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ABSTRACT 

"Nuclear, matter properties are studied in a ·nonlinear'relativistic mean 

field theory. 'By determining the parameters of the.model from bulk properties 

of symmetric nuclear matter, we successfully account for other key properties 

of nuclei, such as the compression modulus ; spin-orbit. coupling, ' surface 

energy, and diffuseness ,of the nuclear .surface. The energy dependence of the 

nucleon-nucleus optical model is predicted reasonably well. In this work, we 

stress the nonrelativistic limit of the ,theory and show that most of the above 

results can be .obtained, to a good approximation, analytically. The strength of 

the required nonlinear term is 'consistent with that derived using a new version 

of the chiral mean field theory in which the vector mass as well as ,the nucleon 

mass is generated by the sigma field.' 

) 



I. INTRODUCTION 

It has been known.for some time that important gross properties of nuclear 

matter, such as saturation, can be concisely described by a relativistic field 

1 ) 
theory model. 

That a relativistic theory, with static interactions, can also account for 

the spin-orbit coupling and the energy dependence of the optical potential was 

observed by DUERR and TELLER.2) Subsequently, MILLER and GREEN
3

) showed that 

such a model can also describe the matter distribution in closed shell nuclei. 

The static Yukawa Interaction theory was cast into a field theory problem by 

WALECKA.
4

) 

The difficulty with the pure Yukawa type relativistic theory considered by 

MILLER and GREEN, or for that matter, by WALECKA, is that in the Hartree 

approximation, where 'most of the relevant and interesting calculations have 

been done, the model does not have a saturating nonrelativistic limit. That is, 

in a Yukawatype field theory, saturation.is a purely relativistic phenomenon. 

On the other hand, a nonrelativistic approach to the study of nuclear 

pheno~ena has been quite successful. Of course relativistic effects are 

important for some nuclear properties, such as spin-orbit splitting. Still, it 

seems unreasonable to ascribe such a fundamental property as nuclear saturation 

to purely relativistic effects. 

The relativistic field theory model of nuclear matter saturation proposed 

1 ) 5 ) 
by SCHIFF and extended by BOGUTA and BODMER has as its basic ingredient 

not purely Yukawa· type forces, but large many-body interactions. They are 

decisive in obtaining nuclear matter saturation. The disadvantage of this idea 

is that not only the many-body interactions are large, but the model predicts a 

wrong spin-orbit splitting. 

I~ 
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. 6 ) 
Recently, one of us (J.B.) considered a field theory model that retains 

the most importantfeatures'of ~ of the above approaches, The nonlinear self 

interactions of the scalar field are important,· but not .dominant, . and the model 

yieldsanon:"'relativisticsaturating limit. Inth~ prE!SEmtpaper we will use 

this field theory model to relate some,<;Jeneral properties of symmetric (N = Z) 

nuclear matter in the nonrelativistic limit of the model. 

The advantage of having a nonrelativistic limit of the theory is twofold. 

First, we can assess the importance of relativistic effects. Second, the 

nonrelativistic approximation yields analytic expressions for the average 

surface properties such as diffuseness and surface ene~gy, in terms of the 

elementary couplings of the 'model. Furthermore, the role of the nonlinear 

self-interactions of the scalar field a can be explicitly studied and their 

effects on the binding energy estimated. By using the saturation condition and 

the field equations, it is possible to determine the necessary scalar and 

vector coupling strengths and the contribution of the self- interactions to the 

binding energy of nuclear matter as an explicit function of the average kinetic 

energy and the effective mass m*. 

In this way, it is easy to investigate the implied relations between such 

key properties as the nuclear matter compression modulus, the surface energy, 

effective mass, spin-orbit splitting, and the energy dependence of the 

nucleon-nucleus optical potential. 

Although these different quantities can be well correlated using a 

particular strength of the nonlinear coupling, the existence of the latter does 

introduce into the theory an extra parameter, i.e. it makes it somewhat more 

phenomenological that the original version. However, one of us (J.B.) recently 
7 

has suggested a new version of the chiral model lin which not only the 

nucleon mass but also the vector meson mass is generated by the a field. This 
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assumption does not introduce any new parameters, but it leads to almost the 

same equations as the ones discussed in the present paper, with the strength of 

the nonlinear coupling no longer arbitrary, and in good agreement with the 

values derived here. 

