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Abstract
The concept of an asymptotic dispersion relation associated with
multi-Regge asymptotic behaviour is introduced. "A particular example
for the six-particle amplitﬁde.is derived in detail. in this example
there are forty-four distinct spectral cop;ributions, each of which is
expressed as é triple integral over physical région invariant variables.
The integrands are justvthe_correséonding invariant.dispersion denomi-
nators ;ogether with three-fold discontinuities which are expressed as.

integrals of physical scattering functions and their conjugates.
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2. Introduction

Experience with quantum electrodynamics suggesks that
the divergence ptoblens. of quantum chromodynamics will be
resolved only by making incisive use of the principles of
Lorentz invariance, unitarity and- analyticity. . These
principles are formally Qatistled by the individual terms of
the A QCD  renormalized perturbation expansion, but the
severity of the mass-shell infra-red divergences is
generally thdught to require a non-perturbative formalism to
dgtlne the theory. On the other hand, non-perturbative
approaches which seem to have the wmost potential for
explicit calculation sﬁch as bag models and lattice theoriec
disrupt the basic principles mentioned above and hence may
not yield a satisfactory resolution to the divergence
problens. )

Dispersion relations provide a well-gtructured
ndn-pertuzbatlve framework that retains the properties of
Lorentz {invariance, unitarity Qnd analyticity. In the
context of non-abelian gauée theories (with the Higge
mechanisa operating) these ' relations have been found ﬁo
p;bvlde a highly efficient and practical way of generating,
in teorganized form, the asymptotically dominant (leading
i&é)‘“contxsbutlons- of perturbation theory at high energy.

One may see this by comparing, for example, the sixth and

eighth order calculations of Lipatov et al.! with he more

gtaditional Peynamn diagram calcdlations.z
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But beyond this matter of practical expediency
dispersion relations have the important virtue that they can
naturally incorporate gge" geheral property of geggé
asymptotic .behaviou;. ihus especially and partlculqtiy in
the area of asymptotic behaviour ihe dispersion relations
pxovide d natural vehicle with which to apptoacp the
problems of QCD. stncg tﬁe pettu;batlve calculations with
massive (Higgs mecﬁanism)' §1udns indeed 1lead to Regge
asymptotic behaviour, a general multl-keggg formalism can be

combined with the disperslon relations to formally sum

- infinite numbers of perturbative terns. Combining this

procedure with' the maqslegs limit one obtains a framework in
which the principles of Léréntz invariance, analyttcit# and
unitarity are used to- Qum infinite sets of infra-red
divergent QCD pertucrbation theory diagrams.

3 by one of us (A.R.W.) that

It has recently been shown
the mass-shell infra-red divergences of QCD can be
successfully controlled and analyzed within this framework.
The analysis leads directly to confinement and to ;hixal
symmetry breaking, with high-energy diffractive scattering
lhdvn to depend sténiflcantly on both the gauge group and
the fermion con;ent of ‘the theory. The consequent
connection between QCD and: the Reggeon Field Theory C:itlcal
Pomeron makes the experimental measurement of diffraction
scattering at p-p collider energies potentially very

significant.4
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The dispersion relations developed in the sixties Qe:e
<seful in cercuin special contexts, but proved inadequate as
practical basis for dynamics. The twd principal
difficulties with those earlier dispersion relations were
flxit the break-déwn of two (or more) - variable dispersion
relations of Mandelstam type when Regge t:ajectotles'we:o
fi.finitely rising and secépd the occurrence of conplex
comains of integration. This second dl!tlcultf involved not
Galy the practical difficulty of dea}lng with complicated
formulas for these complex regions, but ﬁhe further and
deeper problem that some of the functions occurring in the
ctgcontlnuity formulas must be evaluated on unphysical
sheets. Unphysical sheets are fraught with uncertainities
and any attemapt to make serious .use of them has always
seemed impractical.

These technical difficulties can apparently be largely,
if not completely, circuavented if one is specifically
interested in the question of the dominant Regge behaviour
in certain qulti-negge regices of phase-space and,

accordingly, designs dispersion relations to display

precisely these particular terms. Many-variable dtspezsion‘

relations are certainly needed for this pucpose. However,
the problemn with infinitely rising Regge trajectories is
avoided by using a many-variable generalization of the
earlier fixed-t dlspetslon. relations instead of
many-variable dispersion relations of the Mandelstam type.

Pixing generalized "t-variables® and certain other variables

has the important added effect of burying many of the most
troublesome singularities in inaccessible regions. in
addition most, and very possibly all, of the remaining
complex singularities appear to be eliminated by going to
the asynpto;lc regime. The resulting "asymptotic dispersion
gélnttons' were first introduced by us in Ref. 5.

Our original description of the asymptotic dispersion
relations was both abstract and brief. Many details crucial .
for their application were not given. In view of the
above-mentioned applications.to QCD it seems now aéproptlate
to get forth a more detailed account. We begin on a
concrete note by giving here.a complete description of the
asymptotic dispersion relation in a particular case. This
cagse - -is sufficiently complicated to illustrate the general
ideas, yet sufficiently simple to be easily described in
full. - It is .the case of the six-particle amplitude in a
particular multi-Regge region. 1In this case all the needed
multiple discontinuity formulae have been derived both from

é

physical region S-Matrix methods” and from Axlomatlc. Pield
Thcozy.1
_ This paper is intended to be self-contained. A reader
wishing - to understand the applications that have been made
to QCD‘can begin here.

To . explain the general concept of an “asymptotiec
dispersion relation® let us‘éonslder the long-established,

fixed momentum transfer, dispersion relation for a

.-
four-particle amplitude A(s,t) that describes the scattering



of two spinless particles.' The analyticity property most

immediately detlved‘ from fleld theorye is thiss for fixed

spacelike t and sufficiently large 8 the function A is
analytic in the ®"cut-plane.® That {s A(s,t) has a domain of
inalytléity D: :

' D= {ls|>s;, Tms # 0, t tixed < 0}. (1.1
Thetetoref_applying the Cﬁughy formula to the contour shpvn

in Pig. 1.1 one obtains

1 s'A(s’,t) 1 °A 8°
‘A(.ot) » m{ (3'-3) '2"_' f s -8)

1 ls‘A, e+ 1  as'A(s t
M 1 ¢ ‘.f a3t mls"l;-a sls’:sf .

