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ABSTRACT 

This paper describes regression analysis of certain types of 

experimental data obtained from geotechnical testing. By suitable 

transformation, nonlinear equations may be converted into linear 

equations if appropriate weighting factors are applied to the data 

before performing the regression analysis. ' Sample problems in BASIC 

which can be used with desktop computers are described. Typical 

examples from soil mechanics and rock mechanics are included. 

KEYWORDS 

regression, nonlinear functions, transformation, weighting factor, 

experimental data, soil and rock mechanics. 
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Introduction 

, 

REGRESSION ANALYSIS OF EXPERIMENTAL DATA 
USING DESKTOP COMPUTERS 

Douglas Frink' and Panchanatham N. Sundaram' 

Regression in a broad sense connotes the functional relationship between 

two or more variables. In the case of two variables, say x and y, the rela-

tionship may be either linear or nonlinear resulting respectively in a regres-

sion line or regression curve. In many experiments, one variable x is the 

cause, in part at least, of the variation in the other variable y. 

In scientific experiments, one or both of the variables x and y may be 

subject to a certain amount of unpredictable variations often called ·scatter. n 

In geotechnical tests, performed either in the laboratory or in the field, 

scatter in the derived data is more of a rule than exception. If the data is 

plotted on a graph sheet the problem becomes that of fitting a line or curve 

to the data points. It has been customary for practicing engineers to draw 

this curve by ·eye judgement.~ However, engineering organizations are in-

creasingly using desktop computers and computer graphics equipment to perform 

engineering computations. These devices can assist the engineer to select the 

mathematical function best suited for the analysis of experimental data, pro-

vided suitable software is available. This .calls for the use of appropriate 

statistical procedures for handling the experimental data. The purpose of 

this paper is to introduce simple programs in BASIC to perform regression 

analysis of certain types of experimental data. The programs presented were 

'Staff Scientist, Earth Sciences Division, Lawrence Berkeley Laboratory, 
University of California, Berkeley, california 94720. 
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written specifically for use in HP9845 series computers. However, with appro-

priate modifications, the sample programs may be used in other computers which 

use BASIC. 

Theoretical Basis 

Linear Functions. Suppose that a function is to be fit to a set of data pairs, 

Xi and Yi. The method of least-squares is often used to get the ·best fit" to 

the data set. According to this method, if f(x) is the best fit then the 

quantity ·chi squared,· should be minimum and may be given as 

2 
A 

N 

'\:' 
=L 

i=1 

where Wi is the weighting factor to be applied to the values of Yi. In the 

(1) 

absence of any information, Wi = 1. Normally, Wi is inversely proportional to 

the variance of Yi. (Note: this approach assumes that most of the scatter 

occurs in Yi.) 

As an example, we assume that 

Therefore, 

f(x) = a + bx. 

2 . 
X = EtY, 

1. 

2 
(a + bx,) L w,. 
. 1. J 1. 

The condi tion for the minimum value of X2 is satisfied by the differential 

equations called Normal Equations, viz., 

N 

=I (y. - a - bx.)w. = 
1. 1. 1. 

o , 
i=1 

( 2) 

(3 ) 

( 4) 
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N 

=L (y. - a - bx. )w.x. = o. 
l. l. l. l. 

(5) 

i=1 

Equations (4) and (5) are linear in the two unknowns a and b. Matrix formula-

tion of the two equations may be given as: 

["v EXV]f} tv } r.x~w. r.x~w~ b = r.x~y~w. 
l. l. l. l. l. l. l. 

or 

[A] (a) = (c) 

or 

-1 
(a) = [A] (c). 

Thus equations (4) and (5) may be solved by simple algebraic methods or by 

matrix inversion using equation (8). 