Ij 

4\, ( . 
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II. NONLINEAR FIELD THEORY AND ITS APPROXIMATION. 

The properties of symmetric nuclear matter can be described in terms of an 

, isoscalar field 0 and and isovector field w. The most general renormalizable 
~ 

Lagrangian is: 

2 

L - <\I (.y 0 . 1 ( 00 ) V ( 0) = OX + M) <\I - - ox .. 
~ 2 

IJ- ~ 

1p 1M 
2 

P w w + i gv <\I YIJ-<\I w - gs <\I <\I $ 
4 IJ-v IJ-v 2 V ~ IJ- IJ-

(1) 

2 2 3 '+ 
M S 0 bo co 

where V (0) = + + (2) 
2 3 4 

OW OW 
P = ~ v 

~v ox ox 
(3) 

v IJ-

and M and MS denote, respectively, nucleon mass and scalar meson mass. 

, Strictly speaking, the coefficient c must be positive, so that the theory 

will have a lower'bound' in energy. However, for densities less than about 5 PO' 

the quartic contribution is small, and as a matter of practicality, it can be 

neglected in subsequent considerations of normal nuclear matter. 

From the Lagrangian 'in Eq (1),it is seen that there are three distinct 

contributions to the energy density: 

1.) Energy of the scalar field, which can be written as: 

( \ l 1 -
M 

j (4) = 

where 0 is the amplitude of the scalar field 0 = <0> in the ground state. 
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2.) Energy of the Vector Fi~ld. 

= (5) 

where g is the vector coupling constant and M is the mass of the vector 
v . v , 

meson. The exchange of the vector meson leads to the conventional short-range 

repulsive Yukawa interaction. 

3.) The interaction energy of the nucleons with the scalar field. 

W = 
I 

2 

2 2 1/2 
M* + <k > ) M 

(6) 

(7) 

where <k > denotes the average value of the square of the momentum due to Fermi 

* motion. The effective mass M is relatled to the scalar field by 

* M =M+g a. . . s (8) 

It is convenient to express the effective mass in units of the free nucleon 

mass. 

Thus we define: 

m* = M*/M = (1 + g aiM) . s 

The single particle energy 

2 
e(k) = gvw + (M* + 

e(k) is given by: 

2 1/2 
k ) 

solution of the field equations for wgives: 

2 
w = (gv"M

V 
) Pv 

(9) 

( 10) 

( 11) 

In the nonrelativistic approximation we find for the single particle energy 

(minus the nucleon rest energy): 

\i 

r , , 
I 
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22* 
e(p,k) = (gv /MV ) Pv + (M - M) + (M/M*) T(k) (12) 

where T(k) is the nonrelativistic kinetic energy. 

* This M is just the conventional effective mass defined by the momentum 

dependence of the nucleon~nucleus optical potential: 

M ae (p,k) aU 
- (Pv ,T) = = 1 + s.,E. 

( PV,T) 
* M aT aT 

Here T denotes the kinetic energy. 

In the nonrelativistic limit, the Fermi energy: is given 

* + (M -M) + (M/M*) TF 

The energy per nucleon is, in the same approximation: 

We make use of the conditions. (to be taken for fixed Pv): 

a{pvW(Pv)}/?O = 0 

MPvW(Pv)}/aM* =0 

by: 

which follow from the field equations for 0 and from Eq (8). 

8,9) 
It is seen that the HUGENHOLTZ-VAN HOVE theorem 

d p 
(PVW) = W + 

dpv Pv 

where P is the pressure, is satisfied identically. 

(13) 

(14) 

(15) 

(16) 

( 17) 

( 18) 
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At the saturation density Pv = 

e = W 
F 

Po , 

9) 
which is just the WEISSKOPF theorem. 

