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ON THE DESTRUCTION OF MAGNEfiC SURFACES ' IN TOROIDAL SYSTEMS
F. M. Hamzeh
Department of Materials Science and Engineering, Center for the Design
of Alloys, and Inorganic Materials Research Division,
Lawrence Berkeley Laboratory; University of California
Berkeley, California 94720
ABSTRACT
The behavior of the field lines in a torus is analogous to the
motion of a non-linear oscillator. If €, small and positive, is the
perturbation parameter, we consider a toroidal system in which terms
of higher order than € are assumed to give nonobservable contributions.

1/

For large non-linearity (x >> € 2) we found that ﬁwo sets of resonances
are sufficient to explain the destruction of the magnetic éurfaces in
the toroidal system. Resonances that transforﬁ the unperturbed surfaces
into a structure of magnetic islands we call primary resonances, and the
secondary resonances transform the bound-state-like contours of a given
island into similar structures of secondary magnetic islands. To every
primary island we attach two types of stochasticity, external, due to
the overlapping of pfimary résonances and; internal, due ;o the over-
lapping of secondary resonances. Depending on the resonance and the
sysﬁem, the destruction of the magnetiqlsurfaces occurs by either or
both processes. >In fhe immediate neighbofhoods of the elliptic singulari-
ties the perturbation is not canonical and leads to evolution, creating
either regions that are forbidden to the field lines or regions of

localized stochasticity. The sizes of these regions are functions of

the perturbation and the primary resonance parameters, increasing for



smaller noﬁ;linearity. For small non-linearity (x 5.81/2) the field
lines may escape the resonance domain into regions of fast changing
perturbation, causing instabilities.

For the levitron, we calculated the theoretical perturbations for
which some of the primary resonances are completély destroyed. These
theoretical values are given in Table II and are in good agreement with
the numerical results. A typical example of destruction by internal

overlapping is shown in Fig. 2; we note the appearance, in Fig. 2 part c,

of secondary magnetic islands and contours.
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1. Introduction

Roseﬁbluth, et al.1 have shown that if resonances oﬁerlap,rapid
destruction of their island structure occurs. Filonenko,'et_al.2
found that in the Stellerator,‘destruction of the magnetic surfaces near
.the separatrix occurs before the o?erlapping of primary resonances. "It
is shown here that in a pertrubed torus the magnetic surfaces at the
separatrix are always destfoyed, if not by external, by internal overlapping.

We present a general study of formation and destruction of magnetic
surfaces in toroidal systems. If r, ¢ and z are the téroidal coordinates,
the role of time is played by the z-coordinate while magnetic islands
are observed in the toroidal cross section perpendicular to the z-axis.

The magnetic field is taken as the sum of a "stationary" field;

(stationary in the sense that it is not a function of z); and a small
non-stationary perturbatioﬁ. ‘Tﬁe unperturbed system is defined to

include all stationafy contributioné; The'béhaviof of the field lines

in the perturbed systém is shown to follow non-linear oscillating eguations
where rotational transform plays the réle of frequency.

In Sgction 2, the iinearized equations in various regions of the primary
magnetic island are derived. For various order of magﬁitude of the
non-linearity coefficients various cases were obtained and.are tabulated
in Table I.

In Section 3 we study the structure of magnetic island in the limit
of large non~linearity. The magnetiq is1ands are shown to contain
closed contours centered at each elliptic singularity. Each elliptic
singularity, therefore, ﬁark the position of a local magnetic axis for

the island. The magnetic contours of adjacent islands of the same



primary resonance are connected throdgh a common contour referred to as

a local separétrix. These contours have slow characteristic frequencies and
interact with the non-stationary part of the pertrubation. The

resonant island contours are referred to as secondary resonances. The
behavior of the field lines near the elliptic singularities is treated

in Section 3.4.

In Section 4 the behavior of the field 1line in the limit of small
non-linearity is. examined. In this limit it is shown that the,field
linés may escape the resonance zone into regions of fast changing
perturbation causing instabilipies.

In Secfion 5 we evaluate the critical pérturbations for the
&estructions of the magnetic surfaces. |

We ‘have published3 a résumé of this work at its early stage. All
conclusions drawn in that résumé are also drawn here. However, the
critical perturbations, carefully determined in the presént analysis,
are different from the previously reported perturbations and are in

better agreement with the numerical calculationms.
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2. The Field Line Equations

We consider the magnetic field in the toroidal system of coordinates

r, ¢, z:

Br,0,2) = 3°(r,9) + € Bi(r,0,2) (2.1)

=y

where Bo(r,¢) represent the unperturbed field and is "stationary" in
the sense that it is not a function Qf Z, €0 is a small parameter and
> ) 3

Bl(r,¢,z) is a non-stationary perturbation field that is periodic with

respect to z. The field line equations are:
(2.2)

where Br’ B¢ and Bz are the field components in the toroidal syétem
expressed as functions of r, ¢ and z.

2.1. The Unperturbed System

We define the unperturbed system to include all stationary terms.

In Eq. (2.1) we let € = 0 and define t "time" by:

N [&

T dt (2.3)

We write the unperturbed field line equations from Eq. (2.2) in the

following form:

r2v
d 2 o
—E = rBr . (2.4)3
[ I
. B .
a % | o
ac “ % - : (2.4)b

Using the divergence theorem v - 2° = 0 and Egs. (2:4)a,b we derived

the first integral:



r2 | T, : :
H(z_ ,¢) =f B¢(r'.¢>) dr' (2.5)
where: 'rz
aE— )
2 _ oH .
—‘—(-i-t- = -3—-6 , : » (2.6)8
d¢ - oH :
it r2 . (2.6)b.
3

The’unﬁertqrbed magnetic surfaces.are repreéenfed by surfaces of
cénstant H. Equations (2.6)a,b are similar to Hamilton's equations
where H is the hamiltonian, %E-and ¢.are the canonical variables and
t plays the role of time. .

