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ABSTRACT 

The behavior of the field lines in a torus is analogous to the 

motion of a non-linear oscillator. If £, small and positive, is the 

perturbation parameter, we consider a toroidal system in which terms 

of higher order than £ are assumed to give nonobservable contributions. 

For large non-linearity (x » £1/2) we found that two sets of resonances 

are sufficient to explain the destruction of the magnetic surfaces in 

the toroidal system. Resonances that transform the unperturbed surfaces 

into a structure of magnetiC islands we call primary resonances, and the 

secondary resonances transform the bound-state-like contours of a given 

island into similar structures of secondary magnetic islands. To every 

primary island we attach two types of stochasticity, external, due to 

the overlapping of primary resonances and, internal, due to the over-

lapping of secondary resonances. Depending on the resonance and the 

system, the destruction of the magnetic surfaces occu~s by either or 

both processes. < 1/2 For small non-linearity (x - £ ) the magnetic contours 

oscillate in a highly irregular fashion and, therefore, overlap causing 

orbital instabilities. The orbital instabilities are more pronounced 

for Unger fluxes but do not always destroy the flux surfaces at the 

sepatrix. Independently of how small is £(>0) the flux surfaces are 
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always destroyed at the separatrix, if not by external, by internal 

stochasticity. In the immediate neighborhoods of the elliptic singularities, 

the field lines are orbitally stable, for all non-linearities. These 

neighborhoods are small and may become observable for small E. 

For the levitron, we calculated the theoretical perturbations for 

which some of the primary resonances are completely destroyed. These 

theoretical values are given in Table I and are in good agreement with 

the numerical results. A typical example of destruction by internal 

overlapping is shown in Fig. 2; we note the appearance, in Fig. 2 part c, 

of secondary magnetic islands and contours. 
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1. Introduction 

Rosenbluth, et al.
l 

have shown that if resonances overlap,rapid 

destruction of their island structure occurs. Filortenko, et al.
2 

found that in the stellerator, destruction of the magnetic surfaces near 

the separatrix occurs before the overlapping of primary resonances. It 

is shown here that in a pertrubed torus the magnetic surfaces at the 

separatrix are always destroyed, if not by external, by internal overlapping. 

We present a general study of formation and destruction of magnetic 

surfaces in toroidal system~. If r, ~ and z are the toroidal coordinates, 

the role of time is played by the z-coordinate while the magnetic islands 
, 

are observed in the toroidal cross section perpendicular to the z-axis. 

The magnetic field is taken as the sum of a "stationary" field, 

(stationary in the sense that it is not a function of z), and a small 

non-stationary perturbation. The unperturbed system is defined to 

include all stationary contributions. The behavior of the field lines 

in the perturbed system is shown to follow non-linear oscillating equations 

where the rotational transform plays the role of frequency. 

In Section 2, the linearized equations in various regions of the primary 

magnetic island are derived. For various order of magnitude of the 

non-linearity coefficients various cases were obtained. 

In Section 3 we study the structure of the magnetic islands in the limit 

of large non-linearity. The magnetic islands are shown to contain 

closed contours centered at each elliptic singularity. Each elliptic 

singularity, therefore, mark the position of a local magnetic axis for 

the island. The magnetic contours of adjacent islands of the same 
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primary resonance are connected through a connnon contour referred to as 

a local separatrix. These contours have slow characteristic frequencies and 

interact with the non-stationary part of the pertrubation. The 

resonant island contours are referred to as secondary resonances. The 

behavior of the field lines near the elliptic singularities is treated 

in Section 3.4. 

In Section 4 the behavior of the field line in the limit of small 

non-linearity is. examined. 

In Section 5 we evaluate the critical perturbations for the 

destructions of the magnetic surfaces. 

3 ~ ... * We have published a resume of this work at its early stage. All 

conclusions drawn in that r~sume are also dnawn here. However, the 

critical perturbations, carefully determined in the present analysis, 

are different from the previously reported perturbations and are in 

better agreement with the numerical results. 

* Erratum for Reference 3. 
The following equations are transformed to the correct form by the 
attached transformations: Eqs. (1.3) and (1.5), (2E~E). Equation (1.6), 

(2El/2~(2E)1/2). Equation ( 1. 7), (w+W , where Wetc.). Equation (1. 8), 

(~~ ~). Equation (2.5), (t~ ~. Equation (2.7), 

~ 1 -3/4 -1/2 2 (1.)1/2 1/2 
(y2 ~ -jX. ~ x

J
. ). Equation (2.8), (8~1; ;:. .~ I

j 
). Table I 

1:2 J J 
is Dot affected except for E .. = 4.07,2.72, (3.14), (0.57), (0.11), 

< JJ 
(0.02), (-0.01) for the resonances from V = 3 to V = 1/4, respectively. The 
conclusions remain unaltered. 

-, 
I 
I 

.. ; 
I 
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2. The Field Lirte Equations 

We consider the magnetic field in the toroidal system of coordinates 

r, <p, z: 

-+ :to . -+1 
B(r,<p~z) = B (r,<p) + E B (r,<p,z) (2.1) 

-+0 
where B (r,<p) represent the unperturbed field and is "stationary" in 

the sense that it is not a function of z, .~ is a small parameter and 

-+1 
B (r,<P,z) is a non-stationary perturbation field that is periodic with 

respect to z. The field line equations are: 

dr -= 
B 

r 

where Br , B<p and Bz are the field components in the toroidal system 

expressed as functions 'of r, <p and z. 

2.1. The Unperturbed System 

(2.2) 

We define the unperturbed system to include all stationary terms. 

* In Eq. (2.1) we let E = 0 and define t "time" by: 

dz dt _ (2.3) 
BO 

z 

We write the unperturbed field line equations from Eq. (2.2) in the 

following form: 
2 

d~ 
2 BO 

= r 
dt r 

(2.4)a 

d<P BO 

.:1 
dt r (2.4)b 

Using the divergence theorem V • ~ = 0 and Eqs. (2.4)a,b we derived 

the first integral: 

* "Time " is a convenient coordinate, t, that plays the role of time in the 
analogy with Hamilton's equations. The systems treated here are time 
independent. The time dependence is easily introduced by letting £ be a 
~unction of time. 



where: 
2 

d.E..-
2 

·--dt 

~-dt-

= 

dH 
2 

a.E..-
2 
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dH 
-f4) 

The unperturbed magnetic surfaces are represented by surfaces of 

* 

(2.5) 

(2.6)a 

(2.6)b 

constant H. Equations (2.6)a,b are similar to Hamilton's equations 
2 

where H is the hamiltonian, ~ and ~ are the canonical variables and 

t plays the role of time. 