Is']~s
0 L (.2)

where I’ and I_ are respectively "right® and "left-hand"

cuts

I, = {Ins = 0, 8y <Re s < R}

I_»{Ims =0, -R<Res < - 30] (1.3)

and A(s,t) is the associated discohtlnuity of A(s,t).
Considerable effort has been devoted to the study of
the last two integrals 1n (1 2). Hany applicatlons of
unalytlctty depend on extendtng D down to small s and
gatabllahing a domain of analyticitx in the neighborhood of
the origin. The detailed results depend on _the particular
mass spectrum of the theory. The outer infégrul, over

[s|=R, reflects the subtraction content of the theory. 1In
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the context of Axiomatic Field Theory it can be ptoved9 that
Ai{s,t}) is polynomially bounded and that at most two
subtractions are required if t {is suitably restricted.
nowev§r, it the theory is ﬁegge behaved and we wish to study
only this behaviour then we can esgsentially forget about the
1a§£ two integrals ip (1.2i for the following well-known
reasons. -
Suppese thaE the ggplitude A{s,t) is Regge-behaved:

a(t)

Asit)  ~ B,(t)s%(%) 4 g () (-2 (%) (1.4)
' [s]e= "

auﬁpoae also that sqmewhete in the interval t‘<t<tb. the
quantity Re a(t) increases through -1, then one has in the
full interval

: . . ‘. 1 . .
T%T lﬂ:,l"so %,_g_ = 9(;) , vefee ), (s

Y Jafee

while in some subinterval

1 st et 3
T | y7)ap 8700 1, R®* .0, Re a(r)<-1. (1.6)

Consequently to evﬁluate the leading Regge behaviour of
A(s,t) from (1.2) one can begln with t such that Re a(t)<-l1,
and first take R to lntlnity. This leaves only the first
;hrge 1ntegrals in (1.2). They can be analytically
continued to a value of g‘suéh that Re a(t)>-1. Then (1.5)

glves a non-dominant Regge contribution. Thus one obtains

‘an csymptotic disgersion relation
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1 ds'A(s',t) 1 dB'A!!',t! )
A{s,t) = Il i’. ———L.—(S"S) + 2—'-{ xf (s'~a) + Ao, (1L.7)
. R .

. where the Regge behaviour of Ao is associated with exponents
a(t)<=1l. Por this result the exact choice of 8, in (2.7) |is
irrelevant. ' '

An 1mpqrtant.teatute of (1.7) is that the discontinuity
8(s,t) can be expressed as an integral over real physical
variables of a function constructed from physical scattering

tuhctions and their conjugates:
ats,t) = [ fap A 12 ' (1.8)
a

where dp- represents the appropriate phase-space integration
measure. Note that the explicit integrals in (1.7) do
contain the cuts (in the s-~plane) which the Regge behaviour
(1.4) explicitly exhibits.

The aim of this paper is to describe a generalization
of (1.7) and (1.8) to the six-particle amplitude. The
explicitly displayed integrals, have real integration
‘ regions and explicitly exhibited discontinuity formulas, and
are required to contain all contributions that have the cut
structure ‘required for certain multi-Regge behavlout; The
residual function Ao is required to be such that it can not
contribute to the leading multi-Regge behaviour in a certain
asymptotic reginme. ‘In general there will be a different
asﬁmptotic_ dispersion réiation for each multi-Regge
asymptotic regime. This is briefly discussed in Section 3

and is more fully discussed in Ref. S.
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In a gauée theory (with the Higgs mechanism operating)
the presence of massive vector gluons allows the asymptotic
dispersion relations to be used directly {in perturbative

calculations. It can be shown1

that the leading 1log
asymptotic behaviour ot' A(s,t) originates from the
{multi-Regge) region of the phase-space Pne in (1.8), where
the function An satisfies our multiparticle generalization

of (1.7). The multi-Regge behaviour of the function An is a

_generalization of (1.4), and is generated by the multi-Regge

regions  of other multiple " discontinuity integrals.
Consequently, a perturbative (high-energy) expansion can be
built up entirely through the asymptotic dispersion
relations. This is essentially the program initially begun
by Lipatov and co-wo:kers,1 "and considerably advanced by
Battels.lo

Alternatively, the conplpte. get of asymptotic
dlspetslong:glatipﬁg éid’bg'@peq;td'éeﬁAup:a general complex
angular momentun Qnd helicitgﬁ'kgkﬁhllsm ibr multiparticle
anmplitudes. The dispersion relations are‘used to decompose
these amplitudes into spectral components each of which can
be shown to have a generalized “Proissart-Gribov*®
continuation of its partial-wave amplitudes.ll These latter
amplitudes then provide the basis of a (generalized)
Sommerfeld-Watson representation. In addition
"croes-channel® unitarity equations can be analyzed in full,
and a set of “reggeon unitaricy® equations derived for each

Proissart-Gribov amplitude. These equations allow the
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perturbative gauge theory calculations of Lipatov et al. to
be seen as simply a building up of the Regge cut structure
required by Loteﬁtz invariance, analyticity and unitarity.
These technical developments provide the biéis of the QCD
infra-red analysis referred to aﬁove.

The lay-out of the present paber is as follows. In
Section 2 we describe a many -variable generalization of
Cauchy's. formula known as the  Bargman-Weil integral
!oruula;zwuand reduce it tofa nore~ainpic fore needed in the
asymptotic dispersion relations. In: Section 3 we briefly
describe the -variables uﬁed in these dispersion relations.
A -full description- is. given in. -Appendix A. Section 4
coptatna~~the application of the Bargman-Weil formula to the
six~particle amplitude. In that Section we consider -only
ﬁbe' terms arising from the normal-threshold cut structure.
This structure leads to a. total of . forty~four 'apéc;zal
functions®  in  the dispersion relation. In Section 5 ve
discues the Steinmann relationé and . the way in which a
certain class of cohplex cuts gets buried. Finally {n
Section 6 we discuss in general th ' complex singularities
and added contributions ‘a:o eliminated by passing to the
asynptotic regime. Reasons are given for believing that the
displayed integrals of Section 4 give all the contributions
that can contribute to the multl-hegge behaviour, but no
rigorous . claim {is made. Appendix A contains detailed
klﬁgmatic formulas, and Appendix B - contains the rvequired

discontinuity formulas.
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In this paper we shall discuss neither the applications
of the dispersion relation, nor its generalization to higher
a-plitpdebfidr even the diagrammatic notation of hexagraphs
used to count spectral contributions. Some discuassion of
these points can be :oqnd in Ref. 4 and Ref. 5, However, we
hope to extend the detailed account begdn in the present

paper to these topics in the near future.
2., THE BARGMAN-WEIL INTEGRAL FORMULA

- ~The dispersion relation that we derive in this paper,
together with %F§'ggqgrélififgoy gp h}gher—otder amplitudes
described 1in Ref. 3, is based on a many-variable
generiflzatlonlgf“ot”'the - Cauchy -integral formula. - This
*Bargman-Weil lqtégral<tormu1a5 ‘allows -one to express a
function of n complex variables that is analytic in a don‘in
bounded by smooth boundaries -(of ‘a certain kind) as a sum of
integral contributions: LBach ‘contribution is an integral
over  a-region of n real dimensions. ~“The integrand {s a
product: of n Cauchy-typs denominators ' times the
boundary-value of the function itself times a Bargman-Weil
nunerator function. This numerator function is a general
festure of the nany-varlgple formula and it is not uniquely
deflined. Certain speclil properties of our particular case
will allow us to eliminate ‘this numerator function and thus

obtain -simple uniquely defined formulae as our end result.
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We now describe the Bargman-Weil formula. The form we
give is not the most general one possible,but it is
sufficlient for -our ‘purpoéés. Suppose . a - function
t(z)-f}zl,...,zn) is analytic in a _.domain D that consists of
the entire space d:" of the n complex variables 2y minus a
set of cuts (c J:

D= [z ceC" 2 ¢ Cye i=1,..,N} . (2.1
Suppose that for each cut cj there is a Eunctlbn zj(z).
analytic in D and Cj such that Cj is the set of points where
zj(z) is real: ‘ ]
cy = {2 eC" In z(zy) = o}. (2.2)
Suppose that the intersection of every subset of n+l of the
cuts Cj has real dimension less than n. Finally suppose
that for sufficiently large R, £(z) is idencically zero for
{z|>R, where |z|2 = tlzilz. (This condition can always be
satisfied by 1ntroéuclng cuts Cj that defiqe the various
sides of a large "box"™ and setting £(z) equal to zero
outside of this box. ) '

