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ON THE DESTRUCTION OF MAGNETIC SURFACES IN TOROIDAL SYSTEMS 

F. M.Hamzeh 

Department of Materials Science and Engineering, Center for the Design 
of Alloys, and Inorganic Materials Research Division, 
Lawrence Berkeley Laboratory; University of California 

Berkeley, California 94720 

ABSTRACT 

The behavior of the field lines in a torus is analogous to the 

motion of a non-linear oscillator. If E, small and positive, is the 

perturbation parameter, we consider a toroidal system in which terms 

of higher order thanE are assumed to give nonobservab1e contributions. 

For large non-linearity (x » E1/2) we found that two sets of resonances 

are sufficient to explain the destruction of the magnetic surfaces in 

the toroidal system. Resonances that transform the unperturbed surfaces 

into a structure of magnetic islands we call primary resonances, and the 

secondary resonances transform the bound-state-1ike contours of a given 

island into similar structures of secondary magnetic islands. To every 

primary island we attach two types of stochasticity, external, due to 

the overlapping of primary resonances and, internal, due to the over-

lapping of secondary resonances. Depending on the resonance and the 

system, the destruction of the magnetic surfaces occurs by either or 

both processes. In the immediate neighborhoods of the elliptic singu1ari-

ties the perturbation is not canonical and leads to evolution, creating 

either regions that are forbidden to the field lines or regions of 

localized stochasticity. The sizes of these regions are functions of 

the perturbation and the primary resonance parameters, increasing for 
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smaller non-linearity. 
<. 1/2 For small non-linearity (x _ £ ) the field 

lines may escape the resonance domain into regions of fast changing 

perturbation, causing instabilities. 

For the levitron, we calculated the theoretical perturbations for 

which some of the. primary resonances are completely destroyed. These 

theoretical values are given in Table II and are in good agreement with 

the numerical results. A typical example of destruction by internal 

overlapping is shown in Fig. 2; we note the appearance, in Fig. 2 part c, 

of secondary magnetic islands and contours. 
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1. Introduction 

Rosembluth, et al. l have shown that if resonances overlap,rapid 

destruction of their island structure occurs. 
2 

Filonenko, et ale 

found that in the stellerator, destruction of the magnetic surfaces near 

the separatrix occurs before the overlapping of primary resonances •. It 

is shown here that in a pertrubed torus the magnetic surfaces at the 

separatrix are always destroyed, if not by external, by internal overlapping. 

We present a general study of formation and destruction of magnetic 

surfaces in toroidal systems. If r, $ and Z are the toroidal coordinates, 

the role of time is played by the z-coardinatewhile magnetic islands 

are observed in the toroidal cross section perpendicular to the z-axis. 

The magnetic field is taken as the sum of a "stationary" field, 

(stationary in the sense that it is not a function of z), and a small 

non-stationary perturbation. The unperturbed system is defined to 

include all stationary contributions. The behavior of the field lines 

in the perturbed system is shown to follow non-linear oscillating equations 

where rotational transform plays the role of frequency. 

In Section 2, the linearized equations in various regions of the primary 

magnetic island are derived. For various order of magnitude of the 

non-linearity coefficients various cases were obtained and are tabulated 

in Table I. 

In Section 3 we study the structure of magnetic island in the limit 

of large non-linearity. The magnetic islands are shown to contain 

closed contours centered at each elliptic singularity. Each elliptic 

singularity, therefore, mark the position of a local magnetic axis for 

the island. The magnetic contours of adjacent islands of the same 
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primary resonance are connected through a common contour referred to as 

a local separatrix. These contours have slow characteristic frequencies and 

interact.with the non-stationary part of the pertrubation. The 

resonant island contours are referred to as secondary resonances. The 

behavior of the field lines near the e~liptic singularities is treated 

in Section 3.4. 

In Section 4 the behavior of the field line in the limit of small 

non-linearity is. examined. In this limit it is shown that the field 

lines may escape the resonance zone into regions of fast changing 

perturbation causing instabilities. 

In Section 5 we evaluate the critical perturbations for the 

destructions of the magnetic surfaces. 

3 ~ ~ . 
We have published a resume of this work at its early stage. All 

conclusions drawn in that r~sum~ are also drawn here. However, the 

critical perturbations, carefully determined in the present analysis, 

are different from the previously reported perturbations and are in 

better agreement with the numerical calculations. 

- " 
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2 •. The Field Lirie Eguations 

We consider the magnetic field in the toroidal system of coordinates 

r, <j>, z: 

+ ) +0 (.) +1 . B(r,<j>,z = B r,<j> + E B(r,<j>,z) (2.1) 

+0 
where B (r,<j» represent the unperturbed field and is "stationary" in 

the sense that it is not a function of z, .~ is a small parameter and 

+1 
B (r,<j>,z) is a non-stationary perturbation field that is periodic with 

respect to z. The field line equations are: 

dr rd<j> dz 
-=--=-

(2.2) 

B Btl, B r 't' z 

where B , Btl, and B are the field components in the toroidal system 
r 't' z 

expressed as .functions·of r, <j> and z. 

2.1. The Unperturbed System 

We define the unperturbed system to include all stationary terms. 

In Eq. (2.1) we let E = 0 and def ine t "time" by: 

dt :: dz 
BO 

z 

(2.3) 

We write the unperturbed field line equations from Eq. (2.2) in the 

following form: 
2 

dE-
2 

dt = 

B
o , 

. <j> 
=-

r 

(2.4)a 

(2.4)b 

Using the divergence theorem ~ • B" = 0 and Eqs. (i.4)a,b we derived 

the first integral: 



where: 
2 

dE.... 
2 

dt 

M.= 
dt 

dH 
= -~ 

elH 
2 

aE.... 
2 

-6-

The unperturbed magnetic surfaces are represented by surfaces of 

(2.5) 

(2.6)a 

(2.6)b 

constant H. Equations (2.6)a,b are similar to Hamilton's equations 
2 

r where His the hamiltonian, Z and </> are the canonical variables and 

t plays the role of time. 

