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Statistics at Work in Heavy Ion Reactions 

Luciano G. Moretto 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
B~rkeley, CA 94720 

In the first part special aspects of the compound nucleus decay 

are considered. The evaporation of particles intermediate between nucleons 

and fission fragments is explored both theoretically and experimentally. The 

limitations of the fission decay width expression obtained with the transition 

state method are discussed, and a more general approach is proposed. In the 

second part the process of angular momentum transfer in deep inelastic 

reactions is considered. The limit of statistical eq'uilibrium is studied and 

specifically appl ied to the est imat ion of the degree of al ignment of the 

fragment spins. The magnitude and alignment of the transferred angular 

momentum is experimentally determined from sequentially emitted alpha, gamma, 

and fission fragments. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear Physics 

and Nuclear Sciences of the Basic Energy Sciences Program of the U.S. 

Department of Energy under Cont ract DE-AC03-76SF00098. 



-1-

Int roduct ion 

In a brief moment of excessive ambition, I had planned to make these 

notes a vademecum for anybody wit h the inc 1 i nation or the necess ity of 

applying statistical methods to the various areas associated with heavy ion 

reactions. As it turns out, I successfully resisted the temptation and, in a 

more modest vein, I ended up writ ing about what seemed, at that moment, most 

interesting in the area. Not surprisingly the topics happened to coincide 

with the very subjects I was working on at that time. It is my hope that my 

twenty-five readers (how could I hope for more readers than Manzon;!) will 

find my lectures not too incoherent and rambling. And even if they find them 

a bit boring, they may try to balance their perspective with the thought that, 

one day, they too may be confronted with a similar task and a similar audience. 

The topics that I have chosen are the following: in the first one I 

shall discuss certain new aspects of the compound nucleus decay brought into 

the limelight by the very special conditions prevailing in heavy ion 

reactions. In particular, we shall discuss the statistical emission of 

part ic les of intermedi ate mass and we shall invest igate experiment ally the 

existence of such a process. Furthermore, we shall reconsider the standard 

Bohr-Wheeler approximation in the calculation of the fission decay width and 

we shall present a more general approach to the problem. 

In the second part we shall consider the problem of angular momentum 

transfer and alignment in a variety of heavy ion reactions. Experimentally, 

we shall use sequential alpha, gamma, and fission decay as different probes of 

the angular momentum in deep inelastic fragments. 

In order to illuminate the underlying units of these topics, it would take 

me at least one full paper. But then it occurred to me that writing a paper 

to justify another paper was too much both for the writer and for the reader. 

Therefore, with this relieving thought, let us proceed to our chosen topics. 
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Part One 

Light Particle Emission and Fission: 

A New Look at Compound Nucleus Decay 

It was Plato who said that knowing is remembering. He meant, of course, 

that our contingent knowledge is but a dim recollection of the clarity of 

hyperuranian world. In a more worJdly sense, it also seems true that old 

scient ific ideas are rediscovered from time to time, as the meandering evolu-

t ion of sCie,nce broaches again and again the various facets of a given subject. 

Accordingly, while one would think that the subject of compound nucleus decay 

has been. beaten to death, it is surprising to see how new aspects are· brought 

·to light by the recent developments in nuclear reactions .. Heavy ion reactions, 

in part icular, have shown how compound nuclei -can be formed in a variety of 

• _regimes hardly accessible heretofore. The two characterist ic variables that 
-

can be explored effectively are the angular momentum ana the -excitation 

energy. On ·one hand, fusion react ions have led to the format ion of compound 

nuclei with extremely high angular momenta up to values for which the fission 

barrier becomes vanishingly small. In this regime fission becomes a most 

relevant, if not the dominant, decay mode over-a broad region of the periodic 
I 

chart. It is therefore important to see whether the.traditional expressions 

for the fission decay width still ~old in this region. 

On the other hand, deep inelastic processes ·allow for the formation of 

ext remely exc it ed compound nuclei, which are reasonably we 11 charact eri zab le 

in terms of mass, charge, excitation energy, and angular momentum. ·For 

instance, in the reaction Ho + Ho at 8.5 MeV per nucleon, Q-values as high as 

-400 MeV (i.e., 200 MeV of excitation energy per fragment) are observed. The 
\ , 

fragments are compound nuclei of mass and .charge close to the entrance channel 

1\ 
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Ho nuclei and have a large but not impossibly high angular momentum of -40 h. 

The reason deep-;nel ast ic react ions, better than fission, can produce high 

excitations is the ability of the relative motion to ~arry most of the angular 

momentum,which otherwise would end up in the compound nucleus. 

These very high excitation energies allow certain hypothetical decay 

processes, never documented before due to their expected improbability, to 

become competitive. We are talking, more specifically, about the evaporation 

of large fragments, extending in mass from 4He to fission fragments. We 

shall ,deal with this subject in the first section and with fission in the 

second sect ion. 

1. Statistical emi,ssion of particles of intermediate mass 

The typical compound nucleus decay populates two very distinct mass 
, -

regions. Evaporation produces fragments with mass no larger than four, while 

fission produces fragments close to one-half the mass of the compound 

nucleus. The separation is so sharp that one is led to consider the two 

processes quite different, as indicated even by their names. 

Such a dichotomy i,s stressed in the formalisms commonly used in the 

1 1 t · f t h d . dt h Th t ddt' fl' 1-4) ca cu a 10n 0 e ecay W1 S.· e s an ar evapora 10n orma 1sm 

makes use of the detailed balance principle to connect the compound system 

with the decayed system at infinite separation of the two fragments (e.g., 

neutron and residual nucleus). The direct transition probability is obtained 

'from the phase-space volumes associated with the initial and final states and 

from the inverse transition probability deduced from an optical model. 

On the other hand the fission decay formalism, like the Bohr-Wheeler 

formalism,S) takes advantage of the saddle point in the potential energy 
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surface as a funct~on of deformation. At this point, which separates the 

compound nucleus region from tne region of the forming fragments, there is a 

phase-space constriction that controls the probability flow between the two 

regions. Furthermore, the direct and inverse transition probabilities are 

trivially related to the. velocity of the system along the fission coordinate. 

This apparent distinct ion between evaporat ion and fission is rather 

artificial. From the experimental standpoint, particles with mass 

intermediate between the fission fragments and the alpha particles have been 

observed in high energy reactions6- 8 ), and their cross section appears to 

increase rapidly with excitation energy6). In fact, the high energy and 

angular momentum deposition associated with heavy ion reactions should raise 

these particles from the limbo of immeasurably low cross··sections into the 

more accessible region of ordinary cross sections, thus making these processes 

··open to experimental investigation. 

We shall try to treat this problem on very general grounds;-bydescribing_ 

and classifying the most relevant aspect of the physics in a manner that is as 

independent as possible from any detailed model. Specific models will be used 

only for the purpose of exemplification. The emission probabilities, the 

kinetic energy distributions as well as the angular distributions, will be 
( 

calculated analytically. At the same time, the features of the formalism that 

portray the essential unity of the statistical decay process will be stressed. 

l~ POTENTIAL ENERGY ASPECTS: . 

THE RIDGE LINE OR THE CONDITIONAL SADDLE POINT 

The nuclear potential energy surface V(x.) as a function of a set of 
1 

deformation coordinates xi has been studied in detail in the framework of 

the liquid drop model 10- 12 ). The stationary points of this surface can be 

obtained by solving the system of equations: 

'" j , 
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= 0 

In general, only the solutions of the above equations are the part of the 

topology that' is invariant with respect to a canonical transformation of 

coordinates. In particular, the ground state and the fission saddle point are 

independent of the representation that is chosen, while the overall topology 

of the potential energy depends on the choice of the coordinates. The saddle 

point shapes for values of the fissility parameter x < 0.7 are strongly 

constricted at the neck; so that the two forming fission fragments are already 

well defined in their masses Al and A2• In this way a mass asymmetry 

parameter AA!A can be defined. In the limit in which the mass asymmetry is a 
1 2 

well-defined quantity, it is possible to consider a cut of the potential 

energy surface along the mass asymmetry coordinate passing through the saddle , , 

point and such that, at any point of this cut, the potential energy is 

stationar,x. with respeq to all coordinates. Each point on this line is then a 

"conditional." ·saddle pO'int with the constraint of.a fixed ma~s asymmetry. In 

analogy with the name "saddle point,", we may call this line of conditional 

saddle points "ridge line". In the limit of large mass asynmetries, the two 

spheroid parameterization is expected to be a good approximation even for 

values of the fissility parameters larger than 0.7. Furthermore, for very 

large mass asymmetries, the small fragment can be approximated by a sphere, 

thus simplifying the problem substantially. 

The potential energy along the ridge line is shown in the two spheroid 

approximations for three nuclei (fig. 1). 
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2. STATISTICAL PARTITION AT THE RIDGE POINT AND TOTAL DECAY WIDTH 

Assuming that the inertia tensor is known for the collective modes at the 

ridge point, a simultaneous diagonalization of the potential and kinetic 
,. 

energy expressions in the quadratic approximation is possible, thus leading to 

the definition of the normal modes at the ridge point. In the limit of 

complete uncoupling between collective and intrinsic modes, the decay width 

r(n), differential in n variables,. can be written as: 

dydp (dX.dP.) 
x hYdEn ~ 1. 

wherexi'Piare the normal model s coordinates and conjugate momenta; y' and 

Py are the mass asymmetry coordinate and momentum; BR(y) is the ridge 

point potential energy; e: is the kinetic' energy of the fission-like mode; a. , 
and mi are the stiffnesses and the inertias associated with the normal 

modes; p(E) is t.he 'tompoundnucleus level density; /r .... ] is the' density 

of the intrinsic states at the ridge point. 
.. 

By expanding the natural logarithm of the ridge point level density in 

first order with respect to its argument; one obtains a rather accurate and 

very useful approximation: 

* 1 dlnp (x) 
where -T = --'-:--dx 

x --y de:n 1 y. 
dydp ((dX.dP )) 

h h . 

(1) . 

(2) 
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In this approximation, energy is not conserved. Rather, the system is 

characterized by a constant temperature T, which describes the'equilibrium 

between the collective degrees of freedom and the far more numerous intrinsic 

degrees of freedom that act as a thermostat. 

This expression is essentially identical to the differential decay width 

for the fission process. 

Equation (2) can be integrated to give the total decay width: 

Since it is rather unlikely that the quantities mi,a i can be determined 

with sufficient accuracy, it may be 'wise to incorporate all the phase-space 

(3) 

associated with the bound collective modes into a new level density expression 

OR. The decay width then becomes: 

(4) 

This expression for large values. of E can be written approximately as: 

1/2 
1 _ 1 T(2".Tmy ) dy BR 

r dy =2". h exp - r- (5 ) 

where the contribution of the mass asymmetry mode to the phase-space has been 

explicitly isolated. The leading factor in this expression is the exponential. 

The pre-exponential factor is hard to calculate because of the inertial param-

eter my. However, there is reason to expect that this term varies slowly with 

asymmetry y. Consequently, we can estimate the yield of the statist~cally 

emitted fragments to within an approximately constant factor (fig. 1). 
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3. THE KINETIC ENERGY DISTRIBUTION; AMPLIFYING AND NON-AMPLIFYING MODES 

In the case of charged particle evaporation, the greatest fraction of the 

. kinetic energy of the 'particle at infinity originates from the Coulomb 

repulsion. Therefore, great care must be taken in describing the shape of the 

. system at the time of division, because the distance between the centroids of 

the two charges is critical in determining the Coulomb energy. In the present 

treatment, the relevant shape is that of the ridge point, which, at all times, 

we consider degenerate with the scission configuration. As can be seen from 

the two spheroid model or from the spheroid-sphere model, the ridge point 
I 

configuration can be substantially elongated (shape polarization of the two 

fragments) so the distance between the centroids of the two charge 

distributions is larger than that of two touching spheres. Thus the Coulomb 

energy is smaller than the nominal Coulomb barrier (corresponding to two 
, 

touching spheres), and apparent subCoulomb barri~r emission may result. An 

indic~ion of subCoulomb barrier emission is already available in 4He 

evaporation 13 ,14). This effect, which is ordinarily attributed to quantum 

mechanical barrier penetration, finds here a possible explanation that is 

entirely classical. A similar, but more pronounced, effect has been observed 

in the emission of complex particles from high energy bombardments 7,8). The 

extreme limit of this effect is visible in the fission process and in deep 

inelastic heavy ion collisions, where the kinetic energies are indeed 

substantially lower than the Coulomb energies of two touching spheres. 

A second point, very relevant to this discussion, is the origin of the 

width of the kinetic energy distributions. In the case of neutron 

evaporation, the kinetic energy width originates from the statistical 

fluctuat ions associated with the neutron degrees of freedom (translat ional 

modes). In the case of charged part icle emission, fluctuat ions in kinet it 
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energy may also arise from fluctuations in various bound collective degrees of 

freedom. These shape fluctuat ions can contribute great ly to the kinet ic 

energy fluctuat ion, as can be seen in the following example. Let us plot the 

ridge point potent ial energy for the sphere-spheroid mdel as a funct ion of the 

spheroid deformation (fig. 2). On the same graph, let us plot the Coulomb 

interaction energy of the two touching fragments, also as a function of the 

spheroid deformation. In second order in the deformation parameter z = B -

Seq' the potentiai.energy has the form: 

VT = VR + k/ 

while the Coulomb interaction energy in first order has the form: 

(6) 

v = E - cz c 0 
(7) 

The fluctuation in potential energy associated with the deformation mode in 

equilibrium with a thermostat with temperature T is of the order (1/2)T. The 

corresponding fluctuation in Coulomb energy is: 

"c = Jc~~ = {v- (8) 

where the parameter p = c2/k is dependent only on the potential energy of 

the ridge point mode in question. The width ac for sufficiently large 

values of t~e parameter p may become the dominant contribution to the spread 

in kinetic energy. A pictorial way to explain such an amplification of a 

fluctuation is to compare the system in question to an amplifier. The input 

to the amplifier is a white noise of mean amplitude (1/2}T. Because of the 

characteristics of the amplifier, an output signal of mean amplitude VPT/2 is 

emitted. The parameter p then can be properly called ampl ificat ion param~ter 

and a degree of freedom with such a general structure can be called amplifying 

mode. In general,a mode is amplifying when, at various elongations 
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(deformations), the relative contribution of surface and Coulomb energy to the 
/ 

total potential energy changes widely. 

At the other extreme we have non-amplifying modes when their potential 

energies arise almost exclusively from Coulomb energy. For instance, the 

oscillation of the spherical small fragment about the tip of the large 

spheroidal fragment can be considered'a non-amplifying mode. As the fragment 

rolls (or slides) away from the tip of the spheroid towards tl:1e 'equator, the 

Coulomb energy increases because of the decreasing distance between the two 

fragments, while the surface energy of the system changes only in higher order 

and c an be cons i dered approx imate ly const ant. 

4. DETAILED EVALUATIOK OF THE FINAL KINETIC ENERGY DISTRIBUTIONS 

A,detailed expression for the kinetic energy distribution at infinity 

cannot be obtained without a well-defined model for the ridge-point degrees of 
,. 

freedom. In what follows we shall try to obtain results that are on one hand 

as simple as possible, on the other very general, and dependent only on the 

essential features of any specific model. The following assumptions will be 

made: 

i) The ridge point modes are of three kinds, amplifying modes, 
, , 

non-amplifying modes, and one decay mode 

ii) The decay mode and the non-amplify·ing modes contribute their total 

energy (potential and kinetic) to the final kinetic energy, while 

the amplifying modes contribute only the coulombic part of the 

potential energy. 

Some justification of these assumptions can be found in the 

sphere-spheroid model or in the two spheroid models. In both of these models 

there is a fairly well-defined separ'ation of the ridge-modes in the amplifying 

and non-amplifying classes. Furth~rmore, the kinetic energy associated with 

"', 

~ .. ,.1 
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the amplifying modes is mainly in the form of kinetic energy of vibration of 

the fragments and should not appear to any great extent in'the final kinetic 

energy. In what follows, different combinations of the various kinds of 

degrees of freedom will be employed and various analytical expressions will be 

derived. 

