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Abstract

Various ways of obtaining a lower bound on the mass of the second
chargea weak boson required in a left-right-syﬁ@etric gauge theory are
investigated. They are‘all~baSed on hadronic processes, in-an?effCrt
to getvmore model-independent answers. - From the KL - Ké mass difference,
the limit obtained is M(wz) 2 37Q.GeV, if one neglehts a possible top
qua;k influen;e. From non-lepfonic hyperon decays; one,cén only derive
a.b0und on the angle 7 which mixes the céuplings of the primarily left-
and right*handed W-bosons : Itancl 1'1-2 Z. From ﬁadronic K-decays,
onerdeaiﬁs a limit M(wz) 2 280 GeV, roughly similar‘té that found by .
Bég et al. from leptonic charged current data, but hof restricted by

assumptions about neutrino masses.
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SU(2).

Introduction

~The Glashow-Weinberg-Salam (W-S) model of‘week and eiectromaghetic

interactions, based on the gauge group SU(Z) U(l)

left 1sospin» hypercharge

still. stands uncontradlcted by any experimental result, almost ';wenty

yearsafter it was first proposed 1. It has becomegthe‘standard,moaélf;

~ for weak'iﬁterections up to present-day energies;*and remeihéﬁalmost un-—

‘ challenged, s0 much SO . that its validity can plau51b1y be assumed up to

energles of 0(10 16 GeV). At that energy-scale, the gauge groups SU(3)Color

L® U(l) can all be 1ncorporated into a bigger group, prov1ded ‘the

coupllng constants gy and 81 of SU(2) and U(l) satlsfy

2) = s1n20 = 3/8 .

/(gl + 8,
This prediction,‘when'EXtrapolated down to available ehergieé; yields

2 3

'sin" @ =~ .21 ,_whigﬁ successfully determines one;ofjthe arbitrary para-

meters of the W-S model, thus enhancing its credibility up to energies
16

of the order of the unification mass Mx A~ 0(107 GeV).

Such spectacular success of the standard model of ueek'end-eleetro-'

magnetic interactions, associated with the grand unified:modelfbeséd,du.

the geuge'group SU(5), should guide us to look at poSsiBlefﬁéfiations:pn

SU(2) x U(1l) and SU(5), which mfgﬁt help solvelste_offthe femeiniﬁgff
» problems, among them :

.i) The hierarchy problem : The boson masses, in any grand unified

theory, are clustered around the unificatidhvmeesfo, exeept&for‘the

g'weak’géuge bosons W and Z, and the Higgs which gives fise teféll_their'

y'maSses,[which lie around 100 GeV. The fine tuning of the”eohs;autsvin



the Higgs potentiél necessary to generate a ratio of masses n 1014 is
unnatural. Together with the fact thét no Higgs particle has yet bgen
observed,,it_throws some doubt.on the simplest Higgs mechanisﬁ used in
the U-S model and in SU(5). |

 vii) cf viélatiOn : Sevgrgl_meéﬁaniéﬁ; ﬁagg‘been proposed to, explain the
observed CP violatqu in Qeak intéractions ; é1though ;;“appearg qa;gr
rally with three qué;k}generations by requifing the most éene?al Cabibbo-
'like,mixing matrix,féghef posgibiiities méy give;just as g;;isfactory‘an
explanation, baSéd’on_phe same:afgumentAéf éengrality.n. |
iii)‘Massive ngutrinos : it seems plausibié ﬁhat at least Vg is massive.
it is also quiﬁe pqssib;e_tha# sevgraiqgeperations of massive neutfinos
are mixed like quarks, with a Cabipb;fliké métrix, and oscillatiéns may
result in a v beém like in a K° béaﬁ: The sfandard ﬁode1s,‘SU(2) x U(1)
and SU(5), do not allow for massive neﬁtrinqs,laqd mus; then be,modified.
iv) Finaliy, the perépeétive of a Tbié desert".extending from v 102_;0
" 1016 GeV, ‘where theﬁgtaﬁdard picture’predicfs-tﬁat nothing different
from what we already_dﬁéérve will happeg;_is rather uninteresting, and
encourages alternative model—building.'AOne drastically different image
is provi&ed.by technicSIor theories,lwhich'may bear someéfelevahce to the

vhierarchy problem. Another is provided by the left—rightvéYmmetrié'ﬁodel

of weak interactions.

This model, based on the gauge group SU(2)L X SU(2)R x U(l)B-L ,.1s .

the major surviving low-energy rival of the standard model. The reason

for its .survival is that it reduces to the standard model if the energy-

- scale where parity is spontaneously broken is moved up to infinity : thus .

experiments confirming the standard model can only push that energy-scale

up, but never rule thevmodel'put._vIt is appealing for several - mostly

*

¢
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aesthetic -vreasons, beéides avoiding the boredom of the big ﬁesert :
i) It assigns left- -and right-handed fermians to symmetric déublets,
rather than the arbitrary - and for a long time uncertain - standard
éssignment of the right-handed fermions to singiets.

ii) It restores parity at moderate energies, thus satisfying the general

principle that symmetry should increase with energy.

iii) It provides a less arbitrary defiﬁitioh of the hypercharge quantum

. syt s

number associated with the group U(1), since the new hypercharge is now

K

" (B - L), ie. defined in terms of other already used quantuﬁ numbers.

iv) It lends itself to unification with the strong interaction into an

© S0(10) gauge group, in the same way that SU(5) appears in the standard

picturé. -In SO(ld), ali the fe;miohs of one generation belong to the
same representation lgv,_which is less arbitrary than the 10 and 'S which
are requiredAin'SU(S).

V) It provides an explanation for CP violation at tﬁe-Higgs level.

vi) Like S0(10), it naturally incorporates left~- and right-handed neu-

~ trinos, and thus massive neutrinos. Furthermore it fits nicely with the '

favored explanation that v, is iight ( much lighter than its charged lep-

L

tonic partner ) because V

1 J
g 1s very heavy ( M(vR) ~ M(kR) ).

The léft-right symmetric modél gan.also accomodate some strange
and as yet qnobserved pﬁenomena like_neutfon oscillations or neutrinoless -
double;B—decay. In short, the left-right symmetric model is richer than
the standard model. vFinally, it may receive a decisive experimental boost
in the next few years, if for -instance one would find thaﬁ

M(W)/M(Z) # cos QJ .

We want to investigate here the implications of existing data in



non-leptonic weak processes for SU(Z)L vaU(2)§yx U(l)B-ﬁ models, and
especially the information they provide about the right-handed W-boson

of this model. . .

This thesis is_organiied as follows. ‘Chépfer I describes’the'left-

fight symmetric mddel, and the specifiéufeathres‘of:the vérsion used

later on in the gauée boson and Higgé sects;s. ‘Chapter:iI reQiewé other
approaches tobthe séﬁe‘ﬁrobiem'of:aétefﬁi;ing thérpaés M(ﬁé) , and moti-
vates oﬁr 6wn‘approach of studying A;dfohié wéakAprocesses. Chabter I11
concentrates‘oh“the KLS-“KS‘;aéé.difféfenéé; and Chapter IV on cher pro-
cesses whiéh are describedlﬁith the help ofxéuérent;aléebra. The various

bdunds obtained in Chapters III and IV are sunmarized in the Conclusion.
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Chapter I,

The left-right symmetric model.

Characterized by the:gauge group éU(Z)L vaU(Z)R x U(l)B-L , the
left-right symmetric model needs an extra séf'of'gaﬁge‘bosons, combared
;oVFhefstandard model;based on SU_LZ)L X U(;)Y alone.‘It also requires a
more complex Higgs. structure to give ﬁasses to tﬁe dsuallfermions (to .
which.is added a right—handedsv).and to the boéonsf A quick comparison

chart with the standard modg;,can be found in the Appendix on p.14.

;- Here we will give a somewhat more detailed description of the masses

- .acquired by the gauge bosons, the fermions and the Higgses ; some of

these results will be used in Chapter II1. The left-right symmetricv

. model.héé'beén stﬁdied extenéively 3 ; this chapter is based essentially

6

on previous work by G. Senjanovic °.

A. Particle assignment in multiplets.

,i) ‘ The left- and right-handed fermions are assigned to isospin doublets.

.according to :

v v ] ] u® c? A 1 v u

e O B Lo el e

- - . e o ) . o o 9 - LR S " . e s 0
(-] ) o [

€ Ju ¥ JL L D A PR B 1. 4° Jr

(,0,-1)05,0,-1)  (5,0,1/3)(%,0,1/3)  (0.5,-1)  (0,5,1/3)

where (TL . TR , B-L) are the three quantum numbers of each multiplet

under the three gauge groups. The eieptric charge operator is :

Q= Ty + Ty + (B-1)/2 (1.1)



ii) There are three sets of gauge bosons, one for each group :

+ ' +
W~-, W 3 WR- R W3R ‘s B -

They combine into physical states written as

+
+

iii) Higgs bosons are needed to give masses to the fermions : TEL¢wR) must
’ be a singlet, whiéh implies a Higgs’ miltiplet (%,%*,0). One ﬁigﬁt tﬂink
of giving this ﬁultiplet a Cthésiié strﬁcture, like (¢L¢R*)»; but then
the requirements of left-right symmetry force ¢, and ¢p into having the
same vacuumiexpectation values, which in turn prevents building meaningfdl

quark mass matrices. Therefore one mneeds a Higgs multiplet of the form :

61° 4" -
¢ = "] where I and 1 are
: o | 3L 3R
% ¢

(Hs,-%) (H5,+9)
o ' , and

(=5,-%) (-, +%)
where the ¢'s are complex scalar fields.,

Since (B-L)¢ = 0 , this multiplet cannot break the U(1l) group. and
more Higgses are needed to that effect., Various assignments are possible,
which have no effect on our calculation of Chapter III, where we only deal
with those Higgs particles which couple to fermions. We take here the
simplest structure for the additional Higgs multiplets : ' .
+ , Lt g o
: XR
XL ° St XR ° :
XL XR J

(%,0,1) (0,%.1)

T . B-L) = (1.0,2) and

Another currently favored choice 7 is : (TL - Tr



(0,1,2). Such Higgses can be made of fermion pairs (%,0,1) x (%,0,1),
- which leaves open thé’pdssibility of dynamical symmetry breaking ; and

they can contribute a heavy Majogana mass to vR (see Ch. II).
The'vacuum expectation values of the Higgs fields chosen here are :

k O : o _ 101 ,

<P> = HEERS S P X = all complex (1.2)
] . ’ L ] R ,
0 k v ‘ ‘ .vv .

Under a left—rigﬁtlﬁarity trénsformatidn, alluthe‘fermion and boson

fields transform into their'symmetiic partners ; the Higgs fields obey :

o+

0> 5 X, X
Sincé the coupling constants associated with SU(Z)L'and SU(2)R érevequal,
physics would hotichange,exceﬁt.thét v # v', which breaks the symmetry.

It is a remarkable fact, shown by Senjanovic 6

, that a symmetric
Higgs potential can have an'absolute»ﬁihimﬁmffor 1<XL52¥;éXR> f°r somé
range of the coefficients in the po;éﬂtiai (The same bfgﬁérty has also
Béen verified for the alternate choiée of symmetry-breaking Higgses).
Indeed Senjanovic showed that one can have x> = 0; Xg> =V - which we

are going to retain for simplicity in the gauge boson mass matrices (see

Ch. III, Appendix A, to check that v' # 0_does»not4affect our result).

B. Gauge boson masses and weak currents.

From the relevant part of the Lagrangian which contains the covariant

derivatives of the Higgs fields :
L <Dpr)\(D X)) * (0 xp) " (D¥xp) + Tr (D £)7(D"¢) | (1.3),

from the definition of these ceovariant derivatives



=3 io29
DXy = 9L 2 817N, X
i =+ o . , | | |
DuxR = auxR 7 8 T-¥Wp xp ' - where T = ¢ (1.4)
b =20 -1 Mo - el )
D = ¥ =7 &8 (T.NP =91

and from the vacuum expectation values
: 0 k O
x> =03 <y > = s <> = ' (1.5)
L R - ‘ 0 k' .
one can derlve the following mass’ matrlces (The gauge boson mass matrices

in Ref. 6 are all in error by a factor 2) :

i) for the charged W's :

w?oe b2 2 1 2 ,.2 2 2. (1.6)
: Wp - g'kk' ~ 5 8 (kK7 + k' +v7) ’
which can be diagonalized according to :
W, cosz sing W S
ol L (1.7a)
W2 1" =sinf cosy WR :
where tan 2¢ = - 4 kk' | | | (1.7b)

The phenomenological requirements that Z be small (see Ch. IV,A and Ref.16)

and that M(wz) >> M(Wl) imply that
v >> k,k'

In that approximation,
38 al v
1 2 2
28V

Mz(wl) N
2 (1.8)
M (wz) ~

[
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One can see that .E_ﬁyll ~ O(tanz) , unless k and k' are not of the-same

2
M (WZ)

order of magnitude. 1In fact we are interested in checking whether values

of M(WZ) much lower than >M(Wl)/Vtanc are plauéiﬁie, and so we have to

assume, for exéhple, k' << k. In Chapter III we will take k' = 0, and

eventually see how our result changes for k' # 0.

The charged weak currents carried by wl and W2 are :

J1 = JL cosz + JR sing : J2 = —JL sinc'+ JR cosg . o
: - — - e : (1.9)
with JL = VarY e + vuLY By + ...+ 1 LY D L

where U° and D° are column vectors made of u- and d-type quark weak
eigenstates.
ii) for the neutral Z's :

‘The same part of the Lagrahgian (1.3) containing the Higgs covariant

 derivatives also yields the following mass matrix :

2

12,2 1l 2.2. ,2 ' o
W3L g (k + k ) -58 (k. + k') 0

M2 - oy 1202 42001 2 2 12 2 1 v L2
MZ W3R 5 8 (k" + k') 3 8 (k™ + k' +v) - 5 88 V
1 2 1 ,2 2

B . . - = ' EPN )
- 0. -8V > 8V

' 1f we défine the énalog'Ofvthe Weinberg angle; ] ,bby':
1 .
sin20 = _'z—g—f_f“ . . (1.11)
(g™ +2g'%) T '

then the following combination is massless and corresponds to the photon :

Au = ( W3L + Wap )u31n0 + Bp Ycos 20 (1.12)

The mass matrix for the other two particles can be written in a basis

where it is almost diagonal

\
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| 4 —ss )
Zy) =(W4 cos0 - WypsinOtand - BtanOvcos20), a2 - 4Yc0s20
. . 2 cos 0O ; cos 0O
=W Yeos20 B tan0) _.Ycos20 cos29 + b
3R cosO : ’ a > . @ 3 _
, : cos 0 cos 0@ .J
where
| 1 2. . .
E_2'3 (k +k'),3 > =5 (8 +g_)v2

For v >>k, k' , the above matrix is approximately dlagonal and one

recognlzes the llghter boson mass

- L MM,
NEz.) Ja W)
: 1 cos®@  cosO oL
' o (1.14)
whereas M(ZZ) v b v MW,) —cosb_
: Ycos20
. The reutral weak currents are;:in the same apprbiimation :
_&__ - ) - .2 !
| Jp(zl) vl YV (T3L Qsin“0) ¢ |
v ) - (1.15)
cos®  — 2 2.
" J@2)vg—— ¢y vy IT,(R+ Ltan"0) - Qtan 0] V¥
B2 H 3t v
c0s20 .

where R,L are the helicity projectors  %-(1 + ys).
The usual relations for the mass and the curreptvof the lighter neutral
boson thus reappear in the limit where the mass of the heavier one (ie. V)

increases to infinity.

