

(II-15} 

In ref. (7) we showed how point group symmetry can be used to reduce 

the computational task in forming F given by Eq. (II-1). The method 
lJV 

was extended to the second term of Eq. (II-5) 8 

.! ~ D D __! [2<llvll pa> - <l!PIIva>] 2 ~ lJV pa aq 
lJVPO 
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and to the second term of Eq. (II-9) 9 

_21 ~ D D L..J lJ\1 pa 

In what follows we propose a new extension of the method to deal with the 
-formation of F(q) given by Eq. (II-7), to be used for HF energy second 

derivatives in Eq. (II-9), and for CI energy first derivatives in Eq. 

(II-13). 

III. Basic Functions and Symmetry Transformations 

Let x be a real cartesian basis function 

x(A,n ,n ,n ;r) = (x-A )nx (y-A )ny (z-A )nz g( Ir-A!) xyz x y .z 

where nz, ny, nz are non-negative integers, A is the nuclear center 

(III-1) 

of the function, and ! the argument of the function. The radial factor, 

g, is usually a linear combination of Gaussian functions. We introduce 

the "rotational quantum number" 

.A = nx + n + n y z (I II-2) 

and refer to a function as being of type s, p, d, etc., when .A equals 0, 

1, 2, etc., respectively. In what follows we may drop unimportant 

indices when it is felt that the meaning is obvious from the context. 

Let xa denote the first derivative of X with respect to A , A , and 
X y 

A when a equals 1, 2, and 3, respectively. Basis functions are z 

grouped into shells. Functions in the same shell I have the same A and 

.A, so an alternative notation is 
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(I I I -3) 

where I in the shell index. 

·Let G be the point group of the molecule, and R an element of G. 

Operator R maps point~ into~~, function f(~) into f(~1 ) and shell I 

tnto I 1
• Shells I and I 1 have the same 1 and their centers are related by 

(III-4) 

Basis functi~n x(I,m) maps into a linear combination of functions in 

shell I 1 that is given by 

m(1) 
R x( I , m) = L x(I 1 

, m 1 
) R ( 1 I ; m 1 

, m) 
m1 =1 

(II I-5) 

where m(1) = (1 + 1)(1 + 2)/2 since we insist that a shell be closed 

under rotation about its own center, and thus include all combinations 

(nx, ny, nz) consistent with a given 1I. In ref. (8) we showed 

that the effect of a symmetry operation on a basis function derivative 

xa is given by 

xa 
1 

( I 1 
, m 1 

) R (1 ;a 1 
, a ) R ( 1 ;m 1 

, m ) (II I-6) 

11 Fock matrix derivatives .. and symmetry operation 

Let X be a row vector denoting the mo 1 ecu 1 ar basis set and R X = X1 

the set of images of these functions under R. X provides a basis for an 

n by n matrix representation of the group 

• 



.. 
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x• = xR (I I I-7) 

In ref. (7) we showed that the density matrix Q defined by 

p(r) = 2xQx + 
(III-8) 

satisfies the equation 

+ 
D = R D R {IU-9) 

if the electron density p(r) has the symmetry of the molecule. In addi

tion the matrix ~of the closed-shell HF operator Eq. (II-1) satisfies 

the relation 

F = R+ F R (III-10) 

Similarly one can show {Appendix A) that the Fock matrix derivative 

F(E,e) satisfies the following important property 

- """ +-F(E,e) = ~ R(1;e',e) R F(E',e') R, 
e' 

where E' is the image of E under the given R • 

In ref. {7) we used Eq. (III-10) to show that it is possible to 

construct a "skeleton" Fock matrix from the "petite" list of unique 

(III-11) 

electron repulsion integrals. The true Fock matrix is recovered by a 

final symmetrization projection. In the next section we show how to 

construct "skeleton" Fock matrix derivatives from the list of unique 

electron repulsion integral derivatives. The correct Fock matrix 

derivatives are recovered by a final symmetrization projection. 
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IV. Fock Matrix Derivatives and Symmetrization 
-Following closely the approach of ref. (7), we consider the G2 grande 

list of triplets (E;I,J) where E represents a nucleus and I and J 

represent shells. G2 is the direct product of the grande list G2 and the 
-list of all the nuclei. Similarly G4 is the grande list of quintets 

(E;I,J,K,L), the direct product of G4 and the list of all the nuclei. 

