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A (p,2p) Study of High Momehtum Components at 2.1 GeV

By
Robert Neil Treuhaft

Abstract

A (p,2p) experiment designed ﬁo‘isolate ihteractions with small
numbers of fast nuclear cohstituents is described. Special attention.
iq péid to thevexperimental maﬁifestaﬁion and deScriétion of a corre-
lated pair of nucleons in the nucleus. Phase spacé calculations are
presented for the ptoton—pair‘three-body final sﬁate and for final

states with larger numbers of particles. The Twa Armed Spectrbmeter

- System (TASS) is described in detail. The data suggest the possibil-.

ity of 1isolating an interaction with one or two nucleons in the

nucleus which may have momenta far in excess of those described in a

Fermi gas model.
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CHAPTER 1

- Introduction

A projectile incident on.a nucleus may interact with only a few
of the nuclear constituents. In that event, the four-momenta of a -

small number of final state particles can be used to kinematically

“infer the momenta of the objects struck. Electronvscattering[ll and

(p,2p) reactions[2] have been used to learn about the copious 1low
momentum component -of the nucleon wave function in the nucleus. This

(p,2p) experiment, done at the Berkeley Bevalac under the number

E444H, focuses on the high momentum component of the nuclear wave
~function by searching for a correlated pair of nucleons in the

- nuc leus.

The existence of the correlated pair was hypothesized to explain

- the - yield of backward going inclusive protons, produced with momenta .

far beyond the Fermi momentum, in proton-nucleus collisioms.[3] Fig-

ure 1 shows: the momentum density of protons produced at backward

angles by protons of different incident enefgies on 1light nuclei.

One obvious feature of the spectra 1is the observable cross section at

momenta well above a typical Fermi momentum distribution width of 100
MeV/c. © Since backward going nucleons are kinematiéally forbidden in
free nucleon—nucieon scattering, it was thought that the large

momenta observed - in this and other singles experiments [4] reflected

the high momentum component of a nucleon in the nuclear wave func-

tion. Quantum mechanically, a high nucleon momentum component can



arise from a strong spatial dependence of the nucleon’s wave function
on some other object in the nucleus. The simplest assumption is that

the other object is another nucleom.

An alternative to -the cofrelatéd pair hypothesis of the ener-
getic backward protons is Quasi-Two-Body-Scaling, (QTBS), first sug-
gested by Frankel{5] and recently resurrected by Gurvitz.[6] For a
nucleus with A nucleons, QTBS describes the incident proton as
scattering from one fést, backwérd going nucleon which is corrélated
to' the other A-l nucleons; the A-l nucleons recoil coherently. As

will Be discussed in chapter 6, QTBS produces results slightly dif-

ferent from the correlated pair hypothesis when two particles are

observed in the final state. The high momentum back&ard proton yield
could also result from a series of scatterings on more than two
nucleons in the nucleus. The many-body final state resulting from
this wmechanism has a phase space configuration which,lfor a (p,2p)
expériment,_is very different from that resulting from either a
correlated pair or QTBSvmechanism.‘ Relying on final state kinematic
signatureé, the purpose of the experiment was to determine to what
extent .the pair or few-body ‘signai can be distinguished from the

many-body interactiom.

The coincidence experiment which is the subject of this thesis
was designed around the kinematic signal for scattering from a pair
of nucleons in the nucleus. 2.1 GeV protons were scattered from car-
bon, and we detected a fﬁrward going and a backward going proton in

coincidence. All events were taken essentially in a plane using the

-
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Two Armed Spectrometer System, (TASS), built with the aim of con-
straining the anticipated three-body final state kinematics. The
signature for scattering from a pair of nucleons, which are either

correlated or uncorrelated, 1s an enhancement in the coincidence

" cross section near the phase space available to free proton-deuteron

kinematics. This point will be demonstrated in. chapter = 2.
Throughout this paper, the labels proton-deuteron and proton-pair
refer to the same kinematic reaction and are therefore equivalent.

Fixing the backward momentum vector and the forward angular coordi-

nates, the signal for scattering from a nuclear pair,. or observing

free p=-d kinematics, 1s one or two peaks in the forward going momen-

tum spectrum, as will be detailed in chapter 6 on phase space calcu-

lations. The kinematic range of the magnetic spectrometer was set to

encompass the three-body final state signal with wide forward momen=-

tum sweeps. Finding these enhancemeﬁts.is the first step in probing
the dynamics of the nuclegf deuteron. Although thq driginal motiva-
tion for the experiment was to account forbthe backward siﬁgles spec-
tra, the characteristics of the nuclear deuteron are of ‘interest

regardless of the magnitude of the contribution to the backward sin-

gles data. If identifiable, a description of the correlated paif,'

when compared to that of the free dguteron,.could reveal how the
nucleon pair interaction is modified by the nuclear field, providing,
as is hoped, final state interactions can be taken care of. In fact,
it would be interesting to demonstrate that any fraction of the back-
ward prbton spectrum results from an interaction with a small numbef

of fast nucleons, rather than a large number of s8low nucleons with



ordinary Fermi momentum. Such a demonstration would require a new
description of how the subset of interacting nucleons acquired their

high internal or center-of-mass momentume.

The plan of the paper 1svas-follows: Chapter 2 describes the
relationship between the correlated pair signal and free p-d kinemat-
ics. Chapter 3 outlines the kinematic regime associated with the
free p~d reaction and the regime covered in this experiment. Since
TASS was designed and built for this experiment, and its éonception
and implementation were a largé part of the thesis work, chapters 4
and 5 describe the hardware of TASS, and the calibration, data
acquisition, and data analysis techniques employed. Chapter 6
discusses the.p-d kinematics with Fermi momentum of the deuteron
center-of-mass. In chapter 6, the phase space associ&ted with the
other mechanisms mentioned above is also described. Chépter 7 con-
tains tﬁe ‘data and interpretations relative to the phase space con-
siderations of chapter 6. The manifestations of high momentum com-
ponents ‘in the data are also discussed in chapter 7 and appendix C.
-The conclusions in chapter 8 discuss the relationship of these data
to the observation- of the correlated pair and the high momentum
nuc lear component. Other coincidehce data are also mentioned along

with suggestions for future experiments.



CHAPTER 2

Observing A Correlated Pair

The :elaﬁionship between scattering from a cor;elated pair and
the observation ofifree proton—deuteron‘kinematics is the basis for
the plan of the experiment. Consider the kinematic éignal for
scattering from a nuclear pair. A nuclear pair is defined as two
nucleons in the nucleus which may or may not have interdependent wave
functions. To relate scattering from a nuclear pair to the proton-:
deuteron kinematics, one assumes that for a nucleus of A‘ nucleons,
the A-2 nucleons not in the pair suffer no momentum change in the
collision process: p + nucleus — 3 nucleons + A-2 Spectators.. In
fact{ in fhié impulse approximation it is assumed that the»nucléar

pair and the A-2 spectators are not bound to each other at all. - For

‘now, particle production is not considered.

The situation is shown in figure 2 where the incident proton
interacts only with a nuclear pair leaving the A-=2 residual nucleus
as a spectator. - The general kinematic equations relating the initial

State'to the final state are:

oy |
N g = pi‘l?p +?:._2

inc
o1l
3 | (2.1)
Einc +'MA = 2 E + EA—Z .—
p=1
where (E ,T? ) is the incident proton’s four-momentum, and M is
inc” 1inc o A

‘the mass of the nucleus. (Ep;?;) are the final state four-momenta of



the participant nucleons, which are the 1incident proton and the

nuclear pair. (EA-Z;?;-Z) is the four-momentum of the spectator

group either before or after the collision.

Let (E ) be the four-momentum of the nuclear pair

pair;?;air
before the collision. The fact that the initial nucleus is at rest

in the lab is expressed by

T=F . +F

P
pair A-2 | (2.2)

MA - Epairv+ EA-Z

One derives from eqs. (2.1) and (2.2)

3
inc + pair = pi;ﬁ;

3 (2.3)
E + E = 2 E
ine pair p=1 p

Eq. (2.3) has the form of the reaction p +d — p + p + n where the

mass of the deuteron-like pair is given by

=€, -7

1
m ) /2 and the proton-neutron mass difference
pair pair pair

is ignored. There is some ambiguity concerning the value Offmpair'
yé

where M is the on?shell

2 2
If one takes E, , = (f?;_zl + M, ) w2

mass of the residual nucleus, then from eq. 2.2 and the definition of
m » M will be less than the deuteron mass. For example, with
pair pair

- .
A=12 and a high value of the pair momentum |P | = 300 MeV/c, m

pair pair
is .97 lower than the on-shell deuteron mass.. In all the kinematics

that follow, this ambiguity is negligible.

The experiment was therefore designed around - the kinematic

situation:where'm'bair equals the on=-shell deuteron mass. A continuum
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of excitation energiee of the nuclear pair would broaden the p;d
kinemetic solutions. :If there were discfeet excited states of the
correlated pair, discreet phase space enhancements would appear for
each mpair' As will be seen in the discussion of the kinematics,

large sweeps in phase space were taken about the p-d kinematics to

allow for the possibility of different velues of mpair'

If one observes a nuclear pair by the kinematic signal descfibed
above, how does one know whether or not it is a correlated pair? A
correlated pair is here defined as a nuclear pair for whieh the spa-
tial wave function of each of the constituents is dependent unon the
coordinates of the other. This can be illustrated with the quantum
mechanical-Fburier transform by letting*?(?l;?;) be tne wave function
of the two nucleons with radius vectors,;? and'?z in the pair. With

1

1 2 the momenta of the two nucleons,  the momentum space wave

- function 1is

> > 3. 3 - = ik Slker, ol
!(kl,kz) = J d r, d rzni(rl,rz) e e

apart from proportionality constants. Transforming to the center of

mass and relative position coordinates defined as

v 2 .7 .
e 17 i P=7 -7
= 2 an. r 1‘1, 2

immediately gives

- R ¢ n

- - 3. -1RF® .3 -ige >
8K,Q) = [aR e J &r VT F® D)
- >

: k, -k

where ?-l-() +%, and ?E'—l_'——g

- > ' o
] 2 . Thus if Y7£¥(R,r) is large, “high



relative momentum of the nucleons will be an important part of the
two particle wave function. Therefore a spatial correlation between

the pair nucleons induces high relative momentum.

It would seem that the qualitative difference between a nuclear
pair and a correlated pair lies in the determination of the relative
momentum of the pair. But the above discussion applies to trivial as
well as dynamic correlations. A dynamic correlationvis one which is
induced by an interactiop'Hamiltonian between the two nucleons; a
trivial cofrelation 1s not induced by an interactionlﬂamiltonian. An
example of a trivially correlated pair would be two independent plane
waves with equal and opposite momenta. In this case one could have a
high relative momentum . between two particles which wére‘ really

independent.

To get a feel for what constitutes a trivial correlation or
relative momentum distribution for two nucleons in the nucleus, con-
sider the single-nucleon momentum distribution given by Goldhaber for

nuc lear fragmentation: [7]

2,2
=3/2 ~pT/207 ik o =90 MeV/c

- 2
W(p) = (2n o)
" - where E?:is the momentum of the single nucleon.. The relative momentum

density induced between two particles by this simple independent par-

ticle picture is:

2 2 2 2
k1 /26 k2 /26

—~> 2.-3 3> - = 3 3
W, (P =(2ne™)™ [ e e 8°(p, - (k) - k) dk, dk,
where-E? is the relative momentum of the. two particles defined as the
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:difference of their momentum vectors. Doing the integral yields

, 2, 2
-p_J4¢6

- 2 -3/2 “P./ (2.5)
| wrel(pr) (4n o) e

Figure 3 shows this relative momentum density arising from a trivial
correlation along with W(?S for reference. The abscissa refers to
—> - —> —

Ipl| for W(p) and to 1pr| for wrel(pr)' In the figure W(ga is set to

l, and all other points on both curves are normalized correctly rela-

tive to’W(63. This qualitative calculation shows a relative momentum

spectrum which might be associated with a trivial correlation.

It is, of course, the dynamically correlated pair which is. of
interest, since its description could reveal details of the nucleon-

nucleon interaction inside the nucleus, if final state interactions

can be quantified or neglected. Again, the first step in finding the

dynamically correlated pair is finding the kinematic signature of eq.
(2.3)._' One must then impose dynamical assumptions which reproduce
the data to see if some function of the observed momenta can be asso-

ciated with the relative momentum of the pair. In other words; if

‘the final state is consistent with an initial deuteron target with

reasonable Fermi momentum, then scattering on a deuteron or nuclear:
pair will have been. observed. But, to determine the internal momen-
tum distribution of that deuteron would require an additional dynami-

cal assumption. For example, one might assume that the backward-

. going nucleon was purely a spectator.



CHAPTER 3

Kinematics

To search for the signal for scattering from a correlated pair.
of - nucleons in the nucleus, ~ the reaction
2.1 GeV p + nucleus-»p(backward) + p(f;rward) + X was studied at the
Berkeley Bevatron. We looked for final state protons which satisfied
the kinematics of the reaction 2.1 GeV p+d—>p+p+n. What follows is a
description of the :kinematics of this reaction with the center-of-
mass of the deuteron at rest. The most'géneral'kinematics appropri-
ate to the apparatus, with Fermi momentum of the target included, is

completely described in appendix A. Effects of Fermi momentum will

be treated in the phase space calculation.

Initiall&, it is assumed that all three bodies 1in the' final
state are nucleons.  The proton-neutron mass difference is ignored
throughout. With the three momenta of the final state nucleons com-
pletely describing the system, there are nine degrees of freedom.

There are four kinematic equations of constraint:

Einc+md=Eb+Ef+Eu

Prae T T T,

where Einc and'?;nc are the total incident proton energy and momen-

(3.1)

tum. md is  the deuteron mass. The subscripts b,f, and u refer to
the backward going proton, the forward going proton, and the unob-

served neutron, respectively. If. the:nuclear pair were two protons

10



solution for P , 1s obtained by finding ©

11

instead of a nuclear deuteron, the unobserved particle would also be

a proton.

Figure 4 shows a schematic, planar picture of the situation. 1In

the coordinate system used, the'?lnc vector defines the polar z-axis.

‘As drawn, the véctor'?; is on the azimuthal ¢=0° side Of.?;nc’ and TZ

and'?: have the azimuthal coordinate ¢=180°.

With the four equations of constraint, eq. (3.1), five dinput
parameters are necessary to uniquely restrict the problem. It is
most convenient for TASS to specify as input constraints the three

components of the backward momentum Pb £

and ¢f of the forward going proton. The azimuthal coordinates are as

and the angular coordinates €

described above, and all data were taken with the rear polar angle

9b=120°. With these three angular.coordinates specified, each combi-

nation‘-ofl?ﬁ and 6, provides the five inputs necessary to completely:

f

determine the front momentum magnitude]?y and the unobserved nucleon

: -
momentum vector ?u' The solutions for Pf = IPfI and hence for -?u are

often double valued.

Figure 5 shows the three-body final state kinematics. The con-

tours are of constant P, = l?bl" For ©

b Gb, and ¢b as above, a

£

b £ on the x-axis, going up to

the desired Pb contour , and across to the value on the y-axis.
Because of energy comservation, if we observe, for example, the lower

momentum root proton going forward, the unobserved nucleon is fast,

and observing the high momentum root means the unobserved nucleon . 1is

slow. The point in the center of the plot represents the condition
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when the unobserved nucleon and the forward going proton go off

tdgether and thus represents elastic p-d kinematics.