P o and 

(19) 

For normal nuclear matter, both the average kinetic energy and the binding 

energy' per nucleon are only a few percent of the nucleon rest mass. Thus in 

2 
most of this paper, we will neglect all terms of order T. This is the standard 

nonrelativistic approximation. The validity of such an approximation depends 

critically on the value of the effective massm* at saturation, since the 

nonlinear contributions depend very sensitively on m*. For the case when m* 

0.55, which is the case in the pure Yukawa theory, the nonlinear 

self-interactions vanish, and 'the "nonrelativistic approximation ceases to 

saturate nuclear matter; that is, the nonrelativistic approximation becomes 

extremely bad. On the other hand, the value of the effective mass deduced from 

the energy dependence of the nucleon-nucleus optical potential at low energies 

* is m = 0.7. This is consistent with the results 'of' recent calculations by' 

10 ) 
FRIEDMAN and PANDHARIPANDE using the Fermi hypernetted chain approximation. 

* The accuracy of the non-'relativistic approximation, when m is chosen to be 

about 0.7, will be explicitly tested in Section v. 

In addition, in'some parts of this work;'we replace the dependence of 

average kinetic energy by a linear one. This makes it possible to obtain simple 

analytic expressions for a variety of interesting nuclear properties. This 

approximation turns out to be fairly accurate, due to the smallness of the 

kinetic energy, relative to some of the other terms appearing in the theory. 

Using the nonrelativistic approximation mentioned above, we have: 

2 ,,2/3 
<p > = 2 M TO(P) = 2 M TO P (20) 

" where P = p/PO (P is understood to refer to Pv)' and TO is the average kinetic 

energy at normal density. 

) 

\l 
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2/3 
Replacing the p dependence by p, we obtain: 

2 
<p > = 2 M TO p. 

2 
Thus, dropping terms of order TF ' we find: 

A 

= M { m*(p) - 1 + 
To P 

} 
M < m*(p» 

The energy of nuclear matter is a sum of three contributions: 

W = Wv + Wo + WI 

Next; using the condition: 

dW 
dO 

=0 

we can obtain an explicit expansion for 0 in powers of p. 

2 
Up to order p , we obtain: 

gs p 0=---,- (1-
, M 

S 

1 a B p 
2 

TO A 

P 
M 

where B is a dimensionless parameter which will occur frequently in our 

treatment. 

B = 

This parameter is proportional to the square of the dimensionless coupling 

constant C used by WALECKA 4) 
. S 

B = ( " 

3 2 
) Po Cs 

M c 

In the last two equations, we include the appropriate powers of nand c. 

The effective mass is then given by: 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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* gs (J ,. 3 2 ,.2 TO ,. 2 
m = 1 + = 1 - B P + Z a: B P + B P (28) 

M M 

We will use here: 

B = 0.335 (29 ) 
_3 

For normal nuclear matter density, ( Po = 0.16 fm , TO = 22 MeV), . this 

corresponds to 

1/2 
Cs = 26.0 B = 15.0 (30) 

(One of us previously obtained C
s 

= 15.6 in a nonlinear mean field theory 

and in section IV, we will obtain C
s 

= 15.85, without making the approximations 

made in this section.) 

This gives for the ,effective mass as function ,of density: 

* ,. m (p) 
,. ,.2 

= 1 - 0.335 P + 0.17 a: P 
,.2 

+ 0.008 p, 

As we will see, the value of the coefficient a: is 0.164. 

Finally, using 

Iwol = 
1 2 
2 a: M B + TO B 

* which is derived in thene:l;Ct section" we obtain m 

empirical value. 

0.70, close to the 

(31) 

(32) 

• 
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III. CALCULATION OF NUCLEAR MATTER ENERGY. 

We now calculate the contribution of the terms mentioned above to the 

2 
energy of nuclear matter (up to order p ). 

We find for the contribution of the vector field: 

1 ,. 
Wv = '1 M B RV P 

where 

~= 

The scalar field terms. (quadratic and cubic) are given by: 

1 ,. 3 2 ,.2 
2 M B P - 7 a M B P 

1 2 ,.2 
= -aMB p 

2 

,.2 
- TO B P 

3 ,. 

(33) 

(34) 

(35) 

(36) 

The a term behaves like a repulsive three body interaction. We will see 

that it contributes quite substantially to the energy of nuclear matter •. 