Let A be a subset of n lndlces of the set (1....,N) and
write the corresponding set of zj(z) S as (21(1),...,zn(z)).
Let IA be the set of points z that lie on all of the cuts
cj, (Jed), and such that the determinant |az;/azi| is
non-zero: :

Lelze ™ 1m 20200, (jex),laz;(z)/azilno} . (2.3)
The determinant condition in (2.3) allows one to use the set
of variables x;-Re z;(jcx) as-a set of local coordinates on

Ix; It “z‘(zl,..,zﬁ) is the local inveise mapping from the
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set of variables z;(:) to the set of variables z then at any
point z of I, that 1ies on none of the other cuts C’. LY
one can define the n-fold multiple discontinuity

ey = [0 e e} o, xR atey, - (2.0

‘S;tq ‘the +i0 and -10”l;aiéate'the boundary-value, in the
va:;ables z;, from the upper and lower half~planes
tesbcct@vely. n® is the‘éumber of arguments x;-!o, and the

sum i{s our all 2" combinations of signs in the variables

A
2 {0,
xj i
If, for each 1, the entire set of points I, is the
image under a . single . continuous one-to-one _mapping
z*(xl.....xh) of an n-dimensional region Ii in x-bpace then

the Bargman-Weil formula asserts that for all points z in D
, l . .
£(z) = { £ (z) . (2.5a)

where

-1
2 2} (z)/02

ne 1\ .
z) = VT dxl._..dxn
. 1 z_‘l(x)

e

Ax A X D z zx X

(2.5b)
Yx'-z {z))...(X,-2.(2))

where D {(z,2(X)) 1is the Bargman-Weil numerator function

mentioned above. Note that the requirement that the

multiple~discontinuity on tx of the tunctioﬁ £(z) defined by

(2.5) agree  with the okiqinal multtp;e—dlscontinuity
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8*(2*(x)) demands, for all X in Ij, that

o  (a(x)13(X)) =

az‘(z)/uazl \ . (2.6)
z=3" (X)

The okp:easlon (2.5) holds also when some or all of the
regions rlx are not the images qt single one-to-one qapptngs
:l, but are rather the unjons of images of several such
mappings, provided that in such cases the sum in (2.5) runs,
for each A, over a collection of gseparate mappings zx(x) and
co::élpondlng regions I‘x that combine to cover exactly once
all the points z of I,. Por this result to hold it s
important that if zi(x) and i;(x) are two such mappings and

if, for some X, z;(X) f 4 z;(X) then

n‘(:;(x),:}(x)) -0 . . (2.7

This p:oberty ensures that the contribution to (2;5)
assoclated with a mapping z;(x) will give ne contribution Eo
the =multiple dlscontinuity at zz-z;(X) even though all the
denominators in (2.5) vanish at the inverse image X. of 3,.
The Bargman-Weil numerator function is"const:ucted 8o that
it satisfies properties (2.6) and (2.7). It has, therefore,
the effect of properly sorting out the contributions from
the various branches zt(X) of the inverse of zx(z) over I,.
The Bargman-Weil nuner#to: Dx(z,z') is not uniquely
defined. It can be taken to be the determinant of any arfay

of functions P:j(z,z') that satisfy

18-
2 (2)-323) = T P, (2,2°) (2, 2!) (2 e).
b 3 b} a4 i £ *
Note tha;
i\
22
P m) = g3, (2.9)

and hence (2.6) is satig!ted.' If we can find a z'pz such
that 1:(:’)-32(:) 1-1,...ﬁ:gﬂeﬁ the columns of the matrix
?;i(z,z') are llnea:iy dependent and the property‘(2.7)
follows.

In our cagse the multi-valuedness of the inverse
transformation associated with (2.7) does not arise.
Moreover the Bargman-Weil numerator enjoys the following

property:
o*ta’,2) = o}z, a)4 (3} (200 -3} a1} (20 ha)

3 A A
..og(zn(g')-zn(z))Bn(z',z), (2.10)

where the B; i=1,,.,n are vnti:c functions of z and 2° (in
our case polynomials). Consequently (2.5b) can be expressed

in the fornm ‘

' f ax,...ax_ 8}t %)) N

A
£ (z) = + A (2.11)
n Y )} 0’
(2ui) i, (x1~z1(;))...(xn-zn(z))

where A} = H A} d
o = 1k1Pog @
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x 1 ax,...ax_ s}z e} e __
My s PRy o . (2.12)
( i, T/l (xy-25(2))

‘ Bach function ‘31 has only (n-1l) Cauchy . denominators

and hence has a null n-fold discontinuity at z-x-zx(x). Thus

it does not exhibit the “maximal cut 'atructu;e"

characteristic of the multi-Regge behavlour-wlth which we
sﬁall be concerned and hence can be absorbed into the term
Aq which will be the Qenetalgzation of that appearing in
(1.7).

3. CHOICE OF VARIABLES

The problem of what variables to use in multiparticle
dispersion relations has been much discussed. The efforts

to obtain nasseﬁhell globhl analyticity domains from the

primitive analyticity domains of field theory augqest_thel'.

use of momentum y#rinbles. novevé:, the most lmportah:
singularities, namely the normal threshold branch-points,
are in invariant ~variables. But phys#cal—region
normal-threshold branch-points are present in eleven
different invariant variables for a 2-4 ptocesQ and in
sixteen invariant variables for a 3-3 process. Since for a
‘six-particle amplitude there are only 3x6-10=8 lndépendent
vatlablésv there seems to be no completely natural set of

invariant variables.

-17=

11,12 leads to the introduction of

Multi-Regge theory
variables defined" by sequences of Lorentz transformations.
In certain physical regions these are simply sequences of
rotations. - Sequences ‘ot tesonance production (with
arbitrary spin) are naturally expressed in terms of .these

variables, and a general complex angular momentum theory can

be developed. A detailed .desctiption of these "Toller”

‘variables can be found in Appendix A. Here we give only a

brief description together with the asymptotic forms needed
to derive the asymptotic dispersion relation.

I“‘5°“‘ generalization of the “fixed-t® dispersion
rolatl#n (1.7). to an n-particle amplitude 2 set of (n-3)
momentum ttanste: variables t1 is kept fixed. The (n-=3)
variables t; .axe associated one-to-one with the internal
lines i of a tree diag:am which we refer to as a Qoller
diagram (see Pig. 3.1, for example) .

In general a Toller diagram consists of n external
iines, one for each particle of the process, n~3 internal
lines i, one for each variable tie and n-2 vertices. Each

vertex has exactly three llnés incident upon it. The

‘variable ty is the square of the momentum energy Qo flowing

along line i if momentum-energy is conserved at each vertex
of the diagran. The remaining variables we wish to
introduce are associated with sequences of Lorentz
transformations that connect the rest frames of the various
patticles' of the reactloh. Such a sequence can be

represented by a path in the Toller diagram that connects

v
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the lines associated with these particles.

