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Abstract

'A.re1ativistic‘fie1d theory of isospin asymmetric matter and of neutron

star matter in particular, which is compatible with nuclear matter bulk

-~ properties, was formulated in Part I of thisseries and treated in mean-field

approximation. The self-consistent solutions include the ¢, w, and p fields

for both the normal and pion-condensed states. The bulk properties of nuclear
matter such as saturation density and energy, compressibility and asymmetry
energy impose rather stringent restrictions on meson-nucleon coupling

constants and the parameters of the nonlinear interactions in the o-model.

vThe numerical results include the equation of state, particle densities as

functions of charge and baryon density and the composition of a neutron star.
Based on these results, we discuss neutron star cooling for various equations

.t

of state.
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I.  Introduction

This paper presents the results for a.reiativistic field thedry of
isospin asymmetric baryon matter for densities around and above nuclear matter
density but below fhe transition into the quark-gluon phase, which has been
formulated e]sewhere;l) The theory of dense nuclear matter is of interest
both in nuclear physics with respect to heavy-ion collisions and in
astrophysics cOncerning neutron stars and supernova expidsions. The
participating particles invthis theory are the‘nucieons, the four mesons o,
w. o, and = and e~ and u~ for g-stability. The normal as well as
thevpionfcondensed states are studied. The main constraint on the parameters
involved in this theory are the bulk properties of nuclear matter: saturation

density n_ = 0.145 fm>

, @ saturaﬁion energy of -15.96 MeV pek nucleon,
compressibility of 200-300 MeV, and asymmetry_energy of 37 MeV. Also, the
systém is Constrained by charge conservation and equilibrium withvrespect to
its composition. The equation of state is extrapolated to higher density with-
the same set of parameters, which fits the saturation properties.

The paper is composed as fo]iows: In section II, expressions for the
energy density, pressure, and all field equations and con§traints are
formulated in mean-field approximation. They are derived from a Lagrangian
with interacting mesons and nucleons and a nonlinear o-model. In séction III,
various numerical results are given such as the equation of state, various-
particle densities, the chemical potential, the neutron/proton ratio, and the
strength of the meson fields, all as functions of the.baryon density. Section
IV involves a scenario of a neutron star with mass and density distribution

for several equations of state as well as a cooling estimate. Section V

finally summarizes the results.
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II. Energy Density and Self-Consistency Equations.

It 55 generally believed that at moderate density the interactions
between nucleons can be represented by the exchénge of mesons. Abové a not
very well defined critical density presumably a relativistic field theory of
quarks and g]uohs takes over. In the low and intermediate density.regime, the
four mesons c; s T and o, dominate the nucleon-nucleon .interaction.

" Whereas the isospin zero particles ¢ and w, are present at all densifies and
isospih-states, the pséudosca]ar_w occurs only about a certain criticai
dehsity in the form of a pion—condenéate, and the o, exist'only in
isospin—asymmetric mattervacéording to-its yu-coup1ing. -A-relativistic mean

2) and has

field theory based on ¢ and W, only was introduced some time ago
been éxtensive]y studied by Walecka et-a1.3) The repulsive W, and the
attractive o together with nonlinear interactions of the o with_it5e1f4) can

5) of symmetric

account for the saturation properties and the compressibility
nuclear matter, whereas the'ou is esséntia] for obtaihing the asymmetry
‘energy in asymmetric matter.

o Since the choice of the Lagrangian and the resulting formalism has been
discussed in part I of this paper, we will subsequently present only the
essentia] results. The full Lagrangian £ for the system of interacting

-

nuc leons and mesons 1is

L + L +L v L+ L
o w T I

= Dirac

+g, 0 (W) - g, 6, (T4 - o) (1)

- g (au I).(wYSYHIw) _ gp o .* gl—l

T ~H
where J" are the three total isospin 4-currents corresponding to £. They

are
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ey @) trxatnt o xo

f BT xm) vt x ) e (2)

- ng(ou X ") X o;

The free field Lagrangians are written in ref. 1). The attractive p-wave
pseudovector wN—interaction is adopted, since the pseudoscalar coupling

gives too large a repulsive s-wave interaction. The o-self interaction U(s)
is taken from ref. 1) and has the form

1
(

U(o) = 3 bm + le— Cgco)(900)3 ' (3)

The pu—meson has to be coupled to the total isospﬁn current J¥ in order
to avoid instabilities for simultaneously growing o, and w—f1e1ds.6’7)
The full (time and space dependent) solution of the Lagrangian £ and the

- Dirac Equation following from it is intractable; hence a solution in

mean-f ield (Hartree) approximation is sought. By replacing all the fields
with their mean values with the coupling cdnstants determined by nuclear
matter properties rather than by hadron scattering, the Lagrangian becomes
an effectiVe many-body Lagrangian.

The Py is faken as a space-time-constant in the third jsospin
direction. Another possibility would be a space—time dependent solution in
the'same isospin direction as the =»-field. This solution, however, is |
energetica]1y disfavored by the Lagrangian. The_pion is the only mesqh,

which has a space-time structure. This follows from the attractfve p—Wave

interaction. It is a plane wave of the form
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with kx = kot - E.f' The mean value of the pion field is given by.the
quantity 7. The nucleon source cﬁrrents <P(x) ¢ (x)> and <P(x) yuw (x)>
are constant in infinite.nuc1ear matter; therefore, the ¢ and mu—fie1ds are

constants as well. In reflection of a general theorem,s)

the space-like
parts of the 4¥vectors W, and o vanish, and only the time-like components
TR and'po-survive.

