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Abstract 

A relativistic field theory of isospin asymmetric matter and of neutron 

star matter in particular~ which is compatible with nuclear matter bulk 

properties, was formulated in Part I of this series and treated in mean-field 

approximation. The self-consistent solutions include the 0, 00, and p fields 

for bO~h the normal and pion-condensed states. The bulk properties of nuclear 

matter such as saturation density and energy, compressibility and asymmetry 

energy impose rather stringent restrictions on meson-nucleon ~oupling 

constants and the parameters of the nonlinear interactions in the a-model. 

The numerical results include the equation of state, particle densities as 

functions of charge and baryon density and the composition of a neutron star. 

Based on these results, we discuss neutron star cooling for various equations 

of state. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear Physics 

of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 



I. Introduction 

This paper presents the results for a relativistic field theory of 

isospin asymmetric baryon matter for densities around and above nuclear matter 

density but below the transition into the quark-gluon phase, which has been 

formulated elsewhere. 1) The theory of dense nuclear matter is of interest 

both in nuclear physics with respect to heavy-ion collisions and in 

astrophysics concerning neutron stars and supernova explosions. The 

participating particles in this theory are the nucleons, the four mesons rJ, 

W , n , and ~ and e- and ~- for B-stability. The normal as well as 
~ ~ 

the pion-condensed states are studied. The main constraint on the parameters 

involved in this theory are the bulk properties of nuclear matter: saturation 

density no = 0.145 fm- 3, a saturation energy of -15.96 MeV per nucleon, 

compressibility of 200-300 MeV, and asymmetry energy of 37 MeV. Also, the 

system is constrained by charge conservation and equilibrium with respect to 

its composition. The equation of state is extrapolated to higher density with 

the same set of parameters, which fits the saturation properties. 

The paper is composed as follows: In section II, expressions for the 

energy density, pressure. and all field equations and constraints are 

formulated in mean-field approximation. They are derived from a Lagrangian 

with interacting mesons and nucleons and a nonlinear a-model. In section III, 

various numerical results are given such as the equation of state, various· 

particle densities, the chemical potential, the neutron/proton ratio, and the 

strength of the meson fields, all as functions of the baryon density. Section 

IV involves a scenario of a neutron star with mass and density distribution 

for several equations qf state ~s well as a cooling estimate. Section V 

finally summarizes the results. 
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II. Energy Density and Self-Consistency Equations. 

It is generally bel ieved that at moderate density the interactions 

between nucleons can be represented by the exchange of mesons. Above a not 

very well defined critical density presumably a relativistic field theory of 

quarks and gluons takes over. In the low and intermediate density regime, the 

four mesons a, w , 'If, and () dominate the nucleon-nucleon interaction. 
II II 

Whereas the isospin zero particles a .and ware present at all densities and 
II 

isospin states, the pseudoscalar 'If occurs only about a certain critical 

density in the form of a pion-condensate, and the p exist only in 
II 

isospin-asymmetric matter- according to-its y -coupling. - A-relativistic mean 
. II 

field theory based on a and w only was introduced some time ago2) and 
II 

been extensively studied by Walecka et a1. 3 ) The repulsive wand the 
II 

has 

attractive a together with nonlinear interactions bf the a with itself4 ) can 

account for the saturation properties and the compressibility5) of symmetric 

nuclear matter, whereas the () is essential for obtaining the asymmetry 
II 

energy in asymmetric ma~ter. 

Since the choice of the Lagrangian and the resulting formalism has been 

discussed in part I of this paper, we will subsequently present only the 

essential results. The full Lagrangian £ for the system of interacting 

nucleons and mesons is 

£ = £Dirac + £ + £ + £ + £ 
a w TT p 

+ g a ( WW) - g w (~ yllW) - U(CT) 
a w II 

(1) 

- g (a - ~)·(WY5y\l~w) - g o .• J\l 
TT II - P ~ll -

where J\l are the three totalisospin 4-currents corresponding to £. They 

are 
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II . 1 (- ll) . Il Il" J = - ~y T ~ + ~ x a ~ + p x 0 2 _ _ __" 

The free field Lagrangians are written in ref. 1). The attract,ive p-wave 

pseudovector ~N-interaction is adopted, since the pseudoscalar coupling 

gives too large a repulsive s-wave interaction. The a-self interaction U(a) 

is taken frOOl ref. 1) and has the form 

(2) 

(3 ) 

The p -meson has to be coupled to the total isospin current JIl in order 
Il 

to avoid instabilities for simultaneously growing p and ~-fields.6,7) 
Il . 

