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~and fission fragments.
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School of Physics "Enrico Fermi"
on Nuclear Structure and Heavy
Ion Dynamics, Varenna, July 1982

Statistics at Work in Heavy Ion Reactions
Luciano G. Moretto
Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Abstract: In the first part special aspects of the compound nucleus decay

are considered. The evaporation of particles intermediate between nucleons

~and fission fragmentsAiS‘explored both theoretically and experimentally. The

limitat ions of the fission decay width expression obtained with the tfansition
state method are discussed, and a more‘genéra1 approach is proposed. In the
second part the process of angular mbmentum transfer in deep inelastic

reactibns is considered. The limit of statistical equilibrium is studied and

specifically applied to the estimation of the degree of alignment of the
- fragment spins. The magnitude and alignment of the transferred angular

“momentum is experimentally determined from sequentially emitted alpha, gamma,
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Introduct ion

In a brief moment of excessive ambitidn, I had planned to make these
notes a vademecum for\anybody with the inclination or the necessity of
applying statistical methods to the various areas associated with heavy ion
reactions. As it turns out, I successfully resisted the temptation and, in a
more modest vein, I ended up writing about what seemed, at that moment, most
interesting in the‘area. . Not surpfising]y the topics happened to coincide
with the very subjects I was working on at that time. It is my hdpe that my
twenty-five readers (how could I hope for more readers than Manzonil) will
find my lectures not too incoherent and rambling. And even if they find them
a bit boring, they may try to balance their perspective with the thought that,
one‘day; they too may be confronted with a similar task and a similar audience.

The topics that I have chosen are the fol]oﬁing: in the first one 1
shaT1'discuss'cer£ain new aspects of the compound nucleus decay brought into
the limelight by the very special conditions prevailing in heavy ion
regctions. In particular, we shall dfscuss the statistical emission of
particles of intermediate mass and we shall investigate experimentally the
existence of such a process. Furthermore, we shall reconsider the standard
Bohr-Wheeler approximation in the calculation of the fission decay width and
we shall presént a more general approach to the problem.

In the second.part we shall consider the problem of angular momentum -
transfer and alignment in a variety of heavy ion reactions. Experimentally,
we -shall use sequential alpha, gamma, and fission decay as different probes of
the angular momentum in déep inelastic fragments.

In order to illuminate the underlying units of these topicé, it would take
me at least one full paper. But then it occurred to me that writing a paper
to justify another paper was too much both for the writer and for the reader.

Therefore, with this relieving thought, let us proceed to our chosen topics.
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Part One

Light Particle Emission and Fission:

A New Look at Compound Nucleus Decay

It was Plato who said that knowing is remembering. He meant, of course,
that our contingent knowledge is but a dim recollection of the clarity of
hyperuranian world. In a more wandly-senSé; it also seems true that old

scientific ideas are rediscovered from time to time, as the meandering evolu-

tion of science broaches again and again the various facets of a given subject.

’According1y, while one would think that the subject ofncompound nucleus decay
has beeanéaten to deafh,-it is surprising to‘see how.newfasoe;ts-are-bfought
to light by the recent qévélopments in nuc]ear\reactions. Heavy ion reactions,
An pofticu1ar, have shown how compound nuclei.can be formed in a variety of

. _regimes hardly accessible heretofore. The two characteristic variables that

can be explored effectively are'tné”angdiérmementum and the excitation - - .

energy. On one hand, fusion reactions have 1éd.to the formation of Compound
nuclei with extremely high angular momenta up to values for which the fission
barrier becomes vanishing1yvsma11. In this regime fission becomes a most
re]evant, if not the dominant, d?cay mode over-a broad region of the'perjodic
chart. It is therefore important to see whether the traditional expfessions
.for the fission decay wioth sti11 hold in thisvregion. |

| On the other hand, deep inelastic processes:allow for the formation of
extremely excited compound nuclei, which are reasonably well characterizable
in terms of mass, charge, excitation energy, and angular momentum. -For |
instance, in the reaction Ho + Ho at 8.5 MeV oer nuc]eon, Q—va1ues as high as
-400 MeV (i.e., 200 MeV of excitation energy per frggment) are observed. The

N

,fragments are compound nuclei of mass and charge close to the entrance channel

f‘\.

‘o
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Ho nuclei and have a large but not impossibly high angular moment um of ~40 h.
 The reason deep-inelastic reactions, better than fission, can produce high
excitations is the ability of the relative motion to carry most of the angular
momentum, which ofherwise would end up in the compound nucjeus. |

These very high excitation energies allow certain hypotheticq] decay
processes; never documented before due to their expecteq improbabiiity, to
bec ome competitfve. We are ta]kihg, more specifically, about the evaporation'

4He to‘fissjpn fragments. We

of large fragments, extending in mass from
shall deal with this subject in the first section and with fission in the

second section.

I. Statistical emission of particles of intermediate mass

The typical compound nucleus detéy populates twolvery distinct mass
regions. Evaporation produces fragments with mass no larger than'four, while
' fission produces fragments’close to one-half the mass of the compodndv
nucleus. The separation is so sharp that one is led to consider the tho.
processes quiteydifferent, as indicated even by their names.

Such a dichot omy is stressed in the forma1isms_c0mmon1y USéd,in the
calcultation of the'decay widths. Thevstandard evaporation forha]ism1f4)
makes use.of the detailed balance principle to connect the compound system
with the decayed system at infinite separation of the two fragment s (e.g.,
neutron and residual nucleus). The direct transitidn_probabi]ity is obtained
from the phase-space volu&es associated with the initia1 and final states and
from the inversé transition probability déduced from an optical model.

On the other hand the fission decay formalism, like the Bohr-Wheeler

forma]ism,s) t akes advantage of the saddle point in the potential energy
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surface as a funcﬁﬁon of deformatipn. At this_point, which separateé the

compound nucleus region from the region of the forming fragments, there is'é
phase-space constfiction that controls fhe probability;flow between the two

regions. Furthermore, the direct and inverse transition probabilities are I
trivially related to‘theDVelocity of thé}system'a1ong the fission coordinate.

This apparent dist%ﬁéﬁion between evaporat ion and'fis;ion is rather

“artificial.  From the éiberihenta1‘standpoint, partic]es with mass

intermediate between the fission fragments'and the alpha partic]es have been
observed in high energy reactionsG-g), and their cross section appears to

increase rapidly with excitation energys). In fact, the high energy and

angular momentum deposition associated with heavy jon reactions should raise

these particles from the 1imbo of immeasurabfy'1ow crossfsections into the

more accessible region of ordinary cross sections, thus making these processes
-~ open to experimenta} investigation.

We shall try to treat this prob]em’on very généra1 QroUnds;«byvde5cnibing_ ”__“;q
and classifying the most relevant aspect of the physics in a manner that is as
independent as possib]e from any detailed model. Specific models will be used
only for the purpose of exemplification. The emission prdbabi]ities, the
kinetic energy distributions as well as the angular distributions, will be
calculated analytically. At the same time, the features of the formalism that
portray the essential unity of the statistical décay process will be stressed.

) 1. POTENTIAL ENERGY ASPECTS: o <
THE RIDGE LINE OR THE CONDITIONAL SADDLE POINT |

Thé nuclear potential energy surface V(xi) as a function of a set of
deformat ion coordiﬁates x; has been studied in detail in the framework of
10-12)

the liquid drop model . The stationary points of this surface can be

obt ained by solving the system of equations:
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In general, only the solutions of the above equations are the part of the
topology that: is invariant with respect to a canonical transformation of
coordinates. In phrticu]ér, the ground state and the fission saddle point are
independent of the representation that is chosen, while the overall topology
of the potentia1 energy dépends on the choice of the coordinates. The saddle
point. shapes for values of the fissi]ity parameter x < 0.7 are strong]y
constricted at the neck; so that the two fbrming fission fragments are a]reédy

well defined in their masses A1 and A2. In this way a mass asymmetry

parameter can be defined. In the limit in which the mass asymmetry is a

A
well-defined quantity, it is possible to consider a cut of the potential

energy surface along the mass asymmetry coordinate passing through the saddle

point and such thét, at any point of this cut, the potential energy is
stationary with respect to all coordinates. Each point on this iine is then a
"conditional" saddle point with the constraint of. a fixed mass asymmetry. In
analogy with the name "saddle point", we may call this line of conditional
saddle points "ridge line". In the 1imft of large mass asymmetries, the two
spheroid parameterization is expected to be a good approximation even forv
values of the fissility parameters larger than 0.7. Furthermore, for very
large mass asymmetries, the small fragment can be approximated by a sphere,
thus simplifying the problem substantially. |

The potential energy along the ridge line is shown in the two spheroid

appfoximations for three nuclei (fig. 1).
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2. STATISTICAL PARTITION AT THE RIDGE POINT AND TOTAL DECAY WIDTH
Assuming that the inertia tensor is known for the cb11ective modes at the
ridge point, a simultaneous diagonalization of the potential and kinetic
energy expressions in the‘quadratic approximat ion is possible, thus leading to s
ihe definition 6f-the normal mddes at the ridge point. In the limit -of
Vcomp]ete uncoup11ng between collective and 1ntr1ns1c modes, the decay w1dth

F(n), differential in n variables, can be wr1tten as:

| o 2 . 2
MM gedydp. Tdx dp. = mb— o¥|E = Bo(y) = ¢ — X - 3 [aix? + o
- APy B0 = ZRole) RYY m o %9 7 Zm,

dydp’ dx.dp. ' o
"X ; y dell < ! 1)' _ ' ;

h

whére-xi,pé»are the normal mode's coordinates ahd conjugéteAmoménté; yiand
py are the mass asymmetry cpordinate and mbmentum; BR(y):is the ridge
point potentia]teneréy; e is the kinetic energy of the fission-1ike mode; a,
and m; are the stiffnesses and the inertias associated with the normal -
modes; o(E) is the'Compouhd‘nhc]eus leve den§ity; p*[....j:iS“the'density
of the intrinsic states at the ridge point. |

By expanding the natural logar1thm of the ridge point level density in
first order with respect to its argument, ‘one obtains a rather accurate and

very useful approximation:

("M dedydp. Tdx d -LD(E—BR)ex Y B SN e
cdydp, Ndxgdp; = n_’o“(?)-__. P-Tle o i T ms : P
dydp (dxdp) e
X —p ell R (2) ‘
1 dino (x)
Np (X
where T=a | x-F -8
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In this approximation, énergy is not conserved. Rather, the system is
characterized by a constént temperature T, which describes the equilibrium
between the collective degrees of freedom and the far more numerous intrinsic
degrees of freedom that act as a thermostat.
This expression is essential]y identical to the differential decay width
for the fission process. :

Equat ion (2) can be integrated to give the total decay width:

. % : '
| Tel(E - By (2mey)1/2 1 [

Since it is rather unlikely that the duantities m.,a, can be determined

with sufficient accuracy, 1£ may be wise to incorporate all the phase-space
associated with the bound collective modes into a new level density expression

The decay width then becomes:

41/2

11 TeplE-B ) (2nTm ) '“dy . | | @

Iy = 50 —15) h

This expression for large values of £ can be written approximately as:

1/2
T(2mey) dy Bp

7 " h exp - | (5)

Fldy

[

[}

where the contribution of the mass asymmetry mode to the phase-space has been
explicitly isolated. The leading factor in this expression is the exponentia1.
The pre-exponential factor fs hard to calculate because of the inertial param-
eter my. However, there is reason to expect that this term varies slowly with
a;ymmetry y; Consequentiyg we can estimate the yield of the statistically

emitted fragments to within an approximately constant factor (fig. 1).
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3. THE KINETIC ENERGY DISTRIBUTION; AMPLIFYING AND NON-AMPLIFYING MODES

In thelcaSe of charged particle evaporation, the greatest fraction of the
“kinetic energy of the particle at infinity originates from the Coulomb

repu]sfon. Therefore, great care ﬁust be taken in describing the shape of the : A
"system éf the time of division, because the distance between the centroids of
the two charges is critica] in determining the Coulomb energy. In the bresent
treatment, the relevant shape 55 that of the ridgeVpoiht, which, at all times,
we consider degenerate with the scission‘coﬁfiguration. As can be seen from
the two spheroid model or from the spheroid-sphere model, the ridge point
configuration can_beﬁsubstantially elongated (shape pofarization of the two
fragménts) so-the distance between the centroids of the two charge
distributions is_larger than that of two touching spheresf Thus the Coﬁ}omb
eﬁergy is smaller than the nominal Coulomb barrier (corrésponding to'two |
touching sphereg),.and apparent subCoulomb barfiér emission may resuﬁt. An
1ndicatibn of subCoulomb barrier emission is é1ready ayai]ab]e in 4He ‘

evaporation13’14).

This effect, which is_ordinarily attributed to quantum
mechanical barrier penetration, finds here a bossible explanat ion that is
entirely classical. A similar, but hore pronounced, effect has been observed
in the emission of complex particles from high energy bombardments7’8). The
extreme limit of this efféct is visible in the fission brocess and in deep
inelastic heavy ion collisions, where the kinetic energies are ihdeed
substantially lower than the Coq]omb energfes of tWo'tddching spheres.

A second point, very relevant to this discussion, is the origin of the

L

width of the kinetic energy distributions. In the case of neutron L '
evaporation, the kinetic energy width originates from the statistical
fluct uat ions associated with the neutron degrees of freedom (translational

modes)@v In the case of charged particle emissﬁon, fluctuations in kinetic
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‘energy may a]so ar1se from fluctuations in var1ous bound collective degrees of

freedom. These shape fluctuations can contr1bute great]y to the kinetic
energy fluctuation, as can be seen in the following example. Let us plot the
ridge point potential energy for‘the sphere-spheroid mdel as a function of the
spheroid deformation (fig. 2). On the same graph, let us plot the Coulomb
interaction energyvofvthe two toughing fragments, also as a functfon of the
spheroid deformaéion. In second order in the deformation parameter z = g8 -

Beq the potent1a1 energy has the form:

2 .
VT VR + kz - : : (6)

while the Coulomb interaction energy in first order has the form:

V =E_-cz . ' ' ‘ (7)

The fluctuation in potential energy associated with the deformation mode in
equilibrium with a thermostat with temperature T is of the order (1/2)T. The

correéponding fluctuation in Coulomb energy is:

i .
1 fpr |
9% = E?F = %_ (8)

where the parameter p = c2/k is,dependent'on1y on the potential energy of
the ridge point mode in question. The width o. for sufficiently large

values of the parametér p may become the dominant contribution to the spread
ih kinetic energy. A pictorial way to explain such an amp]ifi;ation of a
f]uctuatiqn is to compare the system in question to an amplifier. The input
to the amp]ifiér is a white noise of mean amplitude KI/Z)T'. Because of the
characteristics of the aﬁb1ifier, an output signal of mean amplitude VEﬁiE? is
emitted. The parameter p then can be properly called amp]ification paramgter

and a degree of freedom with such a general structure can be called amplifying

mode. In general, a mode is amplifying when, at various elongat ions
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(deformat ions), the re]at1ve contribution of surface and Coulomb energy to the
total potent1a1 energy changes widely.

At the other extreme we have non—amp]ifying modes when their potential

energies arise almost exclusively from Coulomb energy.‘ For instance, the A
oscillation of tne spherical small fragment about the tip of the large -
spheroidal rragment can be consideredfa‘non-amp]ifying mode. As the fragment
rolls (or slides) away.from the tip of‘the spheroid towards theiequator, the
Con1emb energy increases because of the decreasing distance between the two
fragments, while the surface energy of the system changes onIy in higher order
and can be cons1dered approximately constant
4. DETAILED EVALUATION OF THE FINAL KINETIC ENERGY DISTRIBUTIONS
A. detai]ed expression for the kinetic energy distribution at infinity
cannot be obtained without a we11 —defined mode] for the ridge- po1nt degrees of |
freedom “In what follows we shall try to obtain results that are on one:hand
as simple as possible, on the other very general and dependent only on the
~ essential features of any specific model. The fo1]owingdassuhptions will be
made:
i) The ridge point modes are of three kinds, amplifying modes,
non-amp1ifying modes, and one decay mode |
ii) The decay mode and the non-amplifying modes consribute their total
energy (potential and kinetic) to the finaT kinetic energy, whj1e
the amnlifying modes contribute only the COu1dmbic part of the

potential energy;

i

Some justification of these.assumptions can be found in the
sphere—spheroid model or in the two spheroid models. In both of these models
‘there is a fairly well-defined separation of the ridge-modes in the amplifying

and non-amplifying classes. Furthermore, the kinetic energy associated with
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»the'amp1ifying modes is mainly in the form of kinetic energy of vibration of

Ll

the fragments and should not appear to any great extent in'the final kinetic

energy. In what follows, different combinations of the various kinds of

‘degrees of freedom will be employed and various analytical expressions will be

derived.

