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ABSTRACT

Auto-regressive linear prediction is adapted to double the

resolution of Angle-Resolved Photoemission Extended Fine Structure

(ARPEFS) Fourier transforms. Even with the optimal taper (wei ghting

function), the commonly used taper-and-transform Fourier method has

limited resolution: it assumes the signal is zero oeyond the limits of

the measurement. By seeking the Fourier spectrum of an infinite

extent oscillation consistent with the measurements but otherwise

having maximum entropy, the errors caused by finite data range can be

reduced. Our procedure developed to implement this concept adapts

auto-regressive linear prediction to extrapolate the signal in an

effective and controll able manner. Difficulties encountered when

processing actual ARPEFS data are discussed. A key feature of thi s

approach is the ability to convert improved measurements (signal-

to-noise or point density) into improved Fourier resolution.
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I • INTRODUCT ION

Fourier transformation is a basic tool for spectroscopic data

analysis in several contexts.

d f h . 1· 1-3use or armon1C ana YS1S.

Typically, Fourier transformation is

The spectroscopic measurement

records an intensity while scanning energy; the Fourier transformation

converts this energy spectrum into a frequency spectrum, reporting the

amplitude and phase of a series of fixed frequency sinusoids which sum

to the experimental result. If the physically significant part of the

measurement has a distinctive frequency dependence, the signal

frequencies can be isolated from irrelevant background or noise

frequencies. Synthesis of the signal frequencies then yields a new

energy spectrum whose interpretation may be simpler. For example,

Extended X-ray Absorption Fine Structure (EXAFS) data are usually

analyzed in this manner. 4,S

Conceptually, Fourier analysis yields the amplitude and phase of

each individual sine wave in a series which sums to give the

spectroscopic signal. Of course, sine waves continue indefinitely

while spectroscopic signals typically have a limited range. If the

data analysis is restricted to a Fourier transform, this mismatch

inevitably leads to a broadened Fourier spectrum: wide peaks appear

for dominant frequencies, but adjacent peaks may overlap and the

desired separation in frequencies may not be realized. With the

Fourier methods currently used in spectroscopy4-6 this finite-

data-range broadening cannot be reduced by more careful measurements

within a fixed interval. Thus if the measurement range is physically
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restricted, then the ability of simple Fourier analysis to separate

dominant frequencies will be limited.

Because of this broadening, the advantage of the explicit

harmonic content analysis provided by a single Fourier transformation

is offset by its lowering of frequency resolution. This broadening

effect is extrinsic to the data set: it is inflicted on the data Dy

forcing a clumsy method of analysis, because we force infinite sine

waves functions to reproduce a finite length aata sequence. An

implicit method for extracting the harmonic content (e.g., least­

squares fitting the data) would provide the required frequency

resolution. It is, moreover, also possible to realize the advantage

of both approaches; viz, high frequency resolution and explicit

analysis, by combining regression methods and Fourier analysis. Such

an approach, for a particular spectroscopic method, is tne subject of

this paper.

To directly analyze angle-resolved photoemission extended fine

structure (ARPEFS), a photoelectron diffraction phenomenon useful for

surface structure determination,? we have found the frequency

resolving power of the usual spectroscopic Fourier analysis to be

inadequate, because the data range is limited. Fortunately, we nave

been able to adapt one of the new approaches to the Fourier analysis

of physical measurements that allows higher Fourier resolution and can

trade measurement precision for Fourier resolution. We shall report

and discuss an adaptation of auto-regressive linear prediction, also

known as maximum entropy spectral analysis, which improves the Fourier
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resolution by a factor of two in practical cases. Auto-regressive

linear prediction is widely used to process geophysical and acoustical

measurements l ,3,a when estimates of power spectra are required, but

only short data sequences are available. We will demonstrate that

auto-regressive linear prediction can be used to extend the effective

range of sinusoidal ARPEFS signals by an amount which increases with

the signal-to-noise power ratio. Although we apply this method to the

analysis of ARPEFS, the method is directly applicable to EXAFS data or

to other spectroscopies requiring high resolution Fourier

transformations.

After ARPEFS is described in Section II, the taper-and-transform

method of Fourier analysis is discussed in Section III. Auto­

regressive linear prediction is introduced in Section IV. The results

are discussed in Section V, and a summary appears in Section VI.