C. Fermior: masses.

Fermion masses stem from the vacuum ex>ectation value of ¥ in (1.5).
The other Higgs particles do not cortribute, since they are singlets of

SU(2)L or SU(Z)R

The relevant part of the Légrangian, containing the Yukawa terms, can

v



be written in the most general form compatible with hermiticity and left-

right symmetry :

i3 3

Ly =Gy Gyye + 3y H wopy + WPy Aagge’ + 3,18 wopy  aae

where 3

o, ®* o, = | T B _ (1.17)

and (¢°)i- is a fermion isospin dqublet, i'being the»generation index.
Thé sﬁperscript ° indicates.that we are dealing with'weak eigenstatés,
aﬁd tﬁéreque wevwaht to génetafe the Cabibbo angle Sy having off;dia-
gonal terms relating different genétations_: this is ﬁhy the Yukawa
couplings A and B must be matrices ( 2x2 for two quark génerations ).
One then obtains the féllowing mass‘matrices for ﬁhe U—Iand D-type

.

quarks :
my = ( kA + k'*B ) my = ( k'A‘+ k*B ) : ’ ‘ (1.18)

Under lefﬁ-right symmetry : 1 2%hndl 2 S '¢.++‘¢+ . Then fhe invariance
qf the Lagrangian (1.16) implies that A and B be hermitian. We will take
them, as well as <¢>, to be real ; a more general apptoach‘would only'be
useful to study CP violation. Then m, and m, are real symmetric ; they

can be diagonalized by rotations RU and RD :
-1 R A |
R0 ™u,p Rup” F fupp | | (1.19)

The.physical fiélds'(maés eigenstates) form mdltipiets U and D obtained
from the weak eigehstates multiplets U° and D° by the above rotations

-

. D.; This follows from consideration of the Lagrangian (1.16) :

= ° ° T + .0
‘EY U L ™y U R T -U R ™y u L + U<+1D

11
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or . .CY = (RUfl-U°)E (RUflrmU'RU)'(RU—l’Uo?Ri +.h.c. + U =D

de. u=rMue 3 =gl .20
The Cabibbo-angle théﬁwépbearS'in the charged weak cufrénts as the
difference between the anglés”of RD a;dVRU::

+ — C— S I
I —7_525—-‘ [ Ver Yy op * eee + ULy, (RyTTRY) DL-] | (1.21)

and similarly for the‘fight—handed current. So the left and right Cabibbo
angles are the samé : the CaBibbo matrixbis R = RU-1 RD , and there_are

no flavor-changing.neutral currents.

D. Higgs bosons.

The representations'fillea by Higgses are (%,%,0) , (%,0,1) and
_(9,%,1) , which c&rrespdnd to :

4+ 2+ 2 =8 real ﬁeufrai.fields‘j

2 x (2 +.1'+ 1) = 8 charged fields.
Several of these become longitudinal aegrees of.freedom-of,massive gauge
boséns ot

2 x 2 for the charged Wl and W2 5

2 x1 for the neutral Zl and Zy -
Wé are left with the following physical Higgses :

6 neutral., 4 charged.

The mass specprum—of,these particles has been studied by Senjanpvic 6
all are heavy, wi?h a masS o(M(WR)), except'forlpne.neutral Higgs with a

mass O(M(WL)). . The mass matrices for charged and neutral_Higgses will be

needed in Chapter III,'and'are disblayed in Ch.III, Appendix A, p.53.



Fay

The Yukawa couplings of ¢ are given by '[Y (1.16). It is worthwhile
to write down the couplings explicitly, since they will also be used in

Chapter III
for ¢.% : ¢ ﬁ;(R-lA)D +'ﬁ—(~R'1B)D + ¢, |D, (-BR)U_ + D_(AR)U
1 1{°L 'UR R UL TR (TR T OTRYTTL

o * +
for ¢2 : same, ¢l g ¢2 s A« =B
’ (1.22)
o ol (-1 . o |71 ~1 N
for»¢1 E ¢y [UL(R AR)UR + DR(B)DL] + ¢, *[UR(R ‘AR)UL + Dy (B)Dp |

for ¢2° ; same, ¢1° *f ¢2°* , A < +B.

In these formulae, we have assumed thét all ‘the Cabibbo rotation was
contained in the U-quark sector'::D°‘= D ; U° =RU . This_simpiification
does not change thé'results of Chapter III, as shown in Ch. IIT, Appendix

B, p.56.

13



Appendix

Comparison between the standard

14

model and our model;

Gauge group SU(2)L x'U(l)Y

Coupling constants g g'
Electric charge Q = T, + %,
V2
Weinberg angle sin‘g, = —&
W 2
(2 +g'd

Fermions

L-H doublets ; R-H singlets L-H

SU(2), x SU(2)p x U(L), ‘

.8 g

- | .
Q= Ty + T3p + 7 (B-1)

(g2 ¥ 22'%)

sinze

doublets:; R~H doublets

Gauge bosons 4 7
+ o + ’ °
W 2% ;5 v w1,2 H 21’2 a.Y
masses n(y) = 0 m(y) =0
m(W) = 80.5 GeV m(wl) < 80.5 Gev
m(2Z) = m(W)/cos@w =~ 92 GeV m(Zl) = m(wl)/cose
m(Wz) > 80.5 GeV
m(Zz) = m(wz) cosd/vcos29
, *
Higgs content 1) = (&,1) ® = (%,% ,0)
XL = (%’0’1) ’ XR = (09%91)
x> = 0 ; XR> TV s which o
breaks the symmetry.
Physical Higgses .1 neutral 6 neutral , 4 charged

 free (5 0(300 GeV))

masses

1 neutral O(m(wl))

9 others O(m(wz))



Chapter II.

Choosing a probe for the figﬁg*handed sector. .

Our aim, like Vt'ha‘t of ‘many ochers bo.a':Ecn_:'e8 , is to check the struc¥ '
‘ture of the weak current, and to see whether: it deviates from the (V-4)

form predicted by the standard model.'.

For charged current processes,,if we now have two gauge bosons wl

"and w2 with couplings given bv (1. 7), the effectlve interactlon Hamllto- '

nian is :
eff : gzl‘ | 2. 0, 2000 *-LQ'Tak
H = (cos 4 + Bsin ;) + J (sin t + Bcos )
I 2 L L .
. 2w, )

: + (J J + JRJ )sinc cos; (1—6) ] . (2.1)

where B8 M(wl) /M(W ) vand, C are both ekbee;edupo'oe.smail;';Keepihg-

.oniy the leadlng corrections in (2 1) y1e1ds :

eff 2 sitseratecoateaath | (2.2)'
B s —E— ] L R'R L R+ IR . |
2M(W, ) . R o

‘Since we are primarily interested here in measurlng B, 1ndependent1y of

r if possible we should look for purely rlght-handed processes.

- ' . o, eff |
For neutral currents, the parametrization of—HI- is more model-

dependent. Keeping the results of‘(I.B);<we*get in theiléédihg'ofderbg

H x —h vy  (T,L - Qsin“®) v : _ : - (2.3)
N2 p 3 .

M(Wl); : S : :

as;in the standard model. Obtalnlng a more accurate expre551on requ1res

rgo;hg back to the simplif1ed mass matrix (1.13), Its elgenvalues are



cosa -sina

M(Zl)2 . M(Zz)2 , and its eigenvectors-* and |- respectively.
sina cosa
Then : L e e e S e e
_ 2 . 2 .2 2
HIeff - | cos a2 4 Ssin az AZ 4+ | sin az 4+ Ccos a2 » BZ (2.4)
M(Zl) M(ZZ) M(Zl) M(ZZ)

where A and B aré.theicurrents corresponding to:the fields defined in (1.13).

It is easy to show that the quantitiéS‘in brackets in (2.4) are

M(Zl)fz. M(Z?_)‘_2 times the diagonal coefficients of the'matrix (1.13).

Then‘we obtain, éftef‘eliminatihg the hypercharge - %v=‘Q - Tén'— TBR :
A= 23§5 '(T3L - QsinzO) ; B=g _cos8. [T3R + tan®o (T3L - le |
: . - vYecos20 v :
n_°ff s (T.L - Qsinée)z 1+ a cos20 N tan?0 (T,L - Q) ? a cos?0
Hy a [T - b 2 | '3 3t~ Q) § cesze

‘ (2.5)
where a =‘%ﬂg2-(k2 ka'z)-'énd b = %(g2 + g'Z)‘vzv{EaﬁfBe e£pressedfih
terms oé M(wl)2 , B and c,‘witﬁ fhe'ﬁeip of.(1.6) ahd (1;7)':

' 2 2 tan’t B a_ B+ ianzc‘ ” (2.6)
a-= M(Wl) cosup [1 +-——7;—J R . '
1+ Btan'¢

Obviougly tﬁe analyéis of neutral curféﬁf daté ié r;thef comflicated 5
it invoivesvfouf paraﬁétefs-Simulganeéusly f.M(wl), B;’t;véﬁd 0, the equi-
‘valent of théfWéinberg‘angle (see Ch.I, Appéndix). 'This extra parameter
has been errOneously.fixed~to an "accepted" value in some of the previous
analyses of weak current processes in_the con;ext of the left—right_
‘Syﬁmetric model, which we are:ndw goiﬁé'té ;eQiew. We will look at
results already obtained from neutral:current data (part A), and then
from charged‘CQrfeht‘dgtaf(ﬁért B): ; this will ' motivate our owh approach

(part C).

s
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A, Neutral current processes..

The neutral current data can all be fitted within 1.5 o with only

the two parameters of the W-S model, M(W) and Qw (ie._witH.B|= £ =0 in

9

our model) ;:the results,.including renormalization effects, are

‘smzoﬁ = .233 % .009

M(W) = 80.5 + 1.5 GeV

(Some uncertainty remains as to the agreement with atomic parity violation

data).

Additional constraints can be introduced from the limit on the ﬁroton

lifetime ( p 2 2 x 1630 yearslo), with the use of gf;nd unified theories.

The standard SU(Z)L x U(l) gaugé group can be "unified" with the SU(3)

gauge group of strong interactions. At some very high energy, 511 these

\.groups are embedded in a larger group (at least SU(5)) ; leptons and

_quarks are mixed in the multiplet assignment of the unifying group ;

and all the gauge bosons are,'ﬁoo (weéKQEIectroﬁégnéiicvbééons, giuons.
and others relating'lepéans”to duarks)w"Ihis uhificatiohnbccdrs‘at the
energy where the tbree running"éoupliﬁg»cdnstaﬁ}s-df'the tHrEe gauge -

groups all becgme équai: At that'energy the;nbrmalizati¢n of the group
generators fixes the value of'sinzoﬁ , which gété fenérmalized at 1oﬁef

energies. This scheme;\firgg dgviéed By Georgi_aqd_Glashow.2! expigins

. the quantization of electric charge (since quarks and leptons are mixed

in the same multiplets, their charges are related), and relates Gw to

the measurable value of a at low energy.‘ The success of the model
v strong : :
Co R - L : 5 3
- stems from the value.obtained'for_sinZGw'( sinzew = .21 for o = O.L ),

and from theihiéh Valﬁé of,thefuhificatioﬁ:maés'(.M* N 1_01»‘5 GeV fpf;che '
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above sef of values),.compatible with the knowh‘limit on the proton life-
time ( since T GUM MP /Mx ).
The same unificatidh procedﬁre”ééﬁ.be'cérried'butffdf SU(2) x SU(2)R

X U(l)B_ X SU(3) " The unlfylné group must be at least S0(10), to

color

accomodate the increased number of generators. Ihe fundamental represen-
tation of that group is a 16 , which suits the following particle assign-

ment @

R . i,j color indices.

The value of sin?Q(GUM) is dérived as for SU(5)
2 -2
Tsp = Tr T3L 2

Tr ((B-L)/Z) 4/3

for the 16 representation, .Tr T

But: the generators I and I assoc1ated with T3 and (B—L)/Z

a0 Isg B L * T3r

must be normalized_ldentlcally, and the same coupling constant 8cum must

appear in each term of the Lagrangién :

. - 3 e
Boum 13p = 8Ty, 5 8guy Ip-p = 8 (B-1)/2

Then Tr I 2 tr I 2“==> g?. 2 = g'z. 4/3

3L B-L
12

, 3
And - sin™O =
& + 26'D) 8
just as for SU(5) or for any group, provided the isospin ‘and electric
charge assignmentsof the elementary ieft-handed fermions remain the usual

ones.

The renorméiized value of sinzo at 1oﬁ_eﬁergy.diffe;s from the SU(5)

value, however. The pattern of symmetry breaking, if one assumes that

e



left-right parity is the last symmetry to bé_broken.when going down in

energy from Mx,;p M(Wl),»mugp be :
S0(10) ~» SU(Z)L x“SUQZ)R x SU(4) -~ SU(Z)L b ¢ SU(Z)R X U(l)B_L X'SU(3);
o,

> SU(2) x ULy x SU(3)_ + ULy, x SUEG)_
MO MG |

‘The evolutionsof the coupling constants are derived from the usual

éxpression for the B-function in<an SU(N) group with f fermion generations :

3
8(8)=--"g—2 [%N-%f]
16m -

A typical pattern of running coupling constants ié‘shown:in Fig. 2.1.

In particular one obtains :

L2 31 SpMED) [ Moy
_ sln,Q(M(Wl))u- 2" T ~ g Log M(W2)~

'8 3 Som (2.7

Obviously, a lower value for M(WZ)'implies a higher valﬁé for sinze(M(wl)).

This fact has lead some to cdnclude11 that M(wz) had to be at least
109‘GeV',‘sihce sinZOW(M(W)) ~ ;23 . However this latter value fof the
‘Weinberg. angle is -obtained only in the standard model, which itself
i@plies M(Wz) = MX . 'The.limit of-109 GeV is therefore merely evidence
of the consistency of the standard picture. A correct anéiysi§’feQuires

.a fit to thevlow-energy data first with the four parametersuM(Wi), M(Wz),

r and sinzo(M(Wi)),'aﬁd then a determination of which values of these

parameters are still compatible with a grand unified model based on S0(10).