We normalize the major radius of the torus to one and conveniently 

let BO(O,~) = 1. By varying z from zero to 2n the field line does 
z 

not necessarily return to its original position after having gone 

a~ound the torus. The problem we are concerned with is a perturbation 

around a situation in which exact flux surfaces exist. We introduce 

the action and angle variables (1,8) corresponding to the canonical 
2 

r 
variables (2'~): 

I = I(H) = --.!. f r2 d~ 
2n 2 

where 

J
~ 2 

S(~,I) = ~d~ 

and the frequency: 

dH 
V = v(I) = dI 

*The present study does not assume vacuum field. 

(2.7)a 

(2.7)b 

(2.7)c 

(2.8) 
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We have chosen the definition for the flux in Eq. (2.7)a in order to 

give 2~ changes for e every time ¢ changes by 2~. In the action angle 

representation the field line equation of-the unperturbed system are: 

dI 
0 -= 

dt (2.9)a 

de v -= 
dt (2.9)b 

R 
The rotational transform 2TI ' measured in number of field line 

rotations about the toroidal axis per rotation about the major axis of 

the torus is defined by: 

!L=~ 
2TI oz (2.10) 

The rotational transform is null at the separatrix,in the 

interval of interest, between the central magnetic 

axis and the separatrix, we consider R/2TI to be positive, this can always 

be achieved by properly orienting the toroidal coordinates with respect 

to the field lines. (Although we assumed the rotational transform to 

be positive, for convenience, the problem with negative transform can 

be treated in a similar fashion.) Let Tbe the change in the variable t, 

averaged with respect to ¢ and corresponding to a variation in z equal 

to 2~. From Eq. (2.3) we get: 

(2.l1)a 

where 

(2.11)b 
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Near the central magnetic axis (OB~~ is small and T is approximately 

equal to 211". 

In accordance with Eq. (2.9)b: 

de oe v =-=-
dt O</> 

~ dz 
oz dt 

since dz 211" o</> = 211" when 0 e = 211" changes and - = - we get: 
dt T 

R R 0 
V = - n= - (1 + (oB » 

211" 211" z </> 

where higher order terms in ( aBo)</> are neglected and 
z 

(2.l2)a 

n = 211" (2.l2)b 
T 

The meaning of ·n becomes clear from dz = ndt. Equation (2.l2)a relate 

the frequency V to the rotational transform R/211". These two quantities 

are approximately equal in the immediate neighorhood of the central 

magnetic axis. In Ref. 3 we approximated the problem by letting n 

equal to 1. In the present paper, we do not make this approximation. 

2.2. The Perturbed System 

In this section we determine how Eqs. (2.9)a,b are affected by 

the perturbation. 
dr dro £drl ~ d</>o £d</>l 

We let dt = ~ + ~ and dt = ~ + ~ and 

linearize Eq. (2.2) to obtain: 

and 

o 
dr = BO 
dt r 

d<!,o = B¢ 
dt r 

(2.l3)a 

(2.l3)b 

(2.l4)a 
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(2.14)b 

The perturbations in the action and angle variables due to perturbing 

~ and d~ (or equivalently the magnetic field) are given by: dt dt 

de = ~)o d~ 
dt o~ dt 

Using Eqs. (2.6)a,b we get: 

d a = v [1 + e: (d ~ 1) / (d ~ 0 
)] + 0 (e: 2) 

dt dt dt 

(2.l5)a 

(2.l5)b 

(2.l6)a 

(2.16)b 

By substituting Eqs. (2.13)a,b and Eqs. (2.14)a,b' into Eqs. (2.16)a,b 

we get: 

(2.17)a 

(2.17)b 

where r, ~ and z are the coordinates of the unperturbed system and 

(2.l8)a 

(2.l8)b 

From Eqs. (2.3), (2.5) and (2.7)a,b,c z can be obtained as a function 

of I, e and t on one hand and r and ~ as functions of I and-S on the 

other. We introduce the functions: 
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f(I, 6, t) - 'Y[r~ (1,6) <I> (I, 6) Z(I,6;t)] (2.19)a 

IT(I,6,t) = 71"[r~ (1,8) ; <1>(1,6) ; Z(I,e,t)] (2.19)b 

and write Eqs. (2.17)a,b in the consistent form: 

dI e: 2 
dt = v f(I,6,t) + a(e: ) (2.20)a 

de 2 dH1 2 
dt = v + e:v IT(I,8,t) + a(e: ) = v + e: ar + a(e: ) (2.20)b 

where the second equalities are implied by the flux conservation theorem; 

e:H
1 

being the perturbation of the hamiltonian. Equations of the form of 

Eqs. (2.20)a,b were derived for the straight ste11erator fie1d2 and 

. for the 1evitron. 4 

For an exact flux surface of a rotational transform equal to R/2rr 

the field lines are conserved under the transformation: <I> ~ <I> + 271" 

Z ~ Z + i71" 271". This corresponds to a change in 8 equal to 271" and a 

271" 
change in t equal to -V We conclude that the functions r(I,6,t) and 

IT(I,6,t) are periodic with respect to e of period 271" and with respect 

. 271" 
to t of period -V 
2.3. The 'Linearized Equa.tions . 

Let' {vi} represent the set of resonant frequencies • From Eq. (2.8) 

To {vi} corresponds a set of values, {Ii}, for the 

action. From Eq. (2.7)a, {Ii} are the unperturbed fluxes and are 

1 1 {Vo} characterized by the transfonns 27r -fRi } = 271" n 1. • 

I 
In the domain of a given resonance <1611 « Ii)' we let 

I = Ii ... In, 
(2.21) 

and Taylor expand VCI): 

• ! 
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dV
i 

=Vi+Tr liI+ ... 

Let xi define the non~linearity coefficients: 

Ii 
x. =-. 
~ V. 

]. IdVil 
dI ' (2.22) 

and substitute in the Taylor expansion keeping only the first two terms 

to get. 

(2.23) 

where ~V = V - vi. 