This method of linear least squares can be extended to a polynomial of 

of the form: 

+ ••• 
n 

a n+1x • 

(6 ) 

( 7) 

( 8) 

(9) 

Since there are n + 1 unknowns, the method of linear least squares will result 

in (n + 1) linear algebraic equations. When n exceeds 3, it is customary to 

use matrix-inversion techniques to solve for the unkowns. Many desktop compu-

ters have built-in functions to perform matrix inversion. 

hj Nonlinear Functions. There are functions for which the normal equations are 

not linear functions of the unknown parameters. Let us take for example the 

hyperbolic equation which is often used to fit axial or deviatoric stress and 



axial strain data for soils, 

Thus, 

x 
y = ----:~ 

a + bx 

The normal equations are: 

I; y _ J. ( x.) 
i a + bXi (a 

E (Y -J. a 
x. ) 

+ ~Xi (a 

4 

( 1 0) 

( 11 ) 

x.w. 
J. J. 

0 = 2 
+ bx.) 

( 12) 

J. 

2 
x.w. 

J. J. 
0 = 2 

+ bx.) 
( 13) 

J. 

Equations (12) and (13) cannot be easily solved. However, if we trans-

form equation (10) into 

Y=aX+b ( 14) 

where Y = 1/y and X = 1/x, then: 

where wi' is the transformed weighting factor. In general, if a trans forma-

tion function T is applied to Yi' then the weighting factor Wi should be 

transformed to wi', using equation (1) and the methods described by Guest [1], 

so that, 

( 16) 
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In this case, 

1 
T=-

Yi 
( 1 7) 

so that 

w~ 
4 

= y.w. 
~ ~ ~ 

(1 Sa) 

or 

w~ 
4 

= Yi ~ 
(1 8b) 

since wi = for all i. 

The effect of the transformed weighting factor wi' is to make the values 

of the unknown parameters obtained by minimizing equation (15) as close as 

possible to the values obtained by minimizing equation (11). However, the 

normal equations from equation (15) are linear and thus much simpler to solve 

than the normal equations (12) and (13). Substituting equation (1Sa) in (15) 

and finding the differential coefficients with respect to a and b respectively, 
we have 

d' 2 X. 
1: (y'. 

~ 

d~ = - b - aX. ) = 0 
~ ~ y~ 

( 19) 

~ 

and 

oX 2 
1 

db = ~(Y. - b - axi ) -= o. 
~ y~ 

( 20) 

~ 

Normal equations (19) and (20) are linear in a and b and can be easily solved. 

However, it is important to remember that whenever a transformation is made of 

the original function then the weighting factor should aiso be correspondingly 

changed. 
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Another common function used in curve-fitting is the power law of the 

n 
y = ax 

Taking logarithms 

then 

where 

log Y = log a + n log x 

2 
X = E{log y. - (log a + n log x; )}2w~ 

1 . 1 ~ 

2 w! =y.w .• 
~ ~ ~ 

Equation (23) results in linear normal equations. 

A slight variation of equation (21) is of the form, 

( 21) 

(22) 

(23) 

y = a (x - b)n (24) 

where a, b and n are the unknown parameters. Proceeding as before; 

log Y = log a + n log (x - b) (25) 

or 

Y = A + nX (26) 

where 

Y = log y; A = log a and X = log(x - b) ( 27) 

This gives 

(28) 

Differentiating the ·chi-squared· equation (28) with respect to A and n 

, respectively, yields the following normal equations: 
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E(y. - A - nX.)w! = 0 ( 29) 
1. 1. 1. 

and 

E(y. - A - nx. )w!x. = o. 
1. 1. 1._1. 

( 30) 

' .. 
These two equations are linear. However, the third normal equation, i.e., 

''Wi differentiating equation (28) with respect to b, yields 

E(Y. - A - nx.)w~/(x. - b) = 0 
1. 1. 1. 1. 

( 31) 

and is not linear in b. Thus equations (29) through (31) cannot be easily 

solved for the unknowns A, n and b. An efficient method amenable to computer 

usage is called the Secant method (or Newton's method), and is explained below. 