Pér each external line j there is a rest frame in which
the associated momentum energy vector is pj-(nj,o,o,O). ror
each {nternal line i there is a "rest frame®" In which the
momentum-energy Q; flowing along line { from left to right
is (0,0,0.4/-:1).

A path from one external line to another. represents a
sequence of Lorentz tranﬁtotnatlona that takes the rest
frame of the first line to that of the second by passing
through the rest frames of the internal lines on theupaih.
If the momenta associated with all internal and external
lines 1lie in the (0,3) plane then we need only those
transformations zij that are boosts in the (0,3) plane from

tho‘ rest frame of line 1_t6 tha€ of line j. Theae boosts

depend only on the t-variables and the external masses. ToO

pass to the general case we need in addition, for each .

internal line i, a (0,1) boost él that leaves the rest frame
form of ol'qnchanged, and for each vertex a (1,2) rotation

v,. that connects the rest frames of lines i and 3.

13

Bxact expreaiions for invariants-as functiona of the

tl' 81 and v‘j are given in Appendix A. For the rest of the

paper we will use only the toilowlng *asymptotic® formulae.
Writing 2z =coshB; then when |z1|0- \/; ve have

2p,°py 2, (t,w) 5 £ 2z, + terms of lower order

P S RIS A 3 i3k "k in the z i

_ k (3.1

where the variables t={t1} and "'{vij} will be held fixed in
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our dispersion relation, and fijk 1; one if the internal
llpc k lies on tlhie direct path in the §1agrau that connects
the external line i to the éxte:nai line j, and is zero
othorvt;&. _
The momentum-energy vectors of the initial particles of
the xeaciton are takeﬁ to be ainus the physical
enéxgy-momentum vectors. Thf sign convgntidns for the L7
are fixed by choosing 3131 to‘be thQ physical region for a
Particular process, Por the 'six-particle amplitude we
choogse that process to be the 6ne shown in Pig. 3.1 where
the lines entering from tbesbogtqﬁ’ot the diagram, that is 1}
and 6, represent initial particles ang those exiting from
the top, that is 3.3.4 and S, reoresent final paiticles.
(We shall adopt this ‘conveqylon throughout this paper.)
Thus the signs of the cxs in (3.1) are fixed by the

conditions

ey >0 tor 1,3¢(2,3,4,5}
cyy > 0 for 1,3¢{1,6)
Sq4 ¢ 0 otherwise . (3.2)

The dispersion relation tnyolvqs the entire large lztl
rtegion.  Thus the real :ogiéns of momentum-energy space
generated by reversing the Qigné of the 2 also enter.
Ravqrslng”the sign of one 21 {marked by a cross in Pig. 3.2)
twists the corresponding right half of a Toller diagram by
180° relative to the left half as illustzated in Fig. 3.2.

This leads to a new physicai region if the particles
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entering from the bottoﬁ are ‘again interpretated as initial
~and those emitting from the top as final. We refer to such

a twist of a Tollet'dlgg:an‘as.a signature twist.

4. THE ASYMPTOTIC DISPERSION RELATION

The Bargman-Weil formula of Section 2 will now be

ipplled to the six-particle amplitude considered as a

fﬁnctlon of the variables defined by the Toller diagram "ot

rig. 3.1. The variables t Car gy Wyge Wog will be held

tixed and so the amplitude A(pl,...pg) will be a function of
2, %, and'-:J only (!pr simplicity we take the external
particles to be spinless--the generalization of -the inal
formula to- spinnihg pa:tiéléa will be obvious). We write
therefore .
A(p(z)) = £(2) , i ) (4.1)
vere : T,
f(z) = t(zl,zz.za).‘ (4.2)
In this Section ' we shall consider only the
normal-threshold - btanéh-polnts. The higher-order Landau
~singularities corresponding to .ttiangle alag:ans, box
diagrams etc. will bé'constdered in Section 6. The normal
threshold cuts are defined by
: lns =0, ‘ . (4.3)
where 'j is the square of some sun of psn. Digcontinuities
across the cut (4.3) vanish outside of the region

2 . )
Re 8y > Hj >0, . (4-4)

-2}~

for some “threshold® mass My.
Por the Toller diagram of Pig. 3.1, the various
possible normal threshold cuts and their asymptotic forms

{up to constant coefficients) are l1isted below:
[ ] = (p,+ )2 L
23 " Pt P3 1
s s (P, +P.*t )2 S 2.2
234 = (P2¥P3?P, 122
s e (p,+ )2 S 2.2
24 Pyt Py 1%2
2
83345 = (P*P3*P,*P5) " © 33,3,
: 2
825 = (Patpg)” ¥ 3,373,
. . 2
8245 = (P*P*Ps) "~ 212,24
8 = (Py+P,*P 124 2,2
345 3°%4°%s 293
] n (P, +D.+P )z S 22,2
~ 235 2°F3°%s 17273
s s {py+p )2 S 2,2
s P3*Pg 2%3
8y, = (Pytp2 vz
34 3'°%4 2
s = (ptp )2 Sz (4.5)
45 4°%5 3 v
_There will be analagous cuts associated with the
diagrams obtained by making all posslblé combinations of
signature twists with respect to the internal vllnés of

rlq. 3.1. Bach of the cuts will have a dominant term

proportional to 21, 250 230 333, 235, OF "zlzzzs. In our
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discussion we shall keep only these leading terms, since our

intention is to obtain the dispersion relation that controls

the leading aiy-ptotic Regge behaviour. The cuts of f£(z)

ato'thototoza in the vartabl&a
zl“’. * 3, ,’2(') .2y 33(3) - 35

2‘(') - 31‘21 35(8) - ‘213, 16(3) d 31'233 o (‘.6)

io shall define the principal contributions to the
dispersion relation to be those vifh the haxin&l number (in
our case n-3s3) of asyuptoticcllybdiutlﬁqt- normal-threshold
cuts. These contributions are the only ones that can lead
to the 3-fold multl-aegge behaviour that we wish to'use the
dispersion relation to examine.

Yor reasons that wili be explained in the following
section we impose ihe generalized Stelnméﬁn relations: the
multiple discontinuity across a set of cuts is raequired .to
vanish 'l! any pair of cuts {n the set define overlapping

channels. (A pair of cuts define qverlapping channels 1if

and only if neither of the two complementary qe:s‘ot_

particles defined by one cut Lp'qontained within either of
the two complementacy sets of particles defined by the other
cut;) ’ .

The generalized Steinmann relations entail that each

principal contribution corresponds to one of the following

triads of asymptotic normal threshold cuts

é [
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330 3)350 3333, , (4.7a)
LIy 33;;,~3133¥3 : (477b)
3ys 85830 373424 (4.7¢)
By0 B33)0 38934 (4.76)
11,.:3. 31358, (4.7e)
'1?;' 33?3. 33,3, . : _(4.72)
350 31330 333, (4.79)

Consider first the contzibution of the triad (4.7a).