Table.l shows the values of P P_, and ©

b’ £ £

iment. All the parameters mentioned below were run with a carbon

spanned in the exper-

target. Copper was also used for a small number of the configura-
tions. Pcb and.Pcf are the rear and front central momentum values
which are defined in chapter 4. All momenta in table 1 are given 1in

MeV/c, and all angles in degrees.

Table 1: Run Parameters n
‘Pcb ‘Pb Range vPcf Pf Range Of
566 400-850 622 400-900 10.4

566 400-850 1222| 800-1800 10. 4
566 400-850 2151 1500-3200] 10.4

417 290-625 426| 300-640 45.0
417 = 290-625 9221 600~-1400 45.0

417 290-625 424 300-640 60.0

Front momentum sweeps were taken along two different vertical 1lines
of constant forward angle at 10.4° and 45°. A small amount of data

were also taken at O, = 60° which is outside of the free protoﬁ-pair

f
kinematics. The 10.4° angle "was chosen in part because it goes
through the p-d elastic singuiatity, which was explored by Komafov
et. al. at 600 MeV incident energy.[8] Thus if we restricted our-
selves to the backward momentum range 6005f?;|5]00 MeV/c, and if
proton-pair scattering were a dominant contribution to the coin-
cidence signal, we should detect an enhancément in the cross section

as a function of forward momentum in the mid-momentum region. Since

we covered a wide backward momentum range, - cutting the 10.4° data
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off-line on lower baékwatd.momenta should produce two separate péaks
in forward momentum,.one for each root in figure‘s. In contrast, the
Gf=45° front momentum sweep should yield two very close roots for a
narrow, low backward momentum range. The two forward angles, one
passing through the center of the egg-shapéd contours and one at the
.edge, represent extremum of the p-d breakup kinematics and were thus

thought to be good choices in the initial search for the correlated

pair in the nucleus.

Since the nucleon-nucleon cross section is roughly half inelas-
tic at this energy, particle production must be considered. The

missing or unobserved mass is defined as

o 1. - -
+u £ -E) 2B, F,F,?) 72 (3.2)

M=(-(Einc d b £ inc

With the three nucleon final state, thevmissing mass should be Ithe
nucleon masé, However, if a particle is produced in the interaction,
the missing mass is greater than that of the nﬁcleon; Figure 6 shows
- the f?;|=400 MeV/c contour as it is nofmally;“in the abéenbe of par-
ticle produétion, with the solid line. The dotted line shows what
happens to the coﬁtour 1f M=1078 MeV, which corresponds to an unob-
served nucleon and pion going off toge;her. To further demonstrate
the trend, the dashed contour corresponds to a ﬁissing delta reso- -
nance mass of M=1232 MeV. The contouré ~contract with ‘increasing
missing mass. Depending on the actual missing mass spectrum and the
effect of Fermi moﬁentum, the contours of figure 5 could be dis-
tinguished from or broadened by the higher missing mass contours.

These possibilities will be considered in the phase  space



calculation.

It is worthwhile to mention the proton-pair dynamic possibili-
ties associated with the kinematic regions investigated. Figure 7a
shows two different ways to interpret the three nucleon final state
in a single scattefing picture. The bottom two horizontal lines
represent two interacting nucleons in the nucleus, while the top line
represents the inéident proton. The wavy line indicates a fundamen-
tal nucleon-nucleon interaction, while the solid, double line signi-
fies ﬁhe target nuclear pair correlation, usually assumed to be close
to the deuteron internal interaction. The labels on the right side
of the figure refer to the 6utgoing particles where P1
detected going_fotward. In the case labeled without parentheses, the
backward going proton P, participates in the nuc leon-nucleon scatter-

b
ing. For the case denoted with parentheses, the backward going pro=-

ton 1is a spectator and thus presumably reflects the proton momentum.

before the interaction. Kiﬁematics does not distinguish between
these .two possibiliﬁies,. thérefore for each root solution of the
kinematics; there 1s an ambiguity as to how to interpret the béckward
going particle’s momentum: Does it arise primarily from the target
wave function, or is it also due to the interaction with the incident
proton? Only a dynamical assuﬁption can distinguishvbetween the two
Eases. Of course, the proton-pair kinematics also permits a multiple
scattering on two nuc leons which are either correlated or uncorre-
"lated. Figure 7b shows the multiple scattering situation with two

fundamgntal nuc leon-nucleon interactions. The solid, double line

is always:
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would of course be absent in the gncorrelatéd pair scattering. Thus
the mere observation of the ~appropriate three-body final state
kinematic enhancements does not Qniquely determine tﬁe internal
momentum distribution of the target bair, nor does it guarantee that
'the'pair nuclgoné were correlated ‘at all. One must relate the
énhancements to ome or more of the diagrams in figure 7 to extract

the strength of the correlation.



CHAPTER 4

TASS: Description, Data Acquisition, and Specifications

The Two Armed Spectrometer System, which was designed and built
for this experiment, consists of two independently rotatable magnetic
spectrometer systems. This chapter describes the hardware parameters
and methods of data acquiéition of.TASS at the time of E444H. Chro-
nologically, most of the ideas mgntioned here were implemented before
any beam from the accelerator was sent to the apparatus. The three
sections which follow describe the layout and coordinate system of
TASS, the data acquisition via the computer software and hardware,
and the physical and mathematical properties of the magnet-counter

system including its resolution and acceptance specificationms.

l. Spectrometer Apparatus and Coordinate System

As indicated in figure 8, the tﬁo arms of TASS each have identi¥
cal magnets but different counter configurations. The rear arm con-
sists of one three-element scintillator hodoscope, Rl, and two scin-
tillator gatihgacounters, R2 and R3. In addition, there are two wire
chambers labeled WCl and WC2 each with: Zv millimeter wire spacing.
R1l, WCl, and WC2 are used for ray tracing’through the magnetic field.
The acceptance of the rear arm is defined by Rl and R3. In the fromt
arm, there are two sixteen element scintillator hodoscopes, Fl and
F2. There are also two gating counters, FO and F3. Upstream of the

target is an ion chamber (IC) for mOnitoringuabéolute-beam intensity.

16



17

'Twovtelescopes not shown in figure 8, consisting of two scintillétors
each, were pointed at the ion chamber from above and from the side to
monitor relative beam intensity. We attempted to use the- multipli-
city array (MA) shown in figure 8 but the high beam intensities ren-
dered the array useless for the coincidence running. Labeled by BC,
is a Morgado beam chamber which is used to determine the beam loca~
tion near the target. This chamber and 1its associated hardware:
integrate the charge deposited from a one second beam spill on éach
of 64 wires, 32 hprizontal and 32 vertical. The wire Spacing.is two
millimeters. The integrated charge for each of the wires is con-
verted to a number and sent to the computer. For fhe vfront arm,
momentum determination is made by using the‘target pdsition as deter~
mined by the beam chamber and the Fl and FZ hodoscopes. All counter

~ positions and dimensions are given in inches in table 2.

Table 2: Counter Dimensions

Counter | Distance| Width| Height| Thickness
Rl 24.00 1.50} 2.75 . 094
R2 90.94 8.25 6.00 | . 125
wCcl | 102.60 12.75 10.00 -
R3 132.47 | 12.75 10.00 . 250
wC2 . 142.88 15.00 13.85 -
FO 32.50 4.00 2.00 «125
Fl 94.17 8.00 4.00 | «125
F2 - 135.09 8.00 6. 00 - «125
F3 145.54 8.00 6.00 250

The second column in table 2 gives the distance of the counters from
the pivot center of TASS. Not mentioned above are the distances from
the target to the magnet pole tip and the length of the magnets.

These are 42 inches and 36 inches respectively for both arms.
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The coordinate system is similar to that used by Enge,[9] and is
the . same for both arms. The magnetic field in the dipoles is point-
ing downward, so positively charged particles starting from the tar-
get get bent to the left as they traverse the field. Looking from
above one arm, figure 9 shows the various angles associated with the
coordinate system used. A central ray is defined by the solid lines
entering and exiting the magnet in figure 9. ao and ﬂo are called
the entrance and exit angles and are the angles that the central ray
makes with the normal to the entrance and exit of the magnet respec=-
. tively. Fbr the rear and front arms ao was 7.6° and 7.2°. The sum
of the exit and entrange angles is‘the central bend angle, 90, which
was set to 15°>for both arms. The central momentum Pc’ which is a
function of the magnetic field, is defined as that momentum which
produces a trajectory along the central ray for a éharge +1 particle.

All particlesvare assumed to have charge +1 throughout this paper.

All position and direction coordinates are given relative to the
cen;ral ray either before or after the magnet. The x-z plane is
defined for each arm.to be normal to the central ray. The positive y
direction points from the target along the central réy. The positive
z direction is up, or out of the plaﬁe of the paper in figure 9, and
the positive x direction points to the right_looking from the target,
or away from the direction of curvature. A particle’s local trajec-

tory 1s completely described by x, y, 2z, Gx, and ez; where ex is the

P P
arcsine —%- and 6_ = arcsine —= for a particle of momentum 7. The

7] 2 ¥4

momentum  of a particle 1s- usually expressed by its fractional
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Il -2

P
c

deviation from the central momentum, 9, defined as § =

The spectrometer sysﬁem of either arm determines the momentum of
a  particle by relating the x, z, Gx, and ez coordinates before the
magnetié field to those after the field. For a central momeﬁtum par-
ticle directed along the central ray, the coordinates would all be
equal to zero before and after the magnet. In general the magnetic

field can be regarded as a one to one transformation of the entrance

d te
coordinates, (xen’zen’gx en’ez en)’ to the exit coordinates,

(x ) »0 ). Calling M(%) the mathematical coordinate
"ex’"ex’ x ex’ z ex . _ -

transformation induced for momentumvfraction ) by the magnet,

ex’zex’ex ex’ ) = M(®) (xen en’ gx en’ 9z en) (4. 1)

(x
where it is understood that the y coordinate is the magnet entrance
and exit coordinate for the right,and left sides of eq. 4.1 respec-

tively.

Using the rear arm as an example, the measured positions will be
called (xl,zl) at Rl, (xz,zz) at WCl, and (33;23) at WC2. These
positions are given by the locations of scintillator elements and
wires which show signals. Knowing the distance between WCl and WC2

gives (xex,z ,9

ex ,9 ) at the magnet exit. Then

xex

(x__ sz 0 ) = M(S) 1(x z .0 .8 ) (he2)

‘en’“en’ x en’ z en ex’“ex’ x ex’ z ex’

If d is the distance between the boundary of the magnetic field and

R,
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(x ) = (x;,z) +d tan(e_ _,0_ _) (4.3)

’2Z s
en’“en x en’ z en

The problem is to find the & which produces a spatial coordinate

(x ) which satisfies eqs. 4.2 and 4.3 given the exit

en’Zen’®x en’gz en
coordinates inferred from the wire chamber hits. As will be seen in
section 3 of this chapter, the field is well approximated by a homo-~
geneous field in the negative z direction, and the solution of egs.
4.2 and 4.3 are found iteratively. Note that in the process of
determining 8, 9 on’ and'xen, the target angle and position of the
ray are aléo ‘determined. For the front arm, the target position

plays the role of the Rl scintillator position in the rear arm. The

wire positions are replaced by Fl.-and F2 hodoscope element positions.

2. Data Acquisition

In addition to the position data needed for eqs. . 4.2 and 4.3,
‘many other parameters- - such as the mass and beam intensity must be
inferred from the raw data taken. The system used for data acquisi-

tion is outlined in the flow chart of figure 10.

Initially all siggals from the scintillator counters are sent to
the trigger logic electronicss A rear arm trigger 1s‘defined as R:
R1.R2.R3. Figure 11 shows the logic diagram which defines real coin-
cidences. The philosophy behind the trigger timing in either érm is
to accépt particles between B =1 and B = .26, where B is the ratio
of the particle’s speed to the speed of light. These limits for B
éorreSpond to the fastest possible particle and the lowest momentum

. proton which would not be stopped by the apparatus, which is about
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250 MeV/c. Below the R trigger in figure 11 is the front arm trigger
F: FO.Fl.F2.F3, where Fl and F2 each require at least one signal from
any of the 16 elements. The R+F coincidence logic is is aiso shown.
Again the philosophy in fhe time intervals for signals entering the
R.F AND unit is to allow coincidences between the fastest observed
particles in one arm with the slowest in the other. This considera-
tion prodﬁced an R.F gate width of about 60 nsec. Naturally, the
narrower the gate widths, the less possibility of random events in
either or both arms. The spectrometer system could be run in any
combination of trigger modes, R, F, or R.F, depending on the switch

settings of a majority logic unit.

Refefring back:to figureILO, the next step.in the decision to
‘éccept an eveﬁt is perfbrmed by the slow logic.'vIt is ‘outlined in
figure 12 and makes decisionsron fhree logic levels: RUN, ,RUN.SPILL,
and RUN.SPILL.BUSY. RUN means the coﬁputer is on but there may or
may not be a beam spill. RUN.SPILL means the computer is onvaﬁd the
spill is present. RUN.SPILL.BUSY ‘means RUN. SPILL is true and the
.computer is not busy processing any -other event. Any céincidence
event, called eQent type 1, is gated by RUN-SPILL-Eﬁgil In addition,
écéleis gated by these three levels asseés the dead time of the sys-
tem. The time needed to process an event type 1 is about 600 ps'
without writing to tape, and a plot of events accepted in the live
time of the computer versus events fed to the computer is shown in
figure 13.. The dashed curve was generated from the response of the

system to a pulser input with the fréquehcy of the points on the
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abscissa. The random noise generated curve, however, was measured
from the response of photo tube noise. It is seen that a reasonable
live time of 80Z can be attained with a real trigger rate of about
150/spill. Since neither curve was generaﬁed from the accelerator
beam, this live time should be regarded as an upper limit of the sys~
tem for a given real event rate, as high frequency structure iﬁ the

beam can greatly reduce the live time. Live time as measured by the

ratio of. RUN.SPILL.BUSY and RUN.SPILL gated scalers must be folded
into the normalization of all cross sections. For the (p,2p) running

on carbon at back angles, the live time was always greater than 90%.

After an event satisfies the fast logic timing and slow 1logic
selection, all the signals to be recorded are sent to the two CAMAC
crates. The CAMAC modules were read using a Multi Branch Driver

~(MBD) which gets data from CAMAC and puts it into a buffer in the
memory of a PDP 11/34 c0mputéf. Whenrthe‘buffer is fﬁll, the data
are written to taée. Table 3a lists on the next page the 'signals
recorded for any coincidence event type l. The symbols Tl...T8 and
Bl...B8 refer to the multiplicity array elements. The first five
data words refer to the event length and identification. Any label
preceded by a "d", such as DTDC or dlatch, refers to a coincidence
R.F circuit deliberately out of time to simulate random events. This
circuit was not used in the analysis; it was notvneeded because ran-

dom signals were measured by methods described in chapter 5.

At the end of the spill, scalers and the beam chamber and other

modules-were read. . The end of spill was called event type.8, and the
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quantities read are listed in table 3b on page 24. Unless otherwise

specified, the symbols in table 3b refer to RUN.SPILL gated scalers.