The full (time and space dependent) solution of the Lagrangian £ and the 

Dirac Equation following from it is intractable; hence a solution in 

mean-field (Hartree) approximation is sought. By replacing all the fields 

with their mean values with the coupling constants determined by nuclear 

matter properties rather than by hadron scattering, the Lagrangian becomes 

an effective many-body Lagrangian. 

The p is taken as a space-time constant in the third isospin 
Il 

direction. Another possibility would be a space-time dependent solution in 

the same isospin direction as the ~-field. This solution, however, is 

energetically disfavored by the Lagrangian. The pion is the only mesQn, 

which has a space-time structure. This follows from the attractive p-wave 

interact ion. It is a plane wave of the 'form 

+ 1f ±ikx 
~-= - e • nO = 0 

/2. 
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with kx = k t - k x. The mean value of the pion field is given by the 
0__ 

quantity 'if. The nucleon source currents <~(x) ~ (x» and <~(x) y ~ (x» 
~ , 

are constant in infinite nuclear matter; therefore, the a and w -fields are 
~ 

constants as well. In r~flection of a general theorem,8) the space-like 

parts of the 4-vectors wand () vanish, and only the time-like components 
~ ~ 

Wo and Po survive. 

With all the above replacements made, and after some algebra, the Dirac' 

equation can be written as 

, with 

p = p~ - gw w. 
~ ~ 

K = k - go p 
~ ~ ~ 

* m = m - g. rr 
cr 

.. 
where the 8-component spinor U(p) describes the nucleon wave function in a 

momentum eigenstate and 

~ (x) = U(p) e- ipx 
v 

and is related to the original Dirac field, ~, of (1) by a local isospin 

rotation 

(4) 

(5) 

(6) 

(7} 

(8a) 

(8b) 

The Euler-Lagrange equations for the meson fields, derived from £ are given by 
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(9a) 

(9b) 

(9c) 

(9d) 

(ge) 

where the brackets < > denote the exp~ctation value of the nucleon currents 

in the ground state, i.e., the lowest energy eigenstates of (4). Explicit 

momentum space expressions for these can be obtained as in Ref. 1. The 

Fermi surface is discussed below. The equations (9c and 9d) have only one. 

isospin component now. The resulting hadronic energy density is given by 

where 

122 
+ - m 0 20 0 

+ 1 -,f (k k ~ _ m2) , 
2 ~ 'II' 

(10) 

(11 ) 

£ is the ground state expec~ation value of the lagrangian £ after exploiting' . 

the Dirac equation (4). 1he leptonic energy density E1ept coming from the 

Fermi seas of relativistic electrons. and muons is given by 

.P 
d3p , 

Jp2 
P 

d3p" fe 
+ m 2 f~ ~p2 + m 2 

E lept = 2 + 2 
0 (2'11')3 e 0 (2'11')3 ~ 

. (12) 

~2' p ,;~! _ m 2 P m 2 
= = e e ~ -

~ lJ ~ 
(13 ) 
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Beta equilibrium of the process n ~ p + e- (~1 + ve (v~) and (if pion 
- + condensation exists) n(p) ~ p(n) + ~ (~ ) requires the equality of the 

chemical potentials ~e = ~~ = ~~ = -ko. Neutron excess results in a 

surplus of ~- with negative pion energy ko• In symmetric nuclear matter, 

ko is zero with equal numbers of positive and negative pions. The mean pion 

charge density n is given by 
~ 

The Dirac equation has to be diagonalized in order to obtain the single 

particle energies. This results in a fourth order equation for the 

eigenvalues po. 

(14) 

D(P) = ((PP) - E;2)2 - (PK)2 _ (2g 1f")2 r(PK)2 - m*2 (KK)J = 0 (15) o ~. 

where 

This equation has four roots as functions of the 3-momentum P, E±(P) for 
. - -

the particles and E±(~) for the anti-particles. Figure 1 gives an 

illustration. For P1 = 0, the two particle branches are displayed as 

function of ~I' which is parallel to the k-axis. The Fermi seas of E± 

solutions are filled up to the Fermi energy. The eigenstates corre-

sponding to the E± solutions should not be interpreted as protons and 

neutrons respectively but are mixtures of both. The Fermi surface has no 

reflection symmetry in the PII axis except for the case Ko = 0 of nuclear, 

matter. For neutron matter, the lower (-) Fermi sea is predominantly 

occupied by neutrons. The isospin asymmetry is responsible for the 

(16 ) 
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asymmetry of the (-) branch, wheras a pion-condensate produces a gap 

between the (+) and (-) .branch • 

. The integral~, in the expression are .two dimensi!Jnal in PI and PII and 

'~ are performed numerically (where the momentum vector K of the pion defines 

the parallel direction). 

