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Abstract 

The concept of an asymptotic dispersion relation associated with 

multi-Regge asymptotic behaviour is introduced. 'A particular example 

for the six-particle amplitude is derived in detail. In this example 

there are forty-four distinct spectral contributions, each of which is 

expressed as a triple integral over physical region invariant variables. 

The integrands are just the corresponding invariant dispersion denomi-

nators together with three-fold discontinuities which are expressed as 

integrals of physical scattering functions and their conjugates. 
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2. Introduction 

Experience vith quantum electrodynamics suggests that 

the divergence problems of quantum chromodynamics vill be 

resolved only by making incisive use of the principles of 

Lorentz invarlance, unitarity and analyticity. These 

principles are formally satisfied by the individual terms of 

the QeD renormalized perturbation expansion, but tbe 

severity of the aass-shell infra-red divergences ie 

generally thought to require a non-perturbative formalism to 

define the theory. On the other hand, non-perturbative 

approaches vhich seem to have the most potential for 

explicit calculation such as bag mod'!!!.s and latti"e theode!: 

dhrupt the basic principles mentioned above and hence may 

not yield a satisfactory resolution to the divergence 

problems. 

Diapers ion relations provide a well-structured 

non-perturbative framework that retains the properties of 

Lorentz invariance, unitarity and analyticity. In the 

context of non-abelian gauge theories (with the Higg~ 

mechanism operating) these' relations have been found to 

pr'ovide a highly efficient and practical way of generating, 

In'reorganized form, the asymptotically dominant (leading 

log) -, contr i but ions' of perturbation theory at bigh energy. 

One may see this by comparing, for example, the sixth and 

eighth order calculat:1ons of Lipatov et al. l with he more 

traditional 'eyn8Mn diagram calculatlons. 2 

r. 

-3-

But beyond this matter of practical expediency 

dispersion relations have the important virtue that they can 

naturally incorporate t~e general property of Regge 

asymptotic behaviour. Thus especially and particularly In 

the area of asymptotic behaviour the dispersion relations 

provide a natural vehicle vith vhich to approach the 

problems of QeD. Since the perturbattve calculations with 

.assive (Higgs mechanism) gluons indeed lead to Regge 

asymptotic behaviour, a general multi-Regge formalism can be 

coabined with the dispersion relations to formally sua 

infinite numbers of perturbative terms. Combining this 

procedure with' the massless limit one obtains a framework in 

which the principle's of Lorentz lnvadance, analyticity and 

unitarity are used to sum infinite sets of Infra-red 

divergent QeD perturbation theory diagrams. 

It has recently been shown) by one of ua (A. R.N.) that 

the .ass-shell infra-red divergences of QeD can be 

successfully controlled and analyzed within this framevork. 

The analysis leads directly to confinement and to chiral 

symDetry breaking. with high-energy diffractive scattering 

ahown to depend Significantly on both the gauge group and 

the fermion content of the theory. The consequent 

connection between QeD and "the Reggeon Field Theory Critical 

Pame'ron aakes the experimental measurement of diffraction 

scattering at p-p colllder energies potentially very 

aignificant. 4 

,',- .. 
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The dispersion relations developed in the sixties were 

48eful in ~erL.in special contexts, but proved inadequate as 

rractical basis for dynamics. The two principal 

difficulties with those earlier dispersion relations were 

firat the break-down of two (or .ore)-variab1e dispersion 

re1ationa of Mandelstam type when Regge trajectories were 

~.finitely rising and second the occurrence of complex 

(~ains of integration. This second difficulty involved not 

Gnly the practical difficulty of dealing with complicated 

formulas for these complex regions, but tbe further and 

.eeper problem that some of the functions occurring in the 

~lscontinuity formulas must be evaluated on unphysical 

sbeeta. Unphysical sheets are fraught with uncertainities 

and any atte.pt to make serious .use of them has always 

seemed impractical. 

These technical difficulties can apparently be largely, 

if not complGtely, circumvented if one is specifica~ 

interested in the question of the dominant 

in certain mu1ti-Regge regiaes of 

Regge behaviour 

phase-space and, 

accordingly, des.igns dispersion relations to display 

precisely these particular terms. Many-variable dispersion 

relations are certainly needed for this purpose. Bowever, 

the problem with infinitely rising Regge trajectories is 

avoided by using a .. any-variable generalhation of the 

earlier fixed-t dispersion relations instead of 

.. ny-variable dispersion relations of the Mande1stam type. 

Fixing generalized -t-variables- and certain other variables 

.. I~~ 
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has the important added effect of burying many of the .ost 

troubleso.e singularities in inaccessible regions. In 

addition .ost, and very possibly all, of the remaining 

complex singularities appear to be eliminated by going to 

the asymptotic regime. The resulting -asymptotic dispersion 

relations- were first introduced by us in Ref. 5. 

OUr original description of the asymptotic dispersion 

relations vas both abstract and brief. Many details crucial. 

for their application were not given. In view of the 

above-mentioned applications ... to oeD it seems now appropriate 

to set forth a more detailed account. We begin on a 

concrete note by giving here.a complete description of the 

asymptotic dispersion relation in a particular case. This 

case· ·is sufficiently complicated to illustrate the general 

ideas,.yet sufficiently simple to be easily described in 

full. It is the case of the Six-particle amplitude in a 

particular multi-Regge region. In this case all the needed 

aultiple discontinuity formulae have been derived both from 

physical region S-Matrix methods6 and from Axiomatic' Field 

neory.7 

This paper is intended to be self-contained. A reader 

wishing - to understand the app1icat·ions that have been made 

to QeD can begin here. 

To explain the general concept of an -asymptotic 

dispersion relationa let us consider the long-established, 

fixed momentum transfer, dispersion relation for a 
.~ 

four-particle amplitude A(s,t) that de6cribes the scattering 
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of two apinless particles. The analyticity property IIIOst 

i_edlately derived frOia field theory8 is this. for fixed 

spacelike t and sufficiently large s the function A is 

analytic in the -cut-plane.- That is A(s,t) has a domain of 

analyticity D: 

D • (Isl>so' Im a ~ 0, t f1xed < 0). (1.1) 

Therefore . applying the Cauchy for.ula to the contour shown 

in Pig. 1.1 one obtains 

A(s t) _ 1 { ds'A(s',tl + _1_ f dS'Afs·,t) , r.r (s'-s) 2ai (s -s) 
+ 1_ 

+ 1 f ds'Als',t) + 1 f dS'AIS'f t ) 
m Is'l-s (s -s) IiI Is'I-. (a-8 

o (1.2) 

where 1+ and 1_ are respectively -right- and -left-hand­

cuts 

1+ - (I. s • 0, So < Re s < a) 

1_ - (I. a - 0, -R < Ie a < - aOJ (1.3) 

and 6(s,t) is the asaociated discontinuity of A(s,t). 

Considerable effort haa been devoted to the study of 

the last two integrals in (1.21. Many applications of 

analyticity9 depend on extending D down to small s and 

establishing a domain of analyticity in the neighborhood of 

the origin. The detailed resulta depend on the particular 

mass spectru. of the theory. The outer integral, over 

Isl-R, reflects the subtraction content of the theory. In 

.. 
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the context of Axiomatic Pield Theory it can be proved' that 

Ma,t) is polynOlllally bounded and that at lIOat two 

subtractiona are required if t ia suitably restricted. 

Bowever. if the theory 1s Regge behaved and we wish to atudy 

only this be~av10ur then we can essentially forget about the 

last two integrals in (1.2) for the following well-known 

reasons. 

Suppose that the am~~itude A(s.t) is Regge-behaved. 