Table 3a: Event Type 1 Data Words
Number| Contents | Number| Contents | Number | Contents

1 length 26 B3 TDC 51 B4 ADC

2 ID 27 B4 TDC 52 rear latch

3 run # 28 B5 TDC 53 Fl latch

4 seq # 29 B6 TDC 54 F2 latch

5 seq carry 30 B7 TIDC 55 front latch

6 R1A TDC 31 B8 TDC 56 FO DTDC

7 R1B TDC 32 FO ADC 57 F3A DTIDC

8 R1C TDC 33 F3A ADC 58 F3B DTDC

9 R2A TDC 34 F3B ADC 59 Fl dlatch
10 R2B TDC 35 - T2 ADC 60 F2 dlatch
11 R3A TIDC 36 T3 ADC 61 FO DADC

12 R3B TDC 37 T4 ADC 62 F3A DADC
13 FO TDC 38 T5 ADC . 63 F3B DADC
14 F3A TDC 39 T7 ADC " 64 Fl1 FIDC

15 F3B TDC 40 R1A ADC 65 F2 FTDC

16 T1 TDC 41 " R1B ADC 66 F3A FIDC
17 T2 TDC 42 R1IC ADC 67 F3B FIDC
18 T3 TDC 43 R2A ADC 68 & 69 R SCALER
19 T4 TDC 44 R2B ADC 70 & 71 F SCALER
20 T5 TDC 45 R3A ADC 72 & 73 R.F SCALER
21 T6 TDC 46 R3B ADC 74 & 75 MU SCALER
22 T7 TDC 47 T8 ADC 76 & 77 MD SCALER
23 T8 TDC 48 Bl ADC 78 & 79 . EMPTY

24 Bl TDC 49 B2 ADC - - 80 1% wc word
25 B2 TDC . 50 B3 ADC - —

MU and MD in table 3b refer to the relative intensity monitors

tioned in- section

and BC refers to the beam chamber.

1 of this chapter.

men-
IC refers to the ion chamber

Figure 14 shows a flow chart of

the subroutines specifically written for this experiment. The main

program, written by Everett Harvey, is called QDAl.[10] All words

read by the data acquisition program into the PDP 11/34 were 16 bits

long.
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Table 3b: Event Type 8 Data Words

Number | Contents Number | Contents Number | Contents
1 length 44 & 45 F2-1 92 & 93 R1-OR
2 1D 46 & 47 F2-2 94 & 95 1C
3 run # 48 & 49 F2-3 96 & 97 MU (R)
4 seq # 50 & 51 F2=4 98 & 99 MD (R)
5 seq carry| 52 & 53" F2-5 100 & 101° EMPTY _

6 &7 R 54 & 55 F2-6 102 R (R.S.B)
8&9 F 56 & 57 F2-7 103 F (R.S+B)
10 & 11 R.F 58 & 59 F2-8 104 R.F (R+S-B)

12 & 13 Fl-1 60 & 61 F2-9 105 D-R.F (R+S.B)
14 & 15 Fl-2 | 62 & 63 F2-10 106 & 107 RlA

16 & 17 F1-3 64 & 65 F2-11 | 108 & 109 RIB

18 & 19 Fl-4 1 66 & 67 F2-12 110 & 111  RIC

20 & 21  Fl-5 68 & 69 F2-13 ! 112 & 113 R2A

22 & 23 Fl-6 | 70 & 71 F2-14 114 & 115 R2B

24 & 25 Fl-7 72 & 73 F2-15 116 & 117 R3A

26 & 27 Fl1-8 74 & 75 F2-16 118 & 119 R3B

28 & 29 Fl-9 76 & 77 D-R-F 120 & 121 FO

30 & 31 Fl1-10 78 & 79 MU 122 & 123 Fl OR
32 & 33 Fl-11 80 & 81 MD 124 & 125 F2 OR
‘34 & 35 Fl-12 82 & 83 F3aA 126 & 127 WCl

36 & 37 F1-13 84 & 85 F3B _ 128 & 129 WC2

38 & 39 Fl-1l4 86 & 87 MU (R.S.B)| 130 - 133 MAG DWM
40 & 41 F1-15 88 & 89 MD (R-S-B)| 134 - 197 BC
42 & 43 F1-16 90 & 91 DR (R.S.B) - -

3. Physical and Mathematical Characteristics of TASS

To interpref the raw data, the magnetic field and.its mathemati-
cal transformation between counter- hits andvparﬁicle-momenta»must be
understood. Field measuréments 'énd the method for calculating
momenta are discussed "in section 3.1 below. Two important charac-
teristics of the spectrometers which depend on the field-counter con-
figuration are the

three-momentum resolution and efficiency of the

system; they are described in section 3.2.
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3.1. The Magnetic Field

The field was measured by means of a wire orbit technique. A
current running through a wire under tension is set. to simulate a
given momentum, and the trajectory of the wire through the .system
determines . the field. The accuracy of the wire orbit technique
including effects of the mass of the wire, was determined empirically
to be about +1Z. We found that the field in each magnét was well
approximated by a homogeneous field covéring'theventire x-z plane for
-. 3<8<. 5. For the y direction, the homogeneous field was considered
to span an effective length which was equal to the real lemgth of the
magnet plﬁs half the magnet gap height. With the_magnets 36" long by
16" wide by 8" high, the effective length (EFL) was taken to be
40.94" for both magnets. The choicg of'EfL was prompted by mapping
measurements JOne on -the rear magnet{l1l1l] and éténdard fringe field
theory.[le The final results, which are actually rather insensitive
to the choice of EFL, are shown in figures 15a and 15b. These two
figures show for one central momehtum each the deviation of the wire
orbit measurement from the square field model. The abscissa is the
percent deviation of the momentum as determined by the wir; trajec-
tory through a square field, from the momentum aé determined by the
current in the wire. Wire momenta were determined by the current in
thé wire to better than .1%. In the wire orbit process, many central
momenta or central fields were taken spanning the central ﬁomentum
range 3005Pc52200 MeV/c. The conéluéion is that for the small region

of the magnet gap used, the magnetic field could be considered square
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to 1.5%. In the front arm, the systematic trend of figure 15b to
overestimate low momenta énd underestimate high momenta was folded
into the square field model as a correction for- momentum determina-
tion. From the wire orbit data, it was found that the square field

model reconstructs the angle of a ray at the target to 0.1°,

The details. of the square field model lead to the method for
vcalculating momenta in either arm. All z coordinates are unaffected
by the field and are thus transported through the magnet as through
free space. We wish to solve a simplified version of eqs. 4.2 and

4.3 for x , © , and §:
en’ "x en

(x y = M L8 ) (4o 4)

’9 ’e
en X en ex X ex

X =x_ <+ d tane : (4.5)
en 1 X en _

From the wire orbit procedure, we know that a given magnet current

corresponds to a given central momentum. The central momentum is

related to the effective central field magnitude Bo by

Pc = .3RCBo (4.6)
where RC is the radius in centimeters of the circular arc traced
through the field by a central momentum particle. Bo is in kgauss

and Pc is in MeV/c.

One can consider the trajectory of any general ray through the
magnet by replacing the dashed line inside the magnet in figure 9
with a circular trajectory joining the entrance and exit rays. One
must also imagine the solid lines of figure 9 to describe an arbi-

trary-trajectory and not necessarily the central ray. For-a general
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' ray of momentum P

EFL = R(sinx + sinB)
: (4. 7)

[ ,
where « and P are the magnet entrance and exit angles of the particle

and R is the radius of curvature for the trajeétory through the field

Boa The entrance and exit angles are related to the central angles.

by

x=ax + 6
o X en

‘ p = po - 9x ex
From eqs. 4.6, and 4.7 v

sinx + sinp
o__ o
sinx + sinf

P
P
'in terms of § defined above

. sinx + sinf : '
8 = o - o - 1 (408)
sinx + sinB . '

For any general circular arc in the magnet,

X - Xex = R(cosx ~ cosp)

en
v - EFL (cosx - cosB) (4.9)

(sinx + sin)

X cosé ‘X cos@

' ' en X en. ex . L
where X = ——— and X = ——————=—=_ As mentioned in sec~--
en: cosx ex cosB

tion 1, thg .angle B, qr equivalently Gx ex’ and X o gre»found :
.. directly from the wire hits in WCl and WC2; Thus for the three unk-
nowns xen’ x, and & we have eqs. 4.5, 4.8, and 4.9. These equations

are solved iteratively for each trajectory with Newton’s method;_'
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3.2. Resolution and Acceptance

_Given the essentially square field, one can numerically calcu-
late the resolution of each arm by the following method. One selects
the momentum fraction, 68, at which the resolution 1is desired and
traces a ray from the target through the system for any initial
angle. For the réar arm, for example, one then obtains x positions
at R1l, WCl, and WC2. The homogeneous field model inciudes-z coordi-
nate independence of the momentum. With the x position on each ray-
determining device, x poéitions are randomiy chosen that are within
+.5 ﬁhe element size from the initial ray position. This means doing
a Monte Carlo over +.25" for Rl and +0.039" for the two wire
chambers. One then calculates the deviation of each 51 -calculated
from the ith randomly ‘thrown event from_Ss, the selected momentum

fraction. The resolution is then calculated as

N ) N 2

S (5.-5) 3 (8.-8) k
o = H=L 18 |a=0 t s (4.10)
) N N

where N is the number of randomly thrown counter position combina-
tions. For large N the second term under the square root sign is 0.
The resolutions-as a function of-ss for each arm are given in figures

16a and 16b.

With the square field geometry, one can also calculate the
acceptance of the system. Ignoring energy loss and multiple scatter-

ing, the acceptance of the system describes the system’s. efficiency
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for detecting a particle asv a function of the three-momentum?. If,
for each momentum--magnifude I?I = P, various elements of solid angle
L had tfansmission or efficiency T(P,Q), then for éach P, an average
solid angle would be given by |

Mo(P) = [da T(P,Q) (4.11)
4n ' -

P and Q are coupled in a magnetic vsystem because slower particles
must enter the field at larger angles in order to suffer a'large bend

and still hit the counters behind the field.

Considering each arm separately for now, solid angle averaged

‘over a momentum region between P, and P, is expressed as

120¢ %
)
J [da T(P,0) 4P |
— . Bygm | (’4 12)
AQT’l’Pz - By / |
Jdap
!l

where T(P,Q) is the efficiency for transmitting a particle with
- momentum between P and P+dP and solid angle between Q aﬁd mda. '_fhis
function T(P,Q) contains the complete description of the spectrometer
acceptance. To geﬁ a momentum sSpectrum, one tries tb make AP = PZ-PI'

as small asv,possible‘ and still achieve good statistics for a cross

section. The most useful expression of acceptance is then

P
o 2 :
AP0, o =AM = jjvrv(p,g)v dodP (4413)
1772 : vP_lvlm
To calculate APAQ, one obtains A—Q(P) from eq. 4.1l and integrates

over the desired momentum range. Figures 1l7a and 17b show A—Q.-(P) for
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each arm for a typical beam spot size. The deviations in fractional
acceptance from 100% show that the anglular acceptance decreases at
large deviations from the central momentum. Appendix B describes the

analytic method for calculating A_d(P) and tﬁe function T(P,Q).

‘We must now consider both arms operating together via the quan-
tity [Qﬁﬁﬁﬂ)b Qﬁﬂmn)f], where b and f refer to the rear and front

arms. Eq. 4.11 generalizes to

Ao (P, = fdo dQ. T(P,,Q ,P.,0.) (414)

where T(benb’Pf’nf) is now the efficiency for detecting two parti-
cles of momentum'?; and'?; simultaneously. The calculation fér the
transmission function T is the same as in appendix B, but the frac-
tion of the beam seen by both arms must be considered as a function
of the front-back momentum combination. Because the time and money
spent computing the coincidence aéceptance is staggering, I will show
that for small beam spo;s, the coincidence acceptance is the product

of the singles acceptances as calculated in appendix B. That is

B A0 1 (P, ,P,) = Ao (PYARL(PL) (4-15)

which reduces the problem to the calculation of eq. 4.1l twice.

As implied by the calculation of the single-arm transmission in
appendix B, T 1s either 0 or 1 for each (?;;?}) combination for a
point beam. In particular, the coincidence T is 0 1if either arm can-

not transmit its particle and 1 if they both can. So

T(P, 20, »P10Q,) = T(P,,0) T(P,,Q.) (416)

Once T is thus decomposed, the integral in eq. 4.14 immediately gives
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eq; 4.15. Quanﬁitatively, the beam must be small relative to the
size of the accebtance defining counters. 1f 80, the beam would
either be combletely seen or completely missed for most momentum vec-
tors. To be sure_that eq. 4.15 and 4.16 hold, the coincidence and
the product of the single-arm analytic acceptances were coﬁpared for
a typical beam spot. It was found that the two arms could in fact be

decoupléd-and the single-arm acceptances multiplied.

In addition to the analytic calculation, the acceptance of the
system was also calculated using a Monte Carlo simulation method. .In
this method events are randomly thrown from the target to see if they
clear the apparatus. The fraction that successfully hit all countefs;
'is related to the T quantities as funcﬁioné’of the momentum vectors.
The Monte Carlo method includes multiple scattering and energy loss
in the system. it was found that multiple scattering has a negligi-
ble effect 6n the acceptance for mosﬁ of‘the (p,2p) coincidence run-
ning. There is a considerable effect due to multiple scattering for
the pfoton—protoh elastic scattering calibration ruﬁs which will be
‘discussed in detail in chapter 5. The effect of energy loss 1is to
shift the momentum scale éf either arm by about 3% in the momentum
region 300 < P <600 MeV/c. At higher momenta, energy 1035  can also

be ignored.

The Monte Carlo method also reconstructs the momenta of trajec-
tories as seen by the spectrometer. Biases introduced by momentum
reconstruction were important for some of the running. These biases

occur because each arm of TASS has a discreet number of measurable
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momentum values since the hodoscope elements and wire chambers give
discreet spatial coordinates for trajectories. Fractional recon=-
struction biases on the order of 1/N occur when the momentum bin
chosen for cross sections includes N measurable momenta. For the
rear bins in the proton-proton elastic scattering and for the front
bins at high momenta, the reconstruction biases were on the order of
10-25%Z. The Monte Carlo calculation was used to correct for these

biases whenever they were higher than 5%.
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CHAPTER 5

TASS: Methods of Anélysis and Calibration

The coincidence cross section for (p,2p) reactions is very small
and 1is characterized by a low count rate per beam spill. For exam-
ple, for a typical beam spill of 109 protons- incident on carbon, of
the'104'single triggers in the rear arm and'lo6 triggers in the front
arm, 5 tfiggers would. be coincidénée. This low count rate necessi-
tates on=line .momentumr and mass determination and real to random
separation, so that a good estimate»of‘the real pfoton-proton coin-
cidences per_moﬁentum bin can be made while running. Section 1 bélow
describes the on-line and off-line momentum and mass assignment techfv
niques, while section 2 outlines the method of separating the real
and random events. 'Section>3 describes the calibration of the syétem

using known kinematics and previously measured cross sections.

