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ABSTRACT
The behavior of the field lines in a torus is analogous to the

motion of a non-linear oscillator. If €, small and positive, is the
perturbation parameter, we consider a toroidal system.in which terms
of higher order than € are assumed to give nonobservable contributionms.

1/

‘For large non-linearity (x >> € 2) we found that two sets of resonances
are sufficient to explain the destruction of the magnetic surfaces in
the toroldal system. Resonances that transform the unperturbed surfaces
into a structure of magnetic islands we call primary resonances, and the
secondary resonances transform the bound-state-like contoufs of a given
island into similar structures of secondary magnetic islands. To every
primary island wé attach two types of stochasticity,vexternal, due to
the overlapping of primary resonances and, internal, due.to the over-
lapping of secondary resonances. Depending on the resonance and the
system, the destruction of the magnetic surfaces occurs by either or
both processes. For small non-linearity (x < 51/2) the magnetic contours
oscillate in a highly irregular fashion and, thereforg;.overlap causing
orbital instabilities. The orbital instabilities are more pronounced

for larger fluxes but do not always destroy the flux surfaces at the

sepatrix. Independently of how small is €(>0) the flux surfaces are



always destroyed at the separatrix, if not by external, Sy iﬁternal
stochasticity. In the immediate neighborhoods of the elliptic singularities,
the field lines are orbitally stable, for all non-linearities. These
neighborhoods are small and may become observable for sméll €, |

For the levitron, we calculated the theoretical perturbationms for
which some of the primary resonances are completely &éstfoyed. These
theoretical values are given in Table I and are in good'agreement with
the numerical results. A typical example of destruction by infernal
overlépping is shown in Fig. 2; we note the appearance, in Fig. 2 part c,

of secondary magnetic islands and contours.



1. Introduction

Rosenbluth, et al,1 have shown that if resonances overlap, rapid
destruction of their island strucfufe occurs.. Filonenko, et al.
found that in the stellerator, destruction of the magnetic surfaces near
the separatfix occurs before the overiapping of primary resonances., It
is shown here that in a pértrubed torus the magnetié Surfaces at the
separatrix are always destroyed, if not by egternal, by internal overlapping.
Ve pfesentva general study of formation and destruétion of magnetic
surfaces in toroidal systems. If r, ¢ and z are the tofoidal coordinates,
. the role of time is played by the z—coordinate‘whilebéhé magnetic iélands
are ;bServed in the toroidal cross section perpendicular to the z-axis.
The magnetic field is taken as the sum of a "stationéry" field,
(stationary in the sense that it is not a function of z), and a émall
non-stationaryvperturbation. The unperturbed system is defined to
include all stationary contributions. The behavior of the field lines
in the pgrturbed system is shown to follow non-linear oscillating equations
where the rotational transform plays the role of frequency.
bIn Section 2, the linearized equations in varibus regions of the primary
magnetic island are derived. For various order of ﬁagnitude of the

non-linearity coefficients various cases were obtained.

In Section 3 we study the structure of the maghetic islénds in the limit
of large non-linearity. The magnetic islands are shown to contain
closed contqﬁfs centered at each elliptic singularity. Each elliptic
singularity, therefore, mark the position of a local magnetic axis for

the island. The magnetic contours of adjacent islands of the same



primary resonance are connected through a common contour referred to as

a local separatrix. These contours have slow characteristic frequencies and

interact with the non-stationary part of thevpertrubation. The
resonant islénd'contours are referred-to as secondaryfresonances. The
behavior of the field lines near the elliptic siﬁguiarities is treaﬁed
in Séction 3;4.'

In Section 4 the behévior of the field line in the limit of small

non-linearity is. examined.

In Section 5 we evaluate the critical perturbations for the
déstructions of the magnetic surfaces.

We have published3»a résumé of this work at its early stage? All
conclusions drawn in that fésumé are also drawn here. However, the
critical perturbations, carefully determined in thé present analysis,
are different from the previously reported perturbatioﬁs and are in

better agreement with the numerical results.

" .
Erratum for Reference 3. :

The following equations are transformed to the correct form by the

attached transformations: Egqs. (1.3) and (1.5), (2€+€). Equation (1.6),

(281/?+(2€)1/2). Equation ( 1.7), (w>W , where Wetc.). Equation (1.8),
('(];—) N _(%) o Equation (2.5), (% > 71) Equation (2.7),
- 2 I.\1/2
/2 » —;1 x.3/4 > xtllz). Equation (2.8), (8+l;(—l> - I%/z)- Table I
75 j 3 X,/ J '

is mot affected except for €4 " 4.07, 2.72, (3.14), (0.57), (0.11),

(0.02), (50.01) for the resonances fromv = 3 to V = 1/4, respectively. The

conclusions remain unaltered.



2. The Field Line Equations

We consider the magnetic field in the toroidal system of coordinates

r, ¢, z:

© B(r,0,2) = B°(r,9) + € BHr,0,2) | (2.1)

> .
where Bo(r,¢) represent the unperturbed field and is "stationary" in
the sense that it is not a function of z, €20 is a small parameter and
21 , . : , ) ,
B (r,$,z) is a non-stationary perturbation field that is periodic with

respect to z. The field line equations areé
’ (2.2)

where Br’ B, and BZ are the field components in the toroidal system

¢

expressed as functions of r, ¢ and z.

2.1. The Unperturbed System

We define the unperturbed system to include all stationary terms.

*
In Eq. (2.1) we let € = 0 and define t "time" Dby:

. v 2.3)

o je
N ON

dt

We write the unperturbed field line equations from Eq. (2.2) in the

following form:

r2
&—E o ’ '
—s = r B (2.4)a
- dt r
o .
dt r . : .

Using the divergehce theorem v - 2° = 0 and Egqs. (2.4)a,b we derived

the first integral:

*"Time" is a convenient coordinate, t, that plays the role of time in the
analogy with Hamilton's equations. The systems treated here are time
independent. The time dependence is easily introduced by letting € be a
flunction of time.



C,.2 r B
T o '
H(—z— ,¢) =f By(x',0) dr' (2.5)
where: rz
d___
_ 9H
It = _3¢ (2.6)a
dé _ oH
e~ 2 ° (2.6)b
)
. The unperturbed magnetic surfaces are represented by surfaces of
* o ' -
constant H. Equations (2.6)a,b are similar to Hamilton's equations

2
where H is the hamiltonian, %—-and ¢ are the canonical variables and

t plays the rqle of time.