Then using the notation of Sectinmn 2, with )\ represented by

a we write

303 = 3(2) =3,
23(3) = 3,(2) = zizz
z;(:) - 3,(z) * 33,85 (4.8)

Equation (2.8) then involves a set of functions p;t(z.x)
that satisfy

- - a - a - a
(37%)) = (37x)) Py ¢ (37x)) Pyp * (337X5) By

& a a

(3;33-xy%3) = (2)°%)) Py + (3;-x)) Py + (237%3) Py,

(3353573 %03) = (3)-%)) PG+ (2mx)) 95, + (337xy) By -

There are many solutlons, but a symmetric choice is
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rfl- (1, 0, 0)

$2:" (% IEATE NUCRE °)
a 1 ; 2 1 (22,242, %,42.,%,+2%,X,)
P3y= (3 (22323%2%3%%%34 2% X300 § (232593 X5 23% T ExyXa)0

% (2:122021x2+32x1+2x1x20 . (4.10)
The determinant giving the B-W numerator is therefore

z, 4%,
02 (z,x) = | —§3%) (2z)23,42)x54x 242 x)). " (4.11)

Evaluated at z,=x, i=1,2,3, (4.11) gives
a 2 : s o
D™ {x,x) = 31¥2 ] - : (2.22)

Using the notation

(x:) - (xl'xlx2'81x2‘3) (4.13)

one may express the determinant in (2.5) as

|ax®/2x] = x2x, ‘ wan

which agrees with (4.12), as demanded by (2.9).

One might now try to insert (4.11) and (4.14) directly
tnto (2.5) in order to obtain Qn exéxession for. the
princlpgl‘contribution associated with the triad (4.7a).
However, 1in Section 2 .lt was stated that we would instead

use (2.11). But why is fz.ll).co:recg and (2.5) wrong? To

exémlne this _quéstion let us apply the original formula’

(2.5) to the simple function
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£(z) » [(:lécl)(zl-cz)(zlzz-ca)(xlzz-c‘)(zlzzza-cs)

-1 3
x (:1:2:3-c6ﬂ x 0, otlzl-m . (4.15)

One f£inds that in this case the powers of z in the numerator
in (2.5) cause certain contributions from the coublnatléns
of the suttﬁce |zl|-R and, the pole singularities to remain
important éveh as R*-; Superficially it might seem that £(z)
has such a strong fall-off when Izil'R" that any surface
integral at infinity would be negligible. But this turns
out to. be true only if we exploit (2.10{ and_vtitd the
Bargman-Weil formula {n the form (2.11).

_ The form (2.11) depends on the validity of (2.10). For
the triad (4.7a) it can easily be checked that (2.10) holids
with D‘(z(x) given by (4.11): one may take (non-uniquely)

1
" T2(5%%32, %, 42, X,-2,2))

%19

8- rapeny

E3=0. : _ (4.16)
Thus, for the principal contribution due to, for eéxample,
the  set of cuts in 8,30 ‘234' ’éans {(vhich satisfy the

generalized Steinmann relations and, according to (4.5), are

of the type (4.7a)) one can write
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3[ | dX,aX,dX, 8% (x(X)

2 - () [ —= . ;
"‘1"1“” (X-2,(2)) ‘xa'zs"’ )_

' a,., .
1 9834d8314982345 87 (833833453345
| ™ ] - 4 -
(2n1)3 | (82379330 (83347523) (8234 szus’( .
' _ T e

E where ' '23(’1')”:("' 123‘(ll,12)'i;(i1.32).
'i:cs";“x"z"a" This formula is a gluplo and natural
generalization of (1.7) in that it contains simple invariant
dopoi‘natofl and in the numerator only the nulﬁiplo
discontinuity itself.. |

The sane algébta and ‘atgunent applies also to the
triads (4.7b), (4.7c) and (4.7d). For the triad (4.de) one

has

‘2 T, W - )
D®(z,x) = (::1‘-3 + —%—1 + :éi?- + %::i) (4.18)

e 0% (x,x)+(3,-%,) % (:3+;13)¢(z3-x3) %_(zl+x1)'
. (4.19)
Thus (2.12) holds and (2.11) gives for the principle

contribution a form analogous to (4.11). The case (4.4f) is
more complicated but goes through in the same way with the '

choice
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Dtlz.x) = Dt(x,i)t(zlzzoxlxz)(% 2 24+ %I Z Xy
1 1
. - ri lzlaf j 8233)
+ (335x0%y) (% LS RS R RS "1"3)

‘+ (:13233-xlxzx3) (- % 2,¢ % ‘2) (4.20)

Pinally, for (4.7g) one may take

07 (z,x) = DY (x,x) + (25°x,) (% 2,+ % xz), (4.22)

and hence (2.11) can again be obtained.

The genetqlt:ed Stgtgnanhnxelations actually imply that
each of the triads llggganin {4.7) have a unique set of ‘j
cuts, in the physical rgglpn of Pig. 3.1, to which they
cottcspondf They are, iﬂ the~9:de; of (4.7)
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8230 82347 %2345 (4.223)
'45"’345f 82345 (4.220)
8347 8345° %2345 (4.22¢)
B340 %2347 %2345 (4.223)

| #8230 850 82345 . (4.220)
$24* %35¢ %2345 (s.22¢)
null set S (‘.‘229)

By using the triads " of invaciants each principal
éonttlbutlon .can be written in the form (4.17). The
particular combinationa (4.22) arise because all those
lnvaxtints_ listed are positive when all the z{as are
positive. This follows from (3.1) and (3.2).

If one reverses the signs of soqe"zia one obtains a new
physical region and a new set of positive invariants. For
.xanpli, in'the physical region given by the twisted !ollé;
diagram of Pig. 3.2 the triads of (4.7) would correspond to

the tblloving triads of non~overlapping cuts
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823”7 33, 8),3;(-3,), 823672) (~2,) 3, (4.23a)
8457230 837(-2))23, 833443, (-23)2, (4.23b)
null set , (4.23c)
null set ' (4.239)

' 8337310 845925, 8'2“4‘(:1)(,-:2):3 (4.23e)
-ll;f31(°82), 336f(-z2)13, 3236"1(°12"3 (4.13!)
'365""2); '14';1"'2)' '36'(;'2)'3 (4.23g)

Por each of the six additional physical regions obtained by
further combinations of twists of the 1lines i=1,2,3 we
obtain corresponding seté of non-overlapping cuts. Since
they are siaply obtalnéd by twisting either the 1l-line or
the 3-line or both with 'respect to either Fig. 3.1 or
Pig. 3.2 three of the regions give sets of the form (4.22)
while the other three gi@e sets of the form (4.23).

Proa (4.22) we obtain six principle contributions of
the form (4.17) while from (4.13) we obtain five principal
contributions. Altogether then we have 6xd4+Sxd=44 principal
cohtrlbuelons to our asymptotic dispersion relation. Thus

we can write

rat’ A
- ds; ds; dsi A"(s! ,s! ,s! )

Atpysee.pg) = | —L ,] ﬁfl_:’, (:? = :};xf, x,‘ (4.20)
(2w1) Rt PRt P VL VPV

+ A

. 0
where the sum over A is a sum over 44 triads of cuts tn
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invariant variables sxl, axz and .ll. The integration
regions are over real values of the '*1 and excend.trou sone
positive (but ittclevan}) finite value to intinity.

In the next Section we will discuss the discontinuities
that occur in (4.24) and observe that they can be expregsgd
as products of physical scattering luncttonn"and> their

conjugates integrated over physical inteéermediate atates. In

Section 6 Qo will argue that the higher-order handau ’

singularites do not give any _ additional principal
copttlbutlona. ‘

finally we note in passlnq that the non-equality
encountered above of the numbers of triads of cuts
associated with two physical regions related by a single
twist {c.f. . (4.22) and (4.23)) has the {mportant
consequence that signature properties of Regge singularities
resulting from such cuts must be more complicated than those

of four-particle amplitudes.