Two triplets (E;I,J) and E';I'J') are said equivalent if there exists 

an R which maps center E into center E', and if the pair of shells IJ is 

equivalent to I'J' under T2 x G. (T2 is the permutation operator of 

two labels.) A similar relationship can be defined for the elements of 

G4. The list of unique elements of G2 and G4 are the corresponding 

petite lists denoted P2 and P4. 

Let g be the order of the symmetry group, n(E;I,J) the number of 

operations that maps (E;I,J) into itself and n(E;I,J,K,L) the number of 

operations that map (E;I,J,K,L) into itself. We define the contituency 

numbers 

-q2(E;I,J) = 2g/n(E;I,J) (IV-1) 

-q4(E;I,J,K,L) = 8g/n(E;I,J,K,L) (IV-2) 

and a symmetrization operator by the following equation: if E' is the 

image of~E under operation R: 

M(E,e) = -2
1 I: I: R(1;e',e) R+[M(E',e') + M+(E',e')]R. 

sym g " 
(IV-3) 

R e' 

" 

"' 
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- -Furthermore, to every element of G2 we assign a number AE'I'J' such that 

~ AE'I'J' = q2(E;I,J) 
E',I',J' 

-where (E; I, J) is in P·2 and the summation is over a 11 three-1 abe 1 s 

equivalent to {E;I,J). Given a matrix M(E,e), we define a "skeleton" 

* matrix M (E,e) using 

* -M (E,e)IJ = AEIJ M(E,e)IJ 

(IV-4) 

(IV-5) _ 

An algebraic manipulation (see Appendix B) similar to the one developed 

in ref. (7) shows that the following theorem holds: 

Theorem 1: Given an n by n hermitian matrix M(E,e) with the property 

M(E,e) = ~ R(l;e' ,e) R+ M(E' ,e' )R (IV-6) 
e' 

* for all R in the point group, and given an M (E,e) which satisfies Eqs. 

(IV-4) and (IV-5), it follows that 

* M(E,e) = M (E,e) • sym ( IV-7) 

We now define vC(E,e;IJKL) and vX(E,e;IJKL) two n by n matrices 
-for each (E;IJKL) element of G4. The matrix elements in block IJ are 

given by 

, (IV-8) 

:· .· 
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and elements outside this bl~ck are zero. Similarly, 

viK(E,e;IJKL) = DJL aq~,e (IJ II KL) (IV-9). 

and all other matrix elements are zero. In Eqs. (IV-8) and (IV-9) the 

symbol (IJIIKL) represents the block of electron repulsion integrals with 

indices belonging to shells I,J,K,L. Summation over indices in K and L 

shells is implied in (IV-8); and summation over indices in J and L shells 

is implied in (IV-9). Again, an algebraic manipulation (see Appendix C) 

similar to the one developed in ref. (7) shows that the following theorem 

holds: 

Theorem 2: If R maps the five label (E;IJKL) into (E•;I•J•K•L•), then 

VC(E e·IJKL) = VC(E• e• ·I•J•K•L•) ' ' sym ' ' sym ' (IV-10) 

VX(E e·IJKL) = VX(E• e•·I•J•K•L•) • ' ' sym ' ' sym (IV-11) 

If we now define an n by n matrix by 

V(E,e;IJKL) = VC(E,e;IJKL) + VC(E,e;KLIJ) 
(IV-12) 

