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Classical and Semiclassical Aspects of Chemical Dynamics 

by 

Stephen Kevin Gray 

Abstract 

It is argued that a classical or semiclassical picture is useful 

for understanding a variety of problems in chemical dynamics. To 

demonstrate this, three very different problems are studied. 

Tunneling in the unimolecular reactions H2C2 + HC2H, HNC + HCN, 

and H2CO + H2 + CO is studied with a classical Hamiltonian that allows 

the reaction coordinate and transverse vibrational modes to be considered 

directly. A combination of classical perturbation theory and the 

semiclassical WKB method allows tunneling probabilities to be obtained, 

and a statistical theory (RRKM) is used to construct rate constants for 

these reactions in the tunneling regime. In this fashion, it is found 

that tunneling may be important, particularly for low excitation energies. 

+ Nonadiabatic charge transfer in the reaction Na + I + Na + I is 

treated with classical trajectories based on a classical Hamiltonian that 

is the analogue of a quantum matrix representation. The charge transfer 

cross section obtained is found to agree reasonably well with the exact 

quantum results. An approximate semiclassical formula, valid at high 

energies, is also obtained. 

The interaction of radiation and matter is treated from a classical 

viewpoint. The excitation of an HF molecule in a strong laser is 

described with classical trajectories. Quantum mechanical results 

are also obtained and compared to the classical results. Although 

the detailed structure of the pulse time averaged energy absorption 
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cannot be reproduced classically, classical mechanics does predict 

the correct magnitude of energy absorption, as well as certain other 

qualitative features. The classical behavior of a nonrotating diatomic 

molecule in a strong laser field is considered further, by generating 

a period advance map that allows the solution over many periods of 

oscillation of the laser to be obtained with relative ease. Classical 

states are found to form beautiful spirals in phase space as time 

progresses. A simple pendulum model is found to describe the major 

qualitative features . 

. ' . 
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1. Introduction 

-. Although molecules are inherently quantum mechanical in nature, 

there is great appeal, from both an aesthetic and practical viewpoint, 

to use classical and semiclassical methods in the description of basic 

molecular phenomena. The validity of such approaches is limited, of 

course, to problems for which the de Broglie wavelength may be 

considered small in comparison with, say, the dimensions of the 

interaction region. 

The aesthetic appeal of classical mechanics, especially to 

chemists, is that molecular events, such as bimolecular collisions 

and reactions, may be depicted with classical trajectories - that is 

the coordinates and momenta of the relevent atoms may be followed 

explicitly as a function of time. This gives a mechanistic view of 

the reaction that has served frequently in the analysis and prediction 

of, for example, molecular beam experiments l The practicality of 

classical mechanics is that, given the potential of interaction, the 

solution of the classical equations of motion, i.e. Hamilton's 

equations, is not too difficult with the aid of modern computers, 

f .. l· . 2 even or react10ns 1nvo v1ng as many as S1X or seven atoms . In 

contrast, reactive quantum scattering calculations are complicated 

by the many channels, or basis functions, that must be included, 

as well as by serious convergence problems. It is amusing to 

consider a famous test case of chemical dynamics, the H + H2 



hydrogen atom exchange reaction in 3d. The first numerically accurate 

classical trajectory prediction of the various cross sections for this 

reaction, as a function of collision energy, was made in 1965 by 
. 3 

Karplus, Porter, and Sharma Only in 1975, and with the expense 

of almost excessive human and computer time, was an accurate quantum 

solution obtained
4

, and this solution was for a very small range of 

collision energies. At present (1982) the solution for H + H2 is 

still the only example of an accurate quantum solution for a realistic 

(i.e. no constraints such as collinearity) reactive chemical system. 

In contrast, many classical trajectory studies have appeared, for 

5 6 
reactions ranging from F + H2"*' HF + H, to H + C2H4 -+. C2H5 . Of 

course reactive quantum scattering theory is far from dead, and several 

groups are working on problems associated with it. Benchmark calculations 

for other three atom systems, such as F + H2 , are expected in the near 

future. For a discussion of the current status of reactive quantum 

scattering theory, see Wyatt's recent review7 
However it would be 

fair to say that a full quantum solution of, say, H + C2H4 , will 

not appear in the near future and may never appear, owing to the 

immense practical difficulties. 

Of course quantum effects, ultimately arising from the uncertainty 

principle and superposition, are observable in many experiments and 

approximate quantum theories may be used to describe them. A partie -

ularly appealing approximate quantum theory is semiclassical mechanics 8 . 

2 
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Semiclassical mechanics constructs essentially a limiting or 

asymptotic solution to the Schrodinger equation for the case 

h ~ 0, which is the classical limit of small de Broglie wavelength. 

The well-known9 WKB tunneling and quantization formulae are 

examples of semiclassical analysis. The result of taking the 

classical limit is that classical trajectories, and even a 

more generalized . trajectory that may be complex-valued, are 

retrieved. However, these -trajectories are used in constructing 

complex amplitudes that must be added before an overall probability, 

the square of the S matrix, may be obtained8• Most chemically 

interesting quantum effects, including interference oscillations in 

cross sections and tunneling, can arise out of a semiclassical 

treatment. To obtain an "exact" asymptotic solution of the 

Schrodinger equation for anything but a simple system has turned 

out to be almost comparable in difficulty to actually solving 

the Schrodinger equation directly. But the concepts involved in 

semiclassical mechanics have greatly aided in the interpretation 

of many results in chemical dynamics and, moreover, approximate 

semiclassical methods, such as the WKB method, are exceedingly 

easy to apply and often can be quite accurate. 

The present thesis applies these classical and semiclassical 

approaches to a variety of chemical dynamics problems. In sec. II, 

tunneling in the unimolecular reactions HNC ~ HCN, H
2

C
2 
~ HC

2
H, and 

H2CO ~ H2 + CO, is treated with a classical Hamiltonian 



that allows the "reaction coordinate" and transverse vibrational modes 

b 'd d d' 1 10 to e cons~ ere ~rect y . A combination of classical perturbation 

theory and the WKB method allows tunneling probabilities to be 

obtained, and a statistical theory (RRKM) is used to construct rate 

constants f h . d ' l' 11 or t ese react~ons ue to tunne ~ng . In this fashion 

it is found that tunneling may play a significant role in the 

microcanonical rate constant, particularly at low excitation energies. 

In ,sec. III, nonadiabatic reactions, such as the charge transfer 

+ -reaction, Na + I ~ Na + I , are considered. These sorts of reactions 

involve different quantum mechanical electronic states and thus are 

generally thought of as being pure quantum events. However, a novel 

12 classical Hamiltonian treatment, due to Miller, Meyer, and McCurdy , 

allows one to take the quantum mechanical matrix elements and construct 

a classical Hamiltonian. It is shown that-purely classical trajectories 

can then reasonably approximate the charge transfer cross section for 

Na + I. An approximate semiclassical formula, based on this classical 

Hamiltonian, and valid at high energies, is also derived. 

In sec. IV, the interaction of radiation and matter is treated 

classically. The excitation of an HF molecule by a strong laser is 

described with classical trajectories. Quantum mechanical results are 

also obtained and compared to the classical results. As might be 

expected, averaged quantities are well described by the classical 

analysis. However, the detailed structure, including rotations, of 

the classical and quantum energy absorption spectra do have significant 

4 

1". 
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differences. The classical behavior of a nonrotating diatomic 

molecule in a strong laser is also considered, borrowing some 

methods from nonlinear dynamics. A method of obtaining the 

solution over many periods of oscillation of the laser, by generating 

. d d 13 . . a per~o a vance map , 1.S g~ven. The classical solution is seen 

to consist of spirals in phase space, representing very graphically 

the nature of the resonance between molecule and laser. Through 

certain approximate transformations, it is possible to represent the 

14 . 
problem as a simple pendulum , with the momentum of the pendulum 

being related to the energy of the molecule, and the angle of the 

pendulum being the difference between molecular and laser phases. 

Finally, sec. V gives some brief concluding remarks. 
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II. Tunneling in Unimolecular Reactions 

A. Preliminaries 

Unimolecular reactions, such as molecular decompositions and 

rearrangements, have been extensively studied, and textbooks such 

as that of Robinson and RolbrooklS , and review articles such as that 

16 by Rase , give detailed accounts of many aspects. One aspect 

rarely discussed, however, is the role of quantum mechanical 

tunneling. One reason is that the effect of tunneling on the thermal 

rate constant is expected to be quite small. However, tunneling 

may play an important role in the microcanonical (energy-dependent) 

11 17 rate constant ' , particularly at low excitation energies of the 

molecule. Today's laser techniques allow, in fact, an experimental 

determination of state specific rate constants, and some interesting 

18 examples include the work of Reddy and Berry on the methyl and 

allyl isocyanide isomerizations. Indeed, if a laser could excite a 

molecule to an energy below its classical threshold for reaction~ the 

entire rate of reaction measured would be due to tunneling. This 

feat, however, has not yet been accomplished in the laboratory. 

In sec. lIB, we outline the simple tunneling correction to 

unimolecular rates given by Millerll (see also Forst17)," and apply 

it to the isomerization of vinylidene to acetylene. An explanation of 

the experimental difficulty in observing vinylidene is made on the 

basis of these results. Next, in sec. IIC, the reaction path 

~, 



,:w,-

.• 

10 
Hamiltonian of Miller~ Handy ana Adams , for polyatomic systems, 

is discussed. A WKB tunneling probability formula is develop.ed with 

this Hamiltonian, and then applied to tunneling in the hydrogen 

isocyanide isomerization, HNC .... HCN. In sec. 110 the unimolecular 

decomposition of formal.dehyde, H2CO .... H2 + CO, is discussed in terms 

of the present semiclassical reaction path model •. 

B. Simple Tunneling Correction to Unimolecular Rates, with 

Application to Vinylidene Isomerization 

RRKM theory (so named after its originators O.K. Rice, J. 

Ramsperger, L.S. Kassel and R.A. Marcus) is the basic theory of 

. 15 16 unimolecular react10ns ' . ~t may be considered a transition 

state theory because it assumes the existence of a transition state 

or critical configuration which may be considered the point of no 

return. If a molecule attains this configuration during the course 

of reaction, then it is assumed to react, and not return to reactants. 

This concept will be modified below to allow a certain leakage due 

to tunneling. RRKM theory is a statistical theory because it assumes 

that all possible quantum states of the transition state (and also 

reactants) are equally probable. As a corollary to the abQve two 

assumptions, energy re-distribution within the molecule is considered 

to be faster than unimolecular reaction. Within these approximations, 

h · . I . 11 t e m1crocanon1ca rate constant 1S 

k(E) * N (E)/[2Trhp(E)] II-I 

7 



:t: 
where N (E) is the sum of states at the transitipn state, and 

peE) = dN /dE is the density of states for the reactant. More 
a 

explicitly, the sum of states for the transition state and·reactant 

. are given by 

N* (E) = r h(E €.* ) 
n n II-2a 

#ow 

N (E) = r h(E €. ) o· n !!. 'V 

II~2b 

where hex) is the usual step function, 

hex) = 
{

a, x < a 

1, x > 0 

and 
:I: 

€. and €. are vibrational energy levels of the transition state 
n n 

and reactant. The sums in eq. 11-2 are over all possible quantum 

number combinations n = (n
l

,n2 , ... ). It is cornmon to use a .separable 

harmonic oscillator (or normal mode) approximation to obtain the 

:I:} . energy levels, with {w. and {w.} being the respective harmonic 
1 1 

frequencies. Thus, measuring the energy relative to the reactant 

minimum of energy, 

F (n i 1/2) e: = Ei=lhwi + n 

:I: ... F-l :j: .. 
e: = V + r. Ihw. (n. + 1/2) n a 1= 1 1 

:j: 

where F is the number of degrees of freedom and V is the barrier 
(> 

8 



height relative to the reactant (without any zero-point energy 

corrections). Notice that the transition state is summed over only 

F - 1 degrees of freedom, since the reaction coordinate s is assumed 

not to be harmonic', but rather to have a potential energy profile 

; 
V (s), with a barrier at s = O.(V (0) = V ). 

o 0 0 

The Rey idea is to replace the sum of states at the transition 

state, eq. II-2a, by a sum of tunneling probabilities if the total 

; F-l * energy E is below the classical threshold, E h = V + r. 1 hW,/2 
. t 0 ~= ~ 

N* (E) .... T(E) = r P (E - e: *) 
n n II-3 

where peE ) is the id tunneling probability for energy E in the 
s s 

reaction coordinate. If V (5) is only known near s = 0, the transition 
o 

state, one could use, for example, an Eckart potential barrier 

, d h d' I' b b'l' 11,18 assumpt~on an t e correspon ~ng tunne ~ng pro a ~ ~ty 

Alternatively, if V (s) is reasonably well defined, one could use 
o 

the WKB method 9 to obtain P. With eq. II~3, the microcanonical 

. h l' , , , . 11 rate constant ~n t e tunne ~ng energy reg~me 1S g1ven by 

k(E) - T(E)/[2nhp(E)] II-4 

As a final point, angular momentum has been neglected in the 

above considerations, Miller ll has shown that i.ts inclusion is not 

difficult, and experience has shown its effec~ is not great for 

9 



typical low total angular momentum situations. 

To use the theory in its simplest form; one needs to know the 

geometries and total electronic energies of the reactant, transition 

state, and preferably also the product. One also peeds to know the 

normal mode frequencies of the reactant and transition state. To 

obtain these, it is necessary to evaluate second derivatives of the 

Born - Oppenheimer electronic energy with respect to the nuclear 

coordinates. The normal mode analysis then consists of diagona1izing 

the appropriately mass - weighted second derivative or force constant 

matrix (see sec. IIC). For the reactant, one obtains F = 3N - 6 

2 
positive eigenvalues corresponding to the w. , and six zero (or 

~ 

near zero) eigenvalues, that correspond to overall rotations and 

translations. For the transition state, one finds F - 1 positive 

*2 eigenvalues that correspond to the w. • The other nonzero eigenvalue 
1. 

is negative, which implies an imaginary frequ~ncy i~. The presence 

of one imaginary frequency indicates the potential along one degree 

of freedom, the reaction coordinate, has the local form of an inverted 

parabola or barrier. (Actually, in the case of the reactant,. exper -

10 

imental information may be available on the frequencies, so that it may 

not be absolutely necessary to obtain the w. a priori.) 
~ --

To obtain the required geometries, one notes that each is an 

extrenum on the potential surface, so that root searching techniques, 

coupled with information on the gradient of the potential, are required. 

Th 1 d 1 d 1 · d' h' 19 f '1' h e recent y eve ope ana yt~c gra ~ent tec n~ques ac~ ~tate t e 
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required work. Also, if second derivative information is readily 

20 available, which will certainly be the case in the very near future , 

a new approach to finding transition states, due to CerJan and Miller21 , 

may be used. 

An interesting application of the theory is to the viny1idene 

isomerization to acetylene, 

:>C=C: ..... H-C:C-H 

22 Osamura and Schaefer performed the required electronic structure 

calculations described above, at a rather high "level" (with the 

configuration interaction(CI) of single and double electronic 

excitations relative to the Hartree-Fock reference - see Ref. 22 

for the details). Fig. 1 shows the three stationary point geometries 

and Table I gives the vibrational frequencies. As a check on the 

theoretical calculations, one may note that the theoretical geometry 

for acetylene agrees to within 1% with the experimental geometry 

and the theoretical vibrational frequencies for acetylene are within 

* The classical barrier V is 
o 

10% of the experimental frequencies. 

found to be 6 kcal/mol relative to vinylidene, and acetylene is 

lower in energy than vinylidene by 40 kcal/mo1. Electronic structure 

barrier heights are usually too high and, upon further refinements 

of the basis set, the barrier usually decreases. Osamura and Schaefer 

therefore applied a correction to their barrier, that empirically 

corrects for some omissions in their calculation. Their "best" 
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. * classical barrier is est~mated to be V = 4 kcal/mol (thus the zero -
o 

* . F-l. * F point corrected barrier is found to be VZP = V + (E. l·fiw. Ei lhw.)/2 o ~= ~ ~ ~ 

= 4 - 1.8 = 2.2 kcal/mol). 

The tunneling probability was estimated from the Eckart barrier 

formula given in Ref. 11. The density of states for the reactant 

15 was estimated from the Whitton-Rabinovitch semiempirical formula , 

although it should be noted that the simpler semiclassical expressionlS , 

p(E) 
i-=F 

= EF-l/[(F_l)! n hw. 
i=l ~ 

could have been equally used, since numerical comparisons of the rate 

calculated with the above formula and the Whitton-Rabinovitch formula 

did not differ by more than a few percent. 

Fig. 2 displays t·he rate constant results. The dashed curve is 

the rate calculated with th~ 6 kcal/mol barrier and the solid curye 

is the rate with the "best" barrier of 4 kcal/mol. It is clear 

from Fig. 2 that the rearrangement rate is very high, and for 

excitation energies· of less than 1 kcal above the zero .... point energy 

10 ~l 
of vl.nylidene,. the rate to form acetylene is ?,.10 s This is in 

harmony with the experimental work of Skell and co-workers~3a, which 

10 -1 
indi~ates a rearrangement rate of greater than 10 s , and also 

23b with the experiments of Reiser and co-workers , which failed 

to detect any evidence of vinylidene. Basicly, one does not observe 

vinylidene because its lifetime, - l/k- 10-1°_10-12 sec, is so short 



. -. 

that it rearranges to acetylene before it has time to collide and 

react with other molecules (which would indicate its presence). The 

time between collisions in such experiments is,-v 10-7 . s, i.e. much 

longer that the lifetime of vinylidene . 