4.1. One Decay Mode and One Amplifying Mode

The decay width takes the following form:

: 2

dy(2xTm_) op (E-By) p dzdp_de

R. R 1

7w oTE) 0 -7\t VD) = 9
z

1/2

F(4)dydedzdpZ =

In this expression z, P, M, and V(z) are the coordihate, conjﬁgate
moment um, inertia, and.potentia1 energy of the amplifying mode; ¢ is the
kinetic energy of the decay modé. |

Since the kinetic energy associated with the amplifying mode is not

expected to contribute to the final kinetic energy, one can integrate directly

‘over p,. Furthermore, one can express V(z) in the quadratic approximation:

V(z) = By + kzZ. - - (10)

One then obtains .

'/ dydedz = Y xp | -
yde h 27 o(E) h € p[

Let_us‘now assume that the kinetic energy at infinity is given by:

e L

(¢ + kzz)] dedz (11)

Ek = Ecou]omb + e = Eo‘— cz + ¢ ' (12)

where E0 is the Coulomb interaction energy at the Fidge point and cz is its
first order dependence upon the deformation parameter z. Then the kinetic
energy distribution at infinity. is:
E
k 1 k 2
0 _
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~

where all the irrelevant multiplicative factors have been dropped.

2
Letting %— =pand E - E0 = x one obtains:
2E +p | B
P(x)dx « exp (%-%) erf —2— _ erf p=2x._. dx . o (14)
2 pT 2 T -

Even for small charged particles and rather large temperatures, the argument
of the first error function is quite large. Consequently,
2E0+p

erf
2 oT

=1 s

and’ : o o (15)

P(x)dx = exp (}-%) erfc p-2x dx

4.2. One Decay Mode, One Amplifying Mode, and One’Non—Ahp1ifying,Mode A
Let us label the non-amplifying dégree of freedom as t. The decay width

can be written as:

i P(s)dydedzdtdpt =
dy(2xTm, )"/ 2 o (€-8 ) dz(2mm,T)'/% dtap, - | i
y R Y4 . t 1 . 2 . 2 t
h 2n olE) h o eXp - g€ kz ?t Z_m-; de
. | (16)

Since all the terms in e, t, Py contribute to the final kinetic energy, we _
can collect them, account for the associated phase-space, and obtain:

P(E, )dE, = dE i g JLf, .k (€, - E 12) ae (17)
P(E,)dE, K exp - ¥l2 ;? k = % L .
0 | '

where one has set, as before:

Ek =.E0—CZ+QI . ' ) ‘ : (18)

&
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After integration one obtains:

o ‘ 2E +p
P(x)dx =« {(2x - p) exp <_ -¥-> [erf - erf E:ZL]

" (19)

- ’ » 2 '
2,02 (2E _+p)“+4px :
. f'g“féz exp < -'E“:ﬂl-> - exp ( - ° 4pT dx

T

Again, if Eo >> /pT , the above expression can be simplified és follows:

p-2x ’ 2.2.2
P(x)dx = | (2x - p) exp (—%) erfc +.2 /ﬂ exp<-p Z4¥ > dx
2 /pT T P
: (20)

4.3. One Decay Mode, One Amplifying Mode, and Two Non—AmpTifying Modes

Eqdation (17), with the addition of one extra non—amp]ifying'mode,
becomes: | |
E .
P(E, )dE, « dE e -1k (€, - £ - 2)2 {dg (21)
% k P-3 2 ko
0 _ o :

where one has employed the usual expression for the kinetic energy. After

integrat ion one obtains:

P(x)dx « <z 02 + %I + x2 - px) exp (— %) [%rf 0 _ _ erf Elgi-]
_ : | 2/pT  2/pT
. : », 2 .
75 (- 22262) (o) +4px)]
+ — - - + -
jegys (2x - p) exp T (ZE0 p) exp 5T : dx
Again, if E_ >> V/pT the above expression becomes: (22)
o .
1 .2 ,.pT .2 X p-2x
P(x)dx « {( p- + + x° - px) exp <; ) erfc
_ ‘g 2 T 2 /pT
JoT 2,4.2
+ 2PT (2x - p) exp < p4+$x ‘>} dx (23)
2 /n ' P
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5. COMMENTS ON THE FEATURES OF THE KINETIC ENERGY DISTRIBUTION EXPRESSIONS
AND THEIR ASYMPTOTIC LIMITS

The first observation one can make.about the three equations derived
‘above concerns the different way in which the amplifying and the
.non-amp1ifying'modes manifest themselves. The amplifying mode affects the
kinet ic energy distribution through the amplification parameter p, which

'-dependé on the potential energy features of the system at the ridge point.
The ndn—amp1ifying modes éffect the kinetic energy distribution only through
their number and not through any feature related either to‘the potential
energ} or to the iner{ia.

7“The second obseryation‘qeals.with the most probable va]ués and the width
of the kinetic energy‘distribution at constant values of p. As can be seen
from fig. 3, the most probable energy shifts towards higher values as the »
number of non-amplifying modes increases. For sufficiently large values of p,
the width of the distribution is essentially determined by p and incréases
slightly with increasing“number of non-amplifying modes.

In all the cases, but especially at 1arge values of p, a substantial
fraction of the kinetic energy distribution occurs below the nominal Coulomb
barrier (fig. 3).» Again, this effect fn the present model arises simply from -
classical factorS'assbciated with shape polarization and statisfica]
f]uctuations-at_thé ridge point. It has nothing to do with quantum mechanical
penetration of the barrjer, which has not been included in the model.

A third aspect of this calculation has to do with the general apéearance
of the kinetic energy sbe;tra; A11 three equat ions predict a highly
asymmetrﬁc, maxwellian-1ike shape for small values of ﬁ (fig. 3). This can be
/seen-best in Eq. (20) and Eq. (23). At small p values the first term,

containing erfc, dominates, giving rise to a strong asymmetry. At large
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values of p the term containing erfc tends-to-zero; and the second term, which

is a gaussian, dominates.

5.1. Limiting Expressions for p.= 0

First, let us consider the limit to which the three expressions,
Egs. (15), (20), and (23), tend when the amplification parameter p tends to
zero. Under these conditions x = E . By noticing that in this Timit the

, f Lim : ‘
function erfc tends to a non-zero constant <X+w erfc(-x) = 2), one obtains:

exp - Ek/T v - . (24a)

P(Ek)dEk « Ek exp - Ek/T ,.dEk . (24b)
2 ) _ |

Ek exp - Ek/T (24c)

It appears that one can write a general expression as:

P(E)AE, < Ef exp - E /T (25)

k

where n is théAnumber of non-amplifying -degrees of freedom. The exact meaning

of the Timit p » 0 can only be determined from a specific model. In the case

in which a non—amp]ifying'mode becomes unbound, the partition function loses

one quadratic term in-the coordinate but retains the quadratic term in the
moment um, 'On.the other hand, this doesfhgg happen automatically in our
formalism where we always assume the presence of quadratic terms associated
with both the coordinate and the momentum for each mode. The case of neutron
emission can well be described és the limiting case of two nonQamplifying
modes. As was shown above, the proper limiting form is Eq. (24b), which is
similar to a maxwellian. The same prediction is obtained from more

convent ional theories. A detailed description of the smooth transition from
charged/particle emission to neutron emission can oh]y be done by

investigating a specific model and goes beyond the scope of this paper.
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5.2. Limiting Expressions for Large'Amp1ification Parameters and for

More than One Amplifying Mode

Large amplification parameters are expected forkéystems'with 1§rge atomic
number emitting rather large fragments. As can be seen in fig.»(3); the A o
contribution of the decay mode and of the non—amplifyiﬁg modes to the kinetic |
energy distribution becqme; less and less important'és.p increases. This is E
particularly evident in the tendenéy of the kinetic energy distribution to
become more symmetrical and nearly gaussian at large va1ue$ of p. In.these
_'cases, more than one amplifying mode may be present énﬁ the two spheroid model
"with two amplifying modes may be more appropriafe.than the'sphere—sbheroid
model. If, for the moment, one overlooks the contribution Qf the detay mode
‘and of the non-amplifying modes to the mean and to the width of therfina1
kinetfc energy distribution, one can eaﬁi]& calculate the kinetic enérgy
ﬂdistribution‘resulting_from two amplifying modes. Let the amp1§fying modes be
£ and n. The prbbabiJity of deformation of the system is:

P(E,n)dEdn = exp - ¢ (k£2 + kon®) didn . -~ (26)

where k; and k, are the stiffnesses of the two normal modes,' The total
kinetic energy can be written as:

Ek = Eo - Clg - Czn . : . ‘ (27)

By substituting Eq. (27) into Eq. (26) and integrating ovef a11 the

'possiblé'configukations Teading to the same kinetic enérgy, one obtains: - ' ,ﬁ'
dx « exp - d . 28 N
p(x)dx exp TEIIBEYT X | ‘ (» )
c2 ' c2
a 2

|

and P, =

=
~N

wherg X = Ek -E and'pl.g 2

—t
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~ This result can be easily generalized to any number of amplifying modes:'

x2 ‘
p(x)dx =« exp - —— . . (29)
' TL P; : .

In other words the kinetic energy is a gaussian of width 02 =-% pX piT.

The effect of the decay mode and of the non-amplifying modes on the mean
and the width of the kinetic energy distribution can be estimated as folldws.
The mean kinetic.energy associated with one decay mode and n non-amplifying

modes is:

oo

. f en+1 éxp(;e/T)de
T2 <+ 1T .. | (30)

J. e" exp(~e/T)de
0

The corresponding width can be written as:

oo . - . i

.f (e:——e_:-)2 eh exp(-e/T)de
2.0 - (n+ 1T . (31)

00

j‘ en exp(-¢/T)de
0

Therefore, the kinetic-ehergy distribution can be written down more accurately -
as:

2
X

(p1+p2)T‘+ 2(n+1)7

where x = E v By - (n + 1)T.

P(x)dx = exp -

5 dx | | (32)

~5.3. Angular Momentum Effects in the Kinetic Energy Distributions

The generalization of the formalism fo the case of a given nonzero
angular momentum is straightforward. The ridge pbtentﬁal energy is modified

to include the rotational energy of the system at the ridge. This involves



-18-
the evaluation of the ridge moment of inertia as a function of the deformation
coordinates. In fhe case of a single amplifying mode, a constant k, analogous
to that defined in Eq. (6) can be introduced. The kinetic'energy atvinfinity
depends on the Coulomb energy as well as on the rotational kinetic energy
associated Qith the orbital angu]af moment um of the two;touchingvfragmehts.

One can then define the following quantity:

Vo= VC +%‘ ur‘2 m2 | o (33)

~ where y is the reduced mass of the two fragments inhcontact; r is the distance
between the centroids of the two fragments; w is the angular velocity of the

system defined by
I=od=old) +dy+ ) - o (38)

In this expression,l is the tota]_angu]ar moment um, and-Jlgpz are the moments
of inertia of the two fragments. As in Eq. (7), one can expand v as follows:
V= E - cz “ | (35)
This equation defines the quantity c and an amplification parameter p =vc2/k
can be introduced. A1l the previous expressions can now be used provided one
* ,
redefines x as x = Ek - Eo' The definition of temperature also must account

for the kinetic energy tied up in the form of rotational energy at the ridge:

*
1 dono (x)
T="d | _
x=E-Bp - Egt

The resulting kinetic ene?gy distributions for a fixed I must then be

integrated over the angular momentum distribhtion of the compound nucleus.
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9y is the reaction cross section for the It
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6. THE ANGULAR DISTRIBUTIONS

The ridge point configuration, for the greaf'hajority of'caseﬁ, can be
identified with the scission configuration. Furt hermore, the‘disintegfation
axis and the symmefry axis of the system at the ridge point should approxi-
mately coincide. As a .consequence, thé projection K of the total angular
momentum I on the.symmEtry/disintegration axis should remain constant from the
ridge point to infinity. Such a condition implies a relation between the total
angular momentum and the orbital angular moment um of the two fragments, thds
determiﬁing the final angU]af distribution. This approach is similar to the
. 15). In the fission theory,
the assumption of constant K from saddle to infinity is-somewhat uncertain,
eépecia11y for vefy heavy elements, due to the complicated dynamical evolution
leading from saddle to scission. In our'cése, due to the closeness of the |

ridge and the scission points, the theory ought to work even better than in

fission. _ ( _
The differential cross section can be written as followslG)i
Tnax e FI(K)
do = f I . "
@ I dI o} I dK T W (@) | (36)
0 I T |
where
0. _
T 2,2 .
I f h™1 1 1 2,002y :

h partial wave, and wé(e)'

can be written in the classical limit as:
We(0) = 2 hd S | T (38)
G |

Sin e—
12‘
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In Eq. (37) u% is the Compound nucleus moment of inertia; Kg is the

standard deviation of the statistical distribution of K values and is given by:

e T -
¢ . | (39)

'The-quantity‘JLff is related to the principal moments of inertia,zﬁl
andv.i, of the systems at the ridge point by the relation:
1 1 1 . - : : '
—_— - = (40)
It s worth considering that, at fixed temperature T, the width of thé»K

distribution becomes broader as the ridge configuration becomes more compact.

If one assumes that FT = Ih, the integration over K of Eq. (36) gives:

_ 1 ’ L e
: max'ZIdI ex _ Izsinze I IZSinze
See a? O\ «? |
W(e) « , - — (41)
: exp - Bl
0
In this expression IO‘is the modified Béssel function of order 0 and
; 2 :
h 1 1 \
=5+ |5+ - — . . 42
g (4% 45.) o ' ' 4

4% being the moment of inertia of the residual nucleus after neutron emission.

