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Abstract 

Algebraic methods are developed for generating NMR spin species 

and irreducible representations spamied by spin functions. These 

methods use generalized character cycle indices (S-function when NMR 

groups are symmetric groups). A correspondence between the unitary 

group approach and the permutation group method for NMR is established 

by generatingNMR Gel'fand states using Schur functions. The 

generalized character cycle indices of molecules whose NMR groups 

are expressible as generalized wreath products are shown to be 

generalized NMR plethysms of Schur functions. These techniques enable 

generation of spin species without the kno~ledge of the character 

tables of N}m groups. We illustrate the methods developed here with 

several examples. The use of these techniques in generating symmetry-

adapted NMR spin functions can be found in the accompanying paper. 



1. Introduction 

The first applications of group theory to the simplification of NMRspin 

1 2 
interactions are due to McConne1.1~cLean and Reilly and Wilson. Longuet-

Higgins3 developed the general permutational frame work for the symmetry groups 

of non-rigid molecules. 
4 : 

Woodman showed that the NMR groups of molecules can 

be expressed as permutation groups and these groups have the structure of semi

direct products. Flurry and Siddal15 developed the groups for independent 

particle Hamiltonian operators. Using this, the unitary group structure of 

6 NMR groups of several molecules was established by these authors. Further, 

these authors have considered computational and algebraic techniques for NMR 
with spin 

of molecules including the molecules which contain nuclei/more than spin"~.7,8 
"9 the 

The present author showed that/NMR group of any molecule can be obtained by 

collecting the set of permutations that leave. the associated spin interaction 

diagram (known" as NMR graph) invariant. Systematic procedures and algorithms 

were developed for obtaining NMR groups as permutation groups. It was shown 

in that paper that NMR groups of several non-rigid molecules. are generalized 

wreath product groups. Using the representation theory of generalized wreath 

10 
products outlined in another paper of the author. we showed that the char-

acter tables of NMR groups can be obtained. 
4 As pointed out by Woodman and 

5-8 Flurry and co-workers; the composite particle method is superior to the 

complete Hamiltonian methods at every stage of NMR computations. One of the 

objectives of this paper is to develop algebraic techniques to generate sym-

metry-adapted composite particle spin functions which in turn factor the 

composite particle Hamiltonian matrix into matrices of smaller order. 

In the present paper we develop techniques to generate irreducible 

representations contained in the set of spin functions using group generators 
the 

known as generalized character cycle indices. A correspondence between/unitary 
the 

group approach artd/permutation group method is established by generating NMR 
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Gel'fand bases using Schur functions. Generalized NMR plethysm techniques are 

introduced for the generation of NMR spin species of non-rigid molecules. 

Section 2 outlines preliminary concepts relat"ed to NMR groups, cycle indices, 

NMR spin functions, etc. In Section 3 we demonstrate the use of Imminants and 

S-functions in NMR and establish a correspondence between the unitary group 
the 

approach and/permutation group method. Section 4 describes generalized NMR 

pleythsms and their use in generating NMR spin species. Further formulations 

of projection operator methods and applications of the methods developed here 

can be found in the accompanying paper. 

2. NMR Groups, Cycle Indices, NMR Spin Functions and NMR Spin Patterns 

A. NMR Groups 

NMR groups can be defined as the set of permutations of the nuclei 

that leave the NMR spin Hamiltonian (2.1) invariant .• 

(2.1) 

3 

where "i is the chemical shift of the i th nucleus, J ij is the coupling constant ", ,I 

between the nuclei i and j I is the spin component in the z direction , zi 

(assuming the external magnetic field is in the 

scalar product of the spin operators Ii and I
j

. 

-+ -+ 
z direction); 1.01. is the 

l. J 

The present author9developed 

a diagrammatic approach for obtaining NMR group as a permutation group. It 

was shown in that paper that NMR groups are either direct products of symmetric 

groups (special cases of wreath products) or in the most general cases can be 

expressed as generalized wreath products of symmetric groups by way of expres-

sing NMR graphs as generalized compositions of smaller graphs. We showed 

that NMR groups of several molecules are generalized wreath products. The 

coupling constants among a set of equivalent nuclei which have identical 
the 

coupling constants among themselves and with the rest of/nuclei do not affect 

the NMR spectrumo Consequently, one can think of this complete set of 



magnetically equivalent nuclei as a single composite particle and the NMR. 

Hamiltonian can be expressed in terms of these composite particles as 

(2.2) 

In 2.2 each "nucleus" G is a composite particle. We also showed in our earlier 

paper that the NMR group of the composite particle Hamiltonian can also be 

obtained using diagranunatic techniques. 
efficient 

In this paper we will consider very / techniques for generating 

composite particle spin functi9ns of very complex polyatomic molecules. 

B. Cycle Indices, NMR Spin Patterns and Functions 

Consider a set D of nuclei (whose NMR is under consideration) and let 
the 

R be the set of possible spin states of/nuclei in D. If M is the molecular 

symmetry group then M parti,tions D into equivalence classes. For non-rigid 

molecules possessing internal rotors M can be expressed as generalized wreath 
14 

products and methods were formulated/for obtaining the number of equivalence 
equivalence classes 

classes. Let Y
1

, Y
2

, ••• Y be the / of D under the action of M. Note 
t in the low resolution spectrum since 

that t is the number of NMR signals / this corresponds to the number of 
the 

magnetic equivalence classes of/nuclei in D. Let F be a set of maps from D 

to R (i.e., the set of possible spin functions). 

I R II D I. where I s I is the number of elements in a 

It can be seen that IFI = 

set S. Let G be the NMR 

group of the molecule under consideration. Any ge:G acts on an fe:F (the set of 

NMR spin functions) by the recipe shown below. 

-1 gf(i) = f(g i) for every ie:D. 

To illustrate, consider the methane molecule. A map fl which generates 

the spin function (for protons) ~ ~ ~ ~ is shown below. 

