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ABSTRACT -~~~ . . S T L o

" 'Nuclear matter properties are studied in a nonlinear relativistic mean

’fiela theory. By determining the parameters of the model from bulk properties

of symmetric nuclear matter, we successfully:account for other key properties
of nuclei, such as the compression modulus, spin-orbit:coupling, surface

energy, and diffuseness of the nuclear surface. The energy‘dependence of the
nucleon-~nucleus 6étical model is predicted reasonably well. In this work, we

stress the nonrelativistic limit of the theory and show that most of the above

‘results can be obtained, to a good approximation, analytically. The strength of

the required nonlinear term is 'consistent.with that derived using a new version

of the chiral mean-field theory in which the vector mass as well as the nucleon

‘mass is .generated by the sigma field.



I. INTRODUCTION

It has been known .for some time that important gross properties of nuclear

matter, such as saturation, can be concisely described by a relativistic field

1
theory model.

That a relativistic theory, with static interactions, can also account for
ﬁhe spin-orbit coupling and the energy dependence of the optical poténtial was )
observed by DUERR and TELLER.Z) Subsequently, MILLER and GREENS) showed that
such a model can also describe the matter distribﬁtioh in closed shell nuclei.
The static. Yukawa Interaction theory was cast into a field theory problem by

k) '

WALECKA.

The difficulty with the pure Yukawa type relativistic theory conéidered'by
IMILLER and . GREEN, or fér_that matter, by WALECKA, is that in the Hartree
approximation, where ‘most 6f the relevant and interesting calculations have
beén done, the model does not have a saturating nonrelativistic limit} That is,
in a Yukawa type field théory, saturation .is a purely relativistic phenomeﬂon.

On the other hand, a nonrelativistic approach to the study of nuclear
phenomena has been quite successful. Of course relativistic gffects are
iﬁportant'for some'nuélear properties; such as spin-orbit spiitting, Still, it
seems uhreasonable to ascribe such a fundamental property as nucleai saturation
to purely relativistic effects.

The relativistic field theory model ofinuclear matter saturation proposed
by SCHIFF b and extended by BOGUTA and BODMER s) has as its basic ingredient | f\
not purely Yukawa type forces, but large many-body interactions. They are «
decisive in obtaining nuclear matter saturation. The disadvantage of this idea

is that not only the many-body interactions are large, but the model predicts a

wrong spin-orbit splitting.
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Recently, one of us (J.B.) )-conSidered’a field theory model that retains

the most’impottantvfeatureé’of both ef’the above-approacﬁes; Tﬁe nonlinear self
interactions of the scalar field are iﬁportant;~but not .dominant, -and the-quel
yielde'a'hoh;relativistiepsaturating limit. In.thehﬁfeeentipaper‘we will use
this field theory model to relate sometgenerel properties of symmetric (N ; Z)
nuclear matter in the nonrelativistic limit of the model.

The advantage of having a nonrelaéivistic limit of the theory is twofold.
First, we can assess the importance of relativistic effects. Second,.the
nonrelativistic approximation yields analytic expressions for the average
surface properties such as diffuseness and surface energy, in terms ef_the
elementary couplings of the‘model. Furthermore, the role of the nonlineare
self-interactions of the scalar field ¢ can be explicitly studied and their
effects on the binding energy estimated. By using the saturation condition and
the field equations; it is possible to determine the necessaty scalar and
vector eoupling strepgths and the contribution of the self- interactions to the
binding energy of nucle;r matter as an explicit function of the average kinetic
energy and the effective mass m*.

In this way, it is easy to investigate the implied relations between such
key properties as the nuclear matter compression modulus, the surface energy, .
effective mass, spin-orbit splitting, and the energy dependence of the
nucleon~-nucleus optical potential.

Although these different quantities can be well correlated using a
particular strength of the nonlinear coupling, the existence of the latter does
introduce into the theory an extra parameter, i.e. it makes it somewhat more
phenomenologicel.that the original version. However, one of us (J.B.) reeently
7)'

has suggestea a new version of the chiral model in which not only the

nucleon mass but also the vector meson mass is generated by the o field. This

~



assumption does not introduce any new parameters, but it leads to almost the
same equations as the ones discussed in the present paper, with the Strength of
‘the nonlinear coupling no longer arbitrary, and in good agreement with the

values derived here. ' S E ‘ : Y o %

&



IX. NONLINEAR FIELD THEORY AND ITS APPROXIMATiON.

The properties of symmetric nuclear matter can be described in terms of an

. isoscalar field ¢ and and isovector field wp. The most general renormalizable

.