If 812 << 1, then exp - 812 = 1 and the integral becomes of the form:

Zmax v
w(e) 1 _[ exp(-z)1.(z)dz = “max ex‘( z Mz )+ (z. )
¢ T2 ' Pi-2)1g =7 PU=Znax’['0' Zmax’ " *1' Zmax
sin“e sin“e : .
where z = ’sin’e 2 = IiaxSinze and L., 1. are the modified Bessel
_ 4K§ max 4K§ 0° 1

functions of order 0,1. Explicitly, one obtains:"
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e fﬁ&ﬁ'ﬁza"“‘ M“"I’i;;sﬂi?e | I:,axsinze
Wie) wexp |- ———| |Ij|——— L, |——— (44)
4K0 4KO 4KO Co '

In order to obtain a better accuracy one can expand the denominator to higher

order:

812

e ~1 +v612

(45)

In many cases, for large temperatures, such an expansion ought to be adequate

even at rather large angular momenta. The angular distribution becomes then:

- W(e) « exp(-z . .) [Id(zmax),+ I1(Zmax)]

(46)
+ Bliax ex (-z | Y |10z ) + 2 1 (z...) 1 (z_..)
2 Pt~Znax 0' “max 3 1 max’ T 3 "2 “max
12 )
This expression has two interesting limits: as A = mgx tends to infinity
4K0 .
(either because Kg tends to zero or because Imax becomes very large)
one can use the asymptotic expression for the Bessel functions:
z . 2 ' : -
e 4v~-1 o
IV(Z)= — <1——5-+....> (47)
Then if one keeps only the lowest term in the 2'1/2 expansion one obtains:
Lim ' 1 .
y »e W(O) = TG (48)

On the other hand, as x> 0 (either because Imak = 0 or Kg > o) one obtains:

2im

y 30 W(e) = constant - ' » (49)

These two limits represent the two extreme cases for the coupling between
total and orbital angU]ar moment um. THe coupling is maximum in the first case

and nonexistent in the second case. Cléar]y the coupling parameter i depends
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on the principal moments ofvinertia of the ridge configuration., This allows

one to make a:very‘simp1e prediction} 'At constant Imax’ A becomes larger
the bigger the difference between«ql and 41 or, in other words, thevmore'
e1ongated‘the'ridge configuration is. Thus the anisotropy W(0)/W(90) will

progressively increase as one considers the emission of a neutron, an alpha

particle, a lithium particle, a beryllium particle, etc. (see fig. 4), It is

amusing to notice that Eq. (46) gives reasonable p?edictions.for the angular
d1str1but1on of neut rons as we1l The ridge point configuration for the |

neutron emission is represented by a neutron Just outs1de the nuc]eus The

. principal moments of inertia can be approx1mate1y expressed as follows:

d=d =R | . (50)

where f i's the moment of inertia of the residual nucleus, u is the reduced
mass of the neutron nucleus system, and R is the distance between neutron and -
nucleus when they are in contact. In many cases, 4 >> uRz} Thus the -

quant ity z takes the apprbximate form:

2.2 2 2.2 .2
L. h Imaxs1n e / N Rl axsine ]
- J— J- t 47" ’ R2
1+ )
2.2 . 2 =
hl sin @ 2 E 2, ' _
- max uR R uR SmZQ (51)
ATD g T D |

Where Ek is the mean rotational energy of the residual nucTeus. Similarly,

£ o2
= = 1 2 _ z _ R R
“)C —J" = & anﬁd Vi gl =7 T (52)
sine o o o
. Expanding Eq. (46) to first order in 2 we obfain: »
B, 2 4 o2
- 1 1 .2 - 2 - R uR 1 "R wR™ _. 2
W) =1-5z+5 Bl ax (1 - §~z) 1+ T—-:D— .? T”?ﬂ_ sin"e

1+ q - %—a sine | o | (53)
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‘The normalized angular distribution in first order takes the form:

2
We) 1+ a-(1/2)a sine _ 1 1 . 2
w 90 = 1 F (172): (1 - 7 a)(l + a - ? a SIn e

2

By, o2
-=1+%—acosz.e=1+%T—R1’§fcose

The véry same norma]ized distribution has been obtained by.Ericson.from a more
17) |
7. EXPERIMENTAL EVIDENCE

Experimenﬁa]]y the situation is still uncertain. Fragmenfs of
intermediate mass are formed, as was sa1d above, in h1gh energy p or 4He
induced reactions, but one fears that target fragmentation may be the
responsible process. The same fragments'are observed quite frequently in}.
relatively low energy heavy ion collisions, but iﬁ this case one fears heavy
ion fragmentat1on In order to obtain a c1ear cut picture we have studied the
react ion 130 MeV 3He +"atAg In thws case projectile fragmentation is out
of the question and target fragmentation is unlikely. In‘such a reaction
evaporation-like particles with mass greéfer than four are readily observed
with cross sections two to three orders pf magnitude smaller ihan that of
4He emission. |

The evaporation-like features of these fragments can be seen in figs. 5
and 6. Figure 5 shows the average kinetic energies of the various ejectiles
in the center-of-mass at various ang]es..'The essentially constant average
energies with angle for all particles is yery indicative of compound nucleus
emission.

Figure 6 shows the kinetic energy spectra in the center-of-mass for the
various particles. The‘spectra appear to be consistent with thermal

emission. As expected from the theory one can readily observe a substantial



-
subCoulomb emission, eSbecfal]y for:the heavier particles. Also, the’shapes
of the kinetic energy distributions evolve from Maxwellian-Tike for 4He and
Li isotopes to a progressively more gaussian-like shape for‘the Heavier
isotopes, in good agreement with the theqry.

The angular distributions shown in fig. 7 are somewhat puzzling. There
is c1eér evidence for forward. peaking in excess of 1/sine fof fhe Livandee
isotopes as well. This is the most disturbing feature clearly indicating a
| retention of memory in the system, and a relatively short decay time as Qé11;
at odds withvthe compound nucleus assumpfion. If one sets a narrow energy
window near the péak of the kinetic energy distributions, practica]]y é1lbof
- the forward peaking dfsappears, as shown in fig. 8. ‘This indicates the |
vpresénce of a forﬁafd peaked componentvﬁt energies higher than the‘ﬁost
1probab1¢ value as well as a "normal" compound nucleus comppnént. Also, the
yie]ds_qf the vafious isot opes corre}ate we]1.with the.ridge‘péint masses,
which is one of the strongest fndicét{ons of statistical decay. Clearly more

extensive studies especiai]y including the excitat ion function are in order.
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Figure Captions

Fig. 1.

Fig. 2.

- Fig. 3.

~ Fig. 6.
Fig. 7.

Fig. 8.

Ridge Line poténtial éhergies and corresponding relative yields for

three systemé. The potential energies have been calculated by means

of the two touching spheroid model. The yie1ds have been calculated -,
by assuming T = 2.0 MeV. |

Potential energy and Coulomb interaction energy as a function of the

deformation of the large fragment (sphere-spheroid model). The

thermal fluctuations about the'riﬂge point result in largely
amplified f1uctuafions in the Cpuidmb‘repu]sionvenergy.

Kinetic energy distribufions at various temperatures for differént
values of the amplification parqmgter p. The tﬁree analytical
expressions derived in thevtextvﬁaveibeén employed.  The curves
corresponding to Egs. (15), (20), (23) can be identified by their
progresgive-shift towards higher kinetic energies. the arrows

indicate the energﬁes corresponding to the nominal Coulomb energies.

- Angular distributions of various fragments emitted by the compound

208

nucleus formed in the reaction SUSPb + 200 MeV 4

He '> 212Po.

Average center of mass kinetic energies for various ejectiles in the

3He+"atAg.

react ion 130 MeV
Center of mass kinetic energy«ﬁpectré for the same;ejecti1es as in
fig. 5.

Center of'maSs angular disfkibutions for the same fragments as in
figs. 5 and 6. .

Center of mass éngu]ar distributions for the same fragments as in

fig. 7 but for a narrow windbw about the peak of the kinetic energy

distributions.
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II. The soggy saddle theory of fission

The st andard Bohr‘Nhee1er (BW) theory of fission decay [1], identicé]
"with the transition state theory for chemical reactions, is subject to serious
limitations of both quantal and classical nature. We want to consider here
- the most crucial approximation of the theory, its pbséib]e'failure, énd a
generalization designed to overcome part of the difficulty. The BW theory
calculates the flux of thé density distribution in phase space across a
suitably chosen hypersurfacé~norma1 to the reaction coordinate. ,This flux is
then identified with the reaction rate. This is bogh the beauty and the trap
of fhe theory. The flux and the reaction Eate can be identified if and only
if no phase-space trajectory, after crossing the hypersurface, comes back and
crosses it again returning to the reactant’'s region. In order to eliminate,
dr at least to al]eviaté, the broblem, the "transition state", or the.position
of the hybersurface, is chosen to cut across the saddle point in'coordinate
space, on the hope that, oncé the gaddié‘point is neédtiated, the system"
~irreversibly rolls down towards the product region. This is certainly an
extreme approximation, reqﬁfring a substantial decoupling (16w viscosity)
bet ween coliective and internal degrees of freedom near the transition state.
| A more genéra] approach to.thé problem of chemica] reaction rates was
developed in 1940 by kramer [2]. A partic]e‘moving-in a viscous medium in
thermal eqﬁi]ibrium is subject to an effective férce rapidly fluctuating in
time in a highly irregu]ér way (brown{én motipn). If inifia]]y the,paktic]é
is captured in a potential hole, the diffusive force acting on the collective
degree of freedom can shuit]e the particle over the potential barrier. The
reaction rate is the result of the compet it jon between:diffusive force and
driving force along the path from the initial to the transition state. The

essential difficulties arising from the mathematical complexity of the solution
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of the diffusion_gqggtjgn;for*a,nonstationary‘proéé§§'tEﬁQBéfﬁvercome if one

considers a barrier substantially high. Under this condition a distribution
of Boltzmann type is established soon near the initial state, and the resulting
QUasistationary diffusion can then be solved for>the one—dimensional’tase
where the potentials in the initial configuration and in the transition state
.are approximated by harmonic oscillator type [2]. In this one-dimensional
model the crucial parémeters that control the coupling are the viscosity of
the medium (n) and the frequency of the harmonic potentials (w and w'). The
diffusion over the barrier is characterized by three different regimes'(ffg.
1) according to whether the chqfacteristié freduehcy for viscosity (n) is
coupled or not to the characteristic frequency for the internal degrees of
freedom in the initial state (w) and in the transition state (w').
i) . Intermediate viscosity (n >> w and n <<w '). Under these conditions fhe
strong coupling in thé initial configuration leads to a Maxwell-Boltzman
distribution for the generalized momentum of the fission coordinate. The

V probability current across the barrier is determined by the tail of this
distribuiion with no further resistance felt by the system in the transition
state. In this limit the transition method holds.

ii) Low viscosity (n << w and n << w'). Due to the small coupling in the
ihtia] state the delivery of particle to the transition state is small and the
reaction velocity drops rapidly below the transit ion method value.-3
i) Large viscosity (n >> w and n >> w'). The reaction rate can be no longer

identifjed with the flow in the direction (initial configurafion) >
(transition state) > (reaétion product's fégion). The net flow through the
transition‘state, as a resu]thof-the strong coupling in this region (n >>,w),

becomes now smaller than the transition method value.
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Ihe extension of such studies to high excitation energies, where the
regime of large viscosity seems to be more likely, offers the stimulating
-possibility of clarifying the role of viscosity and its dependence on the
temperature in the dynamics of the nuc]eué from the compound state to the
éaddle point. While the general philosophy of our approach treads in
diffusion model's footsteps, the formal apparatus, as will appear c]éar]y in
the next section, is slightly different. We assume high viscosity in the
general saddle point neighborhood. As avrésult, the flux from the compound
“nucleus is trapped in the saddle region, and the associated randomization
leads to a backflow towards the cohpound nucleus. For this case a.notural way
to oand1éothe problem is the use of the Master Equation. K
The model
Let us consider a .compound nucleo; A, a sédd]e point‘region B, a region C
far down.the scission valley, and a nucleus D after one neutronvemission. The
transition probabilities are M (from A to B), ) (from B to A), x3.

(from‘B to C), A, (from A to D), 2., (from B to D).

nl

- The master equations are:

vy = ¢B‘2-"¢A(‘1 + xn)

éB =¢pary = 9glay + Ayt ay)
S‘;-r: ‘.¢B¥3

éD =0 O

where the vs are the time-dependent populations. Two main differences with
respect to the standard BW theory are visible: a) there is a backf Tow from:Bf
to A that makes the decay of A nonexponental (notice thaf by Setting 2y =0
we recover the BW expression); b) neutrons are allowed to be emitted from the

saddle region.
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The system. of differentia] equat ions can be solved in a straightforward

way, and the exact.solutions are

. it rot]
Yp = -5 (r2 gt xn) e - (r1 N +_*n) e

RN - : [ rt rét]
S el I UL A Y A
) g .
wcl; ¢, ;i%; [kzérlt _’rleth + %]
. ¢, it : ot -
vy = W{rz(e - 1)[\11)\". - xn(rzﬂlﬂn)] - rl(e . —1)[)\‘]}". —‘xn(flﬂlﬂn)]}
where
( A.= [(A2 tagt xn} - xﬁ - xljz + 4x1x2]1/2
r1j2 = (12)[=aggr # 4] |
iTOT RS TR PIME I ML WY
Ay = 2 g ) Fa0p T gt )
The initial éonditions have been chosen so that
" St =0) |y, gt =0) =\?pc(t = 0) =yt =0) =0

0

From the populations at time ihfinity one can obtain the following expression

for TN/TF:

E

D(oo) A LI PTG, Ve
Coo

| 0 o

>
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The first term to the kight is the standard result. The above exbression can
be obtained without solving the differential equat ions by summing over the
probability tree:

. B B J‘2 M A3, |
f (x + ) +A +A [7 (xz 3 ;7 (11 A‘T x2+x3 A, tec

v(A1X3)/(A1x3+xlxn'+x2xn+k3ln knxn')

from which is immediateiy obt ained the relation (1). The new expregsion (1)
favors neutron decay in two ways: a) by al]oWing neutron decay from the
‘ Sadd1e' b) more 1mportant by feeding back the flux from the saddle region to -
the compound nuc]eus
" An intermediate situation can be envisaged as follows. For a given
viscosity at the saddle, there w111 be a critical ve10c1ty a]ong the fission
coordinate, above which the system escapes a1together towards f1ss1on and
below which thé system gets trapped in the saddle region. The treatment can
be modified by splitting r; as follows:

S ) i

=gy | e B e s [ote - p - o) e
0_ c . :
, Y '
| (2)
=Ms T r

where o is the level Qensity, BFAthgfiséion barrier, and e_?he.kinetic

energy along the fission coordiﬁate. Thé first térm to the‘riéht corresponds
to saddle trapping and the secpnd to complete saddle negotiation. The meaning
of the critical'véloéity'intrOduced in (2) becomes cledr if we define —
T'z}n-l the characteristic time ﬁecessary to the onset of the equilibration

between the fission degree of freedom x and all the other degrees of freedom
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of the system in the saddle region. The critical Va]ue e, is then given

2 2
n .

0
from the relation ¢ = (1/71)

For all the phase space trajectories with ¢ S €9 the system is
insensitive to the friction and behaves 1ike a BW systg@. On_the other hand
for thé trajectories along which the system enters into the.saddle region with:
e < eo,'the equilibration takes place and Fhe associated randomization of
mot ion is responsible for a backflow towards the compound nucleus state.

The situation reminds one of the scaling limit theory app]ied to the
saddle po1nt [47, where the t1me characteristic of the d1ffus1ve force at the

saddle is g1ven by

i = %—'Qn T - . (3)

 2n |

where T fépresents‘the time after whiéﬁ the driving force decouples fhe system
frdm.the heat bath and.the §ystem rolls down towards the scission configuration
and p is the mobility. One is tempted to relate our energy limit €5 with T
by the're1ation:eo =1/2m c/rz, where c is a constant in unitlof length
~i;o'bé{arranged from fit to experimentp] dat a. This‘is a strong approximation
because fof strong coupling the Efnstein relation is no longer valid and the
1ogarithm in the r.h.s. of (3) becomes smaller than predicted [4]. Using the

expression (2) the genera] result is now

(2, *2 , )t oaea, . . \
MrroTA3 1573 (4)

T, =
T / N~ 2 (A2+x3+x .) Aighp

Again 1t is reasonable, a]though not necessary, that, for the systems trapped
in the saddle region Ay = 13{ If one d1sregards the contr1but1on of the

neutron decay from the sadd]e‘reg1on, one obta1ns the simple form:
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In the approximation of the equidistant model the level density is given
from the expression

o(E) « exp [2(af)1/2]

where the preexponential energy factors” have been omitted.
The trans1t10n probab111t1es xlF"AIS’ and A then can be
ca]cu]ated in a stra1ghtforward way:

1/2

1/2
2a¢ (E-8,)

1/2 1/2
ey e

172, 1/2
2 (E Bp-ey) '
N 172 1/2)
| 2a. /2 (E-B—c ) }
1 1 1/2 1/2 af o
MF = ?:3(?7'?5;’{[2af (E-Bpmcy) "11 e (6)
1 1. - 1/2 1/2 172 £1/2
An = Zﬂo(E) 2— r2an (E B ) ‘ - 1.‘ eXp r2a (E-Bn) ]

where ac and a, are the 1eve1udensity parameters appropriate to tﬁevsaddje

point and to edui]ibrium deformat ion, respectively. Substitution of (6) intd

(5) yields
(226 /2 (E-Bp-c ) /21 expl 20 2 (B8 ) /2
- a :
1/2 1/2 1/2,c o \1/2 ,
T /T\= n { - 2a-/¢(E-B ) 1e7 + [(2a,.t (e ) ' e-11) - (1)
FINT 20012 12(e8 ) 1721) n FooF |
exp[2af1/2(E-BF)1/2 -§2ai/2(E—Bn)1/?];

™

It is interesting to noté how the above expression, in the limit case of no
viscosity (e > 0), is reduced to the standard case, wh11e for large viscosity

(eo > E - Bf), FF/F approaches the limit (1/2)(FF/rN) _ o
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The latter result is a sfraightfbrWard consequence of the assumptiona2 = x3
for the systems with e < €0 |

Calculations

The viscosity béramgter n is a function both of the intrinsic degrees of
freedom of the.nucleus, and thus of its temperatqre T, and of the collective
mode under consideration. The 6omp1éte.sd1ution of this problem goes beyond -
the scope of this paper. However, if‘théveffect of the collective mot ion
(i.e. the dependence of the viscosity from the shape of the sédd]e point) is
set~asidé,’£he temperature dependence of n can be inferred‘from qualitative
microscopic-considerations. The application of the tfansport theory to a

-Fermi iiquid, assuming the Einstein laws of friction, gives [5] for n the

following expression

o

3,5*

" | | (8)
where o is the mass density, VF the Fermi velocity and m* the effect1ve mass

of a quas1part1c1e of the Fermi liquid. The number of co111s1ons per unit

t1me (1/T ) poss1b1e on the basis of conservation of energy and momentum

. alone - is reduced because of the blocking effect of the Pauli's pr1nc1p1e, by

‘a factor (kT/eF) » With e the Fermi energy. From (3) and (8) we obtain

for €4 the following dependence from the temperature:
e = T4 [In(T/w % - o )

_The(va]idity'of this expression depends on two conditions: a) that e is
independent from T and this is a good approx1mat1on for a 1arge range of va]ue
- of T; b) that the Einstein's relation is valid. The breakdown of the 1atter

condition involves a higher value of the argument of the logarithmic term.
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However, this correction is overwhelmed in (9) by the fourth power term. For

these reasons in the following we consider the simple dependence e « T4.