. - - ... 1 2 - " 2 Let ~V = "( (~v) ) and~I = «~I» where the average is taken 

over a complete period of the slow variable ~e = e - v t and consider the 
i 

two following approximations: 

(i) : 

(2.24)a 

£I. - ]. FromEq. (2.23) this condition is equivalent to ~ » -.-- and since 
xi 

~ «1 then: 
Ii 

£I 
i '.« ~r «I 

x. i 
(2.24)b 

]. 

defines the domain of case (i). 

In this domain the second term on the right-hand side of Eq. (2.20)b 

is much smaller than the first and can be dropped out. Furthermore we 

linearize Eqs. (2.20)a,b to obtain: 
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dLlI £ 
-- = - r (I . , l1e + \J. t , t) dt v. 1. 1. 

1. 

dLl8 dVi -=- M 
dt dI 

These are the magnetic island equations. 

(ii) : 

which is equivalent to: 

< ~I. rr - -...!. 

(2.25)a 

(2.25)b 

(2.26)a 

xi (2.26)b 

the linearized equations are: 

dLlI £ 
Tt= v. 

1. 

dv. 
1. 

dI 

f(I.,M + v.t,t) 
1. 1. 

LlI + £v. IT(I.,Ll8 + v.t,t) 
1. 1. 1. 

(2.27)a 

(2.27)b 

In the action angle plane, the domains of validity of the approximations 

described above are dependent on thenon7linearity coefficients xi' By 

using Eqs. (2.24}b and (2.26)b 

various orders of ~gnitude 

For xi 

Case 

Case 

For x. 
1. 

» f".1/2 

I: Eqs. (2.25)a,b 

II' : Eqs. (2.27)a,b 

// 
Case II: , Eqs. (2.27)a,b 

of x.' 
1. 

e:l / 21 

o < 

we determine these domains for 

The various cases are: 

~ LlI « Ii i 

tn « e: l / 2I. 
1. 
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In Sections 3.4 and 4 we show that, for all xi in the domain 

o <ill « El/2 Ii' the Eqs. (2.27)a,b are reduced to a form similar 

to Eqs. (2.25)a,b. 
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3. The Structure of Magnetic Islands 

1 ff ' , » e:1 / 2 the 1 d For large non- inearity coe ~c~ent xi . magnetic is an s 

are shown to contain closed contours centered at each elliptic 

singularity. Each elliptic singularity, therefore, mark the position of 

a local magnetic axis for the island •. The magnetic contours of adjacent 

islands of the same primary resonance are connected through a common 

contour referred to as local separatrix. These contours have slow 

characteristic frequencies and are preturbed by the presence of other 

resonances in the system. Resonant island contours are referred to as 

secondary resonances. The behavior of the field lines near the elliptic 

singularities is treated in Section 3.4. 

3. 1. . The Isiand Con tours 

In this section we solve Eqs. (2.25)a,b. First we derive an 

averaging method that determines the contribution to a given resonance 

due to all the resonant harmonics. 

To simplify the problem we separate r into symmetric and 

antisymrnetric parts 

where 

S r (I.,8,t) 
~ 

We expand rS 
and rA in Fourier series and rearrange terms to get: 

\. 
00 00 

m=l £=1 

+ yS 0(1.) cos(m8 - R,SGit)] 
m,-N ~ 

(3.1) 

(3.2)a 

(3.2)b 

(3.3)a 
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. 1 
L. 

[yA 0(1.) sin(m8 + tr2.t} 
m,N 1 1 (3.3)b 

A + Y 0 (I,) sin(m8 - ~,t)] m,-N 1 1 

where we have made use of the symmetry of the relations Eqs. (3.2)a,b 

and assumed that only terms that are function of 8 and t are present in 

the perturbation i.e., Y = 0, and y 0= O. (In fact it was indicated m,o o,N 

in Section 2.1 that all stationary terms must be included in the 

unperturbed system representation; the y 0 terms should drop out after 
o,N 

the averaging indicated below.) 

We let' 8 = 68 + vit and average Eqs. (3.3)a,b over a complete 

period of t; the only non null contributions come from secular terms 

where 

mV. - tr2, = 0 
1 1 

(3.4) 

Vi 
In other words, Sf is rational. 

i 

* Let t" m, be the lowest integers 
1 1 . 

to 

satisfy Eq. (3.4), ti and mi depend on v
i

/r2i and therefore characterize 
V, R, t. 

the resonance. Since ~ = ~ = ~ the rotational transform of the r2. 2rr m, 
1 . 1 

resonant surface is rational. Depending on the perturbation, 

a subgroup of the exact flux surfaces are excited; we call them 

primary resonances. 
R. 

1 
To a given primary resonance of 2rr = 

R.. 
~ there are contributions m

i 
from all the resonant harmonics characterized by (m,R.)= (pm"pR.,) 

1 1 

where p ~ 1. In the vicinity of this resonance by averaging Eq. (2.25)a 

over fast oscillations we obtain: 

d6, I 2£ 
--= 

dt v. 
1 

00 

L 
p=l 

(3.5) 

[yS (1.) cospu _yA (T,) sinpu] 
pm, , -pt, 1 pm. ,-pR., ""1. 

1 1 1 1 

= -m.8 + ~.S1.t. 
111 

*Another condition on t" m
i 

is to represent a harmonic of the perturbation 
whose Fourier coefficieftt has a modulus of the order of magnitude of the 
maximum Fourier modulus contributing to the same resonance. 
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In the appendix we evaluated the right-hand side of Eq. (3.5) and 

got: 

diU £ --= 
dt v. 

l. 

from Eq. (Z. 25}b 

du 
dt = l1~I 

dv. 
where 11 l. 

= - mi dr and 

fV. (u) 
l. 

lfTt u = T dt r(I., - --+ v.t,t) 
i 

l. m. l. 

. 0 l. 

(3.6)a 

(3.6)b 

(3.7)a 

For simplicity, the indice i will be dropped from most equations up to 

the end of Section 3.2. ~quations (3.6)a,b have the first integral: 

where 

V(u) ~ - fU du' f (u') 
V 

Surfaces of constant K represent the island contour equations. 

(3.8) 

(3.9) 

Let us introduce a parameter a. characterizing the a- contour 
J 

in the j-island by the initial condition ~I(u = a.) = O. In our 
J 

notations, by changing j we change from one island of a given resonance to 

another island of the same resonance where by changing a we change from 

one contour to another within the j-island. The island contour 

characterized by a. is given by: 
J 

(3.l0)a 

for all u's satisfying the condition: 



· . 
>,,1 

[V(a.) - V(u)]/~ ~ 0 
J 

a sgn /::;. I and is equal to ±l. 
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By comparing Eqs. (3.5) and (3.6)a one obtains the following 

expansion for fv(u): 

2 ~ ryS cospu - -I n sinpu] ~ L pm,-p~ pm,-pN 
p=l . 