Lagrangian is:

2
- 3 1 dag ,
L = -(I)(‘Y --+M)¢-—(-- ] - V(O’) o
(o} 2 0 .
[ xu Xp
- r F -ﬁlmzw w +ig bybw - $¢¢ | (1)
4 uv pv 2 Vv VISV gV Yu W gS
2 2 3 y
M_ o bo . co .
where V(o) = === 4+ === + === (2)
2 3 4 '
dw dw_ .
P,= £ - _Z (3)
W 0x dx ' '
v [

and M and MS denote, respectively, nucleon mass and scalar meson mass.

* Strictly speaking, the coefficient ¢ must be poéitive,:so that the theory
will have a lower'boﬁnd'in'energy; However, for deesitiee.less then ebout 5 pgs
the quartic contribﬁtion is small, and as a matter of practicalitf, it can be
negleeted in eubsequeﬁt consideratione of normal‘nuelear matter.

From the Lagrangian 'in Eq (1),it is seen that there are three distinct

contributions to the energy density: .

1.) Energy of the scalar field, which can be written as:

2 2
MO'{ @ g, 0 .
Wy = S l1- —-—5——] . SN (4)
2 Py M

where ¢ is the amplitude of the scalar field ¢ = <¢> in the ground state.



2.) Energy of the Vector Field.

. 2 2 | | ;
W T 2(3v/Mv)pv - (5)

.’)
where gv is the vector coupling constant and Mv is the mass of the vector
. . o

meson. The exchange of the vector meson leads to the conventional short-range

repulsive Yukawa interaction.

2 M _
V. = (g san) e NF / x (6)

o " 2 1 S » :
W_= (M + <k > ) - M (7)

2 ,
where <k > denotes the average value of the square of the momentum due to Fermi

. *
motion. The effective mass M is related to the scalar field by

* S
M =M+g 0. (8)

ST R 9y . - _ S

It is convenient to express the effective mass in units of the free nucleon

mass.

Thus we define:

m* = M*/M = (1 + g oM , _ o (9)

. ,7\
The single particle energy e(k) is given by: '

' 2 21,2 _

e(k) = gw + (M + k) o (10) 2 4

v

Solution of the field eQuations for w gives:
2
w =_,(gv/MV ) Py o _ (11)
In the nonrelativistic approximation we find for the single particle enérgy

(minus the nucleon rest energy):



‘ 2 2 * «
apm)=(%,ﬂ%);w + (M - M) + (M/M") T(k)

8 where T(k) is the nonrelativistic kinetic energy.

(12)

*
This M is just the conventional effective mass defined by the momentum

'

dependence of the nucleon-nucleus optical potential:

M o de (p,k) ' dU

e (P, /T) = ————— = 1+ 2B (o
M ) oT oT

Here T denoteé the kinetic energy.

In the nonrelativistic limit, the Fermi energy:is given by:

* *
+ (M -M) + (M/M) T

v

) 2 2
ep(Py) = (gy /M) P .

The energy per nucleon is, in the same approximation:

V(o)
P

1 2 2
Wiey) =5 (g9, /My ) Py *
V‘
We make use of the conditions (to be taken for fixed pV):
o{p W(p,)}/00 =0

o{p W(p,)}/om" =0

R

8 9
. It is seen that the HUGENHOLTZ-VAN HOVE theorem ' )

a .
e, = 55; (pVW) =W+ 5

where P is the pressure, is satisfied identically.

* 2 * '
+ M) D ) Ty

which follow from the field equations for ¢ and from Eq (8).

-(13)

(14)

(15)

(16)

(17)

{18)



At the saturation density Py = pgl P = 9 ahd
| ep = W ' o , , (19)
' 9
which is just the WEISSKOPF theorem.