We normalize the major radius of the torus to one and conveniently
let BZ(O,¢) =1, Bf varying z from zero to 27m the field line does
not necessarily return to its original.position after having gone
around the torus. The problem we are concerned WithIiS a perturbation
around a situation in which exact flux surfaces exist. We introduce
the action and angle variables (I,0) corresponding to the canonical

) A
variables (%—,¢):

| 1 r2 . '

I=1I(H) = P 7 dé ‘ (2.7)a

0(p,1) = 251 - @.7)b
where

T, B o

5(9,1) = | + 4o o (2.7)c
.and the frequency:

v=vm =8 . . (2.8)

*The present study does not assume vacuum field.
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We have chosen the definition for the flux in Eq. (2.7)a in order to
give 27T changes for O every time ¢ changes by 2m. 1In the action angle
representation the field line equation of 'the unperturbed system are:

]

dI _ | '

Frale 0 (2.9)a |
4o ‘ ‘ :

T oY) . (2.9)b

R : . . .
The rotational transform o measured in number of field line
rotations about the toroidal axis per rotation about the major axis of

‘the torus is defined by:

R__%¢ | (2.10)

 §Ei= Oz
The rotationél transform is null at the separatrix, in the
interval of interest, between the central magnetic
axis and the éeparatrix, we consider R/27 to be positi&e,vthis can always
be achieved by prpperly orienting the toroidal coordinates with respect
to the field lines. (Although we assumed the rotationai transform to
be positive, for convenience, the problem with negative transform can
be treated in a similar fashion.) Let T be the change in the variable t,
averaged with respect to ¢ and corresponding to a variation in z equal
to 2m. From Eq; (2.3) we get:

T = 2m(l- <53§> ) (2.11)a

¢

where
: 2
1 v

(8B = 5w do[B) (r,9) - B (0,0)] (2.11)b
0 .



Near the central magnetic axis (GB:)¢ is small and T is approximately
equal to 2m.

In ‘accordance with Eq. (2.9)b:

de _ 86 8¢ dz

VT T8 8§z dt
since 6¢ = 2m when 86 = 27 changes and %%-= g%-we get:
R R o) AI
V= — 0= —
T o7 1+« GBZ )¢>) (2.12)a
where higher order terms in (GB:)¢ are neglected and
Q=21 | (2.12)b

T
The meéning 6f.$2becomes clear from dz = Qdt. Equation (2.12)a relate
the frequency Vv to the rotational transform R/2m. These two quaﬁtities
are approximately equal in the immediate neighorhood of the central
magnetic axis.. In Ref. 3 we approximated the problem by letting 2

equal to 1. In the present paper, we do not make this approximation.

2.2. The Perturbed System

In this section we determine how Egs. (2.9)a,b are affected by

o 1 o 1
dr _ dr edr and g%_= d¢ + €do

the perturbation. We let —— = — + T It and

dt dt dt
linearize Eq. (2.2) to obtain:

oO.

dr®

It = Br : A (2.13)a
o BO
- _ ¢
Tl (2.13)b
and
. | o -
dr” _ gl _Br gl (2.14)a

dt ' ’r o z
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1 B
do” 1 fpl 79 g1
t r<B¢ ) Bz) (2.14)b
Z

The perturbations in the action and angle variablesvdue to perturbing

d¢

—h-and at

dt

(or equivalently the magnetic field) are giﬁen by:

‘ar_arfomPar , ufas
T [a r) at T3¢ dt] (2.15)a
dé _ 68 )" d¢
dt 6¢) dt (2.15)b
Using Eqs. (2.6)a,b we get:
o 1 o 1
dl _ _er|dr” d¢— d¢  dr ] 2
e ~ [.dt dt - dt drd T O (2.16)a
de = \)[l + € d¢1 / <d¢°\]+ O(E ) (2.16)b
dt dt dt .
By substituting Eqs. (2.13)a,b and Eqs. (2.14)a,b into Egs. (2.16)a,b
we get:
dI | € rz 2
TRV (7 ’4”2) +0(e) (2.17)a
- . » 2
gf [1 +e 'rr( ,$,2 )] + o(e?) (2.17)b

where r, ¢ and z are the

coordinates of the unperturbed system and

r2 ) ‘o 1 1l o
Y(TZ ,0,2] = B¢ Br - B¢ Br (2.18)a
. ( 2 Bi B1
wli- ,¢,z) =22 (2.18)b
2 o o
\ B B
¢ z

From Eqs. (2.3), (2.5) and (2.

of I, 0 and t on one hand and

other.

7)a,b,c z can be obtained as a function

r and ¢ as functions of I and 9 on the

We introduce the functions: \
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2 '
[(I,8,t) Y[% (1,8) 5 $(1,0) ; z(I',e,w] | (2.19)a

n(,e,t)

2 : ‘
n[z-z— (1,0) 5 ¢(1,0) ; Z(I,e,t)]_. | (2.19)b
and write Eqé,-(2.17)a,b in the consistent form:

oH

a1 _ & 2y | _e 1 2 (2.20)a
dc - v r(I,Q,t) + 0(E®) = -¢ =5+ 0(€°) |

oH -
g%-= V + eV I(1,0,t) + 0(e%) = v + ¢ 531-+ o?y (2.20)b

where the second equalities are implied by the flux conservation theorem;
€H1 being the perturbation of the hamiltonian. Equatibns of the form of
Eqs. (2.20)a,b were derived for the straight stellerator field2 and
for the 1evitrdn.4

For an exact flux surface of a rotational transform equal to R/2nm
the field lines are conserved under the transformation: ¢ > ¢ + 2T
z +z +-%1 2w, This corresponds to a change in © equal to 27 and a
change in t equal to g%-. We conclude that the functions I'(I,6,t) and

n(1,8,t) are periodic with respect to 6 of period 27 and with respect

to t of period g%-.

2.3. The Linearized Equations .

Let'fvi} represent the set of resonant frequenciés. ~From Eq. (2.8)

vi =.v(I'= Ii

action. From Eq. (2.7)a,{Ii} are the unperturbed fluxes and are

). To {vi}corresponds a set of values,'{ii}, for the

. Vi
characterized by the transfomms %-1? {Ri} = %:,-T-{Q—l}

In the domain of a given resonance (|AI| << Ii)’ we let
I=1I,+AT

i (2.21)

and Taylor expand v(I):
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' "dvi
\)(I)=\)i+‘—d-]-:- AT + . . .
AV
R
where —+ = i1 a Ii)'
Let Xy define the non-linearity coefficients:
L, e, :
x5 = Gzn il (2.22)

and substitute in the Taylor expansion keeping only the first two terms

to get.