The low-energy data have been analyzed bj many 12, but the most

. . : ' ; PR X ‘ o
interesting results come from Rizzo and Senjanovic 3. They use as an

19
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input fhe»numbersrof Kim et al. 14 extracted from :
- the SLAC asymmetry experiment (and the atoﬁic parity!viblatibn "
experiments) ; |
- neﬁtriﬂé—hadroﬁ scatteriﬁg ekperiments‘;

- vuv- e scattering results ;

They choose the more fashioﬁable Higgé aséignment (see Ch.I,A,iii);vand
allow the vacuum expeétation valués of the,left-land right-handed Higgses
to be both non-zero. The rangesvof §a1ues‘ﬁhich thenvsacisfy all the
data within' 1.50 is : a |

M(WZ) 2 15b GeV, ie. B < ;24

.23 gl.sinze‘ < 528'

|tan 2C| < .1 ’ | |
‘The value of M(Wl) is fixed by the overall strengﬁh of the interaction
(thé value of GF)xwﬁen thé other three pafameters havevbeen deﬁermined.;
for the.range of parameters indicated above, one finds

< 78,cev’

70'GeV < M)

The same authofs applied these results to the'grand unified model
based on S0(10) just described, evenvtaking into account the effect of
Higgses in . the B-function ( They bring M(Wz) down, for a given value of

. sinzG)w ) 15.

Their result is therefore rather model-dependent but can be
summarized as follows : | |

1f M(wz) 2 1 TeV » the presence of the right—handedvsector does
not appreciably modify the fit of sinzo go the low energy data. One

must have'sin26,= .23 as in the standard model. Then, as pointed out in

. : 11 e o . - s .
previous analyses , it is difficult to accomodate an intermediate mass
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scale between M(W) and Mx » unless it is almost as'high.as Mx‘, and does
not seriously affect the consistent standard picture of grand unifiéétion.

Hence :

9

M(W,) 3 1 TeV + GUIS  ==> M(W,) 2 10° Gev (2.8)

Otherwise M(W,) must be very low, so that sin20be increased to = .27 .

Such values are still compatible with gfand unification, simply pushing

17-'GeV, and making proton-decay very hard to observe. -

M, to v 10
In conclusion, according to Ref. 15 :

.27

either M(WZ) ~ 150-250 GeV and ‘sinzo

9 2

o o (2.9)
-GeV and sin“0

.23

or M(WZY'& 10
This analysis, of'éourse, depends'for é[good part on detéils'of the model,

like the parametrization of the neutral sector, the Higgs structure and

the number of Higgs multiplets, things which might be less crucial if

' one studies charged-current processes.

B. Charged current processes.

The limit M(W )3 200-300 GeV is still widely quoted in the litera-

16_from charged current data, with

ture. .It’was_obtained by Bég et al.
the implicit assumption that neutrinos are massless or at least extremely
light. The effective Hamiltonian they use is exactly (2,1),'and they

ob;ain the limits 2

M(wz)/M(wl) 2 2.76, ie. M(wz) 2 220 Gev

|tanz| < .06 | - o ' | o B

- Among the various procééseé’analyzéd; the most stringent constraints come

from the longitudinal e polarization in pure Gamow-Teller B-decay, and
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from the p parameter in p decay.  All the processes considered in. that
paper are semi-leptonic : a peutrino is produced in each.case, which will
in general be left-handed if the gauge boson exchanged is wl » and right-

handed if it is W,. .

One of the gFtractive feq;u;gs éf‘the 1¢ftrright_symmétric model,
thoggh, is to allgwrfor a_mags}ve neutrino, and furthermore to'explain
in a natural way,why the usual - left-handed - neutrino is so much lighter -
ﬁhan its charged leptonic partner. This_mechanism, first suggeéted by
Gell-Mann et al. 17 , invqlves‘giyihg bqthwg-Majgranaaand a Dirac mass
to the neutrino (see”AppendixvforLdetails on Majorana.spinors) , so that
the mass ma;rix(fgr the two bglicity_;ompgnents_qf a.giVen.qucieSgof

neutrino becomes.:
(2.10a)

where d is the usual Dirac mass term (_QHN m, in any grand—uﬁifigd pic-
ture ) , aﬁd m and M are the Majorana mass terms for both neutrino com-
ponents. Grand unification does not coﬁstfain fhém_fo ahy pérticular e
value, since the néutrino is the only particle td'enj6§.thé passibilify
0of a Majorana maés;'>Bu£>Wé égpecff from nétdraiﬁéséﬂ that‘they-ére of
the same order of ﬁégﬁitﬁde as the v5cuum'exﬁecfation Qéiﬁes'of the
Higgses which give rise to them. Furthermore m has tb'be very sméil, such

that indeed m(vl) << m being the usual mostly-left-handed neutrino.

e * V1

’ . ' O ’ 8
Several schemes have been proposed, where m = 0, and M ~ O(MX) 1 ,

or O(QMX) lg,lyieldingjextremely smallum§§seslg(vl)“as;shown below. The

left-right sy@metrip mpdel.fitsitbg phengmeqolbgy,in'a very elegant
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manner 20 : the different values of m and M reflect the breaking of parity.

One should expect; given the Higgs structure AL(l,O,Z) and AR(0,1,2)_(See p.6-7):

m 0(<AL°>) and m=0 for <AL°> =0

M A »0(<AR°$) n O(M(WR))

Taking <AL°> = 0 - which is still campatible'with a left—rigﬁt sym-

metric Higgs potential - the eigenvalues of the mass matrix become :

2 : |
mo=om /M(WZ) ~and m, = JM(WZ)'

Theﬁ'iml n O(L eV), in the expected range (see Ref. 15 for details),
instead ofithé‘minuscule masses of order‘io_s‘ev>obtéined when M ~ MX

in (2.105).

- The eigenvectors are :

vl 1 cosd siné | v

(2.10b)
v2.J -sind cos§ | | v

with &~ me/M(wz) < 0(10"3).

In EanIUSibn, it is likely that :

i) The predominantly right-handed neutrino is so heavy“thatyit cannot

be producéd at préseht-day eneréies;:and certainiy'hot in any of the low-

enefgy processes analyzed in Bég'et al. 16

ii): The usuai-predominantly left-handed néutrino.dbés have right-handed

couplings,_although'by a minute amount.

These conclusions modify of course the previous studies of charged-current

data. The low-energy effective Hamiltonian (2.1) now Beqomés, for semi-

leptonic processes, when the pieces'requiring production of 2% are deleted:



2 SR SRS T L o .
H eff | ——3—~—§ [ JLJL+cos6 (coszc + Bsinzg) - JRJ +sind (sinzg + Bcoszc)
; . R

-

+ + . s '
+ (qRJL cosé - JLJR sind)sing cpsc (1—8)] (2.11)

and for a purely leptonic process':

) . B
H eff . __ 8 J J‘+c0526(coszg + Bsinzg) + J.J +sinch (sinzc + Bcosza)
fr o2 {LL- ; v R'R : .
2M(W, )
- (J.J +'+ 3 3. )sins cos§ sinz cosz (1-8) - (2.12)
R°L L°R b cost -

Obvipusly, all deviafions from a (V;A)(V-A) structufe afe multiplied.by
§ and become inobservable,_exceptvfof a semi;}ep;onic process where';he
right-handed current is all hadronic. ﬁowever the tﬁo procégses seiected.
in Ref. 16 both involve the observation of a righﬁ—haﬁded leptonié'curf
rent : then the smailnegs of & obscures any effect of a potentially ﬁery

light right-handed: boson.

Therefore, in order to eliminate tbe'éffects of 5, a chargéd—cur—
rent analysis should only rely én purely hadronic précesses, or seﬁi—
leptonic’ processes where the presence of a right-handed current should

-be looked for in the hadronic sector. That kind of hadropiclPolari;ation
experiment seems ext;emely difficul; to.Carry'out,-givenIthe magé discre-
pancy between the usual hadréns and leptons (see however Ref.21 on
polarized 19Ne B-decay). 1In any case, éne wéuld only get’érlimit on the

next smallest'parameter after § , namely z.

AC. The correct probes.

We will focus on the analysis of purely hadronic charged processes,

- because they are less model-dependent_(apd because they have not been
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. studied yet), namely :

- the K - K. mass difference, in Chapter III ;

S

- hadronic hyperon decays and K decays, in Chapter IV.

0f course the presence of strong interactions decreases the accuracy

of theoretical calculations, but at least the K°- K° system has proved to

be an outstanding test for weak - and super- or milli-weak - inter-

. . . 2
actions in the past 2 .

ﬁowever théfevare at least two other phenomena worth attention :
i) Neutrinoless double p-decay (8g)° :

Majorana neutrinos are self-conjugate and can therefore be exchanged
internally in a doublé g-decay evenf, leaving no neutrino in the final

state .(see Fig. 2.2)

2n > 2p + 2e
M , for the

The amplitude for such a process includes a factor 2 2
: (p" = M7)

neutrino propagator of mass M with helicity flip, which after Fourier

*
transform gives rise to a Yukawa potential and a factor M exp(-iM).

Such a factor goes to 0 for both M » 0 and M » § but, given the upper

bound on the mass of the usual neutrino Vo the expression

M ex (_%gl for M < 60 eV is two orders of magnitude smaller than
MW.) '
L

:

Eifﬁﬂdl%yl for M~ M(Wp) ~ 300 GeV.
M (WR)

Double B-decay is thus a good place to look for not too heavy Majorana
-2 : -

neutrinos 3“. The analysis has been carried out in more detail for the

specific model we are considering 15 . For the same mass M v 300 GeV, the

rate for double B-decay should be less than an order of magnitude below

25

oy .. ' -1
,A‘;s the characteristic range of the nucleon-nucleon interaction(} ~ 50GeV)
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the present experimental limit, and sﬁch decays should be observable in
the next generation of experiments. That'predittipn, however, relies

heavily on the "naturalness'" of the model : all the coupiing constants,
in the Yukawa couplings and the Higgs potential, should be of the same
order of magnitude, so that one can relate M(WZ) and'M(vR) through the
Higgs vacuum expectation values. It is difficult to decide at which

point the ratio M(Wz)/M(vR) becomes unnatural ;’nonetheless the obser-
vation of double B-decay, whatever the rate, would be a very strong |

argument in favor of the left-right symmetric model.

ii) Variation of the Fermi constant :

eff

For purely leptonic processes (eg. u decay),; the J_ J + part of HI .

LL
(2.1) is the only one to contribute (We take § = 0 for simplicity).
One can thus identify :
A 2 L2
——gf——i . {cos"z + Bsin")
8M(Wl)

i

NIES

Now for éemi-leptonic processeé ( m, K decays, B-decay ), the hadfonic
éurrent can be right—hénded as well, so that the deéay rates will be thé
ones that one would ob;ain not with the above value of ‘GF//E s bu?
rather with :

G.' 2

F = g 5 A{(coszc + Bsinzc) + sing cosz (1-8)}
V2 8M(W,) . _
G
= £ a4+ _
/5 .

Measurements on the lepton polarization will not be affected, since they
depend on the structure of ‘the leptonic current, which remains purely

'lef;—handed.



“the valué of fn = 93 MeV measured from T

NN hadronic coupling

This apparent variation of GF should make it possible to set limits

on t, almost independently of B. Indeed it'has been argued 13 that the

factor (1 + ;)2 should take cére of a discrepancy of 3 * 1 Z between

zztdecay;_énd the theoretical

'value obtained from the Coldbefger-Treiman relation by evaiuating the

24
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Appendix

Majorana neutrinos.

A general fermion mass term in the Lagrangian should be a Lorentz
scalar made of two fermion spiﬁors. These spinors are associated with
‘the following representations on the SU(2) x SU(2) decomposition of the

Lbrentz group Lie algebra :

vt 00) ;v oz (0,%)

vpor (0% 3 vy i (4,0)

A écalar can then be made by combining two identical representations :
(£,0) x (4,0) = (0,0) + (1,0) (same for (0,%))

There are two ways of pairing the representations :

-  making a Dirac mass term

( Vp VL + Y )

- making Majorana mass terms

—c — ¢ —c — ¢

( Vi oVp + VL VL ) and ( VR Vr + vR Ve )

c R %
where v = 1y2v

' 1-v * 1 +v
c _ c _ . 5 _ . S ¢ _ ,.¢

Note that v E (vL) iy | =3 v == v (v )R
Then v, < (%,0), like vy

L~

Such Majorana terms'would-have a net non-zero electric charge if the
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fermion were charged : this is why the’neutrino is the only particle
which may have a Majorana mass. Still,a'Majo:ana term violates lepton
number conservation : fﬁat ﬁésvqut réﬁeﬁtlylﬁeéome "acceptable”, with
the advent of grand unified theories where neither baryon nor lepton

number is conserved.
One can define proper Self-conjugate Majorana fields :

c c
X vL + vL H

The mass terms are then reexpressed :

e = 3 (o + 0

mMajora‘na xx and we

Under the SU(Z)L X SU(2)R x-U(l)B-L group, the mass terms have quantum
numbers :
(%,%,0) for the Dirac term ;

- (1,0,-2) and (0,1,-2) for the Majorana terms.

These representations can be combined with ¢, A and AR respectively to

L

yield singlet mass terms organized into the following mass matrix : .

: . _ .
x _YAL <hp % ; §Y¢ <¢4 >V
W | %Y(b <¢l°> Y, <AR°>
- : o . S S <¢’1°$ | 0
where Y, are the respective Yukawa couplings, and <¢> = | .

0 <¢2°>
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.- ‘Chapter TII,.

The-KL'ﬂ,KSTmass difference.

The mass difference between KL and KS is due to a.AS = 2'intéréétion

between the otherwise degenerate states K° and K°. Since we are not con-

as eigenstates of

cerned here with CP violétion, we can wriée KL and KS

CP :
" K° + K°

Kg‘: __125—- ' : and Cé lKg>'= + ‘KQ;

The effective Hamiltonian between K° and K° states takes the matfix.form':

L

The mass eigenvalues are (m * M) (M is real if CP is conserved), and

the mass difference is :
. - = -_- .=:/ zol u.eff .0 o -
MK ) - M(Rg) = bmo = 2 = 2 <K | B; ,lK > N (3.1)

Now the K° - K° interaction is a AS = 2, second order weak process
between two quark-antiquark pairs, complicated by strong interaction
effects in the initial and final states ( We will-not considef the once
attractive alternatives provided by milliweak';r AS =‘v2 superweak iﬁter—
act:ionS'22 ). We can calculate the weak amplitude for sa'- sd scattering,

and then estimate the effect of stroﬁgvinteractions.