With all the above replacements made, and after some algebra, the Dirac-

equation can be written as

1

[y P - sy K (Feg + o Frg T UE) =0 @
with

Pu =P, 9, 9 (5)

Ku = kﬁ - go fu (6)

H=h_%n | - | o

where the 8-component spinor U(p) describes the nucleon wave function in a

momentum eigenstate and

v,(x) = U(p) &P (8a)
and is related to the original Dirac field, ¥, of (1) by a local isospin
rotation

' . ' . | _
wv(x) = exp <—§-kxi3> P (x) (8b)

The Euler-Lagrange equations for the meson fields, derived from £ are given by



— v | -
mg“ =9, Y, V> -4 . (9a)
2 _ | ‘ SR R
mww0= gw <wv Yowv> . . . (9b)
. L 2 g " o

[—KuKu - gggg *m]w s -9, Wby ¥ YUKU T, 0> (9¢)

2 —2, 0 0
e+ (g7 6" = g, I (9d)
J u _ _2 Ku + H I(l + - | ) . (9

3 =" Gy v (T3t g T ag Tp) by | e)

where the brackets < > denote the expectation'value of the‘nuc1eon‘currents
in the grouhd state, i.e., the Towest energy eigenstates of (4). Explicit
momentum space expressions.fOr these can be obtained as 1h Ref. 1. The N
Fermi surface is discussed below. The equéﬁiohs (9¢ and 9d) havelon1y'one4

isospin component now. The resulting hadronic energy density is given by

e ==L +'dh, v, Py > * I3 ko | (10).
where
122 122 ,1.2, u_ 2
T=<L>= -~ 5 mao - U(g) + 5 mwwo + 5 (kuk - m")
1 22 2 | o
Tomeg 9,7 e 0 . (11)

L is the ground state expectation value of the Lagrangian £ after exploiting’

the Dirac equation (4). The leptonic energy density e coming from the

lept
Fermi seas of relativistic electrons. and muons is given by

2 2

'”Pe 3 - Pu 3" : |

L d’p 2 4 m 24 dp_. + '

€lept = 2 g. (2#)3 \/p Mg t2 g. ,(2")3 p= +m " (1?)
_ ]2 7 _Jz 2 :

P.e‘ T Ve e o Py = T
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Beta equilibrium of the process n > p +e (u) + v

o (BL) and (if pion

condensation exists) n(p) » p(n) + n—(w+) requires the equality of the
chemical potentials u, = u, = w, =-k;. Neutron excess results in a
surplus of « with negative pion energy ko‘ In symmetric nuclear matter,.
kO is zero with equal numbers of positive and negative pions. The mean pion

charge density n_ is given by

n =w K +gn D, Yy Y5 THp U ' " . (14)

The Dirac equation has to be diagonalized in order to obtain the single
particie ehergies. This results in a fourth order equation for the
eigenvalues Py

D(P) = ((PP) ~ e2)% = (PK)® - (29, WP T(PK)Z - "2 (KK)] = 0 (15)

where

Zam?e . I} + ,(gﬂ?)z](KK) . | e

s

This equation has four roots as functions of the 3—momentum E, Ei(f) for
the particles and E;(B) for the anti-particles. Figuré 1 gives an
illustration. For Rl = 0, the two particle branches are disp]éyed‘as
function of P”, which 'is parallel to the k-axis. The Fermi seas of E,
solutions are fi]]ed up to the Fermi energy. The eigenstates corre-
sponding to fhe E, solutions should not be interpreted as protons and

" neutrons respectively but are mixtures of both. The Fermi surface has no
reflection symmetry in the P” axis except for the case‘Ko = 0 of nuc]ean
matter. For neutron matter, the lower (-) Fermi sea>is predominant 1y

occupied by neutrons. The isospin asymmetry is responsible for the
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asymmetry of the (-) branch, wheras a pion-condensate produces: a gap
between the (+) and (—),branch. |
xThe integraLg!in the expression are two dimensional in P, and P” and
are perforﬁed numerically (wheré the momentum vgctor f of the piqn‘defines _
the parallel directfon).

For the calculation of the energy density seven quantities must be

v

- determined at a given charge and baryon deﬁsity: the four meson fields 7,

Wys 0go and ;; the pion frequency and wave numbers k0 and 5, and the

Fermi energy EF’ These require seven independent equations for their

~ determination, the four Euler-Lagrange equations and three other ones

0o —=2,0 _ o ,1 — 1
\]3 =x K~ + <l1)v Y ('é‘ T3 + gﬂ'ﬂ' YS TLZ) lpV) = ’nq - ‘2- nB + ne + nu . | (17)
I =K+ <l oy Ayt g Fyt,) v =0 ‘ (18)
Y372 v 22130 5T Y5 20 By _ *
d P _ :
2 ZJ 3 olEp - E*(E)] =<y vg > =Ng ' (19)
T J (2n) .
where nq is the total electric chargé dehsity, and Ng> Nas n‘u are number

densities for baryons, electrons, and muons. In the case of symmetric

nuclear matter, the charge density is nB/Z. whereas in neutral neutron

¢

matter it is zero. The first two of the above equations are the

-time~ and space—1ike’component of the conserved third component of the isospin

4—current and follow from the equilibrium conditions

3¢ Ag -0

3k T %
3 k0

I

7

that pions should condense in the lowest energy mode.
The third equation is simply the constraint for given baryon density,

whereas the first equation is the constraint for given charge density. In the
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case of neutron matter'in‘aAneutron star, the chakge density must be zero;
otherwise the Coulomb inieraction would overcome gravity.

