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CALCUlATION OF SHOCKS IN on. RESERVOm MODELING AND POROUS FLOW 

1. Introduction 

P. Concus 

Lawrence Berkeley Laboratory 
University of California 

Berkeley. California 94720. U.S.A. 

In recent years the numerical modeling of fiuid displacement through a 

porous medium has received increased attention. stimulated by the develop

ment of enhanced recovery methods for obtaining petroleum from underground 

reservoirs and the advent of larger. higher-speed computers. For many 

recovery methods of interest. propagating fronts arise that may be steep or 

discontinuous. One example is the water fiooding of a petroleum reservoir. in 

Which there is forced out residual oil that remains after outfiow by decompres-

sion has declined. 

Some of the work being carried out in the Mathematics Group of the 

Lawrence Berkeley Laboratory for developing high-resolution numerical 

methods to solve porous fiow problems having propagating discontinuities is dis

cussed here. Such discontinuities usually pose substantial difficulty for conven-

tional discretization methods. Our investigations center on some alternative 

numerical methods that incorporate analytical information concerning the 

discontinuities. Such methods have been effective in treating hyperbolic con-

servation laws arising in gas dynamics and can be adapted in many cases to the 

equations of porous fiow. 

One method of interest. the random choice method, can track solution 

discontinuities sharply and accurately for one space dimension. The first phase 

of our study adapted this method for solving the Buckley-Leverett equation for 

immiscible displacement in one space dimension. Extensions to more than one 

1 



SHOCKS IN OIL RESERVOIR MODElJNG 

space dimension for the random choice method were carried out subsequently 

in our study by means of fractional splitting. Because inaccuracies could be 

introduced for some problems at discontinuity fronts propagating obliquely to 

the splitting directions, our efforts are currently being directed at investigating 

alternatives for multidimensional cases. 

A front tracking method for multidimensional problems based on the SlJC 

scheme developed by Noh & Woodward (1976) was extended to the Burgers equa

tion and porous flow cases. The method assigns to mesh cells a value represent

ing the fraction of the cell lying behind the front. The cell fractions' are then 

appropriately advanced at each time step. Away from the front, random choice 

method, Godunov's method. or other methods may be used. 

Recently a higher order version of Godunov's method, which utilizes piece

wise linear rather than piecewise constant segments, as introduced in the 

MUSCL scheme of van Leer (1979). has been extended to gas dynamics in 

Eulerian coordinates. Preliminary results for the extension of this work to the 

porous flow equations for one space dimension have been promising, and an 

investigation of extension to higher dimensions is being carried out. 

Specialized numerical approaches taken by others for porous flow problems 

with steep fronts can be found, for example, in papers SPE 10499 to SPE 10502 

in the Proceedings of the Sixth SPE Reservoir Simulation Symposium'(1982)and 

the references therein. in (K. Miller & R. Miller, 1981), and in (Glirnm, Isaacson, 

Marchesin, & McBryan, 1981). 
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2. Equations for immiscible displacement 

The equations for two-phase immiscible incompressible displacement in a 

porous medium in the absence of capillary pressure are (Peaceman, 1977) 

rp ~+qVf(s)--y.Lg(s) = 0 at az 
V·q= Q 

q = -A(S)[Vp --yg(s)ek] . 

(2.1) 

(2.2) 

(2.3) 

The porous medium is taken to be homogeneous and isotropic and the interior 

of the domain free of sources or sinks (Le., injection or production wells). 

In the above equations s (x,t), O~s ~ 1. is the saturation of the wetting ft.uid 

(fraction of available pore volume occupied by the fluid) .. The saturation of the 

non-wetting fluid is then 1 -s. The independent variables x and t are the space 

and time, respectively, and q(x,t) is the total velocity (sum of the individual 

velocities of the two fluids). If gravity is present it is assumed to act in the nega-

tive z direction, with ek the unit vector in the positive z direction. The quantity 

p (x,t) is the excess over gravitational head of the reduced pressure; here the 

reduced pressure is the average of the individual phase pressures less the gravi

tational head. The quantity Q represents the sources and sinks of ft.uid on the 

boundary of the domain, and rp is the porosity, which will be assumed constant. 