4.1. One Decay Mode and One Amplifying Mode 

The decay width takes the following form: 

In this expression z, Pz' mz , and V(z) are the coordinate, conjugate 

momentum, inertia, and potential energy of the amplifying mode; E: is the 

k i net i c energy of t he decay mode. 

Since the kinetic energy associated with the amplifying mode is not 

(9) 

, expected to contribute to the final kinetic energy, one can, integrate direct ly 

'over Pz' Furthermore, one can express V(z) in the quadratic approximation: 

One then obt ai ns 

Let us now assume that the kinetic energy at infinity is given by: 

E = E + E: ~ E "- cz + E: k coulomb . 0 

where Eo is the Coulomb i'nteraction energy at the ridge point and cz is its 

first order dependence upon the deformation parameter z. Then the kinetic 

energy distribution at infinity is: 

(10) 

(12 ) 

(13) 
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where all the irrelevant multiplicative factors hav.e been dropped. 

c2 
Letting ~ = p and Ek - Eo = x one obtains: 

P(x)dx a:exp cy)ierf 2Eo+p - erf p-2x. ·ldX (14) 
\ 2ipf 2ipf 

Even for small charged particles and rather large temperatures, the argument 

of the first error funct ion is quite large. Consequently, 

2E +p 
erf 0= 1 

2/Pf 

and (15) 

. P(x)dx a: exp (- y) erfc p-2x dx 
2 IPF 

4.2. One Decay Mode, One Amplifying Mode, and One Non-Amplifying Mode 

Let us label the non-amplifying degree of freedom as t. The decay width 

can be written as: 

: r(5)dydedzdtdp = 
t 

dY(2nTmy J1/ 2 PR(E-B 

h 2w prE) 
dZ(2wmzT)1/2 dtdPt . 1 ( 2 2 pi) 
---,---- ---;- exp - -T E: + kz + at + - dE: 

h h '. 2m
t 

Since all the terms in E:, t, Pt contribute to the final kinetic energy, we 

can collect them, account for the associated phase-space, and obtain: 

where one has set, as before: 

Ek = E - cz + ~ • 
. 0 . 

(16 ) 

(17) 

(18) 
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After integration one obtains: 

P(x}dx a: (2x - p) exp (r)' [erf 2E +p _ erf p-2x ] 
,\ 2/PT 2/PT 

(19) 

, 2 lilT [ (p2+4X2) ({2Eo+p)2+4PX )]'1 ' , 
+ exp - 4 T - exp - 4pT dx ;; p 

if Eo» IPT, the above expression can be simplified as follows: Again, 

P ( xl dx oc I (2x - p l exp t f) erfc _P-_2_x_ + 2 r;r exp (_ p2+4X2)\ dx 
2 IPf V~ 4pT 

4.3. One Decay Mode, One Amplifying Mode, and Two Non-Amplifying Modes 

Equation (17), with the addition of one extra non-amplifying mode, 

becomes: 

where one has employed the usual expression for the kinetic energy. After 

integration one obtai.ns: 

P{x)dx a: I'({ p2 + ~T. + i - px) exp (_~) [erf 2Eo +p - erf p-2x ] 
T 2/Pf 2/Pf 

(20) 

(21) 

+ IpT r( 2x - p) exp (- P!;fi ) - (2Eo + p) exp 
2 Ii ~ 

( (2Eo +p) 2+4PX)] t 
\- 4pT " dx 

Again, if Eo» IPf the above expression becomes: 

P(xldx oc {(t p2 + f +.z - pxl exp (- f) erfc 
p-2x 

21j)f 

(22) 

(23) 



-14-

5. COMMENTS ON THE FEATURES OF THE KINETIC ENERGY DISTRIBUTION EXPRESSIONS 

AND THEIR ASYMPTOTIC LIMITS 

The first observation one can make about the three equations derived 

above concerns the different way in which the amplifying and the 

non-amplifying modes manifest themselves. The amplifying mode affect,s the 

kinetic energy distribution through the amplification parameter p, which 

depends on the potential energy features of the' system at the ridge point.. 

The non-amplifying modes affect the kinetic energy distribution only through 

their number and not through any feature related either to the potential 
\ 

energy or to the inertia • 

. -The second observat ion deals with the most probable values and the width 

of the kinetic energy distribution at constant values of p. As can be seen 

from fig. 3, the most probable energy shifts towards higher values as the 

number of non-amplifying modes increases. For sufficiently large values of p, 

the width of the distribution is essentially determined by p and increases 

slightly with increasing number of non-amplifying modes. 

In all the cases, but especially at large values of p, a substantial 

fraction of the kinetic energy distribution occurs below the nominal Coulomb 

barrier (fig. 3). Again, this effect in the present model arises simply from 

classical factors associated with shape polarization and statistical 

fluctuations at the ridge point. It has nothing to do with quantum mechanical 

penetration of the barrier,which has not been included in the model. 

A third aspect of this calculation has to do with the general appearance 

of the kinetic energy spectra. All three equations predict a highly 

asymmetric, maxwellian-like shape for small values of p (fig. 3). This can be 
\ 

seen best in Eq~ (20) and Eq. (23). At small p values the first term, 

containing erfc, dominates, giving rise to a strong asymmetry. At large 

.•. 
~, 
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values of p the t~r!!,_C_Qntajntng~er-fG--t-ends-t-o~zer-o;-ariaTne-Second-te;:m, which 
~ ~--~.---'~ 

is a gaussian, dominates. 

5.1. Limiting Expressions for p= 0 

t~. First, let us consider the limit to which the three expressions, 

.& 

Eqs. (15), (20), and (23), tend when the amplification parameter p tends to 

zero. Under these conditions x ~ Ek• By noticing that in this limit the 
'. (R.;m ). 

function erfc tends to a non-zero constant x~ ~rfc(-x) = 2, one obtains: 

exp - Ek/T (24a) 

P(Ek)dEk a: Ek exp - Ek/T . dEk (24b) 

(24c) 

It appears that one can write a general expression as: 

(25) 

where n is the number of non-amplifying -degrees of freedom. The exact meaning 

of the limit p ~ 0 can only be determined from a specific model. In the case 

in which a non-amplifying mode becomes unbound, the partition function loses 

one quadratic term in the coordinate but retains the quadratic term in the' 

momentum. On the other hand, this does not happen automatically in our 

formalism where we always assume the presence of Quadrat ic terms associated 

with both the coordinate and the momentum for each mode. The case of neutron 

emission can well be described as the limiting case of two non-amplifying 

modes. As was shown above, the proper limiting form isEq. (24b), which is 

similar to a maxwellian. The same prediction is obtained from more 

conventional theories. A detailed description of the smooth transition from 

charged particle emission to neutron emission can only be done by 

investigating a specific model and goes beyond the scope of this paper. 
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5.2. Limiting Expressions for Large Amplification Parameters and for 

More than One Amplifying Mode 

Large amp 1 ifi~at ion parameters are expected for systems wit h large atomic 

number emitting rather large fragments.· As can be seen in fig. (3), the 

contribution of the decay mode and of the non-amplifying modes to the kinetic 

energy distribution becomes less and less important 'as p increases. This is 

part icularly evident in the tendency of the kinet ic energy distribut ion to . 

become more symmetrical and nearly gaussian at large values of p. In these 

cases, more than one amplifying mode may be present and the two spheroid model. 

'with two amplifying modes may be more appropriate than the sphere-spheroid 

model. If, for the moment, one overlooks the contribution of the decay mode 

and of the non-amplifying modes to the mean and to the width of the final 

kinetic energy distribution, one can easily calculate the kinetic energy 

distribution resulting from two amp.1ifying modes. Let the amplifying modes be 

E;, and n. The probabiJ.ity of deformation of the system is: 

where k1 and k2 are the stiffnesses of the two normal modes. The total 

kinetic energy can be written as: 

By substituting Eq. (27) into Eq. (26) and integrating over all the 

possible configurations leading to'the same kinetic energy, one obtains: 

2 
p( x)dx a: exp x dx 

- (P1+P2)T 

2 2 

where x 
c1 c2 

= Ek - Eo and PI ";'k and P2 = k 
1 2 

( 27) 

(28) 
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This result can be easily generalized to any number of amplifying modes: 

x2 
p(x)dx ex: exp -

II: p. , 
2 1 In other words the kinetic energy is a gaussian of width cr = 2 I: PiT. 

(29) 

The effect of the decay mode and of the non-amplifying modes on the mean 

and the width of the kinetic energy distribution can be estimated as follows. 

The mean kinetic energy associated with one decay mode and ~ non-amplifying 

modes is: 
00 

f e: n+1 exp(-e:/T)de: 
o e: = ~-oo------ = (n + I)T • 
f e:n exp(-e:/T)de: 
o 

The corresponding width can be written as: 
00 

S (e:_~)2 e:n exp(-e:/T}de: 
(/ = _0 _________ = (n + I}T2. 

foo e:n exp(-e:/T}de: 
o 

(30) 

(31) 

Therefore, the kinetic energy distribution can be written down more accurately 

as: 

x2 
p ( x ) dx ex e xp - dx 

(Pl+P2}T + 2(n+1}T2 (32) 

where x = Ek \ Eo - (n + I)T. 

5.3. Angular Momentum Effects in the Kinet ic Energy Oistribut ions 

The generalization of the formalism to the case of a given nonzero 

angular momentum is straightforward. The ridge potential energy is modified 

to include the rot at ional energy of the system at the ridge. This involves 
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the evaluation of the ridge moment of inertia as a function of the deformation 

coordinates. In the case of a single amplifying mode, a constant k, analogous 

to that defined in Eq. (6) can be introduced. The kinet ic energy at infinity 

depends on the Coulomb energy as well as'on the rotational kinetic energy 

associated with the orbital angular momentum of the two touching fragments. 

One can then define the following quantity: 

*' 122 V = Vc +2 pr w (33) , 

where p is the reduced mass of the two fragments in contact; r is the distance 

between the centroids of the two fragments: w is the angular velocity of the 

system defined by 

(34) 

In this expression I is the total angular momentum, and .J1'~2 are the moments 

* of inertia of the two fragments. As in Eq. (7), one can expand V as follows: 

* * V= E - cz (35) o 

This equation defines the quantity c and an amplification parameter p = c2/k 

can be introduced. All the previous expressions can now be used provided one 

* redefines x as x = Ek - Eo. The definition of temperature also must account 

for the kinetic energy tied up in the form of rotational energy at the ridge: 

1.._ dQrl/{x) I 
T - dx x = E - BR - E

rot 

The resulting kinetic energy distributions for a fixed I must then be 

integrated over the angular momentum distribution of the compound nucleus. 
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6. THE ANGULAR OI~TRIBUTIONS 

The ridge point configurat ion, for the great ~ajority of cases, can be 

identified with the scission configuration. Furthermore, the ,disintegration 

axis and the synmetry axis of the system at the ridge point should approxi-

mately coincide. As a consequence, the projection K of the total angular 

momentum I on thesynmetry/disintegration axis should remain constant from the 

ridge point to infinity. Such a condition implies a relation between the total 

angular momentum and the orbital angular momentum of the two fragments, thus 

determining the final angular distribution. This approach is similar to the 

theory of fission fragment angulardistribut'ion15 ). In the fission theory, 

the assumption· of constant Kftom saddle to infinity is somewhat uncertain, 

especially for very heavy elements, due to the complicated dynamical evolution 

leading from saddle to scission. In our case, due to the closeness of the 

ridge and the scission points, the theory ought to work even better than in 

fission. 
16 . 

The differential cross section can be written as follows ): 

I +1 

dCT = Jmax dI J 
dr2 c I 

o -I 

where 

C I is the reaction cross section for the Ith partial wave, and w~(e) 

can be written in the classical limit as: 

21+1 

(36) 

(37) 

(38) 
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In Eq. (37)"'c is the compound nucleus moment of inertia; K~ is the 

standard deviation of the statistical distribution of K values and is given by: 

The Quant ity Jeff is related to the principal moments of inert ia, J
II 

and~, of the systems at the ridge point by the relation: 

1 1 1 . 
Jeff = ~ -~. 

(39) 

(40) 

It is worth considering that, at fixed temperature T, the width of the K 

distribution becomes broader as the ridge configuration becomes more compact. 

If one assumes that rT == rn, the integration over K of Eq. (36) gives: 

·I max (- 1
25in20) C25in20) 

J 
2IdI exp 

4K2 
10 4K2\ 

W(e) IX 
0 o . 

2 exp - 81 
0 

In this expression I .. is the modified Bessel function of order 0 and o 

(41) 

(42) 

I n being the moment of inertia of the residual nucleus after neutron emission. 

If 812 « 1, then exp - 81 2 == 1 and the integral becomes of the form: 

W(e) IX 

where z = 

1 
. 2 Sln e 

Zmax f . exp(-z)IO(z)dz = 

o 

12 . 2 Sln e 
max , and 1

0
, II are the modified Bessel 

4K2 
o 

functions of order 0,1. Explicitly, one obtains: 

r'-' 
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In order to obtain a better accuracy one can expand the denominator to higher 

order: 

(45) 

In many cases, for large temperatures, such an expansion ought to be adequate 

even at rather large angular momenta. The angular distribution becomes then: 

W(e) ~ exp(-zmax) [Io(Zmax),+ Il(Zmax)] 

2 
BImax [ 2 . 1 ] 

+ 2 exp(-zmax) IO(zmax) + 1 Il(zmax) - j I2(zmax) 

This expression has two interesting limits: as A 

12 
= max tends to 

4K2 
o 

infinity 

(eit her because K~ tends to zero or because Imax becomes very 1 arge) 

one can use the asymptotic expression for the Bessel functions: 

I (z) = 
v 

Then if one keeps only the lowest term in the z-1/2 expansion one obtains: 

~im W(e) ~ 
). ~oo . 

1 
sine 

(46) 

( 47) 

(48) 

2 On the other hand, as ). ~ 0 (either because Imax = 0 or Ko ~ (0) one obtains: 

~im ). ~ a W(e) = co~stant (49) 

These two limits represent the two extreme cases for the coupling between 

total and orbital angular momentum. The coupling is maximum in the first case 

and nonexistent in the second case. Clearly the coupling parameter). depends 
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on the principal moments of inertia of the ridge configuration. This'allows 

one to make a very, simple prediction. At constant Imax ' ). becomes larger 

the bigger the difference between ~I and.li or, in other words, the more 

elongated th'eridge configuration is. Thus the anisotropy W(O)/W(90) will 

progressively increase as one considers the emission of a neutron, an alpha 

particle, a lithium particle, a beryllium particle, etc. (see fig. 4). It is 

amusing to notice that Eq. (46) gives reasonable p~edictions for the angular 

distribution of neutrons as well. The ridge point configuration for the 

neutron emission is represented by a neutron just outside the nucleus. The 

, principa) moments of inertia can be approximately expressed as follows: 

~II == .J (50) 

where 'J fs the moment of inert ia of the residual nucleus, u is the reduced 

mass of ,the neutron nucleus syst,em, and R isthe distance between neutron and I 

2 nucleus when they are in contact. In many cases, J» uR. Thus the 

quant ity z takes the approximate form: 

rlr2 . 2 

(~-t) 
112I~axsin29 maxs1n 9 

C - 1) z = == 4T 4T' 
l+U,!/ ' 

2r2 . 2 
uR2 fR uR2/sin29 

== 
11 maxs1n 9 

(51) 
4T~ T=, ~ 

where ER is the mean rotational energy of the residual nucleus. Similarly, 

(52) 

,Expanding Eq. (46) to first order in z we obtain: 

_' 1 1 2 ' ( 2) ER uR2 1 fR uR2 . 2 
W(9) - 1 - ~ z + ~ Brmax 1 - 1 z == 1 + r-~ - ~r- ~ s1n 9 

(53) 

'.:.I' 
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The normalized angular distribution in first order takes the form: 

W(e) 1 + a - (1/2)a . 2 1 1 . 2 S1n e := (1 
W(90) = 1 + (1/2)a - '2 a)(l + a - '2 a S1n e 

1 1 cos2e = 1 
1 ER lJR2 2 

= + '2 a + '2 IT cos e 

The very same normalized distribution has been obtained by Ericson from a more 

conventional evaporation theory17). 