When the seven above-mentioned quantities have been determined for given

charge and baryon density, the energy density as well as the pressure given bﬁ

~

_ ' 3 y
_P=.c+‘EFnB-2ZJ(%‘;—§-Ei(P)ei_ S (20)
. + Jo e

can be evaluated.



ITI. Equation of State

~In the preceding paragraph the essential formulas for the determination of
the equation of state were given. The input quantities are the baryon and |
charge density and, of cburse, the coupling constants of tHe‘meéons. Sincé
the Lagrangian isvesSentialiy'a many-body Lagrahgian because of Fhe meah field
approximation and the nonTineaf s—model potential U(o),'if is reasonable to
determine these Quantitie§ from nuclear matter properties. A‘critique'bf this
method is given in ref. 9. The known bulk'properties of nuc1éar matter are
the binding energy of ~15.96 MeV per partic]e ét a satyratibn density Ny = |

0.145 fm 3

, a compressibility of 200-300 MeV, and an asymmetry-energy of
37 MeV. The quantities to be determined are the ratios of coupling constants
and masses g /m, g /m, and g /m (only the ratios affect the |

Y » S S 1\ R 0. D i ‘ ,
energy), the n-N coupling constant 9. > and the parameters b and c of the
potential U(s). The entire asymmetry energy comes from the difference in

proton and neutron fermi energies and the o meson; then the equatioh

1 22 — 1 —
-5 Moo, * <wvyokoT3 5 Y,> + <P YoPoY, > = const ng * 37 MeV (nn_—,np) ng

so]ved for nuclear denéity "o determines go/mo = 2.61 fm'lQ The three
remaining bulk properties of nuclear matter cannot determine go/ﬁo,

gw/mw, b, and ¢ Hnique]y, thus leaving some liberty in the choice of '
these. We exp1oit'this freedom by choosing parameters that yield a different
behavior of the equation of state in the unknown high dénsity region above
saturation. Two sets of parameters, which yield a compressibi]iiy K = 280 MeV
at the saturation.poiqt but which are soft (I) or stiff (II) at high density,

are
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0.98 fm b = -0.734 c = 6.856 set I

(]
il

- 1.13 fm go/mq 1.26 fm gwlmm

2.31 fm b

It
1
]
L]

3.14 fm gw/mw 0.004 ¢

(=]
It

1.22 fm g_/m_ 0.008 set II

.In the normal etate (w =0) the nuclear matter properties do not determfne the
n—N‘coupling constant g,- The p—wavebscattering length gives a 9. =‘.‘ |
1.41 fm. However, repulsive short-range correlations, A—reéonance admixtures
to huc]eons and finite =N vertex cutoffs tend to redgce the effective =-N
coupling constant. Consistent with the view that our Lagrangian is‘an
effective one whose coupling consfants'shou1d be fixed by known nué]éar
'_properties, g“.must not exceed . 1.13 fm fof set I and 1.22 fm for.setvII

SO thet the critical density for coﬁdensation 1ies above the normal density,
n_. MWe take these upbef 1imits in the subeeqeent calculations. This means

0
that, within the frame of this theory, the pion condensateris<as strohg as

coﬁpatib1e"wfth butk nuciear ﬁatter propertjes. A1l parameters are assumedAv
densify independenf.. There is ho're1ieb1e experfmenta] | |
eyidence for or against this aesumption.* |

A main difference between both equations of étate is the effective mass
m*. For small values of b and ¢ corresponding to a small contribution of
three- and four-body forces to the total density, m* is smaller and more
density-dependent than for large values of b and ¢c. The net contribution'of

many-body forces at nuclear density is given: by

U(¢) -36 MeV set I, ' (22)

, n_ " +12 MeV  set II
0

which actually is quite large for the softer equation of state.

Given a set ef parameters gn/mc, g@/mm’ gp/mn, g, b, and ¢,

we proceed to solve the above-mentioned seven equations self-consistently.

There are only five independent variables, which have to be determined in a

Y

*However, there is theoretical evidehce in favor of it. See Chin in ref. 3.
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numerical iteration procedure, néme]y o, T, K , ko;-and_EF. The two
fields w, and o  are already determ{ned by the baryon density (from
eq. 9b) and by the charge densities (from eq. 17 and 9d).

The results for the energy per partic1e, the pion condensation energy
Ec/N’ and the asymmetry energy Eo/N from the p-meson are given in fig.‘Z
and 3 for both the stiff and the soft equation of state. In symmetric nuclear
matter, there is no o-field and the chemical potentials He = Mg = w, =
.-kO ére zero. The equation of state fs calculated for a baryon density ng
up to ~5 Nye Above this somewhat arbitrary limit the foundations of'the
present theory become arguable, especia]ly with regard to the transition into
quark matter. Since the p-meson, which favors isospin symmetry, plays a
decisive role in accounting for the asymmetry energy of nuclear matter, we
consider its inclusion in a theory of neutron star matter to be essential.
The proton population in dense neutron star matter is of course enhanced by
the o-meson. This in turn enhances the pion condensate through the
requirement of charge neutrality. Neutron matter has a larger energy per
particle than nuclear matter; approximately han the difference is the excess
neutron fermi energy and the rest comes from the o-meson. For neither
parameter set is neutron matter self-bound, although the energy has a minimum
at ng ~ 0.55 Ny for the soft equation of state. Were it not for the o
meson, however, bbth equations of state would yield a self-bound state at g
~ 0.6-0.8 n, (not shown).