For normal puciear matter, both the averagé kinetic energy and thg bipding .k
energY‘per nucleon are only a few percent of the>nuc1eon rest mass. Thus in |
most of this paper,.we will neglect all terﬁs of order’Tz. This is the standard
nonrelativistic approximation. The'validity of éuch-an approximétion depends
éiiticaily on the value of thé effective ﬁass'm* at saturation, since the
nonlinear contributions depend very sensitively on ﬁ*. For the case when m* =
0.55, which is the case in the pqre‘Yukawa‘theory, tﬁe nonlinear
self-interactions'vanish; and ‘the ‘nonrelativistic approxiﬁétion cedses to
saturate nuclear matter; that'is, the nonrelativistic apprbkimation becomes
eXfrémely bad. 6n the other hand, thevvalue of the effeciive mass deduced from
the energy dependence of the nucleén—ngcléus optical potential at low energies

* B 5 2 . .
ism = 0.7. This is consistent with the results of  recent calculations by -

: 10y v .
FRIEDMAN and PANDHARIPANDE ) using the Fermi hypernetted chain approximation.

The accuracy of thé'noﬁ-"relatiVisﬁic approximation, whén m* is chosen to be
about 0.7, will be explicitly teétedrin Section V.

In addition, in some parts of this work, we replace the dependence of
average kinetic energy by a linear one. This makes it possible to obtain simple
analytic expressions for a variety of interesting nuclear properties. This .

. ¢
approximation turns out to be fairly accurate, due to the smallness of the
kinetic energy, relative to some of the other terms appearing in the theory. A4

Using the nonrelativistic approximation mentionéd above, we have:
2 ~2/3 )
<p > =2 MTo(pP) =2MTy p . (20)

where a = p/pPg (P is understood to refer to pv), and T; is the average kinetic

energy at normal density.
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2,3
Replacing the p / dependence by p, we obtain:
2 v .
<p>=2MTy P : (21)

2 :
Thus, dropping terms of order TF , we find:

. A |
wI(p) =M { m (p) -1+ _.._............ } e (22)
. o M <-m*(p)>

The energy of nuclear matter is a sum of three contributions:

W=W, + W, + W .»(23).
Next, using the condition:
aw S ' _ (24)
ac _° ’ v
we can obtain an explicit expansion for ¢ in powers of p.
2 N
Up to order p , we obtain:
gg P 3 .~ T, :
0 ==-——7 (1»-—2-aBp-—‘P) : (25)
"M M
S
where B is a dimensionless parameter which will occur frequently in our
treatment. ' ) ;
B= —5—, o : : (26)
MSch

This parameter is proportional to the square of the dimensionless coupling

y
constant Cs used by WALECKA )

3
B=[_ h ] Po Cg - (27)
Mc

In the last two equations, we include the appropriate powers of K and c.

The effective mass is then given by:
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* 9g O " 3 2.2 To 2
= + = - + + —— ' .
m 1 " 1 B p 7 aB p " Bp (28)
We will use here: ‘ : v . N
. 3 ‘ g

For normal nuclear matter density, (pg = 0.16 fm ¢ Tg = 22 MeV), this

corresponds to

1,2

(One of us previously obtained CS = 15.6 in a nonlinear mean field theory

and 'in section 1V, we will obtain C

s 15.85, without making the approximations

made in this section.)

This gives for the.effgctivevmass as function of density:
* A . . P A2 ‘ ,.2 : .
m (p) = 1 -0.335p +0.17 ¢ p + 0.008 p e o (31)

As we will éee, the value of the coefficient a is 0.164.

© Finally, using ‘ ;
. 1 2 : , - ,
Iwg| = S *MB + Ty B _ (32)

*
which is derived in the next section, we obtain m = 0.70, close to the .

empirical value.
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IIT. CALCULATION OF NUCLEAR MATTER ENERGY.

We now calculate the contribution of the terms mentioned above to the

2
energy of nuclear matter (up to order p ).

_Wé find: for the contribution of the vector field:

1 R .
Wo= gMBR D \

where

_ 2 o 2 2 o2
Ry = gy * M%7/ g%« MT ) - e

Thevscalar field terms. (quadratic and cubic) are given by:

(2) 3 2 .2 a2

) 1 A . ~ -~

AWG = '5 M B p‘— gaMB p -Tg Bp
(3) 1 2 A2

WO' =3 aMB p

(33)

(34)

(35)

(36)

~The o. term behaves like a repulsive threé body interaction. We will see

that it contributes quite substantially to the energy of nuclear matter.