We normalize the major radius of the torus to one and conveniently 

let BO(O,</» = 1. By varying z from zero to 2n the field line does z 

not necessarily return to its original position after having gone 

around the torus. The problem we are concerned with is a perturbation 

around a situation in which exact flux surfaces exist. We introduce 

the action and angle variables (1,8) corresponding to the canonical 
. 2 

r variables (Z,</»: 

I ~ I(H) - 2; f ~2 d¢ (2.7)a 

8(</>,1) =dS~CPfI) (2.7)b 

where . </> 

S(~.I) = J ~2 d¢ (2.7)c 

and the frequency: 

v = v(I) 
dB 
~-

dI (2.8) 
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We have chosen the definition for the flux in Eq. (2.7)a in order to 

give 2~ changes for e every time ~ changes by 2~. In the action angle 

representation the field line equation of the unperturbed system are: 

dI 
dt = 0 (2.9)a 

de 
- = \) 
dt (2.9)b 

R 
The rotational transform 2~ , measured in number of field line 

rotations about the toroidal axis per rotation about the major axis of 

the torus is defined by: 

(2.10) 

The rotational transform is null at the separatrix and reverses signs beyond 

the separatrix. In the interval of interest, between the central magnetic 

axis and the separatrix, we consider R/2~ to be positive, this can always 

be achieved by properly orienting the toroidal coordinates with respect 

to the field lines. (Although we assumed the rotational transform to 

be positive, for convenience, the problem with negative transform can 

be treated in a similar fashion.) Let T be the change in the variable t, 

averaged with respect to ~ and corresponding to a variation in z equal 

to 2~. From Eq. (2.3) we.get: 

(2.11)a 

where 

(2.11)b 
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Near the' central magnetic axis (OB~ ) </> is small and T is approximately 

equal to 21T. 

In accordance with Eq. (2.9)b: 

de oe 
v = dt = a</> 

O</> dz 
"& dt 

since 'dz 21T o</> = 21T when a e = 21T changes and ~.~ = - we get: 
dt T 

R,.., R 0 
V = - ~G = - (1 + (aB » 

21T 21T z </> 

where higher order terms in ( aBo)</> are neglected and 
z 

(2.l2)a 

Q = 21T (2.l2)b 
T 

The meaning of n becomes clear from dz = Qdt. Equation (2.l2)a relate 

the frequency v to the rotational transform R/21T. These two quantities 

are approximately equal in the immediate neighorhood of the central 

magnetic axis. In Ref. 3 we approximated the problem by letting Q 

equal to 1. In the present paper, we do not make this approximation. 

2.2. The Perturbed System 

In this section we determine how Eq's. (2.9)a,b are affected by 

o 1 0 1 
the perturbation. We let :~ = :~ + £:~ and :: = d!t + £:: and 

linearize Eq. (2.2), to obtain: 

and 

o 
dr = BO 
dt r 

d</>o _ B¢ 
dt - r 

dr l 
--= 

dt 

(2.13)a 

(2.l3)b 

(2.l4)a 

'. 
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o 
'd</>l 1 (1 .R", 1) -=- B +----L-R • 

dt r </> BO Z 
Z 

(2.14)b 

The perturbations in the action and angle variables due to perturbing 

dr d</> dt and dt (or equivalently the magnetic field) are given by: 

dI = dI [~ dr + dH ~.]" 
d t dH a r d t a </> d t 

de = ~)O d</> 
dt o</>' dt 

Using Eqs.· (2.6)a,b we get: 

dI '_ £r [drO d</> 1 _ dpo dr 1J 
dt = V .dt dt dt dt 

:: = V[l + E (::1) / (d::)J 

(2.15)a 

(2.15)b 

(2.16)a 

(2.16)b 

By substituting Eqs. (2.13)a,b and Eqs. (2.14)a,b into Eqs. (2.16)a,b 

we get: 

dI E r 
( 2 ) 

dt = v Y ,2 ,</>,Z (2.17)a 

(2.17)b 

where r, </> and Z are the coordinates of the unperturbed system and 

(2.18)a 

(2.18)b 

From Eqs. (2.3), (2.5) and (2.7)a,b,c Z can be obtained as a function 

of I, e and t on one hand and rand </> as functions of I and e on the 

other. We introduce t:he functions: 
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r(I,8, t) - y[r~ (1,8) <1>(1,8) Z(I,8,t)] (2.19)a 

IT(I,8, t) = n[r~ (1,8) ; <I> (1,8) ; z (I, 8, t)] C2.19)b 

and write Eqs. (2.17)a,b in the consistent form: 

dI £ 
- = - rCI 8 t) dt V ." 

(2.20)a 

de 
dt = V + EV II(I,8,t) (2.20)b 

Equations of the form of Eqs. C2.20)a,b were derived for the straight 

ste11erator fie1d 2 and for the 1evitron. 4 

For an exact flux surface of a rotational transform equal to R/2~ 

the field lines are conserved under the transformation: <I> -+- <I> + 2n 

z -+- Z + in 2n. This corresponds to a change in 8 equal to 2n and a 

2n change in t equal to -V. We conclude that the function rCI,8,t) and 

ITCI,8,t) are periodic with respect to 8 of period 2n and with respect 

f . d 2n to t 0 per10 -V. 

2.3. The :Linearized Equations. 

Let '{V.} represent the set of resonant frequencies. From Eq. C2. 8) 
1 

To {Vi} corresponds a set of values, {Ii}, for the 

action. From Eq. C2.1)a {Ii} are the unperturbed f1ux~s 

1 1 {V.} characterized by the transfonns 21r -fRi } = 2n n 1 
• 

i 
In the domain of a given resonance ci AI 1 « Ii)' we let 

(2.21) 

and Taylor e~pand V(I): 

'. 
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dV
idV 

where· dI = dI (I = Ii)· 

. 1 
.• 1 I 'I· • 
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Let xi define the non-linearity coefficients: 

Ii dVil 
xi = V:-. dI' 

1 

(2.22) 

and substitute in the Taylor expansion keeping only the first two terms 

to get. 

I1v 
v. 

1 

= x . i 

where I1v = v - vi. 

(2.23) 

. - .. , 2 - ... 1 2 
Let I1v = V «l1v) ) and 111 = V «111) ) where the average is taken 

over a complete period of the slow variable 118 = 8 - V t and consider the 
i 

three following approximations:. 

(i) : 

I1v » 
V. e: 

i 
(2.24)a 

EI. 
From Eq. (2.23) this condition is equivalent to ~ » ___ 1 and since 

x. 

~ .. «1 then: 
1. 

1 

X. 
1 

I1r «I 
i 

defines the domain of case (i). 

1 

(2.24)b 

In this domain the second term on the right-hand side of Eq. (2.20)b 

is much smaller than the first and can be dropped • Furthermore we 

linearize Eqs. (2.20)a,b to obtain: 
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These are the magnetic island equation,s. 

(ii) 

-v 
....., £ 

which is equivalent to: 
£r. 

K! ....., ---.1:. 
x, 
~ 

the ,linearized equations are: 

(iii) 

dAr £ dt = v:- r(Ii ,A8 + Vit,t) 

Av « £ 
\I, 
~ 

~ 

and in terms of III 

£1. 
rr.« --~ , x. 