The pion condensation energy is 1arger-for‘the soft equatioﬁ of state in
spite of the smaller coupling constant. It also is larger for neutron matter
than for nuclear matter, since the neutron excess ‘drives the process n » p *

m . The =N Eoup]ing constants are.chosen such that the condensate

threshold starts at saturation energy in nuclear matter. In neutron matter,
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the threshold is also around ng ~ N, or a little above. The behavior of

) v
the condensate is quite different in the two cases.” For the stiffer equation
of state and in nuclear matter it exjsfs only for densjties 1.0 n, < ng <

3.9 o with a Qery small condensation energy of ~0.5 MeV. For the soft
equation of state both for nuc lear and neutron matter, the condensation energy
is larger and continuously growing with the density. The o field encourages
pion condensation, the condensation energy being about twice as large for_ 0

+# 0 as éompared with o = 0. The condensation energy in chiral

mode]slo’ll)

depends very much on the details of the =N-interaction and
.ranges from ~0 to ~80 MeV at ~4 no.A

The asymmetry energy ED/N'has the same qualitative behavior for both
versions of the equation of state; it increases monotonically in the normal
state and tends towards a saturatioﬁ in the pion condensed phase. This can be
understood from the t}end of the o -field and the chemical potentfa]vu“;
v'see fig. 4a,b. The chemical potential is quite sensitive to the piohv
condensate. Without it, it grows monotoniéa11y, while the neutron Fermi
energy is balanced by the combined electron and proton energy. In the
presence of a pion condensate, much of the negative charge of the Fermi-sea of
electrons and muons is taken over by = , thus limiting the growth of the
chemica] potential. At g~ 5 00> the pion charge dénsity'n" is six to
seven times as large és the total lepton density No + nu' The results for
the soft équation of state are not shown in fig. 4, because they differ only
10-20% from those for the stiff one. Without the o, -field, the chemical
potential has generally the same behaQior (not shown), except that it is
generally smaller for the reéson that mostly the quantity K0 = ko -
9, 0 Qetermines the time component of the isospin current Jg, which is
given by baryon and charge densities (eq. 17). For o = 0 also k0 = -y

m

has to be smaller to yield the same-Ko.
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The p--field has in general a behavior similar to that of the chemical:
potential, fig. 4b. Without a ¥ -field it increases first linedrly then less
than linearly, when the 1éptbn density starts to cohtribute substantjajly to
the current 3%, as seen from eq. (17) and eq. (9d). With a <w>-field,
its growth is limited from the p self-consistency equation (9d).
The o contribution to the single particle energy is approximate]y
vprdportiona] to the 04—field and repulsive.: At“;B ~ éﬁpo'the répu]sion

is ~30 MeV with a = —field and a o ~field of 0.05 fm I

!

and ~45 MeV without
a w -field and'a o —-field of 0.1 fm ~. The main soUrée of the asymmetry
energy results from the o-N coupling and not from the o _field energy

- 172 mong, which is attractive and yields only 15-30% of the o—N
contribution. The o -field as we]H as the asymmetry ehergy'Eo/N are rather
similar for both equations of state.

The o —field has also an important inf]uehce on the proton/neutroﬁ ratio
np/nn, since its repulsive energy favors isospin symmetr&. Figure 5
displays the proton/neutron ratio for all combinations of o and # fie]dév
for‘neutron hatter. The presence of a p field enhances the proton density,
which, in turn, enlarges the pion condensate thfough the chafge neutrality
condition. Thesé effects can be quite substantial ét densities around 5 Nys
where in the presence of a pion condensate more than a tHird of all baryons
are protons. It shou]d be kept in mind that for an interacting nucleon system

the chemical potentials M and u_ are not dependent on the respective

P

densities in a unique way, though still uy_ =, + Mo holds true.

n- p T ‘ S
Again, there is no substantial difference between the results for the soft
and the stiff equation of state, the proton/neutron ratio for the Tatter one
is generally a 1ittle larger. These results indicate that the matter in the