7. EXPERIMENTAL EVIDENCE 

Experimentally the situation is still uncertain. Fragments of 

intermediate mass are formed, as was said above, in high energy p or 4He 

induced react ions, but one fears that target fragment at ion may be the 

responsible process. The same fragments are observed quite frequent ly in 

relatively low energy heavy ion collisions, but in this case one fears heavy 

ion fragmentation. In order to obtain a clear-cut picture we have studied the 

react ion 130 MeV 3He +nat Ag • In this case project ile fragment at ion is out 

of the question and target fragmentation is unlikely. In such a reaction 

evaporat i on-l i ke part ic les wit h mass greater than four are readily observed 

with cross sections two to three orders of magnitude smaller than that of 

4He emission. 

The evaporation-like features of these fragments can be seen in figs. 5 

and 6. Figure 5 shows the average kinetic energies of the various ejectiles 

in the center-of-mass at various angles. The essent ially constant average 

energies wit~ angle for all particles is very indicative of compound nucleus 

emission. 

Figure 6 shows the kinetic energy spectra in the center-of-mass for the 

various particles. The spectra appear to be consistent with thermal 

emission. As expected from the theory one can readily observe a substantial 



-24-

subCoulomb emission, especially for'the heavier particles. Also, the shapes 

of the kineUc energy distributions evolve from Maxwellian-like for 4He and 

Li isotopes to a progressively more gaussian-like shape for the heavier 

i sot opes, in good agreement wit h the theory.', 

The angular distributions shown in fig. 7 are somewhat puzzling. There 

is clear evid~nce for forward;peaking in excess of l/sine for the Li and Be 

isotopes as well. This is the most disturbing feature clearly indicat ing a 

retention of memory in the system, and a relatively short decay time as well, 

at odds with the compound nucleus assumption. If one sets a narrow energy 

window near the peak of the kinetic energy distributions, practically all of 

the forward peaking di sappears, as shown in fig. 8. This indicates the 

. presence of a forward peaked component at energies higher than the most 

probable value as well as a "normal" compound nucleus component. Also, the 

yields of the various isotopes correlate well with the ridge point masses, 

which is one of the strongest indications of statistical decay. Clearly more 

extensive studies especially including the excitation function are in order. 

;'.' 



1~\ -

-25-

References 

1 ) 

2) 

2) 

4) 

5) 

6) 

7) 

8) 

9) 

V.F. 

V.F. 

. V. F. 

V.F. 

J.A. 

, 11. 

A.A. 

A.M. 

E.K. 

L.G. 

Weisskopf,' Phys. Rev. ~ (1937) 295. 

Weisskopf, Helv. Phys. Act a 23 (1950) 187. 

Weisskopf, Proc. Acad. Arts Sci. 82 (1953) 360. 

Weisskopf and D.H. Ewing, Phys. Rev. ~ (1940) 472. 

Wheeler, IIChannelAnalysis of Fission ll in Fast Neut ron Physics Part 

(Interscience Publishers, 1963), p. 2051 and references therein. 

Caretto, J. Hudis, and·G. Friedlander, Phys. Rev. 110 (1958) 1130. 

Poskanzer, G.W. But ler, and E.K. Hyde, Phys. Rev. C3 (1971) 882. 

Hyde, G.W. Butler, and A.M. Poskanzer, Phys. Rev. C5 (1971) 1795. 

Moretto, Phys. Lett. 40B.(1972) 185. 

10) S. Cohen, F. Plasil, and W.J. Swiatecki, Proceedings, Third Conf. on 

Reactions Between Complex Nuclei, eds. A. Ghiorso, R.M. Diamond, and H.E. 

Conzett (Univ. of Calif. Press, 1963), p. 325~ Univ. of Calif. Radiation 

Laboratory Report UCRL-I0775 (1963). . 

11) S. Cohen, F. Plasil, and W.J. Swiatecki, Univ. of Calif. Berkeley 

Radiat ion Laboratory LBL-1502 (1972). 

12) J.R. Nix and W.J. Swiatecki, Nucl. Phys. 2! (1965) 1. 

13) J. Muto, H. Itoh, K. Okano, N. Shi omi, K. Fukuda, V. Omori, and M. 

14) 

15) 

Kihara, Nucl. Phys. 47 (1963) 19. 

G. Chenevert, I. Halpern, B.G. Harvey, and D.L. Hendrie, Nucl. Phys. A112 

(1968) 481. 

I. Halpern and V. Strusinski, Proc. Second Internatl. Conf. on the 

Peaceful Uses of Atonic Energy (Geneva, 1958), 15, p. 408. 

16) G.N. Smirenkin and A.S. Tishin, Vade Fiz. !£ (1970) 746; 

Sov. J. Nucl. Phys. !£ (1971) 403. 

17) T. Ericson, Advan. Phys. ~ (1960) 425. ,. 
\ 



(" 

-26-

Figure Captions 

Fig. 1. Ridge Line potential ~nergies and corresponding relative yields for 

three systems. The .potent ial energies have been calculated by means 

of the two touching spheroid model. The yields have been calculated 

by assuming T = 2.0 MeV. 

Fig. 2. Pote~tial energy and Coulomb interaction energy as a function of the 

deformation of the large fragment (sphere-spheroid model). The 

thermal fluctuations about therJdge point result in largely 

amplified fluctuations in the Cpulomb repulsion energy. 

Fig. 3. Kinetic energy distributions at various temperatures for different 

values of the amplification parameter p. The three analytical 

expressions derived in the text have been employed.· The curves 

corresponding to Eqs. (15), (20), (23) can be identified by their 

progressive shift towards higher kinetic energies. the arrows 

indicate the energies corresponding to the nominal Coulomb energies. 

Fig. 4. Angular distributions of various fragments emitted by the compound 

nucleus formed in the reaction 208pb + 200 MeV 4He"~ 212po. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Average center of mass kinetic energies for various ejectiles in the 

react ion 130 MeV 3He+nat Ag . 

Center of mass k inet i c energy spect ra for the same eject i les as in 

fig. 5. 

Center of mass angular distribut ions for the same fragment s as in 

figs. 5 and 6. 

Center of mass angular distribut ions for the same fragments as in 

fig. 7 but for a narrow window about the peak of the kinetic energy 

distribut ions. 
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II. The soggy saddle theory of fission 

The standard Bohr Wheeler (BW) theory of fission decay [1], identical 

with the transition state theory for chemical reactions, is subject to serious 

limitations of both quantal and classical nature. We want to consider here 

the most crucial approximation of th~ theory, its possible failure, and a 

generalization designed to overcome part of the difficulty. The BW theory 

calculates the flux of the density distribution in phase space across a 

suitably chosen hypersurface normal to the reaction coordinate. This flux is 

then identified with the reaction rate. This is both the beauty and the trap 
! 

of the theory. The flux and the reaction rate can be identified if and only 

if no phase-space trajectory, after crossing the hypersurface, comes back and 

crosses it again returning to the reactant's region. In order to eliminate, 

or at least to alleviate, the problem, the "transition state", or the position 

of the hypersurface, is chosen to cut across the saddle point in coordinate 

space, on the hope that, once the saddle point is negotiated, the system 

irreversibly rolls down towards the product region. This is certainly an 

extreme approximation, requiring a substantial decoupling (low viscosity) 

between collective and internal degrees of freedom near the transition state. 

A more general approach to the problem of chemical reaction rates was 

developed in 1940 by Kramer [2]. A particle moving in a viscous medium in 

thermal equilibrium is subject to an effect,ive force rapidly fluctuating in 

time in a highly irregular way (brownian mot ion). 'If init ially the, part icre 

is captured in a potential hole, t.he diffusive force acting on the collective 

degree of freedom can shutt le the part icle over the potent ial barrier. The 

react ion rate is the result of the compet it ion between diffusive force and 

driving force along the path from the initial to the transition state. The 

essent ial difficult ies arising from the mathemat ical complexity of the solut ion 
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of the diffus ion ~~u~~JQflfo_r_a -non-stat-ionary-prncess -can lie overcome if one 

considers a barrier subst'antially high. Under this condition a distribution 

of Boltzmann type is establis~ed soon near the initial state, and the resulting 

quasistationary diffusion can then be solved for the one-dimensional case 

where the potentials in the initial configuration and in the transition state 

are approximated by harmonic oscillator type [2]. In this one-dimensional 

model the crucial parameters that control the coupling are the viscosity of 

the medium (n) and the frequency of the harmonic pdtentials (wand WI). The 

diffusion over the barrier is characterized by three different regimes (fig. 

1) according to whether the characteristic frequency for viscosity (n) is 

coupled or not to the characteristic frequency for the internal degrees of 

freedom in the init ial state (w) and in the transit ion state (w'). 

i) Intermediate viscosity (n »w and n «w I). Under these, conditions the 

strong coupling in the initial configuration leads to a Maxwell-Boltzman 

distribution for the generalized momentum of the fission coordinate. The 

probability current across the barrier is determined by the tail of this 

distribution with no further resistance felt by the system in the transition 

state. In this limit the transition method holds. 

ii) Low viscosity (n « wand n «w'). Due to the small coupling in the 

intial state the delivery of particle to ttie transition state is small and the 

reaction velocity drops rapidly below the transition method value. 3 

iii) Large' viscosity (n »w and n »w'). The reaction rate can be no longer 

identified with the flow in the direction (initial configuration) ~ 

(tr,ansition state) ~ (reaction product's region). The net flow through the 

transition state, as a result.of the strong coupling in this region (n » w), 

becomes now smaller than the transition method value. 
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The extension of such stud-ies to high excitat ion energies, where the 

regime of large viscosity seems to be more likely, offers the stimulat-ing 

possibility of clarifying the role of ,viscosity and its dependence on the 

temperature in the dynamics of the nucleus from the compound state to the 

saddle point. While the ~eneral philosophy of our approach treads in 

diffusion modells footsteps, the formal apparatus, as will appear clearly in 

the next section, is slightly different. We assume high viscosity in the 

general saddle point neighborhood. As a.r~sult, the flux from the compound 

nucleus is trapped in the saddle region, and the associated randomization 

leads to a backflo,w towards the compound nucleus. For this case a natural way 

to handle, the problem is the use of the Master Equation. 

The model 

"\ 

Let .us ,consider a compound nucleus A, a saddle p~int region S, a region C 

far down the s~ission valley. and a nucleus 0 after one neutron emission. The 

transition probabilities are ).1 (from A to B), ).2 (from B to A), ).3 

(from B t,o C), ).n (from A to, D), ).nl (from B to 0). 

The master equat ions are: 

~A = IP B).2-- IP A().1 + ).n) 

~B = IP A).1 - IP B().1 + ).3 + ).n l ) 

. 
lPo = IP A).n + IPB).n I 

where the IPS are~the time-"'deperiderit populations. Two main differences with 

respect to the standard BW theory are visible: a) there is a backflow from B 

to A that makes the decay of A nonexponental (not ice that by sett ing ).2 = 0 

we recover the BW expression); b) neutrons are allowed to be emitted from the 

saddle region. 
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The systE!ITI.of differential equations can be solved in a straightforward 

way, and the exact. solut ions are 

/ 

where 

The initial conditions have been chosen so that 

; 'PA(t = 0) = 'P , 'PB(t = 0) ='PC(t = 0) ='PO(t = 0) = 0 • 
o 

From the populations at time infinity one can obtain the following expression 

(1) 
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The first tenn to the right is the standard result. The above expression can 

be obtained without solving the differential equations by summing over the 

probability tree: 

... }} 

from which is immediately obtained the relation (1). The new expression (1) 

favors neutron decay in two ways: a) by allowing neutron decay from the 

saddle; b) more important, by feeding back the flux from the saddle region to 

the ~ompound nucleus. 

An intermediate situation can be envisaged as follows. For a given 

viscosity at the saddle, there will be a critical velocity along the· fission 

coordinate, above which the system escapes altogether towards fission and 
\ 

below which the systan gets trapped in the saddle region. The treatment can 

be modified by splitting Al as follows: 

Al = 21T!(E) [fOotE - SF - <l d, + fO(E - SF - <l d'] 
o £0 

where p is the level density, BFthe fission barrier, and £ ~he kinetic 

(2) 

energy along the fission coordinate. The first term to the right corresponds 

to saddle trapping and the second to complete saddle negotiation. The meaning 

of the critical velocity ·introduced in (2) becomes clear if we define 

. -1 
T ~ n the characteristic time necessary to the onset of the equilibration 

between the fission degree of freedom x and all the other degrees of freedom 
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of the system in the saddle region. The critical value £0 is then given 

2 ' 2 
from the relation £0 «(lIT) ~ n • 

For all the phase space trajectories with £ > £0' the system is 

insensitive to the friction and behaves ,like a BW system. On the other hand 

for the trajectories along which the system enters into the saddle region with, 

£ < £0' the equilibration takes place and ~he associated randomization of 

motion is responsible for a backflow towards the compound nucleus state. 

The situation reminds one of the scaling limit t~eory applied to the 

saddle point [4l, where the time characteristic of the diffusive force at the 

~addle is given by 

1 ' 
T = Tn" Q,n T (3) 

where L represents the time after which the driving force decouples the system 

from the heat ~ath and the system rolls down towards the scission configuration 

and II is the mobility. One is tempted to relate our energy limit £0 with T 

by the relation £ = 1/2 m c/T2, where cis a constant in unit of length 
, ' 0 

, to be arranged from fit to experimental data. This is a strong approximation 
/1 '. ,. 

because for strong coupling the Einstein relation is no longer valid and the 

logarithm in the, r.h.s. of (3) becomes smaller than predicted f4J. USing the 

expreisio~ (2) the general result is now 

l1P(12+13+1n') + l1S1i 
f If -F N - I

n
(1

2
+1

3
+1

n
,) + l 1S1n , (4) 

Again it is reasonable, although not necessary, that, for the systems trapped 

in the saddle region 12 = 13• If one disregards the contribution of the 

neutron decay from the saddle region, one obtains the simple form: 

( 5) 
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In the approximation of the equidistant, model. the level density is given 

from the expression 

where the preexponential"energy factors:' have been omitted. 
;, , 

The transition ~robabilities 11F~ lIS' arid ~n then can be 

calculated 'in a straightforward way: 

, , {' ~\ '2a 1/2(E_B )1/2 
.' _,' 1. <:~_1_ '[2 1/2(E B )1/211 f F 

lIS -'2w p (E)'2a
f 

af , - F -, e 

." • .', I . 

.. 1/2 ' 1/2} 
1/2 1/2 2af (E-BF-E o) , 

[2af (E-BF-Eo ) -IJe ' 

1 1 1/2 1/2' 2af (E-BF~EO) , t 1/2, 1/2} 

11F = 21fP(E) 2a
f 

[2af (E-BF-E o ) -IJ ,e" '. "" (6) 

1 - 1 1, r~~1/2 (E-B )1/2 _ IJ exp r~anl/2 lE-Bn')1/2J 
n - 21fP(E) 2an n n, . ~ ~ . ...~,..-. 

... ~. -, • ,.. !" 

where af and an are the level "density parameters appropriate to the saddle 

point and to equilibrium deformation, respective'ly. Substitution of (6) 'into 

(5) yields 

1/2, 1/2 ' 1/2 ~ 1/2 
[2af (E-BF-E o). -11e~pr2af (~-BF-~O) 

_ 2a1/ 2(E_B )1/2, + [(2a 1/2(E_~ )1/2_1J 
n n' - f.. F 

(7) 

exp[2a 1/2(E_B )1/2 _~2al/2(E~B )1/2J 
f F n n, .. 

" 

It is interesting to note how the above expression, in the limit case of no 

viscosity (E ~ 0), is reduced to the standard case, while for large viscosity 
.0 ' : ',' , I', , ' 

(EO ~ E - Bf ), fF/rN approaches the limit (1/2)(rF/rN)E = O· 
o 
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The latter result is a st'raightforward consequence of the assumpt ionA2 = A3 

for t he systems wit h £ < £0. 