There is of course a theoretical uncertainty in that estimation,
which is very difficult to evaluate. However, a fairly simple method
of including strong effects, first adopted by M. K. Gaillard and B. W. Leezq

has proved very successful. Indeed these authors, using the standard



W-S model for the weak interactions, predicted a charmed quark mass

m_ " 1.5 GeV just a few months before the disébfefy of the J/¥ 26, Oﬁe
ﬁight argue thaf this result is merely a lucky cancellation befween a
weak amplitude obtained from the wrong electroweak model, and a boor
vestimate of stroﬁgvinteraction effects. Nonetheless the predictions

of the W-S model in all othér circumstances (up to - perhapé - atomic
pafity violation experiments) come extremely closevfo the actual measu-
rements ; and strong interaction effects were evaluated, -in this case,
/aloﬁ;'a different approgch using the MIT bag model 27, with similar
resulté.,,Therefore'we think, ratﬁer conservatively, that the way

Gaillard and Lee took strong effects intoraccount should mimic the actual

strong interactions within, say, a factor of three.

Our approach is then the foligwing : we review Gaillard and lee's
way of ¢a1culatiﬁg AmLS (part A) ; then we calculate,the free sd - sd -
amplitudg»in,our model (part B), which depends on a ﬁumber of mass:
parameters ; finally (part C), we relate that weak scattering amplitude
‘ﬁbrthe KL-KS mass differenée aléng the lines of part A, and deduce

restrictions on our parameters from the requirement :
< A < - )
1/3 v mLS th. / AmLS exp. v 3 (3.2)

In appendices A, B, C, we see whether the various simplifications that
we made in our calculation of the weak amplitude seriously affect the

final result.

A. How to calculate AmLS.

Given a specific model for weak interactions, one can calculaté, -

with thehelp of Feynman diagrams, the scattering amplitudeAA(slal 4.5262)

“
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fBr zero external momenta. In the standard model, with 1eft—handed
charged weak currents only, A will be a sum of -terms - one for each

diagram - of the form :
- o R % — DU o o
B Y7 (ay) 0(vg) S v (ap) ¢ ¥ () 0'0-vg) Sy 0@ (33)

where

are the quarks s arranged in the order required -

1,2 ° 91,2

by the Feynman diagram considered ; and the y's the corresponding spinors j

C94,3,k,1

- 0, 0' are y-matrix operators ;-

- B. is a scalar function of. the masses of the-particles exchénged]:
- a, b, ¢, d are color indices, and the Gij's just express that the
weak bosons exchanged are color singlets.

In our model, with right-handed currents also, (1-Y5) will be (liYs).

From'A(slal-+ gé dé), one can then extract, in principle, an effec-
ff

. ; . X e . . : .
tive Hamiltonian density 4 =, ie. an operator defined by :

—a, . b, Yy Ty d
3260 ¥o60 (- aTTe0) 3 vie = A (3.4)
o1 1 . -T2 T2

Jﬂeff will thus contain 2 s- and 2 d-field operators, which can be con-

tracted with the 4 spinors in 4 different ways, each amounting to a

eff .
different Fierz rearrangement of ¥ . Then the y-matrix structure of

Jﬂeff will be different from that of A, Jﬂeff containing spurious terms

which will cancel out after a Fierz transformation. Specifically, for

the standard model, A will be, up to a factor B mentioned above :

—a al -« b —c 1 -y d
1] (Sl) Y 75 Sap ¥ (d2) .U (32) Yy ————-5 8.q ¥ (dl)

2
(3.5)

— 1 - ' d -, 1y b
R CR I e SR C RN C S 55 by v (dy)

i



which can only be obtained from the following Jﬂeff :
—4 -y s - ' - 1
-3 ey v ES s s, ey . R v 155 5, el
8 1ik1 . 2 ij a 2 k1 =

(3.6)

—-i al - Y 3 =k 1 -y 1
+ 67(s) v 3 5 611 G (Q) . 8°(s) Y, T3 5 dkj ? (4)

where the 6's are field operators (the ¥'s being spinors).

In this case Jﬂeff does not look_toq differént from A : only the
color operator structure changes, becausé»the Yy-matrix operator (V-A)
x (V-4) ha; fhe property of being Fierz invariant. However, terms in
‘(V-A) X (V+A) which arise in ouf model generate scalar andbpseudo—
scalar operator products whose appearance we want to postpone, using
a_notational‘trick devised later.

This ﬂisfinction between 6's and y's, betweenl.jh’eff (operator) and
A (amplitude obtained after perfofming»all possible Wick contractions),

is important, and has sometimes been misunderstood in the literature.

The next step toward calculating AmLS is to sandwich .ﬂeff between
the actual meson states K°, K°, and to recover an effective scalar

émplitude. This approach would be perfect if we knew the effect of

strong interactions, ie. the wave-functions of the strongly bound quark

and antiqﬁark which make up each meson. Two ﬁays arouﬁd that problem
h;ve beenvt;ied.:

i) Approximate'the'mesoﬁ states és pairs of free quarks. and require
thaf fhey éll interact at ghe same point by inserting vacuum projection
operators |C><01_in all pbssible ways in the effective amplitude

\ e.ff,|K° ' '

M = <E‘|¢u >, This is the original approach of Ref.25.

ii) Approximate the quark wave-functions as best one can. using the

33



MIT bag model, and calculate directly the effective amplitude. This was
2 ' .

carried out 7 as a check of the Ggillard and Lee calculation § the

result was :

'Mbag / MGL > .4 | | ) (3.7)
which should make us rather cautious when setting limits on the theore-

tical uncertainty of the calculation.

Here again the issue about-ghe legitimécy ofuépproach i) is extre-
mely confused. It has beern arguéd;‘évén by the authors of Ref. 27, that
approaéﬂfi)'&duid‘ﬁe improved if oné'wouia cénsidef not.only a vacuum
inﬁermediate state, but also*single.ﬂ° intermediate states, Vith the
‘understanding that an exact resu1t>would.be'obtaihed“if one could sum
_over all possible intermediate states. Calcﬁlatibﬁé‘iﬁVolving‘single--
pion projectoré-haVe Been.carried out- 28 ., and yield roughly :

Myg [ Mg =71 ,

which discredits ¥ as a good approximation to the sum of a converging

sefies, This argument, although widely accepted, is wrong : if one
'could sum over é épmpieté set of intermediate states, one would recover
the free duark amplitude A, since in approach i) the meson states are
approximated by free q; pairs; It mﬁst be gfresged again that the
reason for tﬁe vacuum insertion is to mimic strong interactions by
forcing free dabpairs to interact in a point-like fashion, and that the

value of Ml1T / M L has nothing to do with the validity of the vacuum

G

insertion method.

Another "refinement' has been ‘to consider the renormalization of

the weak operators responsible for the K® - K° amplitude caused by.
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, 29 , ; W : : L

" strong interactions -°; while still keeping the same vacuum insertion
method. The final result changes by an order of magnitude, but the
justification of inserting vacuum projectors is-lost, and the overall

approach seems rather less reliable than the original one.

. In any case,,approach~ii) is probably .the most accurate, .in view:
of the calculational successes of ‘the bag'model;j Nevertheless, for - .
simplicity, we will here follow aﬁproach i), but will allow. for ‘a theo-
retical uncertainty of a-factor 3.
The last step toward calculating the mass*difference has-.already

r.

been explained in. (3.2) : -

bm = 20 - : (3.8

We now want to perform all the steps outlined here, using the
left-right symmetric model of weak interactions described in Cﬁaptef?l.
We will avoid exhibiting the actual Jﬂeff defined by (3.4) by using the

eff (which also satisfies

following trick : we writé instead é pseudo- ¥
(3;4))~obtained frbm.the~amp1itude A by replacing the spinors'w by field
operators 8, and'onlyJallowing,those "natural" Wick contractions which
reproduce: A. “Thése contractions are indicated;'when necessary, by an

arrow above each field operator, pointing to the spinor with which the

operator should be contracted. Thus we write, for instance, (3.6) as

4-. a l >, —Pk . 1 <—l
N e 1=y, ad L ==Y - -
[ 87(s) v ——5——5 dij ?.(d)l. er(s) Yo T3 5 le 67 (d)

(3.9)

<, 1 -, _yk 1 _)l

—i al -y -3 = Ll =y, )
+ B i . ) . . 7Y

8 (s) v 2 5 éij 6= (d) . 8 (s) Yo T3 5 6k1 8~ (d) |



36

B. The sd - sd scattering amplitude in the left-right symmetric model.

‘We can sérf thé ﬁany possible diagrams describing ‘sd 4'§d a?cbrding
vtb the Heliéities of the incoming and;outgoing particles. Each'pafticle
. can be left- or right-handed, so theié are 24 = 16 possibilifies"ih
principie. Half of these helicity combinations will n§t contribute to‘
_the'scattéring ampiitudé, for the following reason :

Each diagram, describing a second order weak process, will contain

a loop with two bosoﬁ and two fermion propaggtoﬁs. The Feynman amplitude
will be obtained‘by integrating over the 4-momentum k circulating around
the loop. If the fermion propagator does not involve any helicity-flip

(say the fermion remains left-handed), it will take the form :

l - YS “ + m 1 - YS = l( l - YS (3-108)
2 2 2 2 2 2 2
_ k" - m km - m

" And if there is a helicity-fiip :

m 1 v
3 5 | (3.10b)

A heliéity—flip fermion pfopagator contributes an odd power of k to a
, _ . |

Feynman integral otherwise symmetric in k «* -k . Therefore non-

vanishing diagrams must_involve 0 or 2 helicity-flips 3 the 8 helicity

combinations thus left to consider are depicted in Fig.'3.1.

. In the standard model the bosons which can be exchanged are W , 2°,
and ¢°. But neither 2° norv¢‘ can change quark flavotrs ; so Gaillard
* This k <> -k symmetry is a consequeéce of our setting the external
momenta to O. Aétuallyv;he scale of phe.external'momenta is determined
by the kaon mass, and £h5f‘of the lod§ momentum by the boson masses ;
hence when setting the exterpal momenta to 0, we neglect terms which are
down by a power of M(K°)/M(W). This procedufe is justified hefe because

we sum over all the external quark helicities.



~ The Z's cannot change flaﬁor; but the neutral ﬁiggses"can

and Lee only had to calcilate the two similar diagrams of Fig. 3.2, with

exchange of a W+w- pair."iﬁ'our ﬁodélkihé sef“df physicél“bOSohs~is_.,
enlarged to ; wi .? W, ;, Zl°l, 22° , b cﬁaréed‘Higgseé (2 of'whiéh
couple to fermions) , 6'nédf;al Hiégséé'(4'bf which coﬁﬁle ﬁo]fétmions);
u » *‘;"SO‘the
neutral boson pairs"ﬁhiéh‘can’bé“exchangéd are :-

Wo- W

ﬁi‘- charged Higgs , or yASIES neutral Higgs

2 charged:Higgsés » or 2 neutral Higgges.'

- The set of diagrams to calculate can be narrowed down because of

our specific purpose to test whetheg relatively large values for :
o+ k2

2
RICHS N
M(W2)2 ' | v2

B

n

(see (1.8))

A

are possible, ie. m‘O(lO-l). For such values, the phenomenological

‘successes of the standard model (corresponding to g = ;= O:hére) imply:

1,1, !
g > tan2c = - ﬂ(_l;_ . \
v

where ¢ is the mixing angle between WL and WR . Therefore it is suffi-

cieht»to set
z=0 , ie. kk' =0, say k' =0

to obtain an upper limit on B. The amplitudes corresponding to mixed W

* Although in our simplified calculation the neutral Higgses do not

‘couple to D-quarks (see next page), these pérticles should in general

. o + - . .
permit the decay K°* = u p , although at a minute rate given the small

magnitude of the Yukawa éoupiings (see (3.23));
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couplings would be of the same order as the ones that we are going to

v . 2
. ) 2 : . tan
calculate, except for an extraufactor tan g, tanéc, or at best —ég—g s

'tanécv
82

would not affect our limit on R(the mixing factor tang always comes in

. which in all cases is small compared to B. These amplitudes

even powers because the ohly helitity;combinatiohs that contribute are

1eft—1eft-'or right-right-handed by pairs, as expléined above). -

For the particular case k' = 0, the physical Higgses are simple
‘linear combinations of $'s and x's. The mass matrices for the charged
Higgses, and for the real and imaginary parts of the nEutralIHiggs fields,
are reproduced in Appendix A, p.53. . The only étates cdupling to
fermions are : _

, + 1 + + .
- two charged Higgses ¢ = —zozooo ( v¢1 - ka, ) : (3.1

J vzll-kl2

with mass O(M(Wz))-aﬁd fer@ion couplings (see (1.22), with B12 = 0)
o -1 W e | . |
/1 B_[d) T (R A, + ¢ DR(AR)UL] - - (3.12)

- two neutral Higgses ¢2°¥ i with masses O(M(wé)) and couplings :
. 3
° og T . '
¢ DL(A)DR + 99 DR(A)DL | (3.13)

- one neutral Higgs with a lighé mass O(M(Wl)) and one with a mass O(M(wz)),

which only couple to U-~quarks and are of no interest here.

-This reduced set of physical Higgses makes it appealing to work

in unitary gauge (no ghosts), where the gauge boson propagator is 30
2
g =-kk /M
P TAUS TR,
Auv(k) =-i—7 5 (3.14)

k°-M

Power countiﬁg shows that logarithmically divergent diagrams may be present.



Indeed such diagrams are éhdwn in Fig.$.3. They all are of the "mixed"
(L-R) type . Diagrams where the initial and final quarks are all left-
or right-handed (L—L or R-R) are convergent, although naive power
counting would lead to the‘opposite result. ‘The reason is précisely
due t§ the GIM mechanism * |

- In the L-R diagrams, the u or c quarks propagating must flip heli-
city ; as seen earlier, the corresponding sandwiched propagator is then

m

—3—2495—— ,» and the amplitude contains a factor :
kW -m

u,c

m m
99 « K
2 2, ,.2 2
k7 - m k" - m
( q )( q.)
- In the L-L or R-R diagrams, the propagator is 45—5——§~— , and the

: , ‘ k™ = m

u,c

couplings are such (thanks to GIM) that the amplitude contains a factor :

2 2
_ 2 k“(m -m )
2 . 2 ¥ K} © 2 . 2 c u -, =6
- cos Q.sin ¢, k2 3 7 =cos osin g 55— 5 5 = k
-m. k -m_ (k —mu)(k -mc)

which makes the integral convergent.