AC_.t) ~ 8+(t).a(t) + 8 (t) ( __ )a(t) 1-'" - (1.4) 

Suppose alao that somewhere in the interval ta<t<tb, the 

quantity Re art) increases through -1, then one has in the 

full interval 

1 1 da'AJs' ,t) < (1) ( ) m (s -8) - 0 it. ta,tb ' 
Is'l-so lal'" 

(1.5) 

while in some subinterval 

1 f ds' CIICt) m "('8T:.s, - a ·0, ae aCt)<-l. 
la'I-· ... 

(1.6) 

Consequently to evaluate the leading Regge behaviour of 

A(S.t) frca (1.2) one can begin with t such that Re a(t)<-l, 
~ 

and first take R to infinity. This leaves only the first 

three integrala in (1.2). They can be analytically 

continued to a value of t such that Ie a(t»-l. Then (1.5) 

3ives a non-dominant aegge contribution. Thus one obtains 

an ~symptotir. dispersion relation 

~ " 
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,..S t). I J da'A(a',t) +.2...,. f da ' 4 (a',t) + A (1 7) 
, liT (a'-s) 2w1 (s'-a) 0" 

1+ 1_ 

wbere the Regge behaviour of AO is associated witb exponents 

~(t)~-l. Por this result the exact choice of So in (1.7) is 

irrelevant. 

An important feature of (1.7) is that the disqontinuity 

A(s,t) can be expressed as an integral over real physical 

variables of a function constructed from physical scattering 

functions and their conjugates. 

A(s,t) • I J d".IA 12 • • 
(1.8) 

where d". represents the appropriate phase-space integration 

measure. Note that the expUcit integrals in (1.7) do 

contain the cuts (in the s-plane) which the Regge behaviour 

(1 •• ) explicitly exhibits. 

The ailll of this paper is to describe a generalization 

of (1.7) and (1.8) to the six-particle amplitude. The 

explicitly displayed integrals, have real integration 

regions and explicitly exhibited discontinuity forlllulas, and 

are required to contain all contributions that have the cut 

structure required for certain lIIulti-Regge behaviour. The 

residual function AO is required to be such that it can not 

contribute to the leading multi-Regge behaviour in a certain 

asymptotic regime. In general there. will be a different 

asYmptotic dispersion relation for each 

asymptotic regime. This is briefly discussed 

and is more fully discussed in Ref. S. 

multi-Regge 

in Section 3 

i) 
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In a gauge theory (with the Biggs mechanism operating) 

the presence of .. ssive vector gluons allows the asymptotic 

dispersion relations to be used directly in perturbative 

calculations. It can be shownl that the leading log 

asymptotic behaviour of A(S,t) originates ftc,. the 

(lIUltl-Regge) region of the phase-space "n' in (1.8), where 

the function An satisfies our multiparticle generalization 

of (1.7). The multi-Regge beha.iour of the function An is a 

generalization of (1 •• ), and is generated by the multi-Regge 

regions. of other multiple discontinuity integrals. 

Consequently, a perturbative (high-energy) expansion can be 

built up entirely tbrough the asymptotic dispersion 

relations. This is essentially the program initially begun 

by Lipatov and co-workers,l and considerably advanced by 

Bartels. lO 

Alternatively, the cOllplete set of asymptotic 

dispersion ·relation~ can ·be· ulled. to set up a general complex 
. . ..... '.' .' 

angular IDOmentum and heUcity .. fo·i~aU8111 j·or lIultiparticle 
. . .. .... ',' ',' 

amplitudes. The dispersion relatlons are used to decompose 

these amplitudes into spectral components each of which can 

to have a generalized ·Proissart-Gribov­

continuation of its partial-wave amplitudes. ll These latter 

be shown 

ampUtudes then provide the basis of a 

Sommerfeld-Watson representation. In 

(generalized) 

addition 

-cro£s-channel- unitarity equations can be analyzed in ful~ 

and a set of -reggeon unitarity- equations derived for 

Proissart-Gribov amplitude. These equations allow 

each 

the 
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perturbative gauge theory calculations of Lipatov .t al. to 

be .een as simply a building up of the aegge cut structure 

required by Lorentz invariance, analyticity and unitarity. 

These technical developments provide the basis of the QeD 

infra-red analysis referred to above. 

The lay-out of the present paper is as follows. In 

Section:2 ve describe a many -vadable generaUzation of 

Cauchy's formula known as the Bargman-M.il integral 

formula U " and reduce it to a IDOre ·simple for. needed in the 

asymptotic dispersion relations. In,: Section 3 ve briefly 

descdbe the· var iables used in these dispersion ,elations. 

A "full descdption Is ,given in Appendix A. Section 4 

contains'" the appUcation of the Bargman-Weil formula totti'e 

six-partic}eampUtude. In that Section we consider onfy 

the· terms arising from the normal-thleshold cut structure. 

Thi. structure leads to 0, 'total of forty-four -spectral 

functions- in ,the disperSion relation. In Section 5 w. 
discuss the Steinmann relations and .. the vay 1n vhich a 

certain class of complex cuts gets buri.d. Pinally in 

Section 6 we discuss in general hov complex singularities 

and added contributions are eliminated by paSSing to the 

asyaptotic regime. Reasons are given for believing that' the 

displayed integrals of Section. give all the contributions 

that can contribute to the multi-aegge behaviour, but no 

rigorous, claim is made. Appendix A contains detailed 

kinematic formulas, and Appendix B· contains the tequired 

discontinuity formulas. 

""1 

"".". 
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In this pap.r v. sball 4iscuss neither tb •• pplic.tions 

of the disperalon relation, nor its g.ner.liz.tion to high.r 

.wplitud.stor eV.n the diagr .... tic not.tion of hexagr.phs 

a.ed to count spectral contributions. so.. discuasion of 

theae points can be found in Ref. 4 and Ref. 5. Bow.ver, ve 

hope, to ext.nd the detail.d account begun in the pres.nt 

paper to the.e topics in the near future. 

2. TIll BARGMA!HfEIL INTEGRAL FORMULA 

"'-!b. disperllilon'reiation 'that ve dledve in thls paper, 

togetHer vith ,its generalization to higber-order amplitudes 
,I" , . ,,' ... ".'c. ' , .. , .. 

d •• cribed 1n Ref. 5, is based on a many-variable 

CJeneri:Uaationl~ 'of' , the "Cauchy integul formula. - '11Iis 

-Bargman-Meil integral· formula- 'alloweone to express a 

function of n complex variables that i8 analytic in a domain 

bounded by smooth boundaries '(of'acertain kind) as a SUd of 

integral contrtbutions~ 'Bach contribution is an integral 

over'a'region of n real dillensions.Tht! integrand is a 

product, of "n Cauctly-type denOlllinatora' ti .... the 

boundary-value of the functionlt •• lf time. a Bargman~.il 

numerator function. This numerator function is a gen.ral 

f.etur. of the .any-varlabl. formula and it i. not uniqu.ly 

deUned. Certain special prop.rti •• of our particular cas. 

vlll8'llow ue to .UJllinote this numerator function and thus 

obtain '·simpl. clliquely defined formulae as our .nd r.sult. 