S. DISCONTINUITY FORMULAE AND

GENERALIZED STEINMANN RELATIONS

The Bargnan-Weil formula described in Section 2 applies
to ,. function of n complex variables, with cuts 1la szo,
j=1,... that enjoy the property that the {ntersection of
each subset of n+l cuts has real dimension less than n. But
all of the cuts 1lm 11-0 corresponding to normal thresholds

are associated with real analytic functions zi(z). Hence

% § B

they all contain the real n-dimensional set
is R la %,=0, Re z, sufficiently lacge, t={1,...n}}.
This difficulty iay bo‘cizcunvented by g9iving each of Ehe

surfaces 1 zj-o a amall displacement in imaginary space.

" (The tiny piece near each normal threshold is negligible.)"

Replacing each Z, by zjotc;‘sh;!ts each of the cuts slightly
away ‘from the real physical region and reduces the
intersection rfegion of any n of the normal-threshold cuts to
an n real dimensional region iying close to the physical
region. In addition, no (n+l) of these surfaces will
1qtotlect on any n-a;menslonat region. This fact is
illustrated in Fig. S.1. '

13

The original Steinmann relations refer to

boundary-values obtained from certain off mass-shell cones

in fleld theory. These relations have been extended to the
Generalized Steinmann relation referred to in the last
Beétlon. These generalized relations hold for certain on
mass-shell functions, which can be considered to be the
boundary~-vaiues from al; 2u sides of the eleven cuts (4.5)
that enter the physical region of Pig. 3.1, and the similar
boundary values coriespondtng to a1l 216 gides of the
nlxte§n normal threshold cuts entering the physical region
of Fig. 3.2. These boundary values, are used to fore the
3-fold multiple 'dlscoﬁtlnuity functions Al(sxl, slz, lxa)
occurring in (4.24). The 3-fold discontinuities have been
culcula;ed {independently) from both field-theoretic and
S-Matrix principles. They are given in Appendix B.
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The functions that satisfy the generalized Steinmann
celations are initially defined by "algebraic" uanlpﬁlation
of unitarity 1ntegrals, rather than by = analytic
continuation. Hence, & priori, they need not be the
bdﬁndaty values that occur in the' dl;peraion relation. A
thorough .discussioh of this questloq teqﬁltes a
éonsideraélon of the highe;-order singularltieQ and so
propertly belongs in the next Section. However, it may aid
in the undeistanding of th§ dlacontinuit) tq:nulae listed in
Appendix B and also better enp;ain the simplification
achieved by writing asymptotic dlspe:sion relations vif we
give a very brief heuristic out;ine of the o;igins of the

6 (ia the S-Matrix formalism).

bourdary value functiors
Let us write the S-Matrix as s=1+R* and its hermitian
conjugate as s*=1-R". Then the unitacity equation szyl

entails, formally, that

Rt = R {5.1)

1-R"
«] @®)". (5.2)

Using a conventional bubble diagram notation for R* anda R~
and tnse:tlng intermediate states into (5.2) one obtains for
all connected amplitudes (the notaﬁion is expiained |in

detail in Appendix B)

-33-

- {5.3)
= 2B |
(5.4)
where the sum is over all possible connected (minus) bubble

diagram functions containing those intermediate state

1n£09tationa allowed by the values of the external momentum

‘variables of the : : amplitude. This last amplitude

is, of coufsc. the physical region boundary-value from above
all normal-threshold cuts.
The series (5.4) displays explicitly all possible

normal threshold and higher-order Landau singularities, in

the sense that new terms appear in the se;ies whenever such
a (generalized) threshold is passed. The sum of these new
terms actually defines the discontinuity at such a
threshold. Hence ' the boundary-value from underneath any
particular normal threshold cut differs from : T e
which 1is given by the compleie sum in (5.4). by those terms
in  (5.4) which have a phase-gpace integration in the
relevant  channel. Extending = this argument, multiple
discontinuities can be defined from (5.4) by keeping only
those terms which have all the correspondiné phase-gpace
integrations. This leads directly to the formalae quoted in
Appen&ix B but with some exceptions. Por certain *bad

boundary-values® an ambiguity arises in that boundary-value

" functions defined by this process and the analogous process
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paged on éhe hermitian conjugate version of (5.4) do not
coincide. . The anmbiguity is dicectly due to bubble diagram
functions that enter the series only as higher-order Landau
singularities are encountered. The ambiguity can be
resolved by imposing the generalized Steinmann rela;lons and
the teau;t is the complete set of dlscontiﬁuity'tornulaé
given in Appendix B.

o The "bad. boundary-value functions® defined by this
procedure are, howvever, known to be boundary values og
functions that, in sufficiently small neighborhoods of the
physlcall region, are only plecewige analytic. Thus the
boundary values defined in ditfe;ent sectori of the real
region are not connected by patha of analytlé‘contlﬁuation
that remain always close to the real physical region. Prior
to the introduction of the asymptotic dispersion relations
they appeared unsuited for use in dispersion relations that
lacked complex cut;. It i3 remarkable, therefore, as we
discuss in the next Section, ‘that {n the asynptotlé
dispe:aion relation represented by the integrals in (4.24)
the bad boundary values enter only Qu the boundary values of
the functions defined in the three-dimensional analogs of
the small triangular regions i{llustrated in Pig. 5.1. These
regions are everywhere close to the real physical domain and
they shrink to zero as the small quantities cj in the

arguments zj+1cj tend to zero. CQnﬁequently'one may, in the

framework of the asymptotic dispersion relations, enjoy - the

consicderable simplifications entailed by the generalized
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Steinmann relations without incurring the complications

entailed by complex cuts.

Higher order tandau singularities may in principle also
give coaplex cuts arising from their occurrence in “"good
boundary-value® functions. This is briefly discussed in the

next Section.

6. HIGHER-ORDER SINGULARITIES

As mentioned in the introduction, a 1long-standing
difficulty with the idea of applying many-variable
dispersion relations to many-particle amplitudes has been
the - complications generated by the .hlgﬁer-order
singularities associated with triangle diagranms, box
diagrams etc. "Many years ago Fronsdal, Norton and