The same features recur in the calculation of :all the Feynman
amplitudes of Fig.3.3. As an example, let us derive in some detail the

amplitude for wl-w exchange. Since we assume f = 0, there are only

2
four helicity combinations for which such an exchange is possible. The
corresponding diagrams are the first four in Fig.3.3. For each of

these, the Feynman amplitﬁde can be written :

* In this calculation, we only consider two quark generations. - The
possible consequences of the existence of heavier quark generations are

examined in Appendix C, p.58.
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. 4 ._ 4 1  O _ - 1 3

£| cos? e sin’e, (i)af — [w(d) vy, 455 w(s)].[w(d) Vet 7755 ¥(s) |

2 , A €2 o .
L TS e

: g - ) p:3 " . 2

m m M(Wl) M(‘wz)

3

1 (3.15)

- T < ¥ Y
2on? Pl - mwy? k- M)t
u ; 1 2 ;

Or, after summing the four diagrams, separating the various tefms aqd

symmetrizing in 4fspage': .
2
1 1
g4 cos?o sinzle dl‘k e - it 1 — ' 2 ‘ 2 BN
- ) en® [Pa? Pl R AR S TU

T@ s uiey. 7@ s o _ K
3 P G W) 3@ T w4 1-g

. 1 1
2 2 * 2]
'M’(Wl) M(W,) M(Wl) | M(WZ)

MOR S *I-TYS v(s) . 9(d) v,

1ty T '
8 TS v(s) | o (3.16)

In (3.16), the first term is logarithmically divergent and the second term
convergent. Both terms are calculated by dimensional regularizaﬁion, in

n-dimensional space :

2 o 4
. .jdnk_[mc ) ] 1 K
>4 n 2 2 2 2 2 2 .2 2 2 .2
(27) k -m_ k -m k™~ M(Wl) k™= M(Wz) M(Wl) M(Wz) |
: ( C -/mﬁ)z n ) -
5 — 5 r(z-—z-) - (3.17a)
1675 M(W,)° M(W.) :
1 2
: dnk ([ m m 2 1 1
limn»z._/ o I I ) 2
. (27) k“-m k™ -m k™= M(W,)™ k™= MW,)
c u Nl 2

(3.17b)
2

- y ‘ 2
2¢ i -m M(W,) 1
1- —lZ ! L1 ~ G Logl—— L } - lJ'+

2 T2 2 2 2 2
LIRS UL | S (LA (O M.(wz) m_

1
8
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In (3;173) there is no finite piece to the integral in addit;on to the
divergent piece proportionai to (n - 4)-1. This feature reabpears'in all
the diagrams we have to eva;uate : the pole terms, after caﬁcellation
among all the divergent diagrams, do not contribute to the finite ampli-
tude. In (3.17b5,we set mu to ?gro,‘and we kept separate the cdntribu—

 tions coming from the guv part of the W-propagators (like in Feynman
B,V '

e M) 2 |
and should account for the ghost terms otherwise present, in Feynman

¢

gauge) and from the part, which is specific to the unitary gauge

gauge for instance. One can see that the ghost contribution is very

smallv(final fact:or:~l in (3.17b)). 1In fact we approximate (3.17b) to :

8
i (m -m)? juw)? ) ' -
c u 1 ' -
-3 5~ B Log|—5— '
| 167" M(wl) | ™
M(w, ) S | |
where g = —_— The amplitude (3.16) can be further simplified
MW" . .
. 2 . |
with the use of the identity :
_ , 3.18)
(B0 350) [rre Bts] e e &ty + [0 L) o 2]
ij kl ij kl 113 kl

In fact the last term in (3.18) is identically zero, as can be verified

using :

o _ 1 aBys
o _YS -3¢ o

v8 (3.19)

Finélly, the gauge boson W, mass, the U-fermion masses and the Higgs

1

couplings can all bé related in the foliowing fashion.

my = (kA + k'B) (see (1.18)). So:
e 132 cos2e sinle = 32
f(mc mu) cos UC»Sln'QC (kA12 + k Blz) (3.20)
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In our case where kk' = 0 (no miXing),-this‘last expression is equal. to

2 2 2 _1 2,2 2

2 2 ' , .
(k" + k )(A12 + B12 ) , with M(W ) 2 g (k" + k'), HenceA.

) _ M(W) . o
_(m_m)ZCOSzO sin &= 2 1 (A2+B2

c T, c C. G2 12 71 )

- (3.21)

'1f we further choose k' = 0, the requirement that the D-quark mass

matrix be diagonal imposes :

B,T0 | | (3.22)

These telations allow u'svto‘eliminate'-mu » M ,iCb from all amplitudes,

and to compare them easily. Incidentally, the Yukawa couplings are vefy

"small, as, shown by:: -

| : . - :
A 2 + B 2) =4 cosze sin2@ m -m )2 £ . 0(10—6)' (3.23)
12 12 C C c u J2
WBereasbz
G
9 )
g == . auwp’a 2 (3.24)
/7 1
Using (3.21), (3.16) can be cast in the final form :
\ o | . (3.25) g
2, 2 - 2
4g“A \ M(W.)
12 1 2 1+
—z LB 2B ol L G B ) @) B yee)
167 M)T M) m_

" The central coefficient in’ (3.25) has been written underneath the corres-
ponding diagrams of Fig.3.3. The same treatment can be repeated on all
the other diagrams ; the results are also written under each group of

diagrams, after removal of the same overall factor :

432A122 '
A

l6n2 LR

where

— 1=y - 14+
AL = 0@ S5 p(s) (@) 55 u(s) . ‘ (3.26)
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One can check the cancellation of the dngrgedges in Fig.3.3.

To obtain the indicated results concerning the last set of diagrams
(2° and ¢° exchange), one must treat the Z°'s and ¢°'s couplings carefully.
They always appear in the same combination :

2
(g(Zl_)LDL) - g(ZDRDR)) |

F = (3.?7)

L )
Z152, M(2)
ﬁhére g(ZDLDL) and g(ZDRDR) are the couplings of a Z° boson to left- and
right-handed D-type quarks (these coupiingS'are independent . of the quark
generation since the Z's do not change flavor). Ihe sum is over the two
neutral bosons, because the amplitudes for diagrams where Z,° or Z.° is

1 2
exchanged are otherwise identical.

To evaluate (3.27) exactly, we should first rewrite the Z° mass

matrix (1.13) in a different basis :

T ¢ .
—l“(wL3 _ WR3) ‘_ 122 + bcosgg - b/cosge )
/2 : 2cos™ 6 2 cos™ 8
| (3.28)
- ((wL3 + W) Jeos26 ~ 2sing) |- L—'“’Sge —
Y2 A - 2 cos“® 2 cos“o

/

cosd -sin S
If the eigenvectors are and in this basis, then the
N sing cos¢

factor we want to evaluate is :

2 . 2
F =.§_ cos"¢ ., sin (3.29)

2 2
M(Zl) M(Zz)

where M(Zl)2 and M(22)2 are the eigenvalues of the same matrix (3.28).

It is a straightforward matter to verify that, for any symmetric matrix

)
l and

a B cosd -sing)

with eigenvalues A,)\' and eigenvectors [
\sing

é Y cos¢}



respectiveiy, the following is true ;

sin2¢ ' v ' |
+ = —X | : \ (3.30)
A A ay - B

cosz¢

The ambiguity which arises when we want to use this formula here, namely
' whiéh of the two diagonal elements to take, is solved if we remember that

the heavier 22 is the one with the more lgft-right symmetric couplings.

' : 2 b 0529 2 ' '
Then F = &~ | - 5 £ = ﬁ; (3.31)
2cos’ @ ab ' ' -
so that'finally :
' 2 2 .
(g(ZDLDL) - g(ZDRDR)) g .
T 3 ' = — (3.32)

. The finite amplitude A(sd » sd) CJ; be obtained by summing all
divergent ané convergent diagrams. Besides the divergent diagrams all
‘listed in Fig}3.3, only one pair of-convergent diagrams must be taken
into account as well : the original diagram evaluated by Gaillard and
Lee (Fig.3.2a) and its-ﬁsymmetric" partner. Some diagrams iﬂvolving ¢i
and W exchange,'which might otherwise give a éizeable ampiitude,'vanish
because of thé peculiar Higgs couplings (see Fig.3.4a for an example).

The other non-divergeht diagrams can safely be neglected in fhis calcu-2
: M(W.)
1

lation where we are only interested in the leading effecté in g = 3 3
they are of'three:;ypés (illustrated in Fig.3.4b,c,d) M(Wz)
- diagrams in§$1§ing ?Hé;exchange of two Wz's : the amplitude would

“be proportional to'e2 3

- diagrams involving .two Higgs exchange : compared to the same diagram

with a W

, @nd ¢ exchange, the amplitude is‘;ypically'down by a factor, at



2 2
ALy MW, )

M(q;)2 g2$in20C

. < 1074
N

best

- where the numerical evaluation uses (3r21)f
- higher order diagrams, involving the exchange of more Higgses, weak
bosons or. photons, which are sUpprésséd by powers of the respective

coupling constants.

In the end, the sd - sd amplitude can be written :

o 2 2
167" A(sd » sd) = - — ALL.
o M(W.)
17
2
: : ‘ MWL)}
2 2 2B . 1
FAg Ay Ag |\t 7 ey
M(W,) ,
1 c .
' +.2
1 1 -8 M
+1 +<2 ) - Log[ <¢‘)2 (3.33)
M) - M) (W)
i1 (e %ces%s)
22 2. 2 OB 2
M($°) “cos™ B ~ M(wl) M(Wl)
T R | o . \
1 cos26 _ ‘1 ) _ M($°) “cos286
T2 2 2 72 Log 2 2]
cos8 M($°)T -~ M(Wz) cos“8/cos26 M(wz) cos 6_/

where

-~ - the 5:successive terﬁs come respectively from the ‘exchange of :

W W

. . - - - O‘, - [-] . )

- . the 2 neutral Higgses have been ‘given the same mass M(¢°) for simpli-
city (they should both have a mass of order M(WZ) » whereas the other
lighter neutral Higgs ddes not couple to D-quarks : see p.38 and -App.A,p.53);

- all the integrals have been approximated using :

Vﬁu‘<< mc‘<%,M(wl? <y(w2?; ?nﬁ“ ﬁ<¢>;>‘M(wl) f?r a}l ¢'§' ‘<3:34)



- ALR is given by (3.26), or, for colored quarks :

- 7a R l1-y. b —¢ 1+y & |
ALR = ¥ (s) 6ab N 59 (d) . v (s) ch =5 5 % (d) (3.34a)
o . Ta o 1=y b —c l1-y. d
and ALL = Y7 (s) (Sab Y _"'2 59y (d) . ¥ (s) 6Cd Ya_z 5 ¢ (d) (3.34b)

ab cd

In these expressions, a,b,c,d are color indices, and § $ stems
from the fact that all the bosons exchanged are color-singlets.

. C. - Calculating AmLS.

From the amplitude (3.33), we caﬁ in principle write the effective

Hamiltonian, after (3.4) ; let us define effective operators OLL

- b ‘ — d |
po('x) "’a(x) OLL(X) w:(x) wd(X) s«ALL(x)
(3.35)
- b oy = d
w:(x) wd(x) OLR(X) wg(x) «wd(X) = ALR(X)

Using the trick described -in section A, (3.9), and remembering that
we always sum diagrams by pairs symmetric under interchange of the two

d-quarks, we can write :

o, =% foite) vo X255 gl . 5o 4 K5 o)
L 2 (" Y o2 S Yy 2
: (3.36a)
=i o loyg i =3 -y 300 |
t o7 (s) y —50 0 (d) . a7 (s) ' 'ZSe(d)J
1 (54 1-y,. i 23 1+, 73
0. =3 [el<s> S50 @ -8 25 g (a)
. L T . ; (3.36b)
= — : — + .
o) s et Ll s el
J
Now we want to evaluate <K°| 0. |K°> and <E° 0. |K°> where the

LR

aqd OLR :
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mesons are approximated to free quarks, but still with the right color

singlet structure. Namely :
<k°| ou, [k®> = <2 $(s) ¥ (@)] Ok Ws) Pa)> (3.37)

Let us first apply this equation to O . Contracting the field

LL

operators with the épinors in the first term of (3.36a) is straightforward :
the two operators on the right annihilate K°, the two on the left create

K°. So the vacuum projector can only be inserted in the middle, yielding

an effective amplitude written *

1

1 o 1-v -
;§~<K°| Y 55 |0> <0] Yo —315 |K°>

For the second term 0f(3.36a), a Fierz transformation must be performed,

both on the color-operators and on the y-matrix operators :

_1 1,1 1 |

$2a %b "3 %b %catZ P ?ea | (3.38a)
0 1oyl loye,  _ ealoy 1-y . |
(v 2'5)il (Ya 5 S)kj (Y 5 5)ij (ya 5 S)kl , invariant(3.38b)

So we get, summing both terms of (3.36a) :
X°| o . |k°> =—2-<1<°| vy =%5 |0><0]| ¥y Ivs lxe> (3.39)

L ' 3 a2
In each factor,only the axial vector part will contribute, because K° is

a pseudoscalar. Now by definition of fK

* Through the rest of this section, we will not write the field opera-

ters explicitly, Thus <O| I' |K°> for instance stands for

<0 B:(X) r ﬁg(x) |K°> ., where T is any y-matrix operator. It should be-

clear that such a scalar product implies an integration over 3-space.
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<0| A [K®> =1 £, q - (3.40)

-9, being the momentum carries by the kaon. Therefore here :

22
fr
2 my

where ZmK is the normalization factor of |K°>,_which must be taken into

'.<E°| OLL '|K°> = % .—:ll: .

(3.41)

account when we perform.a 3-space integration (see footnote p.46).

We can proceed by applying (3.37) to 0 deflned in (3 36b). The
Fierz identities required for the second term in (3.36b) are (3.38a) for

the color-operator, and :

1-y _tx
(55);; 55,

21 l ,« ooy .1 o« '
Kj ~ 8 (v )ij (Ya)kl_ -3 0 wr:-))ij.(vmwrs)‘kl +3 (jr Ys)ij (Y1

1

; - _1 0B | _
=3 Oy (Y ~ 16 O Viy (OugVs)ig (3.42)

Only the second operator in this decomposition can annihilate a K°® and

create a K°. So in the end the two terms in (3,36b) yield :
- _ 1 =5 1-v 1+Y
<k°| 0, |‘K°> = 5 <K°| =T5 [C><0] =75 |K°

(3.43)

The scalar operatoré do not contribute to (3.43). The pseudoscalar terms

can be evaluated‘through the diVergence equation :

' o . u_ o
(ms + md) <0| Ysg IK > = -1 Bu <0]| v Ys |k®> - (3.44)
- Hence : a
‘ . o 2 o £ Zm 2
<Rl o IK®> = - ||—X | 4L 1VIKCK '
<K°| OLR-IK >: :[m + md} f 6| "8 " 2 m, (3.45)
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The quark masses used in the divergenée equation (3.64)_shou1d be
:current'masses, but their exact valuesarequite controversial (see later
discussion). In any qésé, the LR amplitude is enhéﬁced'ﬁith respect to
the LL amplifude; There is an iliuminating physical explanation for this
enﬁancement (for which I am endebted to Mary K. Gaillard) : the quark and
antiquark inside, say, K° must hafe the same helicity in order to form
a pseudpscalar (eg. siaL , that is sifagy) ; in L-L diagrams, one of them

bris forcgd into the wrong helicity, with a.resulting suppression O(mq/mK).