4 
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f1 (1) = a 

f1 (2) = ~ 

f 1 (3) = ~ 
f 1 (4) = ~ 

Then the permutation (1234) acts on f1 to generate f
2

• 

f 2 (1) = (1234) f1 (1) = f 1 «1432)1) = f 1 (4) = ~ 

f 2(2) = f 1 (1) = a 

f 2(3) = f 1 (2) = g 

f
2

(4) = f 1 (3) = ~ 

Thus the NMR spin function ~ g ~ ~ gets permuted to the NMR spin function 

S a ~ ~ by the action of the permutation (1234) in the NMR group of methane. 

Two maps fi and fj (i :f j) are equivalent if gf i = f j • Define a generalized 

character cycle index (GCCI) of G corresponding to the character X of an 

irreducible representation r in the group G as follows. 

b1 b2 b
n where xl x2 •••• xn is a representation of atypical permutation ge:G which 

generates b1 cycles of length 1. b2 cycles of length 2 •.••• bn cycles of length 
. of g 

n under the action/on the set D. In order to book-keep the number of various 

nuclear spin states in agivenNMR spin function let us introduce the concept 
the 

of/weight of a NMR function. With each spin state in R let us associate a 

formal symbol w(r). Then define the weight of an fe:F which generates a NMR 

spin function as 

W(f) = IT w(f(d» 
de:D 

5 



To illustrate the weight of the spin function g g @ @ of methane would be 

2 2 
as if a is the weight 'corresponding to the spin state a and S is the weight 

corresponding to~. When r is the identity representation of the NMR group of 

the molecule (which we can denote by A1) the following substitution generates. 

the equivalence classes of NMR spin functions. 

b1 b2 . 
The coefficient of a typical term w

1 
w2 ... g1ves the number of equivalence classes 

of NMR spin functions containing b1 spin states of the type 1, b
2 

spin states 

of the type 2, etc. This is because the number of ~ representations in an 

11-
equivalence class is the number of equivalence classes both by P61ya's (a 

more general theorem) theorem and Frobeniustheorem. To illustrate if we let 
A 

G be the NMR group of methane, then the coefficient of a 2S2 in the Gee! 1 gives 

the number of equivalence classes of NMR spin functions which contain 2 a's 

and 2 S' s. Each equivalence class of NMR.· spin functions can be called a NMR 

spin pattern. Note that functions in a NMR spin pattern will only mix in any 

symmetry-adapted NMR spin function used to factor the NMR spin Hamiltonian. 

Thus obtaining the NMR spin patterns is crucial in the actual construction of 

symmetry-adapted functions. The meaning and use of GeeIX for any X (other 
the 

than the character of/A1 representation) will be seen in subsequent sections. 

3. Imminants, S-functions and NMR Ge1'fand States 

Let A be a matrix of order nxn. Let s be a permutation in S (the sym
n 

metric group of n objects containing n! permutations) of the type e1 , ~2'.' .. 

e (i.e., i goes to e i ) of the numbers 1,2, ••••. n. Define P as the product 
n. s 

P 
s 

6 



Any irreducible representation of S can be characterized by a partition of n 

7 

the integer n denoted as (A1 , A2, •••• Ap) = (A), with Ai > 1 and Aj So Ai (j ~ i) • Thus 

an irreducible representation of S can be denoted as [A]. Let X(A) be its 
n 

character. Then we can define the imminant of the matrix A as 

s 

where 5 runs over all the elements of S. In particular if A = 
n 

(1,1,1, ••• 1) note that \A\(A) is simply the antisymmetriser used in quantum 

mechanics of fermions. Define a symmetric function sr of quantities a1 , a 2, 

••• a as 
n 

s 

Let Z be the matrix shown below. n 

51 

52 

53 

Z = n 

5 n-1 

s n 

r 

s 

s 

n 
L r = a i • 

i=l 

1 0 0 o 

51 2 0 o 

s2 51 3 0 

n-2 . n-1 

n-1 . 

The Schur function also known as S-function corresponding to the irreducible 

representation [A] of the symmetric group S , denoted by {A} is defined below. 
n 



1 --n! 

where Iznl(X) is the imminant of the matrix Zn associated with (X). The above 

expression can be reduced to a more convenient form. There is a one-to-one 
the and the corresponding 

correspondence between/conjugacy classes / cycle types in the symmetric group Sn. 

Suppose a representative in a conjugacy class C has bl cycles of length 1, b2 
elements in the 

cycles of length 2 etc. and Ici is the number of/conjugacy class C then 

where 

{X} -1-, l lei Xc (X) sc 
n. C 

by Cayley's counting principle Icl can be seen to be 

I n! 
cl - "'""=b:----:;b~--

1 ~1! 2 ~2!····· 

To illustrate consider the S-functions of the symmetric group 54. The 

character table is shown in Table I. One can immediately write 

1 4 2 . 2 
{4} - 24 (sl + 6sl s2 + 8s1s 3 + 6s4 + 3s2) 

1 4 2 2 O,t} - 24 (3s1 + 6sl s2 - 6s4 - 3s2) 

14. 2 {2,2} -. 24 (2s l - 8s 1s 3 + 6s2) 

1 4 2 2 
{2,l,l} - 24 (3s1 - 6s1 s2 + 6s4 - 3s2) 

1 4 2 2 
{l,l,l,l} - 24 (~1-6s1s2+8s1s3-6s4+3s2) 

Generating functions for S functions can also be obtained very easily using 

the GCCI's which correspond to Al representations·of the smaller groups as 
15 

outlined in an earlier paper of the· author. Using this we have the result 

{Pl' P2' ••• p } • det (Ps ) 
n (p -i+j) 

i 

where 

8 
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P is the cycle index of the group S( i') corresponding 
S(Pi-i+j) P - +J i . 

representation. To illustrate, consider {4,2} in the group S6' 