1l. Momentum and Mass Determination

The momenﬁum is determined,frém a knowledge of Pc the. central
momehtum and three x positions of_ﬁhe trajectorigs as described in
chapter 4. _All wire chambers,,séintillator hodoscopes, and gating
counters were surveyed with transiﬁs to an accuracy qf jj}millimeter}
For thé rear arm, one hodoscope element of the Rl counter must be hit
along with one x-wire from each wire chamber. In the front arm, the
beam chamber distribution must be khown along Qich a signal from one

element in Fl and one in F2. The analysis code, which was introduced

33
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as subroutines into the Fermi Lab Multi program,{13] £first had to
decide 1f the required counters were each hit just once per coin-
cidence trigger. Double hits on any hodoscope or wire chamber, or
misses in the wire chambers none of whiéh.were in the trigger, had to
be considered unanalyzable; these events éontributed to the 1ineffi-
ciency of the system at the level of 10-45%, depending on the run
mode, beam intensity, and spectrometer:- position. Double hits in
hodoscopes and wire chamber were the largest source of unanalyzable
events. A double hit in a counter was usually caused by a real event
goiﬁg completely through the sysﬁem plus a stray particle hitting

just that counter.

In the rear arm, a second analyzable convention was adopted. An .

Rl hit plus one x hit from either wire chamber was considered analyz-
able, as opposed to requiring an x hit from each chamber as mentioned
in the previous paragraph. This second convention was adopted off- .
line and used in conjunction with the target position given by the
beam chamber. The convention was used to gather more statistics at
the expense of momentum resolution. var the twob conventions, the
average rear arm momentum resolution was about 7%. Since rear momen-
tum bins of 100 MeV/c were eventually taken, the inétease in resolu-

tion width over that of figure 15a was not a problem.

To obtain mass inforﬁation, the time-to-digital converters

(TDC’s) must be used to infer a speed and thus a mass M via

P .

where.p and Y are the :standard Lorentz factors for. a particle of
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momentum P. In both arms, clocks were started with a hit at Rl. TDC
clocks were stépped at R2, R3, FO, and F3. Time in the arms was .com~

puted using the quantities

R3A + R3B
t . ———————
r - 2
_ F3A + F3B _
f .2
where R3A and R3B indicate the raw TDC counts from the two photo

t FO

tubes on either end of the R3 scintillator, F3A and F3B are the raw

counts from the two tubes of F3. Note that t_ is independent of the

f

-rear arm since the dependence on the Rl start time is subtracted out.

'To relate t_ to the actua; fime it takes for a particle to
travel from Rl to R3, use was made of the protbnfproton elastic
scattering and 120° proton singles runs discussed in detail vin sec~
tion 3. In the p-p elastic and singles run, the'proton peaks were
easily discernible on a momentum versus time of flight'scétter plot.
Figure 18 shows a scatter plot of rear momentum versus tr for a typi-
cal coincidence‘run of 2.1 GeV p +carbon = p +‘p.+ X. The ellipse
shows where  the p=-p ‘elastic run populatés the scatter plot. Deu-
terons can also be seen in. the figure. In order to convert these raw
TDC Couﬁts to reél time, the actual time in nanoseconds was calcu-
lated for the path length_hetweeﬁ Rl and R3 for various rear momentum
cuts. This real time was found'ﬁo be linear in tr’ and ;he eQuaﬁion

which relates tr to the real time in nanoseconds Tr is

T =.048¢ - 2.0 ' (5.2)
. r r :

Depending on which of the Rl hodoscope elements started the TDC, the
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intercept in eq. 5.2 can vary by 2 nanoseconds. Eq. 5.2 is for RlA

starts.

Figure 19 shows a scatter plot of front momentum versus te for a
low forward momentum coincidence run. The proton and positive pion
lines are evident. Real times were also calculated for front arm
events using momentum, mass, and thebpath length between FO and F3.

Again a 1linear function was found relating the real time in

nanoseconds Tf to the raw TDC counts tf:

Tf = 0053 tf - 4045 (5-3)
The real time thus extracted agrees well with the real time-of-flight
of the front arm protons in the elastic scattering run when the p=-p

elastic tf 1s substituted into eq. 5.3.

.Using eqs. 5.2 and 5.3, B and Y can be calculated from raw TDC
counts and 1inserted into eq. 5.1. The resulﬁing mass distributions
are shown for the front and rear arm simultaneously 1in figure 20,
which 1s a scatter plot of front arm calculated mass versus rear arm
calcﬁlated mass. This type of plot was used on-line and off-line to
identify the coincidence events in which a proton was scattered ihto
each arm. The widths of the proton, deuteron, and pion masses in the
figure are due to finite méméntum and time resolution. The contribu-
tions of each type .of resolution can be found by’taking' the: partial
derivatives of eq. 5.1 with respect to time and momentum. Using

standard error analysis, [l4]
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2 _ 2 2 2 |pc|2 2,22 ’5,4
o 5 D '”’t-[dy] (1 + Y5 , (5.4)

where oh is the instrumental mass width, m is the actual mass, GS is
the fractional momentum resolution as defined in eq. 4.10, d} is the

real time resolution, p is the momentum, c is the speed of 1light, d

1s the path length, and Y and P are the Lorentz factors. From eq.

5.4, the known momentum resolutibn, and the widths of the proton
peaks in the mass plot made from thg P-P elasiic data, one finds that
UE <~ 0.6 nsec. Note that for a given particle of éxact'mass m, the
first term in eq. 5.4 is a constant while the second term grows with
increaéing momentum. Therefore at high momenta, the large widths of
mass distributiomns are'primatily,associated with the uncertainty in»
the measurement of time. The uncertainty in the measureﬁént of time
is mainly responsible for the spread in mass measuremént.._lt was
found that the proton mass peak becomgs very wide and extends ‘below

the pion mass for momenta greater than 1350 MeV/c in the front arm.

In fact, one must include in the daté'particles with apparent pB>1.

- When the proton mass width becomes so iarge that it encbmpasses

masses of other particles, contamination to the front arm proton
spectra from pilons and deuterons must be considered. The effect of

this contamination will be presented with the data in chapter 7.

2. Real and Random Coincidences

Random, aﬁalyzabie'cdincidehces-afise primarily from real parti-
clés in each arm which did not originate from the same beam particle,

but which satisfied .the 40 nsec R.F timing gate.  To. separate -the
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real from the random signal, one must trace time back to the target

to ensure that both particles originated simultaneously.

The following scheme was developed for on-line and off-line

analysis: Let t =t -t where t 1s the real time inferred from’
a,b b a a

the TDC which is stopped when a signal is present at location a. tb

be the distance between points a

b
: ]
and b. 1f the particle loses negligible energy in the system,

is defined similarly. Also let da

‘R1,R3 _ ege,R1 (5. 5)
dr1,83  Yege,Rr1

where tgt refers to the-target'locatioh. .Similarly for the front arm

Fro,r3 _ ° tge, w0
dro,r3  Yege,FO

where it is allowed that for a random coincidence t’tgt of eq. 5.6

(5.6)

may not be equal to t contained in eq. 5.5. With the above two

tgt

equations, the quantity &t = t° can be calculated

tgt,FO ~ Cegt,Rl

using the experimentally inferred real times Tr and T_ described in

f

the last section. To correlate the rear and front arm in time,
_recall that the FO TDC was started by an R1 hit. After calibrationm,

this TDC gives t -t

FO = 6t . No.tev that

R1 exp

fab T T, (5.7)

t + =
a,b tb,c ta,c

If the particle in the rear arm originated at the target at the same

time as the particle in the front arm then t =t’ and there is
v : tgt tgt

- a real coincidence.. From equations 5.5, 5.6, and 5.7, one finds that

the condition for-a real coincidence can be expressed as Stexp‘s»St;



39

The quantity TDIF =‘6texp - ot was histogramed on-line, and a
spectrum from one of the proton-ﬁroton elastic scattering rums is
shown in figure 2la. 'There is an obvious real peak at TDIF T 0 of
half widfh 2 nanoseconds, and there is very litfle backgfound-outside
of the peak. In-contrasﬁ, figure 21b shows a TDIF spectrum from one
of the (p,2p) data taking runs at high momentﬁm transfer listed in
table 1 of éhapter 3. This spectrum also shows a 2 nanosecond wide
peak near zero, but, because‘the real signal is.so much weaker than
that of the elastic scattering case, there is a sizable background.
For all éalculated coincidence cross sections, a cut was made on the
real peak, aﬁd'the randdm coﬁtributioﬁ to the croés section was sub-
- tacted off. The real peak to random backgroundvratio varied-frbm

10:1 to 6:1.

3. Calibrationms

The protdn-proton elastic cross section was measured at 1.05 -GeV
incident energy to calibrate TASS with respect to counter positions,

‘magnetic field, and normalization. = Coincidence measurements were

taken at three values of momentum transfer, and a singles measurement .

using the front arm only 'was taken for one'_valuet'of momentum
transfer. The elastic signal measured in the coincidence mode is the
‘most stringent test of the accuracy and efficiency of TASS.  For a

' ¥ ,
given angle  of one arm, planar elastic kinematics completely deter-

. mines the momentum of the particle in that arm and the complete -

momentum vector of the particle in the other arm. The first step in
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analyzing the coincidence elastic data was to note from the survey
that the angular placements of both arms were correct to 0.2°. Cen-
tral momentum corrections on the order of +2% were then made to the

wire orbit values using elastic scattering kinematics.

Cross sections were calculated by first: considering a momentum
bite in the rear arm. The acceptance A'Pr for proton-proton elastic
scattering follows from an equation similar to eq. 4.1l4:

op, = _bifte dP, T(P_,Q (P,),P (P ),0. (P)) (5.8)

whefe the rear solid angle Qb, the front solid angle Q_., and the

front momentum magnitude Pf are explicitly written as functions of
the rear arm momentum Pb. The functional relationship 1is given by

solving the elastic kinematic equatioms

?inc ;‘?L +-?;

Einc + mp = Eb + Ef

nc) is the incident proton’s four-momentum, mp is the

(5.9)

where (Einc;?;

proton mass, Eb is the rear proton’s energy, and Ef is the forward
proton’s energy. In principle one could use the T functions calcu-
lated as in appendix B to do the integral éf eq. 5.8, It:was found,
however, that a Monte Carlo procedure is more convenient because it

-easily 1introduces the effects of finite resolution, multiple coulomb

scattering, and energy loss to the resolution and the acceptance.

These effects are important corrections to the analytic accep-
tance calculation for elastic scattering because the actual momentum

range spanned by the proton yield in the-rear arm is a. small number
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' of resolution widths. Because of the kinematic constraints for
proton=-proton elastic scattering and the geometry of TASS, the actual
yield of backward protons in the rear arm can be shown by computer
simulation to span a range of about 40 MeV/c. The effect of finite
resolution due to the discreet geometry of the counters of TASS is to
smear the apparent yield és measured by the spectrometer over a range
wider_ than 40 HeV/c. Thus for a given measu;ed backwafd momentum
cut, one must caiculate thé fraction of events that were smeared .out
of the experimental bite. If the yield smoothly spanned a larger
momentum range, as is the case for all other spectra measured, then
the events smeared out of neighboring momentum bins into the bite'd
" considered would compensate for those eventsvlosg from the momentum
cut of interest. Since multiple scattering broadens the'finite reso-
lution by changing a particle’s trajectory f;om what 1t would  be. in
vaéuum, it‘must also be considered.* The corfect1ons to the analytic
acceptance 1mposed by multiple scattering and geometrical finite

' resolution were about. 50%, 10%Z of which arose from the finite
:geomecrical resolution effect aloné.

anelua.is calculated, one can compute gg' for the spectrome-

ter. by hormalizing to the target density and the ion chamber, which:
is weighted by the computer live time as described in chépter 4e

This cross section must be multiplied by 2n divided by the aéimuthal
do
dQ

cm

angular bite of the spectrometer. Then can be calculated

whe:é Qbm is the center-of-mass solid angle.' One must use the fact

that
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(5.10)
ZmPPb de Pgm thm |

where Pcm is the center-of-mass momentum. A CH2 target was used for
the coincidence as well as the singles running, and a carbon target
was used for subtraction. The carbon subtraction was important only

for the singles run.

Figure 22 shows the elastic cross sections as a function of
center-of-mass solid angle. The coincidence cross sections are the
three circles, and the singles data point 1is the triangle. The
filled circles -are the data of Dowell et. al.[l5] and the open cir-
cles are datg of Ryan et. al.[16] Acceptance calculations for the
- front arm singles elastic cross section were identical to those for
the coincidence run, if one substitutes a forward momenﬁum‘ bite ‘for

the rear bite of equations 5.8 and 5.10. The error bars shown in

figure 22 for this experiment are statistical only. Of the two

trigger modes, systematic errors are much larger for the coincidence
runs since the effect of the over constrained coincidence kinematics
coupled with the acceptance makes the yield of the coincidence mode

- vary more:-quickly with counter location and angular spectrometer

placement than that of the singles mode. For the coincidence rums

the systematic efrots due to angular magnet placement were about 137,
and those due to individual counter positions were about 10%Z. Thus
the total systematic error due to spectrometer geometry and placement
was about +16%Z. The total systematic error for the front arm singles

cross section was +5%.

w

.
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There are three other sources of systematic error applicable to
all cross sections. The most important one arises from the norﬁali—
zation of the ion chamber to calibrate the beam intensity. This

calibration was done using the 11C activation technique.{[l7] The

~ overall accuracy of this method was determined by comparing succes-

sive calibration measurements done with the same ion chamber and beam

~

conditions. This procedure gave a systematic error of +8% due to ion

- chamber calibration. Target densities were measured to i}Z; and

nuclear absorption introduced an additionallgrror of +1.5Z for sin-
gles measurements and +3%7 for coincidence measurements. Thus the ’
total sYstématic error which would affect the three E444H coincidence
points of figure 22 in the same'wéy is +18%. For the singles point,
the systematic error is 1102. Thefcaiibration data from this e#peri-
ment agree reasonably well with the other elastic scattering data of
figure 22, but calibrations of reagtions with 1less restrictive

kinematics would be useful for TASS.

In édditién to eiastié scattering.which feéts ﬁhe complete coin—
cidence system, rear érm singles spectra were taken at 120°. The
réaction'Z;l GeV p + 12C - p(iZOo) + X was measured with TASS in the
rear trigger mode. Cross sectioﬁs_wgre calcﬁlated with fhe analytic
acceptance as described‘in chaﬁtér 4. Mﬁltiple scatterihg and finite.
resolqtion were not important. Energy loss had.thé_effeét mentioned
in chapter 4, tha£ being to shift the momentum scales gy 2-3% ét low

momenta.
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Rear singles are important to test our understanding of all the
- factors which go into the acceptance calculation, because central
momenta were chosen for the singles running so that the acceptance of
different runs would overlap. Figure 23a shows a rear singles spec-
trum compoged of three different magnet central momentum settings, as
labeled 1in the upper right corner. . The acceptance function for each
setting was taken to be a curve like that of figure 17a, which was
calculated with the beam  and counter positions as determined by a
survey. The discontinuities at the overlap points of the runs are as
high as 30%. To find the source of the discontinuities, errors in
the following quantities were considered: 1) the magnet central
momentum, 2) the spatial shape of the magnetic field, 3) the position
of counters relative to each other, and 4) the position of the beam
spot relative to the rear arm coordinate system. The elastic
scattering and wire orbitvdata seem to rule out the firsﬁ and. second
possibilities. 0f the last two possibilities, the second is prefer-
able because the cérbon tatget used was at 60° to the béam .and a
small error i1in the relative horizontal position of the beam-chamber
and target is multiplied by 1/cos60° = 2. Actually one can combine
possibilities 3 and 4 ab§ve by attributing the discontinuities in the
momentum spectrum.to an error in the relative position ‘of the beam

spot on the target and the Rl counter.