Hahanthappais

showed that a straightforward application of
the Bargman-Well .theoren to scattering functions leads
in general to complicated contributions from non-real
regions of momentum space. Evaluation of the associated
discontinuities requires analytic contlnhation of some of
the -cmplitudes‘appearlng in the discontinuity formulae away
froa their original region of definition and into unphysical
sheets. These sheets are fraught with unknown dangers and
difficulties, and continuation - into them appears
impractical. - Purthermore, .complex contributions far from

the physical region would be likely to ruin the generalized

Proissart-Gribov continuations, upon which the development
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of mnulti-Regge theory from the asymptotic dispersion
relations is baséd.l1 ) ]
A‘prlnciple virtue of the'élsperslon relation désctlbed
above Lg.that (aﬁarg txém the generalized "subtraction term®
Ab in (4.24) which results from surfaces at iﬁflnity, and
sufficiently small finite surfaces) all the -three-fold
dtgcontinuitigs are ‘evéluated. directly in the physical
region. This - is automatic for the normal threshold

lnte;sqctions described in Section 4. But it appears to us

quite 1likely that these will in fact be the only terms that

will have the asymptotic conbination of cuts that are’

required for the cor;espondlng multi-Regge behaviour.
" There are twé main points. The first.conce;nﬁ the bad
" boundary values referred td~§fie£1y in the last Section and
defined piecisely in Ref. 6. As we noted there "bad
tunctions? have bgd analytic properties. But each good
function (in each real sectqr)'has béen shown to be the
bounda:y;valug of a single analytic function: ﬁhe pasts
lying on the opposite sides of anyfsingulari;y surface lying
in the_ physical region are connected by a path of analytic
contlnuaglon that makes an arbitrarily small detour around
this singularity surface. " In contrast the bad functions,

like the bubble diagram functions . from which they were

constructed, have no such continuations, and hence are not

boundary values of single analytic functions.
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If we had to consider the cuts attached to the surfaces
where ‘the bad functions change their analytic form we would
be in danger not only of disrupting the'crﬁssing properties
of amplitudes (by the extension of the cuts to infinity) but
also of obtaining comblgx contributioﬂs‘ to our dispersion
relation, with the ensuing problems already described above.
It,'however. we can show that the bad boundary-values are
buried in the analogs of the small triangle of Pig. 5.1, as
asserted in the last Section, then in the first place any
contribution from the cuts involved in defining them will
disappear from the integration region aa the cj tend to
sero, in the second place these contributions to the
dispeision integral will, in any case, ohly affect the value
of the function inside the little triangle and hence have no
bearing at all on the function outside this region.

The bad functjons are those that correspond to A&
boundary-value from below two 3+3 6ver1appinq cuts and above
two 2+4(or4+2) cuts, or from above the two 3+3 overlapping
cuts and below two 2+4 (4+2) cuts. The possible bad
contigurations are shown in Pig. 6.1, where either the upper
élgna or ﬁhe lower signs must be used throughout.

suppose first that, with the notation of FPig. 6.1, the
g-variables associated with the four cuts are

By ® C34%2r 32 T C35%2%y
By = Cgu23390 8By ¥ Cpg272,23- - (6.1)

Then
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€24%35
€34%2s

.1.. - c".zsar c = >0, ‘5.2,

where c>0 1is implied by (3.2) (or more generally by the

combination of |1m ejlso with the condition that Re s, {is

3
above threshold). But (6.2) is incompatible with the sign

requiremsents froa Pig. 6.1 which are that
1s sy, In s, > 0; 1a aé. 1; g8 <0, (6.3a)

or
1. .1‘ 1- .‘ < o‘ ) 1Y 32' 1. '3 >0 . (5.3b)

_The incompatibility of the condi;ions (6.3) with (6.2)
neans that the region from which the boundarv-value,
represented by Fig. 6.1, is aﬁproached ‘nust, for
sufficiently large Re 2,, vanish (when the cj's of the
proceeding Section are set to zero). The boundary value |is
indeed “hidden* 1Bsido a réglon of the form of Pig. S5.1.
tbup the aaynbtotlc dispersion :61atlona neatly $uxy the
regions of (co-plex)_nﬁmentuu space where the worat complex
singularities occur.

Box diagrams that do not map in a planar manner onto
the Toller diagram that we .are congidering must also be
examined. For example, if the particles. 3,4 and S of
rig. 6.1(a) are identified with particles 4,3 and 3
respectively of Fig. 3.1, then

LA [
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83 = Cys330 93 " C35233%,
8,y Czszlxzza, 8, * C25313233 N (S.f)

This is again fncompatible with (6.3). But now the cuts in

and s, that bound the'bad boundary value region are in

8 4
fact asymptotically equivalent. This means that
sub—-asymptotically thea§ cuin are distinct, as illustrated
in Pig. 6.2. However, the contribution of such a region to
the dinéexsloﬁ' relation would be associated with a triad
that involves two asymptotically eéuiValent cuts. But
triple-Regge asymptotic behaviour can not arise from such a
triad, since this behaviour has the phase-structure of a
function with thcree asynptoticaliy inequivalent cuts.

The discussion of tﬁe bad boundary configurations (6.1)
and (6.4) covers, in essence, all of the possibilities and
hence one finds that no bad boundary value complicationa can
occur in the principal contributions to (4.2‘).

The second main point to be conaldezed when discussing
complex singularities contributing to the principal
contributions of (4.24). concerns  the higher-order
singularities occurring in. the good boundary-value
functions. More work is needed on this. But we think it
likely that these singulagities will not contribute to the
asymptotic dispersion relations. . Por the triple
discontinuity associated with the next most complicated
contribution, namely that arising from two normal-threshold

cuts and one triangle~diagram cut vanishes, while the
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:1ngular1tie§ aanéciated with zore complex diagrams tend to
be shielded by tﬁe cuts associated wlfh less complex ones,
dus to the hiétarchy gtructure. We hope to be aboe to give
a detailed proof that hiéhér-o:der angulaxtties do nbt give
principal contributions to asymptbtlc dispersion xelailona

in the near future.
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APPENDIX A. ANQULAR VARIABLES

To introduce, precisely, the varlaﬁles used in the
text, it will suffice to define standard frames 1-6 as
indicated in Pig. Al. These frames are defined as !ollows:-
Frane 1

Ql 1ies in a rest frame, Plland Pa lie in the (0,3) plane
Prame 2 )

QL lies in a rest frame, ?3 and o2 lie in the "(0,3) plane

‘Prame 3

Q, lies in a rest frame, P, and 9, lie in the (0,3) plane
Prame 4 ‘

dz Lici in a rest frame, P‘ and 03 lie in the (0,3) plane
Fcame 5

Q; lies in a rest frame, P, and Q, lie in the (0.3) plane
Prame 6 4

Q3 lies in a rest frame, Pg and Pg lie in the (0,3)

plane.

We riext define sets of Lorents transformations as
follows:
A. A (0,3) boost n, f=l,...6 takes particle 1 from its
rest frame tO frame k éttached to the vertex where tpo

particle line is attached.

'B.  (0,1) boosts By, 8,0 By transform from frames 1 to 2, 3

to 4 and 3 to 6 cespectively.
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VC. ‘A combination of an (1,2) rotation w12 ("23) and a (0,3)
boost E12 (£ij),transto:-| from frame 2 to 3 (4 to 5).