Av
Jdv

AT

I (2.23)

where Av = v - vy

Let AV = V¢ (A\))2 ) and AT = V< (AI)2 ) where the average is taken
over a complete period of the slow variable A8 = 6 - v, t and consider the

two following épproximations:

1:
e , (2.28)a
LY .
i .
: ' . eIi
From Eq. (2.23) this condition is equivalent to AL >> —Ef-and since
%[- <<1 then:
i
E.I1 . .
—= << AT <<1I, : (2.24)b
X, i

defines the domain of case (i).
In this domain the second term on the right-hand side of Eq. (2.20)b
is much smaller than the first and can be dropped out. Furthermore we

linearize Eqs. (2.20)a,b to obtain:
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dAT ;'_EE ' o T :
el 3 F(IifAe + vit,t) | S (2.25)a
dv )
dAG _ i T - o
e S ar Mo - (2.25)b

These are the magnetic island equations.

(i1):
Mg, . o (2.26)a
which is equivalent to:
€L,
TS 4

Xy : (2.26)b

the linearized equations are:

dAT _ ¢ ' ' .
—EEi- 3; F(Ii,Ae + Vit,t) 7 (2.27)a
. . dv .
dA6 _ i
) at =37 AT + evi H(Ii,Ae + vit,t) | » (2.27)b

In the action angle plane, the domains of validity of the approximations
described above are dependent on the nom-linearity coefficients xi; By
using Eqs. (2.24)b and (2.26)b we determine these domains for

various orders of magnitude of-xi. The various cases are:

For x, >> 81/2
i
Case I: Eqs. (2.25)a,b - 51/211‘2 AT << I,
Cése II': Egqs. (2.27)a,b o‘<-zﬁ-<< 51/21i
For x, = 61/2 s
i .

e
- —_
Case II: . Eqs. (2.27)a,b ‘ 0 < AI << I
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In Sections 3.4 and 4 we show that, for all x, in the domain

i
1/2

0 <AI << € Ii’ the Eqs. (2.27)a,b are reduced to a form similar

to Egs. (2.25)a,b.
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3. The Structure of Maggefic Isiands

For large non-linearity coefficient X >> 51/2 thé magnetic islands
are shbwn to contain closed contours centered at each elliptic
singularity._ Each elliptic singularity, therefore, mark the position of
a local magnetic axis for the island. ' The magnetic contours of adjacent
islands of the same primary resonance are connected through a common
contour referred to as local separatrix. These contours have slow
characteristic frequencies and are preturbed by the presence of other
resonances in the system. Resonant island contours are referred to as
secondary resonances. The behavior of the field lines near the elliptic

singularities is treated in Section 3.4.

3.1. The Island Contours

In this section we solve Egs. (2.25)a,b. First we derive an
averaging method that determines the contribution to a given resonance
due to all the resonant harmonics. |

To simplify the problem we separate ' into symmetric and

antisymmetric parts

I(1.,6,t) = TS(1.,0,t) + I(1,,6,t) L (3.1)
i i i v
where
PSer. 6.y = L T(1.,6,t) + L T(L,,-0,-t) (3.2)a
i*Y 5 1 (1;,0,t) +5 11,0, | :
A =1 _1 -8 - =
r (Ii,e,t) =3 T(Ii,e,t) > F(Ii, 0,~t) f (3.2)b

S . v
We expand ' and FA in Fourier series and rearrange terms to get:

\

S S \
I"(1;,6,t) = 2 E E [Ym,z(li) cos(md + 22, t) :
2=1 -

=1 (3.3)&

+ Ym,—Q(Ii) cos(mb - Qﬂit)]




-~
3
C
{
Lot
L %%
b
an.
¢
R
P\-“

FA(I.,Q,t) =2 E : E [YA (1,) sin(mb + 20.t)
1 mL i i . .
m=1 2=1 . (3.3)b
A
+ Ym,—ﬁ (Ii) sin(m6 - Rﬂit)]

where we have made use of the symmetry of the relations Egs. (3.2)a,b
and assumed that 6n1y terms that are function of 0 and t are present in

the perturbation i.e., Ym o = 0, and Yo 25 0. (In fact it was indicated
1)

s
in Section 2.1 that all stationary terms must be included in the
unperturbed system representation; the Yo,2 terms should drop out after
the averaging indicated below.)

We let © = AD + vit and average Eqs. (3.3)a,b over a complete

period of t; the only non null contributions come from secular terms

where A

m\)i - KQi = Q (3.4)

Vi | , *
In other words, o 1s rational. Let 21, m be the lowest integers to
i . -
satisfy Eq. (3.4), Qi and m; depend on vi/Qiand therefore characterize
) V. R, X, '
the resonance. Since Ql'= E%-= El the rotational transform of the
i : i

resonant surface is rational. Depending on the perturbation,

a subgroup of the exact flux surfaces are excited; we call them

primary resonances.

R, L,
. . : ' 1 1 . . .
To a given primary resonance of T m there are contributions

from all the resonant harmonics characterized by (m,%)= (pmi,pﬁi)

where p 2 1. In the vicinity of this resonance by averaging Eq. (2.25)a

over fast oscillations we obtain:
' o o (3.5)

dAT _ 2¢ S : A .
dt B V. Z [Ypm.,—pz.(li) cospu Ypm_,—pg. (%—) Slnpu]
+ 1 1 i i
p=1
where u =.-miA6 = -mi(e,- vit) = _mie + QiQit'

*Another condition on %.,, m, is to represent a harmonic of the perturbation
whose Fourier coefficiefit his a modulus of the order of magnitude of the
maximum Fourier modulus contributing to the same resonance. ‘
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In the appendix we evaluated the right-hand side of Eq. (3.5) and

got:
dAL e '
ac ~ v, fv, @ (3-6)a
i i
from Eq. (2.25)b
du ‘
au _ I
qe = HAL | (3.6)b
dvi
where Y = - mi —Ef-and
' _1 Ty u | : '
f\)‘v(u) = T[ dt; I‘(Ii, -l—n—‘-+ \)it,t) . - (3.7)a
i B 0 i

For simplicity, the indice i will be dropped from most‘equationS'up to

the end of Section 3.2. Equations (3.6)a,b have the first integral:

K(AI,u) = 1—2‘~=(A1)2+ < V(w) - | (3.8)

where

u ' :
V(u) = —f du’ f\)(u') R (3.9)

Surfaces of constant K represent the island contour équations.