Before going on with some other applications and extensions, 

it should be noted that there is some uncertainty in these results 

due to uncertainty in the barrier height. As can easily be seen 

from Fig. 2, the rate is extremely sensitive to the value chosen 

for the barrier. In fact, Krishnan et a124 have challenged the 

present barrier, claiming that the zero-point corrected barrier is 

less than 1 kca1/mo1, and possibly even zero. This would imply 

13 

that tunneling per ~ is not the reason for viny1idene being difficult 

to observe. Rather, because then even very small excitation energies 

are above the barrier, it is simply energetics, and not tunneling, 

that leads to the quick rearrangement to acetylene. Unfortunately, 

it is not clear at present which calculation is correct, since 

Krishnan et al 24 base their conclusions on high level perturbation 

22 theory results and Osamura and Schaefer use a high level variational 

treatment - i.e. both methods have different strong and weak points • 
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C. Reaction Path Hamiltonian and the HNC ~ HCN Reaction 

Cl. The Reaction Path Hamiltonian 

In the previous section, the F degrees of freedom of the transition 

state were decomposed into a reaction coordinate, along with F - I 

bound vibrational degrees of freedom. What distinguished the reaction 

coordinate was that the frequency associated with it (obtained from 

a normal mode analysis at the transition state) was imaginary, 

implying an inverted parabola or barrier potential along its direction. 

This analysis was entirely local and only valid very close to the 

transition state geometry. Naturally, as the molecular coordinates 

change from this geometry, the frequencies associated with the F - I 

vibrational modes will change. Furthermore, they will, in general, 

be coupled to one another in some sort of dynamical fashion. In 

the limit of the reactant geometry, the frequencies of these modes 

will have changed to take on F - 1 of the reactant mode frequencies, 

and the potential profile along the reaction coordinate will now 

appear bound, with frequency corresponding to the other reactant 

mode. Similar arguments apply to the product limit. The effect of 

the changing frequencies and couplings between the modes can be 

incorporated into the calculation of the tunneling probabilities 

associated with a unimolecular reaction. In this section, a more 

rigorous formulation of the reaction coordinate and the modes normal 

to it, valid at intermediate geometries, will be given and a classical 

10 Hamiltonian, the reaction path Hamiltonian of Miller, Handy, and Adams , 

,-
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will be discussed. 

Consider an N atom system with a transition state on its potential 

surface separating the relevent reactant and product regions. If 

Riy denotes the Cartesian coordinates of the nuclei. with i = 1.2 •.••• N, 

and y = x,y.z, it is usually most convenient to work in the mass -

weighted coordinates, 

since then the masses m. do not enter into the equations explicitly. 
1 

One now defines a curve through the 3N dimensional coordinate space 

that passes through the reactant, transition state, and product 

geometries. Although there are many such curves, the most relevant 

is the reaction path, which is defined as the zero kinetic energy 

trajectory from the transition state down to the product and reactant 

regions. In Appendix A it is shown that if s is the distance 

travelled along the reaction path, the associated mass - weighted 

Cartesian coordinates must satisfy 

- caV/ax. 1Y 

22' 
where c- = Ei (av/ax.) ,and V is the usual Born - Oppenheimer 

y 1Y 

potential energy. Thus, starting from the transition state, which 

will always be taken as s = O. one may solve the first order 

11-5 



differential equations, eqs. 11-5, to obtain x. (s), if av/ax. 
~y ~y 

can be readily evaluated. 

We constrain the system to have zero total angular momentum 

so that there are F = 3N - 6 relevent degrees of freedom (the six 

overall rotations and translations being ignored). One of the 

coordinates is chosen to be the reaction coordinate s. The other 

F - 1 coordinates then correspond to vibrational motion orthogonal 

to this reaction coordinate and are denoted by Qk' Miller, Handy 

10 and Adams performed a canonical transformation from the usual 

Cartesian coordinates and momenta (x. , p. ) to these new coordinates 
~y ~y 

and their associated momenta (s, Qk' Ps' Pk ), which resulted in the 

Hamiltonian , 

H(p ,s,P,Q) = 
s --

II-6 

where it has been assumed that for fixed s, the potential along each 

vibrational degree of freedom Qk is harmonic. v (s) is the (non
o 

16 

harmonic) potential along the reaction coordinate, ~(s) are the 

harmonic frequencies associated with the Q
k 

and the B
kk

, (s) are elements 



which couple the various vibraticinal modes with one another (B
kF 

denotes the direct coupling of mode k to the reaction coordinate). 

The frequencies ~(s) and coupling elements Bkk , in eq. II-6 

are obtained as follows. The 3N by 3N force constant matrix ~ 

is defined to be the matrix of (mass-weighted) second derivatives, 

17 

K. ." ax. ax., , 
1.y 1. Y 

II-7 
1Y,l. Y 

evaluated at the coordinates on the reaction path. The matrix P -
is a matrix that projects onto the directions corresponding to the 

overall translations and rotations, as well as the reaction 

coordinate direction (which is proportionate to the gradient vector). 

The explicit form for ~ is given in Ref. 10. The projected force 

constant matrix is then defined to be 

(1 p) K (1 - P) 
:: ::: :: :: II-8 

and has seven zero eigenvalues corresponding to the overall translations 

and rotations, as well as the reaction coordinate direction. The 

other 3N - 7 = F - 1 nonzero eigenvalues are the ~, with associated 

eigenvectors denoted by L. k(s). 
1Y, 

Let the normalized negative 

gradient vector be the k = F eigenvector : 

- cdv/ax. lY 



The coupling elements are then given by 

L aL. k(s) 
1. y , = -=-=-a .... s~-

i,y 
L. ,(s) 

1y,k 
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11-9 

The terms BkF(s) couple the various normal modes to the reaction 

coordinate and are also related to the curvature K(S) of the reaction 

path : 

[

F-I 
K(S) = E 

. k=l 
B (s) 2]! =[2:: k,F . y 

1, 
x:.r- (s) J 

The harmonic oscillator coordinates (Qk'Pk) are not always the 

most convenient ones. The action - angle variables (nk , qk) 

corresponding to these coordinates are defined bylO 

Qk = 1(2nk + l)/~ sinqk 

Pk = 1(2nk + 1) w~ cosqk 

and will be useful in the perturbative arguments that follow. The 

Hamiltonian in terms of these variables is given by 

F-l 
H (p , s, n, q) 

s --
L: (n

k 
+ t)~ (s) + Va(s) 

k=l 

+ ~ ~ s - 5- =~(2nk + 1) (2n k, + 1)wk, (s>! Wk (5) 

t + ~: ~(2nk + If Wk (5) sin Ok Bk • F(s) ] ' 
II-IO 
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In eq. II-IO the dia,gonal elements Bkk(s) are defin~d as 

W
k 

{"s) 

2w
k

(s) 
B (s)::-
k,k 

where here the prime denotes differentiation with respect to s. 

(Note that in the Qk,Pl< Hamiltonian, eq. II-6, Bkk = 0.) 

C2. An Improved Rate Constant Formula 

In sec. Cl, a more rigorous definition of the reaction··coordinate 

and associated reaction path Hamiltonian was given in which the 

frequencies of the normal modes change as s, the reaction coordinate, 

changes, and also certain couplings between the modes occur. It is 

possible to incorporate these effects into a calculation of the ,. 

rate constant. This will be accomplished with the classical perturb -

25 
ation theory described in Born's famous book . The basic idea is 

to take the original Hamiltonian, in terms of the zero - order. action -

angle variables (eq. II-lO) , H.(p ,s,n,q), and through certain 
s --

canonical transformations arrive at yet another Hamiltonian, 

H(p ,s,N) = E , which does not depend explicitly on the new angle 
s -

variables conjugate to N. Effectively, for fixed p and s, one has 
s 

averaged over the F - I vibrational modes. One then, in the 

spirit of the old quantum theory, associates the new actions N 

with the quantum numbers of the modes at the transition state and 

calculates a tunneling probability for each combination of N via 

the WKB approximation, 

T(E) = EN II-ll 
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where e is the ld barrier penetration integral, 

e(E,N) = ~:>Imp (s,E,N) 1° s -
1I-12 

s 
< 

This is completely analagous with the simple treatment of sec. lIB, 

except'that implicit in eqs. II-ll and II-12 are the (average) 

effects of changing frequencies and mode coupling's. The micro -

canonical r~te constant is then given as before (cf. eq. 1I-4). 

The transformation H(p ,s,n,q) ~ H(p ,s,N) is very difficult 
5 -..., s-

to do exactly. We will carry it out to second order in perturbation 

theory, which, although not exact, suffices for'the present application 

to hydrogen isocyanide rearrangement, since the effects to be included 
,I, 

actually are small., (There are, of course, better, but more numerical 

f 1 ° hO h f ° 26 d h ld ObI ways 0 accomp 1S 1ng suc trans ormat10ns an t ese cou POSS1 y 

be used for. more pathological examples.) 

Considering the coupling elements B to be the perturbation, one 

can write the Hamilton~an as 

H( ) = H (p s n) + H (p ,s,n,q) + H2 (P ,s,n,q) 
p ,s,n,q 0 s' , _ 1 s - '- s --

s --

where H is given by 
o 

F-l 

L (nk + ;)wk(s) + VO(s) + ;PS2 
k=l 

and HI and H2 are given by 

II-l3a 

II-l3b 



-. 

C2 ="'fBk,F(S)~(2nk+ l)/l.Mk(s) sin qk 

25 Following Born ,classical perturbation theory then gives the 
.. 
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II-l3c 

II-l3d 

II-l3e 

Hamiltonian in terms of the good action-angle variables as a perturb -

ation series : 

E(p ,s,N) = EO(p ,s,N) + El(P ,s,N) + E2 (p ,s,N) + ... 
s - s - s - s- II-l4a 

where 

EO(p ,s~N) = HO(p ,s,N) 
s - s- II-l4b 

El(p ,s,N) = Hl(p ,s,N) 
s - s- II-l4c 

E (p ,s,N) = H2 (p s,N) 
2 s - s -

II-l4d 

- ; 
a I () 12 ~ls __ 0 _a_·~ __ \ ___ l _(_p_s_' s_'_~_)_ 

L k·w(s) 
k 
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with 

2TT 

Hi(PS'S,~) = (2 TT)-(F-1
Jd

9. Hi (PS·S,~,9.) II-15a 

o 

II-ISb 

Using eqs. 11-14 and II-IS, a straightforward calculation gives 

where 

E (p s N) =. t p S 2 + V (s) + L (Nk + t) Wk (s) 
o S' '- 0 k 

II-16a 

E (p ,s,N) = 0 
1 s -

II-16b 

II-16c 

A(s,N) = II: 
k<k' 

\,k' (S)2 (Nk + t)(Nk' + t) W
k

(s)2 + w
k

' (s)2 

w
k 

(s)w
k

' (S) 

B(s,N) 

II-16d 

N + 1 
k 

W ' C-s) 2 
12: k . = 3,"", B ()2 it k,F S 8 k W

k 
(S) 3 

[Wk(S)(N
k

, .+ t) - w
k

' (S)(N k + t~ 
w

k 
(S) 2 -hJ

k 
( S) 2 

[Wk (s) 2 + W
k

' (S) j , 
W

k 
(S)W

k
, (S) 

II-l6e 

II-l6f 



With the Hamiltonian expressed in terms of (p ,s) and the good 
s 

action.angle variables, it is then easy to use energy conservation, 

i.e. , 

EO{p ,s,N) + E1(p ,s,N) + E
2

(p ,s,N) = E 
s - s - s_ 

to define 1m p (s,E,N). One finds 
s 

1m p (s,E,N) = ... T2(V - E + A) 
s - V 

where A,B,C are as defined in eq. II-16 and 

II-17a 

II-17b 

From eqs. 11-17 one can caluclate the barrier penetration intoegral 
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via eq. U-12, the correspondOing tunneling probability from eq. II-II, 

and finally the microcanonical rate from eq. 11-4. 

To summarize, the present model is vibrationally adiabatic in 

that the transformation to good action angle variables (~,~) + (~,Q) 

is performed holding p and s fixed as parameters. This is an 
s 

approximation. Also, the transformation was carried out to only 

second order perturbation theory and is thus only valid for small 

coupling perturbations. 
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C3. Tunneling in HNC ~ HCN 

The first step is to obtain the relevant portion of the reaction 

path and the corresponding frequencies and couplings. Yamaguchi and 

27 Schaefer performed the required electronic structure calc'ulations 

within the self-consistent field (Sct) Hartree-Fock approximation (see 

Ref. 27 for details). They also performed a limited number of higher 

level (configuration interaction) calculations. They found, for example, 

that the geometry of the transition state predicted by the SCF theory 

was within 3 % of the more exact CI result. The CI barrier height 

(relative to HNC), however, was 36 kcal/mol compared to the SCF value 

of 40 kcal/mol. Since tunneling is quite s~nsitive to the barrier 

height, the results we report will be as a function of the total 

energy relative to the barrier hei.ght, 

* insensitive to the choice of V . 

* . E - V , wh~ch should be somewhat 
o 

o 

To determine the reaction path x. (s), one starts at the 
~y 

transition state and takes a step in the direction of the eigenvector 

associated with the imaginary frequency, L. F(O) : 
~y , 

·x. (L~s) = x. (0) ± 
~y ~y 

L. F(O)£\s, 
~y, 

where £\s is an appropriate step size and the + or - takes one to one 

or the other side of the transition state. Subsequent steps are then 

determined from 

X;y(sJ') = x'y(s. 1) + L. F(s. 1)£\S ... ~]- ~y,]-



where L. F(s) is the negative normalized gradient vector (cf. the 
~y, 

r.h.s. of eq. 11-5). This approach is basicly guIer's method28 of 
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solving the differential equations given by eqs. II-5, and represents 

the simplest way to find a reaction path. Unless the step size in s 

is chosen very small, however, the reaction path generated by the 

above approach will oscillate about the true path. Although there 

are ways to patch up this difficulty29, or avoid it21, we chose simply 

to smooth out the nonphysical oscillations "by hand", which should be 

satisfactory, since only a small portion of the reaction path near 

the transition state yields significant tunneling probabilities. 

The relevant portion of the reaction path is shown in Fig. 3, where 

s is reported in units of amul / 2X ( I amu i /2X = 80.679 ml / 2a ). 
e 0 

A 

step size of 6s = 0.1 amul / 2X was used in the calculations. The SCF 

- 0 + 3 + 1/20 

force constant matrix was evaluated for s - ,-0., and - 0.5 amu A. 

The coupling elements Bkk , and frequencies ~ were obtained from 

the eigenvalues and eigenvectors of the projected force constant matrix 

(see eq. 11-8). The Bkk , were obtained from eq. 11-9 using finite 

differences to estimate the derivatives. Since F = 3, there are only 

two frequencies, essentially the H - (CN) stretch, and the C - N 

stretch. The reaction coordinate (k = F =3), is mostly the bending 

vibration. As was mentioned earlier, some CI calculations were 

also performed. Owing to the expense of such calculations, Yamaguchi 

and Schaefer were only able to calculate the CI force constant matrix 

at the transition state. To obtain the best estimates of the frequencies 

away from the transition state, wk(s), the SCF frequencies were 



26 

The potential V (s) was fit to an Eckart 
. 0 

function
18 

with the CI energetics and the CI imaginary frequency at 

s = O. Fig. 4 displays the 'relevant scaled frequencies and the 

potential Vo(s). Fig. 5 displays the relevent couplings B
kk

,. 

B12 couples the two modes orthogonal to the transition state to one 

another, B13 couples the H - CN stretch to the reaction coordinate, 

and the other coupling B23 , which couples the CN stretch to the 

reaction coordinate,was found to be small and essentially zero 

. h' h . 1 . ( 10-3 -1/2) I h ld w1t 1n t e present numer1ca error ± m a • t sou 
e 0 

be noted that these couplings are relatively small, especially in 

10 comparison with the curvature couplings in the H + H2 problem • 

The microcanonical rate constant, k(E), for the HNC + HCN 

reaction is shown in Fig. 6, as a function of the energy relative 

* to the classical barrier height (V = V in the figure). The 
o sp 

classical threshold is denoted by an arrow. Below this energy the 

rate is seen to vary exponentially with the energy, a characteristic 

feature of tunneling. To see the importance of tunneling, one could 

note that an ideal experiment, performed in a molecular beam, would 

be capable of measuring rates faster than 105s-l ( the time of flight 

across a molecular beam chamber is -10-5s ) . Fig. 6 indicates that 

rates this fast occur for energies as low as 8 kcal/mol below the 

classical threshold. 

Finally, to assess the importance of including the coupling 

elements Bkk , in the tunneling probability, the calculations were 
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carried out with all the B's set to zero. This decreases the rate 

* constant, but not by much; it is 5% smaller at E-V = 3 kcal/mol, 
o 

* * 10% smaller at E-V = 0, and 15% smaller at E-V = -2 kcal/mol. 
o 0 

Over the physically significant energy region, the tunneling is 

not influenced much by the coupling elements. This is primarily 

because the reaction path is relatively flat throughout the relevent 

region (see Fig. 3). 
10 In the case of H + H2 ,the reaction path 

was very curved in the region of the transition state, implying 

large and significant couplings BkF . 

O. Tunneling in the Unimolecular Oecompostion of Formaldehyde 

01. Preliminaries 

The photodissociation of formaldehyde has attracted considerable 

theoretical and experimental interest in recent years 30 
Let us 

,consider the collisionless limit of the process, with the following 

idealized sequence of events. First a laser electronically excites 

formaldehyde from its ground singlet (S ) state to a single ro -
o 

vibrational state of the first excited singlet state (Sl) , 

II-19a 

which then decays by either re-emitting a photon (fluorescence), 

II-19b 
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or by undergoing a radiationless transition to a highly vibrationally 

excited S state, 
o 

which then may decompose unimolecularly, 

II-19c 

II-19d 

The symmetry is such that molecular products R2 and CO only correlate 

with the ground S state. It has been assumed that the laser 
o 

excitation energy is not too much above the S ~ S origin so that 
o 1 

radical products (RCO + H) are energetically inaccessible. 