We normalize the major radius of the torus to one aﬁd conveniently
let B:(0,¢) = 1, By varying z ffom zero to 27 the field line doeé
not necessarily return to its original position éfter having gone
around the torus. The problem we are concerned with is a perturbation
around a situation in which exact flux surfaces exist. We introduce
the action and angle variables (I,0) corresponding to the canonical

2
variables (2 ,¢)

I=1I(H) = ——{——- dé¢ ’ (2.7)a

0(¢,I) = —SQ;I— ’ o (2.7)b
where . : ‘
vhere 0, S

S(¢,1) = | 35— d¢ | | (2.
and the frequency:

v=wn =8 | @8

dI



We have chosen the definition for the‘flux in Eq. (2.7)a in order to
give 27 changes for o every time ¢ changes by 2m. 1In the action éngle

representation the field line equation of the unperturbed system are:

dI

ac - 0 (2.9)a
48 _
R-— AV . ' (2.9)b

The rotational transform %;—, measured in number of field line
rotations about the toroidal axis per rotation about the major axis of

the torus is defined'by:
_ =2 ' _ (2.10)

The rotational transform is null at the separatrix and reverses signs beyond
the separatrix. In the interval of interest, between the centraivmagnetic
axis and the séparatrix, we conéider R/ZF to be positive, this can always

be achieved by properly orienting the toroidal céordinates with>respect

to the field lines. (Although we assumed the'rotational'transfofm~to

be positive, for convehience, the problem with negative transform can

be treated in a similar fashion.) Let T be the éhange in the variable t,
éveraged with respect to ¢>and corresponding to a variation in z equal

to 2w, From Eq. (2.3) we get:

T = zn(l-kas;’) ) (2.11)a

¢

where

' 27
o 1 0 o
(GBZ)¢ % T d¢[Bz(r,¢) - Bz(0,¢)] (2.11)b

0



Near the central magnetic axis (63;)¢ is small and T is approximately
equal to 2w.

In accordance with Eq. (2.9)b:

_d0 _ 80 8¢ dz

V== e —_—r ——

dt &¢ 6z dt&

since §¢ = 2m when 68 = 27 changes and dz _ 21 we get:

dt T
R R o ’ :
V= —R=—
o o a + (GBZ ﬁp | (2.12)a
where higher‘order terms . in (5B2)¢ are néglected and
a=2 . - (2.12)b

The meaning of gzbecbmes clear from dz = Qdt. Equation (2:12)a relate
the frequency V to the rotational transform R/2W. These two quantities
are approximately equal in the immediate neighorhood of the central
magnetic axis. 1In Ref. 3 we apbroximafed the problem by letting §

equal to 1., In the present paper, we do not make this approximation.

2.2. The Perturbed System

In this section we determine how Egqs. (2.9)a,b are affected by

o 1 o 1
. . . dr _ dr edr d¢ _ d¢ ed¢
the perturbation. We let T a;f-+ ac and It f -az-+ —EE—-and
linearize Eq. (2.2) to obtain: ’
dr® o
dt Br (2.13)a
o B
a0 _ ¢ (2.13)b
dt . r
and
. 1 s 0
cdr” - 1, Br 1
Tac Bt o B (2.14)a
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1 B
$ =l<Bl +#LBI) . (2.14)b
t r\¢ g° Z
Z

The perturbations in the action and angle variables due to perturbing

dr d¢
ac 2™ g
ar
dt
de
LY —
o dt

(or equivalently the magnetic field) are given by:

Usiﬁg Egs.  (2.6)a,b we get:

dI

Fre

_atfom ar  3m a¢]
- dH['c)r it 756 dt] (2.15)a
_ 60 \° d¢
"63) dt (2.15)b
_ er[ar® ael A¢° drl

—_\7[.dt dt - “dt dt] (2.16)a
_ a¢t d¢°
= \)[l + € (at—') / (_d?)] (2.16)b

By substituting Eqs. (2.13)a,b and Eqs. (2.14)a,b into Eqs. (2.16)a,b

we get:

dI

dt

ég

dt

where r, ¢ and

From Eqs. (2.3

2
- % 'Y (‘% ’¢’Z) (2.17)3
2 .
= \)[1 + € TT(;— ,¢,z)] ' (2.17)b
z are the coordinates of the unperturbed system and

2
Y(% ,¢,z) - By B, - B(;Bz (2.18)a
1 1
2 B B
ﬂ(r_ ,¢,z> 1 (2.18)b
2 0 o
B¢ Bz

), (2.5) and (2.7)a,b,c z can be obtained as a function

of I, 9vand t on one hand and r and ¢ as functions of I and 6 on the

other. We int

roduce the functions:
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. 2
r{,o,t) = y[r—z (1,8) ; ¢(1,0) ; z(I,e,t)] (2.19)a
2
n(,se,t) = n[—% (1,8) ; ¢(1,0) ; z(I,e,t)] - (2.19)b

and write Eqs. (2.17)a,b in the consistent form:

d1_e : -

T = = I(,0,0) . (2.20)a
a0 '

¢ =V tev I(L,6t) (2.20)b

Equations of the form of Eqs. (2.20)a,b were derived for the straight

stellerator field2 and for the 1evitron.4

For én exact flux surface of a rotational transform equal to R/2~w
the field lines aré conserved under the transformation: ¢ > ¢ 4 27
z >z + %:; 2m. This corresponds to a change in 6 equal to 27 and a
change in t equal to 2%-. We cénclude that the function r(I,Q,t) and
M(1,6,t) are periodic with respect to 0 bf period 2w and with respect
to t of period g%-.

2.3. The Linearized Equations .

Let'{vi} represent the set of resonant frequencies. From Eq. (2.8)

vi = V(I =’Ii). To {vi}corresponds a set of values,'{Ii}, for the

action. From Eq. (2.9)a {Ii} are the unperturbed fluxes

. Vi
characterized by the transﬂmms-%ﬁ fRi}'= %ﬁ.{ﬁl}'

In the domain of a‘given resonance (JAI] << Ii)’ we let

I = Ii + AT
' (2.21)

and Taylor expand V(I):
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..dvi

Cdv, '

—1i_adv ;.
where i = a1 a Ii)'

Let X define the non-linearity coefficients:

_Ii', dv, . .
Xi = -\Tj? -—-d—:-[- , | - | | (2.22)

and substitute in the Taylor expansion keeping only the first two terms
to get.

Av AT

1 (2.23)

where AV = v - vi.

Let Av = V( (Av)z) and AT = V( (AI)Z) where the average is taken

over a complete period of the slow variable A8 = 6 —'vit and consider the

three following approximations:.

1):
(IR (2.26)a
v
i
el
From Eq. (2.23) this condition is equivalent to AL >> —Ei-and since
. _ i
-%—I- <<1 then:
i
er, |
——x—i- << AT <<Ii‘ S | | (2.24)b

defines the domain of case (1).
In this domain the second term on the right-hand side of Eq. (2.20)b
is much smaller than the first and can be dropped . Furthermore we

linearize Eqs. (2.20)a,b to obtain:
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"dAI';'_jg'
i v, I‘(_Ii,Ae + \)it,t)
case o i
dt dI ot

These are the magnetic island equations.