~ 

(2.25)a 

(2.25)b 

(2.26)a 

(2.26)b 

(2.27)a 

(2.27)b 

(2.28)a 

(2.28)b 

In this case the first term on the right hand side of Eq.(2.20)b 

is much smaller than the second and can be dropped. After linearizing 

we get: 

dAI = ~ reI A8+\li t , t) 
dt \I, i' 

~ 

(2.29)a 

(2.29)b 
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I 

Of the three above approximations only Eqs. (2.25)a,b may possess 

bounded solutions. In Section 3 we solve these equations and show 

that In is of the order of £1/21 i· Let us define the resonance domain 

by In ~ £1/2Ii • In other words, a field line is said to fall in the 

domain of a resonant surface if it is 'separated from it by ~I smaller 

or of the order of magnitude of £1/2 Iio 

In the action angle plane, the domains of validity of the approximations 

described above are dependent on the nODl-:-linearity coefficients xi. By 

using Eqs. (2.24}b, (2.26)b and (2.28)b we determine these domains for 

various orders of magnitudes of xi. The results are given in Table I. 

The various cases are: 

Case I: Eqs. (2.25)a,b £1/21 ~ ~l « I 
i i 

Case II' : Eqs. (2.27)a,b £li ~ nI « £1/2Ii 

Case III": Eqs. (2.29)a,b o < b.l « £1 
. i 

For x. ~ £1/2 
~ 

Case II: Eqs. (2.27)a,b 

Case III' : Eqs. (2.29)a,b 

For xi « £1/2 

Case III: Eqs. (2.29)a,b 
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3. The Structure of Magnetic Islands 

For large non-linearity coefficient xi » El/2 the magnetic islands 

are shown to contain closed countours centered.at each elliptic. 

singularity. Each elliptic singularity, therefore,mark the position of 

a local magnetic axis for the island. 'The magnetic courtours of adjacent 

islands of the same primary resonance are connected through a common 

countour, referred to as local separatrix. These countours have slow 

characteristic frequencies and are preturbed by the presence of other 

resonances in the system. Resonant island countours are referred to as 

secondary resonances. The behavior of the field lines near the elliptic 

singularities is treated in Section 3.4. 

3.1. The Island Countours 

In this section we solve Eqs. (2.25)a,b. First we derive an 

averaging method that determines the contribution to a given resonance 

due to all the resonant harmonics. 

To simplify the problem we separate r into a symmetrical and an 

autisymetrical part s ':' 

(3.1) 

where 

All 
r (Ii,e,t) = 2 r(Ii,e,t) - 2 r(Ii,-e,-t) (3.2)b 

S A We expand rand r in Fourier series and rearrange terms to get: 

00 00 

rS(Ti,e,t) = 2 L L [Y!,R,(ti ) cos(me + mit) 

m=O R,=l 
(3.3)a 

+ yS n (t.) cos (me - R,nit)] 
m,-IV 1 
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00 00 

A 
= zL: L: 

m=O R.=l 

[y n(I.) sin(me + R.Q. t) 
m,~ 1 1 (3.3)b 

+ yA (I ) sin(me - R.n.t)] 
m _n 1· 1 

, ' ~ 

S 
where we have made use of the relations Ym,R. and yA n =-~ n 

m,~ -m,-~ 

and assumed that only terms that are function of t are present in the 

perturbation i.e., y 0 - O. (In fact it was indicated in Section 2.1 m, 

that all stationary terms must be included in the unperturbed system 

,representation. ) 

We let e = ~e + vit and average Eqs~ (3.3)a,b over a complete 

period of t; the only non null contributions come from secular terms 

where 

mV - R,Q = 0 
i i 

(3.4) 

In other words, VQi is rational~ Let R.i' mi be the lowest integer to 
i 

satisfy Eq. (3.4), R.. and mi depend on v./Qiand therefore characterize 
1 1 

V. R. R,. 
the resonance. Since (")1 = 21 = ....!. the rotational transform of the 

~~. 7T m. 
1 1 

resonant surface is rational. Depending on the perturbation, 

a subgroup of the exact flux surfaces are excited; we call them 

primary resonances. 
R. R.. 

To a given primary resonance of ....!. = ....!. there are contributions' 
27T m. 

1 

from all the ~esonant harmonics characterized by (m,R.)= (pmi,pR.i ) 

where p ~ 1. In the vicinity of this resonance by averaging Eqs. (2.25)a,b 

over fast oscillations we obtain: 
00 (3.5) 

[yS . (1.) cospu - yA ( T.) s'inpu] 
pmi,-pR.i 1 pmi,-pR.i ~ L: 

p=l 

= -m.a + R,iSl.t. 
1 1 
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In the appendix we evaluated the right-hand side of Eq. (3.5) and 

got: 

where ]l 

diU .£ --=-dt v. 
1. 

du = ]l~I 
dt 

dV. 
1. 

= - mi dr and 

1 JTt fv. (u) = T dt f(I i , 
1. i 0 

u 
--+v.tt) 

m. 1.' 
1. 

(3.6) a 

(3.6)b 

(3.7) 

For simplicity, the indice i will be dropped from most equations up to 

the end of Section 3.2. ~quations (3.6)a,b have the first integral: 

]l 2 £ K(l'lI,u) = -2 (l'lI) + - v(u) 
\i 

(3.8) 

where 

V(u) = - JU du' 

o 

f (u') v (3.9) 

Surfaces of constant K represent the island countour equations. 

Let us introduce a parameter a. characterizing the a-countour 
J 

in the j-island by the initial condition l'lI(u = a.) = O. In our 
J 

notatio~ by changing j we change from one island of a given resonance to 

another island of the same resonance where by changing a we change from 

one countour to another within the j-island. The island countour 

characterized by a. is given by: 
J 

~ }1/2 
l'lI ::: 0-...j¥ {~ [v(aj ) - V(u)] (3.l0)a 

for all u's satisfying the condition: 
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[V(a.) - V(u)]/ll > 0 
J 

I 

(3.10)b 

a = sgn ~I and is equal to ±l. a will change sign with the variation ou 

(as viewed from the central magnetic axis position), thus forming 

symetrical countours by reflection with respect to the I = I. unperturbed 
l. 

surface. 