P S = sl' 
1 

Ps 
{4,2} = 4 

Ps 1 

expressions 

P
s 

-
5 Ps Ps Ps Ps = 

Ps 
4 2 5 1 

2 

Substituting the above / for P S ' Ps etc. in the expression for {4, 2} 
1 2 

we get 

Thus S-functions can be generated without knowing the character tables of the 

symmetric group S and thus they are generators of the character table of S 
n the cycle type which corfefPonds to C n 

since the coefficient of / gives Ic I X A • 

S-functions with s 
r 

spin states have special 

= I a~, where 
i . 

significance in 

a 's are the weights of the nuclear 
i 

NMR spectroscopy. 'Ptey generate the 

number of times an irreducible representation occurs in the set of NMR spin 

functions of a chosen weight if the NMR group of the molecule is isomorphic 

to S . 
n 

b
l 

b
2 Equivalently the coefficient of a typical term a l a 2 ••• in {A} 

the 
generates/number of times the irreducible representation [A] occurs in the 

set of NMRspin functions containing bl spin states with the weight aI' b2 

spin states with the weight a 2,etc. Let us now illustrate this with an 

example. The NMR group of CH4 is S4.Let us associate a weight a to the a 

9 



spin state of the proton and a weight 13 to the .~ spin of the proton. Then with 

sr = ar + Sr, 5-functions of 54 generate the frequency of occurrence of the 

corresponding irreducible representation in the set of NMR spin functions of 

methane. To illustrate, consider the S-function {3,1} of S4 for CH4 , with 

s =ar+Sr • 
r 

{3,1;a,S} = i4 [3(a+s)4 + 6(a+S)2(a2+S 2)_6(a4+S4) - 3(a2+s 2)2] 

3 2 2 3 = a 13 + a B + as • 

Thus there is one [3,1] or Fl representation in the set of spin functions which 

have 3~ spin states and l§ spin state, one Fl in spin functions that have 2~ 

spin states and 2§ spin states and one Fl representation in the set of spin 

functions that have l~ and 3§'s. Note that we obtained this information without 

having to explicitly obtain the character of the representation spanned by all 

the NMR spin functions. This is quite advantageous for polyatomics in that 

the number of spin functions for a molecule containing bl nuclei with al spin 

states, b2 nuclei with a 2 spin states etc. the number of NMR spin functions is 
b

1 
b

2 a
l 

a 2 ••••• Consequently to find the character of the representation spanned 

by these spin functions is, in general, quite difficult. Further, the same 

5-function generates the frequency of occurrence of NMR spin functions for 
spin 

nuclei with/more than spin 1/2. To illustrate, consider the CD4 molecule. 
the 

Let us denote the 3 spin states of/D nuclei by ~, ~ and ~ and let the cor-

responding weights be A, ~ and·", respectively. Then, for example, the 

5-function {3,1} with 
r r r s = A + ~ +" generates the frequency of occurrence 

r 

of Fl in D spin functions. To illustrate, 

{3,1;A~"} = i4 [3(A+~+v)4 + 6(A+~+v)2(A2+~2+,,2) _ 6(A4+~4+,,4) _ 3(A2+~2+v2)2] 

= A3~ + A2~2 + A~3+ A3" + 2A2~" + 2A~2" + ~3" + A2,,2 + 2A~,,2 

+ ~2,,2 + A,,3 + ~,,3. 

10 
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Thus, for example there are 2F1 representations in the set of functions which 

have 2~'s, 1 ~ and 1 ~, since the coefficient of A2~v in {3,1;A~v} is 2. The 

complete set of g_enerating_ functions _fox_CD1+_mo1ecu1e~is_-shown-in-Table--2-.~

When the NMR group of a molecule is isomorphic to a symmetric group S , n . 

the NMR states can be characterized by the associated Ge1'fand spin states 

which we will now define. As we pointed out earlier every irreducible repre-

sentation of Scan be characterized by a partition of the integer n. Consider n 

the weights of the spin states of the nuclei in a lexical order (for example, 

we can assume for the spin 1/2 problem the lexical order S>a and for spin 1 

problem the lexical order v > ~. > A) • Then a NMR Gel' fand state can be defined 

as a generalized Young tableau that can be obtained by filling the weights of 

spin states in the squares of the Young diagram associated with the partition 

of n. such that in any row weights are in non-decreasing order and in any 

column the weights are in strictly increasing order. All deuterium NMR 

Ge1'fand states of CD
4 

are shoWn in Figure 1. The S-functions of the NMR 

r r r 
group of CD4 (54) with sr replaced by A + ~ + v are indeed the generators 

of the D NMR Ge1'fand states enumerated in Figure 1. . Ge1'fand states are 

precisely the bases for the unitary group U(n). Thus we have established 
the 

the correspondence between/permutational symmetry and the unitary group 

6 treatment of Flurry and Siddall. The basis vectors for these Ge1'fand states 

can be uniquely labeled by a triangular pattern known as Ge1'fand-Tset1in 

tableau. A typical Ge1'fand-Tset1in tableau is of the form 

m n 
m

n
_

1 

[m] .. = 
m2 

~ 

r;.n m2n 

'I m 

I 
I-

1,n-1 

~1 

m m n-1,n nn 

m n-1,n-1 

Pa1dus16 developed this unitary group treatment for electron correlation and the 
corresponding electronic ABC tableaus are now known as Pa1dus tableaus. 

11 
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The integers in the above array satisfy the following conditions: 

for all i = j, ••• n-l, j = 2,3, •••• n. From a Gel'fand-Tsetlin tableau one 

can immediately obtain a NMR Gel'fand state. The first row of a Gel'fand-

Tsetlin tableau determines the Young diagram. Then one fills integers from 

the set {1,2, ••• m} such that in the ith row of the diagram the integer i is 

filled in the first mii boxes, i + I in ~he next mi,i+l- mii boxes etc. 

Then one can identify the integers 1,2, ••• m by the various weights of the 

spin states of the nuclei. For example, the integers {1,2,3} can be 

identified as A, II and 'J state for D nuclei. 