Let us introduce a parameter aj characterizing the a- contour
in the j-island By the initial condition AI(u ='aj) = 0. In our
nétations,by changing j we change from one island of a given resonance to
another island of the same resonance where by changing a we change from
one contour to another within tﬁe j-island. The islaﬁd‘contour
characterized_by aj ig given by:

2e 1/2

Al=o¢ *—-{%-[V(aj) - V(u)]}‘ » (3.10)a

A%

for all u's satisfying the condition:
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V(a) - V@1/u>0 . | | (3.10)b

0 = sgn AI and is equal to *1.
By comparing Egqs. (3.5) and (3.6)a one obtains the following

expansion for fv(u):

~ .S _ ) -
fv(u) = 2 2;;[}pm,-p2 cospu ng,"PQ 51npu] : 3.7)b
p=1 ! . .

and a similar expansion for uv(u). Thus fv(u) and uV(u) are periodic
functions of u of periods equal to 27. Assuming that UV(u) and its first
derivative are smooth functions of u, it follows that their zeros are

separated by intervals of T respectively. Therefore, on the closed interval

=0 to
i i
finite and continueous function of u, it follows that uv(u) has m, minima

BIC
Slc-‘

=27 the function MV (u) has 2mi zeros. fTaking MV (u) to be

and mi maxima.. Let {aj}Ti be the set of minima and 'Bj}Ti be the set of

maxima and arrange the u = 0 axis to obtain

o<aj<aj<3j<ocj+1<aj+l<ej+l;al;‘j . (3.11)
For clarification the reader is advised to examin Fig. 1. 1In order to
obtain the maximum excursion in the action we express, as a first step,
the action excursion expression in Eq.(3.10)a in termé‘of variables of

the j-island. Let uj represent the variable u restricted to vary

between«Bj and Bj+1

and let ug = uj - aj' Equation (3.10)a expressed

in terms of u! is:

3
R -l B 1 SEOUEROR | S V2 R |
AI(uj) =g 5 3 " [V(aj) V(uji]z -(3.12)a
where
B o tu,
Vi) = - f I3 gy £, : (3.12)b

a.
J
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and a' = a, - 0,.

3. J .
The maximum excursion in the action for the aj contour is obtained by
maximizing IAi(u!,a3)| with respect to u5 and the maximum excursion

in the action is obtained by maximizing the result with respect to ag.

_ Let AIM be this maximum and let 63 = Bj - aj’ then

1/2 .
- o qveh
A = {A . = - - . . 3.13
1y I I(O,BJ)I S —Lu (3.13)
VBN
. v V(u) V(a;)
Since o, is a mi%%mum of —— one can easily show that m =0
LACIO I v
and therefore ——il—-> 0, necessary condition for Eq. (3.13). Another
v e .
- V(B3)

important property is that the function ——ﬁl—-does not. depend on
the j-island of a given' resonance and is function ofvthé‘perturbation
at the resonance, say /TVYE;TT = Fi(P)' Where P symbolizes the
dependence on the perturbation at the primary resonance. |

Let Wi define the resonance width; (Wi = Max'Avi|). From Eq. (2.23):

d\)i
Y= ] M . 3.14)
therefore:
Zexi . v
W, = . — F,(P) (3.15)
i m,T, i :
i i Co

3.2. The Island Contour Oscillations

Consider the field line cross section that is“located at t = ty in the:

j-island. At "time" t = t1 + ﬁg%— it will appear in the j + 1 island.
ii E

m

Thereforé, a given island is transformed into itself in intervals of %— .
. i

We therefore introduce the '"new time" for the island oscillations defined by:
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T = V.t ' ’ . (3.16)

Since t is "time'" we define sgndt to be positive. From Eq. (3.6)p

sgn 6 u! = 0 sgn u. Let us call ¢' = sgn Y,and introduce the variables:
w = 0'u' (3.17)a
a
v =LA@' =ad'v) - (3.17)b

a

where j 1s understood. Equations (3.6)a,b in terms of wa.and v, become:

dva e
e = = '
e \)2 f\)(oc +0 wé) . (3.18)a
4 lul |
at Wa =5 Va (3.18)b

and can be derived from the hamiltonian:

' 4= .-I_U_I_ L 2 g ! ' . ’
K (va,wa) v Y + \)2 V(o wa) (3.19)

It is obvious from Eq. (3.18)b that sgn dwa is the same as sgn v, and

the island contour oscillationg for the a~- contour occﬁr for v

variations between -a' and +a' and, therefore,are of the libration type.
Here we intFoduce the new action angle variables (na,Ja) corresponding

to the pair of variables (wa,va):

. ! _ |
Ja = ——'— } Vadwa v (3.20)a
4a ‘
38’ (Ja,wa)
n, = "”a (3.20)b

S'(J ,w) = f v dw. (3.20)c
a a a .
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In this representation the island contour equations are given by:

dJ

a .
F— 0 7 (3.21)3

dn

a _ .
—&%- (A)a | : (3 21)b

where

w == | (3.22)

J_ is a function of a' and is positive except for Ja(a' = 0) = 0.

wa is also a function of a' and is positive within the island, except
1 ]

for wa(a = B ) = 0. We therefore refer to the elliptic singularity
] E
at a = 0 as the local magnetic axis of the j—island and the island
1 ) .
contour at a = B as the local separatrix. The local separatrix is

common for all the islands of a given primary resonance.
In the limit of small oscillation i.e., a' small, the hamiltonian

(Eq. (3.19))vreduces to:

'y = M 2 £ 2 -

K (Va’wa) v Va + 7w Ya , (3.23)a

where
df . .
eg’ \%
= - &9 _V = . _ .2

c y m (u=o0) | | (3.23)b

since ¢ is a minimum of o0'V(u) then o' EG—(u = a ) <0, therefore c

is positive. 1In the limit of small oscillatioms:

Kl

]

c )
55 a R | : : (3.24).

- .
T v ,

= — ' 3.25

I, =za T o ( )
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and

W = VIUI.C_% at B | - (3.26)

Before we close this section we introduce the non-linearity
coefficients Xa’ associated with the slow frequency Wy of the island

contours

J
x =2 |=8 G=1) | (3.27)

In the small oscillations region Xa = 1 (refer to Egqs. (3.25) and (3.26)).

.3.3. The Island Contour Perturbation and Secondary Resonances

The oscillations examined in the previbus sectién are subject to
a "non-stationary perturbation” reiated to the presence of other
. ;
resonances in the system. To simplify our notations we drop the
indice a and let dots represent derivative with respect to T.