The boosts n,, can be expressed in terms of masses m, and

the tl e.g.

p 0§-n§+n§
sinh n = .
2l iolaz
The boosts ‘12' {23 can also be expressed in terns of the LA
and the €, e.9. )

2.2 2
Q) +0y¢my

coshty2 " ~mg, -

‘The variables B,, B,, By, Y12 and w,q are paranete:g and can
be used to express any of the external momenta in any frame
e.g. in trame 1 ‘

Ry . (-2co?hq§1,0,O;nzélnhnzl) ’

in frame 2:

P, = (-chlhnzlcoshal, nzcoihnzininhal,o.nzsinhnzl)
in frame 3 -
. Py = (nzcoshnzlccshﬁlfoshzlz—nzslnhnzlsinhc12 ’
-:co-hnZIsinhBlcosulz,m:coshnzlslnhﬁlsinulzr
lzsinhhzlcoshﬁlzémz:oshnzlconhe1sinh£12)

in frame Cv

-l S
Pz L] (nzcoshn21cosh81coshcchoshﬂz—nzsinhHZIsinhElzcoshﬂz-
-nzcoshnzlstnhelcosulzsinhﬂz, mzcoshnzlalnhﬂlcosmlzcoshﬂz+

+i2coehnzlcoshﬂlcosh£lzslnhaz-nzsinhnzlalnhilzsinhsz,

izcoahnlzslnhalatnulz,nzslnhnzlcoshz12¢n2coshn21cosh8Lsinhzlz),

and so on. To évaluate Pin we s8imply have to transform both
momenta from their rest frames to a comoon frame. For
exanple, to evaluate P2-95 we can use frame 4 where 92 has
the form given above and Ps has a form analagbu; to that of
’2 in  frame 3 but .with 810—83, Wyt 512"523‘ This

leads to
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’2'35 - (-chIhn21cospBlcosh(lzgoshaz-nisinhn213£n§5lzcoshsz
--2coshnn-1nhelcosunsin_ha2]n(gscoshnsscoshascoshcz3
+-sllnhn5‘linh(23]f[u2c01hn213;nhslcoaulchhhaz¢
lzco.hnzléOIhﬂlcoshtlzslnhﬂz--zlinhn21l1nh(1251nh82]x
[mgcoshng cosw, y8inhB ] -mycoshn,, sinhB, sinhw, ox
_ x-scOlhnsgsinhB3stnu23-(-2ninhn21coshzlzo
-2c0lhn21colb8191nh£12]u[QslinhnSSco-hzza-

l5¢°lhn56C°Bhﬂ3linh€33l

((n,coshn21cosh(12~uacqlhn219°lulz)x(-sc05hn56cosh€23]

l-co-nﬂ1

%2
5.,2coshf +o

3 3

. u'lizza

- 25 8,8.3 '

2 "1%2%)

vhere Cag * -2nscolhnnc09hn“(coshtncolhz23-cowucoshl:2J

+ °°'h512°°'“23’°9'“12°°‘”23’ .

Clearly any other c:‘j can be sinilarly evaluated.

-coah81°° #lnzcoshnzlcosu12+-2coshn21c0lh£12lxluSCOlhnsscosuzal}
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APPENDIX B. MULTIPLE DISCONTINUITY FORMULAE

rd: completeness we glvo here exact formulae for the
triple discontinuities A (s‘ ,slz,sx ) appearing in (4. 24).
1
To do this wve nust introduce some notation.

Por the full s-matrix we write

] m+l
S(Py = PriPpeyr=**P,y) = 2 RS me2
m. n (B1)

while for s* we replace the + by a - and for the unit
operator we replace the + by 1. We make the usual cluster

decomposition e.g.

H+E = z*; + I LE+I T

(B2)
so that a bubble represents a connected amplitude together
with a momentum congervation &-function. A phase-space
lnﬁogtation and sum xepro;onted by a shaded strip 1is a

unitarity sum over intermediate states e.g.

T+ -l

That is the strip implies a sum over all particle numbers N
of intermediate 1ines, together with an integration or sum
over all distinct sets of variables associated with these

lines
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N d‘P{

2z § <5 E [ 5 ok enseish@
im}l t‘ i=l (2x) i

vhcro@u the invenc of the usual symmetry number of the

state. Let us further define

=5

I+

I+

- 22 +

A | P

¢ . z=+— _ dAd+—tf
bz, = bz ~ A Tz

We can now define 3-fold discontinuities as follows

‘("x'lz ,-x3) = A(""Al’l°"xz*‘°"x3*i°'f")
"""‘11“°"x2“°"13"°'"f’
“A(...8, *i0,8 ,-{0,8 ,+10,...)

xl ’ xz ’ xl ’

'“‘Q-"ll"°" A;f°?' A;10....)
’“"‘"xl"°"xz“°"x3"°'""
+A(...lxl-lo}l;ztlo,éxaflo,...)
""'"xlf‘°"xz;‘°"x3“"""

-Alss.8, ~i0,8, -i0,8, ~{0,...)
‘1 ’ xz 4 x, ’

(83)

(84)

(BS)

(B6)
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The generalized Steinmann relations imply that this

triple discontinuity is independent of the boundary values

of the invariants other than 8, +8, ,3, . In a 2-4 physical
: 1l 2 3

region the 8, will be a triad of the form listed in (4.22).
i

These are of two kinds, either two 2-particle chanﬁels and

case

where we define

and similarly

Alternatively the three 'll

22277 -
* Sz

(@) B(FPIA(S,3,5,5 5534

= ZZ

- the total energy, for exasple 8,3s 85 and 8,4, in this

=§
=::(::)EZ{EEEE§1:ZZ§
Z20Y: g
S

%234 %2345 and in this case

(B7)

(88)

(B9)
3
1 ZZ
x
(810)

are nested, for exn-plo‘sza,
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(2m* B(ZPi) A(Sy4,S36S3es)

23 (811 2
3 3 (B16)
6
2
- 3
S
o (812)
i . {B17)
In a 3-) physical region the s, will be a triad of the forn
: : . ‘ | S .
listed in (4.23). Again there are two possibilities. Both ' All possible triple discontinuities peeded for (6.24) are of
contain an {nitial 2-§a£t1c10 channel and a final 2-particle ' one " of the four forms (B7), (B9), (Bll) or (Bl4). The

channel with either the total energy as a third invariant, alternative formulae given are always obtained by simple

for example 8,4, 8,, and 8, in which case

(2"")4 8( %pl ) A(SZB-SI-%'SZ'SG)

= |‘ +« zzz _ ‘ +C - + 3(313,
s . - e '

= - . r o= ' (m14)

+ >- 7+ (815)

applications of unitarity.

. or the third invariant is a cross-energy, for example 8147

536 and 0“5 in which case
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PIGURE CAPTIONS .- ‘ Figures

8l

rig. 1.1 The Cauchy Integration Contour for (1.2)--the
Domain D is the compliaent of the :haded region.
rig. 3.1 A Toller diagram for a process with sinatemal

particles.

rig. 3.2 The reversal of the sign of 3, changes . the

physical region. to that represented by the
Toller Diagram obtained by twisting through 180°
the two parts of the diagraan linked by the line
1. '

rig. S.1 Three surfaces la 21-0, ia 22-0 and 1lm :14:2-6

rig. 1.1
intersect - on the ceal - region (z 2.
s 3 =1n :2-0]. A slight shift of each surface
shifts the intersection of each piir of surtaces
to a dtltinci,z-dinﬁnsiqnal tegion. ' o : 2 3 4 5
rig. 6.1 Bad bonndaxvaalueé. The four dashed 1lines Z
co:tcspbnd to the cuts and the + &ign (~ sign) ! Zz 23
at the end of a dasheﬁ line represents the fact % Gﬁ; L ;;3 33> | Fig. 3.1
that the boundary value 13 to be taken above o .. 1 - 6
{below) the associated cut. ‘
rig. 6.2 Asynptothclly'equlyalent cuts become distinct
cub-asynpto:lcally and ‘expose a region
associated with a bad boundary-value. ' 2 3 4 5 |2 3 6
. I
] 6 Il I4 15

rig. 3.2
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