(i)
AN
> €
.which is equivalent to:
€1,
AT ~ —
X,
i
the linearized equations are:
'dAT €

T Ul— I'(Ii,Ae + \)it,t)
dv o
dA6 _ i
3% - 4T AT + evy H(I_i,Ae + \)it,t)
(iii)
A < e
v, R
1

and in terms of AT
‘ eI,
AT << —
v X,

(2.25)a

(2.25)b

(2.26)a

(2.26)b
(2.27)a

(2.27)b

(2.28)a

(2.28)b

In this case the first term on the right hand side of Eq. (2.20)b

is much smaller than the second and can be dropped.

we get:

n

€
Ti T(I,, AB+V t, t)

evil'[(Ii, _Ae+vit, t) .

After linearizing

(2.29)a

(2.29)b
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{
Of the three above‘approximatiohs only Eqs. (2.25)a,b may possess
bounded solutions. In 8Section 3 we solve these equations and show -

that AI 1s of the order of €1/2

1/2

I Let us define the resonance domain

io

by AL <E€ L. In other words, a field line is said to fall in the

domain of a resonant surface if it is 'separated from it by AI smaller

or of the order of magnitude of 81/211.
In the action angle plane, the domains of validity of the approximations

described abﬁve are dependent on the'nOM:iinearity coefficientS‘xi. By

using Eqs. (2.24)b, (2.26)b and (2.28)b we determine these domains for

various orders of magnitudes of x

1 The results are given in Table I,
The various cases are:
For x, >> 61/2,
i
: o S22 =
Case I: Egs. (2.25)a,b € Ii = AT << Ii
Case II': = Eqs. (2.27)a,b €L, = AT << el/zxi
Case III": Egs. (2.29)a,b 0 (AT << ex,
For x, = 61/2'
i
Case II: . Eqs. (2.27)a,b 61/211 a AT << Ii
Case III': Eqs. (2.29)a,b _ 0 (DI << 61/211

For xi << 81/2

Case III: Egqs. (2.29)a,b -0 (AT << I
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3. The Structure of Magnetic Islands

For large non-linearity coefficient x5 >> €1/2

are shown to contain closed countours centered at each elliptic

the magnetic islands

singularity. Each elliptic singularity, therefore, mark the position of

a local magnetic axis for the island. ‘The magnetic courtéurs of adjacent
islands of the same primary resonance are connected through a common
countour, referred to as local separatrix. These countours have slow
characteristic frequencies and are preturbed by the presence of other

' resonances in the system. Resonant island countours are referréd to as
secondary resonances. The behavior of the field lines near the elliptic

singularities is treated in Section 3.4.

3.1. The Island Countours

In this section we solve.Eqs. (2.25)a,b. First we derive an
averaging method that determines the contribution to a given resonance
dﬁe to all the resonant harmonics.

"To simplify the problem we separate T' into a symmetrical and an

autisymetrical parts?y

T(r,,0,6) = T5(z,,0,6) + I(1,,6,0) BENERY
where ‘
IS(I.,6,t) = £ I'(L..6,t) + £ I'(1.,-6,-t) (3.2)a
i’ ’ 2 i’ 9 2 i, b .
A 1 1
T (Ii,e,t) =3 F(Ii,e,t) - 5 T(1;,-8,-t) . . (3.2)b

We expand PS and FA in Fourier series and rearrange terms to get:

) ) )

I'S(I,i,e,t) =2 E Z Iy> o(1,) cos(md + 20,t) .

m, i i

(3.3)a
m=0 2=1

p | 4
+ Ym,—l(Ii) cos(mb - QQit)]
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©0

rir,,0,6) = Z YA (1,) sinGmd + 29;0)

=Ov =1 (3.3)b

+.yﬁ’_2 (1,) sin(@é - 20,t)]

‘ . .5 _ .S A
Where we have made use of the relatioms Ym,l = Y-m,—Q and Ym,k_'.yém,—l

ahd assumed that only terms that are functibn'of t are present in the
perturbation ife., Ym,OEE 0. (In fact it was indicated in Section.Z.l
that all stationary terms must be included in the unperturbed system
.representation. )

We let 6 = A8 + vit and average Eqs. (3.3)a,b over a complete

period of t; the only non null contributions come from secular terms
where

mv, - 2Q, = 0 (3.4)

. Y
In other words, ?% is rational. Let Zi, m, be the lowest integer to
i ' : ‘
satisfy Eq. (3.4), Z, and my depend on vi/Qiand therefore characterize
Vi Ry X4

the resonance. Since ET'= 3%-= El-the rotational transform of the
v i
resonant surface is rational. Depending on the perturbation,
a subgroup of the exact flux surfaces are excited; we call them
primary resonances. »
R. 2.
To a given primary resonance of fﬁ'— E_ there are contributions

from all the resonant harmonics characterized by (m, 2)— (pmi,pl )
where p > 1. In the vicinity of this resonance by averaging Eqs. (2.25)a,b

over fast oscillations we obtain. .
| o ' (3.5)

Zl [YPmi"P’L (1;) cospu - Ypm P2, (1) sinpu]
p= .

dAT _ 26
dt. Y

i

where u =-—miA6 = -mi(ﬁ - vit) = -mie + Qiﬂit.
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In the appendix we evalﬁated the right-hand side of Eq. (3.5) and

got:
CAAT e |
el fv'(u) : (3.6)a
i i
“'du
qu _ AT
it HA (3.6)b
dvi
where U4 = - m 3T and
ISR u |
fv,(u) =3 f dt I‘(Ii, ™y + \)it,t) . 3.7
i - i 0 i

For simplicity, the indice i will be dropped from most equations up to

the end of Section 3.2, Equations (3.6)a,b have the first integral:

R(AL,u) = -‘Zi(A1)2+ £ Vew (3.8)

where

"
V(u) = —f du' fv(u') , 3.9)
0 ' -

Surfaces of constant K represent the island countéur equations.

Let us introduce a parameter aj characterizing the afcountour
in the j-island by the initial condition AI(u = aj) = 0, In our
notation, by changing j we change from one island of a given resonance to
another island of‘the same resonance ﬁhere by changing a we change from
one countour to another within the j-island. The island countour

characterized by aj is given by:

, 2¢ 1
AL =0 5 {F [V(aj) - V(u)]

}1/2

for all u's satisfying the condition:

(3.10)a
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[V(.aj) -V@)l/u=0 . ‘ | (3.10)b

0 = sgn AI and is equal to #*1. o will change sign with the variation du
(as viewed from the central magnetic axis position), thus forming

symetrical countours by reflection with respect to the I = Ii unperturbed
surface.