The island perturbation equations are determined from

Eq. (3.18)a,b and Eq. (2.25)a,b, we get:

e o'w a T o+ a)

v = 5 [F(?i, i + 1T~ 2 v ) - fv.(d w + a)] (3.28)a
AV i i i i
i

v.v=-\l)£-|- v : (3.28)b
i

The resulting action and angle perturbations are:
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' ‘ ' :
c_l 'BK .a_K - X .
J = a—[v v F W Bw] . _ _ (3.29)a
.-.d_n -
n_— v _ (3.29?b

since v and w are of the order of € and 61/2 respectively, the highest

contributions to Eqs. (3.29)a,b correspomds to evaluating the derivatives

) L L
K P ' oK K
%;, g% and-%g on the unperturbed island cgn;qur. 5;-and §G-are;therefore,

obtained from Eqs. (3.18)a,b and Hamilton's equations,ﬁhilé:

wv
dn _ dn®/dt _ "4
v T awe/dtr C TH[v (3.30)
- o k" oK' dn
If we substltutg for ™ gg-agd E;—in Eqs. (3.29)a,b we get:
. '1 21U 83 ' ' :
J = a 7 P(J)nsT) . (3.31)a
. Vv : '
i
= wd + oE’?y) . (3.31)b
where
1 . _ '.;' Y —. ' ' ' 1/2 e a_- G'W(J T] -. -_‘[‘ .
ra,n,t) = 040 Vi(a) o vi[c "“’””§ I'[Ii,“f o ,———'—-lm' v .
. i i i
(3.32)

For an obvious.reason we have dropped all stationary terﬁs; "The -
function w(J,n) is determined from Eqs. (3.20)a,b, and,fqr most cases,
is very difficult to determine explicitely. For libratibn type motion“
one impo;tant‘property of w is its periodicity in n.S: Taking

this property into consideration we have shown that the function

TiJ,n,T) is a periodic function of N and T.




-23-

Equations (3.31)a,b for J and N are similar to Eqs. (2.25)a,b for
I and 6. And, similarly, they are valid in the region defined by:

EJK . ’ ) .
< << AJ << JK . - (3.33)

K
In order to explain the terms in Eq. (3.33) we need to introduce the
concept of secondary resonances. Those are the excited island contours
whose slow transforms are rational. Let {wK} represent the set of
secondary resonances frequencies to which, from Eq. (3.22), correspond

'{JK} for the action. AJ =J - JK and AJ = V((AJ)Z) where the average

is taking over a complete period of 4n = n - W T
w
Let Py -and Iy be the prime integers satisfying 5$- —K QK~v Q, )
~K q
and let €=—qKAﬂ. In the domain defined by Eq. (3.33) we average Eqs. (3.31)a,b

with respect to T and get:

: 3
[ l 2 u € ! : (

AT = — £! (&) (3.34)a

“k v/ iK e

i

’ é = MAJ : . (3.34)b

. R _ _E. - -

where fiK(E),~ (F(JK, wKT qK,T)),r and M - 9 47 dJ J=17 )

Equations (3.34)a,b can be derived from the hamiltonian:

B8 = M(AJ)Z / u 2ue” / iK(g ) ag! (3.35)

where surfaces of constant h represent the secondary 1sland contours.
The maximum excursion in the action,AJM,is equal to the maximum of
]AJI with respect to & and h, The secondary resonance width given

by:
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. _ @' - ) : ' .
AiK = 137 J JK)I AJM , ) (3.36)
is equal to:
2em x, \*/* _stKl/z o |
A.'vl( = ._75L4£ a.J. F-K(P') - (3.37)
1 VT, gk 1

where Fik(?)'depends on the perturbation at the secondary resonance,

symbolized by P'.

3.4, Behavior of the Field Lines Near the Elliptic Singularities

If we apply the method of averaging derived in Section 3.1 to

Y 2
Eqs. (2.27)a,b in the domain of the resonance o T noo Ve obtain:
1 .
db1 > ' '
—d—E =V, f\).(uj) (3.38)a
i i :

du, :
—d = - €
T UAT liﬂigvi(uj) (3.38)b

where fv (uj} was defined in Eq. (3.7)a and 8y (uj)_is defined by:

i i
1 Ti . u B
gy (up) = 3= [ T am,- devien (3.39)
. ] T i m i
i i . i
0
. . . : . [ < 1/2
Near the elliptic singularies uj = uj - aj ~ 0(e ). We expand fv (uj)
i

and g, (u.) in term of u!:
\Y)
i J J

u! , , -
£, (u) = 0+ 37 L)+ —% @y+. .. (3.40)a
i J * j J du J
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2
u!2 d gvi .
gvi(uj) = gvi(aj) +0 + “%T 2 @)+ ... (3.40)b
3

fv (aj) is null because, by definition, the {aj} are the minima of

i
UV(uj); and from Eqs. (2.20)a,b:

dg
Vv
fay=-+2— L ¢ @)=o0 , (3.41)
du, " j £.0.v dl v, 3 *
j i i 3

11

By substituting from Egs. (3.40)a,b into Eqs. (3.38)a,b we obtain:

do1' . 2
rrelie €MAU i + 0(e™) ‘ (3.42)a
du!. 2 .
'E%'= HAT' + O(E”) ' (3.42)1,
where AI' = AI - €A',
. Qi
[
A " Qigv,(aj) (3.43)
i
and
df
\Y) 2 :
-1 i = 1 d"v
= e —— (O = e— —— = .
A= @, &) S, 2P0 (3.44)
i k| i du,
J
We solved Eqs. (3.42)a,b for the initial value conditidn‘AI'(uS = a}) =0
and got:
ar'? u}®
: 5 + = (3.45)
€Aa! 12 '
J J

which is the equation of an ellipse. However, the contours will not
always look like ellipses due to the curvilinear nature of the coordinates

AI' and u!
B
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4. Behavior of the Field Lines in the Limit.of
Small Non-Linearity Coefficients

The field line equations in the limit of small non-linearity
coefficients are given by Egs. (3.38)a,b. However, there are various
limits in which Eq. (3.38)a,b can be approximated by Egqs. (3.6)a,b,

treated in Section 3. For example, near the elliptic.singularity,

: T

a& = 0(81/2) and from Eq. (3.45) é%—-= 0(€). Thus, within the limit of

our approximation (i.e., to 0(82)), the non-linearity coefficients must
1/2

satisfy € << x ¥ € , and, therefore, from Eq. (3;40)b; using Eq. (3.41),

one can show that
AT’ o
X /2

i _ - -1
T, /Elgvi(uj) : gvi(aj)l 0(e )

and, therefore, Eq. (3.38)a,b reduce to Egs. (3.42)a,5, studied in

( .
Section 3.4.