For the calculation of the energy density seven quantities must be 

determined at a given charge and baryon density: the four meson fields 0, 

Wo' DO' and w, the pion frequency and wave numbers ko and k, and the 

Fermi energy EF. These require seven independent equations for their 

determination, the four Euler-Lagrange equations and three other ones 

-2 
J = w')K + <ljJv y 
-3 -

(17) 

(18 ) 

(19 ) 

where nq is the total electric charge density, and nB, n ,~ are e j.l 
number 

densities' for har.yons, electrons, and muons. In the case of symmetric 

nuclear matter. the charge density is nB/2. whereas in neutral neutron 

matter it is zero. The first two of the above equations are the 

time- and space-like component of the conserved third component of the isospin 

4-current and follow from the equilibrium conditions 

aE: ~e: ' 0 
- - ·:;--k ' = ilk - " o 

that pions should condense in the lowest energy mode. 

The third equation is simply the constraint for given baryon density, 

whereas the first equation is the constraint for given charge density. In the 
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case of neutron matter in a neutron star, the charge density must be zero; 

otherwise the Coulomb interaction would overcome gravity. 

When the seven above-mentioned quantities have been determined for given 

charge and baryon density, the energy density as well as the pressure given by' 

(20) 

can be evaluated. 
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Ill. Equation of State 

.In the preceding paragraph the essential formulas for the determination of 

the equation of state were given. The input quantities are the baryon and 

charge density and, of course, the coupling constants of the mesons. Since 

the Lagrangian is essentially a many-body Lagrangian because of the mean field 

approximation and the nonlinear a-model potenttal U(a), it is reasonable to 

determine these quantities from nuclear matter prOperties. A critique of this 

method is· given in ref. 9. The known bulk properties of nuclear matter are 

the binding energy of -15.96 MeV per particle at a saturation density no = 
-3 0.145 fm ,a compressibility of 200-300 MeV, and an asymmetry energy of 

37 MeV. The quantities to be determined are the ratios of coupling constants 

and ~asse~ g" 1m ,g 1m , and g I~ (only the ratios affect the 
cr ~ w w P P 

energy), the w-N coupling constant g , and the parameters band c of the 
w 

potential U(~). The entire asymmetry energy comes from the difference in 

proton and neutron fermi energies and the p meson; then the equation 

solved for nuclear density no determines g 1m = 2.61 fm- 1. The three 
" p 0 

remaining bulk properties of nuclear matter cannot determine g 1m , 
a (J 

g 1m , b, and c uniquely, thus leaving some liberty in the choice of w w 

these. We exploit this freedOOl by choosing parameters that yield a different 

behavior of the equation of state in the unknown high density region above 

saturation. Two sets of parameters, which yield a compressibility K = 280 MeV 

at the saturation point but which are soft (I) or stiff (II) at high density, 

are 
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g1T = 1.13 fm go 1m = 1. 26 'fm goo 1m = 0.98 fm b = -0'.734 c = 6.856 set I 
fJ 00 

g = 1.22 fm go 1m = 3.14 fm goo 1m = 2.31 fm b = 0.004 c = 0.008 set II 1T 0 00 

In the normal state (;- = 0) the nuclear matter properties do not determine the 

1T-N coupling constant g. The p-wave scattering length gives a g = 1T 1T 

1.41 fm.However, repulsive short-range correlations, ~-resonance admixtures 

to nucleons and finite 1TN vertex cutoffs tend to reduce the effective 1T-N 

coupling constant. Consistent with the view that our Lagrangian is an 

effective one whose coupling constants should be fixed by known nuclear 

properties, g must not exceed ,1.13 fm for $et I and 1.22 fm for set II 1T 
so that the critical density for condensation lies above the normal density, 

no. We take these upper limits in the subsequent calculations. This means 

that, within the frame of thi s theory, the pion condensate is as strong as 

compatible with bulk nuclear matter properties. All parameters are assumed 

density independent. There is no reliable experimental 

evidence for or against this assumption.* 

A main difference between both equations of state is the effective mass 

m*. For small values of band c corresponding to a small contribution of 

three- and four-body forces to the total density, m* is smaller and more 

density-dependent than for large values of band c. Th~ net contribution of 

many-body forces at nuclear density is given by 

/ 

U(o) = -36 MeV 
+12 MeV 

set I, 
set II 

which actually is quite large for the" softer equation of state. 

Given a set of parametersgn/mo' goolmoo' gp/mp' g1T' b, and' c,' 

we proceed to solve the above-mentioned seven equations self-consistently. 

There are only five independent'variables, which have to be determined in a 

(22) 

*However, there is theoretical evidence in favor of it. See Chin in ref. 3. 
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numerical iteration procedure, namely 0', 11', k, ko' and EF. The two 

fields Wo and 00 are already determined by the baryon density (from 

eq. 9b) and by the ch~rge densities (from eq. 17 and 9d) . 