'" 
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We now de~cribe the Bargman-Weil formula. The form we 

give is not libe most general one possible, but it is 

sufficient for 'our purposes. Suppose a function 

f(a).f(&l •••• '&n) is analytic in a_~o.ain D, that consists of 

the entire space «:n of the n complex variables &i minus a 

set of cuts {Cj }: 

D. {a c en, z t C
j

, j.l, •• ,N} 

Suppose that for each cut Cj there is a 

(2.1) 

function Zj (z) , 

analytic in D and Cj such that Cj is the set of points where 

Zj(Z) is reall 

Cj • (z c en, Im Z I Zj) • O}. 12.2) 

Suppose that the intersection of every subset of n+l of the 

cut. Cj has real dimension less than n. Pinally suppose 

that for sufficiently large R, f (z) is ideneically zero for 

Izl>R,vhere Izl2 • tlzil2. (This condition can always be 
i 

satisfied by introducing cuts Cj that define the various 

sides of a large -box- and setting flz) equal to zero 

outside of this box. ) 

Let 1 be a subset of n indices of the set (l •••• ,N) and 

write the corresponding set of ZjIZ)'S as IZ~(&),.",z!(Z). 
Let IA be the set of points z that lie on all of the cuts 

Cj , (jd), and such that, the determinant laz~/aail is 

non-zero: 

11.ln n, 111 Zj(Z).O, Ijd) ,laz;IZ){azill'O} • (2.3) 

The determinant condition in (2.3) allovs one to use the set 

of variables x;.ae Z~lj£") as 'a set'of local coordinates on 

11,' If, zl IZ l ,.., Zri) is the local invetae (IIapping ftom the 

0) 
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set of variables z~(a) to the set of variables a then at any 

point a of 11 that ,lies on none of the other cuts Cj • j tl. 

one can define the n-fold multiple discontinuity 

1 I n' 1 1 1 6 (a). (-1) f (a (Xl (z) tiO, ••• ,Xn (z) tiO» • (2.C) 

.... ". 
whete the +iO and -10 indicate the boundary-value. In the 

variables 1 
Zj' fro. the upper and lower half-pla~es 

respectively. .' " 1 nO is the number of arguments Xj-iO. and tho 

sum,is our all 2n combinations of signs in the variables 
1 Xj ,t iO. 

If. for each 1, the entire set of points 11 Is the 

lliage under a single continuous one-to-one .mapping 

al~xl"",Xn) of an n-dimensional region 11 in X-space then 

the Bargman-Weil formula asserts that for all points z in D 

. r 1 f (z) 8 I f Iz) , 

where 

1 ( I )n f "I 1 -1 f (z) • IiI I' elX I •• .elXn a Z 'Z)/hl • 
1 Z8 Z"(X) 

where 

61 (Zl(X»D"(Z,Z11X» 
xl' 

"Xi-ZI(Z» ••• IXn-Zn(Z) 

O"(Z,Z(X» is the Bargman-Weil numerator 

(2.Sa) 

(2.5b) 

function 

.entioned above. Note that the requirement that the 

lIultiple-eliscontinuity on I" of the function flz) elefined by 

(2.5) agree with the original multiple-discontinuity 
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6~(.~(X» demands, for all X in I l , that 

ol(a(X".(X» -I azA
(lI)/\laa I 1 

a-I (X) 
(2.6) 

The expression (2.5) holds also when SOme or all of the 

regions 11 are not the images of single one-ta-one mappings 

.1, but are rather the unions of images of several such 

aappings, provided that in such cases the sum in (2.5) runs, 

for eacb 1, over a collection of separate mappings Il(X) and 

corr.sponding regions 1'1 that combine to cover exactly once 

all the points z of 11• For this result to hold it ls 

important that if zt(X) and Z~(X) are two such aappings and 

if, for some X, a~(x) ~ lI~(X) then 

l( 1· 1 o a2 ,x),11 (X» - 0 • (2.7) 

This property ensures that the contribution to (2.5) 
1 associated vith a aapping 1I1 'X) vill give no contribution to 

the aultiple discontinuity at a2-Z~'X) even though all the 

denoainstors in (2.5) vanish at the inverse image X of 1I2• 

The Bargman-WeU numerator function is constructed so that . . 

it satisfie~ properties (2.6) and (2.7)~ It has, thefefore, 

the effect of properly sorting out the contributions froa 
1 1 the various branches li(X) of the inverse of I (a) over 11• 

The Bargllan-Ne1l numerator D1(a,z') is not uniquely 

defined. It can be taken to be the determinant of any array 

of functions P~j'I'Z') thataatisfy 

c 
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I~(.)-Z~(." - E 'jl(lI.lI',(a i - Il) • 

Hote that 

p~ a zl 
j1 ,.,a) m ~ a a1 

(2.8) 

(2.9) 

and hence (2.6) 18 satisfied. If ve can find a lI'~lI such 

that z~(a')-z~(lI) i-l, •• ,n then the columns of the matrix 

'~i(lI.a') are linearly dependent and the property (2.7) 

follows. 

In our case the mUlti-valuedness of the inverae 

transformation aasociated vith (2.7) does not arise. 

Moreover the 8argllan-weil numerstor enjoys the folloving 

property; 

ol,.·,a) • Ol(z.lI)+(lt(:&·)-Zt'.»E~(Z'.I)+ ••• 

••• t(Z!C.')-Z!(3))E!(1I' ,a), (2.10) 

where the B~ i.l •••• n are ~ntire functions of z and z· (in 

our case polynomials). 

in the form 

flea) • _1_ .J 
(2_1)" I 

1 
1 n 1 

where AO - i'lAOi and 

Consequently ,2.Sb) can be expressed 

1 1 dXl ••• dXD 6 ~z (X') 
1: --- 1 

(X1-Z1(z'J ••• (Xn-In(a» 
1 + AO ( 2.11) 
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1 AOi • _1_. f 
(lO1) n 

11 

111 dXl ••• dXn 6 (a (X»Ei(a(X),a) 

I x I x aa faa jPi (xj-zj(a) 
(l.12) 

Each function A~i has only (n-l) Cauchy denollinators 

and hence has a null n-fold discontinuity at z.x.z1 (X). Thus 

it does not exhibit the -llaxillal cut ·structure-

characteristic of the multi-Regge behaviour with which we 

shall be concerned and hence can be absorbed into the terll 

1.0 which will be the generalization of that appearing in 

(1.7). 

3. CHOICB or VARIABLES 

The problem of what variables to use in multiparticle 

dispersion relations has been much discussed. The efforts 

to obtain llass-shell global analyticity domains from, the 

prillitive analyticity dOilains of field theory suggest the 

use of momentull variables. However, the most important 

singularities, namely the norllal threshold branch-points, 

are in invariant variables. 

normal-threshold branch;"points 

different invariant variables for 

are 

a 

But physical-region 

present in eleven 

l-4 process and in 

sixteen invariant variables for a 3-3 process. Since for a 

six-particle amp~itude there are only 3x6-l0-a independent 

variables there seems to be no completely natural set of 

invariant variables. 

~ 
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Multi-Regge ~heoryll,12 leads to the introduction of 

varlables defin~" by sequences of Lorentz transformatlons. 

In certain physical t89ions these are lIillply sequences of 

rotations. Sequences of rellonance production (with 

arbitrary spin) are naturally expressed in terms of these 

variables, and a general complex angular mOllentull theory can 

be developed. A detailed .description of these -TOller­

variables can be found in Appendix A. Here we give only a 

brier description together with the aSYllptotic forlls needed 

to derive the asymptotic dispersion relation. 

In .our generaliaation of the -fixed-t- dispersion 
.~ . 

relation (1.7) to an n-particle amplitude. set of (n-3) 

lIo.entum transfer variables ti is kept fixed. The (n-3) 

variables ti are associated one-to-one with the internal 

lines i of a tree diagrall which we refer to as a Toller 

diagram (see rig. 3.1, for exallple). 

In general a Toller diagram consists of n external 

lines, one for each particle of the process, n-3 internal 

llnes i, one for each variable t i , and n-l vertices. Each 

vertex has e~actly three lines incident upon it. The 

·variable ti is the square of the momentum energy 0i flowing 

along line i if mo~entum-energy is conserved at .each vertex 

of the diagram. The remaining variables we wish to 

introduce are associated with sequences of Lorentz 

transformations that connect the rest frames of the various 

particles of the reaction. Such a sequence can be 

represotnted by a path in the Toller diagram that connects 
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the lines associated with these particles. 

POI' each external Une j there is a rest frue in whi.ch 

the asaoclated .amentua energy vector is Pj-(a:l'O,O,O). Por 

each internal line i there ls a -rest fraae- In whlch the 

.otIentwa-energy 0i flowlng along Une 1 frOID left to right 

1. (O,O,O,+I-t l ). 