The interaction term contributes an amount: 

1 ,. ,. . 3 2 ,.2 ,.2 
W = - T p- .M B P + 2' a M B P + 2 TO B P o (37) 

I ·2 F 

The sum or all three terms is: 

,. 1 1 ,. 1 2 ,.2 
W( p) = <-T --MB (1-Rv» p + (-aM B + TO B ) P (38) 

2 F 2 2 
,. 

Since we require saturation at p 1, we can write Eq. (38) in the simple form: 

W( p) = Iwo I (-
,. 

2 P + 
,.2 
P ) (39) 

1 2 
IWol = -aM B + TO B 

2 
(40) 

and 

0 

Rv = 1 - (T
F 

+ 4 Iwo I )/(M B) (41) 

Using our values for these quantities 
0 

T = F 
36 MeV (42) 

Iwo 1= 16 MeV (43) 

f 



we find 

2 
Mc = 938 MeV 

B = 0.335 

R = 0.682 
V 
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(44) 

(45) 

(46) 

Note that the terms proportional to ME cancel in the expression for w. 

Individually, these terms contribute more than 100 MeV per nucleon. It may also 

be of interest that in the approximation used here, (i.e., binding energy taken 

as a quadratic function of the, density), the compression modulus of nuclear 

matter is uniquely specified by the bind'ing energy. 

We have also 

2 
d W -:1 (1) 
dp 

considered 

detailed assumptions, e.g. , 

1 
~ K = 2 IWol 

3 
the role of the p terms 

.. -.~. 

1+ 
the possible role of a 

(47 ) 

in W. These depend on more 

in the scalar field energy. 

... 3 
However, the effect of such p dependence on the energy almost cancels in the 

calculation of the compression modulus. 

... 3 
Thus, including a p term, we have (remember that W saturates at p = 

Thus 

and 

W(p) = 
... ...2 1 ,......3 

W2 (- 2 P + P ) + 2 W3 (- 3 P + P ) 

W· • ( 1 ) = 2 W2 + 3 W3 

W· • ( 1 ) 

Iwo I 

provided W3 « IWol, as seems to be the case. 

1 ) : 

(48) 

(49) 

(50) 

(51 a) 

We can write the expression for Wo in a form which emphasizes the relative 

importance of the nonlinear term in the scalar field energy for nuclear 

.~ 
( \ 

'J 
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saturation. In the approximation made. above, 'the. contribution of the nonlinear 

terms to the nuclear matter 'energy is: 

W
NL = Iwo I - TO (1 - m*)': ( 51b) 

For TO = 22 MeV, we find that: ' , 

* 0.7, Iwo I m = = 16 MeV, (52) 

and TO 1 - m * ) := 6.6 MeV (53) 

Thus W 
NL = 9.4 MeV. (54) 

I, 

Therefore the density' ~ependence required by the nonlinear term seems to be 

~ important for nuclear saturation than the momentum-dependence implied by 

the reduced value of the effective mass. 

, NL ' 
If we set W = 0, which is the 'approximation made in the original mean 

4 ) 
field theory of WALECKA , then we find: 

m* = 1 - (IWol/TO> ~ 0.3 (55) 

a 'very large momentum dependence, and contrary to experiment. In fact, in this 

case, terms of higher order in TO play an essential role, i.e., a 

nonrelativistic treatment is inadequate. 

* " (A more accurate calculation given in the next -section yields m = 0.54). 

4) 
It was already pointed out by WALECKA that the original version of the mean 

field theory also leads to values considerably larger than 'empirical for the 

compression-'modulus .' 

11) 
A THOMAS-FERMI calculation for'finite nuclei by BOGUTA and RAFELSKI 

showed that the surface energy, in this model is much too large. 
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IV. NONLINEAR TERM IN NUCLEAR MATTER - MORE ACCURATE CALCULATION. 

In this section, we recalculate the contribution of the nonlinear term,to 

the energy of nuclear matter more accurately. 

From Eq., (4), we see that: 

, wNL = (56) 

I 

(assuming no quartic or higher order terms in the field energy). 