(3.l0)b 

(3.7)b 

and a similar expansion for \JV(u). Thus fv(u) and \J V(u) are periodic 

functions of u of periods equal to 27f. Assuming that \JV(u) and its first 

derivative are smooth functions of u, it follows that their zeros are 

separated by intervals of 7f respectively. Therefore, on the closed interval 

~ =0 to· ~ =27f the function ).lV (u) has 2m. zeros. . Taking ~V (u) to be 
~ ~ 1 

finite and continueous function of u, it follows that ~V(u) has m. minima 
1 

and mi maxima. Let {aj}~i be the set of minima and ~j}~i be the set of 

maxima and arrange the u = 0 axis to obtain 

For clarification the reader is advised to examin Fig. 1. In order to 

obtain the maximum excursion in the action we expr~ss, as a first step, 

the action excursion expression in Eq.(3.l0)a in terms of variables of 

the j-island. Let u. represent the variable u restricted to vary 
J , 

between~Sj and Sj+l and let uj = uj - a .. 
J 

Equation (3.l0)a expressed 

in terms of uj is: 

where 

, 
/::;.l(u. ) 

J 

= - f
a.+u~ 

J J 

CI.. 
J 

du' f (u') 
V 

(3.l2)a 

(3.l2)b 
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and a! = a. - u .• 
J J J 

The maximum excursion in the action for the a. contour is obtained by 
J 

maximizing I~I(u~,a~)1 with respect to u~ and the maximum excursion 
J J J 

in the action is obtained by maximizing the result with respect to a! . 
J 

Let ~~ be this maximum and let Sj = Sj U., then 
J 

~I 
M 

__ J ~£ I v·(.~j) ll/2 
= IlUCO,Sj)I v ~ ... - f 

sfnce u. is a minimum 
V'(a: ) 

of V0u) one can easily show that ll] 

(3.13) 

~O 
J V'(S j) 

and therefore II ~ 0, necessary condition for Eq~ (3.13). Another 

V'(Sj> 
important property is that the function does not depend on 

II 

the j-is1and of a given' resonance and is function of the perturbation 

at the resonance, say Ilvts~)1 = Fi(P). Where P symbolizes the 

dependence on the perturbation at the primary resonance. 

Let Wi define the resonance width; (Wi = Maxl~Vil). From Eq. (2.23): 

(3.14) 

therefore: 

(3.15) 

3.2. The Island Contour Oscillations 

Consider the field line cross section that is 'located at t = tl in the 

j-is1and. 

Therefore, 

We therefore introduce the "new time" for the island oscillations 

21T 
of V . 

i 
defined by: 



Since 

sgn 0 u~ 
J 

where j is 

t 

a 

T = V.t 
1. 
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is "time" we define sgn 0 t to be positive. 

sgn 11. Let us call a' = sgn 11,and introduce 

w = a'u' 
a 

v = ill (u' = a'w ) 
a a 

understood. Equations (3.6)a,b in terms of w 

dVa E 

di= .,} f (a + a'w ) v a 

~w =M 
dT a V 

v a 

a 

and can be derived from the hamiltonian: 

K'(v,w) 
a a 

v 2 + Ea' V(a'w ) 
a v2 a 

(3.16 ) 

From Eq. (3.6h 

the variables: 

(3.l7)a 

(3.l7)b 

and v become: a 

(3.l8)a 

(3.l8)b 

(3.19) 

It is obvious from Eq. (3.l8)b that sgn ow is the same as sgn v and 
a a 

the island contour oscillation~ for the a- contour occur for w 
a 

variations between -a' and +a' and,therefore,are of the libration type. 

Here we introduce the new action angle variables tn ,J ) corresponding 
a a 

to the pair of variables (wa'v a): 

where 

J 
a 

1 

4a' 

a $' (J ,w ) 
11 = _---n--::.-=a~-=a 

a . aJa 

S '(J , w ) = f wa v dw 
a a a a 

(3.20)a 

(3.20)b 

(3.20)c 
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In this representation the island contour equations are given by: 

where 

dJ a --= 
dT 

dn a --= 
dT 

dK' 
wa dJ 

a 

0 (3.2l)a 

W (3.2l)b 
a 

(3.22) 

J is a function of a' and is positive except for J (a' = 0) = o. 
a a 

w is also a function of a' and is positive within the island, except 
a , , 

for w (a = S ) = o. We therefore refer to the elliptic singularity 
a , 

at a = 0 as the local magnet'ic axis of the j-island and the island 
, , 

contour at a = 8 as the local separatrix. The local separatrix is 

common for all the islands of a given primary resonance. 

In the limit of small oscillation i.e., a' small, the hamiltonian 

(Eq. (3.19» reduces to: 

K' (v a'w a) M 2 c 2 
va +-. w 2v 2\) a (3.23)a 

where 

£0' df\) 
(u a ) c = --- = v du 

(3.23)b 

since a 
df\) 

is a minimum of a'V(u) then 0' du (u = a ) < 0, therefore c 

is positive. In the limit of small oscillations: 

c ,2 
K' = a 2v (3.24 ) 

1T , & J = -a 
a 4 

(3.25) 
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a' 

Before we close this section we introduce the non-linearity 

(3.26) 

coefficients Xa , associated with the slow frequency wa of the island 

contours 

X 
a 

J 
a 

W 
a 

dw 
a 

dJ (J = J ) 
a 

(3.27) 

In the small oscillations region X = 1 (refer to Eqs. (3.25) and (3.26». 
a 

.3.3. The Island Contour Perturbation. and Secondary Resonance~ 

The oscillations examined in the previous section are subject to 

a "non-stationary perturbation" related to the presence of other 

resonances in the system. To simplify our notations we drop the 

indice a and let ,dots represent derivative with respect to T. 