It is easy' to show that llV(J.l = k7T) = 0 for k = 0,1... Therefore between 

E- =0 and ~ =21f the functio'n llV (u) has 2m. zeros. Taking l1V (u) to be 
m

i 
m

i 
l. 

fi.nite and continueous function of u, it follows that llV(u) has m. minima 
l. 

and mi maxima. Let raj }~i be the set of minima ~nd {Sj }~i be the set of 

maxima and arrange the u = 0 axis to obtain 

(3.11) 

For clarification the reader is, advised to examin Fig. 1. In order to 

obtain the maximum excursion in the action we express, as a first step, 

the action excursion expression in Fq. (3 .10)a' in terms of variables of 

the j-islanq. Let u. represent the variable u restricted to vary 
J , 

between B
j 

and Bj +l and let u
j 

= uj - <X •• 
J 

Equation (3.l0)a expressed 

in terms of uj is: 

~ICU~> ccrJe" l~[vta;> -v'Cu;>J!1/2 

where 

= -

, fcytu j 

<X. 
J 

du' f (u') v 

(3.l2)a 

( 3.l2)b 
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and a' = a - ex j j j' 

The maximum excursion in the action for the a. countour is obtained by 
J 

maximizing I~I(uj,a~)1 with respect to uj and the maximum excursion 

in the action is obtained by maximizing the result with respect to 

Let ~~ be this maximum and let Sj = Sj - exj , then 

I I 1/2 -- J,v2E: 'j V('l1f3_j~ f ' ~I = I ~I (0, S ~) I . 
M J 

Since ex. is a minimum 
V'(a ~) 

of V6u) one can easily show that ~J ~O 

a! . 
J 

(3.13) 

J V'(S j) 
and therefore 11 ~ 0, necessary condition for Eq. (3.13). Another 

V'Cs!) 
important property is that the function J does not depend on 

11 

the j-island of a given resonance and is function of the perturbation 

at the resonance, say II vts ~) I -= F i (P) • Where P symbolizes the 

dependence on the perturbation at the primary resonance. 

Let ,W
i 

define the resonance width; (Wi = Maxl~Vil). From Eq. (2.23): 

therefore: 

w. = 
1. 

dv. 
1. 

dI 

~
E:X 

i ' 
Wi = ,I' F .(P) 

mi i 1. 

3.2. The Island Contour Oscillations 

(3.14) 

(3.15) 

Consider the field line cross section that is located at t = tl in the 

j-island. At "time" t = tl + n2~ ,it will appear in the j + 1 island. 
i i 

Therefore, a given island is transformed into itself in intervals 

We therefore introduce the "new time" for the island oscillations 

21T 
of V. 

i 
defined by: 



.. 

, " 
1 ... ~f 

Since t 

"' ":.J 

T = V.t 
1. 

I 
• .11 .: ,.0 
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is "time'" we define sgn 15 t to be positive. 

(3.16) 

From Eq. (3.6) 

agn 15 "u' = cr sgn ll. If we call cr' = sgn II and introduce the variables: 
j 

where j is 

w = cr'u' 
a 

v = iU (u' = cr'w) 
a a 

understood. 

d " 1.,"1 
- w = Jl!..L 
dT a v 

Equations 

v 
a 

(3.6)a,b in terms of 

and can be derived from the hamiltonian: 

(3.l7)a 

(3.l7)b 

w and v are: a a 

(3.l8)a 

(3.l8)b 

III I " 2 e:0' ' K' (v w) = ~ v + - V(cr'w ) (3.19) 
a' a 2v a v2 a 

It is obvious from Eq. (3.l8)b that sgn QW is the same as sgn v and a a 

the island countour oscillations for the a-countour occur for w a 

variations between -a' and +a' and therefore are of the libration type. 

Here we introduce the new action angle variables ('11 ,J ) corresponding a a 

to the pair of variables (w a' v a) : 

where 

J
a 

= _1 J 
4a' 

a $' (J ,w ) 
a a 

S '(J ,w ) = f wa v dw" 
a a .a a 

(3.20)a 

(3.20)b 

(3.20)c 
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In this representation the islandcountour equations are given by: 

(3.2l)a 

(3.2l)b 

where 

(3.22) 

J a is a function of a.' and is positive except for J a (a '= 0) = 0. 

w is also a function of a' and is positive within the island, except 
a I , , 

for w (a = ~ ) = o. We therefore refer to the elliptic singularity a , 
at a = 0 as the local magnetic axis of the j-island and the island . , 
countour at a = ~ as the local separatrix. The local separatrix is 

common for all the islands of a given primary resonance. 

In the limit of small oscillation Le., a' small, the hamiltonian 

(Eq. (3.19» reduces to: 

K' (v a'w a) M 2 c 2 
= va +- w 2v 2v a (3.23)a 

where 

Ea' df (u Ct) c = --- = v du 
(3.23)b 

since Ct is a minimum of a'v(u) then a' df (u = Ct ) <0, therefore c 
du 

is positive. In the limit of small oscillations: 

c .2 K' = -- a 2v (3.24) 

J 
1T , ~ = -a 

a 4 
(3.25) 
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(3.26) 

It is important to note that the small oscillations limit is possible only 

for large non-linearities i.e., large,x , otherwise the field lines in 

the small oscillations region will be governed by Eqs. (2.27)a,b, 

treated in Section 3.4. 

Before we close this section we introduce the non-linearity 

coefficients Xa, associated with the slow frequency wa of the island 

countours: 

J 
X =~ 

a w 
a 

dw 
'a 
dJ (J = J ) 

a 
(3.27) 

In the small oscillations region X = 1 (refer to Eqs.(3.25) and (3.26». 
a 

3.3. The IslandCountour Perturbation and Secondary Resonance~ 

The oscillations examined in the previous section are subject to 

a "non-stationary perturbation" related to the presence of other 

resonances in the system. To simplify our notations we drop the 

indice a and let .dots represent derivative with respect to 'l". 

The island perturbation equations are determined by substracting 

Eq. (3.l8)a,b from Eq. (2.25)a,b, we get: 

· M w= v 
vi 

a 
m. 

1. 

The resulting action and angle perturbations are: 

(3.28)a 

(3.28)b 
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(3.29)a 

(3.29)b 

since; and; are of the order of E and EI/2 respectively, the highest 

contributions to Eqs. (3.29)a,b correspanUsto evaluating the derivatives 

el K elK eln 
Clv" elw and dw on the unperturbed island countour. 

elK elK a- and e- are; therefore, v ,w 

obtained from Eqs. (3.18)a,b and Hamilton's equations while: 

dn -= 
dw (3.30) 

elK dK dn 
If we substitute for elV ' dW and dw in Eqs. (3.29)a,b we get: 

(3.31)a 

(3.31)b 

where 

, 
r(J,n,T) = (J~(J'v.'<'a~)- cr'v.t[cr'w(J,n)]~1/2 r[I.;1"- ~_.cr'w(J,n) 

1 11m. m. 
1 1 

v:] . 
(3.32) 

For an obvious reason we have dropped all stationary terms. The 

function w(J,n) is determined from Eqs. (3.20)a,b, and for most cases 

is very difficult to determine explicitely. For libration type motion 

5 one important property of w is its periodicity in n. Taking 

this property into consideration we have shown that the function 

r(J,n,T) is a periodic function of nand 1". 



i ~ 3 lJ I '. d ,J , ) ., ') \.; L"I ~II , 
.,/ ~..,~j 

~ .. 