It is easy to show that MV(u =kT) = O for k = 0,1... Therefore between
ﬁ; =0 and §1-=2ﬂ the function MV (u) has 2mi zeros. Taking uV(u)vto be
fiﬁite and continueous function of u, it follows‘that HV(u) has m, minima
and m, maxima. Leﬁ {dj}Ti be the set of minima and 'Bj}Ti be the set of

maxima and arrange the u = 0 axis to obtain

<o, < < < < 3 i . .
.O aj ?j Bj < aj+1 aj+1 < Bj+1 s all j (3.11)

For clarification the reader is.advised to examin Fig. 1.v In order to
obtain the maximum excﬁrsion in the action we express, as a first step,
the action excursion.expression in Eq. (3.10)a in terms of variables of
Ehe j-island. TLet uj représent the variable u restricted to vary

between R, and B. and let u: =u, - 0,. Eqﬁation (3.10)a expressed
J i+ ] ] J .

1
in terms of ug'is:
! 2 1{. voat{1/2 ' '
sy =0 [E i [vap - vapl}? 61230
where
. aj+uj
V(uj) = - .I. : du' fv(u') . (3.12)bv
o
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and a!' = a, - a,.

i 3 3 ,
The maximum excursion in the action for the aj countour is obtained by
maximizing |AI(u3,a3)| with respect to ug and the maximum excursion

in the action is obtained by maximizing the result with respect to aﬁ.

Let AIM be this maximum and let 83 = Bj - uj’ then

1 2
5 (ven M
= |A1(o, B D o= U‘ —-—u~—- . (3.13)
ot
Since o, is a mi%%?um of —f— one ean easily showﬂthat'——ﬁl—- 20
V(B - .
and therefore ——ﬁl—-> 0, necessary condition for Eq. (3.13). Another
UGH)

important property is that the function ——ﬁl~ does not depend on

the j-island of a given resonance and is function of the perturbation
at the resonance, say /TVYE}TT"= Fi(P)' Where P symbblizes the
dépendence on the perturbation at the primary resonance.

Let.wi define the resonance width; (Wi = Max'Avi|). From Eq. (2.23):

dvi '
Wi —E AIM : (3.14)
therefore:
W, = €% F.(P) ' | © (3.15)
i miIi i

3.2. The Island Contour Oscillations

Consider the field line cross section that is located at t = t1 in the

j-island. At "time" t = ty Cit will appear in the j + 1 island.

Q 2
Therefore, a given island is transformed-into itself in intervals of %E-.
i

We therefore introduce the "mew time" for the island oscillations defined by:
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T = vt - - ' (3.16)
1 .

Since t is "time" we define sgn 8t to be positive. From Eq. (3.6)

sgn § u' = 0 sgn ﬂ. If we call ' = sgn U and introduce the variables:
: 4 . ‘ _

‘W = o'a' (3.17)a
a .
= ! = qly ' )
v, Al(u' =0 wa) (3.17)b
where j is understood. Equations (3.6)a,b in terms of LA and v are:
. - a
dv, e . :
= 3 v(a + 0 wé) (3.18)a
v )
d oo lul -
I wa v Va : ) (3.18)b
and can be derived from the hamiltonian:
% Jdul 2ot Gy |
K (va,wa) v Y, + 5 V(U wa) (3.19)

Vv
It is obvious from Eq. (3.18)b»that_sgn Gwa is the same as. sgn v, and
the island countour oscillations for.theva—countour occur for v,
variations between -a' aﬁd +a' and therefore are of the libration type.

Here we introduce the new action angle variables (na,Ja) corresponding

to the pair of variables (wa,va):

! _ .

Ja = —i f_vadwa : _ (3.20)a
ba v
as!’ (Ja,wa)

n, = BJA (3.20)b

where

Wa .
S'J ,w) = f v dw. : (3.20)c
a’ a a a
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In this representation the island countour equations are given by:

dJa
—-&7[- =0 ) (3.21)3
dn
_d% = : (3.21)b
where '
]
6, = %_ (3.22)
. a

Ja is a function of a' and is positive except for Ja(a"= 0) = 0.

wa is also a function of a' and is positive within the island, except ,

] ?
for wa(a =B ) = 0. We therefore refer to the elliptic singularity

1)
at a = 0 as the local magnetic axis of the j-island and the island

] ]
countour at a = B as the local separatrix. The local separatrix is
common for all the islands of a given primary resonance.

In the limit of small oscillation i.e., a' small, the hamiltonian

'(Eq. (3.19)) reduces to:

'K'(va,wa) = %%l‘Avaz + é% wa2 (3.23)a
where ’,.
Sgl 4 @) . I | (3.23)b
since 0 is a minimum of ¢'V(u) then 0} %ﬁ-(u =0 ) <0, therefore ¢

is positive. In the limit of small oscillations:

k' a's - (3.24)

_ - | . .
v 1
Ja = Z'a ‘/T‘T]— _ | (3.25)
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and

___[_L_m % ‘at ' ' (3.26)

It is important to note that the small oscillations limit is possible only
for large non-linearities i.e., large x , otherwisé the field lines in
the small oscillations region will be governed by Egqs. (2.27)a,b,
treated in Section-3.4¢

Before we close this sectioﬁ we introduce the nonPlingarity
coefficients Xa’ aSsociate& with the slow frequency Wy of the island

countours:

g
X =—u—fi,—a (3=1) ‘ (3.2

In the small oscillations region Xa = 1 (refer to Egs. (3.25) and (3.26)).

3.3. The Island Countour Perturbation and Secondary Resonances

The oscillations examined in the previous section are subject to
a "non-stationary perturbation" related to - the presence of other
resonances in the system. .To éimplify our notations we drop the
indice a and let dots repfesent derivatiﬁe with respect to T.
The island perturbation equafions are determined by substracting

Eq. (3.18)a,b from Eq. (2.25)a,b, we get:

. _ . _

ve—]|r(r,, -+t -2, T Y £ (0w e+ ) (3.28)a
2 i m m, v,
Vv, i i i i
i _

oodul o (3.28)b
Vi

The resulting'action and angle perturbations are:
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s 1 [s0r, 0K '
J—a[v é—\;-f'wm] (3.29)a
'_.g'ﬂ )
n=w aw ‘ (3.29)b

since v and é are of the order of € aqd 51/2 respectively, the highest

contributions to Eqs. (3.29)a,b correspomds to evaluating the derivatives

K ‘ K oK
%;3 g%-and %S on the unperturbed island countour. %;—and 5;-are;therefore,

obtained from Eqs. (3.18)a,b and Hamilton's equations while:

wv

dn _ dn®/dt _ i
dw dw®/dT [ufv (3.30)
If bstitute for oF , 2K ana I 41 Egs. (3.29)a,b we get:
we substitute for =7 , 7= aw n' gs. .29)a,b we get:
e 1 [ 2uled .
J = m 7 r'a,n,T) , (3.31)a
Vv .
i
N o=+ O(El/z)) B - (3.3D)b

where
r'@,n,T = ojo'v. @) - c'vi'[c'w(J,n)]gl/Z I’[Ii;'f— o _gw@m _.T_]