The island perturbation equations are determined from 

Eq. (3.l8)a,b and Eq. (2.25)a,b, we get: 

~i ) - fVi (a'w + ex)] 
a'w ex --+ T-

m. m. 
~ ~ 

(3.28)a 

v (3.28)b 

The resulting action and angle perturbations are: 
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(3.29)a 

(3.29)b 

• • 1/2 since v and ware of the order of E and E respectively, the highest 

contributions to , , Eqs. (3.29)a,b corresp~to evaluating the derivatives , , 
aK dK . dn 
iN' dW and ~ on the unperturbed island contour. 

dK dK 
dV and 9w are~therefore, 

obtained from Eqs. (3.l8)a,b and Hamilton's equations,while: 

dn -= 
dw (3.30) 

dK' dK' d 
If we substitute for dV ' dW and d~ in Eqs. (3.29)a,b we get: 

(3.3l)a 

(3.31)b 

where 

(3.32) 

For an obvious reason we have dropped all stationary terms. The 

function w(J,n) is determined from Eqs. (3.20)a,b, and,for most cases, 

is very difficult to determine explicitely. For libration type motion 

5 one important property of w is its periodicity in n. Taking 

this property into consideration we have shown that the function 

f(J,n,T) is a periodic function of nand T. 
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Equations (3.3l)a,b for J and n are similar to Eqs. (2.25)a,b for 

I and e. And, similarly, they are valid in the region defined by: 

(3.33) 

In order to explain the terms in Eq. (3.33) we need to introduce the 

concept of secondary resonan:ces. Those are the excited island contours 

whose slow transforms are rational. Let {WK} represent the set of 

secondary resonances frequencies to which, from Eq. (3.22), correspond 

{J
K

} for the action. ~J = J - J
K 

and ~J ,,< (~J)2) where the average 

is taking over a complete period of An = n - WKL. 
WK PK 

Let PK and qK be the prime integers satisfying ~ = a-' (~~Vi~i)' 
1'-K 

and let ~=-qK~n. In the domain defined by Eq. (3.33) we average Eqs. (3.31)a,b 

with respect to T and get: 

. 1 Pf f~K(~) ~J = W .. ,/ K i 

(3.34)a 

(3.34)b 

, ,; dW 
where fiK(~)'= < f(JK; WKT - qK;T»T and M = - qK dJ (J = J K)· 

Equations (3.34)a,b can be derived from the hamiltonian: 

(3.35) 

where surfaces of constant h represent the secondary island contours. 

The maximum excursion in the action,~JM,is equal to the maximum of 

I~JI with respect to ~ and h. The secondary resonance width given 

by: 
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. IdW 
AiK = dJ (J (3.36) 

is equal to: 

(3.37) 

where FiK(~) depends on the perturbation at the secondary resonance, 

symbolized by pl. 

3.4. Behavior of the Field Lines Near the Elliptic Singularities 

If we apply the method of averaging derived in Section 3.1 to 
'Vi R,i 

Eqs. (2.27)a,b in the domain of the resonance n- = --, we obtain: 
uG

i 
m

i 

dAI e: 
dt = V f'V (u.) 

i i J 

duo 
~ = ~AI - e:R..r2

i
g'V (u.) 

dt 1.. J 
1. 

where fv (u.) was defined in Eq. (3.7)a and g'V (u.) is defined by: 
i J i J 

g'V (u.) 
i J 

o 

u . 

dtIT(I i ,- ~ + 'V.t,t) 
m

i 
1. 

(3.38)a 

(3.38)b 

(3.39) 

Near the elliptic singularies u ' j 
We expand f'V (u.) 

i J 

and g'V (u.) in term of 
i J 

U I • 
j . 

u! 
= 0 + IT 

dfV 
i 

d 
(ex.) 

u. J' 
J 

12 d
2

f 
u. I 'V. 
---L- 1. 

+ 2' . d 2 u. 
J 

(a.) + ... 
J 

(3.40)a 



gv (u.) 
i J 

, I 
'.' 
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! 

2 
duo 

J 

(a.) + ... 
J 

fV Ca,) is null because, by definition, the {a.} are the minima of 
i J J 

~V(u.); and from Eqs. (2.20)a,b: 
J 

1 d 
n n V dI fv (a.) = 0 
Ni'Gi i i J 

By substituting from Eqs. 0.40)a,b into Eqs. (3.38)a,b we obtain: 

dAI' --= 
dt 

where ~I' = ~I - EA', 

and 
dfV 

-1 i 
A=--

~v. duo 
1 J 

1 
(a,) - ~V. 

J 1 

2 
d V (a.) ;;;. 0 
du: J 

J 

0.40)b 

0.41) 

0.42)a 

0.42)b, 

0.43) 

0.44) 

We solved Eqs. (3.42)a,b for the initial value condition ~I'(uj = aj) = 0 

and got: 

2 ,2 
111' u, 
-'-~ + -L = 1 0.45) 
EA· ,2 '2 a, a. 

J J 

which is the equation of an ellipse. However, the contours will not 

always look like ellipses due to the curvilinear nature of the coordinates 

~ I' and u' j • 
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4. Behavior of the Field Lines in the Limit of 
Small Non~Linearity Coefficients 

The field line equations in the limit of small non-linearity 

coefficients are given by Eqs. (3.38)a,b. However, 'there are various 

limits in which Eq. (3.38)a,b can be approximated by Eqs. (3.6)a,b, 

treated in Section 3. For example, near the elliptic singularity, 

1/2 ~1' 
aj = O(E ) and from Eq. (3.45) --1- = O(E). Thus, within the limit of 

our approximation (Le., to O(E2», the non-linearity coefficients must 

satisfy E « x ~ El / 2 , and, therefore, from Eq. (3.40)b, using Eq. (3.41), 

one can show that 

/EI~ (u.) - Kv (a.) I = O(E- l
/

2
) 

i J i J 

and, therefore, Eq. (3.38)a,b reduce to Eqs. (3.42)a,b, studied in 
( 

Section 3.4. 

If we let a! increase from a! = O(El/2) to a!2= 0(El/2) and 
J J J 

substitute from Eqs. (3.40)a,b into Eqs. (3.38)a,b, using Eq. (3.40), 

we get: 

d~I' 
~= 

, E" 2 2 
f + f + O(E ) i Vj 2V i v. 

i J 

where ~1' = ~1 - EA' and A' is given by Eq. (3.43), v. = 
J 

is the signature of )J, 

dfv , i 
fi - -a' d (a.) ;;. 0 

u. J 
J 

(4.l)a 

(4.l)b 

a'u! and a' 
J 

(4.2) 
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d2f 
" v 

f. i 
(~. ) -

1 2 J duo 
(4.3) 

J 

and 
2 

" 
d gv 

-0' i 
(~. ) gi - 2 J duo 

(4.4) 

J 

We note here that for perturbations where the dependence of fv (u.) on 
i J 

" Ii' near ~., is expressed only as positive powers of I., gl' is positive 
J " 1 

or null. 