Before concluding this section we consider NMR groups which are direct 

products of symmetric groups and the corresponding generating functions. 

Such NMR symmetries are quite Common especially within the spirit of effec-

tive NMR spin Hamiltonian approximation which sets coupling constants among 

a set of completely magnetically equivalent nuclei to zero. The effective 

NMR group of butane within equal coupling interaction approximation is the 

direct product S6 x 54. Thus this is an example of the above case. When the 

NMR group is a direct product of two symmetric groups viz., 5 x 5 then the n m 

generators of spin species are the products of the corresponding Schur 

functions. For example, a generator of the NMR species for S6 x 54 will be 

of the form' {4,2H3,1l. The product of two S-functions can be .obtained with 

the recipe given in Littlewood12 which we will briefly consider to complete 

this discussion. The 5-functionsappearing in the product {AI,AZ ••• "p} 

{lll,ll2, ••• llq} can be obtaine~ by adding to the Young tableau (A I ,A 2 , ... Ap) 

III identical symbols aI' ll2 identical symbols a 2 etc. such that the resulting 

tableau will also be a Young tableau. Further, when the symbols aI' a 2 etc. 

12 

III ll2 
are read from right to left we should obtain a lattice permutation of a l a 2 •••• 



_. 

J.J l J.J 2 
A lattice permutation of a

l 
a

2 
••• is a permutation of the factors in the 

product such that in any permutation among the first r terms (for any r) 

---the-number-of~t.imes-aroccurs- 2:-t-he-numher-of -t-tme-s--a
2 

occurs et----c.- --Toif':'; 

2 2 
lustrate alala2a2a3 is a lattice permutation of a l a 2a 3 but ala2a2ala3 is not 

2 2 a lattice permutation of a l a 2a 3 • Using this recipe one can easily construct 

the product of the Schur functions {4,3}{3,l}. As per Littlewood's Convention 

we will simply replace the symbols in the Young tableau corresponding to (4,2) 

by O's to which we will add 3 a's and 1 B. The resulting such tableaux which 

satisfy the stipulated conditions are shown in Figure 2. 

4. Generalized NMR Plethysms and Induced Spin Species Generators 

9 As shown in an earlier paper of the present author the NMR groups of 

many non-rigid molecules can be expressed as generalized wreath product groups. 

In fact, even the other NMR groups, such as S , direct products of symmetric 
n so 

groups are indeed special cases of generalized wreath products/that a treatment 

of generalized wreath products would specialize to these cases. Even in the 

composite particle representation (which we will discuss in a later section), the 

composite particle NMR groups are generalized wreath products or special cases 

of generalized wreath products. In this section we will therefore consider 

powerful projection operator methods which generate NMR spin species of both 

rigid and non-rigid nuclear structures. 

A. Definitions and Preliminaries 

Any NMR spin Hamiltonian can be represented by an interaction diagram 
representing 

known as NMR graph with vertices / nuclei and edges representing nuclear-nuclear 
t"-

spin coupling constants. To illustrate let us consider the non-rigid Boron 

trimethyl. The NMR graph of this non-rigid molecule is shown in Figure 3. 

(0 is the Boron nucleus). We have assumed the carbon nuclei to be 12C and thus 

they do not appear in the NMR graph. Let the methyl protons of the first methyl 

13 



group be labelled 1, Z and 3, and the second group 4, 5, and 6 etc. Then the 

proton nuclei can be partitioned into a completely magnetically equivalent 

sets tl = {l,Z,3}, t z = {4,5,6} and t3 = O,8,9}. Two nuclei are said to be 

completely magnetically equivalent if they are magnetically equivalent and 

have identical coupling constants with the rest of the system. The NMR graph 

in Figure 3 can be expressed as a generalized composition of a quotient graph 
set of 

which is obtained by condensing the/complete magnetically equivalent nuclei 

into a single vertex and creating "types" which give interactions among the 

nuclei in the sets t l , t2 etc. The original NMR graph is obtained by replacing 

a vertex of Q (the quotient graph) by a copy of the corresponding type Ti • 

To illustrate, the NMR graph in Figure 3 is a composition of Q and the type T 

in Figure 4. Each vertex (except B nucleus) in Q is replaced by a copy of T 

to obtain the NMR graph in Figure 3. The quotient graph in Figure 4 is indeed 

the diagramatic representation of the interaction of composite par.ticles as 

9 shown in an earlier paper of the author where one can find several illus-

trative examples of NMR graphs also. Let Yi be the set of vertices in Q that 

are replaced by the same copy Ti to obtain the original NMR graph. Let Hi 
the 

be the group acting on Ti which permutes the nuclei in Ti such that/coupling 

constants in Ti are preserved. Since the nuclei in Ti are completely equi

valent if Ti contains ~ vertices, Hi = S~ where S~ is the symmetric group 

containing ~! elements. In this set up the present author showed that the NMR 

group of any NMR graph is the generalized wreath product G[H
l

,H
2

, ••• ,H
t

] 

where G is the NMR group. of the quotient graph Q. To illustrate, thus the 

NMR group of 

The character tables of generalized wreath products and their representation 

10 matrices can be constructed using the methods described elsewhere. In this 

paper we will consider operator methods which generate NMR spin 

14 



species and spin functionsboth in total and composite particle representations. 

In this paper we will briefly review the important concepts in the representa-

tion theory of generated wreath products since this is needed in constructing 

their projectors and generators of spin species. 