' The interaction term contributes an amount:
o 3 7 2,2 2
W
I 2F

The sum of all three terms is:

n 1 1 ~ 1 2 a2
W(ip) = < > TF -3 M B (1-RV)> p + ( > aMB + Tg B) p
. Since we require saturation at ﬁ = 1, we can write Eq. (38) in the simple
W(p)=lW0|(-2p+p) i
1 2 ’ .
lwgl = S OMB +TgB
and
o .
R, = 1-(T, +4 [Wgl)/(M B) .
Using our values for these quantities

0
T = 36 MeV

F 36 v

|Wol= 16 Mev

=—T p-MBp+yaMB p +2TgBp :

(37)

(38)

form:

(39)

(40)

(41)

(42)

(43)
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Mc2 = 938 MeV : : (44)

4 B = 0.335 : o (45)
we find

R, = 0.682 x  _ | L L © (46)

Note that the terms.proportional to MB cancel in the expression for W.
Individually, these terms contribute more than 100 MeV per nucleon. It may also

be of interest that in the approximation used here, (i.e., binding energy taken

3

as a quadratic function of the density), the compression modulus of nuclear

matter is uniquely specified by the binding energy.

2 .
d 1 ;
S5 () = gx=2|W] (47)

dp

' ; 3
We have also considered the role of the p terms in W. These depend on more

detailed assumptions, e.g., the possible role of ¢ in the scalar field energy.

: - : A3 ' , :
However, the effect of such p dependence on the energy almost cancels in the

calculation of the compression modulus.

3 - .
Thus, including a p term , we have (remember that W saturates at p = 1):
~ -~ A2 1 PN ,\3 .
W(p) = Wy (-2p+p) + Py W3 (-3 p+p) (48)
Thus
|Wol = = W(1) = Wy + Wy~ ) (49)
W) =2W + 3 W ' (50)
and
LI |
w_(1
——— =2 + (W3/|Wg]) (51a)
|w0| 3/{wol| .. _

provided W3 << |Wg|, as seems to be the case.
We can write the expression for Wy in a form which emphasizes the relative

importance of the nonlinear term in the scalar field energy for nuclear

R
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. \ .
saturation. In the approximation made.above, the contribution of the nonlinear

terms to the nuclear matter ‘energy is: Nt

NL

W= {w| - Tg(1 - m¥) e - (51b)

For Tg = 22 MeV, we find that: ‘ v ":
| m* = 0.7, |W| = 16 Mev, . O (s2)
and Tg (1 =m* ) = 6.6 MeV , - o (53)
 Thus W F = 9.4 Mev. | | | (54)

A %

,Theréfore the density'gependence'required'by'the nonlinear term seems to be

more important for nuclear saturation than the momentum-dependence implied by

the reduced value of the effective mass. T N

" If we set\_:'wNL = 0, which is the ‘approximation made in the original meéan

L
field theory of WALECKA ), then we find:

m* =1 - (|W|/Tg) 2 0.3 - o ' (55)
a very large momentum dependence, and contrary to experiment. In fact, in this

case, terms of higher order in Ty play an essential role, i.e., a

nonrelativistic treatment is inadequate.

’ . *
:, (A more accurate calculation given in the next section yields m °

L+ <
It was already pointed out by WALECKA ) that the original version of the mean

0.54).

field theory also leads to values considerably larger than empirical for the
compression-modulus.

: ) o i 11y

A THOMAS~FERMI calculation for-finite nuclei by BOGUTA and RAFELSKI

showed that the surface energy in this model is much too large.



IV. NONLINEAR TERM IN NUCLEAR MATTER - MORE ACCURATE CALCULATION.

In this section, we recalculate the contribution of the nonlinear term.to

the energy of nuclear matter more accurately.