0
180w5 fig. 2 shows the excitation function of

For the compound nuc]éus
rF/rN in the two limits of high viscosity at the saddle point (dashed
line) and zero viscosity (full line). Both curves are calculated using the.
expression (7), where, for simplicity, no effect due to angular momentum has
Abeen taken into account. The values of BF and Bn are from ref. [6]. Fbr,
the ratio a%/an and for a, the values 1.11\and.A/10 are.chosen, and.for
1/2

e we use the simple form e, = cT4, where T = (E*/af)

o o and ¢ is a.

constant adjusted to fit at low energy the zero viscosity (eo = 0) limit.
Note that, for increasing T, Tg/Ty calculated with e # O decrease
compared to-FF/FN with € = 0. The general trend agrees with the
experimental data [7,8], which show at high excitation energy a decrease of
the fission probability Compared with the prediction of the standard model.
However, we expect, also in our model, to overestimate fhe true result because
of the suppression in the (5) of the neutron eVapofation from the saddle.
Figure 3 displays the quantity ¢ = [(PF/FN) - TF/FN)BW]/(fF/TN)Bw as a
function of the temperdture and for different .values of €. It is interesting
to note the sensitivity of the deviation of our model from the standard BW
theory to the variations of 'C in the low-energy region. The importance of
this behavior is obvious; in the low-energy region (i.e. the low viscosity
region for our model) FF/PN must converge to the BW limit (I?/PN)BW’.
and fhfs condition is assured in our model by the phenomenological constant
C. The uniquévdéterminaffon of C from fif’of experimental data in this'ehekgy
region and the extensfoh of éﬁch comparison to higher energies allows for a

check of the model.
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It is a well-known fact that at high energies the experimental

determjnatidn of F#/FN is uncertain due to the occurrence of two effects:
a) the presence of higher order fiéSion, i.e. the possibility that the nucleus
undergoes fission after one or more neutrons have been emitted: b) the
1ncrea$fng'contribution‘to the fiséion cross section of incomplete fusion
‘react ion, whicﬁ cause uncertainty in the derivation of the’compbund nucleus
cross section. In the regime of higﬁ;temperature this is definitely a severe
héndicab for the comparison of any model with experimental data. The best way
to overcome it partially is to perform a direct measure of the prefission
neutron emission <v_>. Disregarding in first approximation the charged

n
particle evaporation, <> is given from

. where

(o) = ML+ (Tp/Ty),]

(Te/ Ty is the branching ratio for the nucleus of mass Ae = A q - 1 and
“excitation énekgy E; = E;_l - Bn,K—l - ZfK_l.- Bn,K—l and 2T, _, are
the binding'energy and the kinetic energy of the neutron evaporéted from the
nucleus Ay (FF/TN)K'is ca]cu]atéd from (7) where for éach step
BF and B are takeHAerm ref. [6]; a, = A/10; a%/én”; 1.11. The .
effect of the backflow from saddle to compound, responsib]é for the increasing
number of neutrons emitted through the inhibition of the fission channel, can
be clearly seen in fig. &4 where the quanfity v is plotted versus

excitation energy E*.
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This general trend seems consistent with the result of recent accurate
measurements of prefission neutron emission [9], which point out.the
. subsféntié] large value of <V >s for systems with high fission barrief,
nonreproducible in the frame of a standard model.

-We have not performed a comparison with the experimental data because of
the two strong approximat ions introduced_inlfhe expression [7]: a) n0’angu1ar.
;moméntum, b) no neutron emissionvftp@:thgtsadd1e_bant (xn, = 0). Both
~ factors contribute to decrease the effeétfve Te/Ty and so to increasé the .

final value of <vn>.'
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Figure Captions

The reaction velocity r over a potential barrier Q for three
different regimes of viscosity versus the temperature. i) \

Intermediate viscosity (full line), r=uw exp'(—Q/T); ii) small

__viscosity (dashed 1ine), r = w(2mw'/n) exp (-Q/T); iii) large

viscosity (dashed point line), r = n'(Q/T) exp (-Q/T).

~ Branching ratio FF/FN for the compound-nucleus 180W versus

excitation energy EX for ¢ = 0 (full line) and ¢, = 0.08 T*

(dashed line). -
The quantity & = [(Tg/T)) - (Te /Ty gy 3/ (TR /Ty ) gy

versus the temperature for different va1ué‘of the constant C in the

4 180N.

expression € = CT" and for the compound nucleus

Average prefission neutron emission <v,> versus excitation energy

for two compound nuclei ( The full lines are the
result of the calculation with e =0, the dashed lines with e

- 0.08 T4,
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Part Two

The Statistics of Angular Momentum in Heavy Ion Reactions

In the past few years we have obtained a reaéonably complete experimental
picture of the process of angular momentuh transfer in héavy jon reactions.
For instahce the dependence of the mean fragment spin upon Q-value is now
well established and progressively greater informat ion is being accumulated
on the fragmént spin a]ighment. On the théoretica] front, one has worked out
the statistical equilibrium 1imit and specific predictions have been made
that can be tested experimentally. Of coursé there has been some development
_in terms of time dependent theories, but we shall not consider thése as yet.

| Rather 1 would ‘1ike to present some.recent experimental work of my group
-in this field, in the light of the equilibrium statistical model. I shall
first justify the use of 4He particles emitted in heavy ion collisions as
angular moment um prbbes by demonstrating their sequential emission.from the
react ion frequents. From the measurements of the 4He angular distributions
I shall demonstrate tHe rigid rotation of,é stretched intermediate dinuc]eér
- complex.

‘I shall then consider latest work on fragment-spin alignment from gamma
ray anistropies. The test of the statistical model pre- dictions is made
difficult by the incomplete knowledge ofvthe spectrum multi- polarity, as
shown by a detailed analysis of the dependence of the anisotropy upon |
gamma-ray energy. As we shall see, there is some indication for a sub-
stantial nonstatistical aligned dipole component.

Finally, I shall illustrate how the statistical modé] can be put fo
serious test by studying the .sequential fission anguﬁar distribution in very

asymmetric systems. The results on the reaction Au, U + Ne show that, at
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least for the largest Q-values, the statistical limit is reached for the

polarization tensor.

| A) Sequential Alpha Particle Emission in 1354 MeV ]65Ho + ]81Ta ,

There is no consensus as yet on the dominant source of light particles

16

~emitted in heavy ion reactions. For example, the reactions 96 MeV. "~ 0.+

58 40 3

58, 2 40, . , 93

Ni L, 280 Mev “0ar + %BNi 2, 200 Mev 404 Nb

84

, and 664

" MeV T Kr + natAg 4,5 have suggested that the dominant sources

-~ of a—partiCTes are the fully accelerated fragments. On the other hand,

40 116 154 164, 197 " 6,7

studies of 222, 274, and 340'MeV "“Ar + ~"°Sn, ~>'Sm, ~ Dy, A

56

, and

480 MeV nat »

Fe + g 8 have suggested that the bulk of the a-particle emission
occurs prior to scission of the dignuc)éar system. In addition to evaporat ive
components, some studies have observed a fast forward component not easiTy
explained in terms of evaporatidn.6 We have found evidence that the bulk

of a-particle emi;siOn, from the 1354 MeV 16sHo +‘181Ta system, occurs

- from the fully accelerated fragments.:

A natural Ta target (1.4-mg/cm2) was bombarded with 8.2.MeV/u-165H

0
from the Lawrence Berkeley Laboratory SuperHILAC. A solid stgte detector.
posit ioned at the grazing angle (29°) was used to détect the projectile-like
fragment and to definebthe reaction plane. On the other side of the beam,
Vfive solid state AE-E telescopes were used to detect the a-particles.

In order to determine the emission sources, we have plotted in Fig. 1

(vrms) of the-

the experimentally extracted root-mean-square velocity
a-partic1¢s. Also shown on this figure are the velocity vectors for the
detected projetti]e—]fke fréﬁment (gated on the deep-inelastic events), thé
calculated velocity of‘;he uﬁdetected fragment , and the velocity of the sys-

tem Eehter’of'mass. As Fig. la shows, the a-particle velocities are. centered
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Afﬁ7‘_hqrqgngdghgfggg,gf,th.yeJocjtygvector_of~the*target;ﬂﬁké’?Féﬁhéﬁff'7fﬁis
W agrees with the assumption that the a-particles are emitted from the fully
accelerated target-1ike fragment, rather than from a system moving with the
- | center of mass velocity.
Further evidence for fragment emission can be obtained by determining “

S

the Q-value dependence of v:m . In Fig. 1b we have plotted the average vec-

tor diagram for three different Q-value bins (all in the deep-inelastic region)

ms S

and the corresponding v: A systematic motion of the loci of'v:m values
is seen that can only be explained by a source that has a Q-dependent veiocity.
This trend is explained by the change of the velocity of the target-like frag-
ment with Q value, as shown in the figure. | '

Finally, utilizing two body kinematics the events were recdnsiructed and

_transformed into the rest frame of the target recoil. In this frame the |
a—particTe kinetic enérgy spectra are indepéndent of angle with the ekception
of the host'forward angle. In addition, this spectral shape is Feproduced
quite well by an evaporation formalism that accounts for exit channel shape

? The importance of such deformation effects

polarization and fluctuations.
can be readily appreciated by comparing the effective Cou]pmb barrier

(Bc) observed in the present data, calculated from <e > = Bt + 2T with ob-
éerved entrance Coulomb barriers in a—partic1e1+-nu§1eus reactions.lo The
former effective barrier is approximately 25 percent lower than the entrance
channel value.

As has been seen in previous studies of a-particles emitted in heavy ion
reactionss, a high energy contaminant fo the major evaporative component Was
observed at the most forward angle. Unfortunately, insufficient data were ob-
‘tained at forward angles to determine the source of these a-particles.

165 181

We conclude that for the system 1354 .MeV Ho + "~ "Ta, the dominant

sources of a-particles are the fully accelerated fragments.



~ the out-of-plane angular distributions of sequential fission ffagments.
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B) Angular Momentum Transfer and Partition in the-

Deep-Inelastic Reaction: 664 Mev 8%r + Natpq

" The spin transfer process has been investigated by determining either the

sum of the spins of the two fragments, or the spin of an individual fragment. | ‘

11-13

- The sum of the spins has been extracted from y-ray mu]tip]icity data My,

" whereas the spin of an individual fragment has been éommon]y extracted from
| | 14-15

~ The determination of both the individual spin and the sum of the spins for the

same system is of a great interest because from this information one can

. determine the partitioning of angular momentum within the dinuclear comp]ex.' :

" This determination can be made by employing the sequential emission of light

pértic]es as the probe of the spin of one of the DI fragments.16

40 58 16

~For the system 280 MeV "“Ar + “"Ni, Babinet et al., have shown that

1 a-particle emission from the target recoil nucleus could be isolated by care-
ful selection of the detection angles. Their results indicate that the inter-
.mediate complex is rotating rigidly. For'systems of similar mass, 175 MeV

20 40 89

Ne + "ag (ref. 11) and 237 Mev YCar + Bvb (ref. 13), My data also

indicate rigid rot at ion of the dinuclear system. For much heavier systems like

86Kr + 197_Au and 86Kr + 165Ho, the evidence for rigid rotation is indirect

. because of Z-wave fractionation effects.11
The transfer and partition of angular momentum in a deep-inelastic

84Kr + natAg which is inter-

reaction has been studied for the system 664 MeV
mediate in mass between tﬁe Tight systems for which clear evidence for rigid

rotat{on exists and the heavier systems where the evidencé is masked by R;wavé
fractionation. A velocity diagram of oun'expefimenta] configuration is shown

in Fig. 2. The circles indicate the locus of points for the most probable

\,
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a-particle emission from fragments with atomic numbers 36 and 47.  This figure
indicates that if the out-of-plane data are acquired at an in-plane angle
equal to or larger than the rrecoil direction, there should be little
“contamination from the projectile-1like fragment.

Beams of 84Kr impinged uponinatAg targets with thicknesses of 0.97 mg/cmz_
and 0.59 mg/cm2 for the in- and out -of-plane runs,-réspective]y, A gas ioni-
zétion telescope (for the in-plane run) or a solid state te1e§cope (out-of -
plane run) was used to detect the projeétile-like‘fragment; The aE-E te1esc6pe
served to define the réaction plane and to idehtjfy the atomic number (Z) of
the detected fragment. Tﬁe Z-telescope was placed at ¢Z = 260, slightly be-
hind the grazing-angle. |

J On the'dpposite"side of the beam, an arc with both in- and out-of-plane
arms was used.to mount up to five light particle (LP) solid state aAE-E tele-
scopes. The ‘arc was éttached to a thjn-wa11ed domed 1id, which, when_b]aced
on-the scattering chamber, seated the foot of the arc into a cradle on an
externally movable arm.

An array consisting.of eight (in-plane run) and seven (out—of-p]éne run)
7.6 x 7.6 cm Nal detectors was utilized to measure the y—raykmu1tip1icity
(My). These detectors were positioned above the reaction plane at an out-of-
plane angle of 45%, In the out-of-plane run, an eighth Nal with a reduced.
solid ang]e.was used to obtain y-ray energy data.

THe‘in—p]ane data exhibit very little angular dependence for the eight
most backward angles. This is consistent with isotropic in-plane emission
from the target-1like fragﬁent. However, a substantial increase above the )
average of these backward‘éng]esvfs seen for the two most forward ang1es.

- This increase in yield is :correlated with the High4energy a-particles seen in

the energy spectra for these forward measurements. These a-particles have
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'energiés above 15 MeV in the rest frame of the recoil, corresponding to a lab
~energy of ~40 MeV. |

In cbntrast to the in-p]ane‘angulaf distributioﬁs, the out-of-plane
yield decreases smoothly with increasing out-of-plane angle, exhibiting an
anisotropy of approximately 2. Integration of the differential multiplicity
~over ¢RF and opF results in an average total a-particle multiplicity of 0.47
fqr the DI prodhcts whose complements have Z values betweeﬁ 26:and<40. _

Since the anisotropy of the out—onplane angular distributioné of sequen-
tially emitted particles should increase with fhe spin of the emitte?, it is
of -interest to see how sensitive these distributions are to the y-ray multi-

.plicity. In Fig. 3a angular distributions for six Z-bins are shown. (Here
the distributions are labeled by the charge of‘the emitting fragment.)
In part b of this figure angular distributions are shown for the samé Z bins
but'with thevadditiona1‘reqdirement that two or more y:réys be in coincidence
with the a-particle and the DI fragment. In the masstrégion covered by this
study, the y-ray multiplicity is linearly related to the sum of the spins of
the two fragments. Thus, fequiring an increasing number of. y-rays to be in
coincidence with Z-a events should bias the fragment's spin distribution
towards larger values and result in a greater focusing of the angular distri-
bution into the reactibn plane. This effect is clearly seen when parts a
and b of fig. 3 are compared. For rigid rotation of the dinuclear system, the
individual fragment's spin changés strongly with the mass asymmetry of the
exit channel. In fig. 3q:a gradual sharpening‘of the angular distributions as
the charge of the emitter increases is evident, tentatively indicating that
the fragment spin does increase with the massfasymmetrj.