A trial value for b, say b" is assumed. Using this value, the magni-

tudes of a and n are obtained by solving equations (29) and (30). Using these 

values of a, n and b" the derivative aX2/ab (eq. 3') is evaluated as d,. If 

b, is the exact solution, then d, will be zero and no further computation is 

necessary. Otherwise, the value of b, is either increased or decreased by a 

small amount and a new value of the derivative (eq. 31) is determined as d2• 

The secant slope is given as 

( 32) 

A new value for b3 may then be estimated by extrapolating the slope to the b 

,.,. axis as 

(33) 
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In general, 

b(i + 2) = b(i + 1) - d(i + 1) 
b(i + 1) - b(i) 
d(i + 1) - d(i) • 

( 34) 

The process is repeated until the values of a, band n all satisfy the three 

normal equations (29) through (31) to the desired accuracy. 

There are many other types of functions to which linear regression anal-

ysis may be applied after proper transformations. Due to space limitations, 

only a limited number can be discussed here. Table 1 is a summary of the dif-

ferent steps in the regression analysis for the types of fitting functions 

di scussed in this paper. 

Programs in BASIC 

The unknowns in the normal functions given in Table 1 can be efficiently 

solved by matrix-inversion technique. This may be accomplished by the use of 

Subroutine Poly listed on Table 2. This routine is specifically written for 

HP9845 series computers; however, with suitable modification it can be incor-

porated in other computer systems that use BASIC language. In this subroutine, 

the polynomial function has been described in the most general form as 

N 

i=1 

m+i-1 am+i _ 1x (35) 

where m is either a positive or negative integer. This general function can 

be degraded to specific forms b¥ proper choice of m and N. For example, 

m = 0 and N - 2 leads to y = a + a x 
o 1 

3 
m = 3 and N = 1 leads to y = a

3
x 

(36) 

( 37) 
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and 

m = -1 and N =2 leads to 1/y ( 38) 

In the case of logarithmic transformation, Equation (27) can be used and 

lJ thus the subroutine Poly can be used for the linear regression analysis by 

specifying m = 0 and N = 2. The factors m and N are identified as AOminA and 

ANcon" respectively in subroutine Poly. The purpose of the variable AFlgn in 

the subroutine is to identify the type of transformation done on the weighting 

Tables 3 and 4 give partial listings of two programs named respectively, 

INVERT and SECANT, that call subroutines Poly. To conserve space, only the 

portions of the programs that call Poly and illustrate the application of. the 

mathematics are included in the listings. The unlisted positions are graphics-

control statements used for the author's specific applications. Program INVERT 

uses reciprocal transformation procedures in the curve-fitting procedure. In 

program SECANT, subroutine Poly is used with the Secant method. Users may 

incorporate the statements on Tables 3 and 4 (or equivalent statements in 

languages other than HP-BASIC) into their own data analysis programs. 

Application Examples 

Two examples, one from soil mechanics and the other from rock mechanics 

are presented to illustrate the use of INVERT and SECANT • 

. Example from a Soil Mechanics Laboratory Experiment. The nonlinear stress-

strain behavior of soils is frequently characterized by a hyperbolic relation-
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ship between deviatoric stress and axial strain [2], that has the form of 
, -, 

equation (38). The strength parameters from such a fit are used in finite-

element analysis of soil behavior under gravity and applied loads [3]. A 

typical example of the deviatoric stress versus axial strain data from consol-

idated undrained triaxial compression test of a medium-dense cohesionless sand 

[4] is plotted on Figure 1. The hyperbolic law (eq. 10 or 38) was fitted to 

the data points using program INVERT which calls subroutine Poly. The plot of 

the hyperbolic curve fitted to the data points is shown as CUrve 1 on Figure 1. 