(3.32)
For an obvious reason we have dropped all stationary terms. Tﬁe
function w(J,n) is determined from Eqs. (3.20)a,b, and for most cases
is very difficult to determine explicitely. For libration type motion
one important property of w is its periodicity in n.5 Taking
this property into consideration‘de have shown tﬁat the function

I'(3,n,T) is a periodic function of N and T.
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Equations (3.31)a,b for J and N are similar to Egs. (2.25)a,b for
I and 9. And, similarly, they are valid in the region defined by:

e _ '
—§§-<< AT << Je - ' - (3.33)

K

In ordef to explain the terms in Eq. (3.33) we need to introduce the
concept of secondary resonances. Thosé‘are the excited island countours
whose slow transforms are rational. Let.{wK} represent the set of
secondary resonances frequencies to which, from Eq. (3.22), correspond

'{JK} for the action. AJ =J - T and AT = V((AJ)Z) where the average

is taking over a complete period of An =1 - W
w p
, K _°K Vo
Let Px and dx be the prime integers satisfying ﬁ{ = qK, (QK—ViQi),
and let €=quAn. In the domain defined by Eq. (3.33) we average Eqs. (3.31)a,b

with respect to T and get:

3 ‘ : :
pl = [EEE @ | (3.30)a
. 1
K \Y
i
£ = MAJ | (3.34)b
' (Tt . __&, o g dwo o
where fiK(E) = (F(JK, wKT 3 ,T))T and M Ax I3 (@) JK).

N K
Equations (3.34)a,b can be derived from the hamiltonian:

| :
3
h(3,6) = 2(89)%- -‘i / 2|ule” 378 [ £I(E") dE' (3.35)
: i
. 0 '

where surfaces of constant h represent the secondary island countours.
The maximum excursion in the action,AJM,is equal to the maximum of
|AJ| with respect to £ and h, ' The secondary resonance width given

by:
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b= |ag U= JK)' Ay - 3.36)
is equal to:
 [2empx, /4 /26X, /2 |
A ={——=1  |(—=] F, (") (3.37)
ik Vgli g iK , , '

where FiK(Pﬁ depends on the perturbation at the secondary resonance,

symbolized by P'.

3.4. Behavior of the Field Lines Near the Elliptic
Singularities in the Limit of Large Non-Linearity Coeffic1ents

The objective of this section is to solve for Cases III" and II'.

Case III":

If we apply the method of averaging derived in Section 3.1 to

: . v, %
Eqs. (2.29)a,b in the vicinity of a given resonance, ?fl= Ei , we get
' : i i
ddr _ €
dt - V. fv (uj) (3.38)a
i i
du,
—J-dt = - ezlﬂigvi(uj) (3.38)b

where fv.(uj) was defined in Eq. (3.7) and gy @H) is defined similarly by:
g 3 . 1
T,
1 * Yy _
gv'(uj) = Ef dtH(Ii, i +_ \)it, t) . (3.39)
i i 0 i

Near the elliptic singularity u& = uj - aj is small, we expand fv (uj)
A i
and u.) in terms of u!:
gvi( 3 :
dfv

u,-0 '
= B i .
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dgv_

u,~-0,
= - i

(fv (aj) = 0 becausé, by definition, aj are minima of V(uj)).
i v .

For Case ITI" where AI << €I_ we are practically at the elliptic

i

singularity and,thus,ohly the zeroth order terms in Eqs. (3.40)b need

to be considered. By substituting into Eqs(3.38)a,b we obtain:

dAT _ B . : ‘
i EMA uj _ (3.41)a
du: :
—E%- EUA (3.41)b
whére
af "
1 i
A= - ——— — (a,) - (3.42)a
uv, Quj - J
and
21 . .
: ' = —-——-Q a, . .
Al = o ig"i( 5) | - | (3.42)b
_ V(u,) .
Since aj is a minimum of ™ then
df
v 2
1l i 1 dv
A= - —— (@) = — —5 (&.)
WYy duy TSI WYy duJ? 3"

is positive or null. If g, (aj) is equal to zero then A' = 0, in this
i : .
case one must keep the first order term in Eq. (3.40)b, and WAI, this

leads to replacing Eq. (3.41)b by:

du:

!
Ir = HAT -mej
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where

[} dg,,

T4 i ' '
B = m Qi duj (Qj) . | | | (3.42)c

The solution of Eqs. (3.41)a,b subject to the initial value condition

AI(ui = 35) = 0 is given by:

a! :
AT = f J A'ﬁﬁ u;du.; v (3.43)
: '

u-
J : :
where O is introduced to avoid the apparent singularity at A' = 0.

For A" = 0 8 should be replaced by

. .
3 AT -B'u:; 3
thus Eq. (3.43) becomes an integral equation of the type discussed in

Case II' below. For A' £ 0
AT = % e EE _ ' (3.44)

which represent a parabolic branch in the action angle plane.
In terms of an initial "time", td’ the initial conditions are:

u'j(t%to) - a! o (3.45)a

AI(t=to)/= 0 _ (3.45)b

For A' # 0 the solution of Eqs. (3.4l1)a,b subject to the conditions
in Eq. (3.45)a,b are:

u',(t) = a' - €UA'(t-t ) (3.46)a
J j o )
(t .~ to)
2

AT'(t) = a' (t - L) - EpA’ - (3.46)b

J
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in the limit of large t the qpantifies [u5| and [AI'I become large,

and the field lines will escape from the domain of case ITI" to the domaiﬁ
of case II'.

Case II':

Equations (2.27)a,b averaged over fast oscillations in the domain

\)i {
of the resonance O = - are:
i 0y
dAT €
—=—f (u,) . (3.47)a
dt \)i \)1 hi
du;
-1 - Q
e uAT e ig\)i (uj ) (3.47)b

In the domain of II'we keep the zero and first order terms in the

expansions (Eq. (3.40)a,b). By substituting into Eqs. (3.45)a,b we

obtain
S
Q%%.= - epau’ (3.48)a
du! . i
i - 'a!
ac HAT EUB UJ | _ (3.48)b

where AI'= AI - €A' and A, A' and B'are given from Eq. (3.42)a,b,c.
By considering exponential solutions for the system of Eqs}'(3;48)a,b

of the form exp(it), we obtain. the characteristic equation:

A2+ eyt enZa =0 . - . (3.49)

Since € is small and positive and A = 0 then:

senla - e2u?s'%s o ‘ (3.50)



-28—

and therefore

A=A, (3.51)a

2 1
where
22,2
e .
R (3.51)b

From Eqs. (3.51)a,b the solutions of Eqs. (3.48)a,b, subject to the

initial conditions in Eqs. (3.45)a,b are easily obtained:

—eunt
| | eEZB . \ cup! \ .
u'(t) = aje (cos 1t - 2)\1 sin lt) (3.52)a
~€pAal :-WZ—B'— t |
AT'(2) = ——L e sioh ¢ | (3.52)b
1

For uB' > 0, Eqs. (3.52)a,b give evolution of the field lines from
the domain of II' to the domain of III"; if A' = 0 this evolution
cohtinues tovzero e.g., to the position of the elliptic singularity.