/ /

If we let aj increase from aj = O(El 2) to a52= O(El 2) and
substitute from Eqs. (3.40)a,b into Eqs. (3.38)a,b, using Eq. (3.40),

we get:

'
_Ti.t——= -5 'fivj +§—\-)—.-fivj + 0(e™) (4.1)a
: i i
dv X ’
—1 - Aap 4 B2 2
1 ziszi[li A’ + 5 gl + 0(eh)| (4.1)b

where AI' = AI - €A' and A' is given by Eq. (3.43), vﬁ =.0'u5 and d'

is the signature of y,

:__l______i > .
£, 20 5 @p o, .. (4.2)
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2
. d f\)i
£, = (ocj) (4.3)
du )
and d2
" ' Bv,
g, = =0 (@.) . (4.4)
. du? J

We note here that for perturbations where the dependehce of fv (uj) on
’ 1" i

Ii’ near dj, is expressed only as positive powers of Ii,'gi is positive

or null.

/

2 1/2
For a} = 0(€ ) the second terms on the right-hand sides of

Eqs. (4.1)a,b add but a small perturbation to Eqs. (3.42)a,b, therefore,
their solution which satisfies AI'(u& = ag) = 0 will have small deviations
from the ellipse in Eq. (3.45). These deviations are equally distributed
on the inside and the outside of that ellipse in order to satisfy the

flux conservation requirement. increases, the deviations mentioned

As a!
J

above become larger and larger in magnitude (they may also change in shape

due to the addition of terms in v? etc on the right-hand side of

Egs. (4.1)a,b). These deviations from the smooth elliptic shape will

cause neighboring contours to overlap above some critical value of a;,

and, therefofe, to self destruct. We refer to this type of behavior

as orbital instability.

The condition for orbital stability is:

X,

I,
i

and is favored for

AT >> Elgv.(uj) - gv.'(aj)'
1 1

(4;5)

: (i) large Xy (ii) small Ii’ and (iii) small €.

The second condition, (ii), implies that the magnetic island contours are
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orbitally more stable near the central magnétic axié, However, it does
not necessarily imply that the magnetic contours afe alwéys destroyed

at the separatrix. In Section 5 Qe will show that the destruction of

the flux surfaées at the separatrix is due, if not fo external,:to internal
overlapping. This implies that the internal stochastiéity differs from

the orbital instability, although the two instabilities; in many

respects have similar effects.

/2

The high stability régions at aj x O(El ) are, soﬁetime, observable
for small €, (depending on the system and the resonance parameters).

Their existence in toroidal systems of magnetic fields and, in conservative
non-linear oscillating systems is demonstrated in the.literature.4’6

They usually appear as small, but well defined contours in highly

unstable backgrounds.
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5. Destruction of the Magnetic Surfaces
by the Overlapping ef Resonances

It is well confirmed that a strong instability.with random-1like

behavior occurs when resonances overlap.1

{

The overlapping of two neighboring resonances will occur if
| :
their separation is smaller or equal to the sum of their
widths. There is at least one overlapping of resonances below a given

frequency Vv, if the sum of the widths of all resonances with frequéncies

i

smaller or equal to V, is greater or equal to V We take this as a

i i’

definition for partial sotchasticity below Vi, it is equivalent to:

\)i< E Wj' . . (5.1

Although the frequencies of all the resonances below Vi'range from zero
' . )

to Vi their number is infinite, We 1let {j}i represent the set of

resonances below Vi ordered in such a way that Vj>i < Vi'and v, = 0.

Equation (5.1) is therefore the same as:

<
v, }: W (5.2)

where W, is the width of the j-resonance.

3

The limit of total stochasticity bedow Vi is obtained if all the

resonances of frequencies smaller or equal to Vi satisfies the criteriom

of partial stochasticity. Equation (5.2) shotld give an underestimate
of the critical perturbation for Vi, an dverestimate is obtained from

the limit of-total stochasticity below V The critical limit is

1"

somewhere in between. We introduce Ci < 1 to be a positive constant
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vcharacteristic of the resonance Vi such ‘that

- ¢, ;g; v, o (5.3)
defines the critical perturbation for the i-resonance. (C1 is constant
in the semse that it is not explicitely dependent on the resonance
parameters; hqweVer, Ci varies from one resonance to the other and is
dependent on the system.)

The widths of pmimary resonances are given by Eq. (3.15), if €

is the critical perturbation for the i~resonance, from Eq. (5.3) we get:

1/2
1/2 _ (1)
€18 = (in) | (5.4)
where,
_iy ’_‘1_1__11’2
iJ i/ ‘
/

FB(P) having the dimension of (ijj)1 2 Vj, wé arranged Eq. (5.5) so that

Gi is dimensionless. Gi is like a structure factor characterizing the

perturbed system below Vi.
tet us call erternal overlapping the overlapping of primary

resonances and internal ovérlapping the overlapping of secondary

resonances, Eq. (5.4) thus describes fhe critical perturbétion by

external overlapping. Let ws represent a cutoff frequenCy which corresponds

to the lowest observable island contour. Therefore, the total descruction

of the Vi—resonance by internal overlapping is obtained by the critical

perturbation below the ws—secondary—resonanceT Let Esvrepresent.the

critical perturbation by internal overlapping, from Eqs. (3.37) and (5.3)

" we get:
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- vor (174 1/2 | |
CeSsfs = (2m,x.> (éx (5.6)
id s/,

where C;(§ 1 and positive) is defined, similarly to Ci, for the secondary

resonances, and

1/2 |
) Fi (P . | (5.7)

EIH

0|

1
J

£ 2

0
A |

Our definition of G; for the secondary resonances (Eq. (5.7)) is similar

to that of Gi for the primary resonances (Eq. (5.5)).- G; is also like a

structure factor characterizing the secondary system below ws'
The secondary resonance of frequency ws is in the small
oscillations region, treated at the end of Section 3.2. From Egqs. (3.25)

and (3.26).