The quantity -y, the coefficient of the gravitational term, i.s the product of the 

acceleration due to gravity times the density difference between the wetting and 

nonwetting phases. 

Eq. (2.1) is the Buckley-Leverett equation, which for a given q is hyperbolic. 

Eq. (2.2) is the incompressibility condition, and (2.3) is Darcy's law. For a given 

s, (2.2),(2.3) is elliptic. 

The functions of saturation f (s ),g (s ),A(S) and g(s) can be expressed in 

terms of the empirically determined phase mobilities (ratios of permeability to 
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viscosity) An and Aw of the non-wetting and wetting fluids. For immiscible dis-

placement these are 

I (s) = AwIA . g(s) = AnI 

g(s) = Ani A • A(s) = An +Aw . 

The quantities I .g. and 9 are non-negative. and A is positive. 

A distinguishing feature of the immiscible displacement equations is that I 

and g are non-convex; I typically has one inflection. as depicted for a model 

case in Fig. 1. and g has two. as depicted in Fig. 2. Thus weak solutions may 

have combinations of propagating shock and expansion waves in contact. 

Attempts to solve (2.1).(2.2).(2.3). subject to appropriate boundary condi-

tions. by standard discretization methods such as finite ditIerence or finite ele-

ment methods can give rise to substantial difficulty. Inaccuracies may arise 

near a moving front. or an incorrect weak solution may be obtained. To circum-

vent these difficulties. the first phase of our study initiated an attempt to adapt 

the random choice method to solving problems of fluid displacement in porous 

media. 

fCs) 
g(s) 

s s 

F19. 1 Fiq_ 2 
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3. Random choice method 

The random choice method. which was formulated originally for solving the 

equations of gas dynamics. is a numerical method that incorporates the accu-

rate propagation of solution discontinuities. It- is based on a mathematical con

struction of Glimm (1965) that was developed into a practical and efficient com

putational algorithm by Chorin (1976,1977). It was first adapted to porous flow 

problems in (Concus & Proskurowski, 1979), and subsequently in (Glimm, Mar

chesin. and McBryan. 1979). 

For a single nonlinear conservation law, 

(3.1) 

to which (2.1) reduces in one space dimension, the random choice method 

advances a solution in time as follows. The solution s (z ,t;) at time t; is 

represented by a piecewise-constant function on a spatial grid of spacing IJ.z, 

where the function is equal to s; = s(z· t·) \ \. J in the interval 

z, - *~z < z ~ zi + *lJ.z. Then the solution of (3.1) is constructed analytically by 

the method of characteristics for this piecewise-constant initial data by solving 

a sequence of Riemann problems (3.1) with initial data 

(3.2) 

So long as the time increments IJ.t satisfy the Courant-Friedrichs-Lewy condition 

(1J.tIIJ.z)·maxI1Jl'(s)1 < * « 1 for forms of the method using half time-steps on 

staggered grids). the waves propagating from the individual mesh-point discon

tinuities will not interact during a given time step. This permits the solution of 

(3.1) to be obtained during the step by joining together the separate Riemann 

problem solutions. The above procedure is common with other methods, such as 
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Godunov's method. The distinguishing feature of the random choice method is 

that it obtains the new piecewise-constant representation of the solution at the 

new time by sampling the exact solution at a point within each spatial interval. 

In this way moving discontinuities remain perfectly sharp, since no intermediate 

values are introduced by the method, at the price of introducing a small amount 

of statistical uncertainty. The method is essentially first order and is observed 

to give good results for one-dimensional problems. 

4. Riemann problems 

The practicality of the random choice method depends upon being able to 

solve the Riemann problems efficiently. For the immiscible displacement prob

lem the function 1/I(s), which is a linear combination of f (s) and g (s), has either 

one or two inflections, depending upon the relative magnitudes of q and -y. If in 

(2.1) the gravity term -yg (s) is small compared with the transport term qf (s) 

then there is only one inflection, for which the Riemann problem solution is 

given in (Concus & Proskurowski. 1979). For the case of two inflections the solu-

tion is given in (Albright, Anderson, & Concus, 1980), (Anderson & Concus, 1980), 

and for a special case in (Proskurowski. 1980). 