. 30 31 The exper1mental results ' are consistent with very fast 

nonradiative decay rates for Sl' Furthermore. it appears that"this 

nonradiative decay is small when D2CO is used instead of H2CO. 

A particularly attractive idea is, therefore, that tunneling32 ,ll (in 

reaction II-19d) plays a significant role - i.e. that there is a very 

fast nonradiative decay from Sl to So that is coupled with tunneling 

to form molecular products. 

33 Recently, Goddard, Yamaguchi, and Schaefer have performed 

extensive and highly accurate ab initio configuration interaction 

calculations on the S surface. and in the subsequent section their 
o 

results will be used (along with some supplementary calculations by 
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Yamaguchi and Schaefer) to obtain accurate rate constants34 for 

reaction II-19d. 

D2. Reaction Path and Tunneling Calculations 

Tables II and III give the harmonic frequencies of stable (S ) 
o 

formaldehyde and the harmonic frequencies and barrier height of 

the transition state of reaction II-19d, obtained from ab initio 

33 34 calculations ' at various levels of sophistication. The level of 

theory is increasing from left to right, with SCF denoting calculations 

made with a single (Hartree-Fock) configuration and CI denoting 

calculations with many (literally tens of thousands) configurations. 

The reader may consult Refs. 32-34 for more technical details. The 

"experimental frequencies " of Table II are the harmonic frequencies 

35 inferred from experiment • The "scaled frequencies" in Table III 

are the best estimates of the transition state frequencies, obtained 

by empirically modifying the DZP-CI frequencies by 

( scaled) 
wi.· TS 

= ( DZP-CI) ( exptl j DZP-CI) 
wi TS x wi wi H

2
CO 

One point to be made about Tables II and III is that ab initio 

electronic structure theory estimates frequencies reasonably well, 

even at rather "low" levels of theory, such as the DZ-SCF level. 

Thus if one considers the RRKM rates predicted with the various 

levels of theory, and adjusts appropriately for the different 

barrier heights by, e.g., comparing k(E - V*) rather than k(E), 
o 



there will not be much variation in the predicted rates. Using 

the RRKM + tunneling model described in sec. lIB, we obtained 

Table IV, which indeed confirms these expectations. Thus for 

the energy region for which the rate constant is 105 or larger, 

there is less than a factor of three variation in the rate 

constants predicted by the various levels of theory. 

30 

Fig. 7 shows the potential energy profile along the reaction 

path in the vicinity of the transition state, as given by the 

DZP-CI calculations. It has been previously determined that 

for these sort of tunneling calculations, one need only consider 

the region on either side of the transition state to where the 

potential has fallen off to about 8 kcal/mol below its value 

at the transition state. The points in Fig. 7 are the ab initio 

values, and the solid line is an Eckart potential function 18 fit 

to the ab initio energetics and curvature at the transition state. 

Thus it appears that the Eckart potential form is well suited 

for this problem. 

Ab initio force constant matrices were calculated at the DZP - CI 

1/2 0 

level at values of the reaction coordinate s =:t 0.21 and 0 amu A; 

these are points at which V (s) has fallen to about 8 kcal/mol below 
o 

its value at the transition state. The frequencies and couplings 

were obtained as before (sec. IIC) from the projected force constant 

matrix. The frequencies are listed in Table V. Owing to certain 

technical difficulties, the out-of-plane bend, w6 , was only estimated 
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roughly (see Ref. 33 for more explanation). However, since it is 

one of the lower frequencies, its variation with s is not expected 

to have a significant effect on the microcanonical rate. (But if 

the energy were not completely randomized, then it is possible 

that certain mode specific effects, related explicitly to this 

36 out-of-plane bend, could playa role .) 

The coupling elements Bkk , were rougly estimated using a 

finite differences approximation to eq. II-9 and the three sets 

of eigenvectors obtained for s ="± 0.21 and O. It will turn out 

that the actual effect of the coupling is small, so that a more 

accurate determination is unnecessary. Within the numerical 

error, the most significant nonzero couplings may be considered 

constant over the -0.21, 0.21 interval in s and are found to be 

B13 ;; 0.01, B34 :: 0.015, BlF ;: 0 •. 005, and B3F -;;; -0.009 m!/2ao 
The tunneling rates are presented in Table VI. Column A 

is just the simple RRKM + tunneling rate of sec. lIB, with the 

DZP-CI values for all relevent parameters. Column B is the same as 

A but with the Eckart potential replaced by the actual V (s) points 
o 

and a WKB approximation to the tunneling probability. Column C 

is the same as B, except that the frequencies are allowed to vary 

along s (i.e. the potential has the form of eq. II-17b), with 

each ~(s) being defined by a quadratic fit to the points in 

Table V. Column D includes the effect of coupling between the 

modes, using the perturbative formulae of sec. IIC. Column E 
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is the same as Column D, but with the couplings all multiplied by 

a factor of two, to see the effect of larger coupling. 

One sees from Table VI how relatively insensitive the rate is 

to the level of rigour used to describe the tunneling dynamics. 

For example, the simplest model, Column A, differs from the most 

rigorous model, Column D, by less than 20% for energies for which 

the rate is significant ( ?JI05 5-1) 

Let us now summarize our best predictions of the microcanoni"c'al 

rate for reaction II-19d at the experimental excitation origin for 

So ~ 51' hw = 80.6 kcal/mol. The zero-point energy of formaldehyde 

is 16.8 kcal/mol (using the experimental frequencies of Table II), 

so that the total energy is then 97.4 kcal/mol. Using the best 

* classical barrier of 92 kcal/mol we see that E - V = 5.4 kcal/mol." 
o 

Interpolating from Column D, Table VI, and applying a factor of 

d 11 . two ue to symmetry • g1ves 

6 -1 
k = 5.9 x 10 s 

It is amusing to note that this result is in remarkable agreement 

with an earlier estimate of Miller, that used the simplest RRKM + 

tunneling theory and some significantly different parameters. 

This magnitude of k near the origin of excitation has been 

h 30 b . . h h . 1 1 . . s own to e cons1stent w1t t e exper1menta resu ts, S1nce 1t 

is significantly larger than typical radiative decay rates (-2 x 105
5-

1). 

Also, if one replaces hydrogen by deuterium, thE mass effect reduces 
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11 k by about a factor of . 40, making it comparable to or less than the 

radiative decay rates, which is again consistent with the experimental 

observations30 ,3l. 

However, this picture may not be perfect because there is still 

some uncertainty about the barrier height. Recent work by Frisch, 

37 Krishnan, and Pop Ie has suggested that the zero-point corrected 

barrier is VZP = 80 kcal/mol, which is to be contrasted with the 

33 best estimate of Goddard, Yamaguchi; and Schaefer ,VZP = 87 kcal/mol. 

The result of Frisch et al is based on a perturbation theory approach 

that actually includes certain configurational effects not included 

by Goddard et al in their extensive many conftguration variational 

calculation. On the other hand, the variational ·calculation includes 

more completely some configurational effects. Whatever the final 

outcome, one can still use Table VI to estimate the rate. Suppose, 

for example, that upon further refinements, the true zero~point 

corrected barrier is found to·be 83 kcal/mol. Then the classical 

barrier is 83 + 16.8 - 11.8 = 88 kcal/mol, where the zero-point 

energies have been taken out ( 11.8· kcal is. the best estimate of the 

transition state zero-point energy obtained from Table III). Thus 

* E - V = 97.4 - 88 = 9.4 kcal. From Table VI, one interpolates 
o 

8 -1 11 k = 2 x 10 s ,where again the factor of two due to symmetry 

has also been included. Here, we have used the previous observation 

that although the barrier height may vary, the rate as a function of 

* . E - V remains relat1vely constant. 
o 
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D3. A Closer Look at the Formaldehyde Decomposition Reaction Path 

Up until now, we have been only looking at a rather small 

portion of the reaction path that was important for tunneling. 

However, if one wishes to do a more detailed theoretical study, 

as, for example ,in Ref. 36 where mode specific effec.ts are considered, 

a wider and more detailed view of the path is necessary. To 

obtain such a view, including the frequency and coupling variations, 

would be exceedingly expensive with a high level of electronic 

structure theory. However, as has already been noted, the 

frequencies are reasonably well described with a relatively low 

level of theory, such as· DZ-SCF. 

In the following, we have used the computer code written by 

King, Dupuis, and Rys38 to obtain.the reaction path, frequencies, 

and couplings at the simple DZ-SCF (i.e. one configuration Hartree-

Fock) level. 

The Reaction Path 

The equilibrium and transition state geometries are both planar, 

and wi thin the DZ-SCF level are 32 .. 

H 

" .. '0 1.217 
0 

XS4 
H 

CJ 

(with bond distances in A). As usual, the negative normalized 

gradient vector in mass-weighted coordinates (eq. II-5) was 
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follo~ed, ~ith the initial step being in the direction of the 

eigenvector of the imaginary frequency at the transition state 

(see the procedure in sec. IIC). 1/2 0 

A step size 6s = 0.05 amu A· 

was found to be sufficient, and, owing to the steepness of the 

potential, no nonphysical oscillations were apparent upon subsequent 

steps. (As a check, certain portions of the path were reproduced 

. 1/2-with a smaller step size of 0.025 amu A.) A total of 28 steps 

were taken from the transition state towards equilibrium 

formaldehyde, and only 10 towards molecular products H2 + CO. 

The reaction path is planar, since the gradient vector is always in 

the plane of the molecule. The corresponding potential profile is 

shown in Fig. 8. It will be noticed that the barrier is about 

114 kcal (but, if desired, could be readily scaled to whatever 

barrier height is desired). It was found that the reaction 

cooridinate (with imaginary frequency 23201 at the transition state) 

-1 corresponds to the w6 (b 2) = 1349 cm mode ·in equilibrium 

formaldehyde. This is also evident from Fig .. 8, since in the 

vicinity of H
2

CO (s = -1.4 amul / 2X), the potential indeed has the 

form Vo(s)~ (1/2)W6 (b 2)26s2, i.e. the curvature near equilibrium 

formaldehyde is less in absolute magnitude than the curvature of the 

potential at the transition state. 

The Frequencies 

As usual, the frequencies were obtained from the eigenvalues 

of the projected force constant matrix. This was done for a 



total of 30 geometries along the reaction path, allowing for a 

very clear view of how the frequencies change with s. 

36 

There is a slight problem of nomenclature for the frequencies. 

The standard numbering of the reactant frequencies, employed in 

the previous section in Table II is not in one to one correspondence 

with the standard numbering of the transition state frequencies in 

Table III. Thus, for example, the reaction coordinate frequency, as 

discussed above, corresponds to W6 (b2) of the equilibrium 

formaldehyde frequencies. This is not to be confused with the 

w
6

(a") transition state frequency, which is really the out-of-plane 

bend. To represent the ~(s) we have chosen to use the labels of 

the transition state. 

In Fig. 9 is shown the variation of the frequencies with s. 

There are some quite interesting features here. The two CH 

stretches (wI and w2 in the transition state labelling scheme) 

approach each other closely near equilibrium formaldehyde and 

appear to have a sort of avoided crossing near s = -1.1. In the 

product limit, it appears that these two frequencies turn into the 

only two nonzero product frequencies, corresponding to H2 and co. 

Notice also that the out-of-plane bend, w
6

' has a rather deep 

"well" near s = -0.4. The out-of-plane bend, by symmetry, does not 

couple with any of the other modes and thus may cross other 

frequencies, as it crosses w4 near s = -0.2. The Ws frequency is 

absent, since it is the reaction coordinate. The above features 
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have been independently verified by Yamashita, Yambe, and Fukui39 . 

The Coupling Elements 

As before, the coupling elements were obtained with a finite 

difference approximation to eq. 11-19. This approximation should 

be reasonably good here, since the spacing between points is now 

. 1/20 typ1cally small (0.05 amu A). Fig. 10 ahows some of the couplings. 

An interesting observation, which holds for the other couplings, 

is that B2l is large whenever the associated frequencies become 

close to each other. Thus B2l is quite large where the two CH 

stretches approach very closely, near s = -1.1. Generally speaking, 

Fig. 10 shows that the couplings can be quite large. However, it 

is amusing to note that in the vicinity of the transition state, the 

couplings are generally not too large. This is very fortunate, and 

indicates that the tunneling analysis di"scussed in the last section 

is reasonably justified. 

As a final point, we may compare the couplings, obtained from 

many SCF calculations, to the couplings obtained in the previous 

section on the basis of only a few CI points. We had previously 

found that the only significant couplings were approximately 

B13 -:.:: 0.01, B34 ':: 0.015, BIF -::. 0.005, and B3F-;. -0.009. From the 

SCF calculations, we find B13~ 0.004, B34z 0.02, BIF~ 0.00, and 

B
3F

Z-0.009, in satisfactory agreement, in view of the significant 

differences between the two calculations. 
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E. Summary 

. 
In secs. IIA-IIC. tunneling in several unimolecular reactions was 

treated with varying levels of theoretical sophistication. 

In sec. IIA, the microcanonical rate constant for the isomerization 

oof vinylidene to acetylene was predicted with a' simple RRKM + tunneling 

model due to Millerll ,22, and was found to be consistent with the 

available experimental evidence. The model used ignored the dynamical 

effects of coupling between the various normal .modes with each other, and 

with the reaction coordinate. It is difficult to say whether or not the 

neglect of these effects is serious withouto doing a much more detailed 

study. Nonetheless· the calculations reported suffice as a reasonable 

first guess. 

In sec. lIB, a more sophisticated dynamical model, based on the 

. h H "I ,10 dId f h d I' react10n pat am1 ton1an was eve ope to account or te mo e coup 1ng 

effects. A combination of classi"cal perturbation theory and the WKB 

method was used to obtain the tunneling probability and thus micro-

canonical rate constant. An application to hydrogen isocyanide isomer-

ization showed ~hat the effects of coupling, at least for this reaction, 

are not very significant.. Thus over the significant energy range, the 

coupling effects did not alter the rate by more than 15%. The obvious 

reason for this lack of importance is the smallness of the coupling 

elements Bkk , in the reaction path Hamiltonian formalism. Although in 

general it is difficult to predict ~ priori if the coupling elements 

will be small, inspection of the reaction path shows that the reaction 
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proceeds very smoothly, without any abrupt changes in the nature of the 

vibrational modes, implying that the reaction is relatively adiabatic. 

Furthermore, the reaction path itself has very little curvature in the 

region of the transition state, implying that the BkF which couple the 

vibrational modes .to the reaction path are quite small. Not all reactions 

are this nice. In the case of H + H2 , the curvature effects are known 

10 to alter ther tunneling probability by an order of magnitude or more 

In sec. IIC the decomposition of formaldehyde was treated with the 

methods of secs. IIA and lIB. The rate constant obtained 'was found to 

be compatible with experiment. Again it was found that the effects of 

mode coupling play a relatively insignificant role, changing the overall 

rate by not more than 20%. As with hydrogen isocyanide" the couplings in 

the region of the transition state were relatively small. 

In sec. 110, however, a wider'viewof the formaldehyde reaction 

path was obtained. It was seen that although the couplings are not 

very large near the transition state, they can indeed become large 

along other parts of the reaction path. This suggests that a more 

detailed dynamical treatment (Le. nonperturbative and nonstatistical) 

may indeed show that mode coupling is more important. 

As pointed out earlier, the effect of tunneling in unimolecular 

reactions has not been treated very much in the literature (see Forst17 

for some brief remarks) and the applications presented here represent the 

first serious effort at illucidating its importance. 
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III. Charge Transfer from a Classical Perspective 

A. Preliminaries 

One of the classic problems of chemical dynamics is collisional 

40 ionization ,for example the reactions 

Na + I ... Na + + 1-

Cs + Br2 

H+ + H 
2 

III-la 

·III-ib 

III-ic 

The problem is nonadiabatic in that at least two potential curves 

(or surfaces) must be considered, along with the associated couplings. 

Quantum mechanics provides the natural language for the description of 

such processes. However, given a quantum mechanical Hamiltonian, it is 

possible to work backwards, and obtain a classical Hamiltonian. Then, 

purely classical dynamics may be used to describe the problem. Such 

12 
an approach has been adopted by McCurdy, Meyer, and Miller . and has 

been successfully applied to the study of fine structure transitions in 

certain atom-atom and atom-molecule collisions. Of course for reactions 

as simple as III-la, it is possible to do an accurate quantum mechanical 

41 treatment . However, for the related charge-transfer reactions such 

as III-ib and III-lc, an accurate quantum analysis is much more 

difficult, whereas the corresponding classical analogue approach to 

be described is still quite feasible. 

Another classical approach to such problems, to be distinguished 
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from the present, is the surface-hopping trajectory method of Tully and 

42 
Preston . In this approach, classical trajectories are followed on a 

single surface up to a crossing point, where then a hop to another 

surface may take place according to a certain probability. This 

method mixes both classical and quantum dynamics and, as pointed out 

43 
by Miller , can lead to a poor description of dynamical resonances. 

Nonetheless the Tully-Preston method has been quite successful in 

some applications, such as to reaction III-Ie. 

In the following, we will treat explicitly a twO-state model of 

reaction III-la,a1though the method can be generalized easily to 

related reactions. 

B. The Classical Analogue 

In the quantum mechanical formulation of the problem, the 

Hamiltonian operator is sandwiched between elements of a complete and 

orthonormal set of basis functions to obtain an equivalent matrix 

representation. 44 Commonly, two sorts of basis set are employed In 

one set, the potential terms are made diagonal, and in the other the 

kinetic terms are made diagonal. These are called, respectively, 

adiabatic and diabatic representations. It is possible to obtain a 

classical analogue for either case, but we consider here only the 

diabatic representation. 