The maximum deviatoric stress, (a1 - a3)ult' projected by the curve fitting is 

equal to '1/a' and is 11.19 MPa. Thus, the failure ratio, Rf, [2] is given by 

= 9.50 0 817 
11.19 = • 

where (a1 - a3)f is the compressive strength and is obtained by inspection 

(39) 

from the data points on Figure 1. When Rf takes the value 1.0 the hyperbolic 

curve fitted through the data matches the empirical data at failure. However, 

for the particular data shown on Figure 1, the hyperbolic curve is a relatively 

poor match of the stress-strain behavior at failure. 

Program INVERT can be used to fit the data with a higher order equation 

of the type 

x y = ----~~----
2 

a+bx+cx 

or as per equation (35), with m = -1 and N - 3, we have 

(40) 

(41) 
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CUrve 2 on Figure 1 shows the results of such a high-order fit to the triaxial 

test data described above. Unlike the hyperbolic curve described previously, 

this fit does not give an asymptotic value for the deviatoric stress but gives 

a peak value of (a1 - a3)f defined by 

1 
Y = -.....;.--

max b + sfu 
(42) 

which occurs at x =~. Using equation (42) the peak or failure deviatoric 

stress is given as 9.19 MPa. This is very close to the value 9.15 MPa taken 

from the empirical data. The axial strain at which the deviatoric stress peaks 

is given as 0.235, which is somewhat greater than the value of 0.15 actually 

observed during the test. The foregoing example demonstrates how computer 

techniques can be used to find a function that best fits a set of empirical 

data. 

Example from a rock mechanics laboratory experiment.· The relationship between 

effective normal stress (aeff) and the normal closure (0) of a fracture may be 

expressed by a hyperbolic law of the form [5] 

(43) 

where 0max is the anticipated maximum closure. Since this value of maximum 

closure cannot be determined directly from the experimental data, it must be 

estimated as a by-product of the curve-fitting process. 

Equation (43) is not amenable to straight forward linear regression even 

after substituting y = a and x = 6/(omax - 6) since the te~ x contains the 

\ 
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unknown parameter o max • However, program SECANT enables the determination of 

three unknowns a, n and 0max. Figure 2 is a plot of some typical normal stress 

(0) versus average fracture deformation (0) data taken from laboratory tests 

on granite [6]. As shown on the figure, the curve fitting performed using 

SECANT gives a value of b, the initial aperture, of 54.919 microns. This per- V 

mits estimates of absolute fracture closure to be made from the experimental 

measurements. 

Conclusions 

Simple programs in BASIC have been presented that enable regression 

analysis of geotechnical data to be performed using the method of linear 

least-squares in cases where the functions are nonlinear. In performing the 

linearization it is important to apply the proper weighting factor to the 

data. Whenever the original function is transformed to linear form, the 

weighting factor must also be suitably transformed. The programs described 

perform these transformations and give results which are statistically 

consistent. 

By applying the mathematical principals discussed in the paper, programs 

for handling other types of functions can be developed. Programs of this type, 

that use the appropriate statistical procedures, can be used to rapidly deter

mine the form of the curve that is best suited to the analysis of experimental 

data used in estimating the properties of geologic materials. 1,( 
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Table 1. Detai Is of Regression Parameters. 

Function 
Y :: f(x) 

Transformed Function 
Y :: F(X) x2 

Y :: a + bx ••• E[Y
i 

- (a + bx
i

»)2 

n Y :: a
i

+ a x + ••• + a x w n ••• E[y
i
-(a

1 
+ a

2
x + • •• 

n 2 + a x ») 
n 

x 
Y - aX + b 

2 4 E(Y
i 

- b - axi ) (l/Yi ) Y = a + bx 

n 
Y = ax 

Y = a(x - b) 
n 

"" 

where Y .,. l/y 
and X == l/x 

Y = A + nX 
2 2 E[Y

i 
- (A + nX)] (Y

i
) 

where 
Y = log -Y or In Y 
X = log x or In x 
A = log a or In a 

2 2 
Y = A + nX X (Yi - A - nx

i
) (l/yi ) 

where 
Y = log Y or In Y 
X = log(x - b) or In(x - b) 
A = log a or In a 

-" 

Normal Equations 

t(Yi ~ a - bxi ) = 0 

E(y - a - bx)x = 0 
iii 

};(Y
i 

- a
1 

E(Y
i 

- a
1 

- a
2
x

i 
-

- a x -2 i 
etc. 