-23-

Equations (3.3l)a,b for J and n are similar to Eqs.(2.25)a,b for 

I and B. And, similarly, they are valid in the region defined by: 

(3.33) 

In order to explain the terms in Eq. (3.33) we need to introduce the 

concept of secondary resonances. Those are the excited island countours 

whose slow transforms are rational. Let {W
K

} represent the set of 

secondary resonances frequencies to whic~ from Eq. (3.22), correspond 

, {J
K

} for the action. ~J = J - J and ~J = ,,< (~J)2) where the average 
K 

is taking over a complete period of An = n - W L. 
K W 

K PK 
Let PK and qK be the prime integers satisfying or =q-' (~~Vini)' 

, -x K 
and let ~=~qK~n. In the domain defined by Eq. (3.33) we average Eqs. (3.3l)a,b 

with respect to Land get: 

• 1 Pr f~K(~) ~J =-W v7 
K i 

~ = MAJ 

where f~K(~) = < r'(JK; WKL - q!;L»L and M = - qK ~~ (J = JK)· 

Equations (3.34)a,b can be derived from the hamiltonian: 

(3.34)a 

(3.34)b 

(3.35) 

where surfaces of constant h represent the secondary island countours. 

The maximum excursion in the action,~JM,is equal to the maximum of 

I~JI with respect to ~ and h. The secondary resonance width given 

by: 
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.. jdW 
IliK= dJ (J (3.36) 

is equal to: 

, 
FiK{P' ) (3.37) 

where F iK (PI) depends on the perturbatio.n at the secondary resonance, 

symbolized by pl. 

3.4. Behavior of the Field Lines Near the Elliptic 
Singularities in the Limit of Large Non-Linearity Coefficients 

The objective of this section is to solve for Cases III" and 11'. 

Case III": 

If we apply the method of averaging derived in Section 3.1 to 
Vi R-i 

Eqs. {2.29)a,b in the vicinity of a given resonance, --= -- , we get: 
[2i mi 

dill e: 
-d = V fv (u.) 

t . . J 
1 1 

duo 
---2 = - e:R.. [2. gv (u.) 
dt 1 1 i J 

(3.38)a 

(3.38)b 

where fv (u.) was defined in Eq. (3. 7) and gv (u.) is defined similarly by: 
• J i J 

Near 

and 

1 . 

gv (u.) 
i J 

the elliptic singularity 

gv (u,) in terms of u ~ : 
i J J 

fv (u,) = o + 
i J 

, 
u, 

J 

u.-a, 
J ] 

I! 

= u. 
J 

df 

u. 
- -1- + V t t) 

m. . i ' 
1 

- a. is small, we expand 
J 

'Vi 
du, 

(a, ) 
J 

+ . . . 
J 

(3.39) 

fv (u.) 
i J 

{3.40)a 
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(3.40)b 

(£\)i Ca
j

) = 0 because, by definition, a
j 

are minima of V(u
j
». 

For Case III" where AI «EI~we are practically at the elliptic 

singularity and,thu~ only the zeroth order terms in Eqs. (3.40)b need 

to be considered. By substituting into Eqs(3.38)a,b we obtain: 

where 

and 

dAI dt = - EllA uj 
I 

duo 
----1. = - E]JA I 

dt 

A = 
1 

R, , 

'AI = ...inig\),(a.) 
]J :L J 

Since a
j 

is a minimum of 
V(u. ) 

J 
II 

then 

A= 

df\) 
i 

d 
(a.) 

u. J 
J 

1 = --

(3.4l)a 

(3.4l)b 

(3.42)a 

(3.42)b 

is positive or null. If g\) (a.) is equal to zero then AI = 0, in this 
i J 

case one must keep the first order term in Eq. (3.40)b, and ]JAI, this 

leads to replacing Eq. (3.4l)b by: 

du'. 
.=i = llA I - E:J.LBti • 

dt J 



where 

R.. 
B' = ...1:: Q 
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(~. ) 
J 

(3.42)c 

The solution of Eqs. (3.4l)a,b subject, to the initial value condition 

~I(u! = a!) = 0 is given by: 
J J 

where 0 is 

f
a' 

~I = ,j 

Uj 
introduced to 

u'du~ 
j J 

avoid the apparent singularity at A' = O. 

For AI = 0 0 should be replaced by 

.l! ~I - B 'u I • E: j , 

(3.43) 

thus Eq. (3.43) becomes an integral equation of the type discussed in 

Case II' below. For A' ~ 0 

,2 ,2 
a. - u. 

J J 
2 

which represent a parabolic branch in the action angle plane. 

In terms of an initial "time", t , the initial conditions are: 
o 

u' (t=t ) = a' 
j 0 j 

~I(t=t )/= 0 
o 

For AI ~ 0 the solution of Eqs. (3.4l)a,b subject to the conditions 

in Eq. (3.45)a,b are: 

u' . (t) a' .,.. E:llA'(t-t ) 
J j 0 

(t _ t.) 2 
~I' (t) = a' (t - t ) - EllA' 0 

j 0 2 

(3.44) 

(3.45)a 

(3.45)b 

(3.46)a 

(3.46)b 
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in the limit of large t the quantities luj I and 16.1' I become large, 

and the field lines will escape from the domain of case 111" to the domain 

of case II'. 

Case II': 

Equations (2.27)a,b averaged over fast oscillations in the domain 
V R-

i i 
of the resonance I2 = - are: 

i mi 

dill E 
dt = V fv (u.) (3.47)a 

i i J 

du 
.=i = ).lb.I - ER-inig" (u . ) 

dt Vi J 
(3.47)b 

In the domain of II'we keep the zero and first order terms in the 

expansions (Eq. (3.40)a,b). By substituting into Eqs. (3.45)a,b we 

obtain 

d6I' , . dt = - E).1Au
j 

(3.48)a 

du' =:a = ).1"'1' E).lB- 'U! 
J 

(3.48)b 

where "'1'= "'I - ~A' and A, A' and B'are given from Eq. (3.42)a,b,c. 