A path frOll one external 11ne to anotber. represents a 

.equence of Lorentl transformacions that takes the rest 

frame of the flrst 11ne to that of the second by pa.slng 

througb the re.t frames of the Internal 11ne. on the path. 

If the 808enta assoclated wltb all Internal and external 

11ne. 11e ln the (0,3) plane then we need only those 

tran.for.ation. lij that are boosts in the (O,l) plane fraa 

the reat fr .. e of li~e i to that of line j. These boosts 

depend only on the t-variables and the external malises. To 

pas. to the general ca.e we need in addltlon, for each. 

lnternal 11ne i, a (0,1) boost 81 that leave. the rest frame 

for. of 01 unchanged, and for each vertex a (1,2) rotation 

wlj that connect. the rest frames of lines 1 and j. 

Exact expressions for Invariants·as functions of the 

t
l

, 81 and w
lj 

are given ln Appendix A. Por the rest of the 

paper we will use only tbe following -asymptotlc- foraulae. 

Wrltlngal-cosh81 then when 1111+- \(1 we have 

2Pl"Pj - cij(t,w) I f ijk Ik + terms of lover order 
. . . k ln the Ik 

(l.l) 

where the variables tm{t i ) and V-{Vij } vill be held' fixed 1n 
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our dlspersion relation, and f ijk ls one If the Internal 

llne k lle. on the dlrect path In the dlagraa that connects 

the external llne 1 to the external llne j, and ls zero 

otherwlse • 

The .omentwa-energy vectors of the initial particles of 

the reaction are taken to be ainus the physical 

energy-momentum vectors. The sign conv,ntions for the 8
1 

are flxed by chOOSing al!l to be the physJ.cal reglon for a 

particular process. Por the six-particle amplitude we 

choo.e that process to be the one shown In Pig. l.l where 

the line. enterlng frOll the bottolD of the d1agram, tbat 1a 1 

and 6, represent inttlal particle. and those exiting frOll 

the top, that is 2,l,t and 5, reDresent final p~rticl~s. 

(We shall adopt this convention throughout this paper.) 

Thus the signs of 

condltions 

Cij > 0 

Clj > 0 

C1j < 0 

the c 1j 1n (J.l) 

for i,jeI2,l,t,S} 

for i,je(1,6} 

otherwise. 

are fixed by the 

(l.2) 

The dlsperslon relation involves the entlre large Ili l 
reglon. Thus the real regions of lDOIIIentum-energy space 

generated byreverslng the signs of the 11 also enter. 

Reverslng the 8ign of one 11 (aarked by a cross in Plg. 3.2, 

twists the correspondlng rlgh~ half of a Toller dlagram by 

180- relative to the left half as illustrated ln Flg. l.2. 

Thi. leads to a new physlcal region if the particles 
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entering from ~he bottom are again interpretated as initial 

and those emitting from the top as final. We refer to such 

a twist of a Toller diagralll as a signature twist. 

4. THB ASYMPTOTIC DISPERSION RELATION 

The Bargman-Weil formula of Section 2 wlll now be 

applied to the sia-particle amplitude considered as a 

function of the variables defined by the Toller diagram of 

Pig. 3.1. The variables t l , t 2, t 3, w12, w23 will be held 

fixed and so the amplitude A(Pl' ••• P') will be a function of 

al , a2 and 'a] only (for simplicity we take the, external 

particles to be spinless--the generalization of t~c fina! 

formula to spinning particles will be obvious). We write 

therefore 

A(p(Z» • f (z) , (4.1) 

were 
f(a) • f(&1'&2'z]). (4.2) 

In this Section' we sball consider only the 

normal-threshold branch-points. The higher-order Landau 

Singularities corresponding to triangle diagrams, box 

diagraMS etc. will b8 considered in Section 6. The normal 

L~reshold cuts are defined by 

1m Sj • 0 i (4.3) 

where Sj is the square of sOl'l!e SUi'll of Pia. Discontinuities 

across the cut (4.]) vanish outside of the region 
2 

Re Sj > "j > 0 , (4.4) 

~I 
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for .ome -thresbold- mass Kjo 

Por the Toller diagraa of Pig. 3.1. the variou8 

possible normal threshold cuts and their asymptotic form. 

(up to constant coefficients) are listed belowl 

• 2 
23 • (P2+ P3) ~ al 

2 
• 234 • (P2+P3+P4) , al&2 

• 24 
2 

• (P2+ P4) ~ al a2 

2 82345 • (P2+P3+P4+PS) , al a2a3 

8 25 
2 • (P2+PS) , a l a2a] 

8 245 • (P2+P4+Ps)2 , zl a2z3 

s345 
2 

• (P3+P~+PS) , a2&3 

8 235 
2 ., (P2+P]+P5) , zl Z2&] 

8 35 
2 

• (P3+PS) , &2&3 

• (P3+P4,2 ~ &2 
':". 

s34 

8 CS 
2 

• (P4+P5) ~ z3 • (C.5, 

There wll1 be analagous cuts associated with the 

diagrams obtained by making all possible ca.binations of 

signature twists with respect to the internal Unes of 

Pig. 3.1. Each of the cuts will have a dominant tera 

proportional to zl' a2, z]' al &2' Z2&3' or Zl&2z]. In our 
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dlecus8ion we .ball k.ep only these leading tera., sine. our 

intention i. to obtain the dispersion relation that c~ntrols 

the leading a.y.ptotic Regge bebaviour. Th. cut. of f'a' 

are tberefore in the variables 

Il,a, • al , la'a) • aa' 11 (1) - a3 

14 ,a, • alaa' 'S(a, • aaal " '6,a, - al a2al • (4.6, 

We sball define the principal contributions to the 

disperslon relation to be those with the maxi .. l nu.ber (In 

our esse n-3-1, of aSYllptotically d1atlnct noraal-threshold 

cuts. The.. contributions ace the only ones that can lead 

to the l-fold multi-Regge behaviour that we wish to' use the 

dispersion ,elation to examin •• 

For reasons that will be explained in the following 

section. w. iapose the qe.neralized Steinmann relations: the 

aultiple discontinuity across a .et of cuts is required to 

vanish if any pair of cuts in the set define overlapping 

cbann.ls. ,A pair of cuts define overlapping channels if 

and only if neither of the two complementary sets of 

particle. defined by one cut is contained within either of 

the two complementary sets of particles defined by the other 

cut., 

The generalized Steinmann relations entail that each 

prinCipal contribution cocresponds to one of the following 

triads of asymptotic normal threshold cuts 

-a3-

a l , a1'&a' alaaa] ,4.7a' 
.~ 

113, a3aa' .alaall ,4.7b, 

I Z' a2a3, a1a2a3 ,4.7c' 

.a' aa3 1° 3 1.2.3 (4.7d) 

al' 33' &132&3 (4.7.) 

alaa' a23 3, al aaa3 (4.7f, 

a2, al&2" a3a2 '4.7g) 

Consider first the contribution of the triad (4.7a). 

Then using the notation of Sectinn Z, with l repcesented by 

• w. write 

a 
11 (1' - 'l'a) - a1 

';(1' • 14,., • &laa 

,;«&) • ',(I' • a1aaa l • 

Equation (Z.8, then involve. a set of 

that satisfy 

function. 