We do not make the approximation mentioned in the introduction 1 i.e., we do 

the full relativistic calculation for 3 dimensional nuclear matter. 

suppose we have saturation at a given density (i.e., average kinetic 

energy), binding energy, and effective mass. 

There are three conditions which must be satisfied: 

. ' 

W (PO). = - Wo 

dW 
dp 

(po) = 

dW 
d;* (PO) = 

o 

o 

Equation (59) is equivalent to the field equation for· the scalar field 

* amplitude. There are then three equations for PO' WO' m in terms of gs' 

and a. These can 

terms of TO' WO' 

W
NL 

where 

€ 

be inverted and we obtain an 

* 
and m • 

* (1-m*) Iwo I m 
= + M < + € -

€ 

* 
2 1/2 

< m + ( 2TO/M) > 

explicit 

1 > 

. f WNL 
equat10n or 

(57) 

(58) 

(59) 

in 

(60) 

(61) 
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2 
In the'nonrelativistic limit, i.e., dropping terms of order TO , etc., the 

terms pr~portional to M cancel and we obtain: 

WNL (Non ~el) = \wo \ - * m 
- 1 + (62) 

In Eq. (60) ,we have considered three dimensional matter, but in Eq. (62), 

the number of dimensions, denoted here by D, is left as an arbitrry parameter. 

* Note that for the special case D = 2, and taking the limit 1 ,- m« 1, we 

recover the re.sul tEq. (53). 

In the table below, we list the values of wNL obtained using the three 

prescriptions mentioned above: 

a.) Nonrelativistic in' 20, 

.b.) Nonrelativistic in 3D, 

and c.) exact. TO = 22 MeV, Wo = - 16 MeV 

NL . W ~n MeV. 

* * 
m = M 1M a. ).Simple Model b. ) Non-ReI. c.) Exact 

Eq. (53) Eq. (62) Eq. (60) 

0.5 5.0 -13.33 -7.45 

0.6 7.2 3.77 6.26 

0.7 9.4 13.01 14.12 

0.8 11.6 18.28 18.80 

0.9 13.8 21.42 ·21.65 

As can be seen, for m* = 0.7, the contribution of the nonlinear term is 

almost as large as the binding energy itself. 

The simple model discussed in the previous sections gives qualitatively' 

NL 
reasonable results, though it underestimates the magnitude of W . somewhat. The 
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latter can be traced to the difference in the density dependence of the kinetic 

2/3 
energy, i.e, as P vs p. 

On the other hand, the value of the scalar coupling strength, Cs = 15.85, 

is only slightly larger than the value 15.0 deduced in the previous section. 

Also, the compression moduli are nearly the same. In particular, the quantity 

2 2 2 
P (0 W/op) , turns out to be equal about 35.5 MeV, compared to 32 MeV in the 

Po 

siinple model discussed above. 

Finally, it should be noted that the nonlinear terms disappear for 

* m = 0.54, which corresponds to the original WALECKAmodel. In this case, 

relativistic effects are quite important. 

Indeed, there seems to be a qualitative difference between the results for 

* * m - 0.54 and m - 0.7, in spite of the relatively small difference in the 

effective mass itself. 

\.-
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V. THE LANDAU PARAMETER Fa' 

We can use the mean field theory to estimate the values of other key 

nuclear properties'. In this "section', we consider the Landau parameter FO (p) 

which is proportional to the volume integral of the spin andisospin 

independent part of the effective interaction, 

The Fa (p) is proportional to the direct matrix element of the effective 

interaction for zero momentum transfer, i.e., its volume integral. 

FO(p) = (dN/dE) V
eff 

(p, q = 0) 

The density of single particle states dN/dE is given by: 

3 * dN/dE = "2 Po m / TF 

and dependent on the local nucleon density. 