,2 
For a. = 

J 
0(£1/2) the second terms on the right-hand sides of 

Eqs. (4.1)a,b add but a small perturbation to Eqs. (3.42)a,b, therefore, 

their solution which satisfies ~I'(u! = a!) = 0 will have small deviations 
" " J J 

from the ellipse in Eq. (3.45). These deviations are equally distributed 

on the inside and the outside of that ellipse in order to satisfy the 

flux conservation requirement. As a! increases, the deviations mentioned 
J 

above become larger and larger in magnitude" (they may also change in shape 

3 due to the addition of terms in V. etc on the right-hand side of 
J 

Eqs. (4.1)a,b). These deviations from the smooth elliptic shape will 

cause neighboring contours to overlap above some cri tical value of a.', 
J 

and, therefore, to self destruct. We refer to this type of behavior 

as orbital instability. 

The condition for orbital stability is: 

X. 
1 

I. 
1 

~I' » £ISv (u.) - gv (~.)I 
i J i J 

(4.5) 

and is favored for: (i) large x., (ii) small I., and (iii) small E. 
1 1 

The second condition, (ii), implies that the magnetic island contours are 
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orbitally more stable near the central magnetic axis. However, it does 

not necessarily imply that the magnetic contours are always destroyed 

at the separatrix. In Section 5 we will show that the destruction of· 

the flux surfaces at the separatrix is due, if not to external, .to internal 

overlapping. This implies that the internal stochasticity differs from 

the orbital instability, although the two instabilities, in many 

respects have similar effects. 

The high stability regions at a! ~ 0(E
I

/ 2) are, sometime, observable 
J 

for small E, (depending on the system and the resonance parameters). 

Their existence in toroidal systems of magnetic fields and, in conservative 

·46 
non-linear oscillating systems is demonstrated in the literature. ' 

They usually appear as small, but well defined contours in highly 

unstable backgrounds. 

• I 
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5. Destruction of the Magnetic Surfaces 
by the Overlapping ef Resonances 

It is well confirmed that a strong instamility with random-like 

behavior occurs when resonances overlap. 1 

The overlapping of two neighboring resonances will occur if 

their separation is smaller or equal to the sum of their 

widths. There is at least one overlapping of resonances below a given 

frequency Vi if the sum of the widths of all resonances with frequencies 

smaller or equal to Vi is greater or equal to Vi' We take this as a 

definition for partial sotchasticity below v., it is equivalent to: 
J.. 

(5.1) 

Although the frequencies of all the resonances below Vi range from zero 
. 00 

to V. their number is infinite. We let {j}. represent the set of 
J.. J.. 

resonances below V. ordered in such a way that v.~. ~ Vi and V = O. 
J.. J~ 00 

Equation (5.1) is therefore the same as: 

00 

(5.2) 

where Wj is the width of the j-resonance. 

The limit of total stochasticity be~ow Vi is obtained if all the 

resonances of frequencies smaller or equal to Vi satisfies the criteriom 

of partial stochasticity. Equation (5.2) should give an underestimate 

of the critical perturbation for v., an overestimate is obtained from 
J.. 

the limit of-total stochasticity below Vi' The critical limit is 

somewhere in between. We introduce C. ~ 1 to be a positive constant 
J.. 
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characteristic of the resonance Vi such that 

00 

(5.3) 

defines the critical perturbation for the i-resonance. (C
l 

is constant 

in the sense that it is not explicitely dependent on the resonance 

parameters; however, C. varies from one resonance to the other and is 
1 

dependent on the system.) 

The widths of paimary resonances are given by Eq. (3.l5), if £i 

is the critical perturbation for the i-resonance, from Eq. (5.3) we get: 

where, 

1 
I. 

J 

(5.4) 

)

1/2 
....! F. (P) 
m. J 

J 
(5.5) 

FJ. (P) having the dimension of (m.I.)1/2 V., we arranged Eq. (5.5) so that 
J J J 

Gi is dimensionless. Gi is like a structure factor characterizing the 

perturbed system below Vi. 

Let us call external overlapping the overlapping of primary 

resonances and internal overlapping the overlapping of secondary 

resonances, Eq. (5.4) thus describes the critical perturbation by 

external overlapping. Let W represent a cutoff frequency which corresponds 
s 

to the lowest observable island contDur. Therefore, the total descruction 

of the V.-resonance by internal overlapping is obtained by the critical 
1 

perturbation below the W -secondary-resonance. Let £ . represent the 
s s 

critical perturbation by internal overlapping, from Eqs. (3.37) and (5.3) 

we get: 

, 
. i 
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(

V6 1 )1/4 ( 1/2 
C'G'E3/4 = i i ~) 

s s s 2m,x, 2X 
l. l. S 

(5.6) 

where C'(~ 1 and positiv~ is defined, si~ilarly to C" for the secondary 
s l. 

resonances, and 

1 00 (~ 
G~ = w L: X 

s K=s s 

1/2 
!-. ) F ! (P') . 

J K qK l.K 
1 

(5.7) 

Our definition of G' for the secondary resonances (Eq. (5.7» is similar s ' 

to that of Gi for the primary resonances (Eq. (5.5». G' is also like a s ' 

structure factor characterizing the secondary system below W , 
s 

The secondary resonance of frequency W is in the small 
s 

oscillations region, treated at the end of Section 3.2. From Eqs. (3.25) 

and (3.26). 

x = 1 . 
s 

(5.8) 

From Eqs. (5.8) and (5.6) the limit of internal stochasticity for the 

V,-resonance is obtained: 
l. 

C'G'E3/ 4 
s s s 

(5.9) 

Equation, (5.4) for the external stochasticity and Eq. (5.9) for 

the internal stochasticity give the dependence of the critical perturbations 

by these two processes on the primary resonance parameters. For a given 
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resonance, the physical critical perturbation is the smallest of the two 

above mentioned critical perturbations. From the present analysis it is 

possible, in an experimental situation, to determine the primary 

resonance width~ explicitly. The values of the critical perturbations, 

by external overlapping, are,therefor~ obtained by directly checking 

the overlapping of neighboring primary resonances. However, the 

secondary resonance widths are difficult to determine explicitly from 

the present analysis. 