In order to exfract fragment spiné from the out-of-plane a—ﬁarticle
‘ 18-19)

distributions, we have utilized the formalism of Moretto et al. To

~
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7¥‘_,facj]jteteeadcomparison_wjthAopHee_wonk—andftof§tre55*the‘ﬁmpoktance“of‘the‘”
various parameters, we havevemb1eyed”the formalism of ref. 19 at several
different levels of sophistication, each of which will be described in this
section. |

Statistical mechanics predicts a Gaussian distrfbutfon for the projection
(K) of the angular momentum on the heavy ion-evaporated partftﬁe separation

axis. More specifically the decay width can be written as

2,2 2
~h° 1%/ 1 1 -K

I' = exp ————( - > exp (1a)

27 ;II ;}; EEE
where
2 T /1 1\1 | ,
KE = — - . | (1b)
0 h2<3|]~"1> - | |

The quantities.J” and Jh are the moments of inertia parallel and perpendicular
to the separetion axis at the critical shape for alpha particle decay,'Whi]e
J% is the moment of inertia for_the compound system. Thevangular distribution
is obtained by expressing the ang]e'(a) between the total angular momentum I,
and tﬁe separation axis with unit vector n in terms_of the polar angles ¢' and

e'.
K=1cosa=]n-= Ixsine'cosd' + Iysine'sin¢' + Izcose'. _ (2)
If the direction_of.the‘angular_momentum_isvfixed, we may choose our

coordinate system such.that Ix = Iy =0 and IZ_= I. Under this condition of

total alignment of the angular momentum, the angular distribution is given by
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. of2o2 N - (2N |
m(l)(g') « exp :I__CO_;G__ « exp 1_312—0 . ‘ : ' (3)
S % x% o

0 ' 0
- Since there is good evidence for rather large misalignments of the-

fragment spins in deep-inelastic reactions,?o

this effect should be included
in the angular distribution formalism. If the spin alignment of one_fraément

is described by Gaussian distributionéﬁin the'Cartesian components of the

' angu]ar momentum with var1ances 05, 03’ and 02, then the light part1c1e
decay width is given by19 |
| 14277 e -12cos2(e" {I
T'(e',d') =« exp (——- ——> exp 7 (4a)
“or (i &) e

with |
52(9',¢') = Kg + oi cosz¢' sinze' +‘c§ sinzé'sihze' + cg cosze' (4b)
which gives a form similar to equation 3 for the angular distribution,

2.2 . ‘
(2)(9 8 & S(e1 ¢7 exp 2;2525 : ‘) . | (5)

By fitting equation 5 to an out -of-plane distfibution one cam extract the
root-méan—square spin of the primary sbin distribution biased by the angular
moment um dependence of a-particle emission. However,.since it is feasonab]e
fo éxpect that the fragmént spin distribution will reflect the entrance chan-
| nel angular momentum distribution, oné can take the formalism a step farther
by folding in this distribution. If the fragment s sp1n distribution is

taken to be of the_fdrm 21 and bound by Im in a"d Imax’ then the angular dis.

tribution'iS'given by
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I

max T (e',0') . :
w(e',d') = S 21 —EL_TT____ dl . : : ‘ (6)
1. T .
min

This expression depends upon the relative magnitude of the alpha and neutron

total decay widths. These widths can be determined from experimental data or
the cgtio, |

T 2

a I8 ' BN : S paly
-— = A€ . (73)
rn, v PR
where & = 2 exp.{7(BEd+ CBa - BEn)/T}{and L L - (7b)

/1 1\ . - ‘
-n(g-a) e

In the expression for a, BE; and CBQ are the a-particle bfnding energy and
Coulomb barr{éf fbr quarticie emission, while BEn is thé neutron Binding
energy. Tﬁe barameter'e accouﬁts for.the‘Change’in the relative a/n decay
widths as a function of angulaF momentum. This parameter depends upon the
moment of inertia of the residual nucleus after neutron emissioh, 4%, 65'

well as Jh and the nuclear temﬁerature (T). If the ratio Falrn is sma]i, then

.

T ® rn énd thewintegra1 in equation 6 can be;évaluated,'with the ana]yticaT
result, -
2 2
-1°. A -1 A ' _
m(3)(e',¢')'a (e Min" _ g maxyugign giyn o (8a)
' 2., . .
cos 6 : . , . - (8b)

whereA:m—B

If I, is not much smaller than I' then the integral in equation 6 can be .
solved for FT = Tn + Fa to yield the more complicated expression given

below:
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where

For comparison we have fit the data shown in fig. 3 toxthe four forms of the
angular distribution described above, -

The root-mean-square spin values for the heavy fragment,ﬂextrécted as a
function of exit channel charge asymmetry, afé“shbwn_in table. 18. The

¢olumns correspond to different levels of sophistication in the formalism
used to extract the_spinsﬂ The temperatures used to calculate Kg were calculated

using the,expression,_E* - Erot = aT2. The tempe;aturés éa]cu]atedrwith_this
procédure varied from 2.75 (most asymmetric bin) to 2.95 (symmetric bin),

~ which are in close agreement with the value extracted from the a-particle
energy spectra. . | ,

The spins in columns a and b both result from fitting equation 3 to the
out-of-p]ane d1str1but1ons.. These two sets of spins d1ffer only in the method
used to calculate Kg.. To generate the spins in the first column we took the
vcritica1 shape for decay of the a-partjc1e-resjdua1 nucleus system as two

touching spheres. With this model the moments of inertia are given by

1/3 )2 )

a

IR R RN AR (10)

Here, <) is the moment of inertia of the residual nucleus and is equal to 2/5

MRZ. We have used R'= 2.53 fm and ry = 1.225.
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The trend of these extracted spins _agrees with-the-predictions—of vigid ~

_rotation of the deep-inelastic complex consisting of two touching spheroids.
However, the magnitudes do not agree with the results from y-ray multiplicity

- work. Both previbus work12 and the present study obtained values for MY of

~ Jess than 25 for all measured asymmetries. The total spins obtained from the
MY data are shown in the last column of table 1B. A comparison of thése total
spins (column g) witH the individdai spihs_(column a) extracted with equation 3
assuming a spherical critical shape for a-particle decay clearly indicates that
the use of this configuration results in an overestimate of the fragment spin.

For the second column in table 1 the critical shape was taken asithe
equilibrium configuration of the rotating fragment-a cohpiex in a spheroid-
lsphére model. This cohfiguration is moré extended along the separation axis
than two touching spheres. This results in a reduced vaiue of‘Kg and in
smaller spin values. This reduction in Kg improves the agreement between
the spin_vaiues extrécted from the'MY data and the «-particle distributions.
This improved picture of the a-particle-residual nucleus system is used in the
subsequent formulations of the angular distribution;

The spin misalignment is introduced by means of eq. 5. In employing this
equation we have set o, = oy = ?z‘z o. This approximate equality is suggested
for near symmetrix exit channéis by our observation of a flat in-plane angular
distribution as well as by theoretical.work.21 With this aséumption S is

no longer a function of angle, i.e., 52 = Kg + 02

. Tﬁe inclusion of mis-
alignment increases the spins by 2 to 3 (Tabié 2,'compare'coiumns b and c).
The importance of the miééiignment on the extracted spin value ié reiated‘to
the re]ative magnitude of oz'and Kg, In our case °2/K§ ~1/4. 1t is C]ear'
from this ratio that in order to extract misaiignmehts from light particle

. 2
angular distributions, one needs to have very accurate values of KO as well

as the fragment spins.
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The spins contained in the next two columns of table 2 (d and e) are
obtained from the spin-integrated forms of the angular distribution, respec-

tively equations 8 and'9.» The lower 1limit of integration, I was

min’
estimated from the Towest 2 wave, Zmin’ leading to a nonevaporation residue
“event énd then assuming rigid rotation of the intermediate‘complex. The spins
from these intejrated forms (columns d and e) agree within 5 percent of those
obt ained from the unintegratéd form (column c). |

.The effect of gating on high MY events is seen in figure 4. Equation 8
was used to extract spins from the distributions with and without the reqUireé
ment of at least two coincident y rays. Gating on high MY events incréases
the average fragment spin by selecting out of the spin distribution the higher
spin events. The average increase in spin per fragment is approxiﬁate]y 2

ngure 4 also shows the rigid rotationvpredictfon (curve) for:two equally
o deformed spheroids. The preditted dramat ic increase in fragment spin with -
1ncreasing asymmetry is observed in the daia'(so]id points) with the possible
exception of the very asymmetric charge splits. " In fact, rigid kotation_of |
the 1ntérmediate complex is iﬁdicated by all Qf the methods of spin
extraction described above (see Table 1B).

| The deformation of the DI complex is reflected also in the fragment
kinetic energies.

In Fig. 5a the experimental fragment kinetic energies, corrected for
evaporat ion, are compared to calculations for several deformations. The
calculations are for equally deformed spheroids separated by 1 fm. In this
model, a ratio of axes (C/A) of about 2 is neéded to reproduce the data,
indicating that the nuclei are suﬁstantiaﬁly deformed. In Fig. 5b both
individual spins and the sum of the fragment sbins are presented along with

rigid rotation predictions. These predictions are again for equally deformed
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spheroids with a ratio of axes of 2 separated by 1 fm. invthé lower portion .
of this figure individual spins extracted from the a-particle distributions
as described previously are shown (solid circles),. Above this are piotted,fi .
the sum of the spins of both fragments as determined by two indeoendent
methods. In the first method rigid rotation is invoked to determine tne.spin.'
of the light fraghent (IL)ifrom the value of IHrextracted from the oot—of-n‘
p]éne a-particie distribut ions. Independently, we utilized the experimental
' MY data and tné relation, IH + IL = 2(MY -6) + Ip; Thevcorrections (Ip)'
refer to the angular momentum removed by neutrons and a—particles. . These
_corrections averago 28 percent and are therefore essential for é quantitative
comparison betweenvspins derived from MY and out-of-plane o-partic]e distri- "
butions. Both methods yield results thqt aro reiative]y.indépendént‘of mass
asymmetry. Since the calculations wnich assume rigid rotation ano a. constant
- %-window (see Fig. 5b) also exhibit only a weak mass dependence fon the range
of asymmetries populated in this system, it is difficult toidraw any firm
conclusions concerning rigid rotation from the change in the..sum of the spins
with mass asymmetry.' It should be noted, however, that large deformations are
again needed in order to obtain quant itative agreement with the summed spins,

as is the case for the individual spins and the kinetic energies.
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Calculated from experimental gamma multiplicities

Table 1B
2, 1, | ILw) - : I+1 )
- b c d e f g
W) o1 L2 : o3 o4 o4 M,
~26 ~57 39.8%#0.9 27.3x0.6 29.6%0.7 28.4%#0.3 29.2+0.2 36.8:0.3 38.7%2.0
v~29 ~54 38.0+0.6 26.5%#0.4 28.9%0.5 27.7+0.2 28.5%#0.3 38.2+0.5 39.9%2.0
~32 ~51 33.7%0.6 24.120.4 26.6%0.4 25.4%0.2 26;2*0.2 37.7¢0.4 40.8+2.0
~35 -~48 30.3*0:5 22.1%0.4 24.6+0.4 23.6+0.2 24.3%0.2 38.0¥0;4 39.2+2.0
~38 ~45 26.3#0.5 19.420.4 22.080.4 21.020.2 21.5¢0.2 37.8:0.4 35.4%2.0
~41 ~42 21.4%0.7 16.2+0.5 18.6+0.6 17.9%#0.2 18.3%0.2° 36}1*0.4_ 36.7*2.0
. 2
a. Spher1ca1 K0
b. Equilibrium Kg ‘
c. EquiTibriUM“Kg,ﬂmisalignment
d. ‘Equilﬁbfium‘Kg,'miSalﬁgnment, integration over spin distribution
'with*TT = Tn
e. - Same as d, but with Pp=T +T
- n o a
f. Calculated from column e assuming rigid rotation
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~ C) _Spin Alignment from Gamma-Ray-Angular-Distributions— —

1. The published work and the preliminary analysis.

Let us begin with a brief review of what we have published so far on the
Ho + Ho reactiOn.17 In fig.»6'thevin—p1ane_and out -of-plane multiplicities,
the associated anisotropies (0.6 MeV < Ei < 1.21MeV) and the inferred spins
per fragment are shown. The gamma ray spectra were decomposed in a "statisti-
cal" tail and a quadrupole "bump" as shown in fig. 7. In order to avoid dif-
ficulties that we are going to illustrate below, the anisotropies:were
analized only in a gamma-ray windpw Q.6 < EY < 1.2 MeV and the results are
shown in fig. 8. The statistical model.appearS-to do a reasonable job.

The solid line represents the complete calculation, including both the
primary and_seﬁondary depo]ar{zations and the measured fraction of statistical
transitions. This calculation reproduces the increasing anisotropy in the QE
region, its peaking, and subséquent decline in-the DI region. -

In order to illustrate the relative importance of the primary and
secondary depolarization mechanisms, the input conditions were chahged to
simulate the different misalignment sources. The calculation which omits both
the primary and.seéondary depolarization processes (dashed line) 511ustrates
the effect that statistical (E1) transitiohé have‘in reduting the anisotropy
from infinity,-thébva1ue expected fo? pure stretched E2 transitions. This
calculation overestimatéévthe data by aimost a factor ofvthree. If the mis-
alignment due to neutron evaporation is also included, the calculated aniso-
tropies decrease (dotted 1ine) but still overestimaté the data by a factor of
two. After adding thé thermal misalignment, the calculation (solid 1iné) is
in good agreement with-the data. In theée calculations % h 1s.sca1ed down

as <Iz> decreases due to neutron emission.
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The underst anding of the degrée of spip’a]ignment in terms of the
measured anisotropy is somewhat obscufed by the highly nonlinear relationship
between them. A better insight into the physical situation can be obtainéd
through the evaluation of quantities more directly related to the spin dis-
tribution ftse1f. Among them, the most signifﬁcanf are the average aligned
componenf of the spin (<IZ>), fhe variance (02), and the alignment param-

eter Pzz'defined as
P 3L L . | R ¢ )

Note that PZZ r;hges fromrlgfor a pekfecf]y aTignéd system to 0 for the
case of complete misalignment. | |
~In fig. 9, threé different curves of'Pzzuas a function of Q-value,
'corresponding to differen; situations, are shown. ;The dgshed line was caléq_
lated including only the,effect of therha]-mi$a1ignment (ofh ¥ 0, os = 0).
This curve describes the a]ignment-of the system aftér the_col]jsion pkocesé
itself and before the decay by‘neutron emission. The alignmenf increases
- rapidly across the(quésie1astic region}ahd thén falls s]ight]y at higher
Q-values. This behavior is interpretéd as follows: -At_sma]} Q-values little
or no angular momentum goes into intrinsic spin of the fragments,'and conse-
- quently there is 1ift1e spin a]ighmentt For more inelastic collisions a pro-
gressively 1arger'amouht of angular ﬁomentum is cdnvertéd»into spin, which is
preferentially a}igned perpendicular tb thé react ion p]ané.v For even larger
Q-values, the.therma]_prodﬁction of randomly oriented components domihates,
causing a slow decrease in the alignment. . |
A”similar interpretation applies to the Sehavior of PZZ afte} heutron

emission (solid curve). Since neutron emission increases the spin misalign-
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ment , ahd the number of emitted neutrons increases with Q;value, the fa]] of
the alignment for large Q-values is more pronounced. This divergence of the
two curves at large Q-values reflects the importance of the secondaky.mis—,
alignment in explaining the observed large decrease in the anisotropy aCroSS: g
the DI region. It should be noticed that this result is not in contradiction .
with our preVious statement on the relative importance of primary and second%
ary misalignments. Indeed, for very inelastic events, neutron emiséioh{
signficantly decreases the anisotropy. However, the magnitude of the anisot-
ropy is still cohtro]léd by the pfimary process as illustrated in fig;‘8. To
make this point clear, the dotted curve in fig. 9 shows the expected values
of PZZ if one assumes that neutron emission is the only source of mfsa]ignment
(ofh = 0, oﬁ # 0). A comparison between the dashed and the dotted curves
shows that the thermal process is significantly more effective in destrOying
perfect alignment. o

Further insight.ihto the angular-momentum transfer process is obtained
from the behaVior of the different spin components as a function of Q-value.
In figq. 10,‘curve 1 shows the magnitude of the total spin before neﬁfron |
émission as deduced from the y-ray multiplicity data. Curves 2 énd 4 repre-
sent the evolution of <Iz> (the a]ﬁgnedvcomponent of the spin) and % h (the
square root of the thermal variance) respettively. The three curves together
(1, 2 and 4) show the relative éoﬁtribution of the aligned and misaligned
components to the pre-neutron-emission value of total spin. For the quasi-
elastic region, as the nya]ue increases, <Iz> contributes increasingly to
the total spin <I> as compared to % p rgsu1ting in the rapid rise of the
alignment shown in fig. 9. However, in the deep inelastic region Qhere the

total spin magnitude saturates, the increasing contribution of % h with the
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temperature causes <Iz> to slowly decrease. Corresppndingly, the alignment,
as.measdred'bx P,,» decreases somewhat. | ‘

. The values of <IZ> after neutron emission (curve 3) and of o (curvel5)
~dre also shown in fig. 10. The emission of A large number of neutrons removes
substant ial amouhts,of aligﬁed spin, especially for 1arge.excitation energies.
Since the alignmeht is a function of the ratio <Iz>fo, this result indicates
thatvthe contribut ion of neutron evaporation to the misalignment process is
more a consequence of the reduction of <Iz> than of the increase of the vari-
ance caused by the introduction of cﬁ, Finally, one should notice the
different behaviors exhibited by the two components of the_tota] variance 02.
While the thérma] component ofh ~

Q-value range, its relative change with energy is much smaller than that of

cg. The value of the ratio ofh/cﬁ drops from apprdximate]y 46 to 3.6 in

is the dominant term over the whole

going from Q = -40 MeV to Q = -370 MeV.