Considering a two-state model of the simplest charge transfer 

reaction, III-la, the quantum diabatic Hamiltonian representation of 

the stationary state Schrodinger equation is 
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where WR.(R) is the R.'th partial wave, R is the internuclear distance, 

E the total energy, and (tt = 1) 

T = l[-(2U)-ld2/dR2 + R.(R. + 1)/2UR2) ,.. 
~ -

V = ( VOO VOl) 
.~ 

VIO .Vll · 

be considered a c.ovalent Na-I interaction. and VII (R) the ionic 

Na+-I- . i l.nteract on. In the diabatic representation VOO and VII may 

cross, but the potential matrix is nondiagonal. Had the adiabatic 

representation been employed, a noncrossingrule would hold, V would 

be diagonal, and the coupling terms would be in the kinetic energy44. 

By expanding V in terms of Pauli spin matirces and then representing 
~ 

the spin operators in terms of classical action-angle variables, Meyer 

l2c and Miller showed that the corresponding classical analogue of the 

matrix Hamiltonian above is 

Hcl(P,R,n,q) 
222 = P /2U + R. /2UR + (l-n)VOO + nVll 

+ 2VOl/(n+l/2) (3/2-n) 'cosq III-2 

The idea now is that the electronic degree of freedom is represented 



-. 

43 

by the action-angle variables (n,q). A value of n near zero will 

correspond to mostly covalent states, whereas a value of n near one 

will correspond to mostly ionic states. (There are other ways of 

obtaining the classical Hamiltonian12 , but for the two-state model 

the spin analogy is the simplest.) 

+ C. Classical Trajectories for Na + I ~ Na + I 

The diabatic matrix elements of Faist and Levine41 were employed 

45 in a relatively standard quasiclassical trajectory study with the 

classical Hamiltonian of eq. 111-2. For various fixed centre-of-mass 

energies E, the initial positions and momenta were taken as R = 160A, 
o 

p = - 12~E ,n = 0, and q = 2n~, where ~ is a random number between 
o 0 

o and 1. It was also necessary to average over the orbital angular 

momentum ~. which is related to the classical impact parameter b 

through i
2 = 2~Eb2. We adopt the usual quasiclassical procedure45 of 

choosing b from b = ~ b where ~' is another random number max' 

between 0 and 1. The value of b must be such that no charge 
max 

transfers will take place for larger values of b. A value of 9 A 

was found satisfactory (initial and final electronic actions were the 

same to three significant figures). It will be noticed that the initial 
": ... 

internuclear separation (the "practical" asymptotic limit) is rather 

large (160A). This is because b is typically large for such charge 

transfer reactions (crudely, one could imagine many charge transfers 

taking place near the diabatic curves' crossing point of about 7 A -

see, e.g., the "harpoon mechanism"l), and thus the centrifugal term 

2 2 2 2 
~ /2~R = Eb /R can be significant even for seemingly large values of 
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the internuclear separation R. A standard (variable step-size, 

5 1 th order predictor-corrector) routine was then used to integrate 

Hamilton's equations, 

p = - aHcl/aR 

n = - aHc/aq 

R = aHc/ap 

q = aHc/an 

with Hcl given by eq. 111-2, until R was sufficiently large ( ~lDA), 

and P was positive. A crude 'binning' procedure was used to determine 

the cross section for charge transfer. If the final action n
f 

is 

between 1/2 and 3/2, then the trajectory is termed reactive. (There 

are better 46 ways of analysing the products, such as the moment method .) 

The charge transfer cross section is then given by the well-known 

45 Monte-Carlo formula , 

cr{E) = nb 2 N /N max r 

where N is the number of charge transfers and N the number of 
r 

trajectories run at the energy E. The Monte-Carlo error, that is 

one standard deviation, is given by45 
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About 400 trajectories were run at each energy, with the corresponding 

Monte-Carlo error in the cross sections being about 10%. 

The results of the calculations are shown in Fig. 11. For 

comparison, the essentially exact quantum mechanical results of 

Faist and Levine4l are shown as the solid curve. It is clear that 

the present classical model is qualitatively correct, and somewhat 

quantitative. It is conceivable, therefore, that the classical 

analogue approach might be useful for studying more complex charge 

transfer reactions, such as III-lb and III-Ic , where it is difficult 

to obtain the quantum result. 

D. A Semiclassical Model 
.~ . 

The encouraging results of the previous section suggest that a 

semiclassical model, based on the classical analogue Hamiltonian, might 

be appropriate. We follow here the semiclassical perturbation theory 

approach of Miller and Smith47. The classical analogue Hamiltonian 

is written as 

1II-3a 

where 

2 2 2 
+ nV11 ' I I I...., 3b H = P /2~ + ~ /2~R + (1 - n)VOO 0 

and 

HI = 2/(n+l/2) (3/2-n)' VOlcosq III-3c 
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The semiclassical S matrix for a transition n
l 

+ n2 is then given 

by
47, 48 approximately 

(2rr)-l S 
n

2
+ n l 

with 
<Xl 

A = f dt 
_<Xl 

2rr ./1 -iA fdq e -~ nq e 
0 

Hl (t) 

In eq. 111-4, q is the initial value ~f the angle variable 

III-4a 

1II~4b 

associated with the electronic action. To find the time dependence 

of Hl , one assumes that it arises out of the zero-order trajectory 

determined by eq. III-3b : 

111-5 
n = 0 

The value of n in eq. 111-5, which is constant to zero order, is 

taken as (n
l 

+ n
2
)/2 = 1/2. As discussed by Miller and Smith47, 

this is one way of symmetrizing the S matrix (but not .the only way). 

Th~ time evol~tion of q isgi~en by 

t 

q(t) = q + f (Vll-VOO ) dt 
t 
o 

t 

= q + f w dt 
t 

o 

.. 
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with w = VII - VOO. Inserting this explicit (but approximate) time 

dependence for q(t) into eq. III-4b, and changing integration 

variables from t to R (dt = ~p~ldR) results in 

Rt R 1 R -1 -1 
A = 2~{ I VOl(cosq cos I p- ~wdR' - sinq sin I.p ~wdR')P dR 

00 R
t 

R
t 

00 R 1 R -1 . -1 
+ I VOl(cosq cos I p- ~wdR' - sinq sin I P ~wdR')P dR] ,111-6 

Rt Rt Rt 

where P = ± 12'\..1(E _ii~-;;2--= (V~O+vll)m , and Rt is the turning 

point (R value s.t. P= 0). 

In the first integral of eq. 111-6, one sets P < 0, corresponding 

to an incoming trajectory, and in the second integral P > O~ which 

co.rresponds to an outgoing trajectory. This then leads to 

A = Z cosq 

where 

00 R -1 1 
Z = 4'\..1 I VOl cos I P ~w dR' P- dR 

R
t 

R
t 

Eq. 1II-4a for the S matrix then becomes 

-iZcosq 
e 

111-7 

111-8 

III-9 
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where J 6n is a regular Bessel function of order 6n. In the case 

of charge transfer, one has simply 

111-10 

. 
The argument Z may be evaluated along the zero-order classical 

trajectory with eq. 111-8. Numerical difficulties may arise (since 

P = 0 at R = R ) and it may be best to do the integral directly in the 
t 

time representation. In this case, 

00 t 
Z = 4/ dt VOl(t) cos / w(t')dt' 

o 0 
III-II 

where the zero of time is understood to be the classical turning point 

Rto The time depe~dence of VOl and warises from eqso 11-5. An even 

simpler time dependence would be to assume a straight line trajectory 

so that 

To illustrate this model, let us consider the Landau - Zener49 

model, 

VOO = -F (R - R ) 
0 x 

VII = -F (R - R ) 
1 x III-l2 

VOl = constant 
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In addition, it will be assumed that the collision is at zero 

impact parameter and that the nuclear velocity is constant. The 

zero-order motion is then 

P(t) = P 

n(t) = n = 1/2 
111-13 

R(t) = Pt/~ + R x 

q (t) P(F -
2 . -

= Fl)t /2~ + q 
0 

where t = 0 has been chosen to correspond to the crossing point R • 
x 

We now have 

and thus 

00 

A = ! dt Hl(t) = 2V01/~~/P(Fo-Fl) (cosq - sinq) 
-00 

The semiclassical S matrix is then given by 

, 

with 
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The probability of a transition then reduces to 

111-14 

where the identity 

eina _ (2n)-1 f2~x ei[a sinx + b cosx] 

o 

-1 . 
with a = tan (b/a), has been used. 

-inx e 

The correct quantum mechanical result for the Landau-Zener 

49 _z2/4 
model is Pl + 0 = 1 - e It is thus evident that in the 

limit Z ~ 0 both the approximate semiclassical result, eq. III-14, 

and the exact quantum result agree, since then Jl(Z) ~ Z/2 , and 

both formulae give Pl + 0 ~ Z2/4 • Table VII gives a more detailed 

comparison of the semiclassical and quantum results. For small 

arguments Z, i.e. large velocities and/or small slope differences 

(Fo-Fl ), the semiclassical result is reasonable. It is interesting to 

note that it gives better results than both the standard classical 

trajectory method and primative semiclassical mechanics in this 

regime (see Ref. 12b for the classical and primative semiclassical 

results). As might be expected, however, the approach fails for larger 

arguments Z. In this regime, the semiclassical perturbation theory is 

inapplicable (even probability conservation, P~ 0+ Pl + 0= 1, breaks 

down as Z becomes large). In fact, by inspection of eq. 111-14, one 

sees that the maximum value that Pl + 0 can take on is about 0.35, 
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2 since that is about the largest value that J
l 

can take on. None-

theless, for the range Z £1, the perturbative model does seem 

adequate. Thus, if one does not have a simple linear approximation 

to the diabatic matrix elements, so that the Landau-Zener model is 

not directly applicable, One could perhaps use eqs. 111-10 and III-II 

to obtain the nonadiabatic transition probabilities in the limit of 

small arguments Z. 

We now apply this semiclassical model to the Na + I problem. 

One should keep in mind that this should be a rather severe test since 

the charge transfer probabilities are quite high here and the semi-

classical model is really only valid when the probabilities are 

small. The charge transfer cross section is given by 

00 

cr(E) = 2n f b db P(b) 
o 

2 with P(b) = J
l 

(Z), with Z give~ by eq. II-II. The R(t) dependence, 

in principle, should be obtained by solution of eqs. 111-5. However, 

for the present application we are only concerned with the high 

energy regime, where the semiclassical model is most valid. In this 

regime, the simple straight line trajectory approximation should be 

good, R(t) = / b2 + (p/lJ)2 t:2' . 
A simple trapazoidal rule integration was performed over b 

to obtain cr, and each Z(b) was also obtained by a trapazoidal rule 

integration of eq. III-II. The result is shown as a dashed line in 

Fig. 11. As expected, the model is adequate for the very high 
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energies, but quite poor for the lower energies. For other sorts of 

two state processes, that occur with lower probabilities, one might 

expect this model to be more applicable. 

E. Concluding Remarks 

The success of the classical trajecto!y analysIs of sec. IIlC 

suggests that the class~cal analogue might'be useful for studying 

more complex sorts of charge transfers, such as M + X2 
40 where M is an alkali atom and X2 a halogen molecule 

+ -
-+ M + X2 ' 

These sorts 

of reactions have been treated with Tully-Preston surface hopping 

approaches with some success, and it would be interesting to see 

if the classical analogue would be as useful. It may also be 

interesting to examine H+ + H2 -+ H; +H, which also involves exchange 

42 
of an atom 

The semiclassical perturbation theory of sec. IIID is less 

generally appl~cable, since it is only valid in.the case of small 

coupling and transition probabilities (i.e. high energy). However, 

. . 49 
in this limit it may be useful since, unlike the Landau-Zener model , 

for example, it can be used with any desired forms for the matrix 
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IV. Classical Aspects of the Laser Excitation of Molecules 

A. Overview 

With the development of high-pow"ered lasers, physical chemists 

have been exploring the nature of multiphoton and overtone absorption 

50 in molecules • There is a growing need for simple theoretical models 

to interpret and predict the results of such experiments. However, 

the correct theoretical treatment, a detailed solution of the 

Schrodinger equation, including the molecule-radiation interaction, 

is still ~ut of reach for most systems of chemical interest. Many 

theoreticians have thus turned to a classical description of the 

51 h· h . 1 bl process ,w ~c ~s at east more tracta e. There are then two 

obvious questions that must be answered. First, how realistic is 

the classical description? In sec. B we answer this question for a 

vibrating and rotating diatomic in a strong laser, since in this case 

it is also possible to obtain an accurate quantum solution. The 

second question that arises is, given that a classical description is 

correct to some extent, what is the nature of such a solution? We 

answer this question in sec. C for a model nonrotating diatomic in 

a strong laser by looking carefully at how classical states evolve with 

13 time, using a novel period advance map method to generate the solution. 

A very simple model, based on a penduluml4 , is then invoked to explain 
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many of the classical features, which include spirals in phase 

space. 

B. Classical and Quantum Mechanical Studies of HF in an Intense 

Laser Field. 

Bl. Preliminaries 

The simplest molecule-laser problem is a diatomic molecule 

interacting with a strong laser. Accurate, numerical classical 

and quantum solutions may be obtained for this problem. Because of 

the small number of quantum states involved, this represents a 

Particularly severe test of classical mechanics. Previously, 

Walker and Preston52 have performed both quantum and classical 

calculations for a model, nonrotating HF molecule. Their results, 

with laser intensities ~10TW/cm2 (lTW = lol~~tts), indicated 

good agreement between classical and quantum predictions of energy 

absorption averaged over laser pulse times, except near multiphoton 

resonances. Various other aspects of the problem of a diatomic 

interacting with a laser have been examined using either classica153 

54 or quantum models. 

In this section, we examine the detailed behavior of a vibrating 

and rotating diatomic molecule in an intense laser field, and the 

validity of classical mechanics to describe this problem. The 

classical and quantum equations of motion are solved numerically 

for both rotating and, for comparison, nonrotating models of HF, 

initially in its ground state. 
2 Laser intensities of 1.0 and 2.5 TW/cm 
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are used, with frequencies in the range of the fundamental transition. 

Energy absorption and transition probabilities "are calculated asa 

function of pulse time, as well as the pulse averaged absorption. 

Most of the work is for maximum pulse lengths between 0.9 and 2.0 ps 

(between 100 and 250 optical cycles), although it was necessary to 

integrate the quantum solution near mu1tiphoton resonances for much 

longer times. It is found that classical mechanics does .not 

correctly describe the time behavior of the system. Furthermore, 

classical rotational state distributions are completely incorrect. 

Classical mechanics, however, does give the correct magnitude of 

pulse averaged energy absorption. In addition, classical mechanics 

correctly indicates the presence of increased multiphoton absorption 

for frequencies lower than the one-photon resonance, although, in 

, 52 agreement with Waolker and Preston s results , specific resonance 

peaks are not resolved and only a small amount of mu1tiphoton 

absorption occurs. The effect of laser phase, which is often 

neglected, is also studied and found to be only a small effect on 

the quantum results and little or no effect on the classical results. 

B2. Methods 

Classical Mechanics 

The Hamiltonian for a vibrating and rotating diatomic molecule, 

with reduced mass U, in spherical coordinates r, e and ~ is 

H 
o 

= 
1 

+ --2 
2ur 

IV-1 

* .;' 
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where Pr' Pe, and p~ are momenta canonically conjugate to r, e and ~, 

and VCr) is the Born-Oppenheimer potential function. In the 

absence of external fields, there are three conserved quantities 

which are the vibrational action, 

N 
v = - f1 --!.. f d 2 + 21T Pr r, 

the rotational angular momentum, 

IJ (J+f1) = 

and the z projection of the angular momentum M = P~. If an oscillating 

electric field of frequency w, z polarization, and phase 0 is 

introduced, the Hamiltonian becomes 

H = H - d(r) cos e E sin (we +60 
o 0 

where d(r) is the molecular dipole function and E is the field 
o 

IV-2 

strength, which is related to the intensity by55 E = (81TI/c)I/2. 
o 

Eq. IV~2 is valid in the limit of high photon density, which is 

certainly true in the present study. For lower intensities, the 

classical formalism developed by Miller56 could be used. 

With the interaction present, the vibrational action Nand 
v 

rotational angular momentum J are no longer conserved. However, with 

the present choice of polarization, M is still conserved since H 

has no ~ dependence. The complete classical solution involves 
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specification of the appropriate initial conditions and solution of 

Hamilton's equations 

dH 1 
(Pe 

2 2 _dV + ~ (wt + 0) Pr = = + p <p I . 2e) cos e E sin dr 3 S1n dr dr 0 ur 

aH 2 
(r) e (wt + 0) Pe = -as = P<p I 2. 3e - d sin E sin ur S1n 0 

IV-3 

r = dH/d p/u 
Pr 

. 
e = dH/d = Pel 2 

Pe ur 

Approximate analytic orbits have been obtained57 for a rotating 

Morse oscillator with no external field, and these are used to determine 

the diatomic initial conditions (see Appendix B for details). This 

approximation is excellent for the vibration-rotation states of 

importance here. The laser phase <5 is also averaged over in most 

cases (i.e. each trajectory has 0 chosen randomly between 0 and 2TI), 

although it will be shown to be unimportant. 

The energy absorbed as a function of pulse length is defined by 

<E() = 1 " N (i iii i t >CL i ~i=l Ho Pr (m,Pe (O),r (O),e (0),6 ;t) - El IV-4 

where N is the number of trajectories and El is the initial molecular 

energy, which is the present study is the ground state (v=O,j=O) energy. 



The final vibrational action N after a pulse length t is also 
v 

calculated with the rotating Morse oscillator approximation57 . 