From Eq. (4), we see that: _ _ : W
2 3
a M g o
e . 8 S N , (56)
2 M '

(assuming no quartic or higher ordér terms in thé field energy).
.-We do not make the'approximation mentioned in ﬁhe introduction; i.e., we do
the full relétivistic calculﬁtion for 3rdimensional nuclear matter.
Spppose we have saturation atba given density (i.e., average kinetic
- enerqgy), binding energy, and effectivé mass.

There are three conditions which must be satisfied:

W (pg) = - W | . .- (57)
aw : - _
. daw _ .
a* (po) = o .’ : : . : (59)

Equation (59) is eqﬁivalent to the field equation-for-the scalar field

*

amplitude. There are then three equations for Pgs Wo, m in terms of gs, d._,

A\

and «. These can be inverted and we obtain an explicit equation for WNL in
* M
terms of Tg, Wg, and m . : '

o
* *
m (1-m") + €

€

NL

W= |wl + M« - 1> , (60)

where

2 1,2
e=<m* + (2> . (61)
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2
In the nonrelativistic limit, i.e., dropping terms of order Ty , etc., the

terms proportional to M cancel and we obtain:

) To 1=-m 2.
¢ » W (Non Rel) = Wl - — ——tt = | (62)
m m D

In Eq. (60), we have cbnsidered three dimensional matter, but in Eq. (62),
the number of dimensions, denoted here by D, is léft as an arbitrry parameter.
Note that for the special case D = 2, and taking the limit 1v-vm* << 1, we
recover thg result Eq. {53).

In the table below, we list the values of WNL obtained using the three
;prescriptions mentioned above:

a.) Nonrelativistic in 2D,
.b.) Nonrelativistic in 3D,
and c.) exact. Ty = 22 Mev; Wy = - 16 MeV

NL
W in MeV.

* * .
m =M /M a.) Simple Model b.) Non-Rel. c.) Exact
Egq. (53) Eq. (62) Eq. (60) .
0.5 - 5.0 : - -13.33 ~7.45
0.6 7.2 3.77 6.26
0.7 9.4 13.01 O 14.12
0.8 = ' 11.6 : " 18.28 _ 18.80
’fG’ - ) ’

009 : - v 1308 » 21042 21-65

L
As can be seen, for n* = 0.7, the contribution of the nonlinear term is.

almost as large as the biﬁding energy itself.
The simple model discussed in the previous sections gives qualitatively"

} NL
reasonable results, though it underestimates the magnitude of W . somewhat. The
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latter can be traced to the difference in fhe.density dependence of the kinetic
. 2/3

energy, i.e, as p VS pe.

Oon the other hand, the value of the scalar céupling strength, CS = 15.85,
Jis only sliéhtly larger than the value 15.0 deduced in the previous secfion.
Also, the compression moduli are né;rly the same. In parﬁicular, the qugntity
p2(62W/ap2)p0, futns.out to be equal about 35.5 MeV, compared to 32 MeV in the
simple model discussed above.

Finally, it should be noted that the nonlinear terms disappear‘for
m* = 0.54, which'correéponds to the original WALECKA.model. In this case,
relativistic effects are quite_impé;tant;

Indeed, there seems to be a qualitative difference bétween.the results fo;
*

m* ~ 0.54 and m* ~ 0.7, in spite of the relatively small difference in the

effective mass itself;

A
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V. THE LANDAU PARAMETER Fp-

We can use the mean field theory to estimate the values of other key

nuclear properties. In this 'section, we consider the Landau parameter Fy(p)

~
0

which is proportiohal to fhe voluﬁe integral of the Spin and isospin
independent part of the effectivé interaction,

The Fy (p) is proportional to thé direct matrix element of the effeCtiQe
intéraction for zero momentum transfer, i.e., its volume integralf

Fo(p) = (AN/AE) V__. (p, @ =0) ~ (63)

" The density of single particle states AN/JE is given by:

aN/dE = 2 pg m* / T (64)
2 F »
and dependent on the local nucleon density.