Let ~i be a map from Yi to Hi. Then the generalized wreath product 

G[Hl,H2, ••• ,Htl can be defined in formal terms as the set 

with 

where 

where 

1 
where 

(gg '., ...... ' ...... ' ....... ' ) "1"1 '''2''2 , •••• ,,, " g . g t tg 

-1 
j,g je:Yio 

is the identity of the group Hi. x ... x 
m 

H t is a 
t 

direct product, the irreducible representations of this group are given by 

m * m * t i 
# .... # Ft ,where Fi is the outer productFil # Fi2 # ••• 

# F
imi 

with Fij being an irreducible representation of the group Hi. The symbol 

# is used for outer products. The definition of outer tensor products can be 

17 found in several books like Messiah. The representation matrices of outer 

tensor products are simply the Kronecker products of the matrices of the 

constituting representations •. For every representation r shown above an 

the important key group known as/inertia 

15 



group which corresponds to F* can be defined as the set of elements in the 

generalized wreath product G [,HI' H2 , ••• , Ht 1 that leave F* invariant. In symbols 

the inertia group of F* is defined as 

with 

The group GF*[Hl,H2, ••• ,Htl has the permutation representation 

~ m2 mt , , . 
(HI x H2 x ••• x Ht )·GF*(by definition). \ GF*~own as the 1nertia factor 

~* m * '---'fil* the 
corresponding to F~ Let {F

l 
# F22 # ••• #F

t
t } be / set of inequivalent 

From ~* m * m * 
representations. / the representation matrices of Fl # F22 # ••• • 11 Ft t 

(e;nl .n2 •••• nt )(which can be trivially found by obtaining the Kronecker pro-

ducts of the matrices of the constituting representations).the representation 

matrices 
~* m2* mt * 

of Fl # F2 # ••• # Ft (g;nl .n2 •••••• nt ) can be obtained easily 

by a suitable permutation of the columns of the former determined, by g by 
10 underline 

the recipe given in an earlier paper of the present author. The / symbol 

is used to denote a suitable permutation of the columns of the Kronecker 
m* m* 

Product of the matrices of F 1 F 2 etc. If F' is an irreducible represen-
1 ' 2 , 

tation of Gr then the irreducible representations of G[Hl,H2 •••• ,Htl are 

* 
given by (II' F;i dt> F') t G[Hl ,H2, .•• tHtl, where the arrow stands for an 

i 
induced representation. The concept of induced representation has been 

18 
reviewed by Coleman. 

B. NMR Ple'thysms 

* m * m * 
Recall that F denotes F 11 II F 2 2 m * t 

# •• • IIF t and the 

inertia group corresponding to the representation F* is GF*[Hl.H2, •.• ,Htl. 

The corresponding inertiCil factor is G'*. 
F 

Note that Gi * is isomorphic to a 
F 

16 



symmetric group if G is a symmetric group. G'* is, of course, a subgroup of 
F 

G. G'* is isomorphic to G when the inertia group for F* is G[Hl,H2, •••• ,Htl. 
F the 

The GCCI of G'* corresponding to/character X can be cast into the form 
F 

GCCIX 
G' 

* F 

(4.1) 

where Cij(g) is the number of j cycles of g in the set Yi • (Note that Y. is 
~ 

the set of vertices in Q that are replaced by the same copy T. to obtain the 
~ , 

NMR graph). It is possible to express a GCCI of G * in the above form since the 

F the 
elements of G (and therefore those of G' ) permutehertices in Q such that 

the F* 
they are permuted only within/Y-sets. Equivalently, G is intransitive 

i. e. , 

Consequently, 

does not get permuted 
b 

••• x n can be recast 
n 

to a vertex in Y. by any ge:G (j:/: i). J .-

in a convenient form viz. ~ ~ 
C
ij 

(g) 
x
ij 

Let Ak be the character 
m * 

the mi-fold outer product Fii 

of the representation Fi which constitutes 

Since Fi isa representation of the group 

Hi which is a symmetric group, the GCCI's of Hi's are S-functions. In particu

lar, the S-function corresponding to Ak is shown below. 

(4.2) 

as shown below. 

(4.3) 

the ~ 
where/£.j subscriptspn the x variables are products. If we denote an irreducible 

m * i , 
representation II Fi @IF t G[Hl,H2, ••• ,Htl by r then the GCCI of G[Hl ,H2 ••.• 

j. 
Htl . corresponding to r can be obtained by the following substitution which we 

call generalized plethysm. 

17 



(4.4) 

It is obtained by replacing a x .. in {X} defined in (4.1) by {A
k

} if this j 
~ . ~ 

cycle in Yi is constituted by j copies of the representation whose character is 

A
k

• A special case of this substitution for wreath product group 

the inertia factor is isomorphic to 5k itself is the well-known plethysms of 

5-functions found in Read's paper. 13 A further specialization to identify 

representation was used and illustrated by the author in isomer enumeration 

14 and enumeration of NMR signals. 

Let us now illustrate generalized NMR plethysms with an example and 

demonstrate their significance in NMR spectroscopy. We consider here the NMR 

group of the non-rigid butane molecule. The NMR group of this molecule is 

the generalized wreath product 52[53,521 and its order is 288. As far as the 
set of 

author is aware the character table or the /irreducible rep.resentations of this 

group was not obtained in the literature. Even Littlewood's book does not 

have its character table. The two Y-sets are Y
l 

= {1,4} and Y2 = {2,3} where 

we can take 1 and 4 as methyl carbon and 2 and 3 as methylene carbon. The 

irreducible representations of the NMR group of non-rigid butane are shown in 

Table 3. In that table one can also find the dimension of each representation 

and a designation AI' A2 , El etc. tole denote all one dimensional represen

tations as A's, all 2 dimensional representations asE's, three as F's etc. 

The representations of 53 and 52 in that table are designated by the appro-
partitions 

priate / of integers. Let us now illustrate plethysms by two. examples. 

Consider r 24 = A6 which is [13] # [13] # [2] # [2] ~ ]12]' 10 Table 3. The 

inertia factor corresponding to [13] # [13] # [2] # [2] is 5~ and the S-function 

f 5 ' di [12] , i h f f (4 1) i h b 1 o 2 correspon ng to cast n t e orm 0 • s s own e ow. 