The results for the energy per particle, the pion condensation energy 

Ec/N, and the asymmet'ry energy Ep/N from the p-meson are given in fig. 2 

and 3 for both the stiff and the soft equation of state. In symmetric nuclear 

matter, there is no o-field and the chemical potentials P1I' = Pe = P 
P 

= 

-ko are zero. The equation of state is calculated for a baryon density nB 

up to -5 no. Above this somewhat arbitrary limit the foundations of the 

present theory become arguab le, espec i ally with regard to the trans it ion into 

quark matter. Since the a-meson, which favors isospin symmetry, plays a 

decisive role in accounting for the asymmetry energy of nuclear matter, we 

consider its inclusion in a theory of neutron star matter to be essential. 

The proton population in dense neutron star matter is of course enhanced by 

the a-meson. This in turn enhances the pion condensate through the 

requirement of charge neutrality. Neutron matter has a larger energy per 

particle than nuclear matter; approximately half the difference is the excess 

neutron fermi energy and the rest comes from the p-meson. For neither 

parameter set is neutron matter self-bound, although the energy has a minimum 

at nB - 0.55 no for the soft equation of state. Were it not for the 0 

meson, however, both equations of state would yield a self-bound state at nB 

- 0.6-0.8 no (not shown). 

The pion condensation energy is larger for the soft equation of state in 

spite of the smaller coupling constant. It also is larger for neutron matter 

than for nuclear matter, since the neutron excess drives the process n ~ p + 

11'. The 1I'-N coupling constants are ,chosen such that the condensate 

threshold starts at saturation energy ln nuclear matter. In neutron matter, 
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the threshold is also around nB -, no or a little above. The behavior of 

the condensate is quite different in the two cases. For the stiffer equation 

of state and in nuclear matter it exists only for densities 1.0 no ~ nB ~ 

3.9 no with a very small condensation energy of -0.5 MeV. For the soft 

equation of state both for nuclear and neutron matter, the condensation energy 

is larger and continuously growing with the density. The 0 field encourages 

pion condensation, the condensation energy being about twice as large for p 

J 0 as compared with p = O. The condensation energy in chiral 

models 10 ,1l) depends very much on the details of the 1TN-interaction and 

ranges from -0 to -80 MeV at -4 no' 

The asymmetry energy E IN has the same qualitative behavior for both 
o 

versions of the equation of state; it increases monotonically in the normal 

state and tends towards a saturation in the pion condensed phase. This can be 

understood from the trend of the p -field and the chemical potential p ; , 1T 

see fig. 4a,b. The chemical potential is quite sensitive to the pion 

condensate. Without it, it grows monotonically, while the neutron Fermi 

en!=!rgy is balanced by the combined electron and proton energy. In the 

presence of a pion condensate, much of the negative charge of the Fermi-sea of 

electrons and muons is taken over by 1T-, thus limiting the growth of the 

chemical potential. At 0B - 5 00' the pion charge density n1T is six to 

seven times as large as the total lepton density n + n. The results for e l.I 

the soft equation of state are not shown in fig. 4, because they differ only 

10-20% from those for the stiff one. Without the p -field, the chemical 

potential has generally the same behavior (not shown), except that it is 

generally smaller for the reason that mostly the quantity Ko = ko _ 

go p determines the time component of the isospin current ,~, which is 

given by baryon and charge densities (eq. 17). For p = 0 also ko = -P1T 

has to be smaller to yield the sameKo' 
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The p-field has in general a behavior similar to that of the chemical 

potential, fig. 4b. Without a "ii" -field it increases first linearly then less 

than linearly, when the lept6n density starts to contribute substantially to 

the current ~, as seen from eq. (17) and eq. (9d). With a <'IT:>-field, 

its growth is limited from the p self-consistency equation (9d). 

The p' contribution to the single particle energy is approximately 
"'""t't". ' 

proportional to the 0 ,-field and repulsive. At "'B -:-5'='po the repulsion 

is-3D MeV with a 'IT -field and a p ,-field of'0.05 fm- 1 and -45 MeV without 

a 'IT ,-field anda 0 -field of 0.1 fm-l. The main source of the asymmetry 

energy results from the p-N coupling and not 'from the p -field energy 
2 2 ' 

1/2 mp Po' which is attractive and yields only 15-30% of the o-N 

contribution. The p-field as well as the asymmetry energy E /N are rather 
p 

similar for both equations of s~ate. 