-t [vX(E,e;IJKL) + VX(E,e;JIKL) + VX(E,e;IJLK) + VX(E,e;JILK)], 

it follows from Theorem 2 that 

V(E,e;IJKL)sym = V(E•,e•;I•J•K•L•)sym • 

-The Fock matrix derivative F(E,e) is given by 

F(E,e) = H
0
(E,e) + f: [2vc(E,e;IJKL) - vX(E,e;IJKL)] 

G4 

(IV-13) 

(IV-14) 

• 

.. 
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or equivalently 

F{E,e) = H
0

(E,e) + ~ V(E,e;IJKL) 
G4 

It follows that 

F(E,e) = H0 (E,e)sym + 4= V(E,e;IJKL)sym 
G4 

(IV-15) 

{ IV-16) 

-The significance of Eq. (IV-13) is that equivalent members of G4 make 

identical contributions to the sum in Eq. (IV-16), so we need to sum only· 
-over the petite list of five labels in P4 and weight each contribution by 

q4• We proceed by constructing a set of skeleton matrices 

-* -F (E,e) = H
0

(E,e) -q4(E;IJKL) V(E,e;IJKL) {IV-17) 

P4 

and then by performing a final symmetrization 

- -* F{E,e) = F (E,e)sym (IV-18) 

V. Results and Conclusions 

We have implemented these ideas into a new version of HONDo10 which 

computes the second derivatives of the energy for HF wavefunctions and 

the first derivatives of the energy for CI wavefunctions. 

The computer code is the same as the one described in ref. (9). As 

the unique electron repulsion integrals derivatives are calculated their 

contributions are added into the proper skeleton Fock matrix 

derivatives. Once all the integrals derivatives have been processed, the 

skeleton matrices are 11 Symmetrized. 11 
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Test calculations have been carried out for the c2H6 molecule in 

the eclipsed conformation. We used a minimal basis set augmented with a 

set of d functions on the carbon atoms and a set of p functions on the 

hydrogen atoms. The energy, first derivatives of the energy, and the 

Fock matrix derivatives were calculated using the full o3h symmetry and 

the entire calculation was then repeated using seven different subgroups. 

The present algorithm is a combination of similar methods for the 

calculation of energy derivatives and for the construction of the Fock 

matrix. In refs. (7), and (8) we pointed ou't that computation times are 

roughly inversely proportional to the order of the point group. 

Identical ratios were obtained in both cases when comparing computation 

times in o3h symmetry, and in lower symmetry. The same ratios are 

obtained in this step, as shown in Table I. 

In conclusion we have presented an extension of symmetry methods 

employed in HONDO to the calculation of Fock matrix derivatives. These 

matrices are used to solve the CPHF equations which provide the 

derivatives of the molecular orbitals coefficients with respect to the 

nuclear coordinates. They are also used as a contribution to the energy 

second derivative matrix. 

In summary similar symmetry methods can be applied to all the time 

consuming steps of energy, energy first derivatives and energy second 

derivatives of HF wavefunctions. In all the cases we found that 

computation times are approximately inversely proportional to the order 

of the symmetry point group. 

.. 

.. 
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Table I. Ratio of computer time for constructing the 11Fock matrix 

derivatives .. for eclipsed ethane. 

Ratios RatiOS 
Point GrauE Order (Gradient) (Fock Derivatives) 

03h 12 1.0 - 1.0 

c3v 6 2.0 2.0 

c2v 4 2.3 2.4 

c3 3 2.8 2.6 

c2 2. 4.1 4.0 

Cs(ah) 2 4.1 3.9 

Cs(av) 2 4.5 4.5 

c1 1 8.0 8.2 
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Appendix A: Property of F(E,e) 

First we consider the electron-nucleus attraction operator 

h(l) = - E 
Q 

~ 
rlQ 

The derivative of h(1) with respect to coordinate 11 a11 of center A is 

given by 

where qa(1) represents the 11 a11 cartesian coordinate of electron 11 111 

when a = 1, 2, or 3. Let B be the image of center A under symmetry 

operation R. It follows 

or 

" 
R aqa h(1) =-

A,a 

" a h "'"" R -aq.;;..;.A.;...,-a = ~ ah R(1·b a) 
aq ' ' B,b 

We now consider the matrix element 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