In the analytic version of the mean field theory used here we obtain: 

Veff(P,q=O) = 
M c 

Po 

2 4 TO 
B { (1-R ) - ( 3 a B + ---1 

V 
M c 

" p } 

(63) 

(64) 

(65) 

Using an effective mass m* = 0.7 and the ratio Ry = 0.682, as obtained in 

Sec IV, we find: 

dN/dE = 0.00467 

and the following dependence for FO: 

" FO(p) = - 2.9 + 2.4 P 

The limiting values of FO for p 

ext 
FO· = FO(O) = - 2.9 

. and 

Foint = FO(PO)= - 0.5 

o and Po are: 

(66) 

(67) 

(68) 

(69) 

12) 
This parameter was recently calculated by CELENZA, PONG, and SHAKIN . 

using a relativistic mean field theory which includes explicitly the small 

components in the Dirac wavefunctions of the nucleons. 
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Our limiting values for FO are essentially the same as theirs, although 

they obtain a slightly different density dependence. 

The empirical values for the external and inte~al values .of FO' as deduced 

12) 
from nuclear spectra are -3.0 and -0.3, respectively. Thus the mean field 

theory does very well in accounting for the values of FO both outside and 

inside the nucleus. 
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VI. SPIN-ORBIT POTENTIAL. • ,:1 

Here we make only a crude estimate 'of the'sinqle particle spin-orbit 

potential. 

The standard mean field theory qives'thefollowinq expressionfcir the l·s 

interaction: 

V = l·s 
1 (n2 1 
2 M c) (,9v r 

dVa 
dr 

Now the solution for the vector fieidqives: 

2 
Va = qvp/Mv • ' 

do 
dr 

) l·s 

" 

The scalar and vector terms contribute approximately equally 

and with the same sign to the l·s interaction. " 

To order B, we obtain the very simple result: 

Usinq the values of the parameters deduced in previous sections', 

we find: 

n2 
B = 15 MeV 

M 

which'aqrees filiily well with the values quoted in the literature. 

(70) , 

(71) 

(72 ) 

(73) 
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VII. NUCLEAR SURFACE. 

Again, standard mean fiel~ the9ry g~ves ~simple expression for the extra 

energy density due to spatial variation of the fields (which is a consequence 

of the inhom9ge;neityof the nucleon density). We have:· 

e(p,V'p) 
1 2 1 2 = e(p) + - (V'~) - - (V'VO) 2 2 

(74) 

Here e(p) is the energy density for uniform matter at density p. 

Next, we solve the field equations for ~ and VO. We must take into account 

the nonlinear term in the scalar field. However, we will assume that the 

density changes relatively slowly over.a meson comptonwav!!length. We find, 

approximately: 

( l 1 + 

2 
V' P 

2 
~S P 

, 
1 

and similarly for VO. ~NM denotes the value for constant p. 

(75) 

It turns out that the contributions of the extra terms essentially cancel. 

Thus, although the fields at the nuclear surface are modified. by the density 

variation there, it. is allright.~o use the local. density approximation (Le., 

at each point set the fields equal to the values for nuclear matter at ~ 

density), at least for calculation of energies. 

We obtain for the energy .density (to order B in the inhomogeneity term): 

1 2 2 ~ ~2 
e(p,V'p) = - MBA (V'p) + IWol(- 2p + p ) (76) 

2 

where (77 ) 

The nuclear surface energy is a sum of two terms: 

First the contribution due to the inhomogeneity (the first term in Eq. 76) and 

second, the deficiency in binding due to the fact that the density at the 

nuclear surface is less than the nuclear matter value. 

We find for the total surface energy (per nucleon): 

\,:'1 

'.J 
I' 
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1 2 _1 2 3 . 2 3 
W = - MBA A J (Ii] P ) d R + I Wo I -J p (1- p) d R s 2 

(78 ) 

This expression is of the standard form used in the calculation of nuclear 

surf~ce properties. 

Assuming a Fermi form for the density: 

p = Po J <1 + exp[(r-R)/a»)> (79)' 

and assuming a'« R, the energy is minimized for the following value of the 

diffuseness parameter a: ' 
. 1/2 

a = A [MB/61 Wo I) - ( 80) 

and the surface energy per-particle is: 

Using our values of the parameters, andM
S 

= 500 Mev,M
v 

= 780 MeV, which 

leads to A =0.30 fm, we obtain: 

a= 0.55fm, 
_1/3 

W = 20 A MeV 
S 

(82) 

both in good agreement with empirical values. 