The p '-field has aiso an' important influence on the proton/neutron ratio 

np/nn' since its repulsive energy favors isospin symmetry. Figure 5 

displays the proton/neutron ratio for all combinations of p and 'IT fields 

for neutron matter. The presence of a p field enhances the proton density, 

which, in turn, enlarges the pion condensate through the charge neutrality 

condition. These effects can be quite substantial at densities around 5 no' 

where in the presence of a p ion condensate more than a t hi rd of all be,ryons 

are protons. It should be kept in mind that for an interacting nucleon system 

the chemical pbtentials ~n and ~p are not dependent on the respective 

densities in a unique way, though still ~ = ~ + ~e holds true. n p 

Again, there is no substantial difference between the results for the soft 

and the,stiff equation of state, the proton/neutron ratio for the latter one 

is generally a little larger. These results indicate that the matter in the 

center o('a neutron star, where densities around -5 no and even larger can 
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be expected, is far from pure or nearly pure neutron matter and contains a 

substantial amount of protons. 

One of the most interesting aspects in the present calculation are the 

strength of the pion field wand related quantities like the spin-isospin 

density and the pion charge density n. The pion field w is important for 
w 

the cooling scenario of neutron stars. Figure 6 shows a monotonic increase of 

the ; field for neutron matter. The results for both equations of state are 

very similar. For symmetric nuclear matter, however, the form of the equation 

of state makes an enormous difference. Whereas a smooth increase of the 

field accompanies the soft equation of .state, the stiff one limits the w 

field to the region below 3.9 no for a coupling constant gw 1.22 fm. 

The p-wave wN attraction is for this nonchiral theory below a certain 

-w 

effective nucleon mass m* not strong enough to support pion condensation in 

c 

nuclear matter. In contrast, for neutron matter, the larger driving force associated with 

the difference of the neutron and proton chemical potentials mai ntai ns 

the condensate. The class of solutions for the w fields do not result in 

oscillations of the baryon density <iiJvYol/J v> unlike the case of a neutral 

w condensate. However, the spin-isospin density <1jJv Ys Y3 T21/Jv> 

has pronounced spatial oscillations. It is nonrelativistically given by 

<I/J v Ys Y3 T2 I/J v> - n(pt) + n(nt) - n(pt) - n(nt) with the nucleon 

spin pointing 'in z-direction. The baryon density <1jJv Y I/J > = n(pt) + o v 

n(nt) + n(pt) + n(nt) is constant. In the condensate phase, the quantity 

RSI = <I/Jv Ys Y3 T2 I/Jv >/<1jJ Yo I/Jv> measures the magnitude of the 

spin-isospin oscillations. The quantity RSI is given byeq. (9c) 

k2+m2_k 2 + 2g p K 
woo 00-

gwk ns' w (23) 

i' 



." 

-15-

Unlike symmetric nuclear matter, the p field contributes to the spin-isospin 

amplitude as well. Figure 7 displays the quantity RSI ' As fot the ; 

field, the differences in RSI between the soft and the stiff equation of 

state are small for neutron matter and SUbstantial for symmetric nuclear 

matter, where RSI ~ 0 only in a limited density range. In spite of the 

large spin-isospin oscillations, the equation of state for nuclear matter is 

only moderately softened by pion condensation (more for the soft, less for the 

stiff version) up to a density of -4 no' which is at the upper limit of what 

is obtainable in high-energy heavy-ion collisions. 

Figure 8 shows the pressure for nuclear matter. The pressure is reduced 

to -2/3 of its value without pion condensation for the soft version and nearly 

not affected for the stiff version. The effects on the hydrodynamics' of 

nuclear collisions is limited in .. both cases. Even if attempts to determine' 

the equation of state from heavy-ion collisions should succeed, itis unlikely 

to establish or refute the existence of a pion condensate from these results, 

since the difference between soft and stiff versions, both allowed by nuclear 

matter bulk properties, is substantially larger than the difference between 

the conder)sate and ttie normal solution. It· is remarkable that the equation of 

state for the stiff version is nearly identical for the normal and pion 

condensed state with a <1 MeV difference in nuclear matter, and yet the spin-

isospin oscillations reach as much as -0.6 of the baryon density. It is 

possible that the pion condensate has a substantially larger impact on pion 

radiation and production than on the equations of state. 

The particle densities for protons, neutrons, electrons, muons, and pions are 

displayed in Fig. 9 for neutron matter. The difference between the soft and stiff 

equations of state is not important. The pion density is defined as the charge 

density n of the TI condensate. For the other (neutral) mesons; a,w,p; the field 
TI 

strength rather than the particle density is the meaningful quantity. 
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IV. Neutron Star Structure with Various Equations of State 

The composition of a neutron star is of considerable interest for 

astrophysics (pulsar phenomenon and star development) and nuclear physics 

(dense nuclear matter). It offers a unique possibility to get--albeit rather 

indirectly-information about stable baryon matter at supernuclear densities. 