X =1. v ' (5.8)

From Eqs. (5.8) and (5.6) the limit of internal stochasticity for the

Vi—resonance is obtained:

vo1 \1/4 | |
C'G|€3/4 = <__ i l> . . (5.9)

s s s 8m,x
ii

Equation (5.4) for the external stochasticity and Eq. (5.9) for
the internal stochasticity give the dependence of the critical perturbations

by these two processes on the primary resonance parameters. For a given
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resonance, the physical critical perturbatipn'is‘the smallest of the two
~ above mentioﬁed critical perturbations. Fromlfhe presént_analysis it is
possible;"in an experimental situation, to_dgfermine.fhe primary
resonance widths explicitly. The values of the critical perturbations,
by external bverlapping, ére,thereforg obtained by directly checking
the overlapping of neighboring primary resonances. However, the
secondary resonance widths are difficult to determine explici;ly from
the preseﬁtianalysis. |
Secondary'resonances are related to the presence of more than one
primary'resonance in the system. For systems where'many.primary
resonances are possible it is, therefore logical to assume that the
secondary systems are similar to the primary systém.7 This leads us

to assume that

| c,6, = eClG! | ' (5.10)

where e is a constant. If we take the ratio of Eqs;'(5,9) and (5.4)

and use Eq. (5.10) we get:

6 1/4 | B
VI x
3/4 0 N 1/2 :
ES ev< zmi ) Ei : (5.11)

Equétion (5.11) relates the internal critical perturbation to the
external critiéal pertrubation . Thus, from the values bf €i,and the
primary resonance parameters, the values of es are determined.

For fhe stelleratorg where stochasticity occurred near the

separatrix for values smaller than the external stochasticity limit Si,

Eq. (5.11) shows that this had occurred by internal overlapping.
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In general, formula (5.11) asserts that independently of how small is
the perturbaﬁion, the magnetic surfaces are always destroyed at the
separatrix.

For the levitron* we calculated.Ei by directly chécking the over-
lapping of neighboring primary resonances** and determined es from
Eq. (5.11),7hhere we have taken e = 1 and Qi = 1. The results are
tabulated in Table 1. (For the levitron € is é tilt angle;4 in Table I
it is given in degrees.) We conclude that fof Vi < 2» the destruction_is
caused by internal overlapping. In Table T quantities in parenthesis
are the theoretical limits for destruction. EC are the numerically.
measured tilts for which the resonances are completély destroyed.
There is a very good agreement between theoretical and numerical values
of the critical perturbations. 1In Fig. 2, we showva typical example of
destruction by internal overlapping in the levitron; the secondary magnetic
islands and contours appear in part c.

Before we close this éection we would like to comment on Eq. (5.10)
which says that CiGi'is proportional to CéG;. It can be argued
that the limiting secondary resonance pérameters are functions
of the primary resonance parameters and the perturbatioﬁ at the bfimafy

resonance, -On the other hand, the summation in Eq. (5.5) over the indice

*The basic features of an average minimum B levitron, are represented

by a simplified model which consists of a single filamentary conducting
circular loop located at the center of the torus, a straight filamentary
conductor along the vertical axis and a uniform vertical magnetic field.

The location of the separatrix surface is determined by the ratio of the
uniform vertical field to the loop field. The distance from the loop to the
separatrix approximates the minor radius of the torus and thus determines
the system's aspect ratio.

**The simultaneous destruction of two neighboring resonances of comparable
widths occurred when their separation was smaller or equal to the arithmetic
average of their widths. This criterion gave the best agreement with the
. numerical results, ' e . ’
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j transforms the dependence of Fj on the perturbation at Vj into a

dependence of G, on the primary system below vi' Similarly G; is

i
dependent on the secondary system below w_. We have'afgued before that for
systems with many resonances the secondary systems are similar to the
primary system. Thus, there is an approiimate similarity between the
primary system bélow Vg
similarity and the dependence of G

and the secondary system below wg . This

i and G; on the primary resonance

parameters oniy,suggest that G, and G; can be related. Although this

i

does not prove the proportionality of € Gi and C;G; it does give a strong

i

support in favor of it. The proportionality constant, e, is in general

dependent on the system; from Table I, taking e equal to one seems

to be a good approximation for the levitron under consideration.
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6. Conclusions
It has been established that if resonances oVérlap, a rapid destrucfion
of their island structure occurs. »
1. Thus, if primary résonances overlap, a rapid destruétion of their
flux surfaceé is expected.

l/2), the field lines are trapped

2. TFor large non-linearity (x>>€
in an effective poténtial well in the primary resonance domain forming
families of closed contours at the elliptic singularities. We refer to
the resonant island contours as secondary resonances. Another possible
phenomenon of destruction is the overlapping of secondary resonances.
Depehding on the primary resonance parameters (and the system) destruction
may occur Ey either or both phenomena.

3. The ekcursion in the action for the primary magnetic island

1/2 while for the secondary island it increases as 83/4.

increases as €
Internal overlapping proceeds almoét orderly from the local separatrix
to the elliptic singularity. Therefore, for islands that are most

affected by internal overlapping the observed primary excursion should

1/2

increase at a lower rate than € ‘due to the successive disappearance
of outer contours destroyed by secondary resonance overlapping. This
P : ' . . 4

is in agreement with the numerical observation by Freis et al., where

1/2

the 1 and %-resonance widths increase as € until breadup while the

| 33 2, 2 and 3 resonance widths increase as 83/2.

- 4. For small non-linearity, except in the immeaiate neighborhoods of
the elliptic singularitieé, the magnetic contours oscillate in an irregular
fashion and overlap causing orbital instabilities. Orbital instabilities

are morée pronounced for larger fluxes but do not always destroy the

flux surfaces at the separatrix.
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5. In the‘immediate neighﬁorhoods of thevelliﬁtié sipgularities
the field lines are orbitally stable for all non-linearities. These
neighborhoods, therefore, constitute small étable regions which, depending
on the resonance parameters and the system, méy become observable for
small €. The existence of these high stability regions_is demonstrated
numerically.in the literature where small but well defined contours

appear sometimes in highly unstable backgrounds.

6. It is known since Poincaré9 that a hierarchy of resonances are
generated in a non-linear oscillating system. In a system where terms-
of the first order in € give the highest order observable contribution,
we found that two sets of resonances are sufficient to-explain the
formation and destruction of the magnetic surfaces. In general, if En,
where n is a positive integer, gives the highest order observable
contribution then 2n sets of resonances are sufficient.