J is calculated directly from J(J+fi) = p~ + p~/sin2e (Note 

p. = 0 here since J ~ 0 initially.) Wi th h = I, Nand J are 
v 
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boxed according to the nearest integers v,j such that v-1/2 ~ N 
v 

= V+1/2 and j-1/2 ~ J!;- j+l/2, which is the usual quasiclassical 

quantization ·procedure. The transition probability into a particular 

v,j state, as a function of pulse length is 

P C~(t) 
v,J 

N . (t) IN 
V,] 

IV-5 

where N .(t) is the number of trajectories at time t with final 
v,J 

actions in the v,j box. 

Of course, a single trajectory integrated out to some large 

pulse length T contributes to all intermediate pulse time results. 

52 Similar to Walker and Preston ,the pulse averaged energy as a 

function of laser frequency w is defined as 

1 
ECl (w) = T IV-6 

For comparison, nonrotating calculations were also performed. 

These calculations were done essentially in the same manner as 

52 described by Walker and Preston . 

More technical details will be discussed later. 
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Quantum Mechanics 

. 54 
. Although Leasure, Milfeld, and Wyatt. have.developed an efficient 

means of determining the long time solution, the time scale of 

interest here is short enough (usually less than 20 ps) that direct 

integration of the coupled quantum equations is possible. 

The total wavefunction is expanded as 

'l' (r , e , $, t) = r . C ., (t) Y. ( r , e, $) 
m V,J vJm "vJm 

IV-7 

Y • (r,e,$) = R (r) Y. (e,$)/r 
"vJm v Jm 

Th Y h . 1 h . d R M . f . 58 e . are sp er~ca armon~cs an are orse e~gen unct~ons 
Jm v 

Strictly speaking, R should also depend on j, but in the present 
v 

problem, with only small values of j being important, such rotational 

corrections should be small. As in classical mechanics, the z 

component of the angular momentum, mh, is conserved. Since the 

present study involves j = 0 initially, m is zero throughout. 

In all subsequent equations m is understood to be zero. 

Inserting eq. IV-7 into the time-dependent Schrodinger equation 

results in the coupled equations 

i 11 C . (t) = 
vJ E~c.+r", VJ VJ v J 

• 

o '" . C '" E v J VJ v J 0 
sin(wt + 0) , IV-8 



where the E 0 
vj 

elements 
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" are eigenvalues of H and the D ,., . are matrix 
o V.J vJ 

! [ (.j + 
1)2 ~ j' 00 

3) J' = j + 1 

DvljlVj -J R I d (r) R dr x . (2j + 1) (2j + 
v v 

f [(2j 

.2 J ! 0 ] j I = j _ 1 
- 1) (2j + 1) 

IV-9 

It will be shown later, as with the classical results, that the laser 

phase 0 does not appreciably effect the results. For efficiency, 

the majority of the quantum calculations are made with a fixed 0 of 

rr/2. The coefficients C vj of eq. IV-8 must be complex. Thus, 

writing C = X = i Y one obtains the coupled real equations vj vj vj' 

. 0 
- h Y = E X + r ° X E sin (wt + 0) vj vj vj v' j' v' j Ivj v'j' 0 

IV-lO 

h E 
0 

Y r ° y E (wt + 0) X = + sin vj vj vj v' j I v' j Ivj v' j I . 
0 

For comparsion with the classical results, we will also be 

interested in the transition probabilities 

the energy absorption 

<E (t» QM = r . 
VJ 

c . (t) 12 
V] 

P ~M (t) E 0 - E 
vj 1 VJ 

and the pulse length averaged energy absorption, 

IV-II 

IV-l2 
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1 T 
= T f .(E(t» QM .dt 

o 

We also study the nonrotat·ing case in a similar fashion. One 

may obtain the nonrotating equations by omitting all factors that 

include j and m in eqs. IV-7 through IV-12. 

Computational Details 

A Morse potential,. V = D(e-a(r-re ) - 1)2, was used, with the 

parameters corresponding to HF takerifrom Ref. 52: D = 0.22509, 

a = 1.1741, and r = 1.7329 a~u. Since relatively low v states are 
e 

involved, a linear approximation to the dipole function is satisfactory, 

d(r) = d + dl(r-r ), with
54c 

d = 0.716 and d
l 

= 0 310 a.u. 
o e 0 

(lDebye = 0.39343 a.u.). Some work,. in fact, was done with a 

quadratic form for d(r)53c, and that ·did not significantly affect 

out results. 

2 Laser intensities of 1.0 and 2.5 TW/cm were used; which 

correspond to field strengths E of 0.005338 and 0.008440 a.u., 
a 
. -10 

respectively. (IVolt/cm = 1.9447 x 10 a.u.) The matrix elements 

D ,., . of eq. IV-9 were evaluated numerically, although analytical 
v J VJ. 

f d 
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arms a ex~st Some typical ele.ments are DIlOO= 0.022, D22ll 

=0.028 and D201l = 0.032 a~u . 

For the classical rotating HF calculations, 1000 trajectories 

with random initial conditions (see Appendix B) were run for most 

frequencies. Monte-Carlo errors in the quantities of interest were 
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between 10 and 15 %. For the nonrotating calculations, SO trajectories 

were run for each frequency. In this case it is more efficient to 

increment the vibrational angle variable in a step-wise fashion 

between 0 and 2rr than to pick it randomly. The classical equations 

f · . t d· h d d d· . 59 o mot1on were 1n egrate W1t a stan ar pre 1ctor-corrector rout1ne 

to either 0.9 or 1.5 ps. The trajectories were back-integrable to 

four significant figures in all variables. Integration of the 

classical equations beyond about 1.5 ps is extremely difficult due 

to the accumulation of error. The integration of oscillatory 

nonlinear differential equations over long time periods is still a 

bl f . 1 1· 60 current pro em 0 numer1ca ana YS1S • 

By between 0.9 and 1.5 ps, the pulse averaged energy absorption, 

eq. IV-6, appears to be converging, but has not yet fully converged. 

However, reasonable estimates of the converged ECL can be obtained, 

since <E(t)JCL has either leveled off to some extent or is oscillating 

with a small amplitude. 

The quantum equations of motion, eqs. IV-IO, were integrated with 

the same predictor-corrector routine as the classical equations. An 

adequate basis set for HF with the intensities and time scale of 

interest consisted of the first five v and first five j states, i.e. 

a 25 term expansion. The nonrotating quantum solutions were obtained 

in a similar fashion, with five v states being sufficient. Most of 

the quantum solutions were integrated to 2 ps, although when the laser 

frequency was near a multiphoton resonance, it was necessary to 
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integrate to times in the 10 to 20 ps range in order to obtain 

converged pulse time averages. Interestingly, because the quantum 

equations are linear, it is possible to integrate the SO coupled 

quantum equations to times exceeding 20 ps, which is much longer 

than it is practical to integrate only four nonlinear classical 

equations. 

To aid in the interpretation of the results, Table VIII gives 

o some relevant E . levels for HF, calculated with the rotating 
vJ 

Morse oscillator formula 57 • 

B3. Results and Discussion 

The quantum and classical pulse time averaged energy absorption 

spectra are plotted in Fig. 12a for nonrotating and Fig. 12b for 

rotating HF, with laser intensity 1.0 TW/cm2. The plot for nonrotating 

52 HF is similar to plots of Walker and Preston for higher intensities 

2 At 1.0 TW/cm , though, the quantum structure is more resolved. The 

major features are a narrow two-photon resonance at V = W/21TC 

= 3879 cm -1 (1. e. the v=0 to v=2 absorption) , and a broad one

-J 
photon resonance at V = 3966 cm ·(the v=0 to v=l absorption). The 

classical spectrum shows just one very broad peak with a maximum 

near 3940 cm-l While the classical spectrum does not have any 

quantum structure, examination of the classical state distribution 

does show the presence of a small amount of two-photon absorption, 

as the frequency is lowered. Details of this will be given later • 

For rotating HF, the spectra (Fig.12b) are qualitatively 
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similar to the nonrotating case. There are three peaks in the 

quantum spectrum : -1 
one broad peak near v = 4006 cm ,which 

corresponds to the (v,j)=(O,O) to (1,1) one-photon resonance, 

. -1 -1· 
and two narrow peaks near 3937 cm and 3879 cm ,which correspond 

to the two-photon resonances (0,0) ~ (2,2) and (0,0) ~(2,0), 

respectively. The classical spectrum has one very broad peak 

-1 which actually peaks near the (0,0) ~ (1,0) resonance at 3966 cm 

Overall, the classical solution gives a general idea of the absorption. 

As in the nonrotating case, the classical result predicts more 

two-photon absorption for frequencies red-shifted from the one-

photon resonance, as will be discussed below. 

In Fig. 13, the rotating HF average energy absorption for an 

2 
intensity of 2.5 TW/cm is shown. Qualitatively, the quantum peaks 

2 
become broader and overlap more than the 1.0 TW/cm case. There 

appears to be a small power shifting of the resonance peaks toward 

higher frequencies (see Ref. 54c for a discussion of this effect), 

but this has not been clearly resolved here. Classically, the 

2 
absorption also broadens relative to 1.0 TW/cm • and the peak 

maximum appears to shift to lower frequencies, indicating more multi-

photon absorption. 

We now turn to look at the rotationally averaged transition 

probabilities (later, we will examine specific v,j probabilities). 

Table IX shows the quantum and classical time averaged probabilities 

at various frequencies for rotating and nonrotating HF, with laser 
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2 
intensity I = 1. 0 TW/ cm. Each peak of the quantum solution can be 

seen to be either a one or a two photon absorption, with both 

processes observed appreciably only where peaks overlap. At 

higher intensities the peaks will broaden and overlap more. The 

classical results do indicate the presence of some two-photon 

absorption as frequency is decreased. But classically, there is a 

very gradual change which results in the very broad single peak 

in the spectrum of Fig. 12, rather than the abrupt changes as in 

the quantum results. 

To show some of the effects of increasing intensity, average 
. 2 

probabilities for rotating HF at 2.5 TW/cm are given in Table X. 

For this larger intensity, both classically and quantum mechanically 

the excited states become more populated. 

We now examine the energy absorption and transition 

probabilities as a function of time. In Fig. 14, a comparison of 

classical and quantum energy absorption as a function of time is 

-1 
given for nonrotating HF with v = 3966 cm being the laser 

frequency, which corresponds to the v = 0 -+ 1 resonance. The 

quantum results show oscillations with a period of about 0.75 ps 

with no sign of damping out to 1.5 ps. At this frequency and 

intensity (1.0 TW/cm2) the solution is well approximated by a 

6la two level system (Le. the Rabi model ). In contrast, the 

classical result oscillates with a frequency of about 0.4 ps and 

a smaller amplitude. Also, it appears as though the oscillations 
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may be damping. 

Fig. 15 shows the classical and quantum time-dependent 

energy absorption for rotating HF with V = 4006 em-I, the one-

photon (0,0) + (1,1) resonance. The results are similar to 

those in Fig. 14 for nonrotating HF. In this case, though, the 

classical result appears to level off even faster. The behavior 

of the quantum solution is again well approximated by the two 

level Rabi mode16la • ·The quantum solution has been followed for 

up to 20 ps with no clear sign of damping. 

-1 The quantum result for the two-photon resonance at 3937 em 

the (0,0) + (2,2) resonance, is considerably different (Fig. 16). 

The complicat~d nature of the oscillations may be contrasted with 

the simple Rabi oscillations of Fig. 15. From Fig. 16 it can be 

seen that the two-photon absorption is a long time process. The 

corresponding classical result (Fig. 17) also seems to show 

some aspects of the slower growth in absorption, although the 

solution is reasonably level. by 0.9 ps. 

In Figs. 18,19 and 20, plots are shown for some transition 

2 
probabilities as a function of time, again for I = 1.0 TW/cm . 

Here, the classical solution is actually broken up into rotational 

levels, so that the discrepancy with quantum mechanics can be 

- -1 seen. The results for v = 4006 cm are given in Fig. 18. The 

quantum solutions for POI and PIO are ~ot shown since they are 

-2 very small (~10 ) • Qualitatively, the probabilities show the 

same behavior as the energy absorption, i.e. the classical 
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solutions tend to level off more and the quantum solutions 

appear periodic. Note that in reality there are high frequency, 

small amplitude' oscillations that are superimposed on the 

quantum probabilities, which have not been clearly resolved, 

and thus give rise to some roughness, particularly near peak maxima. 

-1 The classical probabilities for rotating HF at V = 3937 cm 

are shown in Fig. 19. It can be seen that the v = 2 state gets 

significantly populated, but the v = 1 state is also significantly 

populated. The quantum probabilities at this frequency are shown 

in Fig. 20. The resonant probability P22(t) displays a long 

period which essentially matches that of the. energy absorption in 

Fig. 16. Another reasonably significant probability is Pll , which 

is not shown. Pll (t) displays higher frequency oscillations that 

can reach a maximum of about 0.13. The other two-photon resonance, 

-1 at 3879 cm ,is not shown here. Qualitatively, the classical 

results for this frequency show much less excitation than for 3937 

cm-l There is a small amount of v = 1 excitation and no v = 2 

excitation. Essentially no rotational excitation is seen in the 

classical results for this frequency. The quantum results for 3879 

cm-l show somewhat less excitation into the (1,1) state than for 

-1 3937 cm ,and again the resonant probability, P20 , displays a 

long period. 

Finally, we turn now to the effect of laser phase. Based 

on the classical and quantum equations of motion, eqs. IV-3 and 

IV-8, without additional approximations, one would expect the 
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solutions to be dependent on the choice of laser phase o. 
Without allowing for the details of how the field is turned on, 

a complete study should involve averaging over the laser phase to 

obtain the most meaningful resu1ts62 . 

The laser phase dependence, however, disappears from the 

. . h· . . 61 h quantum equat~ons ~n t e rotat~ng wave approx~mat~on , as as 

63 been recently shown . However, for sufficiently large field 

strengths or de-tuning of w from resonance, the rotating wave 

61c approximation will breakdown • Thus, for example, Moloney and 

62 Meath have shown the laser phase dependence of probabilities 

as a function of time for a two state model. They found 

increasing phase effects for larger field strengths and at 

mu1tiphoton resonances. 

The situation is not quite as clear in the classical analysis. 

However, if only the relative difference between the laser phase 

and vibrational phase is important, then it would be sufficient to 

average over only the vibrational phase, without averaging over 

the laser phase, i.e. the laser phase would not matter. The 

conditions for this to be true probably include that w be close 

to resonance. 

To assess the effect of laser phase 0 on the present problem, 

consider first nonrotating HF. For an intensity of 1.0 TW/cm
2 

and 

-1 -1 frequencies of 3966 cm and 3879 cm ,the classical solutions 

were obtained for fixed 0 of 0 and ~/2. 500 trajectories were run 
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for each solution to ensure no statistical error. Over the entire 

1.5 ps range, the energy absorption as a function of time for the 

two phases agreed to between 2 and 4 significant figures. The 

quasiclassical probabilities were also in excellent agreement. 

Similarly, the nonrotating quantum results for the same conditions 

showed very little phase dependence. 

We also examined rotating HF at 1.0 TW/cm2 for the possibility 

of phase effects. Within the Monte-Carlo error, no clear phase 

effect can be distinguished in the classical results. However, 

slight discrepancies in the time-dependent quantum solutions may 

be seen, since no statistical error is present. Table XI lists 

some relevant probabilities and (E(t»QMfor cS = 0 and 1T/2, at 

V = 4006 cm-l Other phases were also examined, but the largest 

differences were between these two phases. Despite the laser 

frequency being almost exactly on resonance, slight differences 

may be noted, particularly in the probabilities. These differences 

become larger near peak maxima and can be as much as 4 %. How-

ever, such differences are comparable in amplitude to the high 

frequency oscillations that are superimposed on the Rabi 

oscillations, .and do not appreciably effect the overall behavior. 

Table XII presents similar results for v = 3937 cm-l Although 

this is a two-photon resonance, the discrepancies due to laser 

phase are comparable to the v = 4006 cm-l results. Thus, for 

intensities~l.O TW/cm2, and the present frequency range, the 

effect of laser phase is small and can be neglected for most 
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B4. Summary 
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The detailed dynamics of both rotating and nonrotating models 

for HF in an intense laser field has been investigated with both 

classical and quantum mechanics. 

It is found that classical mechanics does not predict the 

correct rotational state distributions. ~lso, the time behavior of 

the classical solution can be qualitatively differerit from the 

quantum one. Classical mechanics does give the correct magnitude 

of pulse averaged quantities, such as the average energy absorption, 

but does not give the detailed resonance peaks for multiphoton 

absorptions. Classical mechanics does correctly indicate the 

presence of increased multiphoton absorpti~n as the frequency is 

red-shifted from the one-photon resonance, but it predicts far 

too little such absorption. 

The laser phase has clearly been shown to be unimportant for 

the intensities and frequencies studied here, but could conceivably 

be important for other parameter ranges. 

It is dlfficult to extend these conclusions to polyatomic 

systems in intense lasers, which are of greater interest. These 

results do indicate that some care should be taken when classical 

mechanics is applied to molecular systems. There is the possibility, 

however, that the increased number of states in a polyatomic could 

make classical mechanics a better approximation to quantum 

mechanics than for the present case of a diatomic. The same may be 

true for a diatomic initially in anexcited state, or in a more 

intense field, where more states may become populated. 
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C. The Period Advance Map and the Simple Pendulum Model 

Cl. Preliminaries 

In sec. B it was remarked that classical mechanics is 

sometimes used in the theoretical description of laser-molecule 

51 
processes Although some important cautionary notes were 

given, particularly with regard to the fine details of the 

absorption, classical mechanics does describe many features of 

the absorption in a qualitatively correct manner. Moreover, 

as the number of degrees of freedom is increased, or as the 

intensity is raised, it is expected that classical mechanics 

would provide a better description. 

Given that a classical description of molecular energy 

absorption is to some extent correct, there is still a need 

t·o understand more clearly the nature of this description. 