Starting from an assumed nucleon-nucleon force, one can construct equations of 

state and by inserting these into the Tolman-Oppenheimer-Volkoff(TOV) 

equations 12 ) of general relativity to obtain mass, pressure, and density 

profiles of the star. These results include, for example, equations of state 

b d R "d BJ d t 1 1" t t" 13) " ase on el, ,an. ensor nuc eon-nuc eon ln eraClon ,vanous 

vari at ions of the Reid potent i a 1 treated with Pandharipande IS const rai ned 

variationa'l technique 14 ), and a mean-field theory including 0,00, and spin 2 

fO-meson 15 ). These models obtain maximum masses of 1.6-2.5 M~, depending on 

the assumptions about nucleon-nucleon forces and coupling constants. The 

maximum masses, obtained with the present theory are within this range or 

lower, depending on the stiffness of the equation of state and on the 

existence of a pion condensate, respectively. A good review of neutron star 

structure and related problems can be found in ref. 16). 

It is quite illustrative to have a look at the relation between the energy 

density E and the pressure P; figure 10 displays the P(E) curve for three 

cases. The soft equation of state comes nowhere close to the causality limit 

P = E, whereas the stiff one approaches this limit in the density range of 

interest for neutron star structure. All equations of state with a massive 

vectorboson approach the causality limit asymptotically. For the stiff 

version, the result is nearly identical for the normal and pion-condensed 

state. Again, above nB - 10 no the validity of the present theory of 

baryon matter is questionable. It is interesting to see that the softest 

• 
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version, namely the soft equation of state with pion conde.nsate, has a smaller or 

equal gradient to the curve log P = 4/3 log € in the density range 1.5 no < 

nB < 4 no' Such behavior can result in instabilities and oscillations of 

stars. 

The presence 'of a pion condensate may lead to a considerable softening of 

the equation of state and the pressure, but not necessarily; again it depends 

on the qualities of the nonlinear a interaction. The difference in pressure 

for the stiff and the soft version can be as large as a factor 4. 

The results for P(€) serve as input into the TOV equation for hydrostatic 

equilibrium 

aP(r) 
ar 

= _ G [€(r) + P(r)J[M(r) + 4~r3 P(r)] 
r2[1 - 2GM(r)/r] 

(24) 

Here P(r) is the local pressure, dr) the local energy density, and M(r) the 

gravitational mass of a sphere of radius r 

(25) 

The gravitational constant is G = 2.62 x 10-40 fm2. Numerical integration 

of the TOV equation gives the profiles M(r) and P(r) for a given central 

energy density €c(O). The main result of interest is the total mass at a 

given central density, sinc~ the mass is the only property of a neutron st~r 

on which there are some reasonably accurate data and is more strongly 

connected to the equation of state than other currently measurable 

~ properties. The other two measurable quantities, surface temperature and 

rotational velocity, depend on the initial conditions, on the age of the star, 

and only slightly on the structure of the baryonic matter. As can be seen 

from fig. 11, the total mass as function of the central energy density and the 
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maximum mass depend strongly ·on the particular equation of state. The pion 

condensate together with the stiff equation of state does not affect th~ 

max imum mass of -2 M0 much; at the upper 1 imit of the mass range the mass is 

very insensitive to the central density. For the soft equation of state, the 

pion condensate has a·substantial effect, however; without a condensate a 

maximum mass of -1.3 M0 is achieved, with a condensate only one of -0.9 M0. 

The mass vs central density curve is still growing at a central energy density of 

-8 fm-4, which is assumed as a somewhat arbitrary upper limit of the density 

range of this theory corresponding to a baryon density of -10 fm-4. The 

determined masses for the pulsars Her X-I and Vela X-I are -1.4 M0
16 ). This 

seems barely to allow the soft equation of state without pion condensation and 

appears to rule out the pion condensate with this equation of state. The 

exp~riment ally determi ned masses, if they hold true, indicate that st iff 

versions of the equation of state, which describe the bulk properties of 

nuclear matter, can give the right mass of a neutron star together with a 

moderate centra 1 energy density of -2 fm-4. 

A distinction between the pion-condensed and the normal phase cannot be 

made from the observed mass alone. The cooling behavior of a neutron star, 

especially that of the Crab pulsar, might clarify this question 1?). A pion 

condensate is able to speed up the URCA process and the cooling of the star 

afters its birth in a superno~aexplosion. 