Calculat ions' 

The viscosity parameter n is a function both of the intrinsic degrees of 

freedom of the nucleus, and thus of its temperature T, and of the collective 

mode under consideration. The c"omplete solution of this problem goes beyond 

the scope of this paper. However, if the effect of the collective motion 

(i.e. the dependence of t.he viscosity from the shape of the saddle point) is 

set ·as ide, "the temperature dependence of n can be inferred from qual it at ive 

microscopic considerations. The application of the transport theory to a 
. Fermi liquid, assuming the Einstein laws of friction, gives [5] for n the' 

following expression 

T 
n 

" .1 

(8) 

where 0' is' the mass density, VF the F.ermi velocity and m* the effective mass 

of a quaSiparticle of the Fermi liquid. Th,e number of collisions per unit 

time (l/Tn) posSible"on the basis of conservation of energy and momentum 

alone is reduced, because of the blocking effect of the Pauli's principle, by 

a factor (kThF)2, with £F the Fermi energy. From (3) and (8) we obtain 

for £0 the following dependence from the temperature: 

42 (9) £a: T [ 1 n ( T lid ] 
0 

i t.' 

The validity of this expression depends on two conditions: ar that £F is 

independent from T and this is a good approximation for a large ~ange of value 

of T; b) that the Einstein's relation is valid. The breakdown of the latter 

condition involves a higher value of the argument of the logarithmic term. 
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However, this correction is overwhelmed in (9) by the fourth power term. For 

these reasons in the following we consider the simple dependence EO cr T4. 

For the compound nucleus 180w, fig. 2 shows the excitat ion funct ion of 

rF/rN in the two limits of high viscosity at the saddle point (dashed 

line) and zero viscosity (full line). Both curves are calculated using the 

expression (7), where, for simplicity, flO effect due to angular momentum has 

be.en taken into account. The values of BF and Bn are from ref. [6]. For. 

the rat io af/an and for an the values 1.11 ,andA/lO are,chosen, and .for· 

EO we use the simple form EO = cT4, whereT = (E*/a f )1/2 and c is a 

constant adJusted to fit at low energy, the zero viscosity (EO = 0) limit. 

Note that, for. increasing T, rF/rN calculated with EO :/: 0 decrease 

compared to rF/rN with EO == O. The general trend agrees with the 

experimental data [7,81, which show at high excitation energy a decrease of 

the fission probability compared with the prediction of the standard model. 

However, we expect, also in our model, to overestimate the true result because 

of the suppression in the (5) of the neutron evaporation from the saddle. 

Figure 3 displays the quantity 6 = [(rF/rN) - I'F/rN)BW]/(rF/fN)BW as a 

function of the temperature and for different <values of C. It is interesting 

to note the sensitivity of the deviafion 'of our model from the standard BW 

theory to the variations of.'C'in the low-energy region. The importa.nce of 

this behavior is obvious; in the low-energy region (i.e. the low viscosity 

region for our model) rF/rN must converge to the BW limit (fF/fN)BW' 

and this condition is assured in our model by the phenomenological constant 

C. The unique determination of C from fit of experimental data in this energy 

region and the extension of such cOOlparison to higher energies allows for a 

check of the model. 
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It is a well-known fact that at high energies the experimental 

determination of rF/rN is uncertain due to the occurrence of two 'effects:' 

a) the presence of higher order fission, i.e. the possibility that the nucleus 

undergoes fission after one or more neutrons have been emittea; b) the 

increasing contribution to the fission cross section of incomplete fusion 

reaction, which cause uncertainty in the derivation of the compound nucleus 

cross section. In the regime of high temperature this is definitely a severe 

handicap for the comparison of any model 'with experimental data. The best way 

to overcome it partially is to perform a direct measure of the prefission 

neutron emission <vn>. Disregarding in first approximation the charged 

particle evaporation, <vn> is given from 

" where 

<v > = n ' L 
i 

(rF/rN)K is the bran~hing ratio for the nucleus of mass AK = AK_1 - 1 and 

* * excitation energy EK = EK_l - Bn,K-l - 2TK_1· Bn K-l and 2TK_1 are , 
the binding energy and the kinetic energy of the neutron evaporated from the 

nucleus AK_1. (rF/rN)K is calculated from (7) where for each step 

BF and Bn are taken from ref. [6J; an = A/10; af/a;= 1.11. The 

effect of the backflow from saddle to compound, responsible for the increasing 

number of neutrons emitted through the inhibition of the fission channel, can 

be clearly seen in fig. 4 where the Quant ity <vn> is plotted versus 

* exc it at i on energy E . 
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This general trend seems consistent with the result of recent accurate 

measurements of prefission neutron emission [~], which point out-the 

substantial large value of <vn>, for systems with high fission barrier, 

nonreproducible in the frame of a standard model. 

-We have not performed a comparison with the experimental data because of 

the two strong approximations introduced in the expression [7]: a) no angular 

momentum, b) no neutron emission f~omthe.saddle point (An' = 0). Both 

factors contribute to decrease the effective rF,rN and so to increase the 

final value of <vn>. 

".·,1"' ' 
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Figure Captions 

Fig. 1. The reaction velocity r over a potential barrier Q for three 

different .regimes of viscosity versus the tem~e.rature. i) 

Intermediate viscosity (full line), r = wexp (-Q/T); ii) small 

. viscosity (dashed line), r = w(2ww'/n) exp (-Q/T); iii) large 

viscosity (dashed point line), r = n'(Q/T) exp (-Q/T). 

Fig. 2. 
180 . 

Branching ratio rF/rN for the compound nucleus W versus 

excitation energy E* for £ = 0 (full line) and £0 = 0.08 T4 o . 
(dashed line). 

Fig. 3. The Quantity 0 = [(rF/rN) - (rF/rN)BWJ/(rF/rN)BW 

versus the temperature for different value of the constant C in the 

expression £0 = CT4 ,and for the compound nucleus 180w• 

Fig. 4. Average prefission neutron emission <vn> versus excitation energy 

for two compound nuclei (180W,1860s). The full lines are the 

result of the calculation with £0 = 0, the dashed lines with £0 

4 = 0.08 T . 
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Part Two 

The Statistics of Angular Momentum in Heavy Ion Reactions 

In the past few years we have obtained a reasonably complete experimental 

picture of the process of angular momentum transfer in heavy ion reactions. 

For instance the dependence of the mean fragment spin upon Q-value is now 

well established and progressively greater information is being accumulated· 

on the fragment spin alignment. On the theoretical front, one has worked out 

the statistical equilibrium limit and specific predictions have been made 

that can be tested experimentally~ Of course there has been some development 

.in terms of time dependent theories, but we shall not consider these as yet. 

Rather I would 'like to present some recent experimental work of my group 

in this field, in the light of the equilibrium statistical model. I shall 

first justify the use of 4He particles emitted in heavy ion collisions as 

angular momentum probes by demonstrating their sequential emission from the 

reaction frequents. From the measurements of the 4He angular distributions 

I shall demonstrate the rigid rotation of a stretched intermediate dinuclear 

- complex. 

I shall then consider latest work on fragment-spin alignment from gamma 

ray anistropies. The test of the statistical model pre- dictions is made 

difficult by the incomplete knowledge of the spectrum mult i- polarity, as 

shown by a detai led analysis of the dependence of the anisotropy upon 

gamma-ray energy. As we shall see, there is some indication for a sub-

stantial nonstatistical aligned dipole component. 

Finally, I shall illustrate how the statistical model can be put to 

serious test by studying the ,sequent ial fission angular distribution in very 

asymmetric systems. The results on the reaction Au, U + Ne show that, at 
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least for the largest Q-values, the statistical limit is reached for the 

polarization tensor. 

A) Sequential Alpha Particle Emission in 1354 MeV l65 Ho + l8l la 

There is no consensus as yet on the dominant source of light particles 

emitted in heavy ion react ions. For example, the react ions 96 MeV. 160.+ 

58Ni 1, 280 MeV 40Ar + 58Ni 2, 400 MeV 40Ar +' 93Nb 3, and 664 

MeV 84Kr + nat Ag 4,5 h'ave suggested that the dominant sources 

of a-part i c les are the fu lly acce 1 erat ed fragment s. On the ot her hand, 

studies of 222, 274, and 340' MeV 40Ar + 116Sn , 154Sm , 164Dy , 197Au 6,7, and 

56 nat 8 480 MeV Fe + Ag have suggested that the bulk of the a-particle emission 

occurs prior to scission of the di--nuclear system. In addition to evaporative 

components, some studies have observed a fast forward component not easily 

explained in terms Of evaporation. 6 We have found evidence that the bulk 

of a-particle emi~Sion, from the 1354 MeV 165Ho + 18lTa system, occurs 

from the fully accelerated fragments-.· 

A natural Ta target (1.4 mg/cm2) was bombarded with 8.2 MeV/u 165Ho 

from the Lawrence Berkeley Laboratory SuperHILAC. A solid state detector 

positioned at the grazing angle (29°) was used to detect the projectile-like 

fragment ahd to define the ~eaction plane. On the other side of the beam, 

five solid state l1E-E telescopes were used to detect the a-particles. 

In order to determine the emission sources, we have plotted in Fig. I 

the experimentally extracted root-mean-square velocity (vrms ) of the 

a-particles. Also shown on this figure are the velocity vectors for the 

detected projectile-like fragment (gated on the deep-inelastic events), the 

calculated velocity of the undetected fragment, and the velocity of the sys-
) 

tern center of mass. As Fig. la shows, the a-particle velocities are centered 
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_____ ar~~n~ lh~ ~n~ _~f ~tLe_velocjt·y-veGt-eY'-ef-t-he-t-arget---HKe-fragment. -Thi s 

agrees with the assumpt ion that the a-part icles are emitted from the fully 

accelerated target-like fragment, rather than from a system moving with the 

center of mass velocity. 

Further evidence for fragment emission can be obtained by determining 

the Q-value dependence of vrms In Fig. Ib we have plotted the average vec-
a 

tor diagram for three different Q-value bins (all in the deep-inelastic region) 

and the corresponding vrms A systemat ic mot ion of the loci of vrms values 
a a 

is seen that can only be explained by a source t.hat has a Q-dependent velocity. 

This trend is explained by the change of the velocity of the target-like frag

ment with Q value, as shown in the figure. 

Finally, utilizing two body kinematics the events were reconstructed and 

transformed into the test frame of the target recoil. In this frame the 

a-particle kinetic energy spectra are independent of angle with the exception 

of the most forward angle. In addition, this spectral shape is reproduced 

quite well by an evaporation formalism that accounts for exit channel shape 

polarization and fluctuations. 9 The importance of such deformation effects 

can be readily appreciated by comparing the effective Coulomb barrier 

(B ) observed in the present data, calculated from <£ > = B + 2T with ob-c a C 

served entrance Coulomb barriers in a-particle + nucleus reactions. lO The 

former effective barrier is approximately 25 percent lower than the entrance 

channel value. 

As has been seen in previous studies of a-part'icles emitted in heavy ion 

reactions 5, a high energy contaminant to the major evaporative component was 

observed at the most forward angle. Unfortunately, insufficient data were ob-

tained at forward angles to determine the so'urce of these a-particles. 

We conclude that for the system 1354 ·MeV 165Ho + 181 Ta , the dominant 

sources of ~-particles are the fully accelerated fragments. 
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B) Angular Momentum Transfer and Partition in the 

Deep-Inelastic Reaction: 664 MeV 84Kr + natAg 

The spin transfer process has been investigated by determining either the 

sum of the spins of the two fragments, or the spin of an individual fragment. 

The sum of the spins has been extracted from y-ray multiplicity datall - 13 , My, 

whereas the spin of an individual fragment has been corrvnonly extracted from 

the out-of-plane angular distributions of sequential fission fragments. 14- 15 

The determinat ion of both the individual spin and the sum of the spins for the 

same system is of a great interest because from this informat ion one can 

determine the partitioning of angular momentum within the dinuclear complex. 

This determination can be made by employing the sequential emission of light 
16 particles as the probe of the spin of one of the 01 fragments. 

For the system 280 MeV 40Ar + S8 Ni , Babinet et al., 16 have shown that 

a-particle emission from the target recoil nucleus could be isolated by care

ful select ion of the detection angles. Their results indicate that the inter

mediate complex is rotating rigidly. For systems of similar mass, 175 MeV 

"20Ne + nat Ag (ref. 11) and 237 MeV 40Ar + 89Yb (ref. 13), My dat a also 

indicate rigid rotation of the dinuclear system. For much heavier systems like 

86 197 86 165 . Kr + Au and Kr + Ho, the eVldence for rigid rotation is indirect 

because of £-wave fractionation effects. 11 

The transfer and partition of angular momentum in a deep-inelastic 

react ion has been studied for the system 664 MeV 84Kr + nat Ag which is inter

mediate in mass between the light systems for which clear evidence for rigid 

rotation exists and the heavier systems where the evidence is masked by £-wave 

fractionation. A velocity diagram of our, experimental configuration is shown 

in Fig. 2. The circles indicate the locus of points for the most probable 
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a-particle emission from fragments with atomic numbers 36' and 47. This figure 

indicates that if the out-of-plane data are acquired at an in-plane angle 

equal to or larger than the recoil direct ion, there should be 1 ittle 

. contamination from the projectile-like fragment. 

Beams of 84Kr impinged upon nat Ag targets with thicknesses of 0.97 mg/cm2 

andO~59 mg/cm2 for the in~ and out-of-plane runs, respect ively. A gas ioni

zation telescope (for the in-plane run) or a ,solid state telescope (out-of

plane run) was used to detect the projectile-like fragment. The AE-E telescope 

served to define the reaction plane and to identify the atomic number (Z) of 

the detected fragment. The Z-telescope was placed at 0Z = 260
, slightly be

hind the grazing~angle. 

On the opposite side of the ,beam, an arc with both in- and out-of-plane 

arms was used.to mount up to five light particle (LP) solid state AE-E tele-

scopes. The 'arc was attached to a thin-walled domed lid, which, when placed 

on the scattering chamber, seated the foot of the arc into a cradle on an 

externally movable arm. 

An array consisting of eight (in-plane run) and seven (out-of-plane run) 

7.6 x 7.6 cm NaI detectors was utilized to measure the y-ray multiplicity 

(My). These detectors were posit ioned above the react ion plane at an out-of

plane angle of 450
• In the out-of-plane run, an eighth Nalwith a reduced 

solid angle was used to obtain y-ray energy data. 

The' in-plane data exhibit very littl,e angular dependence for the eight 

most backward angles. This is consistent with isotropic in-plane emission 

from the target-like fragment. However, a SUbstantial increase above the' 

ave~age of these backward angles is seen for the two most forward angles. 

This increase in yield is correlated with the high-energy a-:particles seen in 

the energy spectra for these forward measurements. These a-particles have 
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energies above 15 MeV in the rest frame of the recoil, corresponding to a lab 

energy of -40 MeV. 

In contrast to the in-plane 'angular distributions, the out-of-plane 

yield decreases smoothly with increasing out-of-plane angle, exhibiting an 

anisotropy of approximately 2. Integration of the differential multiplicity 

over 0RF and eRF results in an average total a-particle mUltiplicity of 0.47 

for the 01 products whose complements have Z values between 26 and 40. 

Since the anisotropy of the out-of-plane angular distributions of sequen-

tially emitted particles should increase with the spin of the emitter, it is 

of'interest to see how sensitive these distributions are to the y-ray multi

,plicity. In Fig. 3a angular distributions for six Z-bins are shown. (Here 

the distributions are labeled by the charge of the emitting fragment.) 