(4.5) 

18 



The various {Ak}i's and {Ak } 's are shown below 
ij 

Replacing every xij in (4.5) by the appropriate {A
k

} we get (4.6) 
ij 

(4.6) 

Let us give another example of an induced representation namely the representa-

tion f6 = G1 = [3] II [2,1] II [2] II [2] t 52[5
3

,52] in Table 3. The inertia 

factor for [3] II [2,1] II [2] II [2] is just 5~, the group containing the identity 

and thus it is an induced representation. (This is because inertia factor is 

not isomorphic to G). The various5-functions are shown below. 

19 
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2 2 
GeeI , = xlI x12 

5 1 

Thus the GeeI of Gl using the plethysm substitution is 

Note that the resulting GeeI's that we obtain for the various irreducible 

(4.7) 

representations of the NMR group of butane c~n be directly obtained if one had 

the character table of this group. Then all that one needs to do is to obtain 

the cycle representation of each conjugacy class and the corresponding 

character and summing over all the conjugacy classes. Nevertheless, the above 

techniques of generalized plethysms did not require the character table of the 

NMR group o~ butane of order 288. We generated the GeeI's of this group 

as either pleythysm or product of 5-functions of much smaller groups 

(namely, groups 53 and 52)' It is this aspect of this technique that makes it 

very useful for generating NMR spin species of non-rigid molecules. For non-

rigid molecules the NMR groups increase in an exponential order that it is not 

feasible to obtain their character tables even in the composite 

particle treatment. The NMR group of butane is also the NMR group of the 

20 
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molecule 2,2,3,3,4,4,5.5 octamethy1 hexane in the composite particle 

representation. 

this technique. Note that GCCI's of the representation pairs (E
3

,E
4
), 

(G2 ,G
3
), (G10 ,G11) are the same. Consequently, Table 4 lists only the unique 

GCCI's. When one replaces the appropriate nuclear spin weights in the NMR 

p1ethysms one obtains the generators of nuclear spin species. To illustrate, 

if one needs to obtain the. proton NMR species of the non-rigid butane molecule 

k k then one replaces every ~ in the GCCI' s by (1 + 8. Let us further exemplify 
the 

this point with/GCC! of G1 • To obtain the proton spin mu1tip1ets of non-rigid 

butane corresponding to G1 we replace every ~ by ak + 8k in (4.7). 

Expression (4.8) is the result of such a replacement. 

Expression (4.8) up on simplification yields (4.9) 

G
1 

G.F. = (198 + 4(1882 + 9(1783 + 14(1684 + 16(1585 

(4.8) 

(4.9) 

Thus there is 1G
1 

representation in the set of spin functions that have 9 (1'S 
the set of 

and 1~, 4G1 's in/spin functions containing 8<:'s aod 2@'s, 9G1 's in 7(1's and 
n1 n2 38's etc. The coefficient of (1 8 generates number of times G1 occurs in 

21 



the set of spin functions containing nl~'s and n2~'s. Note that the term 
nl n2 a B corresponds to the total 2 component spin quantum number ~ = (nl -n2)/2 

so that when the coefficients in G.F. 's are sorted in accordance to their ~ 

values one immediately infers that the proton NMR G
l 

species are 

The numbers in parenthesis give the number of G
l 

multiplets of the appropriate 

multiplicity. This can be briefly summarized in Table 6 where we give all the 

proton NMR multiplets of non-rigid butane obtained using the NMR plethysm 

generators described in this section. Note that one needs to construct the 

spin species and spin functions in this representation for butane if one is 

interested in a dynamic high resolution NMR spectrum as a function of tempera-

ture. This is because the composite particle representation breaks down at 

lower temperatures since methyl protons become inequivalent, and thus appro-

priate correlation of spin species is not possible. Such a correlation can be 

easily obtained in the total representation as shown by the author in an 

9 earlier paper where we called the resulting diagram a coalescence diagram. 

If one needs to obtain the Deuterium NMR spin species of butane all that 

one needs to do is to replace every xk in the NMR plethysms in Table 4 by 

Ak + ~k + v
k , where A, ~ and v are the weights corresponding to mf = -1, 0, 1, 

respectively of D nucleus. One can then easily sort the coefficients in the 

generating function in accordance to their total ~ values and the spin 

multiplets can be generated. The deuterium NMR spin multiplets thus obtained 

for butane (D) are shown in Table 7. 

22 
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Table 1. The Character Table of S4' the NMR Group of Methane 

r (1) (2) (3) (4) (1) (2) (34) (1) (234) (1234) (12) (34) 

Orders 1 6 8 6 3 

A = 1 [4] 1 1 1 1 1 

F = 1 [3,1] 3 1 0 -1 -1 

[22] 
.' 

E = 2 0 -1 0 2 1 

F = 2 
[212] 3 -1 0 1 -1 

A2 = [14] 1 -1 1 -1 1 
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Table 2. Generators of the NMR D Species of CD4 

r ),,4 ),,3u ),,2u2 )"u3 4 )"3,, ),,2 . 2 3 ),,2,,2 )"u" 
2 2 2 )",,3 3 4 

U U" )"U " U " U " U" " 
Al I I I I I I I I I I 1 1 1 I I 

A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

El 0 0 I 0 0 0 1 I 0 1 1 I 0 0 0 

Fl 0 1 I I 0 1 2 2 I 1 2 I I I 0 

F2 0 0 0 0 0 0 I 1 0 0 1 0 0 0 0 



;t'·-

.• 

Table 3. Irreducible Representations of the NMRGroup of Non-rigid 
Butane. This Group is also Isomorphic to the NMR Group 
of 2,2,3,3,4,4,5,5 Octamethy1 Hexane in the Composite 
Particle Representation. Note that there are 8 A repre
sentations, 6E representations, 12 G representa-tions and 
1 K representation satisfying 8.12+6.22+12+1.82 = 288. 