The URCA process is the a-decay of a neutron with interaction with a 

second neutron to conserve energy and momentum: 

n + n ~ n + p + e + ve 

The cooling time of a neutron star from an initial temperature T. to a 
1 

final temperature Tf can be expressed byl?) 

(26) 

• 



= -

T ' 
f 

f C(T)dT 
. L (T) 

T. 
1 
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(27) 

where C(T) is the specific heat per unit volume and L(T) is the luminosity per 

unit volume. The heat capacity is dominated by the neutrons. On the other 

hand, the luminosity is dominated by the URCA process in the absence of the 

pion-condensate and by the pion-induced beta decay in the presence of the 

condensate. 17,18) We would like to compare the cooling times for different 

equations of state. Let us first regard the case without a pion condensate. 

Without nucleon superfluidity the URCA process dominates the cooling down to 

central temperatures' of -107 K, below which neutrino bremsstrahlung· n + n(p) 

~ n + n(p) + v + ~ from the crust takes over. Since most of the luminosity is 

concentrated in the hottest central part, the central densities are taken for 

the c~lculation of the Specific heat and the luminosity. The connectiori 

between cooling time and central temperature is gtven by integration of 

eq. (27) 

~t (in seconds) (28) 

8 where C(T) = Co T9 and L(T) = Lo Tg and Tgf is the final 

temperature. The quantity T9 means units of 109 K. The initial 

temperature doesn't matter, since most of the cooling occurs shortly after the 

birth of the neutron star. Table I shows the results for the two equations of 

state with and. without pion condensate. The standard cooling scenario18 ) 

withnB = no and an effective nucleon mass m* = 0.8 m yields a final 

temperature 0.32 x 109 K. Vastly different equations of state and central 

densities give similar results. In all cases the final central temperature 



-20-

lies below the observed upper limit of 0.85 x 109 K. It has to be kept in 

mind that the central temperature is connected to the surface temperature by 

model calculations of heat transport in the star and thus subject to further 

uncert aint ies. Thi s part icu 1 ar cent ra 1 temperature corresponds .to a surf ace 

temperature of 4.7 x 106 K. 

Let us now ,focus on the case with pion condensation. The pion-condensed 

phase has a smaller specific heat than the normal phase because of a smaller 

number of electrons and muons. The luminosity, however, is greatly enhanced 

by the pion condensate. The most recent and complete calculation about pion 

cooling l8 ) involves a chiral symmetric ansatz for the a and if fields. We 

adopt formul a (53) of ref. 18) for the lumi nos ity with. gA = 1. 36, and 

nll'/n B =' 1/2 sin e. A factor 4 has to be multiplied to this formula to 

account for the inverse react ion and the B decay into muons. 

To compare the stiff and soft equations of state, our model star is 

assumed to have a mass of M 

with the soft version at £c 

0.75 M0 , since this is the maximum mass obtained 

-4' = 8 fm • The equation (28) is slightly 

.~odified due to the different (T6) temperature dependence of the pion 
--,-~- -~-- ..... ~ .-~------- ."------ .. -----

cooling mechanism 

~t (in seconds) = Co ~ 109 

4Lo T9 
f 

The values of e2 are 0.007 for the stiff and 0.86 for the soft version, 

since the pion condensate is roughly 10 times stronger at -4 £ = 8 fm than c 

t 1 1 f -4 a £c = • 3 m • The final temperatures are a factor 30-100 below the 

(29) 

ones without pion condensate. The model calculation of ref. 18) would yield 

a cooling time of -350 s •. In the pion-condensed state, final temperatures and 

cooling times vary more with the equation of state than, in the normal state; 
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these differences are of little importance, however, since they are not yet 

observable. 

v. Conclusion 

Within the frame of a relativistic mean field theory of isospin symmetric 

and asymmetric' matter, various aspects of the equat ion of state have been 

studied. No evidence for exotic behavior of the nuclear equation of state was 

found, no second minima and kinks due to pion condensation and the like. The 

pion condensate softens the equation of state, but so does the cr potential U(0) 

to an even greater extent. Unfortunately, the particle spectra from heavy-ion 

collisions do not provide so far a useful tool for an even approximate 

determination of the equation of state. Together with previous calculations~ 

o 10,11). °t 0 bOth t dOff t d 1 0 th dOff t l.e. ,1 lS 0 V10US a 1 eren mo e s glve ra er 1 eren 

equations of state for nB > 2no' even though they all agree at nB = no' 

Concerning neutron matter and the "experimental" situation for neutron 

stars, it looks somewhat better. The mass of -1.4 M@ seems to rule out 

certain soft equations of state, if they are in ipion-condensed state. The 

influence of the pion condensate on the composition of the-star depends very 

much on the basic U(cr) interaction and ranges from nearly none to 

substantial. The stiff equation bf state allows a maximum mass of -2 Me and 

at -1.4 Me yields a moderately strong pion condensate at nB - 2.7 no central 

baryon density. The central density is rather sensitive to the precise 

equation of state, however, and can go up to -10 no for softer versions. 