In the analytic version of the mean field theory used here we obtain:

- L2 | 4Ty
Veff(p'q=0) = -55- B { (1-RV) - ( 3aB+ ;—;z ) p} (65)

Using an éffective mass m* = 0.7 aﬁd the ratio Rv =-O.682, as obtaihed in
Sec IV, we find: |
dN/AE = 0.00467 | - : (66)
and the following dependence for Fp:

Fo(p) = = 2.9 + 2.4 p | ' _ _ (67)

. The limiting values of Fyg for p = O and pg are:

Foe;:t

Fg(0) = = 2.9 : (68)

“and

int
Fol

Fg(Pg)= = 0.5 .« | ' (69)
o 12
This parameter was recently calculated by CELENZA, PONG, and SHAKIN

using a relativistic mean field theory which includes explicitly the small

components in the Dirac wavefunctions of the nucleons.
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Our limiting values for Fj are essentially the same as theirs, although

they obtain a slightly different density dependence.
The empirical values for the external and internal values of Fp, as deduced
‘ - 12y
from nuclear spectra are -3.0 and -0.3, respectively. ) Thus the mean field w

theory does very well in accounting for the values of Fy both outside and

inside the nucleus.
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VI. SPIN-ORBIT POTENTIAL. - : - s

Here we make only a crude estimate of the single particle spin-orbit

potential.

The standard mean field theory giﬁes“the'fdllowihg expression for the 1l°s

.

interaction: .
1 n 2 .1 aw 1 4 . . .
Vies™ 20me? (T & "9%r & e ' (70
Now the solution for the vector field gives:
2 L

The scalar and vector terms contribute approximately equally

and with the same sign to the 1°s interaction.

To order B, we obtain the very simple result:

>

tQ

1°s. I S (72)

L
BRI
R

Using the values of the parameters deduced in previous sections,
we find: v

- B = 15 MeV S P o - (73)
M

which agrees fairly well with the values quoted in the literature.

~
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VII. NUCLEAR SURFACE.

Again, standard mean fieid theory gives a simple expression for the extra
energy density due to spatial variation of the fields (which is a conéequence
of the inhongeneity_of‘the nucleon density). We have:-. o . v

/ 1,02 1 2 |
e(p,Vp) = e(p) + 5 (Vo) -5 (VW) . .o (7149)

Here e(p) is the energy dehsity for uniform matter at density p.

Next, we solve the fiela equations.for o and yo.-We must take into account
the nonlinear term in the scalar fig;d. However, wé will assume that thel
density changes relatively'slowlquver,a meson Compton wavelength. We find,
Vapproximétely:

¢ Ve

o= 0P | 1T T ] E o {75)

and similarly for Vj. M denotes the value for constant p.
It turns out that the contributions of the ext;é:terms.essentially cancel.
Thus, although tﬁe fields at the nuclear surface aré modified by the density
variaﬁion there, it. is all right to use the local density approximation (i.e.,
at each point set the fields equal to the values for nuclear matter at that

density), at least for calculation of energies.

We obtain for the energy‘dehsity (to order B in the inhomogeneity term):

: 2 2 - a2
e(p,7p) = 2 M B A (Vp) + |wgl(= 2 + ) (76)
where AN=mton? . (77) '
‘ s v
The nuclear surface energy is a sum of two terms: %

First the contribution due to the inhomogeneity (the first term in Eq. 76) and
second, the deficiency in binding due to the fact that the density at the
nuclear surface is less than the nuclear matter value.

We find for the total surface energy (per nucleon):
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1 2 _1 2 3 .23 o
WS =, MB AN A S (Vp) AR+ |W| Jp(1=-p) 4R : (78)

This expression is of the standard form used in the calculation of nuclear
surface properties.
Assﬁming a Fermi form for the density:

p=opg S <1+ expl(r-R)/a)]> | DR € [}

and assuming a << R, the energy is minimized for the following value of the

*
‘e

diffuseness parameter a:

| . 1/2--‘ :
a=\ [MB/6|Wg|] " (80)

and the surface energybpefnparticle is:
W_ =3 |Wla/R o ’ | (81)

S

Using our values of the parameters, and M "500 MevV, M = 780 MevV, which

_ S v
leads to A = 0.30 fm, we obtain:

IR , -1/3 , . o

a'= 0.55 fm, © Wy =20a " Mev - (82)

both in good agreement with empirical values.