By considering exponential solutions for the system of Eqs. (3.48)a,b 

of the form ~Xp(At), we obtain the characteristic equation: 

(3.49) 

Since E is small and positive and A ~ 0 then: 

(3.50) 
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and therefore 

q:IB' 
A. = -2- ± iA

I 

where 

From Eqs. (3.51)a,b the solutions of Eqs. (3.48)a,b, subject to the 

initial conditions in Eqs. (3.45)a,b are easily obtained: 

-E:llAa! 
ill' (t) _...---..o.J e 

A.I 

-E:llB' 
2 t 

sinA. t 
I 

(3.51)a 

(3.51)b 

{3.52)a 

(3.52)b 

ForllB' > 0, Eqs. (3.52)a,b give evolution of the field lines from 

the domain of II' to the domain of III"; if A' = 0 this evolution 

continues to zero e.g., to the position of the elliptic singularity. 

If A '. is different from zero we have shown above that there is also 

evolution of the field lines from the domain of III" to the domain of 

11'-. The combined effect, therefore, confines the field lines of the 

perturbed system to the domain of III" and II', but also destroys the 

structure of the surfaces in these domains, thus producing regions of 

localized stochasticity. 

For llB'< 0 there is evolution from the domain of II' to the domain 

of I. The field lines located in the immediate neighborhoods of the 

elliptic singuiarities in the unperturbed system are quickly drawn out 

of these neighborhoods when the perturbation is turned on. In the 

perturbed system these regions are,therefore,forbidden to the field lines. 
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In the domain of I, magnetic contours ~re closed and,therefore, the 

.. limiting contours of the regions described above are closed. Their 

sizes are function of the perturbation and the primary resonance 

parameters; from Section 2.3 they are expected to increase for smaller 

non-linearity. Numerical verifications of the existence of these 

regions are found in the literature. We mention the numerical 

~. 6 
calculations of M. Henon and C. Heiles. 
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4. Behavior of the Field Lines in the Limit of 
Small Non~Linearity Coefficients 

There are three cases to be considered (refer to Table I): 

1/2 1/2 For x ~. 8 case III' and II, and for x« 8 case III. 

The 

namely 

field line perturbation equations in the domain of case III', 

1/2 ' o < ~I «E I., are given by Eqs. (3.38)a,b. A solution 
]. 

of these equations in this domain can be obtained by expanding 

fV (u.) and g" (u.) in term of u!. The method is similar to that 
i J Vi J J 

employed in Section 3.4 for case III" except this time the first order 

term in Eq. (3.40)b is kept, thus adding a perturbation to the 

parabolic trajectories described by Eq. (3.44). Similarly to 

the behavior described in Section 3.4, there is evolution of the 

field lines from the domain of III' to the domain of II, or to 

zero, depending on the perturbation. 

The domain of case II is given by: 8
l

/ 2Ii ~ ~I « Ii' and the 

field line perturbation equations in this domain are given by 

Eqs. (3 .• 47)a,b. In the domain of II, the expansions described 

in Eqs. (3.40)a,b are not valid and, therefor~ it is difficult to 

obtain an analytical solution of Eqs. (3.47)a,b in this domain. 

'However, it can be safely stated that there will be no stable 

behavior of the field lines in this domain due to the noncanonica1 

nature of the perturbation. 

For x ~ 81/2 the domains of III' and II cover all of the resonance 

domain. Therefore, the field lines may escape the resonance domain 

to regions of fast changing perturbation outside that domain causing 

instabilities. 



.l J o 

-31-

1/2 For x« e the behavior of the field lines, in all of the 

resonance domain, is described by Eq. (3.38)a,b. Again, due to the 

noncanonical nature of the perturbation, the behavior of the field 

lines is unstable and may lead to evolution from the resonance domain 

to regions of fast changing"pert~rbati9n outside that domain, causing 

instabilities. 
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5. Destruction of the Magnetic Surfaces 
by the Overlapping. Of Resonances 

It is well confirmed that a strong instability with random-like 

behavior occurs when resonances overlap. 1 

The overlapping of two neighboring resonances will occur if 

their separation is smaller or equal to the sum of their 

widths. There is at least one overlapping of resonances below a given 

frequency V. if the sum of the widths of all resonances with frequencies 
1. 

smaller or equal to Vi is greater or equal to Vi. We take this as a 

definition for partial sotchasticity below Vi' it is equivalent to: 

V.~ """W. 
1. L-J J 

v.~v. 
J 1. 

Although the frequencies of all the 

to Vi their number is infinite. We 

resonances below Vi 
. 00 

let {j}. represent 
1. 

(5.1) 

range from zero 

the set . of 

resonances below V. ordered in such a way that V.~. ~ Vi and Voo = O. 
1. J~ 

Equation (5.1) is therefore the same as: 

V ~ 
.i 

00 

where Wj is the width of the j-resonance. 

(5.2) 

The limit of total stochasticity bemow Vi is obtained if all the 

resonances of frequencies smaller or equal to Vi satisfies the criteriom 

of partial stochasticity. Equation (5.2) should give an underestimate 

of the critical perturba,tion for v., an overestimate is obtained from 
1. 

the limit of total stochasticitybelow Vi. The critical limit is 

somewhere in between. We introduce C ~ 1 to be a positive constant 
i 

.. 
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. " 
,,,) / 

characteristic of the resonance Vi such that 

V. 
~ 

<Xl 

(5.3) 

defines the critical perturbation for the i-resonance. (C
i 

is constant 

in the sense that it is not explicitely dependent on the resonance 

parameters; however, Ci varies from one resonance to the other and is 

dependent on the system.) 

The widths of paimary resonances are given by Eq. (3.15), if &i 

is the critical perturbation for the i-resonance, from Eq. (5.3) we get: 

C G £ 1/2 = (~)1/2 
iii 2x. 

~ 

(5.4) 

where, 

1 <Xl (X~ 1 1)1/2 
G. = - L: -oL - - F. (P) 
~ Vi xi 1. m. J j=i J J 

(5.5) 

Fj (P) having the dimension of (mjIj)1/2 V
j

' we arranged Eq. (5.5) so that 

G
i 

is dimensionless. Gi is like a structure factor characterizing the 

perturbed system below v .• 
~ 

Let us call external overlapping the overlapping of primary 

resonances and internal overlapping the overlapping of secondary 

resonances, Eq. (5.4) thus describes the critical perturbation by 

external overlapping. In Section 3.4 we have shown that zones of 

unstable behavior covers the immediate domains of the elliptic singularities. 