(A-5) 
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and substitute Eqs. (III-5), (III-6), and (A-4) into Eq. (A-5). We find 

x a a < x( I A I , m 1 A I ) I hI x(I 8 1 , m 1 

8 1 ) > 
qE 1 e 1 

Similarly for the electron repulsion contribution of shells Ic, and 

10 we get 

after using 

Eqs. (A-6) and (A-7) are the basis of the property of Eq. (III-11) of 
-F(E,e). 

(A-6) 

(A-7) 

.. 



.. 

.. 
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Appendix B: Proof of Theorem 1 

. * Let us cons1der N(E,e) = M (E,e) , or 
sym 

1 N{E,e) = 2g 

which means that 

R. e• 
(B-1) 

N{E,e)IJ = (B-2) 

The blocked ·form of R (see ref. 7) implies that for each R in Eq. (A-2) ,, 

the summation over I• and J• reduces to a single non-vanishing term, 

namely the image of IJ under the given R. 

Eq. (IV-6) implies that if a given R maps (E;IJ) into (E•,I•J•) then 

M(E,e)IJ = ~ R(1;e•,e) M(E•,e•)I•J• R1•1 RJ•J • (B-3) 
e• 

The hermitian property of M(E,e) together with Eq. (IV-5) implies that 

* *+ - -
[M (E•,e•) + M (E•,e•)]I•J• = (AE•I•J• + AE•J•I•) M(E•,e•)I•J• • (B-4) 

Substitution of Eqs. (B-4) and (B-3) into Eq. (B-2) yields 

N(E,e) 1J = 2~ M(E,e) 1J L 
(E•I•J•) 

(B-5) 
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where (E•;J•J•) in the image of (E;IJ) under an element of T2 x G, and 

the sum runs over the direct product group. In the sum of Eq. (A-5) each 

member of the subset is repeated n(E;IJ) times. Thus Eqs. (IV-1), (IV-5), 

and (B-5) combine to give (Q.E.D.) 

N(E,e)IJ = M(E,e)IJ (B-6) 



21 

Appendix C: Proof of Theorem 2 

Let us operate R and vC(E,e;JIKL) defined by Eq. (IV-8). According 

to Eqs. (A-7) and (A-8), we have 

(C-1) 

which can be written 

2: R(l;e 1 ,e) R;I 1 foK 1 L1 a (I 1 J 1IIK 1 L1
)] RJ 1 J. (C-2) 

e 1 L' aqE 1 ,e 1 

or 

el 
R(1;e 1 ,e) R~r~ V~IJI(E 1 ,e 1 ;I 1 J 1 K1 L1

) RJIJ • (C-3) 

Since all other blocks of vC are zero, Eq. (C-3) can be restated as a 

matrix equation 

vC ( E, e; I JKL) = 2: R ( 1; e 1 e) R + vC ( E 1 
, e 1 

; I 1 J 1 K 1 L 1 
) R (C-4) 

el 
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Substituting Eq. (C-4) into Eq. (IV-3) leads to 

VC(E,e;IJKL) = sym (C-5) 

yC+(E",e";I"J"K"L")] R'} R 

which'can be rewritten 

VC{E,e;IJKL) = sym (C-6 

1 ~I:I:tR(l;e',e) R'(l;e 11 ,e')) R+R,+[vC(E 11 ,e 11 ;I 11 J 11 K11 L11
) + 

2g R e• e 11 \

1 

The closure property of the symmetry group yields 

VC(E,e;IJKL) = sym (C-7) 

_.1.4= 2: Rn(l;en,e) Rn+ [vC(En,en;ruJnKnLn) + 
2g Rn en 

vc+(E"en;riiJIIKIILII) J Rll 

or 

(C-8) 
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