The surface energy of semi-infinite matter can be obtained more accurately

. . o .o . . 13
by using the calculus of variations. As was first pointed out by SKYRME, )
more accurate (and,self-consisteﬁff’p is then:

2, . . v
p ~ tanh c(r-R;) C . : . o (83)

where R; differs slightly from R;.
For the self-consistent density distribution, the surface energy is a
fraction 8 v .3 / 15 = 0.924 of the value for the Fermi distribution, which was

derived above. Thus, use of the self-consistent density leads to a slight

improvement in the calculation of the nuclear surface energy.

the -
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VIII. IMPL;CATIONS OF'CHIRAL SYMMETRY

v'TQe aim of relatiyisﬁic quantum field theéry is to be a comprehensive
theory of nuclear matter .and nuclear‘struéture. We have shown that some aspects
of nuclear structure are unified if treated from a relativistic quantum field w
poiht of view.

One of the most serious deficiencies of the present'theqry is that it

cannot take into account piohs in the linear realizatién of chiral symmetry.
Indeed it'is.well known that the simple sigma model does not ;ead to

saturation, but to a condensed state, as was first pointed out by LEE and

11 _ . .
WICK. ) Also, this model leads to large attractive three body interactions, as

was pointed out by BARSHAY and ﬁROWN.lz)
Thus the nonlinear model discusséd iﬁ the.previous sections»appears at
" first sight to be quite different from that  expected from chiral symmetry. In
fact, this need not be the case if .one éxtends:the ;elativistic theory to
includé the Higgs phenomenon. .Recently, one of us (JB)j) shqwéd that if not. -
only the nucleon mass but a1so the mass of the véctor field is dynamically
éeneratéd by‘thé scalar fieid; then a.ﬁorﬁaltnuélear matter equation of state
is possible and the usual chiral symmefry.results are preserved.
In this version of the chiral model, MV* is nqt‘a constant but is:
M =Myt g0 . S - (84)
In order that both MV* and MN* vanish for the same value of o, it is
necessary that h
9,/M, = 9 /M | _ - - (85)
When we do this, we can reprdduce the results of the nonlinear theory with
onl§ minor modifications.

We find that the energy of nuclear matter W(ﬁ)_is still of the form

specified by Eq. (38). In the theory discussed in the previous sections, a was



=23~

an arbitrary paféméter, and Qe needed
| « = 0.164 o S (86)
in order to fit the data.
In the modified chiral model, a.is no longer arbitrary, but is given by
o= 2 RV -1 : : . (87)
where R, is defined by Eq. (34).
For comparison, in the conventional chiral model, the nonlinear terms are
also important, and the parameter &, defined by Eq. (4), is given by
€= - 1 - _ S _ .. (88)
Our value of R, = 0.682, obtaiﬁed in Sec 1V, would imply that H
a-= 0.36 . . : : L ~ (89)

which is fairly close to the phenomenological value.
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IX. CONCLUSIONS
" We have seeﬂ that important nuclear matter proéérties can be successfully

describgd by'a nonlinear relativistic mean field theofy, which has a meaningful
nonrelativistic limit. The parameters of the model, such as gs,fgv, and M, W
determined by fitting the bulk properties of nuélear'mattér ahd the nuclear
surfacé; are consistent with their values deduced from énalysis éf‘
nucleon-nucleon scattering. - ERS

The mean field theory considered in most of this work is phenomeno-
logic;l. Presumably, the vector field could correspond fo the combined effects
of tﬁé w meson and multimeson :exchanges involving both piohszand rhos. As was
poinfea out by Broﬁn,l“) the lattef seems to be the aoﬁinant source of the
short range nucleon-nuclegn repulsion. The scalar field probably répreéenté
mainly_multipionvstates. It is well known that scalar meson exchange simulates
quite well ﬁhé main effects of two-pion exchange proceeding mainly via
excitation of the A isobar. What is indeed remarkable is that all of these
simulati;ns can corfelate so many hitherto unrelated measurable bulk properties
of nuclei. |

Of course, the density dependent. effects implied by the nonlinear term in
the mean field theory do not necessarily require that there must be strong
repulsive three body forces in nuclei. Some of this density dependence could

result from higher order effects of tensor forces. Nevertheless, in the

framework of the mean field theory, the results can be very naturally

&

interpreted as a consequence of effective three body interactions.
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