The 0 meson is essential -for a consistent theory of neutron star matter, since 

it contributes substantially to the symmetry energy in asymmetric nuclear 

matter. Its presence stiffens the equation of state and enhances the pion 

condensate. 
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The present experimental upper 1 imit of the surface temperature of 

4.7 x 106 K correspondi ng to a core temperature of 0.85xl09 K, cannot 

discriminate between cooling mechanisms, let alone between equations of state, 

even though they yield rather different central densities. A lowering of this 

limit by a factor 4, however, would rule out all cooling scenarios without 

pions but would not be able to determine the strength of the condensate nor 

the equation of state. 

In summary, the presently known quantities of a neutron star allow the 

conclusion that probably a stiff version of the equations of state is present 

together with a moderate central baryon density nB - 2-4 no' Whether a 

pion condensate exists or not is yet to be determined from further temperature 

measu rement s. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics o~ the Office of High Energy and Nuclear' Physics 

of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 
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Table 1. Final central temperature Tf at an age of 924 yrs (Crab pulsar) and cooling time 6t 

to the observability limit 0.85 x 109K of the central temperature are given for the stiff and 

the soft equation of state in the normal and the pion-condensed state. The mass M is 

dete.rmi ned by the maximum baryon density nB = 10 no for the soft equat ion of state. The 

central energy density €c' baryon density nB, as well as the heat capacity C and the 

luminosity L, are shown. 

€c nB C L T9 (924 yrs) 

fm-4 fm-4 erg(cm3K)-1 erg(cm3s)-1 
f 

K 

st iff normal' 1. 75 2.4 2.5 1020 4.2 1020 0.39 

state M = 1.33 M0 
6.4 1020 4.3 1021 soft 9 10 0.32 

stiff pion 1.13 1.6 2.3 1020 0.6 1025 0.014 

soft condensate M = 0.75 Me 
10 1020 1. 2 1027 0.004 8 5 

--- - ---- - - ... 

6t 

8.6 yrs 

21 yrs 

1800 s 

200 s 
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Figure Captions 

Fig. 1. The sing le part i cle energy E,: for both fermi seas as a funct ion of 

PII with PI = O. 

Fig. 2a. The energy per particle minus rest mass for nuclear (nq = 0) and 

neutron (nq = nS/2) matter as a funct ion of the baryon dens ity 

nS for the soft equat ion of state" in the normal state l 1T = 0). 

Fig. 2b. The (negative) condensation energy per particle as a result of 

pion-condensation for nuclear 'and neutron matter as a function of the 

baryon density nS for the soft equation of state. 

Fig. 2c. The (positive) asymmetry energy per particle as a result of the 

p-meson coupling for neutron matter as a function of baryon density 

nS both in the pion-condens~d and normal state for the soft 

equat ion of state. 

Fig. 3a. The same as fig. 2a for' the stiff equation of state. 

Fig. 3b. The same as fig. 2b for the st iff equation of state. 

Fig., 3c. The same as fig. 2c for the stiff equation of state. 
, 

Fig. 4a. The chemical, potential Jl e in neutron matter as a function of baryon 

density nS for the stiff equation of state both in the normal' and 

pion-condensed phase. 

Fig. 4b. The p -field as a function of baryon density nS in neutron matter 

for the stiff equation of state, both in the normal and 

pion-condensed phase. 

Fig. 5. The proton/neutron ratio np/nn in neutron matter as a function of 

the baryon density nS for the stiff equation of state. The full 

curves correspond to the normal state, the dashed ones to the 

pion-condensed state. The results for p = 0 and p * 0 are shown. 
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Fig. 1. The single particle energy E. for both fermi seas as a function of 

Pn with Pl - O. 
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Fig. 2b. The (negative) condensation energy per particle as a result of 

pion-condensation for ~uclear and neutron matter as a function of the 

baryon density nR for the soft equation of state. 
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Fig. 2c. The (positive) asymmetry energy per particle as a ,result of the 

p-meson coupling for neutron matter as a function of baryon density 

nB both in the p ion-condensed and normal state for the soft 

equation of state. 
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Fig. 4b. The ~ -field as a function of baryon density nB in neutron matter 

for the stiff equation of state, both in the normal and 

pion-condensed phase. 
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Fig. 7. The spin-isospin oscillation RSI for nuclear and neutron matter as 

a function of the baryon density nB• The full curves depict the 

stiff and the dashed curves the soft equation of" state. 
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