center of a neutron star, where densities around ~5 o and even larger can
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be expected, is far from pure or nearly pure neutron matter and cohtains a
substantial amount of protons.
| One of the most interesting aspects in the present ca]culation are the'_
strength.of the pion field ¥ and related quantities like thé spin-isospin
density and the pion chérge deﬁsity n_- The pion field = is important fo}
the cooling scenario of neutron stars. Figure 6 shows a monotonic increase of
the 7 field for neutron matter. "The results for both equations of state are
very similar. For symmetric nuc lear matter, however, the form of the eqguation
of state makes an enormous difference. Whereas a smooth increase of the #
field accompanies the soft equation of.étate, the stiff one limits the T
field to the region below 3.9 o for a coup]ing constant 9, = 1.22 fm.
| The p-wave =N attraction is for this nonchiral theory below a certain
effective nucleon mass m* not strong.enough to support pion condensation in
nuclear matter. In contrast,_for neutron matter, the larger driving force associated with
the diffefénce of the neutron énd proton chemical potentials » 'maintains_
the condensate. The class of §o1utions for the n  fields do not result in
osci]]atibns of the baryon densjty <$}Yowv> un]ike the case of a neutral
#°  condensate. However, the spin-isospin density <$V Y5 Y3 Ty wv>
has pronounced spatial oscillations. It is nonre]ativisiiéa]]y given by
é@v Y5 Y3 T b> n(pt) + n(nt) - n(pt) - n(nt) with the nucleon
spin pointing “in z-direction. The baryon density <$} Yo ¥y = n(pt) +
n{nt) + n(pd) *+ n(n) is conétant.' In the condensate phase, the quantity
RSI =‘<$§ Y5 Y3 T ¢V>/<$'yo b, > measures the magnitude of the
spin-isospin oscillations. The quantity RSI is given by eq. (9c)

2+
kSHmi ko + 29 o K

2
. 0
ST ~ gﬂk ng

" (23)
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Unlike symmetric nuclear matter, the. o field contributes to the spin-isospin
amplitude as well. Figure 7 displays the quantity RSI" As for the -F

field, the differences in RSI between the soft and the stiff equation of

state are small for neutron matter and substantial for symmetric nuclear
matter, where RSI £ 0 only in a limited density range. In spite of the

large spin-isospin oscillations, the equation of state for nuclear matter is
only moderately softened by pion condensation (more for the soft, 1ess-for the
stiff version) up to a density of ~4'n§, which is at the upper 1imit of what
is obtainable in high-energy heavy-ion collisions.

Figure 8 shows the pressure for nuclear matter. The pressure i§ reduced

to ~2/3 of its value without pion condensation for the soft version and nearly
'not.affected for the stiff version. The effects on the hydrodynamics of
nuclear collisions is limited in .both cases. Even if attempts to detérmine
the equation of state from heavy-ion collisions shoulq succeed, it is unlikely
to establish or refute the ekistence of "a pion condensate from these results,
since the difference between soft and stiff versions, both allowed by nuclear
matter bulk properties, is éubstantia11y larger than the difference between
the condehsate and»tﬁe normal solution. It is remarkable that the equation of
state for the stiff version is nearly identical for the normal and pion
condensed state with a <1 MeV difference in nuc]ear'matter, and yet the spin-
isospin oscillations reach as much as ~0.6 of the baryon density. It is
possible that the pioh condensate has a substantially larger impact on pion
radiation and production than on the equations of state.

The particle densities for protons, neutrons, electrons, muons, and pions are
disb1ayed in Fig. 9 for neutron matter. The difference between the soft and stiff
equations of state is not important. The pion density is defined as the"charge
density n. of the m condensate. For the other (neutral) mesons; o,w,ﬁ; the fie]d

strength rather than the particle density is the meaningful quantity.
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IV. Neutron Star Structure with Various Equations of State

The composition of a neutron star is of considerable interest for
astrophysics (pulsar phenomenon and star deveiopment) and nuclear physics
(dense nuciear matter). It offers a unique possibility to get--albeit rather
indirect]y——informatioh about stable baryon matter at supernuclear densities;
Starting from an assumed nucleon-nucleon force, one can construct equations of
state and by inserting these into the Tolman-Oppenheimer-Volkoff . (TOV)
equétionslz) of general relativity to obtain mass, pressure, and density
profiles of the star. These results include, for example, equations of state

13)

based on-Reid, BJ, and tensor nucleon-nucleon interaction , various
variations of the Reid potential treated with Pandharipande's constrained
variational technique14), and a mean-field theory including o, w, and spin 2

f°-meson15).

These models obtain maximum masses of 1.6f2.5 M;, depending on
the assumptions about nucleon-nucleon forces and coupling constants. The
maximum masses, obtained with the present theory are within this range or
Tower, depending on the stiffness of the equation of state and on the
existence of a pion condénsate, respectively. A good review of neutron star
structure and related problems can be found in ref. 16).

It is quite illustrative to have a look at the relation between the energy
density e and the pressure P; figure 10 displays the P(e) curve for three
cases. The soft equation of state comes nowhere close to the causality limit -
P = ¢, whereas the stiff one approaches this limit in the density_range of
interest for neutron star structure. A1l equations of state with a massive
vectorboson approach the causality limit asymptotically. For the stiff
version, the result is nearly identical for the normal and pion-condensed
stafe. Again, above ng ~ 10 L the validity of the present theory of

baryon matter is questionable. It is interesting to see that the softest
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vefsjon, némely the soft equation of state with pion condensate, hasva smaller or
eqda] gradient to the curve log P = 4/3 log ¢ in the density range 1.5 g <
ng < 4 no."Such behavior can result in instabilities and oscillations of
stars. _ . - -

The presence of a pion‘condensate may lead to a considerab]é softeﬁing of
the equation of state and the pressure, but not hecessari]y; again it depends
on thé gualities of thé nonlinear o interaction. The difference in pressure
for the stiff and the soft version can be as large as a factor 4.