r 

r = A = [3] II [3] II [2] II [2] ® [2] 11-________________ _ 

r =A = [3] II [3] II [2] II [2]@[12]' 
2 2 

2 
r3 = E1 = [3] II [3] II [2] II [1 ] + S2[S3,S2] 

r
4 

= A3 = [3] II [3] II [12] II [12] ~ [21' 

r = A = [3] II [3] II [12] II [12] ~[12]' 
5 4 

r6 = G1 = [3] II [2,1] II [2] II [2] t S2[S3,S2] 

r7 = G2 = [3] II [2,1] II [2] II [12] + S2[S3,S2]' 

r8 = G3 = [3] II [2,1] II [12] II [2] + S2[S3~S2] 

r9 = G4 = [3] Ii [2,1] Ii [12] II [12] + S2[S3,S2] 

rlO - E2 = [3] Ii [1
3

] Ii [2] # [2] + S2[S3,S2] 

r11 = E3 = [3] II [1
3

] # [2] II [1
2
]+ S2[S3,S2] 

r 12 - E4 = [3] # [13] # 112] # [2] + S2[S3,S2] 

r 13 = ES = [3] # [13] II 112] II [12] + S2[S3,S2] 

r 14 =GS = [2,1] Ii [2,1] # [2] II [2] ® [2] 

r 15 = G6 = [2,1] Ii [2,1] II [2] II [2] ® [12] , 

2 
r 16 .= K1 = [2,1] II [2,1] II [2] II [1 ] + S2[S3'S~] 

r
17 

= G
7 

= L2,1] II [2,1] # [12] II [12] e [2]' 

r 18 = G 8 = [2,1] II [2,1] II [1"2] II [12] ~ [12] , 

r 19 = G9 = [2,1] II [13] II [2] II [2] + S2[S3,S2] 

r 20 = G10 = [2,1] II [13] II [2] II [12] t S2[S3,S2] 

r 2i = GIl = [2,1] II [1
3

] II [12] II [2] + S2~S3,S2] 

Dimension 

1 

1 

2 

1 

1 

4 

4 

4 

4 

2 

2 

2 

2 

4 

4 

8 

4 

4 

4 

4 

4 
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Table 3 (continued) 

r Dimension 

3 r 22 = G12 = [2,1] /I [1 ] /I 2 2 [1 ] /I [1 ] t 5
2

[5
3

,5
2

] 4 

3 r 23 = AS = [1 ] II [13] /I [2] II [2] ,,[2] 1 

3 
r 24 = A6 = }1 ] II [13] II [ 2] II [2] ® [12] , 1 

r 2S = E6 = [13] II ] 13] II [ 2] II 2 [1 ] t 5
2

[5
3

,5
2

] 2 

[13] [131 [12] II [12] g) [2] 
, 

r 26 = A7 = II /I 1 

r 27 == AS == [13] II [13] II [12] II [12] @[12]' 1 



Al 

A2 

A3 

A4 

AS 

A6 

A7 

A8 

E1 

E2 

E3 

ES 

E6 

G1 , 

G2 ' 

G4 

GS 

G6 

G7 

G8 

G9 

G10 

G12 

KI 

, ' 

t' 

Table 4. GCCI's of S2[S3,S2]' NMR Group of Butane 

10 8 6 2 4 3 7 S 3 2 2 4 3 4 2 2 2 2 2 S 3 2 2 xl x1x2 x1x2 x1x2 xIx3 x1x2x3 x1x2x3 x1x2 x1x2x3 xIx3 xIx2x3 x2x3 x2 x2x4 x2x6 x2x
4 

x4x6; 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

8 

8 

8 

4 

4 

-4 

-4 

-8 

-8 

12 

4 

o 
-4 

-12 

20 

12 

4 

8 

8 

-8 

-8 

-4 

-12 

-20 

o 

22, 24 

22 24 

-2 -12 

-2 -12 

-2 12 

-2 12 

22 -24 

22 -24 

16 -12 

-16 -36 

-20 0 

-16 36 

16 12 

28 12 

-4 -12 

-20 12 

4 0 

4 0 

4 0 

4 0 

-20 -12 

-4 12 

28 -12 

4 

4 

4 

4 

4 

4 

4 

4 

8 

8 

8 

8 

8 

4 

4 

4 

-8 

-8 

-8 

-8 

4 

4 

4 

-8 o -16 

20 

20 

4 

4 

-4 

-4 

-20 

-20 

24 

16 

o 
-16 

-24 

-4 

-12 

-20 

-16 

-16 

16 

16 

20 

12 

4 

o 

28 

28 

-20 

-20 

-20 

-20 

28 

28 

-8 

8 

-8 

8 

-8 

-20 

-4 

28 

-8 

-8 

-8 

-8 

28 

-4 

-20 

16 
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9 

9 

9 

9 

9 

9 

9 

-18 

-18 

18 

-18 

-18 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

12 

12 

12 

12 

-12 

-12 

-12 

-12 

-24 

o 
o 
o 

24 

-12 

12 

-12 

o 
o 
o 
o 

12 

-12 

12 

o 

4 

4 

4 

4 

4 

4 

4 

4 

8 

8 

8 

8 

8 

-8 

-8 

-8 

4 

4 

4 

4 

-8 

-8 

-8 

8 

8 

8 

-8 

-8 

8 

8 

-8 

-8 

o 
16 

o 
-16 

o 
-16 

o 
16 

8 

8 

-8 

-8 

-16 

o 
16 

o 

4 12 48 

4 -12 -48 

4 12 24 

4 -12 -24 

4 12 -24 

4 -12 24 

4 12 -48 

4 -12 48 

-8 0 0 

800 

-8 0 0 

800 

-8 

-8 

8 

o 
o 
o 

o 
o 
o 

-8 0 0 

4 24 24 

4 -24 -24 

4 24 -24 

4 -24 24 

-8 

8 

-8 

-8 

o 
o 
o 
o 

o 
o 
o 
o 

24 

-24 
24 

-24 

24 

-24 

24 

-24 

o 
o 
o 
o 
o 
o 
o 
o 

-24 

24 

-24 

24 

o 
o 
o 
o 

36 

-36 

-36 

36 

-36 

36 

36 

-36 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
'0 

o 

24, 

-241 

-24 

241 
1 

24 

-24: 
-24: 