In summary, the dependence of <I> and <I_> on the reaction Q-value as
-well as the interplay between the primary and secondary misalignment mechan-
isms_give<¥ise~t§ the fo]]owing picture of the spin tfansfer process. At low
Q-va]ues,iwhere o is -negligible, the rise of both the a]ignment-and the y-ray
anisotropy is 1nterpre£ed as due to the rapid buildup of aligned spin relative

to the slow increase of o At large excitation energies, where the magni-

th*-

tude of the spin saturates, o4 becomes comparable to o The increased total

th*
o combined with the removal of ‘aligned spin by neutron emission results in a

~ substantial decrease of the dlignment causing the anisotropy to plummet.
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2. A more extensive survey

165,, .165

In view of the previous results on Ho+ "“Ho, a systematic

investigation was undertaken of the magnitude and the alignment of the spin

imparted to both deep-inelastic fragments, 1400 MeV 165Ho on 176Yb,

148 at

Sm, and n Ag. The targets used exhibit quite-different nuclear

‘properties. The neutron-rich 176

Yb nucleus lies in the region of the good
rotational nuclei and the evaporation of a large number of neut rons per
fragment should still leave the residual fragment in the rotational region.

1485m and both isotopes in natAg are well removed

On the other hand, the:
from this region of good rotors. The data from the various systems were used
to further test the validity of the equilibrium statistical model in the |
“region of small to moderate mass asymmetries. |

The ‘heavy-ion detectors were placed at>28°;’25°, and 19° to the beam axis

176Yb,'1485m, ang Mt

for the Ag targets, respectively. - These angles are
slightly behihd théjc1assica1 grazing angle of each reaction. Figure 1 shows
the energy spectra obtained at those angTes as well as thevparticle—energy
gétes used . in the analysis of the y-ray data. For the three systems the
spectra exhibft both an elastic énd a deep-inelastic peak.

In-plane and out-of-plane continuum y-ray energy spectra in coincidence
with a projectile-Tike fragment were recorded using various redundant
combinationsAof particle and y-ray detectors. Multiplicities per event for
different y-ray energy intervals, were calculated from the number of
coincidences, the number of particle singles, and the efficiency of the y-ray
counter. Finally, the anisotropies as a function of Q-value were calculated
as the ratios of in-plane to oht—Of—plane.y-ray yields.

The shape of the unresolved y-ray spectra from the three reactions have

the same qualitative characteristics. An intense bump dominates the
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low-energy portion df the spectrum (below 2 MeV), followed by an exponential
téil that extends to much higher energies. The bump region,exhibifs a
pronounced in-plane peaking, suggesting that it is predominantly coﬁposed of
stretched quadrupole y-rays emitted from nuclei with their spins aligned
most 1y perpendicular to the rééction plane. The higher énergy\portion of the
' spectrum, thought to be a mixture of stretched and unstretchedve1ectric‘dipole
tranﬁitions; shows no appreciable anisotropy.

Figure 12 shows the dependence of the spectral shape of the continuum
y-rays on the reaction Q-value. The upper-energy edge of the bump moves
towards higher {—ray energies with inckeasing Qévalue across the QE region,
until it saturates in the deep inelastic region. Since for a rotational-
‘nucleus the maximum energy of the stretched E2 y-rays fs related to the spin
at the top of the cascade, this behavior of the edge of the bump is an
indication of the dependence of the fragments' maximum spins upoﬁ Q-value.

Figure 13 shows the in—pJanei(squares) and out—of-p]ahé (triangles)
multiplicities for y-rays with energy above 300 keV as a function-of Q-value.
The genera1 tfend of these data is similar for the three systems and agrees
with that previously observed in the 165Ho'+. 16SHo reaction. There is a
rapid rise across the~e1asfic and quasielastic region, followed by a
saturation or even a slightzdecreéseafor the most inelastic events. Whereas
My(90°) (in plane) actually peaks and then decreases slightly, My(0°)

(148 aFAg data) or even a slow .

(out-of-plane) exhibits a plateau Sm and "
. monotonic- increase.

Figure 14 shows the y-ray anisotropy as a function of Q-value for the
three different reactions and for two differént y-ray energy intervals. In
all cases the;ahisotrépy increases rapidly thrbughout the QE region and then

falls across theé DI.- The peak value for the 1'7-6Yb f;}GSHo react jon -is
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much highe} than for the other two reactions. As anticipated, the selection
of a y-ray energy interval in the bump region produces a significant increase
of the anisotropy (fig. 14b) as a consequence of the enrichment in stretched
- E2 transitions. “

The Q-value dependence can be qua]itafively understood in terms of the
evolut ion of the degree of spin alignment.  For very low Q-values, the
jnteraction time is short compared to the relaxation times of the rot at ional
degrees of freedom of the system; and therefore little aﬁéu]ar momentum is
~ converted into spin. ‘Even small fluctuations can destroy the spin alignment,
thus the angular distribution is almost isotropic. More ine]astfc collisions
tend to dissipate an increasing fraction of the initial angular momentum (as
indicated by the multiplicity curves), while the fluctuations remain at a
relatively low level. This causes the anisotropy to rise rapidly. Finally, -
for the most ine]astic events the amount of angular momentum transferred to
intrinsic rotation saturates while the spin fluctuations (caused by both the -
statistical exc itat ion of spin depolarizing modes and by neutron evaporation)
continue to increase. This indicates that the constant spin observed as the
Q—yaﬁue increases is made up of a progressively larger contribution from
fandom]y oriented components, and therefore the anisotropy falls.

The dependence of the anisotropy on y-ray ehergy for a fixed Q-value
(fig. 15) reflects mainly v&riations in the multipolarity mixing ratios.
These curves show a large increase'through the low-energy region reaching a
max imum at EY 0.9 MeV, followed by a gentle fall to unity for larger
values of Ey. The beh;vibr of the high-energy portion (EY > 0.9 MeV) may.
be understood in terms of a decreasingApeEcentage of stretched quadrupoles
(dominant in the bump region) and ah increasing‘percentage of isbtropic

transitions (dominant above 2 MeV). The relatively small anisotropies:
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observed at EY 0.5 MeV likewise indicate a decreasing percentage of
stretched E2 transitions in this energy region. An alternative possibility is
that these low;energy y-rays are emitted from states where an additional
depo]akization occ;rred due td hyperfine interactions.

Theory and model calculations

In this section we shall présent the theoretical aspects involved in the
extraction of. information about the spin-transfer process from the
experimental results. |

The observation of a rigid-rotation regime of the dinuclear system in
" many reactions points to the statistical re1axation»of‘the rotat ional modes
and suggests the feasibi]ity of an equilibrium statistical approach to the
study of the angular momentum transfer. Regardless of whether compTete
equilibration is actually attained during thg.collision, the study of the

1ong;tfme’1ihit'is=interesting in its own right=betause it does not depend on
the particular transfer mechanism. Therefore, if one. describes the
intermediate complex by means of an adequate set of degrees of freedom, the
equilibrium 1imit will provide a natural reference for comparison with
«experiménta1 results.. Furthermore, the applicability of equilibrium
Vétatistical results does not necéssari]y require that the system reach
equilibrium. Indeed, we-'shall see that the model has been used only to
calculate the variances, which may approach the equi]ibrium'values much faster
than the average spins. |

~ The ultimate goal of our invéstigation is to bbtain informat ion on the
| fragments' spin distribufions, i.e. average spin magnitudes, avérage é]igned
bcomponent, and degree of alignment (Pzz)' UnTiké the mass—symmetric
165 165

“Ho + ""“Ho case, in the present study one must allow for different spin

distribut ions associated with each fragment.
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Since the spin distributions are not directly measured, the model
calculations must be used to predict observed quantities such as the y-ray
anisotropies. ;The agreement (or lack thereof)'betwéen the calculations and
the data sekvéS as a measure of the confidence that we can piace in the
inferred parameters of the distribution.f A11 these parameters depend on one
anot her, and therefofe«aimost the tbta]ity of the extracted information is‘
model dependent to some extent. However, we shall see that in many cases the"
dependence of the theoretical results on different assumptions is surprisingiy
weak. . | » | | | |

The calculation of the spin distributions combines results from both the
experiment and the eduiiitfium statisticéiﬂmodel. | |

The first extractéd quantity from the experimeht‘is thé avefage'vaiue of
the sum of spin magnitudes. Based on compound-nucleus work we haie assumed
_that in the most general case the admixture of multipolarities in the y-ray
cascade includes stretched quadrupole, stretched qipoie, and statistical
transitions that remove 2, 1, and 0 h of fragment spin, respectively. If tﬁe
number of each type pf y;ray per reaction is NZ’ Nl,.and Nis’ then the
| multiplicity MY is |

M =N

Y. 2 * N

W N

st
For the compound nucleus case, the average spin at the beginning of”the Y+fay o
cascade is given by

<I>'= (2N2 + Nl)' + A,

where 4 is the spin.removed‘by transitions with eneréies below the detection
threshold. To apply the last equation to a binéry reaction, all the
quantities involved should correspond to the fragment whose spin is being

calculated. Unfortunately, only the total multiplicity of the y-rays emitted
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by both fragment s i§ known. At this point we have assumed that the total
. number of stretched:EZ transitions is partitjoned bet ween the twovfragments
atcording to the ratio pf their moments of inertia as.yoyld be giveh_by rigid
rotation: This assumption is consistent with the equi]ibrium apﬁroacﬁ, fhus
its va]idity may be qupstionab]e for the 1owgs; Q-values.

According to the statjstica] model, the spiﬁ distribution(forveachr

. fragment is

"y z 2cr§ '205 20

The cartesian reference system is chosen such that the y-axis coincides
with the line between centers and such that the projeétion'of the total
éngu]ar momentum on the x-axis is zero. For the héaVy fragment, the variances

T cy, and , are given by

) 5 ) .
o = =
x" 2 L ud?

, dydytudd)

Oy:T

In these equations, the §ubscripts H.and L Qenote the heavy and light
fragment, respectively, < is the moment of»inertia of a (spherical) fragment, -
u is the reduced mass of the system, d is the distance betweén centers, and T
is the temperature associated with the intrinsic excitation energy. The
variances of the spin distribution for the light fragment are obtained by
simply interchanging the suﬁscriptg.H‘and L. The temperéture was obtainéd frbm

. [
. a



,_wheremaéisgthe'level density~parameter~taken‘to*be*A£*'/8;“aﬁd*
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ot Atot is the
mass number of the composite system. ’

The effects of neutron evaporation were taken into account using the
model of ref. 19), assuming that one neutron is emitted for every 12 MeV of

excitation energy per fragment. This model was used.-to calculate the average

‘spin magnitude -and the yariances of the spin distributions at the beginning

and at the end of the neutron cascade respectively. The excitation energies
were calculated under the assumpt jon -that both fragments had equal
temperaturesf |

The value of the average aligned component for each fragment was‘obtained

by solving two eguations of the form

<I> = _[I_P(Ix’ly’lz) dedI_y

dIZ .
where [ is the spin magnitude, <I> is obtained from eq. (7), and <IZ> enters
as a paraméter in the definition of the spin distribution (see eqg. (8)).

Angular distributions and anisotropies

The basic angular distributioné associated with a perfectly aligned

system are

(1 - cos’a) and

Wi(a) = 7 (1 +'c052a) ,

FNTREENIT )

where a is the angle between the spin vector and the direction of

observation. If the system is misaligned these distributions must be folded

~into the spin probability distribution function, weighted by the number of

transit ions of each type (n

is? nl; and n2) in a given EY region:

Wie,d) S [}nzwz(a) + nlwl(a) +vniS]P(I,e',¢')IZdIdQ' ,
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‘where P(I,ef,ﬁ{) is"the spin probability distribution function expressed_in
spherica1'c96rdinates; and the éng1e a depends on both the_direction qf
emission (e;ﬁ) and the direction of the spin vector‘(e',¢') of the emitter:
Cos a = COS 6 cos @' + sin 6 sin ¢ sin o' sin ¢’

.+ sin @ cos ¢ sin e' cos ¢' .

At low mass asymetries, the statistical model predicts that the variances
o oy, and o, are similar to each'other.. The common values for the - ~
- three cartesian variances were obtained from

2
02 ) ox+oy+o |
——— .

2, 2

z
Two ‘of these average values were calculated, i.e.; one for eaéh individual
fragment. _

“A signifﬁcant unceftainty in the input parameters to our model
ca]cu]étioh is the mu]tfboiarity éompoSitionAof t;e conéinuuh y—rdyLenergy '
speﬁtra. In.an.attempt to réducé thfs unceftafnty, we have resorted‘td
results from both compound-nucleus work and thé»pkésent bek}

.Rotational nuclei at ﬁigh sﬁiﬁs are knbwn'fo decay vfa the emission of
baSica11y‘twb types of y-rays, f) strétched electric quadrupoles and ii)
"statistica]“}isotropic transitions. The energy of thé.étretched E2 y-rays
are strongly correlated to the spin of the state from which the y-ray is
emitted, and they appear méin]y in the lTow-energy bump of the spectfum. The
statistical transitiqns’(prObab1y an admixture 6f strétched and nonstretched
‘e1ectric dipoles) are considered to be distributed in energy atcordfng to the
following funct ion: “ - '
| T

p Y
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______The dashed Jline in-figure-16-shows—a -fit—-of -this—functionwith p=2"and

T = 0.6 MeV to the high-enérgy tail of a typical spectrum. Similar fits weré
obtaineq withp=3and T = 0.4 MeV. This decomposition of the spectra
indicates that the number of stretched quadrupoles in a certain energy region
(given by the area under the histogram minus the area under the dashed curve)
inc?eases withvdecreasing energy. Therefore, for a fixed vaalue, the y-ray
anisotrbpy'shoulp decrease with increasing transition energy across the bump
fegion. Clearly, this prediction is at variance with the low-energy data
shown in fig. 15. The experimental anisotropies are small for the lowest
y-ray energies, increase and peak at EY = 0.9 MeV, and then fall to unity.
This general behavior‘as.a function of EY reflects primarily the éhange of
the multipolarity mixing ratios. Indeed, since the Q-value is fixed, the spin
depoiarization (caused either by partic1e_evaporation,or by the reaction
itself) is not expected to produce any Ey—dependent effect on the anisotropy.
The decrease of the anisotropy at -lTow E; has béen observed in previous
compound-nucleus works and has been interpfetedvas‘evidence for an additibna]»

component, likely stretched magnetic dipole transitions. Although the-

'information on the spectral shape of this component is incomplete, it is known

that for.rotational nuclei these y—rays arevtoncentra£ed mainly below
0.5 MeV. For nuclei in the‘vicihity of a closed shell, their contribution to
the tota]-mu]tip]fcity increases signiffcant1y, and they extend to somewhat
higger energies. |

To minimize the uncertaihties due to this low-energy component in the
comparison between the ekberimenta] and éa]cu]ated anisotropies, we have
exc luded froﬁ the analysis all the y-rays with energies below 0.8 MeV.‘

However, even these low-energy y-rays must be used in the extraction of the

sum of spin magnitudes so that, in principle, the uncertainties in their



-82-

multipolarities could still affect the determination of important parameters
of the spin distributions. In all the calculations shown in the rest of this
paper, we have considered an intermediate situation by asshming that the
y-rays between the two calculated curves in fig. 16 are stretched dipo]éS’and
-therefore remove one unit of angular momentum each.