If A" is different from zero we have shown above that there is also
evolution of the field lines from the domain of III" to the domain of
II". The combined effect, therefore, confines the field lines of the
berturbed system to the domain of III" and II', but also destroys the
structure of the surfaces in these domains, thus producing regions of
localized stochasticity.

: :

For HB'< 0 there is evolution from the domain of I1' to the domain
of I. Thevfield lines located in the immediate neighborhoods of the
elliptic siﬁgularities»in the unperturbed system are quickly drawn out

of these neighborhoods when the perturbation is turned on. In the

perturbed system these regions are, therefore, forbidden to the field lines.
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In the domain of I, magnetic contours are_closed and, therefore, the
limiting contours of the regions described above are closed. Their
sizes are function of the perturba;ion and the primary resonance
parameters; from Section 2.3 théy are expected to increase for smaller
non—linearity. Numerical verifications of the existence of these
regions are found in the’ literature; We mention the numerical

caléulations of M. Hénon and C. Heilesg6
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4..'Behavior of the Field Lines in the Limit of
Small Non-Linearity Coefficients

There are three cases to be considered (refer to Table I):

1/2 1/2

For x ~ € case III' and II, énd for x << €' " case III.

The field line perturbation equations in the domain of case I11',

namely 0 < AT << 81/2

Ii’ are given by Eqs. (3.38)a,b. A solution
of these equations in this domain can be obtained by expanding

f, (u,) and g, (u.) in term of u!. The method is similar to that
Vi3 Vi d 3 ,
employed in Section 3.4 for case III" except this time the first order
term in Eq. (3.40)b is kept, thus adding a perturbation to the
parabolic trajectories described by Eq. (3.44). Similarly to

the behavior described in Sectionb3.4, there is evolution of the

field lines from the domain of III' to the domain of II, or to

zero, depending on the perturbation.

1/2I

The domain of case II is given by: € 1

~ AT << I;, and the
field line perturbation equations in this doméin are given by
Eqs. (3,47)a,b. In the ddmain of II, the expénsions\described
iﬁ Egqs. (3.40)a,b ére not valia and, therefore, it is diffiéult té
obtain an analytical solution of Egs. (3.47)a,b in this domain.
‘However, it can be safely stated that there will be no stable
behavior of the field lines in this domain due to the noncanonical
nature of the perturbation.

For x = 51/2 the domains of IIT' and II cover all of the resonance
domain, Therefore, the field lines may escape the reéonance domain

to regions of fast changing perturbation outside that domain causing

instabilities.
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For x << 81/2 the behavior of the field lines, in all of the
resonance domain, is described by Eq. (3.38)a,b. Again, due to the
noncanonical nature of the perturbation, the behavior ofvthe.field

" lines 1is unstable and may 1ead to evolution from the resonance domain

"to regilons of fast changing“pértﬁrbatiqn outside that domaih, causing

instabilities.



-32-

5. Destruction of the Magnetic Surfaces

.....

It is well confirmed that a strong instability with random-1like
5ehavior occurs when resonances overlap.1

The 0verlabping of two neighboring resonances will occur if
their separatioﬁ is smaller or-equallto the sum of their
wi&ths. There is at least one overlapping of resonances below a given
frequency vi if the sum of the widths of all resonances with frequencies

smaller or equal to Vi is greater or equal to V We take this as a

4
definition for partial sotchasticity below Vi’ it is equivalent to:

\)i< E Wj . o v (5.1)

Although the frequencies of all the resonances below vi range from zero
to v, their number is infinite. We let {j}i represent the set . of
resonances below V. ordered in such a way that V.S . <V, and Vv, = 0.

i . j=i i

Equation (5.1) is therefore the same as:
- .
v, < > LA (5.2)

where W is‘the width of the j-resonance.

3

The limit of total stochasticity bedow v, is obtained if all the

resonances of frequencies smaller or equal to V

i
of partial stochasticity. Equation (5.2) sholild give an underestimate

satisfies the criteriom

of the critical perturbation for Vi, an overestimate is obtained from

1 The critical limit is

somewvhere in between. We introduce,Ci < 1 to be a positive constant

the limit of total stochasticity below V
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characteristic of the resonance Vi such that

o
v, = ¢ Z LA (5.3)

J= _ .
defines the crigical perturbation f&r the i-resonance. (C1 is constant
in the sense that it is not explicitely dependent on the resonance
parameters; however, Ci varies from one resonance to the other and is
dependent on the system.)

The widths of peimary resonances are given by Eq. (3.15), if éi

is the critical perturbation for the i-resonance, from Eq. (5.3) we get:

1/2 ' g
1/2 (1
C;6:€; = (E‘) ‘ | -4
where,
, s ' 1/2
_ 1 i R R |
G, =3 Z(x = m) F, (P) , (5.5)
i4=4 \"1 "3 ] 4

/2

F&(P) having the dimension of (ijj)l 5 we arranged Eq. (5.5) so that

Gi is dimensionless. Gi is iike a structure factor characterizing the
perturbed systgm.below Vi. |
tet us call e%ternal overlapping.the overlapping of primary
~resonances énd inﬁernal overlapping the overlapping of secondary
resonances, Eq. (5.4) thus describes the critical perturbation by
external overlapping. In Section 3.4 we have shown that zones of
unétable behavior covers the immediate domains of the elliptic singularities.