Secondary resonances are related to the presence of more than one 

primary resonance in the system. For systems where many primary 

resonances are possible it is, therefor~ logical to assume that the 

secondary systems are similar to the primary system.7 This leads us 

to assume that 

C.G. = eC'G' 
~ ~ s s 

(5.10) 

where e is a constant. If we take the ratio of Eqs. (fi~9) and (5.4) 

and use Eq. (5.10) we get: 

(6 t4 £3/ 4 = 'Vilixi £1/2 
(5.11) e 2m . s i ~ 

Equation (5.11) relates the internal critical perturbation to the 

external critical pertrubation • Thus, from the values ofe:i and the 

primary resonance parameters, the values of £ are determined. 
s 

2 For the stellerator, where stochasticity occurred near the 

separatrix for values smaller than the external stochasticity limit £., 
~ 

Eq. (5.11) shows that this had occurred by internal overlapping. 
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In general, formula (5.11) asserts that independently of how small is 

the perturbation, the magnetic surfaces are always destroyed at the 

separatrix. 

* Fer the levitron we calculated E. by directly checking the over-
1 

** lapping of neighboring primary resonances and determined e: 
s 

from 

Eq. (5.11), where we have taken e ~ 1 .and ~i ~ 1. The results are 

tabulated in Table I. 
4 

(For the levitron e: is a tilt angle; in Table I 

it is given in degrees.) We conclude that for V ~ 2 the destruction is 
i 

caused by internal overlapping. In Table I quantities in parenthesis 

are the theoretical limits for destruction. E are the numerically. 
c 

8 measured tilts for which the resonances are completely destroyed. 

There is a very good agreement between theoretical and numerical values 

of the critical perturbations. In Fig. 2, we show a typical example of 

destruction by internal overlapping in the levitron; the secondary magnetic 

islands and contours appear in part c. 

Before we close this section we would like to comment on Eq. (5.10) 

which says that C.G. is proportional to C'G'. It can be argued 
1 1 S S 

that the limiting secondary resonance parameters are functions 

of the primary resonance parameters and the perturbation at the primary 

resonance. On the other hand, the summation in Eq. (5.5) over the indice 

* The basic features of an average minimum B levitron, are represented 
by a simplified model which consists of a single filamentary conducting 
circular loop located at the center of the torus, a straight filamentary 
conductor along the vertical axis and a uniform vertical magnetic field. 
The location of the separatrix surface is determined by the ratio of the 
uniform vertical field to the loop field. The distance from the loop to the 
separatrix approximates the minor radius of the torus and thus determines 
the system's aspect ratio. 
**The simultaneous destruction of two neighboring resonances of comparable 
widths occurred when their separation was smaller or. equal to the arithmetic 
average of their widths. This criterion gave the best agreement with the 
numerjcal results. 
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j transforms the dependence of F. on the perturbation at v. into a 
J J 

dependence of Gi on the primary system below vi. Similarly Gfis 
s 

dependent on the secondary system below w. We have argued before that for 
s 

systems with many resonances the secondary systems are similar to the 

primary system. Thus, there is an approximate similarity between the 

primary system below vi and the secondary syst~ below ws. This 

similarity and the dependence of Gi and G~ on the primary resonance 

parameters only, suggest that Gi and G~ can be related. Although this 

does not prove the proportionality of CiGi and C~G~ it does give a strong 

support in favor of it. The proportionality constant, e, is in general 

dependent on the system; from Table I, taking e equal to one seems 

to be a good approximation for the levitron under consideration. 
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6. Conclusions 

It has been established that if resonances overlap, a rapid destruction 

I 
of their island structure occurs. 

1. Thus, if primary resonances overlap, a rapid destruction of their 

flux surfaces is expected. 

2. For large non-linearity (x»e:1 / 2), the field lines are trapped 

in an effective potential well in the primary resonance domain forming 

families of closed contours at the elliptic singularities. We refer to 

the resonant island contours as secondary resonances. Another possible 

phenomenon of destruction is the overlapping of secondary resonances. 

Depending on the primary resonance parameters (and the system) destruction 

may occur by either or both phenomena. 

3. The excursion in the action for the primary magnetic 

increases as e:1/ 2 while for the secondary island it increases 

island 

e:3/ 4 as • 

Internal overlapping proceeds almost orderly from the local separatrix 

to the elliptic singularity. Therefore, for islands that are most 

affected by internal overlapping the observed primary excursion should 

increase at a lower rate than e:1/ 2 due to the successive disappearance 

of outer contours destroyed by secondary resonance overlapping. This 

is in agreement with the numerical observation by Freis et al.,4 where 

the I and ; resonance widths increase as e: l / 2 until breadup while the 

3 
2' 2, 

5 d 3 ·d h . 3/2 2 an resonance w~ t s lncrease as e: • 

4. For small non-linearity, except in the immediate neighborhoods of 

the elliptic singularities, the magnetic contours oscillate in an irregular 

fashion and overlap causing orbital instabilities. Orbital instabilities 

are more pronounced for larger fluxes but do not always destroy the 

flux surfaces at the separatrix .. 
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5. In the immediate neighborhoods of the elliptic singularities 

the field lines are orbitally stable for all non-linearities. These 

neighborhoods, therefore, constitute small stable regions which, depending 

on the resonance parameters and the system, may become observable for 

small e:. The existence of these high stability regions is demonstrated 

numerically in the literature where small but well defined contours 

appear sometimes in highly unstable backgrounds. 

6. It is known since Po1ncare9 that a hierarchy of resonances are 

generated in a non-linear oscillating system. In a system where terms 

of the first order in e: give the highest order observable contribution, 

we found that two sets of resonances are sufficient to explain the 

formation and destruction of the magnetic surfaces. n In general, if E , 

where n is a positive integer, gives the highest order observable 

contribution then 2n sets of resonan(~es are sufficient. 

7. Equation (5.4) for the external stochasticity and Eq. (5.9) for 

the internal stochasticity give the dependence of the critical perturbations 

by these two processes on the primary resonance parameters. For a given 

resonance these relations give the dependence of the critical pertulrbation 

on the non-linearity coefficient. 

8. From Eq. (5.11), as Vj approaches zero, the region of internal 

Sbochasticity extends over all the x~E plane thus, independently of how 

small is e: > 0, the flux surfaces are always destroyed near the separatrix. 
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Appendix 

The Averaging Method 

To evaluate the right-hand side of Eq. (3.5) we consider the 

Fourier coefficients: 

s 
Y (I.) pm. ,-p.R.. 1. 