Figure 23b shows what happens to the momentum spectrum if the
beam chamber location--and thus the beam spot location--is shifted by

2.5mm.to the left looking downstream. Since all surveying was
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assumed to be accurate to lmm, the justification for'this procedure
is questionable. Nonetheless, the different runs match up reasonably
well in figure 23b. The 90° and 110° data for 2.1 GeV p + 12C->p + X
of Tanihata et. al.[18] was extrapolated to 120° to compare with our
results andvié shown on the same figure. ‘The shape and normalization

of our data are consistent with the the Tanihata points thus extrapo-

lated.

The effect of this sort of correction to the 2.1 GeV coincidence
data to be discuséed in chaptér 7 is to contribute to the systematic
uncertainty. - For that data set only one rear magnetic field setting
was used ﬁer forward angle setting. The discrepancies in figure 23a
affected only the low_mbmen;um paft of the rear arm acceptance.
Therefore in taking low backward moméntum,cuts for the forward coin-
cidence spectra of chapter 7, a beam chamber position was used half
’wayA between that which produced figure 23a and that which produced
figure 23b. The fractiomal systematic.uncertainty due to the beam?
counter relative posit;on was taken to.be one half the fractional
diffefence between the cross sections of figure 23a and 23b. This
gives a contribution to the systematic error of +15% for low backward
momenta, that is for momenta. with -.3Q§§5r.15 with 6 as defined in.

chapter 4.

It is worth noting that the main conclusion of the coincidence
and singles calibration runs is that the uncertainty in the positioms.
of counters and the beam is the dominant contribution to systematic

errorse. When the fringes of the coincidence or singles acceptanées
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are being considered, a part of the beam only two to three millime-
ters wide 1is being used. For the 2.1 GeV run, the entire beam was
only 3mm wide to insure the best possible resolution in the front
arme. Therefore, to avoid these systematic errors, ome must either
measure poéitions to much better than one  millimeter, or only use

parts of the acceptance for which most of the beam is seen.



CHAPTER 6

Phase Space

As mentioned in chapters 2 and 3;' this . experiment was a
kinematic search for the final states appropriate to proton-deuteron
breakup reactions. In this chapter, the effects of phase space and
Fermii.momentum of the nuclear pair on the kinematics'are discussed.
The general methode for calculating many-body phase space distribu-
tions for targets with Fermi momentum are also discussed,tp facili- »

tate the understanding of the experimental results of chapter 7.

| The essential qpestion of this-type of research is: How many
target particlee participated in the reaction? It is assumed that
kinematic considerations alone can largely answer this_qpestion.f It
was in this spirit that Komarpv applied phase space considerations to
his data.of reference (8]. Of course the pure phase space model,
which ignores dynamics imposed opvreactions by the forces of nature,
was first suggested bf Fermi.[19] For the (p,2p) experiment, phase
space simulations outline the. kinematic regions which are populated
By the fipal state appropriate‘tp,a-nuclear pair interaction. - More
importahtly, phase space considerations can demareete the kinematic
regions populated by processes other than -the correlated pair
" interaction-~processes which might involve particle production or

large numbers of target, participant nuc leons.

47
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The phase space calculation is donme by the Monte Carlo method in
which one randomly chooses a set of numbers for the input parameﬁers
which comprise one event. Physically, an event consists of a proton
of given four-momentum incident on a moving target, which produces a
given number of final state particles. Each phase space event gen-
erated has_ three ingredients: 1) The kinematics of the reaction, 2)
the statistical or phase space weight, and 3) the probability of
finding a target within the nucleus of a given Fermi momentum. This
calculation is a gemneralization of the three-body phase space work of
Ruiz et. al. [20] in that it #ccommodates many-body final states and
target Fermi momentum. The calculation discussed here is also dif-
ferent from that of reference [20] in that all computations are done

in the lab frame to easily extract experimental observables.

First consider only #hree-body final state kinematics for' each
Monte Carlo’d event. In the calculation of the proton;target
kinematics of chapter 3, there were five input parameters'?;, Of, and
¢f. If the target is moving with four-momentum (Efe;?;e) as in
appendix A, the three-momentum'?}e constitutes three more parameters{
Since one would eventually 1like to calculate differential spectra

-with respect to P ,'the forward going proton’s momentum magnitude, it

f
is not considered as 'a quantity to be solved for as in appendix A,
but rather it is thought of as an input parameter. To completely
specify the kinematics with a movihg target, two more input parame-
ters are needed and are chosen to be efe and ¢fe’ the angular coordi-

~nates of the target Fermi momentum. One could have equivalently
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chosen one angular coordinate of the Fermi momentum and ﬁhe' Fermi
momentum magnitude as the remaining twd input parameters. To summar-
ize, there aie eight input parameters " which we choose as
(?;;?;’efe’¢fe)° Doing algebraic manipulations similar to those of
append ix A;'?;, the unobserved nucleon’s momentum, and Pfe are solved
for and the kinematics for each event are determined.

The total phase space R3(2,gfe) of the three-body final state

can be written as[21]

d3_1>b d3Pf a3p . | 6.1
28, 25, 2E_ 5B +B; PPy -P) Y

where the line underneath a symbol indicates a four4vectqr. P is the.

R (

3 ®e2e) = f

incident proton’s four-momentum, zfe is the four-momentum of the par-

'ticipating part of the nucleus, and all other symbols are as in

appendix A. The weight functions are ‘the standard phase space

4

weights d P, S(Pi2 - miz) for a particle of four-momentum P, and mass

_.i

m, .

The ﬁext step is to add the Fermi momentum probabilities. The
probability dénsity for finding a fragment in the nuclgus with momen=
tuﬁ'?;é_is taken to be that described'by Goldhaber in reference: [7]
in ﬁis analysis of fragmentafion data-[ZZ] Thié density 1is givén_as
in chapfer 2 by o

.W(?fe) x e

_ , 2 (6.2)
, Fa-Phe
2 ‘o

o ————————————————

fe = Ta - 1l
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where A is the atomic number of the nucleus, and F is the number of
nucleons 1in the participating target fragment. As in chapter 2,

ob = 90 MeV/c. With Fermi momentum, eq. 6.1 generalizes to

dapb d3Pf d3Pu -(Pgelzaie) 3 4 (6.3a)
Ry(®)=f 26, 25, 2E_ ° 4Pgg O (B4R By BB

One could alternatively arrive at eq. 6.3a by considering the
actual four-body final state resulting from the interaction of figure
2. This final state consists of three nucleons and the residgal A=2
nucleus in its ground state. Labeling the four-body phase space witﬁ

a prime,

3. 3. 3 3 2 2
ae, v, %k ak, , -, %126

)
b £ fe 4
: e & (p+p,-P_-P.-P -P
2, 26, 2 2E, , A

R°,(®) = [ £ Ty —A-2

-2 are the four-vectors of the A-nucleon target

nucleus and the A~2 nucleon spectator. The subscript of a primed

where gAvand gA
phase space refers to the number of particles in the final state
including the A-2 residqal nucleus, whereas the subscript on an
unprimed phase space refers to only the three final state particles
in the proton-pair interaction. The non-invariant exponential is the
probability that the A-2 reSiduairand the pair center of mass have

relative momentum 7

A-2" From eq. 2.2 EA’E gfe + BA-Z as they are
defined in this chapter. Similarly, apart from a sign,
3 3
d PA—Z =d Pfe' The four-body phas? space becomes,
3 3 3 3

' 2, 2
d”p, d"P_ d"P_ d°P -(P_ /26, )
oo P G P IB AP (R 20 P p p) (6:3b)
R,®=f 2%, 2E, 2E_ ZE,_, 8 (@2 Ry R

Apart.from-the“factortof~EA;

2vin the.denominator, eq. 6.3a and 6.3b
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are equivalent. However, the differenqe between'EA_2 and the mass

is very small. For the case where A=12 and Pfe = 400 MeV/c, the

difference between the energy and mass of the A-2 nucleus is less

My2.

than .1%. ' Thus eqs. 6.3a and 6.3b are different by only a constant
‘factor ' and the small error in using the on~shell deuteron mass as:
discussed in chapter 2; therefore equations of the form of 6.3a will

be used from here on.

To get eq. 6.3a into a useful form for the Monte Carlo pro-
cedure, first solve for'?; using the three-momentum part of the four

dimensional delta function as follows

3 3

d°p, d7P. - /20' )dPfe
R,(B) = | ——— — ¢ 6(1-:+E -E -E, E o (6 4)
3 2B, 2E; | ZEu* fe b

where a quantity with the star superscript means that it has been
solved with the kinematic delta function, and is implicitly a func-

tion of all other unstarred quantities. As indicated above, we now

solve for Pfe with the remaining delta function and find
* 2 2
d3P d3Pf ) e'(Pfe /26¢,) (6.5)
Ry®) = [ 25, 2B, 'fe * a0, | Dyl
. f - 2E
u
where
* * . -1
P P Pcos® ~ P_cos® - P, cos8
D = fe _ fe fe + f fe,f + b fe,b
3 * * * * _ *
E E E E
fe u u u u
where cosea b is as in appendix A. The term D3 results from using
?

the delta function in 'Efe of eq. 6.4 to solve for Pf in. the
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integral.
The most convenient differential phase space form for comparing

to experimental cross sections is

2 %2, 2
~(Pgg /26¢,)

dQ

€ fe

2 *
dR,(P) (P P) P
3 b f f 55 |D3| (6.6)
b f E

dede dede 8E. E .

Figure 24 is a plot of the differential phase space of eq. 6.6 versus
front momentum for one set of experimental running conditions with

(o]
e, = 120°, o,

as noted. The value of o%e used was 120 MeV/c, which was calculated

from eq. 6.2 using A=12 and F=2. The normalization for each backward

= 10.40,_and three selected ranges of backward momentum

momentum range is set so that the péak in the graph will be close to
l. One notices that, given the double root solutions of chapﬁer 3,
the high momentum root is favored. This is the.result of the'(PglEf)
term';f eq. 6.6. Figure 24b.shows with the solid 1ines what - happens
.as o%e-éo, and the double root solutions of figure 5 are recovered.
The error bars on the phase space curves represent the statistics of

the Monte Carlo process. The arrows on the figure correspond to QTBS

kinematics and will be discussed in chapter 7.

Eq. 6.6 can be generalized to the:  situation where, either
through particle production or the participation of large numbers of
target nucleons, there is an N-body'final state. As in appendix A,

let
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T =% +F
u 1 u~1l
N=2

= 2

i=1 ¥

where the sum is over all unobserved particles. The general phasé

space formula then becomes

* 2 2 )
=-(P_ /267 ) . : :
*
dr (P) (p,p)2 pr?2. fe fe N-2 %2, (6.7
-2 f g fe 40, T —== ||
) %
dp do_dPdQ. ~ BEE = fe i 2E; N
where
P* P* 4 e P e | P %) 2P °] -
bo |fe _Tfe  F%%%%fe  TE%%Prer  p®%%%en N2 F1%0%%fe 4
N x _ _x * + * + * + 2 . %
{EY  E E E E 1=2  E

fe 1 1 1 1 ‘ 1

and whefe the momentum of the particle labeled vith_ subscript .l-vis
solved with the delta function. The three-momenta of the additional
N-3 particles_becomevadditional input parameﬁers in eq. 6¢7. Thus
for the genéral N-body final state, théré are 3N-1 input parameters
to the kinematics, because there ére 3 deg:eesvof freedom for each
final state particle, plus 3 input parametefs for the target with
Ferhi momentum,-minps 4 kinematic.equations of constraint. Opera-
tionally, one ;hrows»randomly over the inpﬁt-parametérs.which are not
differentiated out of the integral and stores the 'weights. given by

the integfand of éq. 6.7 in the appropriate (Pb’gb’Pf’Qf) bin.

Figure 25 shows the differential phase space function of eq. 6.7

versus front momentum for final states with greater than three parti-

cles. The reaction simulated in'figure 25a is 2.1 GeV p+d—>p+ptntn
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where the two protons are detected in TASS. The Fermi momentum of
the deuteron is as in figure 24, and the rear momentum bite 1is

400<P. <500MeV/c. In figure 25b, the differential phase space func-

b
tion for the reaction 2.1 GeV p+d—>pt+p+n+n+n is plotted versus for-
ward momentum. Normalization was again set to make the peak of each

plot 1. Note that when pions are added to the final state, the popu-

lated phase space moves further away from high forward momentum. In

figure 25¢c, the four-body final state for the reactidn
2.1 GeV p+t—>p+p+ntn 1is shown versus front momentum for the same
backward momentum cut as in the fighres 25a and 25b. The standard
deviation of the Fermi momeﬁtum distribﬁtion of the triton inside the
nucleus was taken as o%e = 120MeV/c. The phase space momentum dis-
tribution for the forward going proton is very broad in this case and
overlaps ;hé distriﬁutions of figures 25a and 25b. These 1illustra-
‘tions will be useful in intetpfeting the data, bﬁt hgre they are only
meant to show the trends of the front momentum Spectfa' as backward

momentum, final state particle number, and target nucleon number are

varied.
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CHAPTER 7

Results end Discussion

~ The goal of this experiment is to confirm or deny the possibil-
ity of interacting with a nuclear pair or small number of nucleons in
a (p,2p) reaction at high momentum transfer. In this chapter, the
data are éresented aqd interpreted. The data taken at Of = 10.4°
seem to relate more to the above goal than the data taken at .other
forward angles, and they will be presented first, along with
kinematic inte:ptetations and the data’s relationship to lower energy
(p»2p) experiments. The. data at @

f

data taken at Qf = 60° will then be presented and discussed in sec- |

= 45° and the small amount of

tion 2. Section 3 describes the atomic number dependence'of the data

as it was extracted from the copper.ruhning.

l. The (p,2p) Reaction at 10.4 Degrees

In this section the Qf = 10.4° data are discussed. The sys-
temati¢cs of the forwa:d«momeneum spectra are first oetlined in sec-
tion 1.1, and they are compared with ;he simulated reSpoﬁse of TASS
to various real Speetra assoeiated with the proton-carbon kinematic
limit. The data are‘then compared to the proton-pair pﬁase space and

quasi-eiastic kinematics in section l.2. Section 1.2 also describes

other (p,2p) experiments at lower energies.

55
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l.1. Systematics ggjthe Data and the Response of TASS

Figure 26 shows the six-fold differential cross section versus

bgﬁSOMeV/c. The back-

ward angle is, as always, Gb = 120°. This spectrum is subject to the

+17%Z systematic error for low backward momentum cuts due to the

front momentum for the rear momentum cut 400<P

effecfs mentioned in chapter 5. As noted in section 1l of chapter 5,
pions and deuterons can contaminate the proton sample in the front
arm for momenta above 1350 MeV/c. To estimate the contamination to
the (p,2p) signal from other forward going particles, the coincidence
cross sections for protons backward and either pions or deuterons
forward were calcqlated from the E444H data for forward momenta less
than 1350 MeV/c. Extrapolating the data to higher forward momenta
showed that the coﬁbined contamination froﬁ pions and deuterons at
high'forward momentum Qas less than 5% for all the data presented in

this chapter.

The forward momentum spectrum for the 10.4 degree co#ncidence
data i1is largely flat, or perhaps slightly falling from an average
valuevof about 3.5 mb/(GeV/c-sr)Zat 500 MeV/c to an average value of
2.8 mb/(GeV/c-sr)2 at 1800 MeV/c; There is a possibly significant
dip at about 2300 MeV/c followed by a few'points at 3 mb/(GeV/c—sr)2

and then an abrupt falloff at 2800 MeV/c.