Comparison between the model calculation and the data

Figure 17 compares the Q-value dependence of the experimental anisotropy
to the-theoretica1»ca]tulation, for the slice 0.750 ‘MeV < EY < 0.900 MeV.
For all three reactions good agreement is obtained for the most inelastic
regions. The relatively larger discrepancy observed throughout the
quasielastic and beginning of the deep-ine]astic régions may be associated
with incomplete equilibration. The breakdohn of the statistica} equilibrium
assumptions is also suggested by the shift in the calculated peak anisotropy
relative to the data. According to the model, the maximuh'va]ue of the
anisotropy should occur when the multiplicity reaches its satﬁration value.

It must be emphasized that regardless of "any assumption made concerning
the multipolarity mixing ratios, the most ‘important role in determining the
value of the y-ray anisotropy is played by the thermal fluctuations. As an.
illustration, fig. 18 compares the data (open circles) to a calculation
assuming no thermal f]uctuatfons (dark circles). It is clear that if
mfsa]ignment is not included, the 6bserved‘va1ues of the anisotropy cannot be
explained.

Sum of spin magnitudes and rigid rotation .

0f -all the studied quantities, the spin magnitude is the least dependent
on model assumptions since it is closely related to the measured y-ray.
multiplicity. However, in defining the partition of the total internal

angular momentum between the two fragments, we have implicitly assumed that
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—_ T;the%jntermedjatefdinuclearrcompJex reaches—a—state~pf*rigid'rotatﬁdﬁ. In
order to test the validity of this a%sumption, let us first analyze the sum of
the spin magnitudes I1 + 12. ‘This quantity is expected to be fairly
insensitive to any assumption on the rotation regime.

| Figure.19 shows Il'+ I, as a function of Q-value for the three
reactioné. ~Two observations can be made. First, the maximum amounﬁ of spin
corresponding to the saturafion region is an increasing function of the total
mass. Second, the Q-value where saturaﬁion is reached appears to become
somewhat more negative for heavier systems. To a large extent, this beﬁavior
may be.aitributed to difference§ in basic parameters of the reaction, such as
the Coulomb barrier, total kinetic energy, mass, or angular momentum. A more
significant comparison between the reactions can be made by appropriately
transforming both axes in fig. 19 so as to remove any factor that is not
directly connected to the transfer process itself. The choice of new
variables is certainly not unique. For the variable re]ated to the excitatioﬁ
enefgy we have chosen a transformation from Q—value to temperaturé. For the
angular-momentum axis we have considefed two different scales given by the
following equations:

-1

e Wy ey
RR :Q[ AX 1 2
. - -1 |
Rot1 = 7 max (1" T
where .-..o" =<91 +.92 |

and QMAX is the maximum inéoming angular momentum corresponding to a grazing
collision. The transformed variables iRR and iRo11 measure the observed
sum of the fragments' spins in units of the maxiMum.Va1ue expected from the

rigid-rotation and rolling limits respectively.
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Figure‘20 shows plots ofcthe experimental values of iRR and iRé]i as
a function of T. A comparison between fi§s. 19 and 20b) indicates that the
transformétion from Il'+ 12 and Q to iRR and T succeeds in reducing the
experimental points to essentially a single curve. The transformation
according tb the rolling limit (fig. 20a) gives a similar curve for the nearly
symmetric Ho + Sm and Yb systems but shows a significant deviation for the ,
more asymmetric Ho + Ag.m These results provide, if not proof, at least a

strong support to the assumption of rigid rotation of the intermediate complex.

Spin distributions of the individual deep—iné]astic>fragmehts

We shall now examine some resu]ts'cohcerning the spin distribution of
each of the two exit-channel ffagments. The‘averége spin magnitudes <Il>
and <I,> were assigned to each nucleus according to the rigid-rotat ion
prescription, and the variances c% and og\were calculated with the
aid of the statistical model and the experimental temperatures. Both types of
information were finally combined to obtain the individual spin a]ignments
through the quantities <I1 > and <I2 >

Figure 21 shows the evolution of the'average spin magnitu&e I (solid
curve) and its average a]jgned component <IZ> (dashed curvé) for both
react ion partners as a function of Q-value. In all cases the heaviest
.fragment bears the largest spin according to the rigid—rotatfon partition,
The spin of the projectile-like fragment increases sligh£1y with decreasing
total mass because the increase of its moment of inertia (relative to the
- target-like fragment)‘preyai]s over the reduction of the total angular |
momentum. The Q-value dependence of both I and <IZ> is qualitatively the
same as that of the-y;ray-mmltip1icities. Fo]iowing the rise throughout the

elastic and quasielastic region, there is a saturation at large negaiive

Q-values. However, <Iz> shows a decreasing trend, which leads to a
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.~,9E93K9§§i!§A_jyergenceﬁfromL<I>7~—The4magnitudé’6TﬂfﬁT§'é??éofw?éﬁéifono£}on*
of the mass of the fragment, and it is rofafed to the a]fgnment of the
corresponding soin diétrfbution. The degree of.spin a]ignment is usually

measured in terms of the quantity PZZvdefined as

2
o 232 1 1
27 T gl 2

.With”tnis dofinition, PZZ varies from 0 to 1, those extremes corresponding
to a comp]eté]y misaiigned and tova perfectly aligned system, réspeotiVe1y.
Figure 22 shows the value of'Pii as a function of Q-value for each
individual fragment in the three reactions.. The same qualitative behavior can
be observed in all cases; the a]ignmentvincreases rapidly with increasing
Q-value throughoot the quasielastic region, fol1owed by a more or less  slow
decrease (depending on the mass of the fragment) across the deep-inelastic
region. For the three systems, the heavy reaction partners show higher‘degree
‘of alignment.
The di%ferences in the alignﬁént of each-fragment may be understood in -

terms of the extracted individual spins and the dependence of the calculated

spin fluctuations on different parametens. The equilibrium statistical model

predicts that the variances of the Spin distributions are proportional to fhe L

temperature. In addition, it also predicts that the variances decrease with
increasing mass asymmetry of the system, although this dependence is rather

weak throughoot the region investigated in these experiments. In this

mass-asymmetry region the variances along the three cartesian coordinates are..

~nearly equal and the average value is 1arger for the‘heavy fragment. Finally,
- for a fixed mass asymmetry the magnitude of the fluctuations in .both nuclei

vary with the total mass according to the following relation.
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02 a.(l'hl + m2)

5/3 “(20)

Téb]e I summarizes the values of the calculated variance assoc%éted with
“the spin distribution_of each fragment. Due to}thé opposite effects'deffved
- from the increasing.mass asymmetfy and the decreasing total mass, the
hagnitude of the fluctuations induced in the Ho-like fragment is almost
~constant for the thréé reactions. Since the spin imparted to thfs nucleus
~ increases with entrance—channei'mass asymmetry, the net result is that the
maximum value of P (fig. 22) increases with decreasing mass of the target
(0.64, 0.69, and 0.79 for 170vb, 1%8sn. and "taq).

A different behavior is obtained fo} the extracted alignment of the .
v target—iike nuclei. Although the calculated variances become smaller for.
lighter targets (Table 1C), the trend is not stréngﬂenough té gompensate the
dramatic decrease in the transferred spins (fig. 21);- In fact, for the |
lightest nucleus (Ag) at the higﬁest excitation energies (Q = ~300_Mey), these
randomly oriented components account for almost the totality of the spin (fig.

21), thus giving rise to an almost isotropic.spin distribution (fig, 22).



-87-
D) Intrinsic Fragment Spins Generated in the React ions of
20 197 238

Ne with Au and U at 12.6 MeV/Nucleon

Experiment al techniques used to obtain the'magnitude and alignment of

ok
5) 11,13)

the transferred spin include a-particle , y-ray and sequential

fission fragment14-15) anguﬁar distribut ion measurements. The out-of-plane
angular distributions of y-rays and sequential fission fragmentS'are primarj]y
sensitive to the‘average random spin component. From such studies the Q-value
dependence of the average misalignment has been determined.

The angular d{stributions of y-rays and a—partfcies are rather insensi-
~tive to differences in the in-plane projections of the random spin component .
In contrast,>the angu]ar‘distributions of sequential fission fragments are
quite sensitive to such differences in that they can produce a substantia1
-in-plane anisotropy.

In'fhe equilibrium statistica] model the aligned spins ar1s1ng from the
r1gwd rotation of the d1nuc1ear system couple to angular momentum components
associated with the thermally excited normal modes. For a model of two
touching Spﬁeres, these normal modes are calxed bending, twisting, wriggling
and tiltin921). The statistical widths (ox, oy and cz) of the angular '

 momentum components in the usua1 cartesian coordinates are shown in Fig. 18 as
a function of mass asymmetry.
When the reaction partners have equa] masses, the’fherma] widths are

21

nearly equa] ) At large mass asymmetry, oy becomes much larger than

o, or o, (see F1g 22) because the stat1st1ca1 exc1tat1on of all of the

modes except tilting is strongly suppressed.
The tilting mode corresponds to a tilting of the disintegration axis out

- of the plane perpendiculaf'to the total angu1a+*mom6ntumg-gThisomodelisui
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favored at large asymmetries because the rotafional energies about the Sym-
metry axis and about an axis perpendicular to it tend to become equal as the
. mass asymmetry goes to 1. Thus for any given temperature the mean tiltihg of
the decay axis increaseé Qith mass'asymmetries, the out-of-plane distribution
broadens and the in-plane distribuifon becomes anisotropic. In addition, this
model bredicts that the maximum.in the in-plane angular distribution should
-occur perpendicular to the 1ine-of—ceﬁter§ of the dinuclear complex.

Consequent 1y, for near symmetric systems, the statistical model predicts a
very small in-plane sequential fission anisotropy (~1.1/1) while, for very.
asymmetric systems such as 20Ne + 197Auand 20Ne + 238U, this model predicts (
a strong in-plane anisotropy (2/1). | |

Here we report méasurements of sequenfié] fission angu1ar distribut ions

20 197Au and 238U. These systéms are

from ihe reaction of 252 MeV ~~Ne with
extremely mass-asymmetric and should severely test the predictions of the
equilibrium statistical model. At the same time the results of this.sﬁudy
should shed 1light on the present discrepancy between previous sequential fis-
sion studies. Projectile-like fragments. (PLF) were detected in a solid state
telescope that was fixed at 30° to the beam. (For the reaction of 252- MeV
20Ne + 19_7Au and 238U, the classical grazing angles in the laboratory are
26° and 30°, respective]y);

Fission fragments (FF) were observed on the opposite side of the beam
ffom the PLF in an array of 10 silicon surface-barrier detectors‘(300 um).
‘These detectors were held in a rigid invefted T-shaped mount suspended from
the top of a hemisphericai.scattering chambér 1id.

In genéra1, the éngu]ér-distributions are not. expected to reflect the
unbiased popuTations of the spins in the exit channel, becéuse they are biased

by the probability that the recoil nucleus will undergo fission. Since this

)
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probabi]ftj (Pf) can be strongly dependent on the excitation energy and the
spin of the product nuclei, if is important to have an estimate of it.

The experimental sequential fission probabilities are shown in Fig. 24.
As a result of its large fission probabi]ify, substant ial coincidence data
wa§ obtained over a broad TKEL range for uranium. In contrast, the maximum
value of Pf for gold products ié ~ 0.6 which is reached only at the'largest
Q-values. As a resu]t, statistically significant angular distributions were
obtained only at large values of TKEL'for the gold system.

%he coincidence data from the uranium target was divided inio 5 TKEL bjns v
(2 for gold) in order to investigate the in and out-of-plane angular distribu=
‘tions. The measured angular distributions of the FF's plotted against tﬁe out-
of-plane (eH) and in plane (dH) angle of the heavy recoil are shown in Figé.
25 through 28. Both ¢H, thé in-plane ang]é, and eH, the out—df—p]ane angle,
are in the rest frame of the recoiling heavy target-like nucleus. The tradi-
tional assignment of ¢H = 0 along the recoil direction (Q-value dependent) was
made, with negative ¢H angles 1ying_betﬁéen the recoil direction and the beam
axis. |

The magnitude and orientation of the intrinsic spin of the'fissiohing
. nuc leus can'be.exfracted from the angu]ak distributions of the fission frag-
ments. The angular distribution functidnvexpected ffom a Gaussian spin dis-
tribution with its only nonzero average compdnent along the z coordinate,vis
given by Egs. 4 aﬁd 5. The\in—plane variationé are contained in the pre-
exbohentiaT term of the angular distribution function. Our cpnvention is that
eH =‘90° corkesponds to fhe in-plane meééurements and that dH = 0° corresponds
to the separation or y axis. |

Fits to the angular correlation data quasielastic bins and near 90° for

the mosf inelastic bins are shown by the solid curves in Figs. 25 thrbugh 28.
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The numerical.resu1ts of this fitting process are given in Table 1D.
Unfortunately the numerica]]y best choice for xH does not have a smooth
dependence on Q-value, because of the shallowness of the angular distributions
and the size of tHe errors in the data points at intermédiate Q-values. This |
has been demonstrated by fitting the angular distribut jons with fixed‘shift
angles. v |
In an alternate procedure, the shift angle xH was estimated simply from

the average change in orbital angu1ar'm6mentum for éach Q-value. The initial

orbital angular momentum, Li’ was obtained by dividing a triangular

‘2-distribution in proportion to the cross section. The amount of exit channel

angular momentum, Lf, is then written classically as:

L = Ly - <It> - <Ip> o | (12)

where <I.> and <I,> are the average intrinsic spins of the target-like and
projectile-1like fragments. Theqfragment spins are taken to be primarily
aligned as indicated\by preyious results. The direction of the 1ine—of—centers
for—fhe 20Ne + 197Au and 2-ONe + 238U systems was determined by tracing the
projecti]ée]ike product béckward a}ong a Coulomb trajectory to the point of
contact. Contact was assumed to occur at a distante given by the equi]ibrfum
configurapion of a rotating sphere-spheroid 1iquid drop model system.s) |

The resulting shift angles arer45°, 60°, 70°, 75° and 80° for the five
uranium Q-value bins. For the three most negative Q-value bins these numbers
are in reasonable agreement with the va]ues returned fromvthe fitting process
for the optimum xH (Table 1D). In addition, the flatness of the angular dis;
tribution associated with the Q = - 37.5 MeV bin causes the fitted functiohito'
be rather insensitive to xH for this bin. Our model in this low Q-va]ug

region and the likely strong contribution from direct reaction processes this

particular discrepancy is not too discomforting.
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The values of the aligned spin Iz énd the therha] widths extracted from
the fitting of the sequehtia] fission fragment angular distributions can be
utilized to determine the two alignment parameters P, and Py, . These two
parameters are defined in terms of thehx,'y and z components of the angular

momentum vector as:

_ <I2 > 2<1° > - <I2 > - <I2 > : '
Pz 3 ——=p = X Y (13)
11 <I®> 2<12>
and
S 15 > -
Poy = - o | - (14)
Xy 2 <12>

Taking the previous assumptionvof a Gaussian spin distribution peaked at

IX =0, Iy = 0 and IZ the alignment parameters can be rewritten in terms of

fitted widths by recalling the definition:
2 2 2 v R _
<> =<l >" + o . | (15)

Thus, Egs. 13 and 14 become:

: (<I.>" +62)
Prr= 3 2 ' - 7 (16)
(ox +o o * <I?> + q)
and’

2 .2

g .- 0
Pyy = X 5 (17)

L 2(e, *t o * <IZ>.+ o)
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In Table 1D we.show values of I, Oy Iy and»oZ extracted from the

sequential fission fragment angular distributions. To make clearer the
Q-value dependence of IZ, the extracted values of Ii are plotted versus

20pe + 238y 4ng Dye + 197

Q-value in Fig. 29 for both the Au systems. Fo;
the former system, IZ increases steadily with Q-value.. A similar increase of
IZ with Q-value has been observed in several other reaction systems.‘ Because
of the high fission barriers for nuclei near Au, values of IZ were obtained

20 197

only for the most negative Q-values of the ""Ne + “""Au reaction. A striking

difference between the two systems is the much larger values of Iz observed
20 197 20 238

Ne + Au relative to the ~~"Ne + U system. Since the max

for the ax

and the rigid rotation partition for the two systems are very simi]ar, the
difference most likely reflects the strong bias towards high spin states for
‘the fissioning gold nuclei and the absence of such a bias for the fissioning
uranium nuclei. This bias is jntroduced by fhe large fission barrier for gold
nuclei.

| Although there is a substantial scatter in the Qalues of the thermal

widths (see Table 1D) extracted from the 20Ne + 238

U sequential-fissﬁon frag-
ment angular distribufions, qua1itatively oy and o, seem to be independent of
Q-value whereas_oy increases dramatically with Q—va]ue.v The statistical model -
predictions for c* and'oy are in rough agreement with the data for all
Q-values. However, this model substantially overpredicts oy except at the most
negat ive Q-values where rough agfeement is obsefved. Over the mofe Timited
Q-valué range of the 20ne + 197y, data, the ﬁode] predict ions are invrough
agreement with the extracted values for all three thermal widths.

obtained from the fitting of the FF angular

"The results for P_., and P

77 XY
distributions for the uranium system are shown in Fig. 30. 1In contrast to the
strong Q-value dependence observed in more symmetric systems , the extracted

f
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values of'PZZ-ane appfoximate]y constant at 0.8 for the 20Ne + 238U_system.
The'in—p]ane_alignment parameter shows a §tronger depéndence on Q—va1ué. It |
is bositive at sma11QQ-va1Ues énd then goes fovnegative values at larger
Q-values.