The surface energy of semi-infinite matter can be obtained more accurately 

, 13 ) 
by using'the calculus of variations. As was first 'pointed out by SKYRME, the 

- . , 
more accurate (and self-consistent) p is then: 

2 
p - tanh c(r-R1 ) (83) 

where R1 differs slightly from ~. 

For the self-consistent density distribution, the surface energy is a 

fraction 81 3 / 15 = 0.924 of the value for the Fermi- distribution, which was 

derived above. Thus, use of the self-consis.tentdensity leads to' a slight 

improvement in the calculation of the nuclear surface energy. 
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VIII. IMPLICATIONS OFCHlRAL SYMMETRY 

The aim of relativistic quantum field theory is to be a comprehensive 

theory of nuclear matter cand nuclear structure. We have shown that some aspects 

of nuclear structure are unified if treated from a r.elativistic quantum field 

point of view. 

One of the most serious deficiencies of the present theory is that it 

cannot take into account pions in the linear realization of chiral symmetry. 

Indeed it is well known that the simple sigma model· does not lead to 

saturation, but to a condensed state, as was first pointed out by LEE and 

11) 
WICK. Also, this model leads to large attractive three body interactions, as 

was pointed out by BARS HAY and BROWN. 
12 ) 

Thus the nonlinear model discussed in the previous sections appears at 

first sight to be quite different from that expected from chiral symmetry. In 

fact, this need not be the case if one extends the relativistic theory to 

include the Higgs phenomenon. Recently, one of us (JB)7) showed that if not 

only the nucleon mass but also the mass of the vector field is dynamically 

generated by the scalar fieid, then a normal nuclear matter equation of state 

is possible and the usual chiral symmetry results are preserved. 

In this version of the chiral model, ~* is not a constant but is: 

M*=M + a V V gv (84) 

In order that both My* and ~* vanish for the same value of a, it is 

necessary that 

g 1M .= g 1M 
V V S S 

. (85) 

When we do this, we can reproduce the results of the nonlinear theory with 

only minor modifications. 

A 

We find that the energy of nuclear matter W(p) is still of the form 

specified by Eq. (38). In the theory discussed in the previous sections, a was 
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an arbitrary parameter, and we needed 

a = 0.164 (86 ) 

in order to fit the data. 

\..;.' In the modified chiral model, a is no longer arbitrary, but is given by 

,a = 2 R - 1 
V 

(.87) 

• 
where \r is defined by Eq. (34). 

For comparison, in the conventional chiral model, the nonlinear terms are 

also important, and the parameter a, defined by Eq. (4), is given by 

a = - 1 (88) 

OUr value of Rv = 0.682, obtained in Sec IV, would imply that 

a= 0.36 (89) 

which is fairly close to the phenomenological value. 

}.J 
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IX. CONCLUSIONS 

We have seen that important nuclear matter properties can be successfully 

described by a nonlinear relativistic mean field theory, which" has a meaningful 

nonrelativistic limit. The parameters of the model, such as gs' gv' and MS' 

determined by fitting the bulk properties of nuclear matter and the nuclear 

surface, are consistent with their values deduced from analysi"s of 

nucleon-nucleon scattering. 

The mean field" theory considered in most of this work is phenomerto-

logical. Presumably, the vector field could correspond to the combined effects 

of the w meson and multimesonexchanges involv.ing both pions: and rhos. As was 

14) 
pointed out by Brown, the latter seems to be the dominant source of the 

short range nucleon-nucleon repulsion.; The scalar field probably represents 

mainlymultipion states. It is well known that scalar meson exchange simulates 

quite well the main effects of two-pion exchange proceeding mainly via 

excitation of the ~ isobar. What is indeed remarkable is that all of these 

simulations can correlate so many hitherto unrelated measurable bulk properties 

of nuclei. 

Of course, the density dependent effects implied by the nonlinear term in 

the mean field theory do not necessarily require that there must be strong 

repulsive three body forces in nuclei. Some of this density dependence could 

result from higher order effects of tensor forces. Nevertheless, in the 

framework of the mean field theory, the results can be very naturally 

interpreted as a consequence of effective three body interactions. 

.. 
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