The results for P(e) serve.as input into the TOV equation for hydroétatic
equilibrium
L= -6 [e(r) * g(r)J[M(f) + 4ar> P(r)] :  (24)

, : rf1l - 2GM(r)/r] : '

Here P(}) is the local pressure, e(r) the local energy density, and M(r) the

gravitational mass of a sphere of radius r
] 3 ' ‘ . .
M(r) = -I. e(r') d’r : o (25)
0 ‘ :

-40 . 2

- The-gravitational cohstant is G = 2.62 x 10 fm-. Numerical integration:

of the TOV equation gives the profiles M(r) and P(r) for a given central
energy density eC(O). The main result of interest is the total mass at a
given central density, since thermass is the only property of a neutron star -
on which there are some reasonably accurate data ahd is more strongly
connected to the eqﬁation of state than other currently measurable

properties. The other two measurable quantities, surface temperature and
rofationa1 velocity, depend on the initial conditions, on the age of the star,

and only slightly on the structure of the baryonic matter. As can be seen

from fig. 11, the total mass as function of the central energy density and the

!
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maximum mass depend strongly on the particular equation of state. ‘The pion
condensate together with the stiff equation of state does not affect the
maximuh mass of ~2 Mg muéh; at the upper limit of the mass range the mass is
very insensitive to the central density. For the soft equation of state,’the
pion condensate has a substantial effect, however; without a condenSaté a
maximum mass: of ~1.3 Mg is achieved, with a condénsate only"one of ~0.9 M.
The mass vs central density curve is still growing at a central energy density of

4, which is assumed as a somewhat arbitrary upper 1limit of the density

4

~8 fm
range of this theory corresponding to a baryon density of ~10 fm '. The
dete}mined masses for the pulsars Her X-1 and Vela X-1 are ~1.4 M@16). This
seems barely to allow the soft equation of -state without pion condensation and_
appears to rule out the pion condensate with this equation of state. The
experimenta]]y determined masses, if they ho]d true, indicate that stiff
versions of the equation of state, whichvdescribe the bulk properties of
nuc lear matter, can‘giQe the right mass of d-neutron star together with a
moderate central energy density of ~2vfm"4.

A distinction between the pion-condensed and the normal phase cannot be

made from the observed mass alone. The cooling behavior of a neutron star,

especially that of the Crab pulsar, might clarify this question17).

A pion
COndehsate is able to speed up the URCA process and the cooling of the star
afters its birth in a éupernoVa-exp]osion.

'-The URCA process is the g-decay of a neutron with interaction with a

second neutron to conserve energy and momentum:

n+ns>n+p+e + ;é . V (26)

The cooling time of a neutron star from an initial temperature Ti to a

final temperature Tf can be expressed by17)



At (Ti > Tf) = - f T(-T)'— o : ' (27)

where C(T) s the‘specific heat per unit volume and L(T) ié the luminosity per
' uﬁit volume. The heat capacfty,is dominated by the neutrons. On the other
hand, the luminosity is démihated by the URCA process in the absence of the
pion-condensate and by the pion-induced beta decay in the presence of the

17,18) We would like to compare the cooling times for different _

condéhsate.
equations of state. Let us first regard the case without a pion condensate.
Without nucleon superfluidity the URCA process dominates the cooling down to
central temperatures\of*lo7 K, below which neutrino bremsstrahlung n + n(b)
>n+n(p)*tv+?y from the crust takes over. Sihce most of the luminosity is
concentrated in the hottest central part, the central densities are taken.for

the cé]éu]ation of the specific heat and the luminosity. The connection

- between cooling time and central temperature is given by integration of

eq. (27) (
| Co 1 9 : '
at (in seconds) = — —& 10 (28)
6L0 T9 ' o
f
\ 8 . .
where C(T) = Co T9 and L(T) = L0 Tg and T9f is the final

temperature. The quantity T9 means units of 10° K. The jnitial

temperature dOesn't matter, since most of the coo]ing'occurs shortly after the

birth of the neutron star. Table I shows the results for the two equations of

18)

state with and without pion condensate. The standard cooling scenario™

with«nB =n, and an effective nucleon mass m' = 0.8 m yields a final

 temperature 0.32 x 10° K. Vastly different equations of state and central

densities give similar results. In all cases the final central temperature
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lies below the observed upper limit of 0.85 x 107 K. It has to be kept in
mind that the central temperature 1s'connected-to the surface temperature‘by
model calculations of heat transport in the star and fhus subject to further
uncertainties. This particular centré] temperature correspOnds;tb a surface
temperature of 4.7 x 106 K.

Let us now.focus on the case with pion condensation. The pibn—condénsed
phase has a smaller specific heat than the normal phase becausé of a smaller
humbervof electrons and muons. The Tluminosity, hdwever, is greatly enhanced
| by the pion condensate. The most recent and complete calculation about pion

18)

cooling involves a chiral symmetric ansatz for the o énd 7 fields. We

adopt formula (53) of ref. 18) for the 1uminosity’with_gA =11.36,and
n_ing =1/2 sin 6. A factor 4 has to be multiplied to this formula to
account for the inverse reaction and the g decay into muons.

To compare the stiff and soft equations of state, our model star is

assumed to have a mass of M ~ 0.75 Mo, since this is the maximum mass obtained

with the soft version at e. = 8 fm‘4. The equation (28) is slightly

~ modified due to the different (TE)_Eemperapyre dependence of the pion

cooling mechanism

at (in seconds) = 2 _lﬁ' 109 v , (29).