The predictions of the statistical equilibrium model for two touching
spheres (solid curves in Fig. 30 lie substantially below both the PZZ and PXY
the data. A]thdugh this disckepancy could be interpreted as indicating that
the dinuc]éar System is not at_equiliﬁriUm (with respect_tolthe normal modes);
a more likely explanat ion “is that the present model of two touching spheres
does not alfow for either deformation or interfragment sepafatidn~(neck for-
hat?on). Indeed, there is eXtensive'evfdence for large deformations of the
nuclei at their scission configuration following a DIC. A first order esti-
mate of the effect of deformation on the model calculations can be made by
_a11owing the target—like-fragment to deform along the line-of-center of the
dinuc]ear system. Model calculations of Piz and PXY are shown in Fig.,23 for
| different ratios of axes (C/A) of the target-like fragment. Both PZZ and PXY
are quite'sensitiVe to the deformation of the heavy fragment. In thfs calcu-
lation, oy and o, increase slowly whereas oy decreases rapid]y with increas-
ing C/A. Thus increasing C/A‘causes PZZ to increase because the random com-
ponent of spin decreases while the aligned component is constant. PXY
approaches zero as C/A increases>because dy becomes similar to o In this
model, a ratio of axes of 1.6 to 2.0 is néeded to reproduce the data in the
deep-inelastic Q-value region. Such deformations of the heévy fragment are

consistent with val ues given by the edui1ibrium configuration of a rotating

sphere-spheroid liquid drop model system.
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Table 1C

Calculated variances of the spin distributions

4

02.=/T. (GZ/MGV)

TReaction T ff_?ﬂu. ; | Projettf]e (Ho) .7 Jarget
16540 + 176y o | a3 76.9
1o + 185y - . 5.0 57.9
165y,  nat, o 68.5 34.5
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____Table 1D._ Results of angular distribution-fitting including a

free rotation ang]e)(H,'errors are given in parenthesis.’
The errors listed in this table represent only.

the statistical error.

IZ Uy ! OX cz : . XH

Q-Value Ky : (h unit‘S) . - - (degrees) -
| 0 _ - v

(A) uranium results with 6 < Z3 < 14

-12.5 7.3 17.7(0.5)  3.0(0.6) 6.5(0.4) 2.8(0.4) . 8.(7.)
- 37.5 10.4 27.2(0.2) 7.7(0.2) 8.8(0.2) 1.9(0.5)  16.(9.)
- 62.5 12.0 31.1(0.3)  9.5(0.5) 5.8(0.7) 3.1(0.7)  90.(9.)
- 87.5 13.1 37.9(0.3) 13.0(0.7) 8.6(0.9) 5.3(0.5) - 94.(9.)
-125.  14.3 42.4(0.6) 20.1(0.7) 0.7 (4.) 9.2(1.1)  80.(3.)
(B) uranium results with 9 < 73 < 10 | |

- 12.5 7.3 16.7(0.5) 2. (0.8) 7.1(0.4) 0.5(1.) - 9.(6.)

- 37.5 10.4 25.0(0.3)  3.5(0.6) .10. (0.6) - 7.2(0.8) -10.(4.)

- 62.5 12.0 32.2(0.5) 17. (1.) 6. (1.) 5. (1.) 90.(5.)

- 87.5 13.1 45. (1.) 23.(2.) 8. (2.) 15. (1.) 8l.(6.)
~125. 14.3  37. (0.9) 22. (2.) 7. (2.) 0. (4.) 87.(7.)
(C) Statistical Model* .

_12.5 16.6 5.0 5.0 45

- 37.5 21.8 6.5 5.0 60

- 62.5 24.7 7.4 7.4 70

- 87.5 26.8 8.1 8.1 75
~125. ' 28.8 8.8 8.8 80

(D) gold results with 6 < 73 < 14 o »

- 75 9.8 61.(1.) - 25.2(0.8) 7.(2.)  24.(1.) 64.(3.)
-125 11.7  65.(1.)  30.0(0.8) 0.(5.) 15.(1.) 79.(1.)
(E) Statistical Model

- 75 - 206 . 7.4 7.4 72
~125 . 23.4 8.4 8.4 80

*Two touching spheres
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Figure Captions

1811, + 16545 (1354 MeV) system.

a) Velocity diagram for the
The open circles are the rms velocities extracted from the
coincident laboratory e-particle energy spectra. The solid circles
indicate the rms velocities Qf the two separate peaks that appear in

the most forward data. The full large rings indicate the loci of

- expected a-particle velocitfes7 from the three different rest

frames. For the farget—]ike fragment, the locus of velocities fof a
iO_percent reduction in the expected average emission energy is
indjcated‘by a partial ring. The detection threshold is shown as a
dashed arc. The letters P and T stand for projeéti]e—]ike and
target-1like, respective1y. ‘ o

b) The velocity diagrams for three different Q-bins (all in the
deép—ine]astjc region). The rms a-particle veiocities for each bin

are indicated. The smallest energy loss bin is indicated by

'triang1es'and the largest energy loss data by squares. The three

partial rings are drawn to guide fhe eye. They have the same radius -
and are centered on the three different recoil velocities.

a) Velocity diagram for the reaction system natAg + 84Kr

(664 MeV). Circles indicate the most probable velocity for
a-particle emission. The ﬁn—p]ahe projection of the out-of-plane
angles is indicated. The dashed arc indicates the detection
threshold for the a-particle detectors. | |

b) Schematic view of the éxperimental setup. This figure depicts
the Z-telescope, with its>in-p1ane angle ¢z;‘light particle
telescopes with in--and out-of-plane lab ang]es'¢L and ¢

respectively: and the array of Nal detectors with an out-of—p]ane

angle of 450,



Fig.

Fig.

Fig.
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.___Alpha=particle -angular distribut fons as a function of out-of-plane

angle for several Z-bins. Each bin is 3 Z units wide and is labeled
by the median Z value. The distributions without any coincidence
y-ray requirement a) are expressed in units of differential

multiplicity, whereas the distributions with two or more coincident

-y rays b) are normalized to those in a) at 90° for the same Z v

bin. The solid lines are fits to the data.
Spins extracted from the out-of-plane a-particle distributions with
(open circles) and without (solid circles) the requirement of at

least two coincident vy rays. Error bars are shown when they exceed

“the size of the symbol ahd indicate only the statistical error. The

rigid rotatibh.predittion for deforméd spheroids with a ratio of
axis of 2 and a separation:of 1 fm is shown by the solid line.

a) Center-of—mass energies as a function of the charge of the light
fragmehf, The width of the symbols indicate the uncertainty in the

primary charge (before evaporation). The curves are calculations

- for two equally deformed spheroids separated by 1 fm and are labeled

by the ratio of axes. b) Plotted are: the spin of thé heavy
fragmenf extracted from the a-particle distributions (solid
circ]es),-the sum of spins calculated from a-particle data
(squares), and MY data (open circles). The sizes of the solid
symbb]s indicate the statistical error only.

Comparisons amongbthe data at 23°, 27°, and 31° as a function of
reaction Q—va]&e for the reaction Ho + Ho at 8.5 MeV/u. The top'row

represents MY(90°) (filled circ]es),’M§(0°)'(open circles), and

the angle integrated y-ray mu]tip1icity-2My> for EY > 0.3 MeV

‘(¢01id line). The center row shows the spin per fragment after
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-neutron emission (solid line) derived from'<MY> and the spin prior

to neutron emission (dashed 1ine). The bottom row shows the y-ray
anisotropy for the region 0.6 < EY < 1.2 MeV..

Decomposition of the y-ray spectrum to yié1d the number of
statistica] transitions (proportional to the area under the daéhed

line).

. Experimental and calculated valued of the anisotropy vs Q-value for

EY > 0.6 MeV. The solid 1iné'represents;the complete

calculation.. The dotted 11ne~inc]udés:the_secondaky misalignment,

-‘and the -dashed line represents full alignment. See text.

Extracted values of the a1ignment'parameter PZz plotted vs

Q-value. The solid line represents a comp]ete ca]culation, the

dashed line does not include neutron effects, and the dotted line

does not include the primary misalignment. See text.

The solid line (1) represents the spin transfer <I$ before neutron

. emission at 27°. The dashed (2)- and dotted (3) 1inés represent:the

extracted values of the aligned component <IZ> prior to neutron
evaporation and of\<Ii> after neutron emission, respectively.
Line (4) represents the dispersion caused by the pfimary'

the Line (5) represents the dispersion due to

“neutron emission L See text. -

Energy specfra of the projectile-like fragments in the laboratory
reference system. The arrows indicate the boundaries of the gates
used for the'aﬁa]ysis of the,coincidence‘y-ray dat a.

In-plane y-ray spectra obtained in coincidence with heavy ions. The
numbers 1-8 correspond to the Q-value gates indicated in fig. 11.

Note the evolution pf the low-energy "bump" when going from the



Fig.

Fig.

Fig.

Fig.

Fig. 17.

13.

16.

to the tail with the function KeY e
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elastic or quasielastic (spectrum 8) to the most inelastic
(spectrum 1) collisions.
"In-plane" (MY (90°j)_and "out ~of-plane" (MY (0°))
multiplicities as a function of Q-value. The difference betweentthé
two curves for each reaction reflects tHe angular distribution of

the radiation.

Gamma-ray anisotropy as a function of Q-value for the three

systems. In part.a), y-rays of all energies above 0.3 MeV are

considered. Part b) shows that by selecting y-ray energies in the

"bump" region, the anisotropy increases for the three reactions.

Gamma-ray anisotropy as a function of y-ray energy. The Q-value
region is constant for each reaction and corresponds to the'haximum
observed anisotropies. Thé anisotropy of tﬁg y-rays . in the  $7’
"statistical tail" (EY > 2 MeV) varies between 1 and 1.1 in all
cases (not shown in this figure).

Decomposition.of_a typica] y;ray spectrum. The so]id line is a fit

£ T M?V, where N =2, T =

VO.6 MeV, and K was adjusted to reproduce the area under the exp.

spectrum above 2.25 MeV. The dashed.1ine'is an exponential
extrapolat ion io Tow energies of the high—energy "statistical" tail
(see text for discussion).

Comparisoﬁ bet ween the experimenfa] anisotEopies of y-rays with

energies in the interval 0.750-0.900 MeV (circles) and a calculation -

based on the eq; stat. model (open squares and solid lines) as a

function of Q-value. The calculations require some experﬁmentaT
input; therefore they were done only where experimental results were

available. The lines are drawn to guide the eye.



Fig. 18.

Fig. 19.

Fig. 20.

Fig. 21.

Fig. 22.

Fig. 23.
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~Comparison between the experimenta1‘anisotropies and a ca1cu1ation

N that does not include the effect of thevtherma1 f]uctuétions The

Q-value dependence of the ca1cu1ated an1sotrop1es resu]ts from

var1at1ons in both the number of emitted neutrons and the B

compos it jon of the y-rays (these were the same_aS-those used in the

ca]cu]ated curves of fig. 17)

~ Sum of spin magnitudes (I1 + 1 ) as a funct1on of Q- va]ue for .-

the three reaction systems _ v

“Reduced" sum. of sp1ns as a funct1on of temperature The engular'
moment um axes have been scaled accord1ng to the'"r0111ng" limit for
part a) and to rigid—rotation limit for part b). :

Average spin magnitude <I> (solid ]ines)‘and average a]igned
component <Iz> (dashed 1ines)>as a funtidn of Q—vé1ue.'vFor each
system, the various symbols correspond to the two deep-ﬁneiastic
fragments. The average spin was assigned to’each nucleus through
the rigid rotation partition of the extracted sum of the spins
(fig. 11) The average aligned component s <Iz> were obtained frpm
the corresponding <I> and the calculated variances.’ - |

Alignment parameter P

27 @5 2 function of Q-value, for each of the

two deep-inelastic fragments in the three_reactions;

The thermal widths of the normal modes of a dinuc)eer complex are
shown as a function of mass asymmetry of the complex. 1The widths
are shown in dimensionless units after division by "of the moment

of inertia of a mass-symmetric spherical fragment times the

temperature. The mass asymmetries of several reaction systems from

recent determinations of the spin'and/or its alignment are also

shown5’7’11-16).

s
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Fig. 25.

Fig.

Fig.

Fig.

Fig.

Fig. 30.

27.

28.

29.
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The mea;ured_fission_probabi]ity, Pf, is shown as a fuhctfdn of
total kinetic energy 1os$,-TKEL. | | '_ | |
The_out—of—p1dne angq1ar.distfibufionsAo% séqﬁenti;1 FFS'obtained

20e + 238, system. The distributions

fivé.Q-value bins for the
shown in column (A)‘wére‘measured éppfoxima£e1y a1oﬁg the'Iaborétofy
recoil diréctionAand thoée'in (B)'were obtained appfdxiﬁéte]y

perpendicu]arbto the recoil difeﬁfion{ The 'solid Curves represent

fits described in the text. S .

. .The out-of-plane distributions of sequential FFs obtained are shown

for two Q-value bins.

In-plane angu1af distributions of sequéntia] FFs from the

20 238

Ne + U system are shown for the same 7Z- and Q-va]ue'bins-as

- Fig. 25. The arrows indicate the angles at which the out-of-plane

measurements were made.

In-plane angular distributions of sequential FFs for the

20, . , 197

Ne Au system for the same Q-value bins as Fig. 26.

The measured aligned spin (IZ of the target-like fragment as a

20 197 238

funct ion of Q-value for the 252—MeVb Ne + """ Au and u.

Spins were extracted for a broad Z-bin (6-14) for both‘systems and
20 238

an addit ional narrow one (Z = 9-10) for the “"Ne + U system.

The statistical errors are of the same size or smaller than the
symbols.
The measured alignment parameters for the spin distributions

obtained for the 20Ne + 238

U system are shown for Z = 6 to 14
(circles) and Z = 9 - 10 (squares). The solid and dashed curves

represent the statistic equilibrium model calculat ions (see text).
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"'Ag+**Kr (664 MeV)
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