In part b of this figure angular distributions are shown for the same Z bins 

but with the addit ional' requirement that two or more y rays be tn coincidence 

with the a-particle and the 01 fragment. In the mass ,region covered by this 

study, the y-ray multiplicity is linearly related to the sum of the spins of 

the two fragments. Thus, requiring an increasing number of y-rays tobein 

coincidence'with Z-a events should bias the fragment IS spin distribution 

towards larger values and result in a greater focusing of the angular distri-

but ion into the reaction plane. This effect is clearly seen when parts a 

and b of fig. 3 are compared. For rigid rotation of the dinuclear system, the 

individual fragment's spin changes strongly with the mass asymmetry of the 

exit channel. In fig. 3a a gradual sharpening of the angular distributions as 

the charge of the emitter increases is evident, tentatively indicating that 

t he fragment sp i n does increase wit h t he mass asymmetry. 
, 

In order to extract fragment spins from the out-of-plane a-part icle 

distributions, we have utilized the formalism of Moretto et al. 18- 19 ) To 
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.'~ ____ facj 1 jt_at e~a .cOOlparison -w-ith~ot·her-woY'k~and--t-o~;st-ress~t h~--import-anc·e-()f~t h-e--

various parameters, we have employed the formalism of ref. 19 at several 

different levels of sophistication, each of which will be described in this 

sect ion. 

Statistical mechanics predicts a Gaussian distribution for the projection 

(K) of the angular momentum on the heavy ion"':'evaporated particle sep'aration 

axis. More specifically the decay 'width can be written as 

[

_h
2
1
2 

( 1 1) 
. r ex: exp . 2T Jl -J;. (la) 

where 

(lb) 

The quant it ies ""'II and..Ql are the moments of inert ia parallel and perpendicular 

to the separation axis at the critical shape for alpha particle decay, while 

J c is the moment of inertia for the compound' system. The angular distribution 

is obtained by expressing the angle (a) between the total angular momentum I, 

and the separation axis with unit vector n in terms of the polar angles t/J' and 

a' . 

K = I cos a = Ion = I sina'cos~' + I sina'sin~' + I cosa'. (2) .x . y . z 

If the direction o~ ,the aDgular momentum is fixed, we may choose our 

coordinate sy' stem such that I = I = 0 and Iz. = I. Under this condit ion of . x y 

total alignment of the angular momentum, the angular distribution is given by 
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w(l) (e') «ex~ (_I2~(e) « :~pC2;~te~ (3) 

." " 1 
; _ ~: ,i 

Since there is good evidence for rather large misalignments of the

fragment spins in qeep-inelast ic react ions,20 this effect should be included 

in the angular distribution formalism. If the spin alignment of one fragment 

is described by Gaussian distribution;' in the Cartesian components of the 

angular momentum with variances 0;, 0;, and o~, then the light particle' 

decay width is given by19 

r( I .4.1) _I~2( 1 1) 1 [_I2
COS

2
(9 1)] 

9,IP ex: exp 2T ~l -..Ac 5(9 1 ,il) exp 2S2(9 1 ,0 1)] 
, (4a) 

with 

which gives a form similar to equation 3 for the angular distribution, 

(5) 

By fitting equation 5 to an out-of-plane distribution one can extract the 

root-mean-square spin of the primary spin distribution biased by the angular 

momentum dependence of a-particle emission. However, since it is reasonable 

to expec,t that the fragment spin distribution will reflect the entrance chan-

nel angular momentum distribution, one can take the formalism a step farther 
, -

by folding in this distribut ion. If the fragment's ·spin distribut ion is 

taken to be of the form 21 and bound by I. and 1 then the angular dis-mln max' 

tribution is given by 
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ra(el,~I) 
21 dI rT 

(6) 

This expression depends upon ~he relative magnitude o~ t.he alpha and neutron 

total decay widths. These widths can be determined from experimental data or 

the ~~t io, 

r2 
r a = 6e l S 
n, 

where 6 = ~ exp { -;( ~Ea + CB a - BEn) IT };and 

a =_~T(i -~n 

(7a) 

(7b) 

(7c) 

In the expression for 6, BE and CB are the a-particle binding energy and 
a a 

Coulomb barrier for a-partic;e emission, while BEn is the neutron binding 
- , 

energy. The parameters accounts for the'change in the relative a/n'decay 

widths as a 'function of angular momentum. This parameter depends upon the 

moment of inertia of the residual nucleus after neutron emission, ..Qn' as 

well as jl and the nuclear temperature (T). If the ratio ralfn 'is small, then 

rT ~ rn and the"integral in equation 6 can beYevaluated, with the analytical 

result, 

w(3) (e l ,( 1 ) 

_1 2 A 
e max )/S(e l ,0 1 )A (8a) 

(8b) 

If ra ,is notmuch,smaller than rn then the integral ,in equation 6 can be,. 

solved for rT = rn + ra to yield the more complicated expression given 

below: 
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w(4}(e " tl , } IX (Q. e-I;in
A 

_ Q e-I;ax~ ~(el tll) 
mln . max ~ ~ , {9a} 

where 

(9b) 

For comparison we have fit the data shown in fig. 3 to the four forms of the 

angular distribution described above. 

The root-mean-square spin values for the heavy fragment, extracted as a 

function of exit channel charge asymmetry, ar~ sh·o."n in table lB. The 

columns correspond to different levels of sophistication in the formalism 

. 2 
used to extract the spins. The temperatures used to calculate Ko were calculated 

; 2 using the. expression, E* - E t = aT • ro The temperatures calculated, with this 

procedure varied from 2.75 (most asymmetric b~n) to 2.95 (symmetric.bin), 

which are in close agreement with the value extracted from the a-particle 

energy spect rae 

The spins in columns a and b both result from fitting equation 3 to the 

out-of-plane distributions •. These two sets of spins differ only in the method 

2 used to calculate Ko. To generate the spins in the first column we took the 

critical shape for decay of the a-part.icle-residual nucleus system as two 

touching spheres .. With this model the: moments' of inertia are given by 

(10) 

Here,~ is the moment of inertia of the residual nucleus and is equal to 2/5 

MR2. We have usedR':";' 2.53 fm and ro = 1.225. 
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The t rend of these extI~t ed_s~j rls_ag",-ees -with-the -pred i-ct-ions-o-f- ri gi a--- -- -

rotation of the deep-inelastic complex consisting of two touching spheroids. 

However, the magnitudes do not agree with the.results from y-ray multiplicity 

12 work. Both previous work and the present study obtained values for M of 
y 

less than 25 for all measured asymmetries. The total spins obtained from the 

M data are shown in the last column of table lB. A compar'ison of these total 
y 

spins (cohnln g) with the individual spins (colLlnn a) extracted with equation 3 

assuming a spherical crit ical shape for a-part icle decay clearly indicates that 

the use of this configuration results in an overestimate of the fragment spin. 

For the second column in table 1 the critical shape was taken as the 

e'quilibrium configuration of the rotating fragment-a complex in a spheroid

sphere model. This configuration is more extended along the separation axis 

than two touching, spheres. This results in a reduced value of K~ and in 

smaller spin values. This reduction in K~ improves the agreement between 

the spin values extracted from the M data and the a-particle distributions . 
. - y 

This improved picture of the a-particle-residual nucleus system is used in the 

subsequent formulations of the angular distribution. 

The spin misalignment is introduced by means of eq. 5. In employing this 

equation we have set 0 ::: (J ::: 0 ::: 0. This app,roximate equality is suggested x y z 
for near symmetrix exit channels by our observation of a flat in-plane angular 

distribution as well as by theoretical work. 21 With this assumption S is 

1 f t . fl' S2 K2 + 2 Th . l' f' no onger a unClon 0 ang e, l.e., = 0 o. e lnc USlon 0 mlS-

alignment increases the spins by 2 to 3 (Table 2, compare columns b and c). 

The, importance of the misalignment on the extracted spin value is related to 

the relative magnitude of 0
2
, and K~. In our case 02/K~ - 1/4. It is clear 

from this ratio that in order to extract misalignments from light particle 

angular distribut ions, one needs to have very accurate values of K2 as well o 

as the fragment spins. 
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The spins contained in the next two columns of table 2 (d and e) are 

obtained from the spin-integrated forms of the angular distribution, respec

tivelyequations 8 and 9. The lower limit of integration, Imin , was 

estimated from the lowest R. wave, R.min , leading to a nonevaporat ion residue 

event and then assuming rigid rot at ion of the intermediate complex. The spins 

from these integrated forms {columns d and e} agree within 5 percent of those 

obt ained from the unintegrated form (column c'). 

The effect of gat ing on high M events is seen in figure 4. Equat ion 8 
y 

was used to extract spins from the distributions with and without the require-

ment of at least two coincident y rays. Gating on high M events increases 
y 

the average fragment spin by selecting out of the spin distribution the higher 

spin events. The average increase in spin per fragment is approximately 2 

Figure 4 also shows the rigid rotation prediction {curve} for two equally 

deformed spheroids. The predicted dramat ic increase in fragment spin with' 

increasing asymmetry is observed in the data (solid points) with the possible 

exception of the very asymmetric charge splits. ' In fact, rigid rotation of 

the intermediate complex is indicated by all of the methods of spin 

extraction described above (see Table 18). 

The deformation of the 01 complex is ref.lected. also in the fragment 

kinetic energies. 

In Fig. Sa the experimental fragment kinetic energies, corrected for 

evaporation, are compared to calculations for several deformations. The 

calculations are for equally deformed spheroids separated by 1 fm. In this 

model, a rat io of axes (CIA) of about 2 is needed to reproduce the data, 

indicating that the nuclei are substantially deformed. In Fig. 5b both 

individual spins and the sum of the fragment spins are presented along with 

rigid rotation predictions. These predictions are again for equally deformed 
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spheroids with a rat io of axes of 2 separated by 1 fm. In the lower port ion 

of this figure individual spins extracted from the a-particle distributions 

as described previously are shown (solid circles) •. Above this are plotted 

t he sum of the sp i ns of bot h fragment s as det ermi ned by two independent 

methods. In the first method rigid rotation is invoked to determine the spin. 

of the 1 ight fragment (IL) from the value of IH .extracted from the out-of

plane a-particle distributions. Independently, we 'utilized the experimental 

M data and the relation, IH + IL = 2(M - 6) + I. The corrections (1) 
y y p p 

refer to the angular momentum removed by neutrons and a-particles. ,These 

corrections average 28 percent and are therefore essential for a quantitative 

comparison between spins derived from M and out-of-plane a-part icle distri
y 

1 

but;'ons. Both methods yield results that are relatively independent of mass 

asymmetry. Since the calculations which assume rigid rotation and a constant 

l-window (see Fig. Sb) also exhibit only a weak mass dependence fo~ the range 

of asymmetries populated in this system, it is difficult to draw any firm 

conclusions concerning rigid rotation from the change .in ~hesum of the spins 

with mass asymmetry. It should be noted, however, that 'large deformations are 

again needed in order to obtain quantitative agreement with the summed spins, 

as is the case for the individual spins and the k inet icenergies. 



-68-

Table 18 

ZL Z IH(h) IL + IL (h) 
H , a, b d f c e g 

(I)' (1) (2) (3) (4) (4) M 
!.II !.II !.II !.II !.II !.II Y 

-26 -57 39.8:1:0.9 27.3:1:0.6 29.6:1:0.7 28.4:1:0.3 29.2:1:0.2 36.8:1:0.3 38.7:1:2.0 

-29 -54 38.0:1:0;6 26.5:1:0.4 ' 28.9:1:0.5 27.7:1:0.2 28.5:1:0.3 38.2:1:0.5 39.9:1:2.0 

-32 -51 33.7:1:0.6 24.1:1:0.4 26.6:1:0.4 25.4:1:0.2 26.2:1:0.2 37.7:1:0.4 40.8:1:2.0 

-35 -48 30.3:1:0.5 22.1:1:0.4' 24.6:1:0.4 23.6:1:0.2 24.3:1:0.2 38.0:1:0.4 39.2:1:2.0 

-38 -45 '26.3:1:0.5 19.4:1:0.4 22.·0:1:0.4 21.0:1:0.2 21. 5:1:0.2 37.8:1:0.4 35.4:1:2.0 

-41 -42 21.4:1:0.7 16.2:1:0.5 18.6:1:0.6 17.9:1:0.2 18.3:1:0.2 . 36.1:1:0.4 36.7:1:2.0 

" 

a. Spherical K~ 
b. Equil i brium K~ 

c. E qu i 1 i br i urn K ~ , mi sa 1 i gnment 

d. 'Equ ili bri urn K~, misalignment, integration over spin distribution 

with"'T T = r n . 

e. Same as d, but with r T = r + r n a 

f. Calculated from column e assuming rigid rot at ion 

g. Calculated from experimental gamma mult ipl icit ies 
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~ ____ £), Spln ~Jj.gnment J:r-om~Gamma-Ra;y-Angu1-armD'i st-ribut i-ons-

1. The published work and the preliminary analysis. 

Let us begin with a brief review of;what we have published so far on the 

H H t · 17 o + 0 reac 10n. In fig. 6the in-plane and out-of-plane multiplicities, 

the associated anisotropies (0.6 MeV < E - < 1.2 MeV) and the inferred spins 
y 

per fragment are shown. The gamma ray spectra were decomposed in a "stat ist i-

cal" tail and a quadrupole "bump" as shown in fig. 7. In order to avoid dif-

ficulties that we are going to illustrate below, the anisotropies were 

analized only in a gamma-ray window 0.6 < E < 1.2 MeV and the results are 
y 

shown in fig. 8. The statistical model appears to do a reasonable job. 

The solid line represents the complete calculation, including both the 

primary and secondary depolarizations and the measured fraction of statistical 

transitions. This calculation reproduces the increasing anisotropy in the QE 

region, its peaking, and subsequent decline in the 01 region. 

In order to illustrate the relative importance of the primary and 

secondary depolarization mechanisms, the input conditions were changed to 

simulate the different misalignment sources. The calculation which omits both 

the primary and secondary depolarization processes (dashed line) illustrates 

the effect that statistical (El) transitions have in reducing the anisotropy 

from infinity, the value expected for pure stretched E2 transitions. This 

calculation overestimates the data by almost a factor of three. If the mis-

alignment due to neutron evaporation is also included, the calculated aniso-
,-

tropies decrease (dotted line) but still overestimate the data by a factor of 

two. After adding the thermal misalignment, the calculation (solid line) is 

in good agreement with the data. In these calculations (\h is scaled down 

as <I z> decreases due to neutron emission. 
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The understanding of the degree of spin alignment in terms of the 

measured anisotropy is somewhat obscured by the highly nonlinear relationship 

between them. A better insight into the physical situation can be obtained 

through the evaluat ion of quailtit ies more direct ly related to the spin dis

tribut ion itself. Among them, the most significant are the average al igned 

component of the spin (<I z»' the variance (a
2), and the alignment param

eter Pzz defined as 

2 
3 <I Z> 1 

P zz == 2" <I2> - 2" .' (11) 

Note that P ranges from l' for a perfectly aligned system to 0 for the zz 

case of complete misalignment. 

In fig. 9, three different curves of Pzz as a function of Q-value, 

corresponding to different situations, are shown. The dashed line was calcu

lated including only the effect of thermal misalignment (cr~h I: 0, cr~ = 0). 

This curve describes the alignment of the system after the collision process 

itself and before the decay by, neutron emission. The alignment increases 

rapidly across the quasielastic region and then falls slightly at higher 

Q-values. This behavior is interpreted as follows: At small Q-values little 

or no angular momentum goes into intrinsic spin of the fragments, and conse-

quently there is little spin alignment. For more inelastic collisions a pro-

gressively larger amount of angular momentum is converted into spin, which is 

preferentially aligned perpendicular to the reaction plane. For even larger 

Q-values, the thermal production of randomly oriented components dominates, 

causing a slow decrease in the alignment. 

A similar interpretation applies to the behavior of P after neutron zz , 

emission (solid curve). Since neutron emission increases the spin misalign-
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ment, and the number of emitted neutrons· increases with Q-value, the fall of 

the alignment for large Q-values is more pronounced. This divergence of' the 

two curves at large Q-values reflects the importance of the secondary mis

alignment in explaining the observed large decrease in the anisotropy across .. 

the 01 region. It should be noticed that this result is not in contradiction 

with our prevlous statement on the relative importance of primary and second

ary misalignments. Indeed, for very inelastic events, neutron emission 

signficant ly decreases the anisotropy. However, the magnitude of the anisot

ropy is still controlled by the primary process as illustrated in fig. 8. To 

make this point clear, the dotted curve in fig. 9 shows the expected values 

of Pzz if one assumes that neutron emission is the only source of misalignment 

2 2 (Ot h = 0, on 1= 0). A compari son bet ween t he dashed and the dott ed curves 

shows that the thermal process is significantly more effective in destroying 

perfect ali gnment. 