Since the resolution of the front arm is as given in figure 16b,
and the central momentum used for the high momentum part of the spec-
trum was 2151 MeV/c, it is worthwhile to discuss the response of the

system to spectra which change. abruptly with front momentum. In
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_barticular, consider the kinematic limit in forward momentum for the
reaction 2.1 GeV p + LZC > p+p+ 11B for the average backward

momentum represented in figure 26, P, = 475MeV/c. The front momentum

b
kinematic 1l1limit is found by solving equation Al of appendix A with
Eze = 0, Efe = mass of the carbon nucleus, and (Eu;?;) the four
momentum vector of a recoiling boron-nucleus in its ground state.

The kinematic limit is found to be P_. = 2779 MeV/c.

f
One might argue that, ignoring the dip ét 2300 MeV/c, fhe spec-
trum of figure 26 is conéistent with being flat until abruptly fal-
bling off at the kineﬁatic limit. : Figure 27 shows the response of
TASS to -suéh a flat spectrum which falls at the forward momentum .
corréspoqding to the proton-carbon kinematic limit for a backward
mqmentﬁm of> 475 MeV/c. The figure shows on the left the spectrum
thrown at the apparatus in a Monfe Carlo simuiation. The flat part
of the thrown points was normalized to an avefage value of the data
of figure 26 between 1600 MeV/c and 2800 MeV/c. On the right figure
27 shows the cross sections which would be measured in the front arm
of TASS with its finite resolution given the thrown distribution.
Also on ‘the fight are -the last few data points of figure 26 for
reference. The solid line gui&es the eye' through the Monte .Catlp
reconstructed points, and the dashed line guides the.eye through the‘
data. Note that the reconstructed spectrum on the right‘side.of fig- '
ure 27 falls off at about 2600 MeV/c; or about 180 MeV/c sooner than
the flat spectrum thrown ﬁtvthe'device. The reconstructed falloff is

- earlier because a given momentum bin is fed by momenta of roughly one
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resolution’s width on either side of the center of the Biﬁ. Thus the
momentum bin at 2250 MeV/c, for example, is fed equally by low and
high momenta within the resolution width. But a bin at 2600 MeV/c is
fed 1less from ﬁigh momenta since there is a sharp high momentum cut-

off in the thrown yield.

We can now test the hypothesis_that the spectrum of figure 26
represents a flat distribution up to the kinematic limit. The real
data in figure 27 fall off at about 2800 MeV/c, 200 MeV/c higher than
the reconstructed spectrum. If the systematic front momentum error
were zero, the persistence of the high momentum part of figure 26
would 1imply that there must be an‘enhancement at high forward momen~
tum to feed the momentum bins beyond the 2600 MeV/c cutoff of figure
27. A conservative estimate of the syétematic front momentum error
is tzz,.gotten from the protoﬁ-prpton elastic scattering - calibration
data. With-this-est;mate, the real data of figure 27 still show sig-
nificant rate in excess of the reconstructed cutoff. If the real
spectrum fell off grédually toward the kinematic limit rather than
abruptly as simulated, the réconstructed yield would start to
decrease even-sooner. Thus the reconstructed cross section of figure
27 represents an upper limit for the falloff point of the spectrum in
the absence of a éeak at the high momentum end. We can therefore
conclude that the data are not consiétent with a flat spectrum out to
 the kinematic limit. In fact, this analysis suggests that the dip at
2300 MeV/c and the subsequent rise and decrease of the spectrum of

figufe 26 could signify a peak at high forward momentum which may be
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obscured by poor statistics and inadequate resolution.

Figure 28 shows the forward momentum spectrum with a ‘“higher
backward momentum cut, 5505?b5700 MeV/c. The systematic error in
cross section magnitude is +9.5%. The spectrum is perhaps level or
slightlj falling in the low forwafd momentum end. It levels off. or
rises slightly in the high momentum end and falls abruptly at about
2550 MeV/c. = Again, one could say that the spectrum at the high end
is essentially flat until it falls off.at the kinematic limit of 2691
MeV/c, which corresponds to a backward momentum of 625 MeV/c. Figure
29 is the analog of figure 27 for the high reér momentum cut. Here@
the falloff point of .the data and the recomnstructed -events are almost
identiéal, implying that the real spectrum being fed to thg‘ forward
arm - of TASS in the experiment could'bevflat with an abrupt drop at

the kinematic limit.

According to the "falloff point" analysis, one may draw the. fol-
lowing conclusions: Whereas the forward momentum spectrum cut on high
backward momentum is consistent with a flat spectrum up to the
kinematic 1imit, the 1low momentum backward cut spectrum is‘npt; in
fact it seems to represent a peak at the high forward momentum end. .
If the EYS;ematic front momentum determination were‘for hhknown rea-‘
sons higher than 2%, one could still draw the weaker conclusion that
the two spectra of figures 26 and 28 cannot both be consistent'with

flat cross sections out to their respective kinematic limits.
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1l.2. 1Interpretation of the 10.4 Degree Data.

Assuming there is a peak at the high forward momentum end of the
real cross section represented by figure 26, of what interest is it?
Note from figure 24a and 24b that the proton-pair phase space exhi-
bits a peak at high forward momentum. According to QTBS or the
quasi~-elastic picture, the incident proton interacts with one fast,
backward going nucleon, and this model also predicts a peak in the
forward momentum spectrum near the kinematic limit. The QTBS peak 1is
near the kinematic limit because.the incident nucleon is assumed to
interact only with one-target'ﬁucleon, leaving the. residual nucleus
in tact and close to its grouﬁd Staté. The arrows in figure 24
denote the kinematic limits for the midpoint of each backward"momen—
tum range shown. From figure 25, note that when pions are produced
in an interaction with a two nucleon target, the populated phase
space moves away  from the high momentum end. Although not shown,
this statement is also true when pions are producedvin an interaction
with a single-nucleon target. Also, whén a nuclear targét larger
than two nucleons is struck and is broken up, as in figure 25c, the
available phase space does-not show a peak at the high forward momen-
tum end. We are lead to the conclusion that only an in;eraction of
the incident proton with one or two nucleons, in the absence of pion
production, can produce a kinematic peak in ﬁhe high forward momentum

region, above 2500 MeV/c.

Is there a way to tell from the data whether the suggested high

momentum peak in. figure 26 corresponds.to an interaction with one. or
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two nucleons? Given the closeness of the Lkinematic solutions for
proton-pair and proton-nucleon interactions for low backward moméntqm
as demonstrated in figure 26, it would be purely épeculétive to say
which ﬁechanism.we observed, if one grants the existence of the high
momentum peak at all. In ad&ition, one could make plauéible modifi-
cations to the proton~pair and QTBS pictures to make the two models’
kinematic solutions even cldser. For example, one could allow for an
excited npclear pair in the former, moviﬁg th; proton-pair phase
space toward highef forwafd momentum. In tﬁe lafter, one could allow
»the residual nucleus to be excited, moving the kinematié limit solu-
tion toward lower forward momentum. Therefore, experimental'moﬁeﬁtﬁmv
resqlutipn is not the’only problem in separating_the kinematic signa-

~ture for the two pictures.

Indeed, Frankel et. al. [23] recently perfqrmed a (p,Zp) meas-
urement at 800 MeV incident energy on lithium, with a very good reso-
lution of l.4% in their forward arm. They looked for an énhancement
néar the kinematic limit to test QTBS. Their results for the reac-
tion 800MeV p + 6Li - p(105°) + p(12.28°).+‘x are plotted in figure
30. The backward momentum is 350 MeV/c. The dashed line represents
the proton-pair phase space calcﬁl;tion of chapter 6 nérmalized to

the Frankel data peak, with P o = 120 MeV/c. The arrow denotes the

f
kinematic limit. Frankel’s data are consistent with the kinematics
of a single scattering, leaving -the residual nucleus with a mean

excitation energy of 18-20 MeV. Note however that there is a - sub-

stantial overlap of the proton-pair kinematic solutions with his data
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even with the excellent resolution of the spectrometer used.

Considering phase space shapes only, it ‘seems. impossible to
experimentally separate QTBS from the pair mechanism near the
kinematic limit, but an enhancement near that point 1is of interest
regardless of the modei invoked. Consider figure 7a of éhapter 3 and
the-proton-pair interéc;ion. To say that the phaéé space for the
proton-pair 1interaction is enhanced at the high momentum end.is
equivalent to saying that pure phase space favors low momentum
‘transfer to the unobserved nucleon. This strongly suggests the sin-
gle scattering picture of figure 7a as opposed to the multiple
scatteriﬁg of figure 7b. If one allows that the mechanism of figure
7a contributes to a high momentum peak in the spectrum measured in
figure 26, there is the ambiguity as to whéther the backward nucleon
was the participant-~labeled without parentheses--or the spectator--
labeled with parentheses. But the interest in this research is to
find a very high momentum component in the nucleus. If the backward
nucleon were the partiéipant, then it is plausible that the momentum
- of the unobserved spectator largely represents the momentum of the
nucleon in the nucleus before‘the iﬁteraction. One can calculate the
unobser§ed nucleon’s momentum to Se about 570 MeV/c for the kinematic
situation of figure 26. If the backward nucleon was the spectator,
then the observed backward proton’s average momentum of 475 MeV/c
represents the’ﬁigh relative momentum component of the nuclear pair.
It is because the spectatorrprdcess gives a lower relative momentum

for the pair that Yukawa and Furui[24] argue that the spectator pro-
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cess must dominate the pair interactiom.

The same érguments apply if the quasi-elastic model is con-
sidered. 1In that'case,'one can view the incident bottom line of fig-
ure 7a as the residual nucleus, part of wﬁich is somehow  correlated
via the solid line to the single, struck nucleon. If the participant
is obsefved backward, oﬁe can calculate the A-1 spectator momentum,
~assumed to be the participant momentum before it was struck, to be
404 MeV/c for the kinematics of figure 26. If a spectator from ~ the
A-1 nucleoﬁs was ejected backward, we arrive again at a nuclear
momentum of 475 MeV/c. Thus whether one uses the participant or .
spectator picture in either model, one arrives at a nuclear momentﬁm.
above 400 MeV/c which is far beyond a-fypicai' Fermi momentum. .The
conclusion 1s that if the suggested enhancement in figure 26 can be
shown to be statistically significant, model caldulations, such as
those outlined in apﬁgndixAC, must assign prpbabilitiés for finding

high relative or single nucleon momenta in the nucleus.

The certainty of this conclusion must be tempered by considering
final state interactions in the single scattering process. Whether
it 1s called distértion, as in the reference of Jacob and Maris,[25]
" or ~final state interactions, as in a recent theoretical treatment by
Amado. and WOloshyn,[Zél ;he_interaéting particles of figure 7a when
the bqttom 1qcident line is the A-1l residual-pucleons negate the
‘quasi-elastic.1nterpretation of the laét p;ragrapﬁ. With a final
state interactioh, one cannot kinematically reconstruct the momentum

of the nucleon in the nucleus before the collision. Frankel
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correctly states in reference [23] that the final state interaction
of the primarily interacﬁing nuc leons with the A-l residual nucleons
must be coherent in order to preserve the appearance of quasi-elastic
kinematics. In,other.words, the final state interaction or distor-
tion must not breakup the A-l nucleons, otherwise the resulting
many-body phase space would no longer produce a peak at high forward
momenta in the (p,2p) .experiment. But since thé mean free path of
the initial and final state nucleons observed is on the order of the
.nuclear radius, there ‘is a possibility that some fractioﬁ of the
quasi-elastic events do emerge with information on the nuclear wave
~function. Of course, final state interactions can similarly distort

the dynamics of the proton—pair interaction.

Certainly the magnitude of the "péak" in figure 26 of about
3'mb/(GeV/c-sr)2 is a lower 1limit for the real mégnitude of this
enhancement; To demdnstiate this fact, figure 31 shows thev‘response
of TASS to a flat peak in front momentum between the front moméntum
kinematic limits corresponding to the backward momentum cut of figure
26. These limits are 27385?f§2815 MeV/c. vTo get an observed peak of
3 mb/(GeV/c!sr)z, a real peak of 17»mb/(GeV/c-sr)2 must be thrown at
the apparatus. Frankel quotes 21.64 mb/(GeV/c—sr)z»for the value of
his peak shown in figure 30. Therefore, at the higher energy of

E444H, there could be .a peak of comparable magnitude.

Figure 28, the high backward momentum cut, is more difficult to
“interpret. One of the original motivations for this experiment was

Komarov’s- observation of proton-deuteron kinematics at lower energies
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from reference [8). Whereas be observed a peak at the kinematics of
protqn—deutérdn elastic scattering,Hcorresponding to the midpoint of
the contours of.figure 5, we expect at the higher energies to observe
proton-deuterop bfeakup kinematics, because the free elastic proton-
deuterqn cross sectibniis'déwn by at least an order of magnitude.ffom
the lower energy of 600 MeV,[Z’] and the deuferon,breakup is there-
fore favored. For the high backward momentum cut of figure 28, the
ppoton-pair and the quasi-elastic Lkinematics are well separated.
Perhaps with improved statistics we could confirm the slightly rising
trend of figure 28 towardv the ﬁigh momeﬁtum end. This_ would
correspond to - the ' proton-pair phase space of figures 24b and 24c..
The problem, of course, is that the phase space for the éonfigura—iv.
tions of figure 25§ and 25c also contribute to the high momentum
spectrumvaroﬁnd 2300 MeV/c and then fall abruptly. An essential
problem of the high energy (p,2p) experiment is #hat éion production
and other mechanisms occupy similar kinematic regimes asvthe proton-b
pair mechanism when one moves away from the kinematic limit. Perhaps
improved statistics and a model calculation which involved more than
kinematic considerations coﬁld verify gﬁe contribution of the pair

mechanism to figure 28.

It 1is useful to compare the coincidence front momeﬁtum spectrum -
to the singles spectrum at the same forward angle. The singles spec-
trum at 10° was measured by Tanihata et. al. (18] and 1is shown 1in
figure 32. At thevhigh momentum end, singies data taken from E444H

are superimposéd on the Tanihata spectrum to supplement the high
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momentum end not measured by Tanihata. The singles data of E444H,
labeled with triangles, are normalized to the Tanihata data, as the
E444H data were takén during a recent run under conditions of poor
- beam location stability and thus is difficult to independently nor-
malize. Note that the singleé spectrum rises in the lo§ momentum
region as opposed to the coincidence specﬁrum. This argues against a
thermal picture where the shape of the front coincidence spectrum is
the same as that of the front singles spectrum; that is, the - forward
going proton is unaffected by triggering on a backward going proton.
On the other hand, the shapes 6f figures 26 and 28 are similar up to
thé kinematicv limit, suggesting that the mechanisms for the coin-
cidence in the low front momentum region is insensitive to the range
of backward momenta chosen. The 10.4° singles data taken on TASS
clearly show a quasi-elastic peak, which is -expected at
ff = 2760 MeV/c from-free proton—p;oton kinématics.i If the possible
coincidence peak of figure 26 is of the same width and relative
strength as the singles quasi-elastic peak, then TASS in its present
configuration 1is only in need of statistics to idgntify the

existence, but not trace the shape, of the coincidence quasi-elastic

peak.