• •• 

••• 

n 
a x.) = 0 

n 1 

n) _ a x. x. = 0 
n 1 1 

E(Yi - b - axi ) (Xi/Y:) = 0 

4 E(Yi - b - aXi )(l/Yi ) = 0 

2 
E[Yi - (A + nXi»)Yi = 0 

E[Yi - (A + nXi»)Y~Xi = 0 

2 E(Yi - A - nx)(yi ) = 0 

2 
E(Yi - A - nxi ) (XiYi ) = 0 

E(Yi - A - nxi ) [Y~/(Xi - b») = 0 

~: -i:-

I-' 
~ 
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TABLE 2 

LISTING OF THE PROGRAM Poly 

! **"'*~**~~*****~~~* 
I . 
5 pS Poly ( X ( * ) , Y ( '" ) , " (~ ) • r:p t , ~ C on . ..i~ 1 !l • H t~: , f. \ *) ) , 
I ***~***.*~******"'* 

Poly: ! SUB-PROGRAM FOE LIHA:t Li,,;)'I' 3~UAFd.S FI'!' l JP. P~:"l~J!V;IA ... 
~A! E~ ~O~IFIEr TO A JCSU3 ROUTIN!· 

I 
1 

BPUT AH,AYS: 

HPtTT V!UA!.L13: 

X(*) - X D.'.'l'A 
Y<"') - '! Dr.'I',A 
X A~D ! Ak~ EI:~Ii tEA~S~O~MIL C~ C1IGINAL LA1A 
~(*) - AS5IG~i[ ~11~~13 
I~ ~(I;=0 Tgl~ i1 IS !E! !O 1 

~pt - ~UMPih CF X.Y PAIiS 
r.;con-~ur·lbn Oi CC'Nf'!'ANTS Ie-. POLH-OMUL 
O~1n-qfALLFST Oit~f TO ~l U~iD I~ POLI~JrlIbL~LG ~.-l'-~t~rC; 
Fl~ - FLAG fCR r~A~S!OhM (.:~O !R~~S¥lR~) 
IF ARF.A'1'S X A~D Y AFE la~: LJGAhIT:rMS (iF 'i'~~. r·Ar}. 1'.:i~1; IJ~F 

F1,=1 (EAS~ 1~) JF l1~=2 (BASi ~J 
IF A9RAYS X A~D Y AR1 iECIFFOCALS OF 1?£ D~!. US~ fl~=3 

CuTPuT: 
E(~) - AEBA! HOltI~G SOLUTIO~ CC~S!A~I5 
P(l)=COEiF!CItN~ uF SMALLiS! PO~iR OF I; 5(~) ~~XT PO~iR, lTe 

OPTION BAn 1 
tI~ A(~pt.~con),F(~pt),At(~con,~pt),C(~~on,~coD) 
tIM t(N~cn),F(~co~,Ncon).F(Nco~) 
F03 1::1 TC Npt 

';.'1='''' (1) 
IF ~(I)=~ T~E~ .1=1 
'i1=SC;;:(}~S (\:1)) 
Ii F1p=l T:!H: W1=W1 lOC U-Y(li 
IF F1~=2 THE~ ~1=~1*~XP(I(I)) 
IF F1~=3 THE~ ~1=~llOC1/(Y(I)·Y(I); 
il ( I ) ='1' ( I ) *"'1 
FOE J=1 TO r--CO:l 

A(I,J)=I(I)-(~con-J+GmlnJlOC~l 
~!XT J 

HIT I 
rAT H=TRN(A) 
MI-. T C=At*.a 
~AT r=AtlO':: 
t-':.A T F = I N V ( C ) 
r,A'!' :r =F*t 
iOii 1=1 TO ~~on 