II. ARPEFS

We shall demonstrate the auto-regressive Fourier technique by

applying it to ARPEFS data. In this section we briefly describe the

essential physics of ARPEFS and discuss why high resolution Fourier

analysis is required.

Angle-resolved photoemission extended fine structure is the

oscillatory part of the photoemission current as a function of

photoelectron kinetic energy.7 Photo-excitation of an adsorbate

core level gives an atomic-like (direct) outgoing photoelectron wave.
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Direct propagation of this wave to our detector would give an overall

atomic character to the aifferential cross section. Elastic scatter-

ing of this wave from substrate atoms leads to a new set of waves

which can reach the detector and which interfere with the direct

wave. For electron kinetic energies from about 50 to 500 eV, two

conditions are met: single elasti c scattering from ion cores dominates

and the electron de Broglie wavelength corresponds to atomic dimen-

sions. Thus, the interference modulation with Kinetic energy can be

used to derive the scattering path length and hence the position of

the adsorbate atoms relative to the substrate.

The ARPEFS modulations are strongly dependent on the scattering

angle, aj' the angle between the photon polarizati on vector and

scatterer, Bj , and the angle between the detector and the polariza­

tion vector, y. In the simplest theory,9 the modulations, X(k),

expressed as a function of the electron de Broglie wavenumber, k, are

where

A
J

X(k) =·I A.cos[kr.(l-cos a.) + p.J,
. J J J J
J

( 1)

for ls photoabsorption. -+
If we call the polarization vector £, the

emission vector k, and the vector from the emitter atom to the jth
-+

scatterer r j , then the pararreters in this formula are:
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~ ~

angle between E and r.. J
~

~

angle between E and k

~

ion core j at r·
J
~

scattering phase shift for ion core j at r·
J

inelastic scattering length coefficient

total electron path in solid

mean square difference in displacement between

emitter and scatterer j.

The argument of the cosine contains the geometrical information,

If the contribution from a single scatterer canr·-r· cos a·.
J J J

be isolated, the scattering phase shift, 6
j

, can be removed and the

structure can be determined.

Because the single scattering theory is not valid for low

wavenumber measurements and because the Debye-Waller factor,

2 2eXp(-a k (l-cos aj))' reduces the intensity of the oscillations

for high wavenumbers, the useful ARPEFS data range typically lies

R-l R-lbetween 3 ~ -rad. and 12 ~ -rad. As we show in the next section

this range may not be sufficient to resolve the nearest neighbor path

lengths when normal Fourier analysis is applied.

III. THE TAPER-AND-TRANSFORM METHOD

To demonstrate our Fourier method we analyzed a harmonic sum
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(Fig. 1a) made up of test data consisting of two sine waves with

frequencies of 5 Aand 6 Asampled 128 times in the interval from 4 to

R-111 M -rad. We added pseudo-random numbers to give a signal/noise

ratio of - 10. Two important differences between this signal and our

ARPEFS data--the k dependences of the amplitude Aj and of the phase

~.--wi11 be examined in Section V.
J

Direct application of the discrete Fourier transform,

(2 )

to the test sequence of Npoints [G] gives, via the Fast Fourier

Transform,2 a sparsely digitized Fourier spectrum, [g], shown in

Figure lb. The density of points in the Fourier spectrum can be

increased by simply appending zeros to the sequence, [G], as Figures

lc and ld illustrate, but ringing side1obes--Gibbs oscil1ations--then

appear, as a consequence of the finite length of the data sequence.

These oscillations obscure or confuse features in the experimental

Fourier spectrum. They arise from the sharp truncation of the signal

at the ends of the range. If y(p) is the sinusoid that we would get

if we could measure an infinite range of data, then our experiment

gives

b(p) = w(p)*y(p) (3 )

The box function, w(p), truncates the signal at the extremes of the

measurement interval:
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p <

1 < p < N

P > N

( 4)

for N measurements. The Fourier transform of b is the convolution of

the transform of the sine waves (delta functions) and the transform of

the box (sin2x/x2). The sidelobes oscillations of the box trans-

form are then superimposed upon the delta functions.

The usual approach for reducing these oscillations is termed

"taper-and-transform" spectral analysis. l The sharp-edged box is

replaced by a smooth weighting function whose Fourier transform does

not contain large oscillations. This weighting function will broaden

the Fourier spectrum as it reduces the sidelobe oscillations.