(4.8) 

a Pji,a,x, 

(al-xl ) • (al-xl ) P~l + '&2-X2) P~2 + '13-x3, P~l 

a' a a 
'&1&a-XI Xa' • (ll -x1) Pil + ,aa-xa' Paa + (al-xl ) Pal 

a . a a 
'&1Ia&3-X1X3xl' • ,z1-xl' Pl1 + '&Z-X2' Pl2 + (Il-Xl ) Pll • 

(4.9, 

There are many solutions, but a symmetric choice is 
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a Pu - (1, 0, 0, 

a (1 1 ) Pu - I (ZZ+xa"2 (Zl+xl" 0 

a (1 1 Pli- I (2zazl+zaxl+xazl+2xaxl" I (2Z1z1+z1xl+zlxl+Zxlxll, 

1 ' \ I (ZZlzZ+zlxZ+z2xl+2Xlx2'l (4.10) 

The determinant giving ,the B-W nUllerator is therefore 

a (Zl+X2)' o (a,x) - ~, ,2&1&2+Z1xZ+xIZ2+2xlx2) , (4.11) 

Evaluated at &i-Xi 1-1,2,1, (4.11) gives 

a Da(x,x, - T.1X2 ' 

Using the notation 
a (Xi) • (xl,XlX2,xlxZxl' 

one may express the determinant in (2.5) as 

Z 
laxa/axl - xl x2 

which agrees with ,4.12), as demanded by (2.9). 

(~. :'2) 

(4.ll) 

(4.14) 

One might now try to insert (4.11) and (4.14) directly 

into (2.5' in order to obtain an expression for the 

principal contribution associated with the triad (4.7a). 

Rowever, in Section 2 it was stated that we would instead 

use (2.11,. But why Is (2.11, correc~ and (2.5) wrong? To 

examine this question let us apply the original formula 

(2.5) to the simple function 

'" 
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f(a, - [(Zl-~l' (zl-c2, (z l z2-cl' (z l z2-c 4' (z l z2z1-c 5' 

;1-1 1 
IC (Zl aZal-c6~ II i llt e" zil-R, .' (4.15) 

One finds that in this case the powers of a in the numerator 

in (2.5) cause certain contributions from the combinations 

of the surface Izil-R and; the pole singularities to rellain 

i.portant even as R". Superficially it might seelD that f(a, 

b.. such a strong fall-off when Izil-R .. that any surface 

integral at infinity would be negligible. But this turns 

out to be true only if we exploit (2.10) and write the 

",gllan-Wei1 formula ~n the form (2.11). 

The form (2.11, depends on the validity of (2.10'. Par 

the triad (4.7a) it can easily be checked that (Z.lO, holds 

with Da(a,x) given by (4.11)1 one may take (non-uniquely) 

a 1 
Zl • 12(5xIX2-zZxl+z1X2-&1&2) 

z; • ~ (al+.l) 

a 
Bl • 0 (4.16) 

Thus, for the principal contribution due to, for e.ample, 

tbe set of cuts in s21' 8214 , sZ145 (which satisfy the 

generali&ed Steinmann relations and, according to '4.5). are 

of the type (4.7a» one can write 
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11 eSxl eSx 2eSx 3 ,a (x (X, 

f:,a, • (Ih) 'Xl-I~,a')(X:CZ~(Z')(Xl-z;,a,' 

wbere 

1 fdS21d8234eS82345 ,a(S23·8234,52345) 
• (2;1)3 (81)-.21'('114-82)4' (S1145-82145' 

. : '4.11, 

·21'll""'I~,a" 
a . 

.214'11,12,'12(11,12" 

.2145"'13'11 ,12,13'. Thls formula i8 a .iaple and natural 

generalllatlon of ,1.1, ln that lt contain •• iaple invariant 

dena.inator. and in the numerator only the multiple 

dl.continuity it.elf. 

The .a.e .1gebra and argument applies a180 to the 

triad. ,4.1b" ,4.7c, and ,4.1eS,. For the triad (4.4e, one 

b •• 

(
all l I l x3 · Xl 1 3 X1X3) 

De'I,,,) • ~ + -w-- + -r-- + ~ ,4.18) 

• D
e

(X •• )+(ICX1' 1 (1)+2x3'+'13-X3' i '11+·1' 

(4.19, 

!'bu. (2.12) hold. and (2.11, 91.e. for tbe principle 

contribution a fom analogous to ,4.17,. The c .. e (4.tt, 18 

.or. coap11cate4 but goe. tbrough 1n the .... way witb the 

cholc. 
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f f (1 1 D ,a,x, • D 'x,~'+(zlI2-X1X2) , 12al + 11 12xl -

11) - 11 "21 )+ I xlx) 

(
.1 1 1 1) + (a21)-"2X)' ,1112- 11 11x2 + II "113+ 1 xl x2 

+ (11121)-xl"2x), (- ~ 12+ i x2) ,4.20, 

P1na11y, for ,4.1g) one may take 

D9'1,,,, • Dg,x,x) + '12-x2, (t 1 2+ i x2), (4.21, 

and hence (2.11) can a~.in be obtained. 

The generalized St.inmann relations actually imply that 

each of the triads listecl in (4.7) have a unique set of Sj 

cut., in the physical regi~n of Pig. 3.1, to which they 

corre.pond. They are, ln the-order of ,4.1, 
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823' -234' -2345 

a45' ~345' a2345 

a34 , -345' -2345 

a34' a234, 82345 

a23' -45' 82345 

a 24 , -35' -2345 

null _et 

By uaing the triad_ . of invarianta 

contr ibuUon can be written in the 

(4.22~) 

(4.22b) 

(4.22c) 

(4.22d) 

(4.22.) 

(4.Uf) 

(4.22g' 

eacb principal 

fom (4.17,. The 

particular combinationa (4.22, ariae because all thoae 

invariant_ liated are poaitive when all the zls are 

post tive. This follow a from (3.1' and (3.2,. 

If one reveraea the signa of aomezls one obtaina a new 

phyaical region and a new set of poaitive invariants. For 

example, ln the phyaical region given by the twisted Toller 

diagr .. of Fig. 3.2 the trlada of (4.7, would correspond to 

tbe following trlada of non-overlapping cuta 
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a 23' -1' a14'zl(-z2)' -236'Zl(-z2'&3 

a'S'-3' -36'(-z2)z3' -236'zl'--2,z3 

null .et 

null _et 

8 23'11, 8U '-3' S236'(11) (--2)&3 

a14'-1'--2" 8 36'(-:2'-3' a236'-1(-Z2'-3 

8 3,5'(--2" a14'zl(--2" a36'(--2'Z3 

,4.23a) 

(4.23b) 

(4.23c) 

(4.23d) 

(4.23e) 

(4.23f) 

(4.23g, 

Por .ach of ,the aix additional pbysical regions obtained by 

further combinationa of twists of the linea i-l.2,3 we 

obtain correaponding aets of non-overlapping cuts. Sincp 

th.y ar. aimply obtained by tWiating either the l-line or 

the 3-line or both with reapect to either Fig. 3.1 or 

Pig. 3.2 three of .the regiona give aets of the form (4.22, 

whUe the otber three give aeta of tbe fora (4.23,. 

Pra. (4.22, we obtain aix principle contributiona of 

the fora (4.17, while frca ,4.23, we obtain five principal 

contributiona. Altogether then we have 6x4+5x4-44 principal 

contributions to our aaymptotic diapersion relation. Thua 

we can write 

f
d- l dSl dSl . ,1(al ,81 ,al ) 

1 . 123 12) 
A(Pl'···P,) • I::-::-:-J la' -s ) (a' -a ) (s' -s ) (4.24) 

(2.1) 11 11 12 12 13 13 

+ AO 

wber. tbe au. over 1 i8 a au. over 44 triada of cut_ in 
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invariant variables sl' .~ 
1 2 

regions are over real values of 

and .l. The integration 
3 

the. l and extend froe some 
i 

po.itive (but irrelevant) finite value to infinity. 

In the next Section we will discuss the discontinuities 

that occur in (4.24) and observe that they can be expressed 

as products of physical scattering function. and their 

conjugates integrated over physical intermediate state.. In 

Section 6 ve vill argue that the higher-order Landau 

singularl tea do not give any additional prinCipal 

contributions. 