The limit of each of these zones is a closed contour situated in the domain

of Case I. Let ws represent the frequency of the secondary resonance
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closest to this limiting éontouf. Thus, the tofal destruction of the
Vi~resonance by internal ove;lapping is obtained by the critical

perturbation below the‘ws—secondary-resonance. Let Es represent the
critical pértﬁrbation by internél overlapping, from Eqs. (3.37) and

(5.3)_we get:
6

| Wby \L/4 1/2 o
134 i’i _};
CsGses "\ 2m.x, 2X (5.6)
‘ : ii s

where Cé(< 1 and positive) is defined, similarly to Ci’ for the secondary

resonances, and

1/2
L ] 1
( E K) EiK(P ) . (5.7)

Our definition of G; for the secondary resonances (Eq. (5.7)) is similar .

e e

EIH
DIH

[ee]
S Kes
to that of G; for the primary resonances (Eq. (5.5)). GéJis also like a
structure factor characterizing the secondary system below ws.
For large x, Wwe can assume the ws—resonance to be in the small
oscillations region; treated at the end of Section 3.2. From Egs. (3.25)

<

and (3.26).

X =1. ' (5.8)

From Eqs. (5.8) and (5.6) the limit of internal stochasticity for the

Vi—resonance is obtained:

vy \1/4
crcred/t - <———i> ‘ (5.9)

S 8 S 8m,x
v ii

Equation. (5.4) for the external stochasticity and Eq. (5.9) for
the internal stochasticity give the dependence of the critical perturbations

by these two processes on the primary resonance parameters. For a given
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resonance, thé physical critical perturbation is the smallest of thé two
above mentioned critical perturbations. From the present analysis it is
possible, in an experimental situation, to determine the primary )
resonance widths explicitly. The valﬁes of the critical perturbations,
by external overlépping, are, therefore, obtained by directly checking
the overlapping of‘neighboring primary resonances. However, the
secondary resonance widths are difficult'fo determine explicitly from
thg present énalysis.

| Secondary resénances are related to the presence of more than one
primary resonance in the system. For systems where many primary
resonances are possible it is therefore logical to assume that the

secondary systems are similar to the primary system.7 This leads us

to assume that

c,G, = eClG! | (5.10)

where e is a constant. If we take the ratio of Eqs. (5.9) and (5.4)
and use Eq. (5.10) we get:

6 1/4 | | '
vor1 .
34 _ o (-i—-l-xi> el/2 (5.11)

s 2m, i
i

Equation (5.11) relates the internal critical perturbation to the

external criticai pertrubation . Thus, from the‘values of €, and the

i
pPrimary resonance parameters, the values of ES are determined,

For tﬁevstellerator% where stochasticity occurred near the
separatrix for values smaller thanbthe external stochasticity limit Ei,
Eq. (5.11) shows that this had occurred by internal overlapping.
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In general, formul# (5.11) asserts that independently of how small is
the perturbation; the magnetic surfaces are always destroyed at the
separatrixf | |
For,thé levitroﬁ* we calculated Ei by directly checking the over-
lapping of neighboring primary resonances and determined ES from
Eq. (5.11), Where we have taken e =~ 1 and Qi = 1. The results are
" tabulated in Tabie II. (For the levitron € is a tilt angle;4 in Table I
it is given in degrees.). We conclude that for Vi < 2 the destruction is
caused by infernal ovérlapping. In Table II quantities in parenthesis
are the theofetical limits for destruction. Ec are the numerically
measured tilts for which the resonances aré completely destroyed.8
There is a very good égreement between theofetical and numerical values
of the critical perturbations. 1In Fig;_Z, wé.show_a'typical example of
destruction by internal overlapﬁing in levitrons; the sécondary magnetic
islands and contours appear in part C.
Before we close this éection we would like to comment on Eq; (5.10)
which says that CiGiviS proportional to CéG;. It can be argued
fhat the limiting secondary resonance pérameters are functions
of the primary resonance pafameters and tﬁe perturbation at the primary

resonance. On the other hand, the summation in Eq. (5.5) over the indice

*The basic features of an average minimum B levitron, are represented

by a simplified model which consists of a single filamentary conducting
circular loop located at the center of the torus, a straight filamentary
conductor along the vertical axis and a uniform vertical magnetic field.

The location of the separatrix surface is determined by the ratio of the
uniform vertical field to the loop field. The distance from the loop to the
separatrix approximates the minor radius of the torus and thus determines
the system's aspect ratio.



&
Sl
oL

j transforms the dependence of Fj on the perturbation at vj into a
dependence of Gi on the primary system below vi' Similarly G; is

dependent on the secondary system below ws' We have argued before that for

systems with many resonances the secondary systems are similar to the
~primary system. Thus, there is an approximate = similarity between the

primary system below v, and the secondary system below W, This

i

similarity and the dependence of Gi and G; on the primary resonance

parameters only, suggest that G, and G; can be related. Although this

i
does not pfove the proportionality of CiGi and C;G; it does give a strong

support in favor of it. The proportionality‘constant, e, is in general

dependent on the system; from Table II, taking e equal to one seems

to be a good approximation for the levitron under consideration.
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6. Conclusions
It has been esﬁablished that if resonances overlap, a rapid destruction
of their island structure occurs.
1. Thus, if primary resonances overlap, a rapid destruction of their
flux surfaces is expected.

1/

v2. For large non-linearity (x>>€ 2), the field lines are trapped

in an effective potential well in the primary resonance domain forming
fémilies of closed contours at the eliiptic singularities. We refer to
the resonant island contours as secondary resonances. Another possible
phenomenon of destruction is the overlapping of secondary resonanceé.
Depending on the primary resonance parameters (and the system) destruction
may occur by either or.both.phenomené.

3. The excursibn in the action for the‘primary magnetic island

1/2 3/4

increases as € ‘while for the secondary island it increases as € .

Internal overlapping proceeds almost orderly from the local separatrix

to the elliptic singularity. Therefore, for islands that are most

affected by internal overlapping the observed primary excursion should

1/

. . . 2 .
increase at a lower rate than € due to the successive disappearance

?f outer contours destroyed by secondary resonance overlapping. This

is in agfeement-with the numerical observation by Freis et al.,4 where

1/2

the 1 and l-resonance widths increase as € until breadup while the

2
%3 2, é—and 3 resonance widths increase as €3/2.

2
4, In the immediate neighborhoods of the elliptic singularities

the perturbation is not canonical and leads to‘evolution, thus, creating

either regions of localized stochasticity or regions that - are forbidden

to the field lines, depending on the perturbation and the system. The

sizes of these regions are functions of the pertrubation and the primary
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resonance parameters. They increase for smaller non-linearity.

1/2) the field lines may escape

5. For small non-linearity (x S €
the resonancé zone into regions of fast changing perturbation causing
instabilities. |

6. It is known since Poincaré9 that a hiera:chy'of resonaﬁcés are
generated in a non-linear oscillafing system. In a system where terms
of the first order in € give the highest order observable contribution,
we found that two sets of resonances are sufficient to explain the
forﬁation and destruction of the magnetic surfaces. In general, if en,
Awheré n is a positive integef, gives the highest order oBservable
contribution then 2n sets 6f resonances are.sufficient.