Further insight into the angular-momentum transfer process is obtained 

from the behavior of the different spin components as a function of Q-value. 

In fig. 10, curve 1 shows the magnitude of the total spin before neutron ' 

emission as deduced from the y-ray multiplicity data. Curves 2 and 4 repre

sent the evolution of <I z> (the aligned component of the spin) and 0th (the 

square root of the thermal variance) respectively. The three curves together 

(1, 2 and 4) show the relative contribution of the aligned and misaligned 

components to the pre-neutron-emission value of total spin. For the quasi-

elastic region,as the Q-value increases, <1 > contributes increasingly to , z 

the total spin <1> as compared to 0th' resulting in the rapid rise of the 

alignment shown in fig. 9. However, in the deep inelastic region where the 

total spin magnitude saturates, the increasing contribution of 0th with the 
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temperature causes <I z> to slowly decrease. Correspondingly, the alignment, 

as. measured by P ,decreases somewhat. ., zz 

The values of <I
z

> after neutron emission (curve 3) and of" (curve 5) . n 

are also shown in fig. 10 .. The emission of .a large number of neutrons removes 

substantial amounts of aligned spin, especially for large.excitation energies. 

Since the alignment isa function of the ratio <I >/'" this result indicates . z . - '.' -

that the contribution of neutron evaporation to the misalignment process is 

more a consequence of the reduction of <I > than of the increase of the variz 
ance caused by the introduction of ,,~~ Finally, one should notice the 

different behaviors exhibited by the two components of the total variance 

While the thermal component ";h is the dominant term over the whole 

2 
° . 

Q-value range, its relative change with energy is much smaller than that of 

2 2 2 
"n' The value of the ratio "th/"n drops from approximately 46 to 3.6 in 

going from Q = -40 MeV to Q = -370 MeV. 

In summary, the dependence of <I> and <I > on the reaction Q-value as z . ' -

well as the interplay between the primary and secondary,misalignment mechan-

isms give. rise to the following picture of the spin transfer process. At low 

Q-values, where on is -negligible, the rise of both the alignment and the y-ray 

anisotropy is interpreted as due tothe rapid buildup of aligned spin relative 

to the slow increase of 0th' _ At large excitation energies, where the magni

tude of the spin saturates, "n becomes comparable tOOth' The increased total 

(J combined with the removal of aligned spin by neutron emission results in a 

substantial decrease of the alignment causing the anisotropy to plummet. 
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2. A more extensive survey 

In view of the previous results on 165Ho+165Ho , a systematic 

investigation was undertaken of the magnitude and the alignment of the spin 

imparted to both deep-inelastic fragments, 1400 MeV 165Ho on 176yb , 

148Sm , and nat Ag . The targets used exhibit quite'different nuclear 

properties. The neutron-rich 176Yb nucleus lies in the region of the good 

rotational nuclei and the evaporation of a large number of neutrons per 

fragment should still leave the residual fragment in the rotational region. 

On the other hand, the 148Sm and both isotopes in nat Ag are well removed 

from this region of good rotors. The data from the various systems were used 

to further test the validity of the equilibrium statistical model in the 

region of small to moderate mass asymmetries. 

The heavy-ion detectors were placed at 28°,' 25°, and 19° to the beam axis 

176 148 nat . . ' for the Vb, Sm, and Agtargets, respectlVely.These angles are 

slightly behind the classical grazing angle of each reaction. Figure 1 shows 

the energy spectra obtained at those angles as well as the particle-energy 

gates used in the analysis of the y-ray data. For the three systems the 

spectra exhibit both an elastic and a deep-inelastic peak. 

In-p 1 ane and out-of-p lane cant i nuum y-ray energy spect ra in coi nc i dence 

with a projectile-like fragment were retarded using various redundant 

combinations of particle and y-ray detectors. Multiplicities per event for 

different y-ray energy intervals, were calculated from the number of 

coincidences, the number of particle singles, and the efficiency of the y-ray 

counter. Finally, the anisotropies as a function of Q-value were calculated 

as the ratios of in-plane to out-of-plane y-ray yields. 

The shape of the unresolved y-ray spectra from the three reactions have 

the same qualitative characteristics. An intense bump dominates the 
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low-energy portion of the spectrum (below 2 MeV)~ followed by an exponential 

tail that extends to much higher energies. The bump region exhibits a 

pronounced i n-p 1 ane peak ing~ suggest ing that it is predominant 1y composed of 

stretched quadrupole y-rays emitted. from nuclei with their spins aligned 

mostly perpendicular to the reaction plane. The higher energy.portion of the 

, spectrum, thought to be a mixture of stretched and unstretched electric dipole 

transitions, shows no appreciable anisotropy. 

Figure 12 shows the dependence of the spectral shape of the continuum 

y-rays on t he react ion Q-v a1 ue. The upper-energy edge of t he bump moves 

towards higher y-rayenergies with increasing Q-value across the QE region, 

until it saturates in the deep, inelastic region. Since for a rotational:-

nucleus the maximum energy of the stretched E2 y-rays is related to the spin 

at the top of the cascade, this behavior of the edge of the bump is an 

indication of the dependence of the fragments' maximum spins upon Q-value. 

Figure 13 shows the in-p.lcme (squares) and out-of-plane (triangles) 

multiplicities for y-rays with energy above 300 keV as a functionof,Q.,..va.lue. 

The general trend of these, data is similar for the three systems and agrees 

"th th t "1 b d" th 165H + 165H t" Th " Wl a preVlOUS y 0 serve ln eo. 0 reaClon. ere lS a 

rapid rise across the elastic and quasielastic reg~on, followed by a 

saturation or even a slight decrea$efor the most inelastic events. Whereas 

My(900) (in plane) actually peaks and then decreases slightly, My(OO) 

(out-of-plane) exhibits a plateau (148Sm and nat Ag data) or even a slow. 

monotonic increase. 

Figure 14 shows the y-ray anisotropy as a function of Q-value for the 

three d iff erent react ions and for two d i ff erent y-ray energy i nt erv a 1 s. In 

all cases the,anisotropy increases rapidly throughout the QE region and then 

176 165 
falls ac'ross the .D1.' The peak value for the Vb + . Ho reaction is 

,/ 
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much higher than for the other two reactions. As ant icipated, the selection 

of a y-ray energy interval in the bump region produces a significant increase 

of the anisotropy (fig. l4b) as a consequence of the enrichment in stretched 

E2 transitions. 

The Q-value dependence can be qualitatively understood in terms of the 

evolution of the degree of spin alignment •. For very low Q-values, the 

interaction time is short compared to the relaxation times of the rotational 

degrees of freedom of the system, and therefore little angular momentum is 

converted into spin. Even small fluctuations can destroy the spin alignment, 

thus the angular distribution is almost isotropic. More inelastic colliSi.ons 

tend to dissipate an i~creasing fraction of the initial angular momentum (as 

indicated by the multiplicity curves), while the fluctuations remain at a 

relat ively low level. This causes the anisotropy to rise rapidly. Finally, 

for the most inelastic events the amount of angular momentum transferred to 

intrinsic rot at ion saturate·s while the spin f1uctuat ions (caused by both the 

statistical excit-ation of spin depolarizing modes and by neutron evaporation) 

continue to increase. This indicates that the constant spin observed as the 

Q-va'lue increases is made up of a progressively larger contribut ion from 

randomly oriented components, and therefore the anisotropy falls. 

The dependence of the anisotropy on y-ray energy for a fixed Q-va1ue 

(fig. 15) reflects mainly variations in the mu1tipo1arity mixing ratios. 

These curves show a large increase through the low~energy region reaching a 

maximum at E 0.9 MeV, followed by a gentle fall to unity for larger 
y 

values of E. The behavior of the high-energy portion (E > 0.9 MeV) may 
y y 

be underst ood ; n terms of a decreas i ngpercent age of st ret ched quadrupo 1 es 

(dominant in th~ bump region) and an increasing percentage of isotropic 

transitions (dominant above 2 MeV). The relatively small anisotropies' 
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observed at E 
y 

0.5 MeV likewise indicate a decreasing percentage of 

stretched E2 transitions in this energy region. An alternative possibility is 

that these 10w...:energy y-rays are emitt·ed from states where an addit iona1 

depo1 ari zat ion occurred due to hyperfine interact ions. 

Theory and model calculations 

In this section we shall present the theoretical aspects involved in the 

ext ract ion of i nformat ion about the spin-t ransfer process. from the 

experimental results. 

The observat ion of a rigid-rotat ion regime of the dinuc1ear system in 

, many reactions points to the statistical relaxation of the rotational modes 

and suggests the feasibility of an equnibrium stat,istica1 approach to the' 

study of the angular momentum transfer. Regardless of whether complete 

equilibration is actually attained during the collision, the study of the 

long-time limit is interesting in its own right because it does not depend on 

the' particular transfer mechanism. Therefore,-·i.f one. describes the 

intermediate comp lex by means of an adequate set of degrees of freedom, the 

equilibrium limit will provide a natural reference for comparison with 

experimental results. Furthermore, the applicability of equilibrium 

statistical results does not necessarily require that the system reach 

equilibrium. Indeed,we',shall see that the model has been used only to 

calculate the variances, which may approach the equilibrium values much faster 

than the average spins. 

The ultimate goal of our investigation is to obtain information on the 

fragments' spin distributions, i.e. average spin magnitudes, average aligned 

component, and degree of alignment (Pzz ). Unlike the mass-symmetric 

165Ho + 165Ho case, in the present study one must allow for different spin 

distributions associated with each fragment. 
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Since the spin distributions are not directly measured, the model 

calculations must be used to predict observed quantities such as the y-ray 

anisotropies. The agreement (or lack thereof) between the calculations and 

the data serves as a measure of the confidence that we can place in the 

inferred parameters of the distributlon. All these parameters depend on one 

another, and therefore. almost the totality of the extracted information is 

model dependent to some extent. However, we shall see that in many cases the 

dependence of the theoretical results on different assumptions is surprisingly 

weak. 

The calculation of the spin distributions combines results from both the 

experiment and the equilibrium statistical model. 

The first extracted quantity from the experiment is the average value of 

the sum of spin magnitudes. Based on compound-nucleus work we have assumed 

. that in the most general case the admixture of multipolarities in the y-.ray 

cascade includes stretched quadrupole, stretched ~ipole, and statistical 

transitions that remove 2, 1, and 0 h of fragment spin, respectively. If the 

number of each type of y-ray per reaction is N2, N1, and Nis ' then the 

multiplicity M is 
y 

M= N2 + N1 + N .• 
y .. 1S. 

For the compound nucleus case, the average spin at the beginning of the y-'-ray 

cascade is given by 

where A is the spin removed by transitions with energies below the detection 

threshold. To apply the last equation to a binary reaction, all the 

quantities involved should correspond to the fragment whose spin ;s being 

calculated. Unfortu-nately, only the total mult ipl ic;ty of the y-rays emitted 
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by both fragments is known. At this, point we have assumed that the total 

number of stretched E2 transitions is partitioned between the two fragments 

according to the ratio of their moments of inertia as would be giveri by r.igid 
; ':. 

rotation. This assumption is consistent with the equilibrium approach, thus 

its validity may be qu~stionable for the lowest Q-values. 

According to the statistical model, the spin distribution for each 

fragment is 

The cartesian reference system is chosen such that the y-axis coincides 

with the line between centers and such that the projection of the total 

angular momentum on the x-axis is zero. For the heavy fragment, the variances 

~x' 0y' and c!z are given by 

2 2 ..DH ("L~lJ el
2 )r 

Ox = °z = 
~H+JL +lJd

2 

T 

In these equations, the subscripts Hand L denote the heavy and light 

fragment, respectively, ~is the moment of -inertia of a (spherical) fragment, 

l.I is the reduced mass of the system, d is the distance betwee.n centers, and T 

is the temperature associated with the intrinsic excitat ion energy. The 

variances of the spin distribution for the light fragment are obtained by 

simply interchanging the subscripts Hand L. The temperature was obtained from 

~. ",. 

" 
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____ w_he_",-ea~ is~t-he -level dens-ity-pa-rameter--t-aken-to-beA
tot 

/8-,and-A
tot 

Ts the--

mass number of the composite system. 

The effects of neutron"'evaporation were taken into account using the 

model of ref. 19), assuming that one neutron is emitted for every 12 MeV of 

excitation energy per fragment. This model was used to calculate tne average 

spjn magnitude and the variances of the spin distributions at the beginning 

and at the end of the neutron cascade respectively. The excitation energies 

were calculated under the assumption that both fragments had equal 

temperatures. 

._------

The value of the average aligned component for each fragment was obtained 

by solving two e9uat ions. of the form 

<I> = JlIP(Ix,Iy,I z ) dIxdIydI Z 

where I is the spin magnitude, <1> is obtained from eq. (7), and d z> enters 

as a parameter in the definition of the spin distribution (see eq. (8)). 

Angular distributions and anisotropies 

The basic angular distributions associated with a perfectly aligned 

system are 

5 4 W2(a) = l (1 - cos a) and 

3 2 W1(a) = 4 (1 + cos a) 

where a is the angle between the spin vector and the direction of 
I 

observation. If the system is misaligned these distributions must be folded 

into the spin probability distribution function, weighted by the number of 

transitions of each type (n is ' n1~ and n2) in a given Ey region: 

W(e,0) 1 [(n2W2(a) + n1W1(a) + niS]p(I,e',01)I2dldrt, 
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where P(I,e',~') is-the spin probability distribution function expressed in 

spherical coordinates, and the angle a depends on both the direct,ion of 
( 

emission (e,~) and the direction of the spin vector (e',~') of the emitter: 

cos a = cose cos e' + sin e sin 0 sin e t sin ~' 

+ sin e cos 0 sin e t cos 0' 

At low mass asyrrmetries, the statistical model predicts that the variances 

ax' ay' and az are similar to each other. The cOlTlTlon values for the 

three cartesian variances were obtained from 

Two of these average values were calculated, i.e.~ one for each individual 

fragment. 

A signif'icant uncertainty in the input parameters to our model 

calculation ;s the multipolarity composition of the continuum y-ray.energy 

spectra. In an attempt to reduce this uncertainty, we have resorted to 

results from both compound-nucleus work and the present work . 
. Rotational nuclei at high spins are known to decay via the emission of 

basically two types of y-rays, i) stretched electric quadrupoles and ii) 

"statistical" isotropic transitions. The energy of the stretched E2 y-rays 

are strongly correlated to the spin of the state from which the y-ray ;s 

emitted, and they appear mainly in the low-energy bump of the spectrum. The 

statistical transitions (probably an admixture of stretched and nonstretched 

electric dipoles) are considered to be distributed in energy according to the 

following function: 
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_____ T.he dashed Jjne-in-figu'r-e-16-shows--a-f-it---of-t-his-funct-ion-wit-h- p= -2--ancf ---

T == 0.6 MeV to the high-energy tail of a typical spectrum. Similar fits were 

obtained with p = 3 and T = 0.4 MeV. 'This decomposition of the spectra 

indicates that the number of stretched quadrupoles in a certain energy region 

(given by the area under the histogram minus the area under the dashed curve) 

increases with ~ecreasing energy. Therefore, for a fixed Q-value, the y-ray 

anisotropy shoulp decrease wi'th increasing transition energy across the bump 

region. Clearly, this predict ion is at variance with the low-energy data 

shown in fig. 15. The experimental anisotropies are small for the lowest 

y-rayenergies, increase and peak at E = 0.9 MeV, and then fall to unity. 
. y 

This general behavior as a function of E reflects primarily the change of 
. y 

the multipolarity mixing rat {os. Indeed, since the Q-value is fixed, the spin 

depol ari zation (caused either by part ic le evaporat ion or by the react ion 

itself) is not expected to produce any E -dependent effect on the anisotropy. 
y 

The decrease of the anisotropy at ,low E has been observed in previous 
y 

compound-nucleus works and has been interpreted as evidence for an addit ianal 

component, likely stretched magnetic dipole transitions. Although the 

information on the spectral shape of this component is incomplete, it is known 

that for rotational nuclei these y-rays are concentrated mainly below 

0.5 MeV. For n~clei in the vicinity of a closed shell, their contribution to 

the total multiplicity increases significantly, and they extend to somewhat 
\ 

higher energies. 