1. 1. 

I ITi J.R..r.. t-27Tm.~ d ) S 1. 1. 1. U U 
= - dt - - r (I - - + V t t) 

27TTi m. i' m. i' 
1. 1. 

o .R..st.t 
1. 1. 

where u = -mi~e = - m.e + .R..st.t. 
1. 1. 1. 

Since r S(1.,8,t) is periodic in e and t then: 
1. 

j
.R.

i
sti t-27Tmi 

. duf S
(1., -~+v.t,t) 

1. m. 1. 

.R. ist it 1. 

1. S u J 
-27Tm. 

= duf (1. - - + 

o 
1.' m. 

1. 

From/Eqs. (A-I) and (A-2): 

where 

Similarly 

where 

r 
-27Tm. 

1. 

du fe (u) cospu 
i 

f
T. 

I 1. S u T. dtr (1.,--+Vit,t) 
"'i 1. m. 

A . 
Y (I.) = pm. ,-p.R.. 1: 

1. 1. 

o 1. 

I f 0 
27Tm

i 
-27Tm. 

1. 

A du fv (u) sinpu 
i 

f~ (u) = ~. fTidtrA(1.,- ~ + Vit,t) 
1.
• ~l.' 1. mi I 0 

(A. 1) 

cospu 

(A .2) 

V.t,t) • 
1. 

(A.3) 

(A.4) 

(A.S) 

(A.6) 



-38-

If we substitute from Eqs. (A.3) and (A.S) into Eq. (3.5) we get: 

dLU 2£ --=-
dt Vi 

1 
27Tm. 

~ r -27Trn. 
~ 

<Xl 

du' f~ (u') L: cospu cospu' 
i p=l 

+ f~ (u') 
i 

<Xl 

00 

L: sinpu sinpu' 
p=l 

In order to evaluate Eq. (A;7) we express L cospu cospu' and 
00 p=l 
~ sinpu sinpu' in terms of delta distributions, consider x in the 

p=l 

one dimensional real space, Rl, then: 

27Tik.x 
e 

f.oo 
~ 

= L.J 
n=_OO 

o(x - n) 

where n is an integer. If x varies only in an interval of Rl, say 

+00 n2 

L: e
27Ti

k.x = L O(x - n) 
k=-OO 

It follows that: 

00 

L cos27Tk.x =_1+1 
2 2 

6(x - n) 

k=l 

By using 

00 00 

-- 12 ~ cospu cospu' L.J 
p=l 

~ 
p=l 

[cosp(u + u') + cosp(u - u')] 

00 

p~ 
1 00 

sinpu sinpu' = 2 E 
p=l 

[-cosp(u + u') + cosp(u u')] 

and noting that the interval of variation of u+u' and u-u' is 

[O,27Tm.] we get: 
~ 

(A. 7) 

(A.B) 
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QO L COSpU COSpU' 

pel 

00 

L sinpu sinpu' 
p=l 

1 
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m. 
,1 

'I ,~J 

1 1T" - 2+ 2 ~ h(u + u' - 21Tn) 

n=O +roi 

+ L 0 (u .... u' - 21Tn) 
n= 0 

O(u + u' - 21Tn) 
+m

i 

+ L C(u - u' - 21Tn) 

n= 0 

By using f'J (u) = ~ (-u) and fA (u) = -
Vi vi vi 

A f (-u) after substituting v. 
1 

Eq. (A-9)a and Eq. (A-9)b into Eq. (A-7) we get: 

where 

dLll 2 e: --=-
dt V 

i 

m. 
1 

L 
ncO 

S A 
f (x) = f \) (x) + f v (x) 

vi '1 i 

From the definition of fs,A(u) and the periodicity of f(l,e,t) 
vi 

with respect to e and t it is straightforward to show that: 

fV (u) = fv (u±21Tn) 
i i 

n = 0,1,2, 

By substituting Eq. (A-12) into Eq. (A-10) we get: 
, 

~l e: - = - f (u) 
dt vi Vi 

(A .9)a 

(A.9)b 

(A.IO) 

(A.H) 

(A .12) 

(A.l3) 

Equation (A-l3) can also be derived directly by averaging Eq. (2.20)a 

over fast oscillating terms in t. This shows the equivalence of the 

present analysis and the averaging technique often used in the literature. 
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Figure and Table Captions 

the(\)i = 1.) - primary resonance in the action angle 
r2i 4 

plane. The various angles shown are defined in the 'text. 

Fig. 2. (a) A ,closed primary contour of the TI resonance at l+r cos~~ 0.51 

and part of the 2TI primary resonance at l+r coset> ~ 0.61. (b) The 

perturbation is doubled and the contour is heavily distorted. 

Cc) The pertUrbation is doubled again, the contour is completely 

destroyed and secondary magnetic is1ams and ,contours appear. 

This is a typical example of destruction by internal overlapping. 

The 2TI primary resonance island after reaching its maximum flux 

ia part (c) is seen partially destroyed in part (d). This figure 

is taken from Ref. 3. 

Table I. For the 1evitron, £ is a tilt angle. The theoretical tilts 

for which the resonances are completely destroyed are equal 

to the smallest of £i and £s' £i and £s are the limits of 

external and internal stochasticities,respective1y. (*The 

3 and 5/2 resonances overlap and are simultaneously destroyed.) 

£c are the numerically measured critical tilts. \)i/r2i are the 

rotational transforms, x. the nonlinearity coefficients, and I. 
1 1 

the primary actions, r2. ~ LIn the levitron m. ~ 2, except for 
1 1 

the 2TI-resonance where mi = 1. 
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Surface I = I l/l; ,v = /14 n 

Local separatrix 

u=o 
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Fig. 1 
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1/' P' I' E' €s Ec -.J:.. = n x' 
..n..i mi L l l 

6/2 1.256 0.036 (2.75) 3.96 2.50 

5/2 1.074 0.040 (2.75)* 2.71 2.50 

4/2 1.045 0.050 4.95 (2.74) >1.00 
<3.00 

3/2 . 1.140 0.061 1.68 .- (0.83) 0.70 

1/1 1.300 0.084 0.54 (0.25) 0.30 

1/2 2.200 0.120 0.54 (0.067) 0;15 

1/4 2.280 0.162 ",0.244 ("'0.002) <0.02 

Tobie I 

XB L 7310- 1947 
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This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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