The limit of each of these zones is a closed contour situated in 'the domain 

of Case I. Let W represent the frequency of the secondary resonance 
s 
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closest to this limiting contour. Thus, the total destruction of the 

V.-resonance by internal overlapping is obtained by the critical 
~ 

perturbation below the W -secondary-resonance. Let £ represent the 
s s 

critical perturbation by internal overlapping, from Eqs. (3.37) and 

(5.3) we get: 

(

V61 )1/4 ( 112 
C'G,£3/4 = i i __ 1_) 

s s s 2m
i
x. 2X 
~ s 

(5.6) 

where C'(~ 1 and positiv~ is defined, si~ilarly to C., for the secondary 
s ~ 

resonances, and 

1 00 (~ 
G' "" s=w L..J X 

S K=s s 

1/2 L) F~ (PI) • 
qK~K 

(5.7) 

Our definition of G' for the secondary resonances (Eq. (5.7» is similar s 

to that of Gi for the primary resonances (Eq. (5.5». G'. is also like a s 

structure factor characterizing the secondary system below w . . s 

For large x. we can assume the W -resonance to be in the small 
~ s 

oscillations region, treated at the end of Section 3.2. From Eqs. (3.25) 

and (3.26). 

x = 1 . 
s 

(5.8) 

From Eqs. (5.8) and (5.6) the limit of internal stochasticity for the 

V.-resonance is obtained: 

~ ( V
6

1 )1/4 
C'G,£3/4 = _.-i....i 

s s s 8m
i
x

i 
(5.9) 

Equation. (5.4) for the external stochasticity and Eq. (5.9) for 

the internal stochasticity give the dependence of the. critical perturbations 

by these two processes on the primary resonance parameters. For a given 
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resonance, the physical critical perturbation is the smallest of the two 

above mentioned critical perturbations. From the present analysis it is 

possible, in an experimental situation, to determine the primary 

resonance width~ explicitly. The values of the critical perturbations, 

by external overlapping, are,therefor~ obtained by directly checking 

the overlapping of neighboring primary resonances. However, the 

secondary resonance widths are difficult to determine explicitly from 

the ~resent analysis. 

Secondary resonances are related to the presence of more than one 

primary resonance in the system. For systems where many primary 

resonances are possible it i~ therefor~ logical to assume that the 

secondary systems are similar to the primary system.7 This leads us 

to assume that 

= eC'G' 
s s 

(5.10) 

where e is a constant. If we take the ratio of Eqs. (5.9) and (5.4) 

and use Eq. (5.10) we get: 

(5.11) 

Equation (5.11) relates the internal critical perturbation to the 

external critical pertrubation • Thus, from the values of E1 and the 

primary resonance parameters, the values of E are determined. 
s 

For the stellerator~ where stochasticity occurred near the 

separatrix for values smaller than the external stochasticity limit Ei' 

Eq. (5.11) shows that this had occurred by internal overlapping. 
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In general, formula (5.11) asserts that independently of how small is 

the perturbation~ the magnetic surfaces are always destroyed at the 

separatrix. 

.* For the levitron we calculated Ei by directly checking the. over-

lapping of neighboring primary resonances and determined E from s 

Eq. (5.11), where we have taken e ~ l.and ni = 1. The results are 

4 
tabulated in Table II. (For the levitron E is a tilt angle; in Table I 

it is given in degrees.) We conclude that for V ~ 2 the destruction is 
i 

caused by internal overlapping. In Table II quantities in parenthesis 

are the theoretical limits for destruction. E are the nu~erically 
c 

8 
measured tilts for which the resonances are completely destroyed. 

There is a very good agreement between theoretical and numerical values 

of the critical perturbations. In Fig. 2, we show a typical example of 

destruction by internal overlapping in levitrons; the secondary magnetic 

islands and contours appear in part C. 

Before we close this section we would like to connnent on Eq. (5.10) 

which says that C.G. is proportional to C'G'. It can be argued 
~ ~ s s 

that the limiting secondary resonance parameters are functions 

of the primary resonance parameters and the perturbation at the primary 

resonance. On the other hand, the sunnnation in Eq. (5.5) over the indice 

* The basic features of an average minimum B levitron, are represented 
by a simplified model which consists of a single filamentary conducting 
circular loop located at the center of the torus, a straight filamentary 
conductor along the vertical axis and a uniform vertical magnetic field. 
The location of the separatrix surface is determined by the ratio of the 
uniform vertical field to the loop field. The distance from-the loop to the 
separatrix approximates the minor radius of the torus and thus determines 
the system's aspect ratio. 
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j transforms the dependence of F
j 

on the perturbation at ~j into 'a 

dependence of G. on the primary system below ~i' Similarly G' is 
, 1 S 

dependent on the secondary system belpw w. We have argued before that for s 

systems with many resonances the secondary systems are similar to the 

primary system. Thus,there is an appro:ximate similarity between the 

primary system below ~i and the secondary system below ws' This 

similarity and the ,dependence of G. and G' on the primary resonance 
1 s 

parameters only, suggest that Gi and G~ can be related. Although this 

does not prove the proportionality of CiG
i 

and C~G~ it does give a strong 

support in favor of it. The proportionality constant, e, is in general 

dependent on the system; from Table II, taking e equal to one seems 

to be a good approximation for the levitron under consideration. 
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6. Conclusions 

It has been established that if resonances overlap, a rapid destruction 

1 
of their island structure occurs. 

1. Thus, if primary resonances overlap, a rapid destruction of their 

flux surfaces is expected. 

2. For large non-linearity (x»£1/2), the field lines are trapped 

in an effective potential well in the primary resonance domain forming 

families of closed contours at the elliptic singularities. We refer to 

the resonant island contours as secondary resonances. Another possible 

phenomenon of destruction is the overlapping of secondary resonances. 

Depending on the primary resonance parameters (and the system) destruction 

may occur by either or both phenomena. 

3. The excursion in the action for the primary magnetic island 

1/2' 3/4 increases as £ while for the secondary island it increases as £ • 

Internal overlapping proceeds almost orderly from the local separatrix 

to the elliptic singularity. Therefore, for islands that are most 

affected by internal overlapping the observed primary excursion should 

increase at a lower rate than £1/2 due to the successive disappearance 

of outer contours destroyed by secondary resonance overlapping. This 
\ 

. 4 
is in agreement with the numerical observation by Freis et al., where 

1 . 1/2 the 1 and 2 resonance widths 1ncrease as £ untilbreadup while the 

3 5· ~3/2 2' 2, 2 and 3 resonance widths increase as ~ • 

4. In the immediate neighborhoods of the elliptic singularities 

the perturbation is not canonical and leads to evolution, thus, creating 

either regions of localized stochasticity or regions that.are forbidden 

to the field lines, depending on the perturbation and the system. The 

sizes of these regions are functions of the pertrubation and the primary 
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resonance parameters. They increase for smaller non-linearity. 

5. For small non-linearity (x ~ El/2) the field lines may escape 

the resonance zone into regions of fast changing perturbation causing 

instabilities. 