To minimize the uncertainties due to this low-energy component in the 

cdnparison between the experimental and calculated anisotropies, we have 

excluded from the analysis all the y-rays with energies' below 0.8 MeV. 

However, even these low-energy y-rays must be used in the extraction of the 

sum of spin magnitudes so that, in principle, the uncertainties in their 
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multipolarities could still affect the determination of important parameters 

of the spin distributions. In all the calculations shown in the rest of this 

paper, we have considered an intermediate situation by assuming that the 

y-rays between the two calculated curves in fig. 16 are stretched dipoles and 

therefore remove one unit of angular' momentum each. 

Comparison between the model calculat ion and the data 

Figure 17 compares the Q-value dependence of the experimental anisotropy 

to the theoretical calculation, for the slice 0.7S0'MeV < E < 0.900 MeV. 
y 

For all three reactions good agreement is obtained for the most inelastic 

regions. The relatively larger discrepancy observed throughout the 

quasielastic and beginning of the deep-inelastic regions may be associated 

with incomplete equilibration. The breakdown of the statistical equilibrium 

assumptions is also suggested by the shift in the calculated peak anisotropy 

relat ive to' the data. According to the model. the maximum value of the 

anisotropy should oCCur when the multiplicity r:eaches its saturation value. 

It must be emphasized that regardless of , any assumption made concerning 

the multipolarity mixing ratios, the most 'important role in determining the 

value of the y-ray anisotropy is played by the thermal fluctuations. As an· 

illustration, fig. 18 compares the data (open circles) to a calculation 

assuming no thermal fluctuations (dark circles). It is clear that if 
" 

misalignment is not included, the observed values of the anisotropy cannot be 

explained. 

Sum of spin magnitudes and rigid rot at ion, 

Of all the studied quantities, the'spin magnitude is the least dependent 

on model assumptions since it is closely related to the measured y-ray 

multiplicity. However, in defining the partition of the total internal 

angular momentum between the two fragments, we have impl icit ly assumed that 
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_~ ________ the -i nt-er-me-d-iate-dinucl ear: -c-amp-l e-xreaches- -a-st at-e of-r i-gi-d -rot at-i-on~. -In

order to test the validity of this a:ssumption, let us first analyze the sum of 

the spin magnitudes II + 12, This quant ity is expected to be fairly 

insensitive to any assumption on the rotation regime. 

Figure 19 shows II + 12 as a function of Q-value for the three 

reactions. Two observations can be made. First, the maximum amount of spin 

corresponding to the saturation region is an increasing function of the total 
~ 

mass. Second, the Q-value where saturation is reached appears to become 

somewh'at more negative for heavier systems. To a large extent, this behavior 

may be attributed to differences in basic parameters of the reaction, such as 

the Coulomb barrier, total kinetic energy, mass, or angular momentum. A more 

significant comparison between the reactions can be made by appropriately 

transforming both axes in fig. 19 so as to remove any factor that is not 

direct ly connected to the transfer process itself. The choice of new 

variables is certainly not unique. For the variable related to the excitation 

energy we have chosen a transformat ion from Q-value to temperature. For the 

angular-momentum axis we have considered two different scales given by the 

following equations: 

J -1 

iRR 
II (II + I 2) = ~ ~AX 

iRoll 
2 -1 

(II + I2) = 7 ~AX , , 

where 

and ~AX is the max,imum incoming angular momentum corresponding to a grazing 

collision. The transformed variables iRR and i Roll measure the observed' 

sum of the fragments' spins in units of the maximum value expected from the 

rigid-rotation and rolling limits respectively. 
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Figure 20 shows plots oftthe experimental values of iRR and iRoll as 

a function of T. A comparison between figs. 19 and 20b) indicates that the 

transformation from II + 12 and Q to iRR and T succeeds in reducing the 

experimental points to essentially a single !=urve. The transformation 

according to the rolling limit (fig. 20a) gives a similar curve for the nearly 

symmetric Ho + Sm and Vb systems but shows a significant deviat ion for the 

more asymmetric Ho + Ag. These results provide, if not proof, at least a 

strong support to the assumption of rigid rotation of the intermediate complex. 

Spin distributions of the individual deep-inelastic fragments 

We shall now examine some results 'concerning the spin distribution of 

each of the two exit-channel fragments. The average spin magnitudes <1 1> 

and <1 2> were assigned to each nucleus according to the rigid-rotat ion 

prescription, and the'variances cri and crfwere calculated with the 

aid of the statistical model and the experimental temperatures. Both types of 

information were finaily combined to obtain the individual spin alignments 

through the quantities <II > and <12 >. 

Figure 21 shows the evolution of the average spin magnitude I (solid 

curve) and it~ average alrigned component <1 z> (dashed curve) for both 

reaction partners as a function of Q-value. In all cases the heaviest 

fragment bears the largest spin according to the rigid-rotation partition. 

The spin of the projectile-like fragment increases slightly with decreasing 

total mass because the increase of its moment of inertia (relative to the 

target-like fragment) prevails over the reduction of the total angular 

momentum. The Q-value dependence of both I and <1 > is qualitatively the z 
same as that of they~ray multiplicities. Following the rise throughout the 

elastic and quasielastic region, there is a saturation at large negative 

Q-values. However, <I > shows a decreasjng trend, which leads to a z 
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y~0_9T!~S~ ty~~.\j 'I_er--gence-fr-om -d->.-The-magn ituCleof-n,lS effect is a funct ion 

of the mass of the fragment, and it is related to the alignment of the 

correspon~ing spin distribution. The degree of spin alignment is usually 

measured in terms defined as 

With this definition, P varies from 0 to 1, those extremes corresponding .. zz 

to a completely misaligned and to a perfectly aligned system~ respectively. 

Figure 22 shows the value ofPzz as a function of Q-value for each 

individual fragment in the three reactions. The same qualitative behavior can 

be observed in all cases; th~ alignment increases rapidly with increasing 

Q-value throughout the quasielastic region, followed by a more or less slow 

decrease (depending on the mass of the fragment) across the dee~-inelastic 

region. For the three systems, the heavy reaction partners show higher degree 

of alignment. 
, 

The differerices in the alignment bf each fragment may be understood in 

terms of the extracted individual spins and the dependence of the calculated 

spin fluctuations on different parameters. Th'e equilibrium statistical model 

predicts that the variances of the spin distributions are proportional to the 

temperature. In addition, it also predicts that the variances decrease with 

increasing mass asymmetry of the system, although this dependence is rather 

weak throughout the region investigated in these experiments. In this 

mass-asymmetry region the variances along the three cartesian coordinates are 

nearly equal and the average value is latger for the heavy fragment. Finally, 

for a fixed mass asymmetry the magnitude of the fluctuat ions in both nuclei 

vary with the total mass according to the following relat ion. 

• 
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2 (' + )5/3 cr a m1 mZ 
- (20) 

Table I summarizes the values of the calculated variance associated with 

the spin distribution of each fragment. Due to the opposite effects derived 

from the increasing mass asymmetry and the decreasing total mass, the 

magnitude of the fluctuations induced in the Ho-1ike fragment is almost 

constant for the three reactions. Since the spin imparted to this nucleus 
'-

increases with entrance-channel mass asymmetry, the net result is that the 

maximum value of Pzz (fig. 22) increases with decreasing mass of the target 

176 148 nat (0.64,0.69, and 0.79 for Vb, - Sm, and Ag). 

A different behavior is obtained for the extracted alignment of the 

target-like nuclei. Although the calculated variances become smaller for 
, 

1 i ghter target s (Tab le 1C), the trend is not st rong enough to compensate the 

dramat ic decrease in the transferred spins (fig. 21). In fact, for the 

lightest nucleus (Ag) at the highest excitation energies (Q ::: -300 MeV), these 

randomly oriented components account for almost the totality of the spin (f.ig. 

21), thus giving rise to an almost isotropic- spin distribution (fig. 22). 
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D) Intrinsic Fragment Spins Generated in the Reactions of 

20Ne with 197Au and 238U at 12.6 MeV/Nucleon 

Experimental techniques used to obtain the'magnitude and alignment of 

, 2-5 . 11 13 
the transferred spin include a-particle ), y-ray , ) and sequential 

f " "f t I4- 15 ) '1 d" t "b t" ' 1SS10n ragmen angu ar 1S r1 u 10n measurements. The out-of-plane 

angular distributions of'y-rays and sequential fission fragments are primarily 

sensitive to the average random spin component. From such studies the Q-value 

dependence of the average mi sal ignment has been determined. 

The angular distributions of y-rays and a-particles are rather insensi-

tive to differences in the in-plane projections of the random spin component. 

In contrast, the angular distributions of sequential fission fragments are 

quite sensitive to such differe'nces in that they can produce a substantial 

i n-p 1 ane an; sot ropy. 

In the equilibrium statistical model, the aligned spins arising from the 

rigid rotation of the dinuclear system couple to 'angular momentum components 

associated with the thermally excited normal modes. For a model of two 

touching spheres, these normal modes are called bending, twisting; wriggling 
• 

and tiltinll). The statistical widths (a ,a and az ) of the angular x y 

momentum components in the usual cartesian coordinates are shown in Fig. 18 as 

a function of mass asymmetry. 

When the reaction partners have equal masses, the thermal widths are 

nearly equal. 21 ) At large mass asymmetry, ay becomes much larger than 

a or a (see Fig. 22) because the statistical excitation of all of the x z I 

modes except tilting is strongly suppressed. 

The tilting mode corresponds to a tilting of the disintegration axis out 

of the plane perpendicula'r to the total angular-momentum. :This"mode is, 
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favored at large asymmetries because the rot at ional energies about the sym

metry axis and about an axis perpendicular to it tend to become equal as the 

mass asymmetry goes to 1. Thus for any given temperature the mean tilt ing of 

the decay axis increases with mass asyrrmetries, theout-of-plane distribution 

broadens and the in-plane distributlon becomes anisotropic. In addition, this 

model predicts that the maximum .in the, in~plane angular distribution should 

. occur perpendicular to the line-of-centers of the dinuclear complex. 

Consequent ly, for near symmet ric systems, the st at i st ical model predict s a 

very small in-plane sequential fission ani~otropy (-1.1/1). while, for very, 

asymmetric systems such as 20Ne + 197Au and 20Ne + 238~, this model predicts 

a strong in-plane anisotropy (2/1). 

Here we report measurements of sequential fission angular distributions 

from the react ion of .252 MeV 20Ne with 197 Au and 238U. These systems are 

extremely mass-asymmetric and should severely test the predictions of the 

equilibrium statistical model. At the same time the results of this study 

should shed light on the present discrepancy between previous sequential fis

sion studies. Projectile-like fragments (PLF) were detected in a solid state 

telescope th.at was fixed at 30° to the beam. (For the react ion of 252- MeV 

20Ne + 197Au and 238U, the classical grazing angles in the laboratory are 

26° and 30°, respect ively). 

Fission fragments (FF) were observed on the opposite side of the beam 

from the PLF in an array of 10 silicon surface-barrier detectors (300 llm). 

These detectors were held in a rigid inverted T-shaped mount suspended from 

the top of a hemi~pherical scattering chamber lid. 

In general, the angulardistribut ions are not expected to reflect the 

unbiased populations of the spins in the exit channel, because they are biased 

by the probability that the recoil nucleus will undergo fission. Since this 
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probability {Pf } can be strongly dependent on the excitation energy and the 

spin of the product nuclei, it is important to have an estimate of it. 

The experimental sequent.ial fission probabilities are shown in Fig. 24. 

As a result of its large fission probability, substantial c<;>incidence data 

was obtained over a broad TKEL range for uranium. In contrast, the maximum 

value of Pf for gold products is - 0.6 which is reached only at the'largest 

Q-values. As a result, statistically significant angular distributions were 
. ,-

obtained only at large v.alues of TKEL for the gold system. 

The coincidence data from the uranium target was divided into 5 TKEL bins 

(2 for gold) in order to investigate the in and out-of-plane angular distribu .... 

tions. The measured angular distributions of the FFls plotted against the out

of-plane (eH) and in plane (~H) angle of the heavy recoil are shown in Figs. 

H ' H 25 through 28. Both ~ , the in-plane angle, and e , the out-of-plane angle, 

are in the rest frame of the recoiling heavy target-like nucleus. The tradi

tional assignment of ~H = 0 along the recoil direction (Q-value dependent) was 

made, with negative ~H angles lying between the recoil direction and the beam 

axis. 

The magnitude and orientation of the intrinsic' spin of the fissioning 

nucleus can be extracted from the angular distributions of the fission frag-

ments. The angular distribution function expected from a Gaussian spin dis-

tribution with its only nonzero average component along the z coordinate, is 

given by Eqs. 4 and 5. The in-plane variations are contained in the pre-

exponential term of the angular distribution function. Our convention is that 

eH = 90° corresponds to the in-plane me~surements and that ~H = 0° corresponds 

to the separation or y axis. 

Fits to the angular correlat ion data quasielast ic bins and near 90° for 

the most inelastic bins are shown by the solid curves in Figs. 25 through 28. 
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The numerical results of this fitting process are given in Table 10. 

Unfortunately the numerically best choice for xH does not have a smooth 

dependence on Q-value, because of 'the shallowness of the angular distributions 

and the size of the errors in the data pOints at intermediate Q-values. This 

has been demonstrated by fitting the angu'lar distributions with fixed shift 

angles. 

In an alternate procedure, the shift angle xH was estimated simply from 

the average change in orbital angular momentum for each Q-value. The initial 

orbital angular momentum, Li' was obtained by dividing a triangular 

~-distribution in proportion to the cross section. The amount cif exit channel 
-._----_ .. -- ._- --.--------~----

angular momentum, Lf , is then written classically as: 

Lf = Li - <IT> - ~Ip> (12,) 

where <IT> and <Ip> are the average intrinsic spins of the target-like and 

projectile~like fragments. The ,fragment spins are taken to be primarily 

aligned as indicated by previous results. The direction of the line-of-centers 

20 197 20 238 .. for the Ne + Au and Ne + . U systems was determlned by traclng the 

projectile-like product backward along a Coulomb trajectory to the point of 

contact. Contact was assumed to occur ,at a distance given by the equilibrium 

configuration, of a rotating sphere-spheroid liquid drop model system. 5) 

The resulting shift angles are 45°,60°, 70°, 75° and 80° for the five 

uranium Q-value bins. For the three most negative Q-value bins these numbers 

are in reasonable agreement with the values returned from the fitting process 

for the optimum xH (Table 10). In addition, the flatness of the angular dis

tribution associated with the 0 = - 37.5 MeV bin causes the fitted function to 

be rather insensitive to xH for this bin. Our mod~l in this low Q-value 

region and the likely strong contribution from direct reaction processes this 

particular discrepancy is not too discomforting. 
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The values of the aligned spin Iz and the thermal widths extracted from 

the fitting of the sequential fission fragment angular distributions can be 

utilized to determine the two alignment parameters PZZ and PXY • These two 

parameters are defined in terms of the x, y and z components of the angular 

momentum vector as: 

and 

2 2 
<1x - Iy > 

PXY = 2 
2 <1 > 

222 
2<1 > - <1 > - <1 > z x y (13 ) 

(14 ) 

Tak-ing the previous assumption of a Gaussian spin distribution peaked at 

I = 0, I = 0 and I the alignment paramete'rs can be rewritten in terms of x y z 

fitted widths by recalling the definition: 

Thus, 

and 

Eqs. 