4LO Tg '
f
The values of o2 are 0.007 for the stiff and 0.86 for the soft version,
4

since the pion condensate is roughly 10 times stronger at €. = 8 fm than

at_ec =1.13 fm—4. The final temperatures are a factor 30-100 below the

ones without pion condensate. The model calculation of ref. 18) would yield
a cooling time of ~350 s.. In the pion-condensed state, final temperatures and

cooling times vary more with the equation of state than in the normal state;
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these differences are of little importance, however, since they are not yet

observable.

“ V. Conclqsibn_
Within the frame of a relativistic mean field theory of isospin symmetric
and asymmetric-matter, various aspects of the equation'bf state have been
sfudied.' No evidence for exotic behavior of:the nuclear equation of state was
found,.no second minima and kinks due to pion condensation and the Tike. The
pion condénsate softens the equation of state, but so does the ¢ potential U(a)
to an even greater extent. Unfortunately, the partic]e spectra from heavy-ion
collisions do not provide so far a useful tooT for an even approximate
détermination of the equation of state. Togethef with previous calculations,
i.e.10:11) it 45 obvious that different models give rather different
equations of state for ng > 2n0, even though they all agree at ng = Ny
| Concerning neutron matter and the "experimental" situation for neutron
stars, it looks somewhat better. The‘mass of ~1.4 Me seems to rule out
certain soft equations of state, if they are in a pion-condensed state. The
inf luence of the pion condensate on the composition of the-star depends very
much on thé‘basic U(o) interaction and ranges from nearly none to
substantial. The stiff equation of state allows a maximum méss of ~2 M®'and'
at ~1.4 My yields a moderately strong pion condensate at ng ~ 2.7 Ny central
baryon density. The central density is rather sensitive to the precise
equation of state, however, and can go up to ~10 "y for softer versions.
The p meson is essential -for a consistent theory of neutron.star matter, since
it contribufes substantially to the symmetry energy in asymmetric nuclear

matter. Its,presenée stiffens the equation of state and enhances the pion

condensate.
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The present experimental upper limit of the surface temberature of
4.7 x 106_K corresponding to a core temperature of O.BSXIO9 K, cannot
djscriminate betweeﬁ cooling mechanisms, let alone between equations ofistate,
even though they yield rather different central densities. A Towering of this
1imit by a factor 4, ﬁowever, would rule out all cooling scenarioS without
pions but would not be able to determine the strength of the condensate nor
the equation of state.

In summary, the presently known duantities of a neutron star allow the
conclusion that probably a stiff version of the equations of state is present
together with a moderate central baryon density ng ~ 2-4 e Whether a
pion condensate exfsts orvnot is yet to be determined’from further temperature
measurements.
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Division of Nuclear Physics of the Office of High Energy and Nuclear Physics

of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

. ._____ . References
1) N.K. Glendenning, B. Banerjee and M. Gyulassy, LBL-preprint 12704
(accepted by Annals of Physics)
2) M.H. Johnson and E. Teller, Phys. Rev. 98 (1955) 783
H.P. Duerr, Phys. Rev. 103 (1956) 469
3) J.D. Walecka, Ann. of Phys. 83 (1974) 491
S.A. Chin, Ann. of Phys. 108 (1977) 301
B.D. Serot, Phys. Lett. 86B (1979) 146
B.D. Serot and J.D. Walecka, Phys. Lett. 87B (1980) 172

F.E. Serr and J.D. Walecka, Phys. Lett. 798 (1978) 10

F e i e e m—— = - e e s e s



| -23-
J. Boguta and J. Rafelski, Phys. Lett. 71B (1977) 22
J.~Boguta and A.R. Bodmer, Nucl. Phys. A292 (1977) 413
J. Boguta, LBL preprint 12584, to be published in'Physicé Letters
J.JTreiner, H. Krivihe, O.Ithigag and J. Martore\],‘Nucl. Phys.,AéZl
(1581) 253 and references therein o | |
M. Kutschera, Phys. Lett. 1088 (1982) 229
N.K. Glendenning and P. Heckihg,‘Phys. Lett. 116B (1982) 1

G. Baym, Les Houches 1977, ed. Balian, Rho and Ripka (North Holland,

"Amsterdam, 1978), Vol. 2, p. 748

B. Banerjee, N.K. Glendenning and M. Gyulassy, Nucl. Phys. A361 (1981) 326
H.J. Pirner, M. Rho, K. Yazaki énd P. Bonche, Nucl. Phys. A329 (1979) 491
P. Hecking, Nucl. Phys. A348 (1980) 493 '

- P. Hecking, Nucl. Phys. A379 (1982) 381

12)
13)
14)
15)
‘ l6)
17)
18)

J.R. Oppenheimer and G.M. Voikoff, Phys. Rev. 55 (1938) 374

V.R. Pandharipande, D. Pines and R.A. Smith, Astroph. J. 208 (1976) 550
R.C. Ma]oné, M.B. Johnson and H.A. Bethe, Astroph. J. 199 (1975) 741

V. Canuto, B. Datta and G. Kalman, Astroph. J. 221 (1978) 274

G. Baym and C. Pethick, Ann. Rev. of Astron. and Astrophys. 17 (1979) 415
0.V. Maxwell, Astroph. J. 231 (1979) 201

0.V. Maxwell, G;E. Brown, D.K. Campbell, R.F. Dashen and J.T. Manassah,
Astroph. J. 216 (1977) 77 '



24

Table 1. Final central temperature Tf at an age of 924 yrs (Crab pulsar) and cooling time at

to the observability limit 0.85 x 109K of the centra] temperature are given for the stiff and

the soft equation of state in the normal and the pion-condensed state. The mass M is
determined by the maximum baryon density ng = 10 ", for the soft equation of state. The

central energy density €co baryon density n,, as well as the heat capacity C and the

B
luminosity L, are shown.