P(I)=F(NcOD+I-I) 
HXT I I 

Sl'~I.r\D 
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17'" 
1H' 
lse 
20? 
2U' 
~,r. 
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24~' 
c:~· 

2t0 
2?e 
,be 
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TABLE 3 
PARTIAL LISTING OF THE PROGRAM INVERT 

FRCGRA!": INV:!?T 
Pir?AREI BY ~CUG lRI~K 12/1t!~1 
tA~FINCf S!EKFL1Y LA~OL!T0~1 
I:RIT!~~ sprCIFIC~.LLY FC'P. of ~8.:~: 3~nIi,S 
MAY :1AVi TO ilF r1CVIHEI ,OF CT::.'·ij COM..-'iJTi,FS 

*#~~~~~~*~~~~~*~~~ 

FITS A~ ~~C~IIO~ O~ T3i iO~M 1:X/'~ + tx - ex ~ • ~tc) 
TFA~SFOfiMiD to Y=ex-(-l) + b + ex • etc ~~~~~ 1=1'1 

! u~lS POLr~O~IAL FIT 
OFTIO~ E131 1 
rI~ Sl~(5~),Delf(=0),lu(~9),~el~;2~),hes~lt(Z~J.l(5?),A(~~),Y;5~).fiI6) 
iOi 1=1 TO 50 ! Ri~r D~T' 

prA~ Sl~(I),Delr(I) 
IF 31~(t)<r TE!\ Out 

~:X'!' I 
Out: ~nt=I-1 

FeR 1=1 TO N-ot 
X( I)=!elf(I) 
Y( I )=1/S1r( I) 

~LX1' 1 
~eo~=3 t SPi(IFliS ~~ 01 CO~ST!~T~ 
C"ln=-l t LO'~ST caDia 0i x 
Fl~=~ - ! HSE F.EC !pF-OeAL 'l'RA~S FOhM 
CALL Poly(J(~),Y(~),4(¥),~pt,~co~,Jnl~,il~,t\¥:) 

Contln: ! 

v 



1~ 

2~ 
31Z 
4~ 

:~ 
€Z 
n' 
1::0 
SIl 
H'7 
lle! 
12(? 
l~e 
142 
150 
ltt: 
172 
1ae 
lS" 
2ee 
2H~ 
2,0 
230 ,4" 
20e 
2se ,n 
2E~ 
23e 
U·{' 
3H! 
32e 
~3~ 
;340 
350 
:!tk' 
37e 
~ae 
~90 
4ee, 
410 
4~l' 
4~e 

44e 
45~ 
4t:.Z 
4791 
40,," 
490 
eef6 
51') 
t2e 
:30 
5~0 
t~e 
5€e 
:7~' 
toe 
530 
€e.v 
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TABLE 4 
PARTIAL LISTING OF THE PROGRAM S~CANT 

*~~.*~~~***~*****¥**~~*~** 

Pr:C~P.J1.M SFCJi.N': 
~FITTr~ 3PiCIFICALLY F0~ EP 3a~~ 3Ehli5 
~AY EAVl 10 FE ~otIFIiL iO~ 0T~lri CO~PUli~3 
***~***~*****~**~***~***** 

iITS A~ i'UA~IO~ or ~al 10~M Y~A(I!(E-X;)-h 
LOG TFA~5rORMATIO~ 13 [SiD to ~IhiA~I7F 1H~ ir~Ll10~. 
SECA~T ~ET30D IS USiL iC SlLVi FOB 1 • 
. CJ~VERG1NrI CPITi~IO~ FOR ~ IS. 5~SI; O~ PlhC~~lA~~ 
DlrFIRi~CE ~!T~!i~ SUCC1S~IVi IilRATlc~~ A(TE~ 