7. Equation (5.4) for fhe external stochasticity énd Eq. (5.9) for
the internal stochasticity give the'dependence of the critical perturbations
by these two processes on the pfimary resonance parameteré} For a gi&en
resonance ﬁhese relations give the dependence of the critical perturbation
on the non-linearity coefficient.

8. From Eq. (5;11), as.\)j approaches zero, thé region of internal
stochasticity extendé over all the x-€ plane thus, independently of how
small is € > 0, the flux‘surfaces are always destroyed near the separatrix.
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Appendix
The Averaging Method -

To evaluate the right-hand side of Eq. (3.5) we consider the

Fourier coefficients:

T 2
S ) - - idt a6r5(1, ,6,t) cos(pm, 6-p& 0
Ypmi,—pit zm:i g07t) cosipmBrpR, N t)
(A.1)
2 Q 2ﬂm [ du , '
2ﬂT - )F (I - — + Vit,t) cospu
1 i
where u = —miAG = - mie + EiQit.
Since‘FS(Ii,e,t) is periodic in 6 and t then:
o (A.2)
%8 t-2Tm, . ~2mm,
dulS(1,, - %+ v e,t) = (1, ,- %+ v e,t) .
40t i m, i i m, i~
11 0
From’Eqs. (A-1) and (A~2):
: 1 0 .
S ' S .
Y - (I,) = —— f du £2 (u) cospu (A.3)
pmy,ply AT 2Mmy e
, —21Tm1
where
S 1 Ty S | '
u
f\, (u) = -,flf del (Ii,— ;—+ vit,t) . (A.4)
i i
0
Similarly
YA (Iy= - 1 fov' du fA (u) sinpu (A.5)
: 1>mi.-pfbi 1 2Tm, v,
where '
A 1 Ty A '
I _u
fv (u) = :qif de (Ii’ - +\)it,t) - (A.6)
0

i i
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If we substitute from Eqs. (A.3) and (A.5) into Eq. (3.5) we get:

' ' 0. ‘ o

dAI _ 2¢ 1 S

e [ e £ omon
. -2Tm, _

i (A;7)

A (o]
+ £ ") sinpu sinpu'
i p=1 ‘

. o o]
In order to evaluate Eq. (A7) we express 2: cospu cospu' and
o]
. - p=1
2: sinpu sinpu' in terms of delta distributions, consider x in the

' 1
one dimensional real space, R, then:

%W o 40 . |
3 ML 3 sx -y
» k=~ n=-—0.

where n_is an integer. If x varies only in an interval of Rl, say

< = : . = i H
[xl,xz]} . xl | Xy ané if n1 ‘Ent(xl).+ 1 aéd n, Ent(xz) then

+ oo S o . |
Z eZﬂlkx = Z 8§(x - n)

k=—0° n=n1
It follows that:
= 1 1 b
Z cos2Tkx = - E—+-—2- Z S(x - 1n) . (A.8)
=] . mEny ' v
By using
) oo : 1 co ‘
E: cospu cospu' = 7 z: [cosp(u + u') + cosp(u -~ u')}
p=1 - el
zg-sinpu sinpu' = 5 3 [-cosp(u + u') + cosp(u - u')]
p= p=1

and noting that the interval of variation of utu' and u-u' is

[O,ZWmi] we get:



i
(o] .
. 1 m
§ : I L z : . v o
y cospu cospu 2 ) 6(u + u 2Tn)
p:

Hmy T (A9)a
+ E S(u - u' - 2mMm)
=70
2 sinpu sinpu' =g Z S(u + u' - 21Tn)
p=1 n=0 (A. 9)b
+ Z S(u - u' - 2m)
By using f%‘(u) = f% (-u) and f (u) 6 (~u) after substituting
i o1 i

Eq.v (A~9)a and Eq. (A-9)b into Eq (A-7) we get:

m,

. 1
dAT 28 2 ' - '
G Z fvi_(u 2tn) ¢A.10)

i n:

where
£o(x) = £2 (x) + £ ) (A:11)
Vv . \Y) v X '

i i i
From the definition of fvS’A(u) and the periodicity of I'(I,0,t)

. i
with respect to 6 and t it is straightforward to show that:

£, (w) = £, (ut2m) ; n =0,1,2, . . . (A.12)
i i
By substituting Eq. (A-12) into Eq. (A-10) we get:

dAT €
at =.‘\‘;; f\)i(u) . (A.13)

Equation (A-13) can also be derived directly by averaging Eq. (2.20)a
over fast oscillating terms in t. This shows the equivalence of the

present analysis and the averaging technique often used in the literature,.
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Fig. 1.

Fig. 2.

bl

Figure and Table Captions
A\

Structure of the(—i-= —) - pfimary resonance in the action angle

2, 4
i
plane. The various angles shown are defined in the text.

(a) A closed primary contour of the 7 resonance at l+r cosp= 0,51

and part of the 2T primary resonance at l+r cos$ ~0.61. (b) The

_ perturbation 1s doubled and the contour is Heavily distorted.

Table I.

'(g) The perturbation is doubled again, the contour is completely

destroyed and secondary magnetic islands and contours appear.

This is a typical example of destruction by internal overlapping.
The 2T primary resonance island aftér reaching its maximum flux
in part (c) is seen partially destroyed in part (d). This figure
is taken.from Ref. 3.

There are three approximations to fhe field.line equations:

(1) > type I, (ii) > type II, and (iii) > type III. For

1/2 1/2

, (111) alone is in the resonance domain, for x ~ €
1/2

x << €

(iii) and (ii) are in the resonance domain, and for x >> €

(iii), (ii1) and (i) share the resonance domain. Only (i) may

possess stable solutions, thus stable magnetic contours are

oBtained if x >> €1/2.

Table II. For the levitron, € is a tilt angle. The theoretical tilts

for which the résonances are completely destroyed are equal
to.the smallest of € and,es. € and €, are the limits of
external aﬁd internal stochasticities,respectively. (*The

3 and 5/2 resonances overlap and are simultaneously destroyed.)
s; are the numerically measured critical tilts. \)i/Qi are thé

rotational transférms, X, the nonlinearity coefficients, and Ii

the primary actions.
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Li

&

Es

Ec

| 1.256

0036

(2.75) |

502

2.50

1.074

0.040

3
)

(2.75

272

2.50

| 1.045

| 0.050

495

(3.46)

3.00

| 110

0.06l

1.68

(0.82)

070

| 1.300

0084 '

0.54

(0.27)

- 0.30

1 2.200

0.120 |

0.54

(0067

0.15

oisz

~0.244

~0.002)

<0.02

 Table I
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