€ ng ’ o L T9f (924 yrs) At
fmt ot erg(cm‘gK)_1 erg(cm3 )L K
stiff . L7524 251090 4.2 107 0.39 8.6 yrs
- state M=1.33 M, 20 21 |
soft | 9 10 64100 43102 o 21 yrs
stiff . : 1.13 1.6 2.3.10°0 0.6 10%° 0.014 1800 s
P M=0.75 M,

soft condensate 8 10 5 1020 1.2 1027 -~ 0.004 200 s -
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Figure Captions

The single partic]e‘energy E, for both fermi seas as a function of

The energy per particle minus rest mass for nuc1ear (nq = 0) and

’ neutronl(n = nB/2) matter as a function of the baryon density

q ‘
ng for the soft equation of state in the normal state ( » = 0).

The (negative) condensat ion energy per particle as a result of
pion-condensation for nuclear ‘and neutron matter as a function of the
baryon density ng for the soft equation of state.

The (positive) asymmetry energy per particle as a result of the

p—meson coupling for neutron matter'as‘a'function of baryon density

ng both in the pion—condensed'and normal state for the soft

equation of state.

The same as fig. 2a for the stiff equation of state.
The'sametas‘fig, 2b for the stiff equation of state.

The same as fig. 2c for the stiff equatibn of state.

The chemical, potential Mg in neutron matter\as a function of baryon
density g for the stiff equation of state both in the.normaT and
pion-condensed phase. \ .

The Q —fie]d as a function of baryon density ng in neutron matter
for the stiff equation of state, both in the nqrma1 and
pidn—ﬁondensed bhase. A

The pkoton/neutron ratio np/nn in neutron matter as a function of
the baryon densify ng for the stiff equation of state. The full

curves correspond to the normal state, the dashed ones to the

pion-condénsed-state. The results for o =0and o 4 0 are shown.
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Fig. 1. The singlé particle energy E, for both fermi seas as a function of

»p" with P = 0.



E/N (MeV)

150

100

50

-20

Néutron matter

Nuclear matter

| | l

| 2 3 4 | 5
Ng/N
B O l XBL-829-4523
Fig. 2a. The energy per particle minus rest mass for nuclear and
neutron matter as a function of the baryon density

ng for the soft:equation of state in the normal state («qy = 0).
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Fig. 2b. The (negative) condensation energy per particle as a result of
pion-condensation for nuclear and neutron matter as a function of the

baryon density P for the soft equation of state.



-29- .

60— T T T T T

50—' ‘ . _ o —
Normal state

40t o _

Pion-condensed state

Ep/N (MeV)

nB/nO

XBL-829-4525

Fig. 2c. The (positivé) ésymmetfy energy per particle as a result of the
o-meson coupling for neutron matter as a functfon of baryon density
ng both in the pion-condensed and normal state for the soft

eqUation of state.
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Fig. 3a. The same as fig. 2a for the stiff equation of state.
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Fig. 4a. The chemical potential Ve in neutron hatter as a function of baryon
density ng for the stiff equation pf state both in the normal and

pion-condensed phase.
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Fig. 4b. The R -field as a function of baryon density ng in neutron matter
for thé stiff equation of state, both in the normal and

pion-condensed phase.
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The proton/neutron ratio,np/nn in neutron matter as a function of
the baryon density ng for the stiff equation of state. The full
curves correspond to the normal state, the dashed ones to the

pion-condensed state. The results for o =10 and p # 0 are shown.
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Fig..7. The spin-isospin oscillation RSI for nuclear and neutron matter as
a function of the baryon density ng- The full curves depict the

stiff and the dashed curves the soft equation of state.
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Fig. 8. The pressure as a function of the baryon density ng for nuclear
matter and both equations of state. The full curves correspond to
the normal state, the dashed one to pion-condensed state. For the

stiff versions both curves are nearly identical.

_ XBL§29-4527



-39-

. 0 r T ! l |
08— . - ,' o o —
n
06—
& —
~ ‘ 2
c

. XBL 8210- 1241

Fig.9 . The partic)e densities for protpns, neutrqn§, e1e;trons, muons, and
pions in uhits of the baryon density for neutron matter as a function

of the baryon density for the stiff equations of state.
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Fig. 10. The pressure as a function of energy density ¢ for neutron matter and
both equations of state. The full curves correspond to the normal
state, the dashed one to the pion-condensed state. For the stiff
version, both aré very similar. The straight curve P = ¢ shows the
cau§a1ity limit. The other straight full line corresponds to the

relation log P = 4/3 log ¢ + const.
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Fig. 11. The total mass of a neutron star in solar mass units as a function of

the central energy density :C for both versions of the equation of

state and for the. normal and pion-condensed state. The relation
. between baryon density and energy density depends on the equation of

state and is not given by a unique factor.

Ly



This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.




E S SR |
v BES
-,

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