A typical example for a case in which two intlections occur is depicted in 

Fig. 3, which is the case given in Fig. 3 of (Anderson & ConcllS, 1980). The 

Riemann problem solution is obtained by applying the following general condi

tions, which must hold along any curve of discontinuity of s (z ,t). Let 

s _ = lim s (z ,t) and s + = lim s (z ,t) be the limiting values from the left and right 
21"'21 21"':11+ 

at a discontinuity. Then there must hold (Lax, 1973),(Oleinik, 1963), 

(i) Rankine-Hugoniot jump condition: The curve of discontinuity is a straight 

line with slope 
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(ii) Generalized entropy condition: 

1/I(s .. ) -1/I(s) 1/I(s .. ) -1/I(s -) 
. < ~~--~~-

s .. -s 

for any s between s + and s _. 

For the case sl=o and slH =1 one obtains the solution of (3.1),(3.2) dep

icted in Fig. 4. Fig. 3 depicts the corresponding concave hull of 1/I(s), whose 

pOints of tangency with 1/I(s) determine the shock propagation speeds. The two 

shocks shown in Fig. 4 propagate to the left and right, respectively, from the ini-

tial discontinuity. The characteristics from the left of the discontinuity inter-

sect the leftward travelling shock, and those from the right intersect the right-

ward travelling shock. Between the two shocks is an expansion wave with its fan 

of characteristics emanating from the initial discontinuity. 

The solution depicted in Fig. 4 is then sampled at a value of z at the later 

time to obtain the new value to be used for the interval in the piecewise constant 

representation of s. The sampling details and further discussion of the Riemann 

problem for these equations are given in (Albright, Anderson, & Concus, 1980) 

and (Anderson & Concus, 1980). 
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I'" 

",(5) 
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5. Fractional splitting for multidimensional problems 

For a one-dimensional problem, (2.1),(2.2),(2.3) reduces to the single con

servation law of the form (3.1). since q is conStant in the interior for this case. 

For a multidimensional problem the standard technique for solving 

(2.1),(2.2),(2.3) is to solve successively (2.2),(2.3) for p (and q) taking s to be 

fixed at its approximate solution for the current time, and then to advance (2.1) 

one time step conSidering q fixed, to obtain an approximate solution for s at the 

new time. 

Advancing (2.1) is carried out using the random choice method in (Albright 

& Concus, 1980), (Albright, Anderson, & Concus, 1980), and (Anderson & Concus, 

1980) by means of fractional splitting. Specifically, one solves successively the 

one-dimensional problems 

rp as + u(n)f(s) = 0 
at 

rp as + wen) L f (s) - "y Lg (s) = 0 at az az ' 

where q = (u,w). 

Although this technique is efficient and gives acceptable results for many 

problems of interest, it can be inaccurate for cases in which a shock front is 

advancing obliquely to the splitting directions (see, for example, [Crandall & 

Majda, 1980]). 

6 .. Front tracking method 

As an alternative to operator splitting, a front tracking method was 

developed in (Lotstedt, 1981) to follow shock discontinuities in Burgers' equation 

and the equation for two-phase porous flow. This method is based on the method 
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of Noh & Woodward (1976) and Chorin (1980). 

A function Fij is defined whose value at the mesh cell (i,j) is the fraction of 

the cell that is behind the front. Thus most cells have the value one behind the 

front. or zero ahead of the front. with 0< Fij < 1 along the band of cells enclosing 

the front. For the cells (i,j) in which 0< Fij < 1 a line segment is drawn approxi

mating the position of the front, based on not only Fij but the fractions in the 

neighboring cells. At each time step the cell fractions are advanced. first in the 

x -direction and then in the y -direction. 