Before leaving the 10.4° data, I show in figure 33 the backwafd
momentum spectra for the reaction 2.1 GeV p + 12C ->
p(120°) + p(10.4°) + X cut on the forward momentum range§ indicated.
The striking feature is that the magnitudes and shapes of all forward

momenta are roughly the_ same, except for the high momentum cut. This
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again implies that for most ofvthe coincidence spectrum, the momentum
of the particle in the rear arm does not depend strongly on the
momentum of the particle in the front arm. Thesinverted triangles‘in
figure 33, which are the singles data of figure 23b normalized at the
arrow to thercoincidence data,‘further support this conclusion. The
difference in magnitude and shape for the high momentum cut  is cer-
tainly due in part to encountering the proton-carbon kinematic limit.
Without knowing the precise shape of the high momentum forward spec-
trum, it dis difficult to say whethgr the fast falloff of the high
.forwar& momentum cut 1is interesting beyond showing that TASS is éen-
- sitive ﬁo the trivial protén—carbon kinematic limit and 1is indeed
capable of doing coincidence measuréments.b 1f, however, one - consid-
ers thét the spectrum of figure 33 is at least representative of the
backward spectrum cut on the qdasi—eléstic peak, thén one can assign
a standard deviatiop for the Fermi mbmentum distribution néeded to
produce the shape of the high forward momentum cut of figure 33.

This is done in appendix C.

The salient coﬁclusions of the 10.4° data are: 1) The low back-
ward momentum cut oh the forward momentum spectrum sﬁggests the pres-
ence of a peak near the kinematic-limit.v Whethér this peak is due £§
proton-pair or p:oton-nucleon interactions, it would qertainly result
from an»interactioﬁ with a small number of nucleons and indicates the
‘possibility of measuring high moﬁentum components with a (p,2p)
experiment. 2) The high backward momentuﬁ cut on the forward momen-

tum spectrum yields a result consistent with hitting the proton-



68

carbon kinematic 1limit, given our wunderstanding of the systematic
front momentum error. 3) Most of the forward or backward.coincidence
spectrum is insensitive to the momentum cut in the backward or for-
ward arms respectively, showing that final state inte:actions or
mechanisms with overlapping kinematic fegimes make conclusions diffi-

cult away from the kinematic limit.

2. The (p,2p) Reaction at 45 and 60 Degrees

The coincidence- cross section measured at Gf = 45o and at

ef = 60° cover front momenta. very far from the kinematic limit.
Therefore extracting information about interactions with small
ﬁumbers of nucleons is perhaps plagued by-some of the problems men-
tioned in the conclusions of the last section. Figure 34 shows the
~-coincidence cross section for the reaction
2.1 GeV p + carbon = p(120%) + p(45°) + X for the two backward
momentum cuts shown. The label "low field" means that the data were
taken at a forward central momentum of 422 MeV/¢c, while the '"high
field" data were taken et‘a cent;al momentum of 922 MeV/c. The low

backward momentum cut spectrum is subject to 15% systematic error,

and the high backward cut spectrum is subject to 9% systematic error.

The two backward momentum cuts-of figure 34 show no statisti-
cally significant difference in shape, being flat or slightly rising
up to about 500 MeV/c and then falling towar& higher front momentum.
For the various front momentum points in figure 28, the ratio of the

cross sections of the lower backward momentum cut to those of the
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high backward moﬁentum cut 1is consistent with being a constant of
about 1.75+0.20. Plotted in figure 35 is the singles cross section
from the Tanihata reference [18]. Both backward momentum cuts exhi~
bit the same'qualitative shape as thg singles data, which suggests
that because of multi par;icle cascades or final state interactions,
 their 1s little correlation betweén the forward and backwa;d .going

proton.

f
egg-shaped contours of figure 5. Figures 36a and 36b show the effect

The 6, = 45° point was chosen because it 1s at the edge of the

of Fermi momentum and phase space weighting. on the proton-pair
kinematics of figure 5 for the conditions of each backward momentum

cut of figure 34. There 1s no obvious similarity . between ‘the

proton-pair phase space and the data of figure 34. Figure 36c shows.

the low backward momentum cut of figure 36a in the proton-pair

interaction when one pion is added to_thé final state, but the peak

in the phase space configuration is still too high in front momentum

to correspond to the data of figure 34. Whereas the addition of a

pion for the case Qf
of figure 25a-from that of figure 24a, the addition of ﬁhe pion for
the Of = 45° case-dées not qualitatively maké»figure 36c.§na 36a look
very different from ome another. Many other initial andvfinal state
configurations also give similarly shaped.phase space distributions

at this wide angle, which means it would be difficul;vto isolate any

one mechanism unless it significantly dominated over all the others.

= 10.4° substantially separates the phase space
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Figure 37 shows the coincidence cross sections at low forward
momenta at Gf = 60°, which is beyond the kinematic region accessible
to free proton-pair scattering as shown in figure 5. The low forward

momentum data .at Gf = 60° show the same trend as that of Of = 45°.
Again, the ratio of the low backward momentum points to the high
vbackﬁard momentum points for each forward momentum is consistent with
a constant value; the value here is 2.3+0.3. Because the 60° data
are outside the free proton-paif. kinematics, a substantial pair
center-of-mass Fermi momentum is necessary to populate the kiﬁematic
region. of the 60° data. Pure phase space predicts that the pair
interaction cross section should be down by a factor of 6 from the
- 45° data because of the low probability of finding: the reqqired pair
Fermi momenta-b The similarity in shapg and magnitude of the 60° data
to that of the low forward momentum 45° data furthervdiscounts the

' possibility of kinematically identifying the proton-pair contribution

to the ef = 45° data.

If interactions with small numbers of fast nuclear cons;ituents
were an important contribution to the backward singles cross section,
one would expect to observe quasi-elastic or proton-pair kinematic
enhancements in the @, = 45° data. One would also expeqt some

f
response of the shape of the low and mid momentum regions of the
10. 4° spectra to changes in the rear momentum. Perhaps one reason
why these features are not observed is that only a small amount of

the available 1incident energy 1s carried away by the observed

nucleons in.the above-mentioned kinematic regions. If the nuclear
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pair interaction, for example, were the .first ‘interaction the
incident nucleon suffered, the unobserved spectator would go off with
a momentum of 2 GeV/c for the kinematics of the 45° data._ The unob-
served nucleon then has enough kinetic energy to interact with the
rest of the carbon nucleus again, pgrhaps bbSCQring the proton-pai?
phase space by adding more particlesvto'the final state. Of course,
the pure phase space may also be modified substantially by matrix
elements for the elementary intefactions,'requiring a model calcula-
tion to uncover the correct description of the data. ‘It is therefore
difficult in the ef = 45° data to confirm or deny the coqtribution of .
the proton-pair 1nteraction. The apparently uncorrelated nature of
the 45° and the low and mid forward momentum 10-4°vdata'sﬁggests.thét'
if .interactions.with small patté of ﬁhe nucleus do contribute to the
(p,2p) signal, one must de;ect a. large fraction of the available
kinetic energy; this is to insure that the observed final state pér—
ticles participated in the interaction of interest andvnOt in subse;
quent interactions due to high momentum p;oducts left in the nucleus.
One must either do more exclusive experiments to account for ;hev

incident energy in the observed partitles, or stay near the kinematic

limit as implied in section 1.

3. ‘Atomic Number Dependence

A small amount of copper running was done at ef = 10540 spanning
front and rear momentum ranges as in the second entry of table 1 on

page l2. A parameterization of A% is usually assumed where A is the
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atomic number of the nucleus. Using carbon and copper, one finds
«x=1.13 + .03. At Of = 45° a copper target was used for the back-
ward and forward momentum ranges of the fourth and fifth entries of
table 1. For the configuration of the four;h entry, « = 1.38 + .03
and for the fifth entry « = 1.26 + .04. In other (p,2p) experiments
« has been found tovbé 0.39 + .07 at 600 MeV (8] and near 1 at 800
MeV (31]. In comparing the various experiments, one must realize
that A dependence can change with the choice of final state momentum
vectors as well as with incident energy; therefore the A dependence

of the different experiments may not be directly comparable.

The usual interpretation of the dependence of nuclear cross sec-
tions on A is geometrical. If A is less than L, one assumes that
some part of the nucleus, for example the surface or pefimeter, is
involved in the collision process. If x = 1, each of the nucleons in
the.nucleus.have an equal probability of interacting and a siﬁgle
scattering in anywheré in the nucleér volume is implied. Since com-
binations of A things taken two at a time goes as A(A-l), o> 1 is
often associated with striking more than one nucleon in the nucleus.
Theée interpretations are very simple and considerations such as

final state interactions modify these descriptions.



CHAPTER 8

Conclusidns

Although there is no evidence from this experiment which
uniquély identifies the correlated pair interaction, there is at
least thé suggestion from the analysis of figure 26 in chapter 7 that
a one or two nucleon interaction can produce an ehergeﬁic nucleon in
the backward direction. Kinematics alonme may not be sufficient to
tell if the fast nucleon reSpbnsible fo:.the possible peak of figure
26 derives its high momentum from a single other nucleon, as 1in the
nuclear pair picture, or from somevlatger combination of nucleons.
As demonstrated, either a one or two ‘nucleon 1ntérac;10n in' the
absence of final state interactions could require the e#istence of a
high momentum nuclear constituent, revealing a very small but
interesting part of ' the nuclear wave function. Froﬁ the mean free
path of the measured nucleons, it seems that the reaction products of
~at least some of the few-body interactions'should emerge from the

nucleus with negligible final state interactions.

'vAﬁ the time this thesis was completed, there were no models
available which described a coincidence cross section for'the energy
régime covered. Howgver; there is currently aﬁ attempt to 'apply to
our data the cascade cbde of Cﬁgnon,[28] which includes no abnormaliy
high nuclear momenta. Fujita is also in the process of extending the
model of Fujita and HUfner,(29] used to calculate backward singles :

cross sections, to the calculation of coincidence cross sections for

73
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the kinematics of this experiment.{30] The Fujita and HGfner model
uses a picture like that of figure 7a with final state interactions

among the pair members.

One obvious improvement to this experiment would be to improve
stafistical accuracy. One could then verify whethef the high momen-
tum enhancement in figure 26 and the upward trend toward high momenta
.in figure 28 are statisfically significant. As this thesis is in
part an historical document, it should be noted that 100 hours were
allotted by the Bevatron Program Advisory Committee for completing
E444H more satisfactorily. But because of difficulties with
'accelerator operatioﬁ during our last ruﬂ, potential shortages in
funds, and other political pressures, the 100 hours of data taking
have been postponed--perhaps for just a few months, and perhaps for

the more indefinite future.

In addition to statistics, better resolution in the forward arm
: wéuldv help to identify structure in thevhigh forward momentum spec-
trum. Wire éhambers for the front arm are under construction to
replace the Fl and F2 hodoscope arrays. These chambers would make
the resolution of the front arm comparable with that of the rear arm,
‘but itbis not certain whether the chambers will operate with the high

fluxes in the front arm.

As stated in chapter 7, more exclusive experiments could help to
isolate interactions with small numbers of nucleons at large momentum
transfer, and possibly find a correlated pair signal. A more

exclusive experiment would help limit the.contribution of mechanisms
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with phase space cohfigqrations overlapping those of the pair
interaction. The problem of final state'inte;actions would also be

greatly remedied if more of the available incident energy could be
detected in the final state particles. Tanihata et. al.[31l] have
done a more exclusive experiment at 800 MeV incident. proﬁon energy.

Their experiﬁent detected éarticles out of the reaction plane as well
as protons and deuterons in the plane defined by the proton-pair
kinematics. They report that the interaction of the incident protons
with pairs of nucleons af their lower energy 1is an identifiable

mechanism showing clear enhancements near proton-pair kinematics.

" To summarize, this (p,2p) experiméﬁt,vdone at the highest momen-
tum transfer to ‘the backward particle measured to date, shows that
this experimental method has promise for identifying high ’mbmentum
components in the nucleus near the kineﬁatig limit. This high momen-v
tum component could result from the relative motion of correlated
pairs or from the motion of a single nucleon‘relative to the rest of
the nucleus. ﬁut the.results of this experiment give only év sugges-
tion of the existence of the high momeﬁtum component; they are cer-
tainly in need of better statistics and perhaps better fesolution to
make a strong contribution to the uﬁderstanding of'tﬁe exciting subf

ject of the high momentum component of the nuclear wave function.



APPENDIX A

General Tasé Kinematics

Since there is one proton incident and two protons detected in
the apparatus, the most general kinematics can be represented as fol-

lows:

e Tee T Ty T,

Einc+Efe=Ef+Eb+Eu

where all symbols are as described in chapter 3,v except the target

(Al)

deuteron is now replaced with an arbitrary target of momentum'?}e and

energy E_. - The unobserved four-vector (Eu;?;) does not necessarily

fe
have the invariant mass of a nucleon. In practice, we assume that
the four-vector (Efe;?;e) or its probability distribution is given as

an input to the problem. It is also useful to separate.out one.of

« With the definitions

the unobserved objects and assign it a mass m1

T 7 E =E
u 1l u-l u -1

eq. . (Al) can be written as

2 =20,
1y m,=(E}=1F) ")

¥inc¥?;e;?;;?;;?:-1;?1

Einc+Efe-Ef-

' (a2)

E =E

b-Eu—l 1
Given (Eu_l;?L_l), usually specified by a phase space distribution,

the problem can bYe solved for all remaining quantities. The follow=

ing definitions are used:

76



77

cos 8 .= cos Oa cos@, + sineasineb(cos(pa-ng))

a,b b

& = Einc+Efe-Eb-Eu-1 '

f =P 2+Pe2+P2+P2

inc £ b u-l+ Z(Pincp cos® cos®

fe 1nc,fe-Pinch inc,b
-Pincpu-l coseinc,u-l -PfePb cosefe',b -Pfepu-l' cosefe;u-l

2 2 2 :
+ P‘u-lecoseu-l,b+ ml- m -

and Y =2(Pb cos® cose’ 0s@ ') .with

cos8 1, Tfe fe,f Tine °%®ine,f

O, b*Fu-1

© and ¢ the polar and azimuthal angles in the coordinate system in
chapter 3. Squaring both equations in eq. (A2) and using the rela-

tion between m, and (El,?l) yields

2 2 1/2 (p + PfY).
-(Pf +mf) =—__—_2tx

Squaring eq. (A3) and using the quadratic formula to solve for Pf one.

(A3)

obtains the result:

Y.
2.2 2 2
-py, (B o
+ [— - 4m
2 - 2 £
. 2x x , (A4)
£ 1,2
' 2 —Y—Z- -1
_ 4 ,
1f (Efe’?fe) = (md,O), (Eu-l’?u-l) = (0,0), and m1=‘the nuc leon mass,

the double root solutions of éq. (A4) describe the egg-shaped con-

tours of figure 5.

gt



APPENDIX B

The Analytic Acceptance Calculation

The quantity T(P,Q) of chapter 4 can be expressed as T(S,Gx,ez),
where all spectrometer coordinates are as in chapter 4. Consider
first a two dimensional system with T(S,ex) and a pencil.beam source
at the target. For a given y_position, 8, Ox, and the x position of.
a trajectory completely specify a ray through the system. The ana-
lytic <calculation for a single arm goes as follows: For a given
(S,GX) pair, use two x-defining edges of a counter in the system to
determine two rays. .Trace these two rays back to the target as shown
in figure Bla, using the homogeneous field transport of chapter 4 if
the counter is behind_the magnet. If the two points at the target
encompass the beam, then T=1; if the point beam 1is outside of the
region between the points of intersection of the two traéed rays with
the target, T=0. Figure Blb shows the next step. . Instead of the
pencil beaﬁ, use a Gaussian beam for the target spot. TX(S,GX), fhe

X transmission efficiency, is given by

2
X
Xy 242
f e dx
'l (B1)
Tx(s’gx) = 2
X
® 26 2

I e X dx
-@®

wher_e.x1 and x, are. the target positions for the rays traced from

2
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each of the two counter edges. This calculation must be repeated for
each counter, and the most restrictive counter edges determine the

acceptance.