222 
<1>=<1> +0 x x X 

13 and 14 become: 

2 2 

PZZ = 
3 (<1 z> + oz) 

"2 (02 + 2 + <12> . x 0y z 

2 2 0 - 0 
PXY = x -y 

2(02 + 2 2 
0y + <1 > + x z 

+ 2) 
°z 

2 
(lz) 

(15) 

1 (16) "2 

(17 ) 
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In Table 1D we show values of Iz' cry' crx and cr z extracted from the 

sequential fission fragment angular distributions. To m~ke clearer the 

Q~va1ue dependence of I , the extracted values of I, are plotted versus z z 
Q-va1ue in Fig. 29 for both the 20Ne + 238U and 20Ne + 197 Au systems. For 

. the former system, Iz increases steadily with Q-va1ue. A similar increase of 

Iz with Q-va1ue has been obser~ed in several other reaction systems. Because 

of the high fission barriers for nuclei near Au, values of Iz were obtained 
. . 20 197 

only for the most negative Q-values of the Ne + Au reaction. A striking 

difference between the two systems is the much larger values of Iz observed 

for the 20Ne + 197Au relative to the 20Ne + 238U system. Since the. max 

and tlie rigid rotation partition for the two systems are very similar, the 

difference most likely reflects the strong bias towards high spin states for 

the fissioning gold nuclei and the absence of such a bias for the fissioning 

uranium nuclei. This bias is introduced by the Jarge fission barrier for gold 

nuc lei .. 

Although there is a substantial scatter in the values of the thermal 

wid·ths (see Table lD) extracted from the 20Ne + 238u sequential fission frag-

ment angular distributions, qualitatively cr x and cr z seem to be independent of 

Q-value whereas cry increases dramatically with Q-value. The statistical model

predictions for crx and cry are in rough agreement with the data for all 

Q-values. However, this model substantially overpredicts cry except at the most 

negative Q-values where rough agreement is observed. Over the more limited 

20 197 Q-value range of the Ne + Au data, the model predictions are in rough 

agreement with the extracted values for all three thermal widths. 

The results for PZZ and PXY obtained from the fitting of the FF angular 

distributions for the uranium system are shown in Fig. 30. In contrast to the 

strong Q-value dependence observed in more symmetric systems, the extracted 
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. 20 238 

values of PZZ ar.e approxlmately constant at 0.8 for the Ne + U system. 

The in-plane alignment parameter shows a stronger dependence on Q-value. It· 
r, 

is positive at small Q-values and then goes to negative values at larger 

Q-values. 

The predictions of the statistical equilibrium model for two touching 

spheres (solid curves in Fig. 30 lie substantially 'below both the PZZ and PXY 

the data. Although this discrepancy could be interpreted as indicating that 

the dinuclear system is not at equilibrium (with respect to the normal modes), 

a more likely explanation is that the present model of two touching spheres 

does not allow for either deformation or interfragment separ·ation (neck for

mat'ion). Indeed, there is extensive evidence for large deformations of the 

nuclei at their scission configuration following a OIC. A first order esti

mate of the effect of deformat ion on the model calcul at ions can be made by 

allowing the target-like fragment to deform along the line-of-center of the 

dinuclear system. Model calculations of Pzz and PXY are shown in Fig. 23 for 

different ratios of axes (CIA) of the target-like fragment. Both PZZ and Pxy 
are quite sens it ive to the deformat ion of the heavy fragment. In this calcu-

lation, a and a increase slowly whereas a decreases rapidly with increas-x z y, 

ing CIA. Thus increasing CIA causes Pzz to increase because the random com-

ponent of spin decreases while the aligned component is constant. Pxy 
approaches zero as CIA increases because 0y becomes similar to ax, In this 

model, a ratio of axes of 1.6 to 2.0 is needed to reproduce the data in the 

deep-inelastic Q-value region. Such deformations of the heavy fragment are 

consistent with val 'ues given by the equilibrium configuration of a rotating 

sphere-spheroid liquid drop model system. 
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Table lC 

Calculated vari.ances of the spin distribut ions 

2 2 
('J :IT. ((1 /MeV) 

React ion ' ' ,t.: j 
••• J. ProjeCt i le (Ho) " ;' ,.Target 

<. 
, 

, 
69.3 76.9 

165H '+ 148S o· m : 69.0 57.9 

" 

165HO + nat Ag 68.5 34.5 

. ' 
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____ Tab te ID. _ Result-s of-angular d-ist-r i-but-ion-fitt-;ng- inclLfdlng-a~ 

free rotation angleXH' errors are given in parenthesis.

The errors listed in this table represent only. 

the statistical error. 

Q-Value KO ---------------(h units)------------------ (degrees) 

(A) uranium results .with 6 ~ Z3 ~ 14 

- 12.5 7.3 17.7(0.5) 3.0(0.6) 6.5(0.4) 2.8(0.4) 8.(7.) 
- 37.5 10.4 27.2(0.2) 7.7(0.2) 8.8(0.2) 1. 9(0.5) 16. (9.) 
- 62.5 12.0 31.1(0.3) 9.5(0.5) 5.8(0.7) 3.1(0.7) 90. (9. ) 
- 87.5 13.1 37.9(0.3) 13.0(0.7) 8.6(0.9) 5.3(0.5) 94. (9. ) 
-125. 14.3 42.4(0.6) 20.1 (0.7) 0.7 (4.) 9.2(1.1) 80. (3. ) 

(B) uranium results with 9 ~ t3 ~ 10 

- 12.5 7.3 16.7(0.5) 2. (0.8) 7.1(0.4) 0.5(1.) -9.(6.) 
- 37.5 10.4 25.0(0.3) 3.5(0.6) 10. (0.6) 7.2(0.8) -10.(4.) 
-62.5 12.0 32.2(0.5) 17. (1.) 6. (1.) 5. (1.) 90.(5.) 
- 87.5 13.1 45. (1.) 23. (2.) 8. (2.) 15. (1.) 81. .(6. ) 
-125. 14.3 37. (0.9) 22. (2.) 7. (2.) O. (4.) 87.(7.) 

(C) St at i st i cal Model* 

- 12.5 16.6 5.0 5.0 45 
- ·37.5 21.8 6.5 5.0 60 
- 62.5 24.7 7.4 7.4 70 
- 87.5 26.8 8.1 8.1 75 
-125. 28.8 8.8 8.8 80 

(D) gold results with 6 ~ Z3 ~ 14 

- 75 9.8 61.(1.) 25.2(0.8) 7.(2.) 24.(1.) 64. (3. ) 
-125 11.7 65. (1. ) 30.0(0.8) 0.( 5. ) 15.(1.) 79. (1. ) 

( E) St at i st i cal Model 

- 75 20.6 7.4 7.4 72 
-125 23.4 8.4 8.4 80 

*Two t ouchi ng spheres 
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Figure Captions 

a) Velocity diagram for the l8lTa + 165Ho '(1354 MeV) system. 

The open circles are the rms velocjties extracted from the 

coincident laboratory ~-particle energy spectra. The solid circles 

indicate the rm's veloc it ies of the two separate peaks that appear in 

the most forward data .. The full large rings indicate the loci. of 

expected ~-particle velocities7 from the three different rest 

frames. For the tar.get-like fragment, the locus of velocities for a 

10 percent reduction in the expected average emission energy is 

indicated by a partial ring. The detection threshold is shown as a 

dashed arc. The letters P and T stand for projectile-like and 

target-like, respectively. 

b) The velocity diagrams for three different Q-bins (all in the 

deep-inelast~c region). The rms ~-particle velocities for each bin 

are indicated. The smallest energy loss bin is indicated by 

t r i ang les and the 1 argest energy loss dat a by squares. The three 

partial rings are drawn to guide the eye. They have the same radius 

and are centered on the three different recoil velocities. 
nat 84 a) Velocity diagram for the reaction system Ag + Kr 

(664 MeV). Circles indicate the most probable velocity for 

~-particle emission. The in~plane projection of the out-of-plane 

angles is indicated. The dashed arc indicates the detect ion 

threshold for the ~-particle detectors. 

b) Schematic view of the experimental setup. This figure depicts 

the Z-telescope, with its in-plane angle 0Z; light particle 

telescopes with in- and out-of-plane lab angles 0L and 0L 
respectively; and the array of NaI detectors with an out-of-plane 

angle of 450 • 
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~tg. 3 . __ A lpba ... p-artic-le -angulardistribut i-ons-as-afur'lct"ion ofout~of-p 1 ane 

angle for several Z-bins. Each bin is 3 Z units wide and is labeled 

Fig. 4. 

Fig. 5. 

by the median Z value. The distributions without any coincidence 

y~ray requirement a) are expressed in units of differential 

multiplicity, wherea:s the distributions with two or more coincident 

y rays b) are normalized to those in a) at 900 for the same Z 

bin. The sol id lines are fits to the data. 

Spins extracted from the out-of-plane a-particle distributions with 

(open circles) and without (solid circles) the requirement of at 

least two coincident y rays. Error bars are shown when they exceed 

the size of the symbol and indicate only the statistical error. The 

rigid rotatibri prediction for deformed spheroids with a ratio of 

axis of 2 and a separation of 1 fmis shown by the solid line. 

a) Center-of-mass energies as a fUnct ion of the charge of the 1 ight 

fragment. The width of the symbols indicate the uncertainty in the 

primary charge (before evaporation). The curves are calculations 

for two equally deformed spheroids separated by 1 fm and are labeled 

by the ratio of axes. b) Plotted are: the spin of th~ heavy 

fragment ex:tracted from the a-particle distributions (~olid 

circles), the sum of spins calculated from a-particle data 

(squares), and M data (open circles). The sizes of the solid 
y 

symbols indicate the statistical-error only. 

Fig. 6. Comparisons among the data at 23°, 27°, and 31° as a function of 

reaction Q-value for the reaction Ho + Ho at 8.5 MeV/u. The top row 

represents M (90°) (filled circles), M (0°) -(open circles), and 
y y 

the angle integrated y-ray multiplicity <M > for E > 0.3 MeV 
y y 

(solid line). The center row shows the spin per fragment after 
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neutron emission (solid line) derived from<M > and the spin prior 
y 

to neutron emission (dashed line). The bottom row shows the y-ray 

anisotropy for the region 0.6 < E < 1.2 MeV. . y 

Fig. 7. Decomposition of the y-ray spectrum to yield the number of 

statistical transitions (proportional to the area Jjnder the dashed 

line). 

Fig. 8. Experimental and calculated valued of the anisotropy vs Q-value for 

E > 0.6 MeV. The solid line represents the complete 
y 

calculation.- The dotted line includes the second~ry misalignment, 

- and the dashed 1 ine represents full alignment. See text. 

Fig. 9.- Extracted values of the alignment parameter Pzz plotted ~s 

Q-value. The solid line represents a complete calculation, the 

dashed line does not include neutron effects, and the dotted line 

does not inc 1 ude the pr imary mi sa 1 i gnment. See text. 
- -

Fig. 10. The ~olid line (1) represents the spin transfer <I> before neutron 

emission at 27°. The dashed (2)-and dotted (3) lines represent the 

extracted values of the aligned component d z> prior to neutron 

evaporation and of <Ii> after neutron emission, respectively. 

Line' (4) represents the dispersion caused by the primary 

mi sa 1 i gnment at h. Li ne (5) represent s the d i spers i on due to 

neutron emission a. See text~ 
n 

Fig. 11. Energy spectra of the projectile-like fragments in the laboratory 

reference system. The arrows indicate the boundaries of the gates 

used for the analysis of the coincidence y-ray data. 

Fig. 12. In-plane y-ray spectra obtained in coincidence with heavy ions. The 

numbers 1-8 correspond to the Q-value gates indicated in fig. 11. 

Note the evolut ion of the low-energy "bump" when going from the 
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elastic or quasielastic (spectrum 8) to the most inelastic 

(spectrum 1) collisions. 

"In-plane" eM (90 0)) and "out-of-plane" (M (00)) 
y y 

multiplicities as a function of Q-value. The difference between. the 

two curves for each reaction reflects the angular distribution of 

the radiat ion. 

Fig. 14. Gamma-ray anisotropy as a function of Q-value for the three 

systems. In part a), y-rays of all energies above 0.3 MeV are 

considered. Part b} shows that by selecting y-ray energies in the 

"bump" region, the anisotropy increases ~or the three reactions. 

Fig. 15. Gamma-ray anisotropy as a function of y-ray energy. The Q-value 

region is constant for each react ion and corresponds to the maximum 

observed anisotropies. The anisotropy of the y-rays in the 

"statistical tail" (E . > 2 MeV) varies between 1 and 1.1 in all 
y 

cases (not shown in this figure). 

Fig. 16. Decomposition of a typical y-ray spectrum. The solid line is a flt 

to the tail with the function K£ e-E IT MeV, where N = 2, T = 
y 

0.6 MeV, and K was adjusted to reproduce the area under the expo 

spectrum above 2.25 MeV. The dashed line is an exponential 

extrapolation to low energies of the high-energy "statistical" tail 

(see text for discussion). 

Fig. 17. Comparison between the experimental anisotropies of y-rays with 

energies in the, interval 0.750-0.900 MeV (circles) and a calculation 

based on the eq. stat. model {open squares and solid lines} as a 

function of Q-value. The calculations require some experimental 

input~ therefore they were done only where experimental results were 

available. The lines are drawn to guide the eye. 
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Fig. 18.'Canparison between the experimental anisotropies and a calculation 

that does not include the effect of the thermal fluctuations. The 

Q-va'lue dependence of the calculated anisotropies results from 

variations in both the number of emitted neutrons and the 

canpos it ion of the y-rays (these were the same as those used in the 

calculated curves offig. 17). 

Fig. 19. Sum of spin magnitudes (II + I2 ) as a function of Q-value for 

the three reaction systems. 

Fig. 20. "Reduced" sum of spins as a funct ion of temperature. The angul ar 

momentum axes have been sC.aled according to the "rolling" limit for 

part a) and to rig id-rotat ion 1 imit for part b)~ 

Fig. 21. Average spin magnitude <I> (solid lines) and average aligned 

component <1 z> (dashed lines) as a funtion of Q-value. For each 

system, the various symbols correspond to the two deep-inelastic 

fragments. The average spin was assigned to each nucleus through 

the rigid rot at ion part it ion of the extracted sum of the spins 

(fig. 11). The average aligned components <I > were obtained from z . 

the corresponding <1> and the calculated variances. 

Fig. 22. Alignment parameter Pzz as a function of Q-value, for each of the 

two deep-inelastic fragments in the three reactions. 

Fig. 23. The thermal widths of the normal modes of a dinuclear complex are 

shown as a function of mass asymmetry of the complex. The widths 

are shown in dimensionless units after division by OT the moment 

of inert ia of a mass-symmetric spherical fragment times the 

temperature. The mass asymmetries of several reaction systems from 

recent determinations of the spin and/or its alignment are also 

shown5, 7,11-16). 

--
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Fig. 24. The measured fission probability, Pf , is shown as a function of 

total kinetic energy loss, -TKEL. 

Fig. 25. The out-of-plane angular distributions of sequential FFs obtained 

fiv~ Q-value bins for the 20Ne + 238U system. The distributions 

shown in column (A) were measured approximately along the laboratory 

recoil direction and those in (B) were obtained approximately 

perpendicular to the recoil direction. The solid ~urves represent 

fits described in the text. 

Fig. 26. The out-of-plane distributions of sequential FFs obtained are shown 

for two Q-value bins. 

Fig. 27. In-plane angular distributions of sequential FFs from the 

Fig. 28. 

Fig. 29. 

Fig. 30. 

20Ne + 238U system are shown for the same Z- and Q-value bins as 

Fig. 25. The arrows indicate the angles at which ttie out-of-plane 

measurements were made. 

In-plane angular distributions of sequential FFs for the 

20Ne + 197Au system for the same Q-value bins as Fig. 26. 

The measured aligned spin (I of the target-like fragment as a z 
function of Q-value for the 252-MeV 20Ne + 197Au and 238U. 

Spins wer~ extracted for a broad Z-bin (6-14) for both systems and 
20 238 an additional narrow one (Z = 9-10) for the Ne + U system. 

The statistical errors are of the same size or smaller than the 

symbols. 

The measured alignment parameters for the spin distributions 
. '20 238 obtalnedfor the Ne + U system are shown fo~ Z = 6 to 14 

(circles) and Z = 9 - 10 (squares). The solid and dashed curves 

represent the statistic equilibrium model calculations (see text). 
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