Pinally we note in passing that the non-equality 

encountered above of the numbers of triads of cuts 

associated with two physical regions related by a single 

twist (c~f • (4.22) and (4.23,) ha. the important 

con.equence that signature properties of Regge aingularitie. 

re.ulting from such cut. Must be more complicated than those 

of four-particle amplitudes. 

5. DISCONTINUITY FORMULAE AND 

GENBRALIZED STEINMANN RELATIONS 

The Bargman-Neil formula described in Section 2 applies 

to a function of n complex variables, with cuts 1. ',-0, 

j-l,... that enjoy the property that the intersection of 

each subset of n+l cuts has real dimension less than n. But 

all of the cut. 1. '1-0 corresponding to normal thresholds 

are associated with real analytic function. 'i(I). Bence 
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they all contain the real n-4i.enslonal set 

Is n. 1. '-1-0. Ie xi sufficiently larg8, i-h, ••• n}}. 

This difficulty "y be circumvented by giving each of the 

surfac.s t. 1,-0 a amall displacement in i.aginary apace. 

(The tiny piece near each norul threshold is negligible.) 

Replacing each " by I,+il, shifts each of the cuts alightly 

avay from the real physical region and reduces the 

intersection region of any n of the nora.l-threshold cut. to 

an n real diaensional region lying clo •• to the phYSical 

region. In addition, no, (n+1) of these surfaces vill 

intersect on any n-dimensional region. 'fbis fact is 

illu.trated in Pig. 5.1. 

The original Steinmann relationsll reCer. to 

boundary-values obtained from certain off .... -sh.ll cones 

in field theory. The.e relations have been extended to the 

Generall.ed Steinmann relation referred to in the last 

Section. The.e generali.ed r.lations hold for certain on 

.. •• -.hell function., which can be considered to be the 

boundary-valu.s fram all 211 .ide. of the eleven cut. (4.5, 

that enter the phy.ical region of rig. 3.1, and the .imilar 

boundary values corresponding to all 216 sides of the 

sixteen normal threshold cuts entering the physical region 

of rig. 3.2. The.e boundary values, are used to 

3-fold multiple 'di.continuity functions al(sl ' 
, 1 

occurring in (4.24). The 3-fold,discontinuitles 

forI! the 

.l • sl , 
2 3 

have been 

calculated (independently; from both field-theoretic and 

S-Matrix principle.. They are given in Appendix B. 
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The functions that satisfy the generalized Steinmann 

relations are initially defined by ·algebraic· manipulation 

of unitarity integrals, rather than by analytic 

continuation. Bence, 'priori, they need not be the 

boundary values that occur in the dispersion relation. A 

thorough discussion of this question requires a 

consideration of the higher-order Singularities and 80 

propertly belongs in the next Section. Bowever, it may aid 

in the understanding of the discontinuity formulae listed in 

Appendix 8 and also better enplain the sillpUUcation 

achieved by writing asymptot"ic dispersion relations if we 

give a very brief heuristic outline of the origins of the 

bo~ndary value functions' (1~ the S-Hatrix !ormalisr-). 

Let us write the S-Matrix as S-l+R+ and its hermitian 

conjugate as S+-l-R-. Then the unitarity equation 5S+.1 

entaU., formally, "that 

a+ • ....!L.. 1-.-
· I (R-)n 

O.ing a conventional bubble diagram notation for R+ 

(5.1) 

(5.2) 

and R-

and inserting intermediate states into (5.2) one obtains for 

all connected amplitudes (the notation is explained in 

detail in Appendix B) 

·~ 
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l0Jf~ . -o _ • _ . U+~+~+"· 
= L a- (5.3) 

(5.4) 

where the sum is over all possible connected (minus) bubble 

diagram functions containing those intermediate state 

integrations allowed by the values of the external momentum 

variables of the ~ amplitude. This last amplitude 

i., of course, the physical region boundary-value from above 

all norael-threshold cuts. 

The series (5.4) displays explicitly all possible 

normal threShold and higher-order Landau singularities. in 

the sense that new terms appear in the series whenever such 

a (generalized) threshold is passed. The SUII of these new 

terlls actually defines the discontinuity at such a 

threshold. Bence' the boundary-value from underneath any 

particular normal threshold ~ut differs fro. ~ , 
which is given by the complete sum in (5.4), by those terms 

in (5.4) which have a phase-space integration in the 

relevant channel. Extending this argument, multiple 

discontinuities can be defined from (5.4) by keeping only 

those terms which have !!! the corresponding phase-space 

lntegrations. This leads directly to the formalae quoted in 

Appendix 8 but with some exceptions. For certain -bad 

boundary-values· an ambiguity arises in that boundary-value 

functions defined by this process and the analogous process 
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based on the hermitian conjugate version of (5.4, do not 

coincide. The ambiguity is directly due to bubble diagram 

functions that enter the series only as higher-order Landau 

singular! ties are encountered. The ambiguity can be 

resolved by imposing the generalized Steinmann relations and 

the result is the complete set of discontinuity formulae 

given in Appendix B. 

The -bad boundary-value functions· defined by this 

procedure are, however, known to be boundary values of 

functions that, In sufficiently small neighborhoods of the 

physical region, are only piecewise analytic. Thus the 

boundary values defined in different sectors of the real 

region are not connected by path3 of analytic .continuation 

that remain always close to the real physical region. Prior 

to the introduction of the asymptotic dispersion relations 

they appeared unsuited for use in dispersion relations that 

lacked coaple. cuts. It is reaarkable, therefore, as we 

discuss in the next Section, that in the asymptotic 

dispersion relation represented by the integrals In (4.14) 

the bad boundary values enter only as the boundary values of 

the functions defined in the three-dimensional analogs of 

the small triangular regions illustrated in rig. 5.1. These 

regions are everywhere close to the real physical domain and 

they shrink to zero as the small quantities £j in the 

arguments Zj+iE j tend to zero. Consequently one may, in the 

framework of the asymptotic dispersion relations. enjoy· the 

con.i~erable simplifications entailed by the generalized 

,; 
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8teinaann relations without incurring tbe complications 

entailea by complex cuts. 

Bigber order Landau singularities .ay in principle also 

give complex cuts arising tra. tbeir occurrence In -good 

boundary-value- functions. This is briefly discussed In tbe 

next Section. 

6. BIGRER-ORDSR SINGULARITIIS 

As .. ntioned in the introduction, a long-standing 

difficulty with the idea of applying .. ny-variable 

dispersion relations to many-particle amplitudes has been 

the cOlllpl1caUons generated by the higher-order 

Singularities associated with triangle diagrams, box 

diagrams etc. Many years ago rronsdal, Norton and 

Mahanthappa15 showed that a straightforward application of 

the Bargman-Weil theorem to scattering functions leads 

in general to complicated contributions from non-real 

regions of aomentum space. BYaluation of the associated 

discontinuities require. analyticconUnuation of salle of 

the amplitudes appearing in the discontinuity formulae away 

fra. their orig1nal region of definition and into unphysical 

sh.ets. These sheets are fraught with unknown dangers and 

difficulties, 

illlpractical. 

and continuation into thell appear .. 