- The situation is similar to that which enhances 7, over T2 decays.

u2

We can now‘write the KL ~K_ mass difference, usihg equatiohs (3;8,

S
3.33, 3.41 and 3.45) :
2 2

’ 5 s o 2 2
AmLS - g2 A12 fK mK 1 M(wl)
~ 3 5 1-3 e — + '6- .1 28 Log 2
Ko 16nT M@ 6 Ts T Mg m,
+,2 + 2 o2 2 (nmraon2 . 2
_1;3 M(q;)_z‘_l- Log M($ )2~_+% M(9°) co;e_l LogM(«t») co;e
M(W, ) M(W, ) M(W,) M(W,))

B cos26 M(¢°)2 c0526 ~ M(¢°)2 26)
3 2 7 " Log TR (3.46)
cos 6 M(wz) ‘cos26 M(WZ) cos @
2 Alz2 £ 2
where the constant factor & 3 can be rewritten, with (3.21)

. 16m M(Wl)2 6
and (3.24) : ..

G 2
F 2 2. 220 2 LS
gn2 © °%° % sin GC fK m

(3.47)

G.L.

This is Gaillard and Leeisffesqlt (Ref.25 , formula (2.8) with a factor %

fo:f3—color quarks). With méﬁwrl;s GeV, and fK = 1.3 f“ , its value is



about 5.10—15 » whereas the measured value is =,7,10-15 . All the

correction‘terms come from 1eft—right diagrams. It is reassuring to see
that the standard result is recoﬁered for B » Oz(ie. M(wzj > o _ and

M(¢+, $°) ~ O(M(w;)) + « too), even lf the nggs masaes go to infinity
independently. The magnitude of tﬁe Higgs terms depends_critically'on
vtbelr-mass, which should be "of the aame order of magnitude" as that of

W, . Even-thoughdthe effects of the neutral Higgses and of the eharged
Higgs tend to cancel, actual cancellation would only occur with a finely
tuned Higgs potential, aad in reality the net effects can be very size-
‘able, as we éee Selew. The last term in (3 46) has been kept so far
because it was the leading term in the amplitude for its class of dlagrams
(Z --¢ exchange) but it can now be safely neglected relative to
M(W,) } “ |
n? |
c

Som, ~ 1,5 GeV, the expression (3.46) reads :

28 Log N 168 . ‘Numerically,‘for‘M(wl) ~ 80 GeV and .

b
el [T R | B
g lth.
where
o . :
- K 1 '

a-s [——-——ms_i_mdl +46 o R - (3.49)

-1 -1

+o {M(¢ ) l] Log M(¢tl;] . p° = [M(¢ ) c0526 Log[M(¢°)2C°;26

(M) LU A ) (o M@)

| - .. (3.50)

Given the uncertainty. factor of three (3.2), we now want to extract limits

on B from :

0.23 ¢ 71_7.-1482 g - %5 (o - o")J- S 2l , (3.51)

A
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(the upper bound is irrelevant here). The result is :

=2 S o o
1.6 x 10 1 4+ _ (3.52)
B T e txm e - SRR

31 ' s ,
A recent analysis along these lines » neglecting entirely the Higgs
sector, and taking a set of low current quark masses (mS = 150 MeV,

d

" taken at face value in. the context of grand unification, implies

M) 2 10° Gev (see (2.8)).

Taking into account the Higgs sector leads us to more conservative
claims. Fig.3.5 shows the variation of p+ (respectively p°) with M(¢+)'
(resp. M($°)). If the charged Higgs comes close in mass to Wl, but not

the neutral Higgses to Z

1 the effect of the Higgs sector on (3.52) is

maximum. In any case,

_p°| <'\,

1 : ‘ | - (3.53)
(In the eventuality that the Higgses become lighter than Wi, various
terms neglected in the calculation of the K® - K° amplitude become
important, and (3.33) is no longer valid. That situation, which is

disfavored experimentally, would also require some twisting of the

Higgs potential).

The enhancement factor a (3.49) depends crucially on the numbers

used for m_ and m,. The ratios of current-quark masses are rather well

d
+15

established : mo:m, ot m =1 : 1.8:.2 : m40_8 , depending on the

d s
32 : U ' .
author . The overall scale is much more uncertain. Leutwyler

obtained an equation based on SU(6)w symmetry :

1
2 (mu + md) = 5.4 MeV (3.54)

, 5
m, = 7 MeV, and hence a = 10), has quoted the limit M(Wz) 4 1.6 TeV which,

50
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so' that mu:=-4-MeV , M, = 7 MeV » M = 150 MeV , as adopted in Ref.31 .

d
But other-authors 3éhave argued that these values should be multiplied ’

by 2 or 3. Then.a (3.49) varies from * 10 to ~ 1.

The reader can take three different attitudes, depending on his
confidence in the Higgs mass spectrum predicted by our model, and his

"~ opinion about current-quark masses.

li) Thé most conservative limit on B‘is obtained by saturating the upper
béund>fdf (p+ - p°®) and the lowef bound for a. One finds M(wz) 2 370 GeVv

6niy; Evenrﬁith.g =10 , 'M(WZ) 2 440 GeV, far from 1.6 TeV.

ii) Another approach is to decide that the Higgses have a minimum mass
greater than 80 GeV, say ~ 300 GeV. Then Ip+ - p°| ¢ 0.2 . The bound

becomes M(WZ) 2 530 GeV for a = 1, and M(wz) 2 900 GeV fdr}g = 10.

iii) Since after all the Higgses are supposed to be about as massive as
-W2 , one may assume, somewhat adventurously, that the unbalance |p+ - p°]
will never exceed that obtained when one Higgs has the same mass as w2 s

and the other ones are infinitely heavy. Then

- Blogg8 - : . (3.55)

The limit on B then varies with a according to Fig.3.6, yielding

M(wz)'a 590 GeV for a =1, apd 'M(wz) ; ;tB TeV for a = 10.

We prefer to take attitude i) and conclude
M(Wz) 2 370 GeVy | ‘ (3.56)
which might be compatible with the constraints of grand unification

(see discussion pp.20-21 and Ref.15). There may still'gxist a mass
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"yindow" below 400 GeV where one could-find a right-handed bosoh,'but
_its presence there would very much restrict the parameters of the Higgs

sector as well as. those of a grand unified theory. .

-.Our- conservative limit is,eséén;iallyﬂmodel4indépendent,'in a 2-quark-
generafion world. - A different model would yield a slightly modified
coefficient in front of (p+ - p°) in (3.52),.but we feel that we have
been conservative enough,_by saturatiﬁg'|p+‘- p°[ to 1,‘;0 allow for a

siightly‘gréaéér‘infiﬁencé:;f the H&gg;-seé;or in.énother ﬁogel. ihe
.presenée”of'ﬁére.dﬁark éeﬁéfafioné, howeﬁér; may é;te? oﬁr fesult;:as

discussed in Appendix é. p.58.
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Appendix A

Higgs mass matrices.

The Higgs mass matrices are taken from Ref.6 , where they are

derived from the following general scalar potential :

v=- 1) 4 @rete? 42, Tr(steste) +3 2, @ty + o’
+% )\4 ('fr-(d;'-'g) - Tr(rﬂ)z + )'5 Tr(¢+M) +~% A (Tr(ﬁ;-'g@ﬁé) + h.c.)

y + 4+ 2 + 2 + o+
—uy Gpxg Foxg Xg) F ooy Clxp xp )+ g xp) ) F ey Xy XpXg Xg
+ + o+ + .+ + +
o TE(OR) (xpxp Fxg xp) * oy Gxp ®xg + X ¢ 0p)

+n+ +
+ “'2 (xp 20x; txg @ éa(R) : (3.A.1)

where 3 is defined by (1.17). 1If we relax the arbitrary requirements
made in‘Reff6 that the minimum.of V occﬁrs for <x£> =vy' =0and k' =0,
and oniyﬁmaintain k' = 0 , new terms appear in the nm;s matrices'at the
elements marked * below (zero if v' = 0). The zero-mass eigenstates
of these matrices become longitudinal degrees of freedom of massive

. gauge bosons. The matrices are the following.

i) - Charged Higgs sector :

& |7 ' -0 o )
+
X * (p, = 20 )v2 + Aa k2 0 0 )
L 2 1 .
. e 2 . (3.A.2)
¢1 0 v 0 do vV Ao kv :
+ .
Xg (O 0 Ax kv Aa K2 J
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where Aa = a, - a'z . The oniy‘massive eigenstate with fermion couplings
is : . + P
" v, + ky.~ : .
= 1 "R : M = Ao (k2 + v2) v O(M(Wz)z)
v2 + k2

ii). Neutral Higgs sector :-

A' o+ 0 . )

¢,°.
2 r
XLO SR B 0 B 00
ro| - ) : (3.A.3)
-3 . . \
91, 0 0 4kT(x +12) Zkv(al‘+ a 2)
. o e e : 2 :
XRor L 0 0 2kv(al +a‘2) L 4pr' -
o . r ) : * 3
[+
Xt s * B 0 0
L i | ) (3.A.4)
413 |00 g * |
g’y L0 0 . . J

'A,}A' and B are complicated expressions of the Higgs éotential pafaﬁeters H
but all contain a VZ:piece. The physical neutral Higgses are thus :
(a) ~Two heavy neutral Higgses ¢2°r and ¢2°i with masses O(M(Wz)) ;
;(b)"‘éné light neutral Higgs with mass O(M(wl)),'and one with mass O(M(wz)),
both ‘linear combindtions of ¢1°r‘and XRor , which only couple to U-type
quarks ;

(¢) Two heavy Higgses X which do not couple to quarks.

o
Li,r
I1f we relax the condition v' = 0 (see Ch.I,A), but keep v' << v
to maintain a sensible pattern of symmetry breaking, the new terms which

appear in (3.A.2, 3 and 4) at places marked by * are small compared to

2 ‘ ' . . e
v. , so they will not affect the mass spectrum of the Higgses signifi-



]

cantlf. Moreover, there still will not be any mixing between 91 and ¢2 ’
neither in the charged nor in the neutral sector : the mass matrices will
remain block—diagonél; because there is no term in the Higgs potential
(3.A.1), despité its apﬁearance and its geherality, to mix ¢1 with ¢2 .
Ihus the couplings of the phyéicaliﬂiggses to fermions will only be
changed by O(v'/v) or less, and our result (3.56) will not be greatly

affected.
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:.Appengix B ..

Cabibbo angle in full generality, . .

We have seen (cf. (1.21)) that the Cabibbo matrix appears as :

R ='RU‘1 Ry, S R - ) ”:§§f§.1)

where RU and RD are the rotations needed to diagonalize the U- and D-
quark mass matrices respectively. However we carried out our computation

with the simplifying assumption .:

-1

R =R, ; Ry =1 - | (3.B.2)

In order to show that the above assumption does not restrict the
generality of our result, let us introduce an ovérall rotation S on both

the U~ and D~type fields
D° =SD ; U° = SRU - | (3.B.3)

The various elements of our calculation are changed in the following
fashion :

i) gauge boson couplings :

The Z's couple to fermions diagonally : D°D° = DD , unchanged ;

The W's couple to fermions according to : D°y° DRU, unchanged.

ii) fermion masses and Higgs couplings
The new Higgs couplings are, after (1.22)

...1. :
ot A, -1, T T | )
fo; ¢1 N {UL(R (SAS))D}\z + LR( R (S BS))DL]

e, =1 T |
+ 4, [DL(—(S _gS)R)bR + D (S AS)R)UL}

56
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‘for ¢2°: same,.¢1° ~ $

57

. + + *
for ¢2 : same, ¢1 > ¢2 s A< =B

| _ (3.B.4)
°. —, =1 -1 — 1 .
for ¢,°: ¢1°{UL(R (s As)R)UR + pR(s BS)DL]

— -1, -1 _. — 1
+ ¢1°*{UR(R (s AS)R)UL + DL(S BS)DR)-

29* ; A < 4B,

Therefore the new rotation § amounts, not surprisingly, to a rotation of

the coupling matrices A and B :

A~ A' = S-lAS ; B> B'S= S-lBS ’ ' ' (3.B.5)
iii) relationship between gauge boson mass and Higgé couplings :

Once A and B have been replaced by A' and B', the following relations

are still preserved :

PR
i

my 0 ,

= = ' A . Tat =

5y o (kB! + K'A") ; de. KBj, +k'A',, =0
m . , ‘
S
.Theﬁ, for kk' = 0, we still have :

2 12 v 2 12_ AY tpt 2.- 2 _ 2,2 v2

(k* + k YATL,T # BT = kAT, KB )T 5 MEDT = kgt + k)

7

13

And the crucial equation (3.21) remains the same :
- 0 si = L '
(mc mu) cos O, sin G, - 32 (A (3.B.6)

iv) diagrams to consider :

They arebunchanged, since the spinors in the -scattering amplitude are

physical state; (unaffected) and not weak eigenstates (rotated).

In the end, a redefinition of A and B (3.B.5) is the only consequence
of the introduction of S. Our final feéult,,ﬁhich does not depend on A

or B, is_unaffected..



Appeﬁdix C

" More ‘quark generations. . ‘.-

The factors arising-in the Feynman integral from the U-type quark

propagators and their couplings can be cast in a general matrix form,

where R is the generalized (real orthogonal

for L-L (or R-R) diagrams

2

J-\IN‘
ool
—
~
N
B | =
[
N
Nt
75'
[y
)-l
N

12

l(mi)
Cabibbo matrix, and r7f—————-
k™ - m,
i
[ 1(m )
a7
2. 2
k= 1(m )
¢
k2 - m 2
e

\

"1J

~ valid for any number of generations :

(3.€.1)

(3.¢.2)

: no CP violation here)

2] stands for thexdiagonal matrix :

The difference between (3.C.1) and (3.C.2) comes from the férmion

helicity-flip (see (3.10 a and b)). For one given heavy quark with mass

m, << M(wl)v,vthe amplitude is proportional to :

2
my o for A
LoomMw)?
m, Log — for ALR
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Hence if ALL is corrected 59#5 factor (1{+;§H) ’Eé~ailéw'for the presence

of mH . ALR will be corrected by a factor

1+ Ojq 59
| Log1w ) /m 5|

Our limit (3.56) was essentially obtained By_éta;ing H

A r(8)

Ay * AR(8) » 0 hor 14 e 0 | S @3
where ALR'is proportiénal to g . Equation (3.C.3) now becomes (for oy small)
- e K o L '
‘ Log(mczlmnz) | ALR(B) , :
1+ |1+, — | >0 (3.C.4)
Log(M(Wl) /mc ) _ ALL . :
which yields a new limit‘BH instead of B8, such fhat :
. Log(mH /mc ) T~ oo ; .
By s B (L - , (3.C.5)

) 2, 2
'Log(M(Wl) /mc )J |
B is pushéa up, and the lower bound onlM(Wz) is pushed down (aH is posi-
tive if one just "adds" a neéw quark generation, whatever the mixing

angles, because the couplings are all squared in our box diagrams) .