In (Lotstedt. 1981) the details of the front tracking scheme are given. The 

. line segments approximating the front within each cell are permitted to have 

oblique slope and need not be parallel to the mesh lines. The method is tested 

on the inviscid Burgers equation and porous flow equations in two space dimen-

sions. The numerical solution is calculated for discontinuous initial data and is 

found to agree very well with known solUtions. For the case of a physically 

unstable interface, which can occur for porous displacement when a more 

mobile fluid displaces a less mobile one, the method is able to resolve and follow 

the fingering of the surface as it develops. 

Fig. 5 depicts successive positions of the discontinuity front as calculated 

by the method. This example. which is presented in (Lotstedt. 1981), is for two

phase miscible displacement with a source at (0,0) and a sink at (1.1). For this 

miscible displacement case. (2.1).(2.2),(2.3) hold with l(s)=s and 

A(s) = (s +1'(1-s »4. l' > O. Initially the square is occupied entirely by the fluid to 

be displaced. and at the boundary the normal derivative of s is zero. A uniform 

spatial grid with spacing 1/40 was used for the calculation. For this problem the 

front is physically unstable. a property that Fig. 5 depicts as being captured by 

the method. Other, more stabilized, front-tracking methods, such as the one in 

(Glimm, Isaacson. Marchesin, & McBryan, 1981), are reported to yield for this 
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same problem a solution that does not have observable fingering. 

Fig. 5 
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7. Higher order Godunov method 

Another alternative to the random choice method with splitting for multidi

mensional problems included in our study is that of a higher order Godunov 

method. Although first order Godunov methods generally are too diffusive to fol

low steep fronts sharply, the higher order methods introduced recently by van 

Leer (1979) for gas dynamics in Lagrangian coordinates appear to circumvent a 

large portion of this shortcoming. Godunov's method (first order) was intro

duced in (Godunov, 1959). It an~ the random choice method are similar in that 

they both require the solution of Riemann problems corresponding to piecewise 

constant initial data. Whereas the random choice method obtains the new 

approximation at the new time by sampling, Godunov's method obtains it by a 

conservative differencing scheme. Shocks are not kept sharp by it, as inter

mediate values are introduced. However, when Godunov's method is combined 

with operator splitting to solve multidimensional problems, shocks travelling 

obliquely to the mesh do not give rise to the same degree of difficulty as might 

be encountered in the random choice method. The second-order Godunov 

methods hold promise of giving good results for solving multidimensional porous 

flow problems. 

For solving (3.1) with '"1 = 0, the condition that 1/I'(s) > 0 simplifies Godunov's 

method to first order upwind differencing 

s}\~ = sf 

The second order (in t and z) scheme obtains sj/~ by solving an initial value 

problem with piecewise linear rather than piecewise constant data. This gives 

for (3.1) with 1/1'(5) > 0 

12 
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The extensions to van Leer's approach developed in (Woodward & Colella, 

1980) and (Colella, 1982) are being adapted to the porous flow equations with 

promising results (Bell, Colella, Concus, & Glaz, 1982). A comparison between 

the first order and second order Godunov methods for a one dimensional case is 

depicted in Figs. 6 and 7. For these problems s (z ,t) = 1 for O~ z ~ 0.2 and 

s (z ,0) = 0 for .0.2 < z ~ 1. The dashed curves represent the solution of (3.1) with 

'if/(s)=f(s)=s2/(s2+0.5(1-s)2) and 6z=0.02. The first order method is dep

icted in Fig. 6 and the second order one in Fig. 7. The plotting routine indicates 

the data points by placing circles below them, more or less tangent to the inter

polating curve. The solid lines in the figures represent the solution for 

6z = 0.0025 using the second order method, which is essentially the exact solu

tion for this case (Data points are not indicated). The time step 6t was taken to 

be 0.1 t::.z for all cases, which corresponds to a CFL number of about 0.2. Precise 

computer running time comparisons for optimally designed programs are not 

yet available, but for the experimental programs the computer running time for 

the second-order method was substantially less than twice that for the 

corresponding first-order method. The improvement in the solution using the 

second-order over the first-order method is easily seen for this problem. 
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