Furthermore, complex contributions far frOll 

the physical region would be likely to ruin the generalized 

rroi.sart-Gribov continuations, upon which the developaent 
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of multi-Regge theory from the asymptotic dispersion 

relations is based. ll 

A principle virtue of the 'dispersion relation described 

above is that (apart from the generalized -subtraction t~rm­

AOin (4.24, which results from surfaces at infinity. and 

sufficiently small finite surfaces' all the three-fold 

discontinuities are evaluated directly in the physic~l 

region. This is automatic for the normal threshold 

intersections described in Section 4. But it appears to us 

quite likely that these viii in fact be the only terms that 

will have the asymptotic conbination of cuts that 

required for the corresponding multi-Regge behaviour. 

are 

There are twc main po~nts. The first,~oncernd the bad 

boundary values referred to briefly in the last Section and 

defined precisely in Ref. 6. As we noted there -bad 

functions- have bad analytic properties. But each good 

function (in each real sector) has been shown to be the 

boundary~value of a single analytic functi-ona the pa.r,ts 

lying on the opposite sides 'of any singularity surface lying 

in the physical region are connected by a path of analytic 

continuation that makes an arbitrarily small detour around 

this singularity surface. In contrast the bad functions. 

like the bubble diagram functions fro. which they vere 

constructed, have no such continuations, and hence are not 
boundary values of single analytic functiuns. 
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If we had to consider the cuts attached to the surfaces 

where 'the bad functions change their analytic form we vould 

be in danger not only of disrupting the crossing properties 

of aaplitudes (by the extension of the cuts to infinity, but 

also of obtaining complex contribution~ to our dispersion 

relation. vith the ensuing problems already described above. 

If. however. ve can shov that the bad boundary-values are 

buried in the analogs of the small triangle of rig. 5.1. a. 

asserted in the last Section. then in the first place any 

contribution from the cuts involved in defining them will 

disappear from the integration region as the 'j tend 

aero. in the second place these contributions to 

to 

the 

dls?8rs10n inte~[al viii. in any case. only affect the value 

of the function inside the little triangle and hence have no 

bearing at all on the function outside this region. 

The bad funct~ons are those that correspond to • 

boundary-value from below tvo ]+3 overlapping cuts and above 

two 2+4(or4+2) cuts, or from above the two 3+3 overlapping 

cuts and below two 2+4 (4+2) cuts. The possible bad 

configurations are shown in rig. 6.1. where either the upper 

signs or the lower signs must be used throughout. 

Suppose first that. with the notation of Pig. 6.1. the 

a-variables associated viththe four cuts are 

til .. c34a 2' s2 II c 35z 2a] 

s3 II c24zlz2.!l4 II c 2Sz1z2z]. , (1.1) 

Then 
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C Z4c)S > 0 , 
c • C34c Z5 

(6. Z) 

wbere c>O i8 i.plied by (1.:, (or .are generally by the 

coabination of 11. sjl-O with the condition that Re a j is 

above thr.shold,. But (6.Z, i8 incoepatlble with the sign 

r.quire •• nts fraa Pig. 6.1 whicb are tbat 

18 81' 1. a, > 0, 1. sz, 1. 81 < 0 , (6.1a) 

or 
18 al , 18 a, < 0, 1. sz, 1. al > 0 • (6.1b, 

.. The incaapatibiUty of the conditions (fi.l) with (6.2, 

_ana that the region fraa whicb the boundary-valu~, 

represented by rig. 6.1, is approached aust, for 

.ufficiently large Re ai' vanish 

proceedlng Section are set to 'ero). 

(when the 'j'8 of the 

The boundary value is 

indeed -bldden- inside a region of the fora of Pig. 5.1. 

Tbus the asymptotic dispersion relations neatly bury the 

region. of 'co.~le.,ao~ent~ space ~here the worst coaple. 

singularities OCCur. 

Bo. diagr .. s that do not map ina planar manner onto 

th. Toller diagr.. that we are considering .u.t also be 

.... ined. ror e ... ple, if the particle.. 1,4· and 5 of 

Pig. 6.1'a' are identified withpartlcle. ',5 and 3 

r.sp*ctively of rig. 1.1, then 

.' 
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81 a C'Szl' aZ • C3SzZKl 

8) • CZSKlzZa3' a. 2 CZSalK2al • (6.4, 

This ia again incompatible with (6.1,. But nov the cuts In 

a3 and a. that bound the bad boundary value reglon are in 

fact .ayaptotlcally equlvalent. Thia .. ana that 

aub-aayaptotlcally these cut a ate distinct, as illustrated 

in Pig. 6.Z. Hovever, the contribution of such a region to 

the diaperaion relation would be associatad with a triad 

that involves two aaymptotically equivalent cuts. But 

triple-Regge asymptotic behaviour can not ariae fra. such a 

triad. .ince this behaviour has the phase-atructure of a 

function with three asymptotically inequivalent cuts. 

Thediacussion of the bad boundary configurations (6.1, 

and (6.') covers, in essence, all of the possibilities and 

bence one finds tha~ no bad boundary value complications can 

occur In the prinCipal contributions to ".24'. 

The .econd aain polnt to be conaidered when discussing 

~ple. a1ngularitles contributing to the principal 

contributions of ,'.Z4) concerns the 

singularities occurring in· the good 

higher-order 

boundary-value 

function.. More work 1. needed on this. But we think it 

likely that these singularities will not contribute to the 

asymptotic dispersion relatione. ror the triple 

discontinuity .ssociated with the ne.t .aat complicatad 

contribution, namely that arising fraa two normal-threshold 

cuts and one triangle-diagraa cut vanishes, while the 
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singularities associated with zore complex diagrams tend to 

be abielded by the cuts associated with leaa complex ones, 

due to the hierarchy structure. We hope to be aboe to give 

a detailed proof that higber-order singalarities do not give 

principal contributions to asymptotic dispersion relations 

in the near future. 
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AP'ENDIX ". ANGULAR VAlUABLES 

To introduce, precisely, the variables used in the 

text, it will suffic. to define .tandard frames 1-6 as 

indicated in rlg. Al. Thes. fram •• ara defined as follows. 

rr ... 1 

01 lie. in a rest fr .... '1 and '2 lia in the (0,3) plane 

rrame 2 

01 li.s in a reat fraae. '1 and 02 lie in the -(0,3) plane 

rc... 3 

02 'li.s in a rest fr ... , '3 and 02 li. in the (0,3) plane 

rr... • 

02 11 •• in a rest frame. " and OJ li_ in the (0,3) plan. 

rr... 5 

0 3 lies in a rest fr .... '. and 0a li. in the (0.3) plane 

rr .. a " 

,°3 11_s in a rest fr ... , '5 and " li. in the (0,3) 

plan •• 

W. n.xt d.fin. .ats of Lorantl transformations as 

follows, 

A. A (0,1) boost nik i-l, ••• 6 takes particle i fro. lts 

c.st ic... to fr .. e k attachad to the vertex where the 

particle line is attached. 

8. (0.1) boosts al , B2, al transfor. fro. frames 1 to 2, 3 

to 4 and 5 to 6 respecti?ely. 

1 
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Co A coablnation of an (l,ll rotation vIZ (vZ3' and a (0,31 

boOIIt t12 «(n' transfor •• from frue 2 to 3 (4 to 5). 

The boost. ~ik can be expressed in terms of IUsses IIi and 

the tl •• g. 

Z 2 Z 
°l-al+IIZ 

slnb "Zl - 201~Z 

The booaU (U' t 23 can also be expressed in teems of the a i 
and the tl e.g. 

Z Z Z 
°l+OZ+1I3 

cosh(U- 20
1
0

Z 

The var iables 81, 82, 83 , "'12 and w2] are paraaeters and can 

be used to expeess a~y of the external lIOIIenta in any frame 

•• g. in frame 1 

'2 - (aZCO~h"21,0,0'1I2sinh~21' , 

in fr •• Z 

'z - (aZcosh~Z1coSh81' 112cosh"21sinh81,0,1I2sinh"Zl' 

In fe.e 3 

'z - (·ZCosh"21CGSh81cosht12-aZsinh"21sinbt12 ' 

azcosh"Zlsinh81cosw12,m2cosh~21sinh81sinIal12' 

a2s1nh~21co8ht12+mZ;osh"21CO.helsinbt12' 

in frue • 

-u-

'2 - (·ZcOSh~21cosb81coShC1Zcosh8z-lIlsinh~21sinb(llcosb82-

-a2cosh"Usinh81coSlilUsinbIl2' m2cosh~Usinb81cosIalUcoSh82+ 

+aZcosh"21Cosb81cosht12sinb82-mzsinh"Zlsinh(lZSinb82' 

aZcosb"12sinb81 ainwU ,mZsinh"21coshtlZ+rI2COsb"21cosh81 sinh( 12' • 

and so on~ To evaluate 'i'j ~e simply have to teansfoea both 

momenta from their eest fr~es to a cOftgon frue. Poe 

example, to evaluate 'Zo,S we can use feame 4 wbere '2 haa 

the fora given above and '5 has il forll analagous to that of 

P2 In frame 3 but with 81+-83 , 11112+-11123 , (12+-t23. This 

leads.to 
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.a·'s • 'azCOahqZlcoahBlcoshtlZcoshBZ-mzsinhqZlainhtlZcosh8Z 
~. '. 