The problem is to evaluate Oy Many calculations have been performed

of A _ in the standard model with three quark generations . They all

LL
express the basic fact :
tzsin2¢ .
OH N~ Q —2———5——- (3.C.6)
sin %‘

where ¢ (actually some function of (5 and 93 in the Kobayashi-Maskawa
matrix) represents the mixing between the third géneration and the first

two. Since m_ can be anywhere from ~ 20 GeV (the present experimental
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linit) to ~ 80 GeV (the W-mass : our calculation has assumed throughout
that mq << M(wl), and it would need a morgidetailed treatment for heavier
quarks), it is crucial to obtain limits on 92 andej.‘ One knows that

' sin263‘a 0.06 from separate measurements of coszoC and'sinzo But

c’
most bubliéhed limits on 92 are useléss, since they are‘Bésédﬂon the
assumption that the Gaillard-Lee calculation of AmLS should not be upset
by the presence of a top-quark, which is precisel& the hypothesis that
we want to check. The only independenf limit, obfained‘from top-quark

) cgn;ributions{;qw;KLu+ p+ﬁ- , does not_significantly restrict 6236 .
So we can only assume reasonably»that ¢<a Cb (the wider the mass gap

‘between two generations, the smaller the mixing) ; a, can still be

H

much greater than unity, and push down our limit on M(W,) considerably.

As an ex;remercase, iet us imagiﬁé that mt N O(M(wl)), ana &ﬁ >; 1.
Thep the KL - KS mass'diffefgnce comes mostly from the.top—quark
céntribution. We can repeat our calculation of III,B énd C, simply
_ repiacing the charmgd quark (nowlnegligible) by the top quark.

Log(M(wl)z/mtg)}is,now ~ 1, so (3,51) becomes :

1 - 3a(28 - %(p -p°)) 0 ‘ (3.Cc.7)
. . . 1 1 + ° . “ . .
or gnE- +7 e -0°) (3.C.8)

+
(p - p°) is more likely to take values far from zero,. since M(WZ) is

now closer to M(wl). Therefore :

! 1 1 ' '
5= "7 ¢ g < R +-Z (3.C.9)

, Whether we believe in low or high current-quark masses does not make

much difference at this point. For a = 1 , we obtain :



8

(RYT

1
*32

<
"

or M(W,) 3 105 GeV S » (3.€.10)

‘The presence of Higgses and/or Wz just above 100 GeV is now required

to cancel the huge ALi«amplitude generated by;heavy t-quark exchange.

Ourvlimlt (3 56) is therefore quite sen51tive to the presence of
heavy quarks if they are sizeably coupled to s and 4 . The prevailing
opinion, however. is that aH should be 0. 1 or less?} 33é nay generate
~ more self-confidence in that opinion by checking MIf bag results 3
~ developed for any combination of operators between K° and K° They
Hreproduce our results for ALR within a factor 2, but the bag model
itself is built around 2 quark generations only... We conclude that
our limit (3t56) for M(wz) is valid for two generations; but that we

need more data to confirm its validity in a 3-generation world. It

might be pushed down slightly, or in thevworst case to Vv 105 GeV.
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Chapter 1IV.

Other processes investigated.

Although the K° - K° system considered in.Chapter III ‘is a "clean"
system which can be described in detail as far as weak interactions go,
the large uncertalntybkaffactor.;‘slfln strong ioteractioa erfects
blimits its attractiveaessd’ Here we study other processes whose mecha—
nism cannot be descrlbed in complete detail but whlch can be analyzed
in terms of current algebra and soft plon theorems whose.accuracy isv_
belleved to be ~ 10 A ( y1e1d1ng potentlally better 11m1ts overall than

K® - K )L. We w111 look at non-leptonlc hyperon decays (part A) and

K decays kz and K (part B)

A. 'vNoo;leptopic.bfperon decays:

Apart from I° - Ay , which is electromagnetic, non-leptonic hyperon
decays are all first-order weak processes, with emission of a pion. They
are listed'in Table 1, with their main characteristics. The spin and
parity of the initial and final states are :

12t - 2t o”

The decay can thus proceed via an S-wave, which will be parity-violating

(PV), or a parity-conserving (PC) P-wave. We can parametrize the ampli-

tude as

H = wfm(q> (a+ By v, . (p) (4.1)

or, making a non-relativistic approximation, with S = A, P = E  +m

M= x+fin (S - P 0.8) Xi . | (4.2)
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o . . (I . . >
where § is a unit vector in the direction of the momentum q of the

final baryon. . This expression mékeé.clear the appellation of S and P

for the S~ and. P-amplitudes.

S and P can be determined from experiment in the following way

i) For a polarized initial hyperon with density matrix xx = %(1 + 0.1),

it is straightforward to calculate the differential decay ratio in the

0

direction § :

. *
|$]2¢1_££§_L5__22._§ .4 : _ (4.3)
Is|“ + |p| ‘

ii} The phases of S and P are determined independently. If we safely
negiect minpte CP violation effects, the Hamiltonian is T-invariant ; then

the fL-wave amplitude a, = out<B11|H|Y>in satisfies :

. _ 1 . )
?z = bUt<Bﬂ|T ‘HIIY?in - out<YlHle>in g : (4.4

£

where spins and momenta have been reversed. But we are in a frame where

Y is at rest, and alrdoes not depend on spins ; so :

b
]

iq<Ban|Y>out,

2

: o 2i8 .
Now lv> e " IY)in s and |B1r>in 2e 2 an>o defines 62 » the

ou ut

phase-shift due to final state interactions. Hence :

* .91
- e 2162

a, a, (4.5)

" The phases of S and P are 6, .and 6 + , phase-shifts which can be

Y k!

measﬁred from low-energy Brn scattering in‘principle.
iii) If needed, additional information on the relative magnitude and

phase of S and P can be obtained by measuring the polarization of the
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final baryon (for instance by measuring the differential cross-section

in a subsequent scattering experiment).

S and P can also, in principle, be-fitted‘tonthe»daéa for all the
decays of Table“l with only two parameters D and F, iqupe assumes SU(3)
:éyﬁmetrg.éﬁa bcéetvdominaﬁée. The w;ak Hémiltpnian,‘yhich Eoﬁs£s£s‘of
tﬁé-symmetrized product of two bctet;éﬁffenté, céﬁ be decoﬁposed into;

SU(3) representations according to :

(8x8)_ =1+8_ +27

‘Under the assumption of octet dominance, the 27 part of this decomposition
is. suppressed, and:the weak 'Hamiltonian transforms like an octet. Apblying
.a SOft“pion'theorém,to’any of the hyperon decays that we are considering
yields

limq <Bﬂ(q)‘HP9IY> =

_+0
1 i

,<B1HPX|Y3 + pole terms containing a factor

| R

p
h Bll_H_ 9"32?._‘

where HPC and HPV are the parity-conserving and parity-violating parts:
of the Hamiltonian H, which mediate P- and S-wave decays respectively,
and o is a function of the isospins of m, B and Y. Now, by SU(3) sym-

metry and CP-invariance :
<BlE"V |v> = <Bl[HPV|B2> =0,

so that only the smooth first term (equal-time commutator term) will

contribute for S-wave, and only the pole terms for P-wave decays.

Furthermore, since H is an SU(3) octet, the non-zero elements <BTHPC|Y>

PC ’ _ Lo, .
|B > are the ‘projections on an SU(3) singlet of (8 x 8 x 8).

and <B |H 2

1




s

and thus can all be expressed as functions of pnly two independent

parameters, because

8x8=1+8 +8 +10+10+27.

These parameters are called D (coupling strength of the symmetrlc octet)
and F (for the antisymmetric octet). leen D and F, the data of Table 1

should be equally well fitted for all hyperon decays, and for S- and

'P—waves. Actually the flt can be made very good for S, but remains

father poor for P : the P-wave predictions are too small by a fairly
con51stent factor of o2 (see Table 1 and Ref 38) The disagreement with

exper1mental data can be expressed by :

o= (B/A), /By Vo2 - (4.6)

Let us now change the Hamiltonian from its expression in the standard

3

L'L

model, — J.  J + » to what it would be in a left-right symmetric model

/2

‘namely (2.1). The coefficients in front of parity-violating and comser-

Ving terms are :
- S-wave (PV) : -(VA + AV) (1-B) cos2z - ‘ | ‘(4.73)

- P-wave (PC) : (VV + AA) (1+B) + (VV - AA) (1—3) Sincvcosc (4.7b)

. where g and r , defined in (2.1) and (1.7b), are the squared‘mass ratio

and the mixing angle of the two charged weak bosons. If we first assume
r = 0, then the ratiofp (4.6) is modified according to :

LR 1+8.

T (4.8)

Pus

A cofrection'by a factor 2 would then be achieved for B = 1/3 , ie.

65



66
M(W,) ~ 140 GeV _ o o (4.9)

This prediction however loosés_its validity when one considers the

general case [ # O.

In that case, it has been argued 39 that the 1eft—right (VV - AA)
operator must be Fierz~transformed; which brings-abéﬁt a combination
2 (SS - PP), and that the amplitude obtaineé froﬁ a-PP operator»is much
larger than the one obtaiﬁed from the usual AA oper;tor.' The feasoning
is quite simiiar to thafjin Chap;er III,CV: even though ;he ﬁathématicél
justification-for performiﬁg a FierZrtransformation'on the.leff;rigﬁt
operator is rather complicéte&, the enhanéement of-the L-R gmplitude‘
which reéults is very natural. i

The decay Y - Bm can be described by. the quark diagrams of Fig.4.la
and‘d.lb.: The weak.interactioﬁ is point-like however, so that diagram
4;1b is suppfessed with respect tova;la by a.factor propqrtiénal to the
.overlapping df the.wave—functi§ns of the tﬁo weakly iﬁterac;ihg quarks
inside tﬁe hypefén. For this feéson, we wili only\céﬁsiqer’tﬂe spectétor-
quark diagram of Fig. 4.la. The quark and antiquark which make up the
pion'in that case are produced at BOthvends of the w-prbpagator,‘and
&ill have thevsamg helicity (eg. qLEL ;.qtfagy ) oqu in the PreSéncé"
of é L-R mixing operatdr ; but the pion is a pseudoscalar, and outgoing
quarks qL?EZT , produced by the usual L-L opefatof, could never make
a pion if they were massless.- Theréfofe the»regulaf L-L amplitude is
suppressed by a fac%or~o(ﬁq/m“) with respéct tovthe L-R term. -Morevv

precisely :

.5 5
<mal op v -2<B|57 v <n]57]0>

< Br| o, ly> <B|'jp5|Y'§ <n #3205



5 -1 ik
<alglos = 5= 8 <[5 0>
. q »
a ) 1 als d]
and <B|J |y> = o iy ) ¥ <B|Jp >

where mq represents a light quark mass (mu,md) << m_ . Hence :

'<Bﬂ| 0 |Y> e o o : -
= v . (4.10)
-<BTT| OI:L |Y> mq(ms + mq) : : o .

The quérk masses to be used afe,agaih‘ambiguous, but Ref.39 claims that
the above ratio is about 20. Then :
. o
LR [ i + R
pws - -

1
cos2g

- 20 sinz cosg ] (4.11)

One can see that a very small (<0) mixing angle z is sufficient to explain

- the discrepancy (4.6), for any valug pf.ﬁﬂ‘ In fact it makes more sense
to copsider Fhis‘feéult as a limit on ;,_iﬁdependent of B, which brings
vfufthef a pqsterip;i Justification to our settipg £ =0 in Chapter‘III;
The analysis of Re{.39 is more refined in that it considers strong
interactioh:effects ("penguin' diagrams) which bring a further enhan-
cement by a factor ™ 6 to the mixing terms ; but it ignores altogether
the bossible influence of a second, mostiy right—handed,'gauge boson.

Incorpbrating such a color enhancement factor in (4.11), one finds ;

1+
C1-

g - 120 | U (4.12)

from which one concludes :

-2

lz] <. 107 (4.13)
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This is the same result as in Ref.39 , but we have shown here that it is

essentially independent of the mass M(wz).

Finally, it should also.be mentioned that the validity of the soft-
pion proceduré in the case of P-waves, as used in (4.16), is_rather
unclear : in .the hyperon rest-frame, the P—wa&e amplitude is proportional
to the pion momentum, and therefore.vaniéhes in the soft pion limit q -+ O.
For that reason the diéagreement between theory and expériment indicated
in (4.6) is generally believed not to 5e a compelling reason to modify
the standafd structure of the weak hamiltonian ; thus (4.9) shodlﬂ not

be taken too seriously.

~ B. Hadronic K decays.

'Thé'décays K7T2 and Kn3 have been successfully related to each other

by'the'use of soft pion theorems, under the assumption that the weak cur-
rents had the usual (V-A) structure. We want to see here how these

relations are affected when the Hamiltonian takes a more general form.

Any soft pion theorem states that :

. i -i/2 ' i
,hmqu+ o <Br () [H[a> = 3 <B| [Qg™,H] | A> (4.14)
where Qs1 is the axial charge :
i 304 . ' ’
Qg (1) = fd x Ay (x,t) (4.15)

Ao is the time-component of the axial current (and i is the isospin

index of the soft pion under consideration). The theorem is valid for
any - local - operator H, in our case where the external particles are

all pseudoscalars.