Most classical trajectory studies, such as those described in 

sec. B, are essentially numerical experiments, involving the 

solution of many coupled nonlinear differential equations. 

There is a need to understand how and why a solution comes out 

as it does and~ moreover, to build more general models of the 

process that do not require any detailed numerical calculations. 

In this section, the simplest model of a laser induced 

process, the excitation of a nonrotating diatomic molecule in 

an intense laser, is examined classically in some detail. First, 

a new approach to the solution, based on generating a map from 
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initial conditions to the solution after one period of oscillation 

of the laser. is presented. Repeated applications of this period 

13 advance map then allow the solution over many periods of 

oscillation to be obtained with relative ease. The behavior 

of the solution, as a function of time, or the number of 

oscillations of the laser field, is found to be quite interesting, 

with spirals or "whorls" developing in phase space. Such 

64 behavior has been discussed by Berry and co-workers for simpler 

maps, and can be related to some elementary properties of the 

period advance map. ,We then go on to show that a very simple 

model, due p~imarily to Chirikov14, and based on the orbits of 

a pendulum, is capable of describing this behavior reasonably 

well. The pendulum model is found to be a useful tool for 

understanding other features of the absorption, such as certain 

trends in the average energy absorption as a function of initial 

vibrational state of the' molecule. 

In sec. C2, the period advance map and its generation are 

discussed. Sec. C3 applies the method to the problem of a 

nonrotating HF molecule in an intense (1 TW/cm2) laser field. 

Sec. C4 uses the pendulum model to interpret the results of 

sec. C3, and sec. C5 discusses energy absorption trends in 

a qualitative fashion with the pendulum model. Finally, in 

sec. C6, some brief concluding remarks are given. 
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C2. The Period Advance Map 

Consider a one-dimensional nonlinear oscillator; driven by a 

periodic force f(x,t) = f(x,t + T). the Hamiltonian is written 

H(p,x,t) 
2 . 

= p /2U + Vex) + f(x,t) IV-14 

where p and x are the canonically conjugate momentum and position, 

~ is the mass, and Vex) is the unperturbed potential function. 

Hamilton's equations are periodic in time and read 

pet) aH/ax = pet + T) 

x(t) = aH/dp = x(t + t). IV-15 

In many applications, such as those in Ref. 51, the periodicity 

of eqs. IV-15 is not .used as a practical simplification. Rather, 

a direct numerical integration, for each trajectory in a given 

ensemble, is performed over many periods T of the driving force. 

. 54 65 
If eqs.IV-15 were linear, however, Floquet analys1s ' does 

allow one to make effective use of the periodicity. Moreover, in 

the quantum analogue of the problem, because the differential 

equations for the coefficients of the wavefunction are always 

linear, even when the corresponding classical equations are 

. 52 54 
nonlinear, the periodicity again simplifies. the calculat10ns ' . 

It was the apparent lack of a practical scheme, making use of 

the periodicity of the nonlinear classical equations, that was the 
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original motivation for this work. 

13 The approach taken here is based on the period advance map which 

maps initial conditions (po,xo) to the corresponding solution at t = T, 

= T(p ,x ) 
o 0 

IV-16 

.An elementary property of the periodicity of eqs. IV-IS is that once the 

solution over the first period is known, then it is known for all 

subsequent period advances by repeatedly applying the map : 

1,2,3, ... IV-17 

In addition to the useful and practical property IV-17, it is a 

straightforward consequence of Liouville's theorem that T is an 

13 area preserving map 

A functional representation of eq. IV-16 is 

T (p ,x ) = p 
p 0 0 T 

T (p ,x ) = x 
x 0 0 T IV-18 

where T and T are two-dimensional functions spanning the relevant 
p x 

phase space. To obtain approximations to T and T ,one may simply 
p x 

i . 
define a grid of initial conditions (po'x~) and for each grid point (i,j) 
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numerically integrate over one period of the motion to obtain Tij and 
p 

T
ij

. Any appropriate two-dimensional fitting function may be used to 
x 

define the approximations to T and T. Of course to obtain accurate 
p x 

approximations, a dense grid of initial points, such as a 100 x 100 

grid, must be used. However, the numerical integration of even a 

very dense grid over only one period of the driving force is usually 

a very quick and easy task. Furthermore, once T has been satisfactorily 

determined, the solution over many periods of oscillation is known 

from eq. IV-17. 

In the calculations reported below, use was made of two-dimensional 

cubic spline functions to define T and T. The advantage of using 
p x 

splines is that they pass uniquely through all the data points, and 

can be shown to have desirable minimum curvature properties66a • A cubic 

spline is a piecewise continuous interpolating polyanomial with 

continuous first and second derivatives. A possible disadvantage of 

using splines is then that higher order derivatives may not be 

continuous. However, no problems were encountered in the present 

application. The explicit algorithm used here is that of Ref. 66b, 

with the one-dimensional splines required by this algorithm chosen to 

be the natural 'cubic splines of Ref. 66a. 
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C3. Application to a Diatomic in an Intense Laser 

Action-Angle Variables 

Frequent use will be made of the Morse oscillator action-angle 

variables, so it is convenient to define them here. The Hamiltonian 

for a Morse oscillator, in the absence of any driving force, is 

IV-19 

where D is the dissociation energy, and a is a positive constant 

related to the curvature of the potential. For convenience, x has been 

taken to be the displacement from equilibrium. It is possible to 

change variables from (p,x) to action-angle variables (n,q) such that 

H = H (n)~ i.e. the new Hamiltonian is a function of the action n only. 
o 0 

Rankin and Miller67 have done this for the Morse oscillator, with the 

result 

H (n) = (0 + h/2)w - (n + h/2)2w
2

/4D 
000 

IV-20 

where w 
o 

I 2 I 

= 2Da I~ . The unperturbed motion is then given by n = 0, 

and q = w(n), where the oscillator frequency is 

w(n) aH Ian 
o 

w 
o IV-21 

The old variables (p,x) are related to the new variables (n,q) by 



x(n,q) = ex-lln[ (D + IDH (n)" 
o 

~osq)/(D - H (n»] 
o 

p(n,q) = J.Iw(n)ax/aq 

/"DR' sinq 
-1 2 0 =-J.Iex (wo - ( n + fJ./2)wo /2D. J ,...--,. 

( D + I DH 
o 
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cosq) 

The phase convention in eqs. IV-22 has been chosen so that q = 0 is an 

outer turning point and q = n is an inner turning point. 

It should be noted that n corresponds closely with the vibrational 

quantum number·v. Thus if one replaces n with vh, v = 0,1, .•• , eq. IV-20 

gives the correct energy eigenvalue formula for the Morse oscillator. 

We use atomic units (h = 1) throughout, so that classically n can take 

on any value ~ -1/2 and O~ q ~ 2iT. 

Generating the Period Advance Map 

To mimic a nonrotating HF molecule in a strong lase·r, a Morse 

potential was used with a driving force linear in x (1. e. the linear 

dipole approximation), 

IV-23 

with E = I 8nl/c'd
l

, where I is the laser intensity, c the speed of light, 

and dl the slope of the dipole. 
52 For HF, . as before, we have . D = 0.2250'9, 

ex = 1.1741 and J.I = 1744.8 a.u. With54 d
l 

= 0.3099 a.u., E = 0.00165 a.u. 

for a 1 !WI cm2 .laser intensity. The laser frequency was taken to be 

the fundamental transiton frequency, i.e. Q = H (1) - H (0) = 0.01807 a.u. 
o 0 

The period is then T = 2rr/Q = 347.7 a.u. (or 0.00841 ps). 



78 

T:he period advance map was then obtained by the method described 

in sec. C2. A suitable grid for the present purposes was a 100 x 100 

grid with x and p evenly spaced between -0.3573!: x ~ 0.6274 and 
0' 0 0 

-14.61"; p ~ 14.61. These limiting values allow for excitations up to 
o 

n = 3. As a check on the accuracy of the map so obtained, comparsion 

was made with trajectories that were directly integrated over r 

periods of the driving force. In Table XIII is shown the root mean 

square deviations of the predicted p ,x. 'values from the map and 
rT rT 

the directly integrated trajectories for an ensemble of 50 trajectories 

with n = 0 initially and q evenly spaced between 0 and 2TI. The map 

is seen to be accurate over the first few hundred periods. However, 

the numerical interpolation error builds up, particularly in p , 
rT 

as r increases, and the map cannot be expected to be very accurate 

beyond r - 400,' This error could be improved, of course, if a' finer 

grid, particularly in p , were used, but the present form is sufficient 
o 

for our purposes. 

It should be noted that although it was necessary to integrate 

numerically 10,000 trajectories over one period of the driving force, 

the resulting map contains information that would be much more difficult 

to obtain by direct integrations over many periods of oscillation, 

For example, the behavior of the entire phase plane will be examined 

below with the map. 
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Repeated Iterations of the Map 

If one takes some initial set of (p,x) points and repeatedly 

maps them, plotting each mapped point, one obtains the surface of 

section plot shown in Fig. 2la. Points on each curve labeled A 

through E will, upon successive mappings (or periods of oscillation), 

yield points on the same curve. Thus, for example, if one starts with 

some point on curve C, it will, upon repeated mappings, travel 

counterclockwise around C in uneven but discrete jumps. The period 1 

fixed points, i.e. those points satisfying (p,x) = T(p~x), lie, by the 

symmetry of the underlying Hamiltonian, on the x axis. These points 

are classified as being stable elliptic (0 in Fig. 21) or unstable 

hyperbolic(e) fixed points depending on whether mapped points, in a 

small region about each fixed point, fallon closed ellipses or open 

hyperbolas. The elliptic or hyperbolic nature of each fixed point 

was also verified by a linearization of the map about each ·fixed point
68 

With T defined in terms of the cubic splines, the required derivatives 

could be. obtained analytically. 

As a check on the accuracy of the map, the fixed points were also 

found by direct integrations of trajectories and agreed, to six 

significant figures, with the map predictions. Incidentally, there 

is one more fixed point, that lies at x = ~, so that the total number 

68 
of fixed points is even, as would be expected There are also higher 

s order fixed points, (p,x) = T (p,x~, s" 1, which will be mentioned 

later on. 
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Also, the approximate positions of the period 1 fixed points 

can be predicted remarkably well with some simple arguments given 

in Appendix C. 

It may appear, from Fig. 2la, that the motion is quite complicated. 

However, if one plots the curves in action-angle space, with nand q 

as defined previously, one obtains Fig. 2lb. The curves in (n,q) space 

. 14 69 
bear a close resemblance to orbits of a simple pendulum' In fact, 

this analogy will be made more clear in sec. C4. By symmetry, the 

three relevant fixed points now lie at either q = 0 or q = 7T. The two 

most important of these points are (n,q) = (0.61726, 7T), which is stable, 

and (0.36030, 0), which is unstable. Notice that these points have 

action values near n = 1/2, which is the action where the molecular 

frequency is in resonance with the laser frequency (w(1/2) = 0). The 

other fixed point, which lies at (-0.48206, 0), and is stable, 

corresponds to the molecule having practically no energy. Some orbits, 

very near this point, must close around it. However, this occurs only 

in a very small region and most orbits , even for n values as small as 

-0.4, appear as "rotations" (e.g. curve E in Fig. 21b). We will not 

concern ourselves with the region very close to this point. 

As a final point on the surface of section plots, no "chaotic" 

regions were noticable with the present perturbation strength E. 

Of course these regions do exist!4particularly near the separatrix 

curves Band D, which are the sets of points which eminate from and 

approach the unstable fixed point, but are small in area and difficult 

to see on the scale of the plots. 
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It is of interest to see how a line in action-angle space, which 

corresponds to an initial classical vibrational state, behaves under 

the mapping. In Fig. 22 is shown the result of mapping points that 

lie .initially on a line in (n,q) space with n = 1/2 and q between o 0 

o and 2~. It is seen that the line distorts into quite a remarkable 

structure. Spirals or whorls develop near the stable fixed point (0). 

Although not shown here, even more applications of the map results in 

the whorls winding more and more about the stable fixed point. T.he 

behavior near the unstable fixed point (e) is also interesting. 

Initially no point lies on the unstable fixed point, but very 

quickly under the mapping points begin to approach it closely. 

Fig. 23 shows the results of mapping points that lie initially on 

lines with n = 0 and 1. The behavior of these initial states is 
o 

similar to n = 1/2, with, for example, whorls again evolving about 
o 

the stable fixed point. 

64 Berry and co-workers have considered the fate of curves under 

mappings. They expect to see whorls near stable fixed points, which 

indeed are observed here. In the next section, this behavior will 

14 be seen to also arise out of the pendulum analogy . Berry and co-

workers 64 also predict "tendrils", or chaotic and snake-like 

convolutions, to develop near the unstable fixed point. Tendrils are 

not observed here. The reason that the tendrils are hard to see is 

that they are associated with the chaotic motion near the separatrix. 

As we have already noted, this region is quite small here, so that 

tendrils are not evident on the scale of Figs. 22 and 23. However, 
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if one expanded the scale, and looked very carefully, tendrils may 

be evident. 

Another interesting manifestation of the whorls is evident in a 

coarse-grained glance at the entire phase plane evolving under the 

map. Consider dividing the initial phase space into, say, a 120 x 120 

grid of points with -1/2! n ~ 5/2, and 0 ~ q ~ 2rr. Each point of this 
o 

grid is then mapped and the resulting new action at time rT, n (n,q), 
. rT 0 0 

is plotted in • coarse-grained fashion. If n is between -1/2 and 1/2, 
rT 

corresponding to a crude n = 0 state, white coloring is used. Ifn rT 

is between 1/2 and 3/2, corresponding to an n = 1 state, grey coloring 

is used. If n is between 3/2 and 5/2, an n = 2 state, diagonal lines rT 

are used. 

are used. 

Finally, if n is between 5/2 and 7/2, an n = 3 state, dots 
rT 

At time zero (i.e. r = 0), one has simply rectangular blocks 

with white on bottom, grey on top of the white, and diagonal lines on 

top of the grey. After 20 periods of oscillation of the laser; one 

obtains Fig. 24a, which shows a developing whorl in the n = 1/2 

resonance region. Notice that the axes in Fig. 24 are always the 

initial action and angle variables, and the coloring represents the 

coarse-grained action at time rT that evolved from those initial 

conditions. After 40 and 60 oscillations one obtains Figs. 24b and 24c, 

with the whorl winding more tightly. in the resonance region. Although 

not shown here, this has been followed for up to 400 periods 

of the driving force, with the whorls winding tighter and 

tighter, representing very graphically how molecules absorb and emit 
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energy in the vicinity of a resonance. 

C4. The Pendulum Model 

The remarkable similarity of the surface of section plot Fig. 2lb 

. 14 69 and the pendulum phase plane orb~ts ' can be made more concrete. In 

fact,Chirikov14 has developed a theory of classical resonance based 

on this analogy. Here, similar ideas are applied to the forced Morse 

oscillator problem of sec. C3. 

Derivation of the Pendulum Hamiltonian 

In action-angle variables, the full Hamiltonian is 

H(n,q,t) = H (n) - Ex(n,q) cosQt 
o 

IV-24 

In our problem, x(n,q), defined by eq. IV-22, is an even function of 

q so that the perturbation may ba expanded in a cosine Fourier series 

with the result 

x(n,q) cosQt 

where 

co 
= Lk=oVk(n) [ cos(kq - Qt) + cos(kq + Qt) ] , 

Tr 
Vk(n) = (2Tr)-1 f dq x(n,q) coskq 

-Tr 
IV-26a 

IV-25 
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The integral of eq. IV-26a may be evaluated analytically70 for x(n,q) 

given by eq. IV-22, to yield explicit expressions for the Fourier 

coefficients, 

Vk(n) 

V (n) 
o 

. -k = - dInk ,k. 0 

= ~-l in ( - I H /O'd/2) 
o 

where d = - 1D7H (I + I I - H /0') 
o 0 

IV-26b 

Now the important terms in the expansion of eq. IV-25 are those 

with slowly varying arguments. If one is looking at a region of 

phase space with the action n near n
l

, the primary resonance defined 

by 

w(nl ) - n = 0 IV-27 

where w(n) is the oscillator frequency given by eq. IV-21, then the 

term q - nt is slowly varying, since q - n ~w(nl) - n = O. Thus one 

may keep only the relevant (k=l is eq. IV-25) term in the Fourier 

expansion, which results in the approximate Hamiltonian, valid near 

IV-28 
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where the cos(q + Qt) term has also been assumed very oscillatory and 

neglected. Next, one transforms to a new angle variable q = q - Qt, 

which corresponds to the difference between molecular and laser phases. 

I . h 14,69 ( ~) ( )(ALA ) This may be accomp ished W1t a generator F3 n,q,t = - n-nl q~,t, 

which implicitly defines the new variables p and q through n = -aF3/aq 

and q = -aF3/an. This results in p = n-nl , q = q - Qt, and the new 

Hamiltonian 

K = H(p,q,t) + aF
3
/at 

= Ho(p + nl ) - EVl(P + nl ) cosq - pO IV-29 

~ 

The final step is to expand Ho about p = 0 (i.e. n = nl ) to quadratic 

order and VI to zero order. Since H is already quadratic in n (see eq. 
o 

IV-20), the expansion of H is exact here. The result is 
o 

IV-30 

-1 
where MI = (awl an) 

n
l 

Eq. IV-30 is the Hamiltonian for a pendulum of 

mass M
I

, which for the Morse oscillator, from eq. IV-21, is 

o . 

To make the connection with the more familiar positive mass pendulum 

orbits, one may note that the equations of motion consistent with eq. 