24 

01 

o 
0' 

0
1 

o 
o i 
o 
01 

-24 

24 , 
24 : 

-24 

01 

o 
, 0 ' 

1 

o 

'tv 
~\O 
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Table 5. Generating Functions for the Proton NMR Spin Species Butane. 
GF's for E3 and E4 , G2 and G3,and G10 and G11 are the same 

A1 1 2 6 9 14 14 14 9 6 2 1· 

A2 0 2 4 9 11 14 11 9 4 2 0 

A3 0 0 1 1 2 2 2 1 1 0 0 

A4 0 0 0 1 1 2 1 1 0 0 0 

AS . 0 0 0 0 0 0 0 0 0 0 0 

A6 0 0 0 0 0 0 0 0 0 0 0 

A7 0 0 0 0 0 0 0 0 0 0 0 

AS 0 0 0 0 0 0 0 0 0 0 0 

E1 0 1 3 6 9 10 9 6 3 1 0 

E2 0 0 0 0 0 0 0 0 0 0 0 

E3 0 0 0 0 0 0 0 0 0 0 0 

E5 0 0 0 0 0 0 0 0 0 0 0 

E6 0 0 0 0 0 0 0 0 0 0 0 

G
1 

0 1 4 9 14 16 14 9 4 1 0 

G
2 

0 0 1 3 5 6 5 3 1 0 0 

G
4 

0 0 0 1 2 2 2 1 0 0 0 

G5 0 0 1 2 5 5 5 2 1 0 0 

G
6 

0 0 0 2 3 5 3 2 0 0 0 

G
7 

0 0 0 0 1 1 1 0 0 0 0 

G
S 

0 0 0 0 0 1 0 0 0 0 0 

o o o o o o o o o o 

o o o o o o o o o o o 

o o o o o o o o o o o 

o o o 1 3 4 3 1 o o o 
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Table 6. Proton NMR Species of Butane. 
Numbers are the Freguencies of 
Occurrence of that Spin Species 

~ 

1 3 S 7 9 11 

'. 
Al 0 S 3 4 1 1 

A2 3 2 S 2 2 0 

A3 0 1 0 1 0 0 

A4 1 0 1 0 0 0 

AS 0 0 0 0 o. 0 

A6 0 0 0 0 0 0 

A7 0 0 0 0 0 0 

AS 0 0 0 0 0 0 

El 1 3 3 2 1 0 

E2 0 0 0 0 0 0 

E3 0 0 0 0 0 0 

E4 0 0 0 0 0 0 

ES 0 0 0 0 0 0 

E6 0 0 0 0 0 0 

Gl 2 S S 3 1 0 

G2 1 2 2 1 0 0 

G3 1 2 2 1 0 0 

G4 
0 1 1 0 0 0 

GS 
0 3 1 1 0 0 

G6 2 1 2 0 0 0 

G7 0 1 0 0 0 0 

GS 1 0 0 0 0 0 
(~ 

G
9 

0 0 0 0 0 0 

G10 
0 0 0 0 0 0 

G
11 

0 0 0 0 0 0 

G
12

· 0 0 0 0 0 0 

Kl 1 2 1 0 0 0 
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Table 7. Deuterium NMR Spin Species of Butane. Numbers under each Symmetry 
Species and Multiplicity give the Frequency of Occurrence of that 
Spin Multiplet 

G 1 3 5 7 9 11 13 15 17 19 21 

Al 17 23 47 39 43 26 22 9 6 1 1 

A2 7 33 37 46 36 31 17 11 4 2 0 

A3 7 7 16 11 13 6 5 1 1 0 0 

A4 1 12 11 15 9 8 3 2 0 0 0 

A5 2 0 2 0 1 0 0 0 0 0 0 

A6 0 1 1 1 0 0 0 0 0 0 0 

A7 1 0 1 0 0 0 0 0 0 0 0 

A8 0 I 0 0 0 0 0 0 0 0 0 

E1 11 35 45 49 40 30 17 9 3 1 0 

E2 2 11 11 13 8 6 2 I 0 0 0 

E3 3 5 8 6 5 2 1 0 0 0 0 

E4 3 5 8 6 5 2 1- 0 0 0 0 

E5 1 4 4 4 2 1 0 0 0 0 0 

E6 0 2 1 I 0 0 0 0 ,0 0 0 

G
1 

22 59 80 81 67 46 26 12 4 1 0 

G
2 

13 35 46 45 35 22 11 4 1 0 0 

G3 
( 13 35 46 45 35 22 11 4 1 0 0 

G4 8 21 27 25 18 10 4 1 0 0 0 

G
5 

17 27 45 35 31 15 9 2 1 0 0 

G6 
7 36 36 41 25 18 6 3 0 0 0 

G7 8 10 17 10 8 2 1 0 0 0 0 

G8 
i 15 12 13 5 3 0 0 0 0 0 

G9 
4 11 13 11 7 3 1 0 0 0 0 

GIO 3 7 8 6 3 1 0 0 0 0 0 

GIl 3 7 8 6 3 1 0 0 0 0 0 

G12 2 5 5 3 1 0 0 0 0 0 0 

KI 15 39 48 42 28 14 5 1 0 0 0 
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Figure Captions 

Figure 1. NMRGel'fand states of CD
4
,A, ll, and \l are the weights 

corresponding to the 3 spin states of D nuclei with ~ = -1, 

o and 1. The lexical ordering of the weight is \l > II > A. 

Figure 2. Possible tableaus that can be obtained by adding 3 a's 

and 1 8 to the Young graph of (4,2). When the symbols a's 

and 8's are read from right to left one obtains a lattice 

3 permutation of a 8. These tableaus determine the 

s-functions contained in the product {4,2H3,1l. 

Figure 3. NMR graph of B(CR
3
)3. The center circle is the boron 

nucleus. 

Figure 4. The NMRgraph in Figure 3 as a composition or the graphs 

Q and T • 
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