__ acosbqalalnhBlcoswlZ8lnh8Z]M[mScoshqS6COShB1CQSbtZl 

+asalnhQS6ainbtZl)+ [mzcoahQZllinh8lcosw1Zcoah8Z+ 

aacoabQZ1coah81coshtlzalnh8a-·zalnhQalslnhtlzalnh8Z]-

'·scoahQs6coswZ]linh8]]-·ZCOshQZ1alnhBlalnhwlZ-

-asCoshQs6ainh8111nwZl-'·za1nhQZlcoaht1Z+ 

aacoahQ21 cosbS l ainht 12] _ (msainhQS6coaht:ll-

asCOabQS6coah81s1nhtZ]] 

('.~coIIM21coaht12-m2coahQ21 C?os"'12)- [ascoahQS6coahtZl] 
8 18Coan8 l-
8a8Coah8a- +[azcOahQalCOs"'lZ+·2coahQZlcoshtla]-(·sCOShQS6coa"'Zl]} 

8]8CoshIl1-
-818Z8] 

c ZS 
• ,- al aa8 ] 

wbere c ZS • azasCOahQZlcolhQS6(cOahtl~coSbt21-co~llcoabtal 

+ coaht12coswZl+COSWuC08WuJ • 

Clearly any other c ij can be s1mllarly evaluated. 

~. 
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urIHDI" 8. MULTIPLe DISCONTINUITY roaMULAB 

ror coapletenesa we glve h~re exact foraulae 

trlp1e diacontinultles Al,a, ,a, ,a, , appearing 
. A1 Aa A] 

for the 

In ,t.Z4,. 
I 

~ do tbla we muat Introduce aoae notation. 

ror tbe full a-aatrl. we write 

1 m+l 

S(p ••• ." iP I'····P). 2 m+2 
1 . III 111+ .11 J 

m n C81, 

wbUe for 8 
+ we replace the + by and for tbe unit a -

operator we replace the + by I. We aake the uaual cluater 

decoaposltion e.g. 

u = 

+ 

~+ 2 

2 =®= 
=0= + 

=€E + 2 =e= 
-0-

2 -0-
-0-
-0- (81' 

ao that a bubble representa ac.onnected upUtude together 

with a .a.entwa conaervation I-function. A pha.e-apace 

integration and sua represented by a uhaded atrlp ia a 

IIhltar1ty allll over inter.edlat. statea e.g. 

~.-:. 
~ 

~at La the strip implies ~ BU. over all particle nuabers • 

of interaedtate lines. tog~ther wLth an integration or aua 

over all distinct aets of varlablea asaociated with the.e 

Une. 
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j M. J M d
4
P' ~. ·-E E IT ~ (21)6+('i2-_:, ® 

i-l ti i-l (21) 

wbere (Ii) ia the invene of the usual syauaetry nwaber of 

• tate. Let u. further define 

i~ = ~ ~ 'j. - I 

(83) 

the 

(a4, 

~= ~.~ - . - - ! (a5) 

We can now define 3-fold di.continuitie. a. follow. 

'(.A'I ··A) - A(···~A +io,5A +10,51 +lu •••• ) 
121123· 

-A(·· •• l -io'.A +i~'.l +10, ••• ) 
123 

-A(.··.l +10,. 1-10,. 1+10 •••• ) 
1 2 3 

-A( •• ·.l +10 •• 1+10,. 1-10 •••• ) 
12· 3 

+A(.··.l -10'.1 -lo'.A +10 •••• ) 
123 

+A(.··.A -10'.1 +10,8A -10, ••• ) 
1 2· 1 

+A(· ••• l +10'.1 -10,sA -1~ •••• ) 
123 

-A(.··.l -10'.A -10'.1 -10, ••• ) 
123 

(86) 

-ct-

·fte generalized Stelnaann ralation. 1.ply tbat tbh 

triple e51.continuity ls independent of the boundary value. 

of the invarlant. other than 8 A .sA .51 • In a 2-4 pby.lcal 
123 

region the.A will be a triad of the form listed in (4.22, • 
1 

fte.e are of two kinds. elther two 2-particle channel. and 

the total energy. for e ... ple .23' .45 and s2345 in thi. 

ca.e 

(217')4 B(l Pi)6(S23.S45.s2345) = 
2 

~: 
(a1, 

==0zB':: 5 

(a8) 

where we define 

~=~ ~ 
(ag) 

anci .1anarly 

~ & 
(alO) 

Alternatively tbe three.l are ne.ted, for e ... pl.·s23' 
1 

8 234 , .2345 and in tbis ca.e 
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(2lT)4 S(IPi) ~(Sz3.5234.52345) . 2' 

I ~. +~4CBll) 
= + - 5 

=~i 
5 

(BU) 

In a 3-3 physical region the sl will be a triad of the fo~ 
1 

li.ted in (4.Zl). Again there are two possibilitie •• Both 

contain an initial Z-partlcle channel and a final Z-particl. 

chann.l. w~th either the total energy •• a third invariant, 

~or .... pl. s23' Slt an~ sZ36 in which case 

(2 7T)4 8( IPi ) ~(523.514.5236) 
I 

I = 4 __ ., 
5 

--

~iCB13). 

(814, 

,815, 

or th. third invariant is a cro •• -.n.rgy, for .xa.pl •• It'. 

a36 and a365 in whicb ca •• 

. " 

... ~l-

(2lT)4 8(IPi) 6(514.536.5365) 
. I . 

z 
= l. - _ + 3 CB16, 

3 . + 6 

=:~. 2 I" + 3 6 (B17, 

All possibl. triple discontinuities needed for Ct.Zt) are of 

one' of the four for.. (B7) , (B9) , (Bll) or (B14). The 

alternative formulae given are always obtained by siaple 

applications of unitarity. 



rig. 1.1 

rlg. l.l 

rlg. l.2 

rlg. 5.1 

rlg. 6.1 

rlg. 6.2 

~j 
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rIGURE CAPTIONS 

The Cauchy Integration Contour for (1.2)--the 

Daaaln D is the co.pliment of the .h~.d r.glon. 

A toller diagraa for a proce.. wlth .inat •• al 

partlcl ••• 

The reversal of the .ign of a1 change. the 

pby.lcal region to that repre.ented by the 

toller Diagram obtained by twisting through 180· 

the two parts of the dlagram linked by the 11ne 

i. 

Three aurfac.s ~ 21-0, 1. z2-0 and 1. al +a 2-O 

inter.ect on the , •• 1 region (z 2 

~ ai-I. a2-0J. A .light .bift of eacb surface 

abUts tbe intersection of each pair of surhc •• 

to a cUatinct 2-di_nsional region. 

8a4 boundary~values. The four dashed 1in.a 

corre.pond to tbe cut. and the + ai9n (- sign) 

at the end of a dashed line represents the fact 

that tbe boundary value is to be taken above 

(below) tbe associated cut. 

Aayaptoticdlly 'equivalent cuts be co.. distinct 

aub-a.yaptotlcal1y and expo.. a region 

aa.ociated with a bad boundary-value. 

Figures 
~ 
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