IV-30, 
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· '" 'dK/'dq - e:VI(nl ) . " p = s~nq 

;.. 
'dK/'dp P/MI 

q = = 

are the same as 

· "-'" p = e:vl(nl ) sina 

· "... 

p/ml a = IV-31 

..... 
with a = -

t\ 

q and m
1 

= But eqs. IV-31 are consistent with the 

Hamiltonian 

IV-32 

t\ A 
where (p,a) are the conjugate variables. Thus the well known pendulum 

orbits
l4 

p(t),9(t) will determine the approximate motion ofa forced 
. . A 

Morse oscillator when the action is close to n
l 

through n(t)= pet) + n
l

, 

. '" 
and q(t) = nt - aCt). 

The separatrix associated with eq. IV-32 will have maximum and 
.. 

minimum values of action for e = 7T and K' = e:Vl , if VI) O. If VI < 0, 

'" then they occur for e = O. In either case, the maximum and minimum 

separatrix actions may be obtained, in terms of the original Morse 

action variable, from 

IV-33 
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A similar analysis may be made about other resonances. For 

example, the next resonance corresponds to an "overtone" resonance, 

2w(n2) - n = O. In this region of action space, 2q - nt is slowly 

varying so that the k=2 Fourier term in eq. IV-25 may be singled out. 

The same analysis as above, but with a classical generator of the 

form F
3

(n,q,t) = - (n-n2)(q + nt)/2 , yields 

'" where now p = (n-n2)/2, 8 = nt - 2q, and m-2
l = 4ldw/dnl . 

n 2 
The fixed 

points associated with the n2 resonance are actually period 2 fixed 

points of the period advance map. The maximum and minimum separatrix 

action values, in the original Morse action, are 

IV-34 

In order for the pendulum model to be valid, the neglected terms 

in the Fourier expansion must indeed be rapidly oscillating compared to 

the terms kept. Chirikov14 has shown that a condition for this to be 

so is the condition of moderate nonlinearity, 

e: u ... a = I dw/dn I win l..( 1/£ 
r 

IV-35 

It is also necessary that the separatricesassociated with, say, the 

primary resonance n1 and the next resonance n2 , do not overlap much -
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i.e. are well separated from each other. Chirikov14 defines the 

coupling constant of the resonances, s, such that if 

s = 6.w/6 (,', 1 IV-36 

then the relevant resonances are sufficiently separated from one 

another. In eq. IV-36, 6.w could be the frequency full width of the 

separatrix of the primary resonance, 6.w = law/ani (n1 - n~) = 4/Elvll/ml, 

and 6 the difference between the primary resonance frequency w(nl ) and 

the next resonance frequency w(n2). If s ~ 1, then the overlap of 

resonances is associated with chaotic behavior in the vicinity of 

14 the separatrices 

Pendulum Approximation to Nonrotating HF in a Strong Laser 

m = 
1 

For the problem of sec. C3, it is readily found that nl = 1/2, 

-4 1266, and EVl(nl)~ 2.04 x 10 ,using the formulae given above. 

The moderate nonlinearity condition, eq. IV-35 , is also found to be 

satisfied, since then E - 0.002, and near nl = 1/2, Clr - 0.02. The 

resonance coupling constant s also satisfies eq. IV-36, since the 

-1 next resonance is n
2

::: 12, and is thus well separated from n
l 

( s.{ 10 ). 

From the above considerations, one expects that the pendulum 

model will be reasonably adequate. Indeed, if one uses eq. IV-33 to 

estimate the maximum and minimum separatrix action values, one finds 

+ nl = 1.5 and n
l 

= -0.5, in reasonable agreement with the actual values, 

which from Fig. 2lb are closer to 1.6 and -0.35. 
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The fixed points of the pendulum described by eq. IV-32, when 

converted back to the original action-angle variables, occur at 

(n,q) = (1/2, rr) and (1/2,0), and are stable and unstable respectively. 

These fixed points agree reasonably well with the two most important 

fixed points of the problem discussed in sec. C3 The pendulum model 

does not have the additional fixed point, near n = - 1/2, that occurs 

in the full problem. However, the immdeiate region near this point 

is of no concern to us here, and, fu"rthermore, the pendulum orbits 

do actually describe the motion near (but not very riear) this point 

reasonably well, as might be guessed from inspection of Fig. 21b. 

The pendulum equations of motion, eqs. IV-3l, were solyed 

numerically, since although analytical solutions do exist, in terms of 

14 65 
elliptic integrals ' ,they are somewhat cubersome to use. Fig. 25 

s:hows the result of following the behavior of classical states with 

n = 1/2, 0 and 1, just as was done in sec. C3. By comparison 
o 

with Figs. 22-23 for the full problem, it is seen that the major 

qualitative features of the dynamics, including the whorls, arise 

out of the pendulum equations of motion. It will also be noticed 

from Fig. 25 that there is an artifact in the pendulum solution in 

that the action is now no longer bounded from below. Thus some points 

actually map to below n = -1/2, which is nonphysical since n for the 

Morse oscillator is only defined for n ~ -1/2. 

Tendrils are absent entirely, even under very close scrutiny, 

because no chaotic trajectories exist in the pendulum phase space. 

The fact that they are also difficult to see in the full problem is 
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related to the smallness of the resonance coupling parameter s. 

It is also easy to see why points, initially not on or extremely 

close to the unstable fixed point will eventually approach it 

closely. If one starts with an initial line in (n,q) space, which is 

also a line in the pendulum phase space (p,e), then as long as 

p = n - n is within the width of the separatrix, the line must 
I 

intersect the separatrix twice. Points on the separatrix will tend 

to move towards an unstable fixed point, or,equivalently, away from 

another unstable fixed point (cf. curves Band D in Fig. 2Ib), but 

never actually reach the unstable fixed point in finite time. Thus, 

since all the values of n studied are within the separatrix width, 
o 

necessarily points intersect the separatrix and then approach the 

unstable fixed point. 

The orlginof the whorls can be seen in terms of the nonlinearity 

of the pendulum equations of motion. Because each orbit about the 

64 68 stable fixed point has a different frequency, or rotation number ' , 

a line that intersects these orbits will then wind about the fixed 

point, with different points winding faster than other points, thus 

forming a whorl. 

CS. Energy Absorption Trends 

In this section, the pendulum model of sec. C4 is used to predict 

qualitative trends in the average energy absorptionS3c of diatomic 

molecules initially in different vibrational states. Suppose, for 
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example, one has an initial classical state with n fixed and q evenly 
o 0 

distributed between 0 and 2TI. This corresponds to a horrizontal line 

across Fig. 2lb. Now each point on the line will evolve, following the 

pendulum-like surface of section lines in the figure. Rather than 

follow this motion explictly, either by the period advance map, or by 

direct integration of trajectories, one can use the pendulum model 

to predict in advance whether there will be a net gain or loss of 

energy. Suppose no lies between the minimum separatrix action n
l 

and the primary resonance action nl . Then a substantial number of 

points on the initial line will follow elliptic closed orbits about 

But these points then spend most of their time above n , since 
o 

no <. fi l , which results in a net gain of energy (recall n is a measure of 

the energy - eq.IV-20). + Conversely, if no lies between nl and n
1

, 

the maximum in the primary separatrix action, then again the points 

will orbit about nl , but spend most of their time below no' resulting 

in a net energy loss. If n is outside the separatrices, then the 
o 

points will simply rotate up and down (as in curve A of Fig. 2lb), and, 

other things being equal, will not gain or lose much energy. However, 

if n is increased to within the separatrix corresponding to the next 
o 

resonance, i.e. the overtone resonance n2 , there will again be a net 

energy gain if no is between n; and n2 , and a net energy loss if no 

+ is between n2 and n2 . 

53c Recently, Christoffel and Bowman have looked at the net energy 

absorption of nonrotating HF molecules as a function of initial 
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vibrational action using classical trajectories. They used a larger 

perturbation strength than that of secs. C3 and C4 , e: ~ 0.011, and a 

slightly different laser frequency, Q = 0.01787 a.u. The primary 

resonance is found from eq. IV-Z7 to be nl = 0.75Z. From eq. IV-33, 

the minimum and maximum separatrix actions are nl 
+ = -Z.O and nl = 3.5. 

An action of -Z is nonphysical, but is irrelevant for the arguments that 

follow. Similarly, the overtone resonance is found from Zw(nZ) - Q = 0, 

and is n
Z 

= lZ.06. From eq. IV-34 the associated action extrema are 

- + nZ = 9.1 and nZ = 15.0. Rounding off crudely, one would expect 

initial actions n between 0 and 1 to have a net energy gain, 1 and 4 
o 

to have a net energy loss, 4 and 9 to neither gain nor lose much 

energy, and once again increased absorption for n between 9 and 12. 
o 

These expectations are in surprisingly good accord with the observations 

53c of Christoffel and Bowman . In particular, one could note the 

increased absorption for n ~ 9. The fact that a great deal of energy, 
o 

much more than for the lower n values,appears to be absorbed for 
o 

no ~ 9 is indicative of the higher order resonances (nZ ,n3 , .•• ) being 

more closely spaced and overlapping to a large extent, allowing the 

molecule to essentially travel up a "chaotic ladder" of separatrix 

layers. 

This sort of analysis is entirely qualitative, but does have 

the advantage that an essentially "back of the envelope" calculation 

yields qualitatively correct predictions of energy absorption trends. 

71 Recently, Davis and Wyatt have developed a Poincare surface of section 
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approach, based on the numerical integration of only a few classical 

trajectories, that is complementary to the approach here. 

C6. Concluding Remarks 

A th d f t . . d d 13 f d'· 1 me 0 0 genera 1ng per10 . a vance maps . or one- 1menS1ona 

forced oscillator problems has been given. An application to a 

forced Morse oscillator demonstrated that a good deal of dynamical 

information could be obtained from the approach. The applicability 

is limited, however, to a relatively modest number (~400) of map 

iterations (oscillations of the field), but this can be improved 

somewhat by increasing the ~nitial grid size. Also, if one is only 

interested in particular dynamical features, such as the fate of a 

specific initial classical state, it is of course easier to use 

direct classical trajectories. 

The behavior of the nonrotating HF molecule in a strong laser 

was found to be quite interesting, with classical states developing 

whorls64 in the vicinity of the stable fixed point of the map. In 

fact, the entire phase plane was seen to consist of whorls of excitation 

and de-excitation. 14 The pendulum model of nonlinear resonance seems 

quite applicable to problems of this sort and does reproduce some of 

the major qualitative features. Also, certain dynamical trends, such 

as the average energy absorption as a function of initial vibrational 

state, can be qualitatively discussed with this model. Since the 

14 72-
pendulum model has been used' to treat systems with more than 1 or 

2 degrees of freedom, there may be some hope in using similar ideas 

to interpret the behavior of, say, vibrating and rotating diatomic 
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molecules in lasers, or more general polyatomics, or perhaps two or 

more 1 53a. ., h 1 1 asers 1nteract1ng W1t a mo ecu e. Indeed, in related work, 

Oxtoby and Rice
72 

have treated the autonomous problem of energy 

re-distribution in polyatomic molecules after excitation using the 

pendulum model and Chirikov's resonance overlap ideas for the onset 

of chaotic motion. 

As a final point, the quantum analogue of the classical whorls 

has not been discussed here. Berry and co-workers 64 have discussed 

this point, and do expect to see certain evidence of whorls in the 

behavior of the time-dependent probability density • 
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V. Concluding Remarks 

Classical and semiclassical methods have been used to treat a 

variety of phenomena in chemical dynamics. 

Perhaps one of the important advantages of such approaches is that 

one can study reasonably complicated problems of experimental interest 

without too much difficulty. Thus in sec. II it was possible to make 

some connection' with experiment in the discussion of tunneling in 

unimolecular reactions. Unfortunately at present there are no 

experimental or' exact quantum mechanical determinati"ons of the uni

molecular rate constants for the reactions studied in sec. II, so that 

it is somewhat difficult to calibrate precisely the semiclassical 

tunneling models developed. At least the re~ults were compatible 

with the experimental results that were available. 

In sec. III the quite different problem of charge transfer was 

treated with classical trajectories and a perturbative semiclassical 

model. In the simple alkali-halogen system studied .. accurate quantum 

mechanical results were available for comparison. It was seen that the 

classical trajectory results predicted reasonably accurate cross sections 

over a wide range of energies, suggesting it may be useful to try such 

approaches with more compiicated charge transfer reactions. The semi

classical model was also seen to be useful in the limit of high energy. 

It is interesting that such seemingly quantum mechanical events, such 

as nonadiabatic charge transfer,. can sometimes be adequately explained 

within a classical or semiclassical framework. 
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In sec. IV, classical methods were used to study a diatomic molecule 

interacting with a strong laser. Quantum calculations were also made 

for comparison. It was found that the classical picture was reasonable 

for predicting certain averaged results, but could not be relied upon for 

details such as rotational st'ructure in the absorption spectrum. A 

more detailed classical analysis of a nonrotating diatomic in a laser, 

based on a novel method of obtaining the classical solution, was made. 

A simple pendulum model was used to describe the classical solution, 

that also prnved useful for explaining certain trends in molecular 

energy absorption. 

In conclusion, one must admit that there is some, but not all 

truth in classical and semiclassical pictures of molecular phenomena, 

and this line of research is still an interesting and open field for 

future work (Wyatt's rule
73 

still holds: dK/dW»l, where K(W) is the 

knowledge gained as a function of the work exerted). 

Jack: Gwendolen, it is.a terrible thing for a man to 

find out s~ddenly that all his life he has been 

speaking the truth. Can you forgive me? 

Gwendolen: I can. For I feel that you are sure to change. 

from Oscar Wilde's "The Importance of Being Earnest" 
- . 
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Appendix A. The Reaction Path 

The concept of a reaction path is ubiquitous in chemistry, but 

is often ill-understood and poorly defined. For example, in the past 

it was often thought to be the path of minimum energy from the transition 

state down to reactant and product geometries. However, it was later 

.' d h h h . . d d' . 74 p01nte ' out t at suc a pat 1S non-un1que an 1scont1nuous . 

A more fruitful definition, that does not suffer from the above 

mathematical faux pas, is the path defined by following the gradient 

of the Born-Oppenheimer potentia1 75 . In the following, a very 

heuristic argument is presented, based on the concept of a zero 

kinetic energy trajectory connecting reactant, transition state and 

product geometries, that establishes the differential equations to 

be satisfied for this path. 

Consider the usual (see sec. IIC) mass-weighted Cartesian 

coordinates, x. . Let x. be a function of time and Taylor expand it" 
1Y 1Y 

about t = 0, which is assumed to correspond to a point on the reaction 

'path. We have 

x. (t) - x. (0) = ax. latl t 
1Y 1Y 1Y 0 

222 + (1/2)a x. lat It, 1Y, 0 
Al 

to second order. But we require that the kinetic energy be zero, so 

that the velocity ax. lat = o. Also, by Newton's second law, 
1Y 
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where V is the Born-Oppenheimer potential surface. Thus 

Xi (t) - x. (0) = - (1/2)aV/ax. I t
2 

y ~y ~y 0 
A2 

But the distance traveled along the reaction path is, for small steps, 

r 21 
fls = " 1:. [x. (t) - x. (0)] l.y l.y l.y 

= (1/2) t
2 

/ I:i (av/ax~7 y ~y 
A3 

Now divide eq. A2 by eq. A3 and take the limit of infinitesimal 

fls : 
.' . 

A4 

where c = 1/ / I:i (av/ax. )21 , which is the set of 3N differential 
y ~y 

equations (eq. II~S) we introduced to define the reaction path. 

Because the formulation is in terms of Cartesian coordinates and is 

related to classical mechanics, no ambiguities or mathematical 

difficulties arise. 
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Appendix B. Initial Conditions for a Diatomic Molecule 

To classically determine probabilities, it is necessary to 

average over initial conditions. For an isolated diatomic molecule, 

one can change variables to action-angle variables, (N,Qv)' (J,QJ)' 

and (M,QM) such that Nv = J = M = 0, with Nv being the vibrational 

action, J the rotational action or.angular momentum, and M being 

the projection of the angular momentum onto the z axis. These 

variables allow a connection with quantum mechanical states to 

b d ·1 57 e ma e eas~ y The probability P of some event may be obtained 

by averaging over the initial angle variables Qv' QJ' QM' for fixed 

N , J, and M, 
v. 

p = (2n)-3 f 
o 

21T 
dQ 

v 

21T 21T J . dQJ J Bl 
o o 

where X = I if the event occurs and 0 if it does not occur for the 

given initial conditions. Usually, the angular momentum is randomly 

oriented in space, so an average may be taken over M : 

P = 
1 

2J 

J 
f elM P 

-J 
B2 

To do the Monte-Carlo integration45a , the variables of integration 

are changed to t with 0:': t ~ 1, such that 



2 ~ - 1 = M/J = A I 

2TT ~2 Qv 

2TT ~3 QJ 

2TT ~4 QM 

Eq. B2 becomes 

1 N -+ 
P = lim N ~ XN

v 
J M U;) 

N-+oo ., 

That is, one averages X over N random evaluations of ~ (each 

component of ~ is taken to be a pseudorandom number for a given 

evaluation). 
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B3 

B4 

Approxima~e relations between the action-angle variables and 

ordinary molecular coordinates have been given by Porter, Raff, and 

Miller57 for a rotating Morse oscillator. The orbits given by them 

for e and ~ are not strictly correct. The corrected orbits are 

r(t) I 
~n {(-2a)[b + Ib2 - 4ac sin (WN t + QN)] B5a = r e Cl 

eCt) [JI 
z . 

(W
J QJ + sign (Pr) J6J )] BSb = arccos - A cos t + 

~(t) QM + sign (Pa) arccos (A co~ [e(~)~) BSc 
11 - A 

where the formulae for a,b,c,wN,w
J

, and 6
J 

may be found in Ref. 57. 

The errors in the angular orbits arose from omission of a sign(p ) 
r 

and a sign(Pe) factor in the generators Wr and We' respectively 

(eqs. 8a and 8b of Ref. 57). Another slight error is in eqs. 30b and 

... 
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30c of Ref. 57. 
2 

Here, the factor r should be replaced by the expansion 

2 
for r given bi their eq. 5. 