Now if H is the usual current-current Hamiltonian, the right-handside

of (4;14) can be simplified because :
[Qs, Bl = [Q", H] (4.16)

This stems from the simple formal identity between any two operators

labelled V and A :

[As (V-A)] = .[v, (V—A)] (4.173)
Howeyer :
[A, (V+A)] =

= Iv, (v+A)] : ' ' (4.17b)

" Therefore, if H (V—A)2 + B(V+A)2 , which is the form of (2.1) with

z =0 (no mixing)

1o,', 01 = Io', -7 - a(v+a)?] s

. That sign change ruins the usual relations :

i _P i _PC i _PC i _PY
ot BV = [Q', B1 5 Iog, Bl = IQ%, B ) (4.19)
“since here HPV = (1-B) (-AV-VA) ; HPC = (1+8)(V2+A2). The new
correspondingzrelations are :
i PV, 1-g . PC "
i PC. _ 1+ i _P . -
ERCRAE IR N O B (4.20b)

Such extra factors appear in particular in the correspondence between

and Kn amplitudes. With the assumption of CP invariance, one can

K
T2 3 : ,
relate, for instance, the amplitude aL(p+,p_,p0) for the decay
KL > n+ n o to the. K
_ S n2

_ -+ :
of K ,K ,Ks-by taking successively the zero-limit of P, P and p0 :

amplifudes a_,a, .ag describing the 2m decays
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(0,p_,p,) = — a_(p_,p,) C (4.212)
Lo fﬂJE 1-8 0

Co4i 1+ . o
a, (p ,0,p ) = —— a,(p,,P,) , (4.21b)
L "+ 0» fﬂ)’i 1-8 + 54’70
-i 1+8 ,

a (p ,p_,0) = —— a.(p ,p_) (4.21c)
Lo £/2 1-8 ST

(4.21) (2) and (b) are related through CP invariance ; so we have two -
independent equationms.

For comparison with experimental data, a must be extrapolated into

L

the unphysical region where only two of the pions are on shell, to the

point where their momenta satisfy, as required by K + 27 :

S Ty

2
g 2 | o |
) ’ '2_] ’ P2 = [‘ 51 s 2 ] (4-22)

Py = [ﬁ ( 5 - ¥
where we work in the K rest-frame, and m., u are the kaon and pion masses.

The Kn3 amplitude is often parametrized linearly in the form :

: y = < ' '
a(pysPyspg) = A (1 + 2,2 wy ) (4.23a)

where A = a(pl=p2=p3L0 is-called.the slope parametef, and

. .= .- =X . . . = .- K N = = 4.23b
w, =8 3 ZJ SJ H SJ ( p__l p( ) ) H so 3 Ej Sj ( )

The pion m,_ in (4.23a) is the "odd" pion, the anti-particle of which is

3
not produced in the decay considered. The unphysical point of interést
i o 2 _ _ 2 .
defined in (4.22) corresponds to S3 =MW , 5, TS, =p ; so:
_2 2 2 _ R § 2 2
w3 =3 Ome —w7 ) 5w =wy = -3 (me -

Our two soft pion relations from (4.21) become :

N 2 ) . + - ~
A(l4 =2 (m,°-1p5 ) == a (n ) (4.24a)
w2 K £/2 1-¢ °
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2 2 i + + S A
ACL- % -ty st LEE ey - L (4.24b)
61 fﬁji 1~8
~The |AI] = % rule requires a+(w+ﬁ°) =0 , so that oné should have :
. 6 ﬁz
) =—-—-——-————v 2 2 n 0.5 Y . ‘ ,. ] (4.25)
By — R .

the experimental valué being ~ 0.6 (see Table 2). This result is indepen-

dent of B. A is also determined from (4.24) :

A -1 1+38

= — as(ﬂ+ﬂ") ’ ' (4.26)
© 32f 1-8 - o

Experimentally the left-handside ié'(0.82 ‘_*.03).10-6 , and the equality
‘is satisfied for :

l-8

fw 1+8

v 85%5 Mey | (4.27)

Formula (4.27) must be compared with the value obtained from the
Goldberger—Tréiman relation fTT = 87 MeV, and that measured from = =+ uv
decay fﬂ = 93 MeV. In Chapter II,C , we already mentioned that fﬂ would
' be larger in a semi-leptonic process than.in a hadronic process by a
factor ~ (1 + 2z)., Other attempts have been_made to expla;q)at least
part of fhis apparent increase by néutrino nixing 40 ; so we would rather
trust the lower value of fn here, 1In any case our’result (4.27) is
consistent with g = 0. We can only conclude :

1 -R 5 80
1+58A 93

» allowing for lo deviations in (4.27), or %% with 20 deviations,

or MW.) 2 280 GeV for 1o deviations (240 GeV for 20) (4.28)
2

. ) +
The same treatment as applied here to KL > mn 7°

can be repeated on .

.other KﬁB amplitudes. All the results are consistent with 3 = 0, and
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yield the same limit as (4.28).

Before this limit can be taken seriously however, it is necessary

to chéck whether the soft-pion limit of the Kn amplitude is a genuine

3

Kﬂ2 amplitude : namely the two "hard" pions might form a mixture of L = 0

and of higher angular momentum states, accessible in a K% decay but not

3
in K - Qn. '
The fact that the total angular momen;um of the 3 pions»must be éero;
aﬁa that the total wave-function mustvbeesymnetfip under the'interchange
of any 2 pions, together with CP invariance and the IAII_'= % rule, res-
tricts the angular momentum of a pion-pair to even values, but not exclu-
sively to L = 0 (see Ref.41). Tfue, centrifugal barrier effects will
‘tend to suppress high-L states, ﬁut there may be a sizeable L = 2
-fraction among the 37 final states. Such an admixture would Tuin the
1(1T3 - anbrelationship. Then the apparent success of such relations might
be due to a lucky canéellation between L = 2 contaminétion and right- .

handed boson effects (with'M(Wz) < 280 GeV) !

The wave—fﬁhction describing a 21 L = 2 final state must be of the

form :

‘ 2 2 . v
A T L i ol - - o (6.29)

where q =Py = Py and p ='pl + Py > since it is a rank-2 tensor

satisfying

A corresponding rank-2 tensor can be built for the third pion from the
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single vector Py 3
'Tﬁv " -ﬁ v o_. ﬁv.P3 _ o S | (4.30)

So the amplitude for K - “1(91)‘"2(p2) n3(P3) with L(nlnz)_= 2 will be :

pv 2 .ﬂEJ (p'pS)2 v.2 o e
A= Tuv = (q.p3)A + 3 —p—z—' - p3 : - (4.31)
If we now ekpress the fight;hénd side in »t:erxvus.ofsl,2 3 aefined in (4.23b),
' . . . - S Akt . .
(4.31) becomes :
| T2 2 “ |
- 3 - Y e 32
A= 1413 x [(53 sg)” + (sy7s)) ]

(5% - m 213y (22 - %2./3)

- .. <+ cubic terms : (4.32)

If we finaliy symmetrizé A properly and select T, as the "odd" pion,

we get @

A(K » 3ﬁ°).¢ 1 f 2a (s3-so)2 f‘%a (slfsz)? + gﬁbic terms » | (4.33a)‘
AK » n w,m,) « 1 4+ éa (s.,-s )2 + l-a (s,-s )2 + cubic’ferms ' -(4 33b)
‘ 1273 2 370 2 172 :

mKZ _ 3u2

W =1
nere 253 (5u2 - mK2/3)(2u2 - mK2/3)

Equation (4.33b) does not contain any linear terms. The presence of an
L = 2 final state shows up through a quadratic dependence in the ampli-
tude (the data are not accurate enough to test higher order terms).
Equation (4.33a) should not cdntain any linear term anyway, becéuse the
three pions ére identiéal, but the size of thé quadratic coefficient will

measure the admixtufe’of L = 2 states.
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The experimental data are usually fitted with three paramétefs q;a,B :

g 2 - 2
. (s.=-s.) (s,-8.) : (s;-s.)
. e Afe e = . __ 0370 a o3 507 .. B "1 °2
CA(R =+ 3m) = A(s1 S,y s3) 1 Ty 5+ 7 ” + = 7 + ..
: 1 2) p 62 Y
o ‘ "(4.34)
) "'1:(“1('3”)
where )\=3 ——T

The minute differences in m and K masses for the various decays Bring
very signifiééhf.differencéé in ﬁ)And a F so:we aVenged sz/uzsepara;ely
- for each pfocess. Comparison between the predictions for ﬁ and g8 if ﬁhe
fiﬁal stafe.is all L = 2 for the two:pidns‘vand the’measu;ed values is
difficult, since there are very few experimeﬁﬁal results and they do not
always overlap. Nonetheless it can be concluded fiom'Tabie'Z that, if the

L = 2 final states are the sole source of quadtatic terms in the ampli-

-

tude, they'afe not prééent above a level g’l-Z %o

This result gives us increased confidence in the validity of the
K“3 - an relations, and in the limit deriﬁed through them (for zero-

* -
mixing angle ¢ ) :.

M(Wz) 2 280 GeV.

* Unfortunately the commutator [Qsl; (V+A) (V-A) ] cannot be reduced to
an isospin commutator, and the effects of a L-R mixihg term bave not been

determined yet.
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Conclusion.

~ Our criterion in choosing véys to determine the mass-scale for
parity-breaking was model-independence. All the processes investigafed
here depggd,essentially on the charged weak'éectof, which is rather
.rigidlyﬁdeiermined by_the'choicebof the gauge'group SU(2)L b4 SU(Z)R b4
U(l)B_L ; But we discarded leptonic processes on the presumption that
fight—handéd neutrinos might wellvbe tOo‘héavy to be prodﬁced at all
at'preéent-day energies. Hence we wére left with badronic processes,
contaminéted by poorly'known strong interactioni. Model—indepgndence

was thus achieved at the expense of accuracy.b

We could in several cases take advantage of a - high, but numeri--
cally ﬁnéertain - enhancement factor of new mixed left-right terms ovér
the usual W-§ térms,.which appg&rs whenever the quark and antiquark
' whicH interact weakly are bound in a-féeudoscalar meson. But even so,
vafious effects contfibute, which limit the accuracy of our results
i) ‘From the K° ; §° system,>the limit(conservativé in soﬁe sénse.— see p.51)

is
M(wz) 2 370 GeV.

But strong interaction effects are very difficult to evaluate. And

model-dependence reappears in the Higgs contribution to the KL - KS
mass difference. Furthermore, the influence of the top quark may be
very important, but has been neglected for want of data. In case the

top quark indeed has sizeable couplings to thé first two generations,

the mass of w2 may very well lie in the 100-300 GeV range.
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ii) From.hyperon and kaon decays, the limits obtained were :

M(wz). 2 0(280 GeV), depending on the precise value of fn and the
allowance for theoretical uncertainty.
|tanz| < 1-2 %
Besides other related ‘approximations like SU(3) symmetry, the theory -
behind both processes relies on ‘soft pion theorems; which should not be
expected to be verified within a better accuracy than ® 10 %.

v

Thus in both cases i) and ii), it seems difficult to reach a better

limit than :
M(Wz) 2 0(300) Gev -, -

which already corresponds to a change in the usual W-S amplitude by less

than 10 %.

: When yiewed in»the cqnte#t of a‘gtand nnified 50(165 model, theee
results-are; unfortnnately, not quite-snfficient to rule out a 15& maSs
" for w2 . The grand un1f1ed left—rlght symmetrlc model hasvmany mcre
parameters than the standatd SU(5) model, and ls therefore much more
adaptable to phenomenolcglcal requlrements. Fct that reason, the accu-
mulation of more low-energy data and the improvement on the accufacy
of the neutral—current data will not likely be able tc rule out the
1eft—r1ght symmetrlc model although they m1ght g1ve the standard model a
less flrmly establ1shed status. It seems however that the presence
of a fairly light (less than N 500 Ger.w v"would nlace eo many-constralnts
on the parameters of our model that several pleces of 1nd1rect ev1dence

should be accumulated very soon in such a case, to help us differentiate
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between SO0(10) and SU(5) :

i) No proton decay should be observed in the next generation of expe-
riments, because the grand.unification mass in SO(10) is tbo“high,l

ii) Neutrindless double-f decay should be observable soon,.érovided
tﬁat the right—handea neutrino has i;seif a mass of order 300 GeV.

iii) The mass spectrum of the usual W and Z should be shifted down,

with M(W) < 80.5 GeV and M(Z) < 92 GeV .

These experimental results will soon decide the fate of the left-right

symmetric model.
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2.1

Table 1 : Non-leptonic hyperon decays (after Ref. 10 and 38).
Hyperon lifetime decays (B.R.) A/A B/B p (4.6)
_ -10 th. th. :
10 sec. '
+ ' + 72N
z 0.80 nn (48.47%) 0.06/0 19.05/6.5 —_
p 1° (51.6%) 1.48/1.3 | -12.04/6.3 1.7
T 1.48 nm 1.93/1.9 | -0.65/40.05| --
A° 2.62 P n (64.22) 1.48/1.55| 10.17/4.7 2.2
n 1° (35.8%) -1.08/-1.1| -7.28/-3.3 2.2
z° 2.96 A°m?® 1.53/1.6 | -5.90/-2.5 2.4
c 1.65 I 2.04/2.25| -6.73/-2.5

W3
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Table 2 :'Kﬂ3 decays (after Ref. 10 arnd 42).
- ;
. 4 a (a ) g (s )
Decay 2 c ) A alu all L=2 S¥P-" | a11 1=2 °©XP
H av. exp _ . :
+-0 13.0 0.50 1.46 | -2.41 -10.3 . =30.8
(.58-.66) (-0.05- ~0.30)
+00| 13.1 ©0.49 1.49 | -2.66 -29.5 -17.7
(.50-.55) ° (-0.38- -0.41)
000| 13.6 . 0 1.69 | -4.80 -55 - -55
((a+8)exp.= -0.02- +0.26)
+ 4= 12.5 0.26 1.27] -1.58 ~12.7 -7.6
(.21-.22) (-0.03- +0.08)
((“+B)exp.= -0.02- +0.06)
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Figure captioms,

Typical evolution of the running coupling constant$ in an §U(5) or

S0(10) grand unification scheme. The low-energy values of'aEM, a,
and, with a large uncértainty, of 03,‘are determined by experiment.
Their enerngdependence is fixed by the choice of a gauge group and
of éorrésponding particle repreéentations, according to renormali-

zation theory. One sees how the unification mass my changes
between an SU(5) and an SO(10) grand unifying group.
The eight heliéity combinations contribﬁting to sd *,;d'

The two diagrams to consider in the standard model.

The Feynman amplitudes for the logérithmically divergent diagrams.
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They have been evaluated in unitafy_gauge, by dimensional regulari—v

zation. The expression under each set of diagrams represents the
corresponding amplitude,. up to a féctorvnglzzALR/4n2 (see p.4l).

One can see how the divergences ¢ancel.

Examples of vanishing or negligibie diagrams.

s . . . . +
Variation of the normalized Higgs contribution p or p° to the

KL - KS mass difference as a function of the Higgs mass. See

Eq. (3.50).

Variation of the lower bound on M(Wz) as a function of the enhan-

cement factor a (3.49), under the following assumptions

- +
i) maximum Higgs contribution (M(¢ ) ~ M(Wl) 3 M(9°) v )



4.1,

ii)  M(8T) v 300 Gey ; M($°) v = ;

i) MGTY v MO ;MO v e ;

iv) no Higgs at all (M(¢+, $°) ~ «).

The two quark diagrams which mediate the hyperon decay Y - Bm.
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Figure 3.



(b)

Figure 3.2
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