7. Equation (5.4) for the external stochasticity and Eq. (5.9) for
the internal stochasticity give the dependence of the critical perturbatipns
by these two prdcesées on the primary resonancé parémeters. For a given
resohance these relations give the dependence of the critical perturbation
on the non-linearity coefficient. |

8. From Eq. (5.11), as vj approaches zero, the region of internal
stochasticity extends over all the x-€ plane thus,‘indepéndently of how
small is € > O,Vthe flux surfaces are always destroyed near the separatrix.
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Appendix

The Averaging Method

' To evaluate the right-hand side of Eq. (3.5) we consider the

Fourier coefficients:

T 2n . '
> (1) = == Y d6r %(1,,6,t) cos(pm.6-p2. 0 r)
pmi,—pli i ZNTi i’ i iy
| 0 Y (A.1)
» T 2.0, t=2T
i R m, v
_1 ii i g2> S _u
= o / dt/ ( -~ r (Ii’ —~ + \)it,t) cospu
i i i . ]
0 2.Q.t
i1
where u = -m A6 = - 0,8 + £.0.t.
i i ii

Since FS(Ii,e,t) is periodic in 9 and t then: »
(A.2)

Ziﬂit 2»mi . ~2Wmi .
. u
: dul (Ii, - mTi—+ \)it,t) =/ ‘ d_ur__(I‘i’— :1—1 + \)it,t)
ILiQit : o
From’EQs. (A-1) and (A-2):
1 0
S : S '
Y _ (1)) = ./. du £2 (u). cospu (A.3)
pm, , pli i 21Tmi Vi
—27Tmi
where
S 1 (T1, s -'
u
f\).(u) = Tlf dtl (Ii,-— . + Vit,t) . (A.4)
1 1 .
0
- Similarly
o .
: A , . | A .
. , Ypm.,-pl,(Ii)— ITm f du f\)'(u) sinpu (A.5)
i i S | i
' ' ~2Tm,
: i
where
A 1 Ty rA
- L _u
f\) (u0) = T dt (Ii’ - +\)it,t) . - (A.6)

i 1l 0 i
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If we substitute from Eqs. (A,3) and (A.5) into Eq. (3.5) we get:

0 g o
du' £, (u") cospu cospu'
i p=1

dAT . 2¢ 1

dt Vv, 2Tm,
1

~2Tm,
i (A.7)

A o o -
+ fv.(u') D sinpu sinpu'
1 p=1

. o :
In order to evaluate Eq. (A.7) we express z: cospu cospu' and
o3
p=1
2: sinpu sinpu' in terms of delta distributions, Consider x in the
p=1

1
one dimensional real space, R, then:

1= Lo
Z ez'"1kx = Z 8(x - n)
k="'°° n=-xo

where n is an integer. If x varies only in an interval of Rl, say

[x ,x2], xl < x

1 , and if n1 = Ent(xl) + 1. and n

= Ent(xz) then:

2 2

k=—00

+ . o
Z .e2ﬂ1kx - Z §(x - n)
n=n1

It follows that:

0 n2'
3 cosamx = -2+3 D Sx-m) . (4.8)
=1 n=n, '
By using

oo ) 1 o0 :

2: cospu cospu' = 5 2: [cosp(u + u') + cosp(u - u')]

p=1 p=1 S

Egtsinpu sinpu' = 7 [~cosp(u + u') + cosp(u - u')]

p= o p=1 '

“and noting that the interval of variation of utu' and u-u' is

[0,2ﬂmi] we get:



m .
y_ 1.1 _
Zl cospu cospu 5 + 2 Z S(u + u’ 2_'rrn) .
P= oo o

n=0 Hmy (A .9)a
+ Z S(u = u' - 2m™)
n=
o . - = .
Z sinpu sinpu' = > Z $(u + u' - 2mn)
p=1 | n=0 my (A.9)b
+ Z S(u - u' - 2mn)
8 . - £ A _ A ' .
By using (u) = (-u) and £ (u) = - £ (-u) after substituting
» vy vy vy vy
Eq. (A-9)a and Eq. (A-9)b into Eq. (A-7) we get:
m,
. dAr _ 28 2 ,
Tt TV, Img E p w=2m)y - tA.10)
n= o ,
where
_ 5 A
£, &) = £, &) + £ (x) (A.11)
i i i
From the definition of ff’A(u) and the periodicity of I'(1,6,t)
, i . B
with respect to O and t it is straightforward to show that:
£, (W) = £, (ut2m) ; n = 0,1,2, . . . (A.12)
i i .
By substituting Eq. (A-12) into Eq. (A-10) we get:
dAI € . '
at vty @ . .13
i i

Equation (A-13) can also be derived directly by averaging Eq. (2.20)a
over fast oscillating terms in t. This shows the equivalence of the

present analyéis and the averaging technique often used in the literature.
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Figure and Table Captions
v .
Structure of the<§l = %) - primary resonance in the action angle

plane. The various angles shown are defined in the text.

(é) A closed primary contour of the T resonance at l+r cos¢= 0.51
and part of the 2T primary resonance af 1+r cos$ ¥ 0.61. (b) The
perturbation is doubled and the contour is heavily distortedL

() The perturbation is doubled again, the coﬁtour is completely
destrojed and secondary magnetic islands and contours appear.

This is a typical example of destruction by iﬁternal overlapping.
The 2T primary resonance island after ;eacﬁing its maximum flux

im part (c) is seen partially destroyed in bart (d). This figure

is taken from Ref. 3.

Table I. For the levitron, € is a tilt angle. The theoretical tilts

for which the resonances are completely destroyed are equal

to the smallest of Ei and ES. Ei and ES are the limits of
external and internal stochasticities, respectively. (*The

3 and 5/2 resonances overlap and are simuitanébusly destroyed.)
Eé are.the numerically measured critical filts. \)i/Qi are the
rotational transforms, xg the nonlinearity coefficients, and Ii

the primary actionmns , Qi ~ 1, 'In the levitron mi2= 2, except for

the 2T-resonance where m, = 1.
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bl

z’"ﬁ% xi I; £ £ Ec

6/2 | 1.256 | 0036 | (275)| 3.96 250
S5/2 | 1.074 |0.040 | (2.75)] _2.?1 '2.5_0
4/2 | 1045 vo.osc.) 4.95 | (2.74) :5!:88
3/2 | 1.140 |0.061 1.68 | (083)| 070
/1 | 1.300|0.084 | 0.54 (0.25)| 0.30
/2 | 2.200]0.120 054 |(0067) O.ls
/4 | 2.280 0.162 |~0.244 (~o.doz)<o'.oz

lToble I

XBL7310- 1947



LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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