! ~ORMAL l~ 3 CgA~~ES SIG~. 
OPTIOS ~A3£ 1 
D Irs 1 fo:( 5;' ) ,1' e If ( :: e ) , H ( e: 5) ,f ~ s u It ( 2 = J 
tIM ~(~Z),X(~0).!(t0).E(~) 
Crlt=.2e~1 ! CO~VEtGINCl C~IrEhr~~ 
FOR 1=1 TO 5V! RiAD ~l~A 

nEAt ~1~(I),~elf(!) 
IF S1~{I)<e TEiN Out 
rels=~AX(D~lf(I),Dels) 

fIoEXT I 
Out: Npt=I-1 

Be(1)=Dels*1.02 
flg=1 SPLCIFI!S :CG !FA~5iCAM 
~con=2 NO 01 CONSIA~!5 
O~ln=~ S~ALl!3r C~DiR OF 1 
':OF ""=1 'l'O 25 

Fep. I=l TO f\pt 
1(I)=L~T(relf(I)/(be(M)-telf(I»)) 
Y(I)=LGT(,1r,(I» 

r~EXT I 
I 
CALL Poly(I(.),y(~),~(*).Nft.~cc~.Om1~,~1~.K(*I) 
! 
}=R(l) 
C>l=F.(2) 
GOS"P Der1v I CALCULA1E ~ilIVATIV! 
Eesult(M)=Ler ! ~O~MAL iQ ~ 
PP.I~T "PESlIL'I',DILMX";r.esul t(M) ;:30(r-1} 
IF M=l THEf\ Inlt 
li~tIo=besult(M)/Result(M-l) 
IF (ABS«Be(M)-!0(M-l)1/~e(M-l))(Crl~J ~f\: (~~tIo<lJ T~l~ Contit 
S 1 0 t)~= ( Res ul t (M-1 ) -Res l.il t (~. ) ) /! fie (~_1 ) - h. d'l) j 
BZ(M+l)=B0(M)-F.esult(M}/Slcpe 
GOTO Cont . 

In1t: P'0(~+1)=1.05*~0(r.) 
COLt: ~EX'! M 

PEINT " f\ON-CO~VEEGI~T" 
STOP 

Deri v: Der=~ 
FOF 1=1 Te Npt 

I'='~ ( I ) 
IF ';=0 TiiH,W=l 
IF Fl~=l TEi~ ~=.*10-Y(I)*le-Y.I) 
Der=ner+(Y(I)-A-N*~(I»)!(PP(~)-Delf(I)}~~ 

NEXT I 
PITUliN 

Contln: n~lmx·El(M) 
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Triaxial Test Data 
..".---

..".---
--' 

9000 Medium Dense Sand ·0 

2 ,.." 

8000 
to 

" 

7000 -0 
Curve 1 a.. 

.::t::. 6000 y = x (a + bx) -en a = 3.25 E - 06 1 I k Po en b= 8.93E-05 1/kPa Q) 5000 ~ 
+- Max. dey. stress en 
~ (lIb) 
0 4000 11194.58 kPa +-
0 
:> Curve 2 
Q) 

y=x(a+bx+cx2) 0 3000 0= 3.90E -061 IkPa 
b= 7.11 E -05 l/kPa 

2000 c=9.09E-051/kPa 

Max. dey. stress 
(1 I (b + 2" ac ) ) 

1000 9192,14 kPa 

o~--~~--~-----~-----~-----~-----~ 
o .05 I I .15 .2 .25 

Axial strain 
XBL8211 D 2649 ;'. 

Figure 1. curves Fit to Triaxial Test Data for Sand. 
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Deformation of a Fracture 
in Granite 

y =a(x/(b-x)) 
n 

a = 1.1045 MPa 
b = 54.919 micron 
n = 1.319 

-50 10 20 30 40 50 60 
Average fracture deformation (micron) 

XBL 8211- 2650 

Figure 2. CUrve Fit Through. Rock Fracture Deformation Data. 
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