The vertical transmission is done in the same way. In the

square field model the vertical transmission is not coupled to 8, ex,

or x. Therefore

2
z
22 26 2.
I e dz
1 (B
Tz(ez) = ‘ 2
z°.
® 20 2

I e Z 4z
-

. where zi and z, are the z positioﬁs on the target traced . back from

the most vertically restrictive counter edges at Gz. Note that for

" an oblong spot G;#dé' For most of our 2.1 GeV running d;<d;. - The

total transmission for a given counter plane and beam spot is then

given by

T(8,9,,8,) = T (5,6) T,(8)) - - (B3)



APPENDIX C

Schematic Model Calculations

In this appendix, the ingredients of the quasi-elastic and pair

interaction models are outlined 1in the absence of final state

interactions: (FSI). The quasi-elastié process is first examined to
see if the high forward momentum cut backward coincidence spectrum of
figure 33 warrants any abnormally high single-nucleon Fermi momentum
components; From early work on the analysis of (p,2p) quasi-elastic
processes [25] to-the Frankel QTBS picture, [5] the quasi-elastic
cross section has been written‘as the product of & phase space factor
and a probability amplitude squared.
do P, Pg
(dadp), (dQdp) . * E,EE, |

2 S(Eb+E +E -M ) (cl)

Itfi' £ Ea-17Einc™a

a where Einc is the incident energy, MA is the initial nucleus mass,

MA—l is the mass of the residual nucleus in the ground state, and

is 1its energy. The probability amplitude Itfil2 is separated

Eam1

into two parts:

2 2
tfi| x ltn,nl

I w(?;e) , (C2)

where |tn nl2 is the nucleon-nucleon interaction probability and is
. ?

related to the free nucleon-nucleon differential cross section by

ltn n|2 x s(s-4m2) [%%jn n’ where s and t are the Mandelstam vari-
’ »

ables and m is the nucleon mass. The nucleon-nucleon interaction is

taken to be.the same-:as:the.proton-proton interaction. w(?;e)bis-the,

80



81

single-particle momentum density given by

2
<P /20 e

fe f
W(?fe) xe

2

‘where ofe here‘is the standard deviation of the single-particle Fermi
momentum distributibn' in the nucleus. Aé indicated by Jacob and
Maris [25] and by Gurvitz [6], the choice of the values. of s and t
for the nucleon-nucléon interaction is ambiguous since the kinematics
of the npcléon-nucleus interaction is different from the vkinematics
of the free nucleon-nqcleon case. Regardless of the choicé of the

Mandelstam variables, however, the coincidence cross section is dom-

inated by the W(Pfe)'factor of equation C2.

Of the reasonable combinations of final state four-momenta, if

one chooses s and t as follows:

S 2
s = (P +P_) . )
—inc _ —fez - - “(c3)
_ = (ginc - gf) '
where underlined quantities refer to four-vectors, the |t '2 term.

n,n

gives the strongest ‘contribution at high P e for the kinematics of

f
the nucleon-nucleus scattering. These choices of s and t may not be
unique or even preferred, but they will give a lower limit Qh the ofé
needed for W(?;e) to reproduce the shape of the high forward momentum

cut 1in figure 33. If one computes the cross section of equation Cl,

averaging over

-EA-I to get rid  of the & function, one needs

O}éZlBOMeV/c to reproduce the shape of the high forward momentum cut
of figure 33. This is much larger than the 90 MeV/c obtained from

fragmentation data. The large %o indicates that in the absence of
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FSI, an abnormally large Fermi momentum distribution would be
required to explain the backward coincidence spectrum near the

quasi-elastic peak.

For the single=-scattering correlated pailr picture, one begins
with the phase space factor of équation‘ 6.6. One then adds a
nuc leon-nuc leon s;attering»probability for the wavy  line of'figure 7a
andla deuteron relative momentum density for the solid 1inevof figure

7a. With these ingredients, the cross section is

' 2 2 2 2
@ (s (Z‘EPE) fpf*é el a0, Ingl M* (ow)
e 0 A S N E e
where all symbols are as in equation 6.6 except
2 _ .2 [d& 2 | '
iM% = s(s-4m") [dt]n’n _|-1:(?)| (c5).

"where s and t are the Mandelstam variables corresponding to the
nucleon-nucleon vertex in figdre~7a apd'§(33 is the ﬁomentum space
wave function of a free deuteron with internal relative moﬁentum ?;
As mentioned in chaptér 7, Yukawa and Furui [24] use an equation_like
C4 for the pair interaction, but they solve the kinematics with the
coﬁplete nﬁcléus "as in eq. 6.3b. They find that the spectator pro-.
cess of figure 7a with parentheses dominates the single-scattering
correlated. pair 1interaction. In reference [24] the authors use a
phenomenological internal pair wave function with high momentum com-
pouents introduced by the hard core nucleon-nucleon interaction. As
mentidned in chapter 8, Fujita and HOfner [26] consider the diagram

of figure 7a without-paréntheses, which means that the backward par-
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ticle participated in the nucleon-nucleon scattering. Using an equa-
tion like C4 above, they find that a point-like interaction for the
wave function~¥(€5 fits backward singles data better than a Reid soft

core deuteron wave function.

Thus for'thé nuclear pair interaction, bothb models mentioned
above need highef momentum components than are found in ordinary deu-
teron wave functions to fit backward singles data. For the quasi-
elastic picture, one also needs abnormally high single-nucieon momen-
tum cdmponents to fit the shape of the backward coincidence data cut

on what could possibly be a quasi-elastic peak.

e
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Figures

Fig. 1 Momentum density of protons produced at backward angles. The
plot and some of the data are from reference [3]. Other data are
from sources mentioned in reference [4] as noted in reference [3].

Fig. 2 Schematic repreSentation' of incident proton which will
interact with only the pair of nucleons connected by the wavy line.
The complete nucleus has A nucleons, and the A12 nucleons are specta-
torse.

Fig. 3 The single-particle momentum density--dashed line--normalized
‘'with peak equal to 1 at momentum = 0. The relative momentum density
of pairs--solid line--as derived in equation 2.5, and normalized-
relative to the single-~particle density.

Fig. 4 Planar proton-pair kinematics showing symbols used throughout
paper. The subscripts inc, b, £, and u refer to the incident proton,
the backward detected proton, the forward detected proton, and. the
undetected nucleon respectively.

Fig. 5 glot of solutions for the 2.1 GeV proton-pair kinematics for
9b = 1207, The contours are of constant backward momentum.

Fig. 6 Proton-pair kinematics for different values of the unobserved
mass M. The solid 1line is the 400 MeV/c contour of figure 5 with
M=938 MeV. The dotted and dashed lines are the same contour with
M=1078 MeV and M=1232 MeV respectively.

‘Fig. 7a Possible proton-pair dynamics in a single-scattering pic-
ture. The .line labeled P nc represents the incident proton. The
wavy line represents- the - nucléon-nucleon interaction and the solid
line represents the nuclear pair interaction. The solid line can
also be considered as correlating the struck nucleon and the A-l
other spectator nucleons in a pure quasi elastic picture. The outgo-
ing particle going forward is labeled P.,, while the other exiting
particles are labeled Pb and P2 as described at the end of chapter 3.

Fig. 7b Possible proton-pair dynamics in a double scattering picture
where there are two fundamental nucleon-nucleon interactions in addi-
tion to the nuclear pair interaction.

Fig. 8 Overview of TASS. Dimensions are given in table 2.

Fig. 9 Coordinate system used to calculate momenta and angles of
particle trajectories. ’ '
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Fig. 10 Data acquisition flow chart describing slow logic, fast
logic, and computer interfacing.

Fig. 11 Fast logic diagram.
Fig. 12 Slow logic diagram.

Fig. 13 Computer accepted events. versus events fed to computer.
Dashed 1line 1is pulser generated. Solid line generated from photo
tube noise. :

Fig. 14 Flow chart for data acquisition subroutine.

Fig. 15a Test of homogeneous field model in rear arm. Comparison of
wire orbit momenta as measured homogeneous field trajectories versus
wire momenta measured by current in wire. ©® refers to the fractional
deviation from central momentum of the momentum as measured by the
wire current. The errors shown are the standard deviation of the
distribution of repeated measurements for the same 9.

Fig. 15b Test of homogeneous field model for front arm. Errors.
shown are as in figure 1l5a.

Fig. l6a Rear arm resolution in a square field as a function of
deviation from central momentum.

Fig. 16b Front arm resolution in a square field as a- function of
deviation from central momentum.

Fig. 17a Rear arm percent angular acceptance as a function of devia-
tion from central momentum.

Fig. 17b Front arm percent angular acceptance as a function of devi-
ation from central momentum.

Fig. 18 Rear momentum versus raw TDC time-of-flight scatter plot.
Fig. 19 Front momentum versus raw TDC time-of-flight scatter plot.
Fig. 20 Front-rear mass scatter plot.

Fig. 2la Histogram of TDIF as defined in chapter 5 for proton-proton
elastic run. Peak corresponds to particles in each arm which ori-
- ginated from the target at the same time. »

Fig. 21b Histogram of TDIF for 2.1 GeV (p,2p) run.

Fig. 22 Proton-proton elastic scattering data from this experiment,
from Dowell of reference [15], and from Ryan of reference [16].

12

Fig. 23a Uncorrected 2.1 GeV p + 'c - p(120°) + X spectrum showing
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discrepancies at overlapping central momenta.

Fig. 23b 2.1 GeV p + 12¢ = p(120°) + X spectrum with 2.5mm shift of
beam chamber to correct for discrepancies of fig. 23a.

Fig. 24a Differential proton-péir phase space versus front momentum
for 400<P, <500 MeV/c. &, = 120 MeV/c.

Fig. 24b Differential proton-pair phase space versus front momentum
for 500<P, <600 MeV/c. 6 e = 120 MeV/c. Solid lines show
o%e = 5 MeV/c for the same backward momentum cut.

Fig. 24c Proton-pair phase: space versus front momentum  for
6OQ§?b5]00 MeV/c.

Fig.. 25a Proton-pair phase space versus front momentum for
AOQS?bgjoo MeV/c with pion in final state. Ofe = 120 MeV/c.

Fig. 25b Differential proton-pair phase space versus front momentum
for 40Q§?b5§00 MeV/c with two pions in final state. Cfe = 120 MeV/c.

Fig. 25¢ Differential proton~triplet (or triton) phase space versus
front momentum for 400<P <500 MeV/c with four nucleons in the final
state. Oce for the triplet is 120 MeV/c.

Fig. 26 P}gt of the coincidence spectrum for the reaction
2.1 GeVp+ "“C— p(120 ) + p(10.4 ) + X versus front momentum for

400<Pb5§50 MeV/c.

Fig. 27 ‘Response of front arm of -TASS to flat spectrum out to p-
carbon kinematic 1limit for P_ = 475 MeV/c, which corresponds to

P. = 2779 MeV/c. The solid line on the right guides the eye through
tge Monte Carlo response falloff, and the dashed line guides the eye

through the falloff of the data.

Fig. 28 Plg the coincidence spectrum for the reaction
2.1 GeV p + "°C = p(120°) + p(lO 4°) + X versus front momentum for
550<P p<700 MeV/c.

Fig. 29 Response of front arm of TASS to flat spectrum out to p-
carbon kinematic 1limit for P,_ = 625 MeV/c, which corresponds to

= 2691 MeV/c. The solid line on the right guides the eye through
tge Monte Carlo response falloff, and the dashed line guides the eye
through the falloff of the data.

Fig. 30 Comparison of 800 MeV Frankel data of reference [23] to
proton-pair phase space of chgpter 6 with o f = 120MeV/c. The reac-
tion is 800 MeV p + °Li — p(105°)*¥ p(12.28% + x for

Pb = 350 MeV/c.

Fig. 31 Response of the front arm of TASS to rectangular peak of
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height 17 extending from 2738 MeV/c to 2815 MeV/c in front momentum,
which corresponds to the p-carbon kinematic limit for the backward
~momentum range 4OQSPb5550 MeV/c.

Fig. 32 ‘lgront arm singles spectrum  for the reaction
2.1 GeV p + C-)p(10.4°) + X from reference [18]. Triangles are
E444H data normalized to reference (18] between 1600 and 1700 MeV/c.

Fig. 33 P}at of ~ the coincidence spectrum for the reaction
2.1 GeVp+ "°C = p(120°) + p(10.4°) + X versus rear momentum for
the forward momentum cuts listed.

Fig. 34 P}gt of the coincidence spectrum for the reaction
2.1 GeV p + C —» p(120°) + p(45°) + X versus front momentum for the
back momentum cuts listed. Low field and high field refer to dif-
ferent magnetic field settings of the forward arm.

12

Fig. 35 Singles cross section for the reaction 2.1 'GeV p + C =

p(45°) + X interpolated from Tanihata et. al. reference [18].

Fig. 36a,b,c Differential phase space versus front momentum for
reactions with Gf = 45°. Reactions and backward momentum cuts as
noted. v :

- Fig. 37 Coincidence cross sections for 1low forward ‘momentum and
backward T mentum cuts as noted. . The reaction is
2.1 GeV p + ~“C = p(120°) + p(60°) + X

Fig. Bla Illustration of two rays traced from counter plane for a

given & and 6_combination. The dashed line is a ray which encom-
passes the pencif’beam and therefore has transmission fraction = 1.

The s0lid line misses the pencil beam and therefore has transmission

fraction = 0. : o

Fig. Blb Illustration of ray traced back from counter plane to
intercept Gaussian beam at target. Here the transmission factor is
between 0 and 1 since the rays encompass part of the finite width
Gaussian beam.
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Possible Dynamics
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Data Acgquisition Scheme
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Subroutine E444KH . MBD for
Data Accuisition
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Rear momentum (MeV/c)
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Front momentum vs TDC Counfé
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Mass forward arm in GeV

Front - Rear Mass Scotter Plot

110

2.5 T T B |
2.0 ]
1.5 * | s
Forward =p - Forward=p
/Reor:p -c-A/Reor-d
F——
1.0 dodEa _
Tt f}i’__‘d}
0.5 + , ]
Forword=rn*t
b o Reor=p + F
*&ﬁf ! : +
0 l ot o 1 AT
0 0.5 1.0 (.5 20 2.5

Mass reaor arm in GeV

Fig. 20

XBL824-3789



TDIF

111

Spectrum for‘ .05 Ge_V p+p-—p+p Coincidence Run

250

200 |-

150 —

Events

100 |~

50 |-

1

,,,_.LLI\._ | | 1

T l

-40

=20

0 20 40
TDIF (nanoseconds) '
' o XBLB24-3790

Fig. 2la



TDIF Spectrum for 2.1 GeV + '2C = p(120°)+p(10.4°) + X
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