Thus, to generate the initial conditions for a diatomic we first 

pick A, Qv' QJ' and QM randomly according to eqs. B3. Then, since the 

calculations are to be made in spherical coordinates, r, a, and $ are 

calculated from eqs. B5. Pr and Pa may be obtained by either 

conservation of energy and angular momentum, or by differentiation of 

eqs. 30 of Ref. 57. This procedure is completely equivalent to 

randomly orient"ing the molecule and its angular momentum vector "and 

picking only rand p "from the action-angle variable formulae, which 
r 

45a is the more standard approach Thus, the present approach offers 

no technical adyantage over the ordinary approach for most applications, 

including the present one, except when rotational angle variables 

play an important role, as in some semiclassical applications. 

The vibrational action N is calculated at a timet from the 
v 

approximate formula of Ref. 57, 

B6 

and only depends on the molecular energy and angular momentum state, 

J(J + h) = (p~ + p!/sin
2
a). N was also calculated numerically (from 

v 

N = -h/2 + (2rr)-1 0 p dr) as a check on eq. B6 and, for all Nand J 
v r v 

with J ~ 10, N from eq. B6 is accurate to three significant figures. 
v 

Thus, essentially no error is introduced by the use of eq. B6. 
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Appendix C. Fixed Points of the Period Advance Map 

An approximate, but surprisingly accurate estimate of the 

period 1 fixed points is as follows. Starting from eq. IV-29 of 

the text, 

Cl 

where q = q - nt and p = n - n
l

, one then uses the harmonic oscillator8 

x(n,q) to estimate VI' rather than the exact form eq. IV-26b. This 

is valid for small n and simplifies the calculations. Thus 

VI (n) 

Eq. Cl becomes 

-1 11' 
= (211') f x(n,q) cosq dq 

-11' 
11' 

=(211')-1 f 
-11' 

--_. __ . ----, 2 
I (2n + l)/~w cos q dq 

o 

= 1- (2n + 1) /~w ' /2 
o 

The equ~tions of motion consistent with the Hamiltonian above are 

. ., 
"" (£/2) I [Z·(p- + n

1
) " p = - + l]/~w sinq 

0 

. 
..... w(p+n

1
) (E/2) '" - n q = cosg 

I ~w 
0 

[2(i> + n1) + 1] 

C2 

C4 
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. . 
For a fixed point, we require p = q = O. Replacing p + n

l 
by n, 

and setting t = 0 so that q = q, we obtain the two equations 

- (£/2) 1(2n+1)7~wi sinq = 0 
o 

w(n) - (£/2) cosq 

I ~w (2n+l) 
o 

- n = 0 

C5a 

C5b 

Eq. C5a is satisfied for q = 0 and~. Inserting either of these into 

eq. C5b yields a simple one-dimensional root equation for n, which 

can be solved by iteration. With the parameters of sec. IVC, one 

finds the fixed points (n,q) = (0.6218, ~), (0.3610,0), and (-0.4828, 0), 

which .are in remarkably good agreement with the more exact fixed 

points, which were found to be (0.6173, ~), (0.3603,0), and (-0.4821, 0) • 

.. 
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Table I. Predicted DZ+P Cl harmonic vibrational frequencies 

for vinylidene, acetylene, and the transition state 

connecting them. .. 
Normal 

Mode 
Species Freguency Description 

3344 CH asym. stretch 

3239 CH sym. stretch 

1710 CC stretch 
vinylidene 

1288 CCH bend 

787 out of plane 

444 CH2 
rock 

3454 CHa stretch 

2699 C11, stretch 

1874 CC stretch 
transition state 

937 HCC bend 

573 out of plane 

1029i reaction coordinate 

3583 CH asym. stretch 

3488 CH sym. stretch 

acetylene 2073 CC stretch 

764 eCH bend 

610 CCH bend 



.. 
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Table II. Harmon~c V~bration~l f~equenc~es 
a 

Q~ H2Ca, 

DZ-SCFb DZP-SCF DZ-CJ: DZP-CI Expc 

W
l 

(a
l

) 3223 3149 3028 3074 2944 

w
2

(a
1

) 1878 2006 1703 1869 1764 

w
3

(a
1

) 1651 1656 1544 1596 1563 

w
4

(b
1

) 1324 1335 1194 1243 1191 

Ws (b 2) 3315 3226 3112 3155 3009 

W6 (b2) 1349 1367 1263 1306 1287 

aUnits for frequencies are cm-1 

bVarious column headings refer to the various ab initio basis 

sets and extent of configuration inte.raction included in the 

calculations. 

cThe experimental harmonic frequencies given in reference 35 . 
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Table III. Transition State ParametersCl,bfor H2CO -+ H2 + co. 

. DZ':'SCf DZP-SCf DZ-CI DZP-Cr. SCALEDc 

wI (a') 3156 3243 3159 3263 3125 '-

w2 (a') 1948 2092 1764 1939 1830 

w3 (a') 1371 1526 1310 1555 1523 

w4 (a') 800 829 803 876 839 

w5 (a '.) 2320i 2305i 1997i 2124i 2026i 

W (a ") 6 1015 1024 889 "- 950 936 

V (kcal)d e 
113.7 105.9 100.3 98.1 92 o mole 

a, b See Table II 

c Scaled frequencies , see text. 

d Barrier height relative to vibrationless H2CO. 

e 
The best estimates of Goddard et al. (reference 33) of the 

classicaJ barrier,. with a probable error of ± 1 kcal/mole. 
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Table IV. Rate Constants via Simple RRKM + Tunneling Model. 

-1 log k (sec ) 
A 

r " !::Yo (kc:,al/mole) DZ-SC~ DZ~";'·SCF DZ";'CI DZP";'CI SCALED 
..,' ~ 

-2 3.57 3.41 2.91 2.99 2.95 

0 4.41 4.26 3.90 3.92 3.92 

2 5.24 5.10 4.87 4.83 4.88 

4 6.06 5.93 5.83 5.74 5.81 

6 6.88 6.76 6.77 6.63 6.75 

8 7.68 7.57 7.71 7.51 7.67 

10 8.43 8.34 8.57 8.36 8.55 

12 9.02 9.00 .~.17 9.05 9.21 
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Table V. Frequency Variation along the Reaction Path. 

0 

s (/amu A) 

r A ." -0;21 0 + 0;21. . .. 
WI 3517 3263 2642 

w2 1932 1939 1981 

w3 1594 1555 1648 

w4 953 876 738 

a 
<tV w6 950) "- 950 (,,- 950) 

.' . 

a The out-of-plane bending frequency. 

. .. 
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Table VI. Effect on Rate of More Rigorous Dynamical Model. 

-1 a 
log k (sec· ) 
. A -r , 

~(kca1(ITlo1e) ~ B C D E 
~" 

-2 2.99 3.14 3.17 3.14 2.98 

0 3.92 4.00 4,03 4.00 3.86 

2 4.83 4.86 4.89 4.86 4.74 

4 5.74 5.72 5.75 5.72 5.62 

6 6~63 6.58 6.61 6.58 6.50 

8 7.51 7.50 . 7.52 7.49 7.41 

10 8.36 8.34 8.35 8.33 8.25 

12 9.05 9.04 9.04 9.02 8.97 

aSee text for a description of the theoretical models corresponding 

to columns A-E. 
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Table VII. Comparison of semiclassical perturbation theory (SCL) 

and exact quantum (QM) probabilities for the Landau-Zener model. 

Z ~l+ O(SCL) P1+ O(QM) 

O. o. O. 

0.2 ·0.0099 0.0099 

0.4 0.0384 0.0392 

0.6 0.0822 0.0861 

0.8 0.1360 0.1479 

1.0 0.1937 0.2212 

1.2 0.2483 0.3023 

1.4 0.2936 0.3874 

1.6 0.3248 0.4727 

1.8 0.3381 0.5551 

2~0 0.3326 0.6321 

00 O. 1. 

- .. 
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Table VIII. Some relevant energy levels for HF, according to the 

rotating Morse oscillator approximation. 

E o. 
v ] 

i 
~-1 

v a.u. em . -
0 0 0.0093309 2048 

0 1 0.0095187 2089 

0 2 0.0098941 2171 

1 0 0.0274001 6014 

1 1 0.0275819 6054 

1 2 0.0279454 6133 

2 0 0.0446793 9806 

2 1 0.0448551 9845 

2 2 0.0452065 9922 
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Table IX. Approximate time averaged probabilities for vibrational 

transitions of HF in a 1.0 TW/cm2 laser. 

non-rotating rotating 
.A. A 

- -1 ( p'\ (p v(cm ) Po PI 2 0 PI 

3850 0.88(QM) 0.08 0.04 0.99 0.01 

1. OO(CL) 0.00 0.00 

3879 0.47 0.08 0.45 0.53 0.03 

0.88 0.12 0.00 0.99 0.01 

3900 0.83 0.11 0.06 0.96 0.03 

0.73 0.19 0.08 0.94 0.04 

3937 0.69 0.28 0.03 0.47 0.07 

0.69 0.24 0.06 0.67 0.27 

3966 0.51 0.47 0.02 0.87 0.12 

0.63 0.36 0.01 0.58 0.40 

4006 0.69 0.30 0.01 0.50 0.49 

0.68 0.32 0.00 0.66 0.34 

4085 0.93 0.07 0.00 0.95 0.05 

0.90 0.10 0.00 0.88 0.12 

P '\ 
2 

0.00 

0.44 

0.00 

0.01 

0.02 

0.46 

0.06 

0.01 

0.02 

0.01 

0.00 

0.00 

0.00 

r"'-' 

... 
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Table x. Approximate time averaged vibrational transition probabilities 

2 (a) 
for rotating HF in a 2.5 TW/cm laser. 

- -1 
v(cm ) Po PI P2 

3879 0.51(QM) 0.07 0.42 

0.88(CL) 0.07 0.05 

3900 0.90 0.05 0.05 

0.67 0.17 0.16 

3937 0.48 0.10 0.42 

0.50 0.31 0.19 

3966 0.77 0.18 0.05 

0.52 0.39 0.09 

4006 0.52 0.45 0.03 

0.61 0.37 0.02 

4085 0.89 O.ll. 0.00 

0.78 0.20 0.00 

(a) 
-1 

The classical results shown for v = 3879 and 3937 cm were actually 

run at 3870 and ,3927 cm- l , respectively. The probabilities will not vary 

much since the classical peak is broad. It was displayed in the table 

this way to avoid confusion since the overall trends are still clear. 

' .. 

... 
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Table XL Quantum mechanical transition probabilities and energy absorbed 

as a function of pulse time for laser phases of o and rr/2 at 

w = 4006 cm -1 2 and I = 1.0 TW/cm .. 

P
OO P 11 < E ( t ) > QM (a . u . ) 

( __ A~_~ ,,----/'---., r:~ , . 
t(es ) <5 = 0 <5 = rr/2 <5 = 0 <5 = Tr /2 <5 = 0 <5 = rr/2 

..,;'" .• 

0.0 1.00 1.00 0.00 0.00 0.0000 0.0000 

0.4 0.30 0.32 0.63 0.66 0.0125 0.0126 

0.8 0.13 0.14 0.81 0.83 0.0156 0.0158 

1.2 0.94 0.95 0.05 0.05 0.0010 0.0009 

1.6 0.51 0.53 0.44 0.45 0.0084 0.0086 

2.0 0.03 0.03 0.92 0.92 0.0177 0.0179 

2.4 0.81 0.81 0.17 0.17 0.0034 0.0033 

2.8 0.73 0.73 0.24 0.24 0.0047 0.0048 

3.2 0.01 0.01 0.95 0.94 0.0180 0.0182 

3.6 0.62 0.62 0.36 0.36 0.0068 0.0069 

4.0 0.88 0.90 0.09 0.09 0.0018 0.0017 

4.4 0.08 0.09 0.87 0.88 0.0167 0.0169 

.. 
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Table XII. Quantum mechanical transition probabilities and energy absorbed 

t(ps) 

0.0 

0.4 

0.8 

1.2 

1.6 

2.0 

2.4 

2.8 

3.2 

3.6 

4.0 

4.4 

as a function of pulse times for laser phases of a and rr/2 at 

w = 3937 cm-1 
and I = 1.0 TW/cm2. 

Poo P
22 <E(t» QM (a. u.) 

~ ~ (---~ 
8 = a 8 = rr/2 <5 = a 0 = rr/2 8 = a 0 rr/2 

1.00 1.00 0.00 0.00 0.0000 0.0000 

0.93 0.93 0.05 0.05 0.0021 0.0019 

0.78 0.80 0.19 0.19 0.0072 0.0071 

0.57 0.58 0.37 0.38 0.0142 0.0144 

0.36 0.37 0.57 0.57 0.0218 0.0219 

0.18 0.18 0.71 0.74 0.0282 0.0284 

0.05 0.05 0.83 0.81 0.0320 0.0324 

0.00 0.00 0.83 0.86 0.0333 0.0338 

0.03 0.03 0.80 0.80 0.0322 0.0324 

0.14 0.13 0.69 0.71 0.0283 0.0287 

0.27 0.29 0.56 0.57 0.0231 0.0233 

0.47 0.47 0.40 0.40 0.0169 0.0170 
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Table XIII Root mean square deviations between the map predictions 

and direct numerical integration of trajectories. The results 

are for 50 trajectories with n = 0 initially. Typical values 
o 

of p and x are .:!:3 and 2 a.u. respectively. 

R.M.S. deviation 

r p x 

100 0.005 0.0001 

200 0.008 0.0003 

300 0.016 0.0010 

400 0.024 0.0020 

500 0.078 0.0029 

- " 
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Figure Captions 

Figure 1. Stationary point geometries at the DZP-CI level of theory 

for viny1idene, acetylene, and the transition state 

connecting them. 

Figure 2. Rate of vinylidene rearrangement to acetylene as a function 

of excess vibrational energy in vinylidene, i.e. vibrational 

energy in excess of the zero-point energy~ The solid curve 

is for a classical barrier of 4 kca1/mol, and the dashed 

curve is for a barrier of 6 kcal/mol. Arrows on the energy 

axis indicate the respective classical thresholds. 

Figure 3. Plot of the x and y coordinates of the H atom along the 

reaction path for HNC ~ HCN. The origin of the coo'rdinate 

system is the center of mass of CN. Only the region important 

for tunneling is shown, and the spurious oscillations have 

been smoothed out. 

Figure 4. Potential energy (left hand scale) and vibrational frequencies 

(right hand scale) as a function of the reaction coordinate 

for HNC ~ HCN. 

Figure 5. Vibrational mode coupling constants asa function of the 

reaction coordinate. 

Figure 6. Microcanonical rate constant for zero total angular 

momentum for the reaction HNC ~ HCN. The classical threshold 

is indicated by an arrow. 
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Figure 7. Potential energy profile along the formaldehyde reaction 

path for decomposition. The points are the ab initio 

(DZP-CI) results and the solid curve is an Eckart potential 

fit 

Figure 8. Potential energy profil"e, calculated at the DZ-SCF level 

of ab initio theory, for formaldehyde decomposition. 

Figure 9. Vibrational frequencies as a function of reaction coordinate 

for formaldehyde decomposition, calculated at the DZ-SCF 

level of theory. 

Figure 10. Selected vibrational mode couplings for the formaldehyde 

reaction path. (a) B12 , (b) B3l , (c) B32 . See text for 

more discussion. 

Figure 11. Classical (points), quantum (solid curve), and perturbative 

semiclassical (dashed curve) results for Na + I + Na+ + r-

cross section. 

Figure 12. Classical and quantum mechanical time averaged energy 

2 
absorption for HF in a 1.0 TW/cm laser. (a) nonrotating 

HF, (b) rotating HF. 

Figure 13. Classical and quantum mechanical time averaged energy 

absorption for rotating HF in a 2.5 TW/cm2 laser. 

Figure 14. Time-dependent energy absorption for nonrotating HF with 

-1 2 laser frequency v = 3966 cm and I = 1.0 TW/cm . 

" ''ij: 
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Figure 15. Time-dependent energy absorption for rotating HF with 

- -1 2 
v = 4006 cm and I = 1.0 TW/cm . 

Figure 16. Quantum time~dependent energy absorption for rotating HF 

with v = 3937 cm-1 and I = 1.0 TW/cm2 . Jaggedness is 

due to poor resolution of high frequency oscillations. 

Figure 17. Classical time-dependent energy absorption for rotating HF 

Figure 18. 

Figure 19 . 

-1 'I 2 with v = 3937 cm and I = 1.0 TW cm . 

Clas'sical and quantum probabilities P . for HF with 
VJ 

-1 2 
v = 4006 cm and I = 1.0 TW/cm . 

Classical probabilities for HF with v 

2 
I = 1. 0 TW I cm . 

-1 = 3937 cm and 

Figure 20. Quantum probabilities P 00 and P 22 for HF with v = 3937 "cm-l 

2 
and I = 1.0 TW/cm . 

Figure 21. Surface of section plots for the period advance map. 

Figure 22. 

Figure 23. 

a) p-x space. b) n-q space. Open circles indicate stable 

fixed points and filled circles indicate unstable fixed 

points. 

Evolution of an initial n = 1/2 state. 
o 

a) after r = 20 

periods, b) after 40 periods, c) after 60 periods. Note 

the dashed line in a) represents the initial state. 

a) result of mapping an n = 0 state 40 periods, b) result 
o 

of mapping an n = 1 state 40 p~riods. 
o 
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Figure 24. Evolution of the entire n-q phase plane. After a) 20 

periods, b) 40 periods, and c) 60 periods. See text for 

details. 

Figure 25. Pendulum model predictions for the fate of initial 

states a) n = 1/2, b) n = 0, and c) n = 1, after 
o 0 0 

40 periods. . 

- '. 
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