6. It is known since Poincare9 that a hierarchy of resonances are 

generated in a non-linear oscillating system. In a system where terms 

of the first order in E give the highest order observable contribution, 

we found that two sets of resonances are sufficient to explain the 

formation and destruction of the magnetic surfaces. n In general, if E , 

where n is a positive integer, gives the highest order observable 

contribution then 2n sets of resonanl~es are sufficient. 

7. Equation (5.4) for the external stochasticity and Eq. (5.9) for 

the internal stochasticity give the dependence of the critical perturbations 

by these two processes on the primary resonance parameters'. For a given 

resonance these relations give the dependence of the critical perturbation 

on the non-linearity coefficient. 

8. From Eq. (5.11), as v. approaches zero, the region of internal 
J. 

stochasticity extends over all the x-E plane thus, independently of now 

small is E > 0, the flux surfaces are always destroyed near the separatrix. 
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Appendix 

The Averaging Met'hod 

To evaluate the right-hand side of Eq. (3.5) we consider the 

Fourier coefficients: 

J
T

i 

= 2!Ti dt 

o 

From'Eqs. (A-I) and (A-2): 

where 

Similarly 

where 

r 
-21Tm 

i 

I fO 
21Tm

i 
-21Tm 
. i 

du fe (u) cospu 
i 

A du f'J (u) sinpu 
i 

(A.I) 

cospu 

(A.3) 

(A.4) 

(A.S) 

(A.6) 
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If we substitute from Eqs. (A.3) and (A .. 5) into Eq. (3.5) we get: 

r -21Tm. 
1. 

00 

du' f~ (u') L: cospu cospu' 
i' p=l 

+ f~ (u') 
i 

00 

00 

L: sinpu sinpu' 
p=l 

In order to evaluate Eq. (A .7) we express L: cospu cospu' and 
00 p=l 
~ sinpu sinpu' in terms of delta distributions, Consider x in the 

p=l 

one dimensional real space, Rl, then: 

L: 21Tikx 
e 

k=-OO n=_OO 
O(x - n) 

where n is an integer'. If x varies only in an interval of R 1, say 

[x ,x] x < x , and if n = Ent(x
1

) ,+ 1 and n
2 

= Ent(x
2

) then: 
1 2! '~2 1 . 

+00 n2 

L: e
21Tikx 

= L <S(x - n) 
k=-OO 

It follows that: 

00 n2 

L: cos21Tkx: 1 1 L o(x - n) = --+-2 2 
k=l n=nl 

By using 

00 00 

~ cospu cospu' -- 21 '" ~ [cosp(u + u') + cosp(u - u')] 
p=l 

00 

p~ slnpu sinpu' 

p=l 
1 00 

= 2 L: [-cosp(u + u l
) + cosp(u - u ' )] 

p=l 

and noting that the interval of variation of u+u' and u-u' is 

[O,21Tm.] we get: 
1. 

(A; 7) 

(A~8) 
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f: cospu cospu' 
p=l 

1 7T 
=-2+2 

ncO 
O(u + u' - 27Tn) 

+tni 

00 

L sinpu sinpu' 
p=l 

7T 
= -

2 L 
ncO 

+ L: o(u - u' - 27Tn) 
n= '0 

O(u + u' - 27Tn) 
+tn. 

1 

+ L: 
n= 0 

O( u - u' - 27Tn) 

By using ~ (u) = f5 (-u) and fA (u) = - f~ (-u) after substituting 
\Ii ,\Ii \Ii vi 

Eq. (A-9)aand Eq. (A-9)b into Eq. (A-7) we get: 

where 

d.6.l 2£ 2 
--=-

dt \Ii 4mi 

m. 
1 

L 
ncO, 

f\l (u - 27Tn) 
i 

S A 
f (x) = f" (x) + f \I (x) 

\Ii . vi i 

From the definition of fs,A(u) and the periodicity of r(I,8,t) 
\Ii 

with respect to 8 and t it is straightforward to show that: 

f\l (u) = f\l (u±27Tn) ; ri = 0,1,2, 
i i 

By substituting Eq. (A-12) into Eq. (A-lO) we get: 

(A .9)a 

(A.9)b 

(A.lO) 

(A. 11) 

(A.12) 

(A.13) 

Equation (A-13) can also be derived directly by averaging Eq. (2.20)a 

over fast oscillating terms in t. This shows the equivalence of the 

present analysis and the averaging technique often used in the literature. 

,,. 
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Figure and Table CaEtions 

Fig. 1. Structure of thee i = 1::) _ 
Q. 4 

primary resonance in the action angle 
l. 

plane. The various angles shown are defined in the text. 

Fig. 2. (a) A closed primary contour of the TI resonance atl+r cos~~ 0.51 

and part of the 2TI primary resonance at l+r cos~ ~ 0.61. (b) The 

perturbation is doubled and the contour is heavily distor.ted. 

(c) The perturbation is doubled again, the contour is completely 

destroyed and secondary magnetic islams and contours appear. 

This is a typical example of destruction by internal overlapping. 

The 2TI primary resonance islan~ after reaching its maximum flux 

in part (c) is seen partially destroyed in part (d). This figure 

is taken from Ref. 3. 

Table I. There are three approximations to the field line equations: 

(i) ~ type I, (ii) ~ type II, and (iii) ~ type III. For 

x « E1/2, (iii) alone is in the resonance domain, for x ..... El/2 

(iii) and (ii) are in the resonance domain, and for x» El/2 

(iii), (ii) and (i) share the resonance domain. Only (i) may 

possess stable solutions, thus stable magnetic contours are 

obtained if x » El/2. 

Table II. For the levitron, E is a tilt angle. The theoretical tilts 

for which the resonances are completely destroyed are equal 

to the smallest of Ei and Es. Ei and Es are the limits of 

external and internal stochasticities,respectively. (*The 

3 and 5/2 resonances overlap and are simultaneously destroyed.) 

EC are the numerically measured critical tilts. Vi/Qi are the 

rotational transforms, Xi the nonlinearity coefficients, and Ii 

the primary actions. 
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Surface I = 11/4 tV = 1/4 fl' 

Local separatrix 

u=o 

XBL 7310-1948 

. Fig. 1 
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1/ . . X' L r·· L EL Es Ec 

3 1.256 0.036 (2.75) 5.02 2.50 

5/2 1.074 0.040 (2.75)* 2.72 2.50 

2 . 1.04·5 0.050 4.95 (3.46) 3.00 

3/2 1.140 0.061 1.68 (0.82) 0.70 

I ·1.300 0.084 0.54 (0.27) 0.30 

1/2 2.200 0.120 0.54 (0.067) 0.15 

. 1./4 2.280 0.162 ~O.244 ("#0.002) <0.02 

TObIe. II 

X8L7310- 1947 
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