Harris lO and Nuttall l 1 surveyed a variety of weighting functions

and compared their performance by several criteria. For our purposes,

the appropriate weighting function should have the highest possible

resolution for a sidelobe-to-mainlobe ratio below the data's noise-to-

signal ratio. We compare to the noise-to-signal ratio since, assuming

approximately normally distributed noise, the background of the

Fourier transform will be the flat Fourier spectrum of the noise.

Sidelobes falling below this level will have no more impact than the

noise from the measurement.

As a measure of resolution we select the full width at half

maximum valve and label it 6r. The width of the measurement, 6k, can

be related to this resolution as



-10-

llr = ~~ f ( 5)

where the factor f depends on the weighting function. For a square

window (no weighting) f = 1.21, and the sidelobe is .22 times the

mainlobe. Harris gives f as the 116 dB resolution ll and reports the

sidelobe ratio in dB (20 times the 10910 of the sidelobe ratio).

Several of Harris' results lO are collected in Table I and displayed

in Figure 2; since Harris concentrated on weighting functions with

very low sidelobes, we have extended his calculations to include

weighting functions with sidelobes - 10 percent of the main lobe.

The weighting functions in Figure 2 fall in three groups. First,

functions (a,b) which are flat in the center and fall smoothly to zero

at the edges have the poorest resolution for a given sidelobe ratio.

The shape of the roll off--Gaussian or cosine--seems to have little

effect. Second, several functions (c,d,e) without variable parameters

can be found which have 1-10 percent sidelobes but better resolution

than the first group. Finally, the third set includes functions

(f,g,h) which are theoretically optimal for mainlobe width versus

sidelobe ratio by different measures.lO,ll For noise-to-signal

ratios in the. 1 to .01 range these weighting funct ions are equivalent.

From this last set we select the more familiar Gaussian weights

and choose the Gaussian function width equal to 5/8 times the aata

range. This gives f = 1.6 and sidelobes equal to 3 percent of the

mainline. Figures3(a) and 3(b) illustrate the taper-and-transform
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results for the sine wave test spectrum using this weighting. The

sidelobes will double while the mainlobe only narrows by 10 percent if

we choose a Gaussian width equal to 3/4 of the data range.

With the resolution relation, equation 5, we can look forward to

difficulties with real measurements. With the longest ARPEFS

7 R-lmeasurement range reported to date, 6k = 6.5 M -rad., the path-

length resolution will be 6r = 1.55 A. Nearest neighbor scattering

atoms in that study appeared at path lengths of 1.96 A, 3.2 A, and

4.46 A--these peaks cannot be resolved with taper-and-transform

Fourier analysis.

IV. THE AR LINEAR PREDICTION METHOD

The taper-and-transform Fourier method produces a Fourier

spectrum of a signal which decays to zero at the edges of the

observation interval. Beyond the observation interval this method

therefore arbitrarily (albeit implicitly) assigns zero as the signal

value, contrary to any reasonable expectation based on the sequence

measured. In fact, most arbitrary choices for the signal in this

region could be characterized as "unreasonable". This is another way

of saying that we do not want the Fourier transform of our measured

signal; we want the Fourier transform of a signal of which we have

only a short segment. Proper selection of a weighting function can

minimize the problems of a short data range, but this does not address

the underlying problem.
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The auto-regressive linear prediction (ARLP) approach to Fourier

analysis proceeds with different assumptions about the data analysis

prob1em. 1,3,8 In the AR method we assume that the data in the

(limited) data range represent a few observations of an auto-

regressive process. By least-squares fitting these data we determine

the process parameters and solve for the Fourier spectrum of the

process. Because the range of the AR process is not limited to the

observation interval, much better resolution is possible.

In an auto-regressive process each data value, xp, can be

expressed as a linear combination of previous values,

x =p (6 )

The number m is called the "order" of the process; the coefficients

aq constitute an auto-regressive filter. In modeling a data

sequence with an AR process, a set of coefficients aq and an order m

must be calculated which can "predict" all the members of the data

sequence. With the order less than the number of data points, the

forward predictions in equation (6) and the backward predictions,

x =p-m

m
L

q=l
*a x
q p-m+q (7)

form an overdetermined set of equations for the AR coefficients.

These equations and fast recursive algorithms for their solution are

discussed ref. 12.
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An AR process of order m has a Fourier power spectrum

proportional to

(8)

Thus, one route to high resolution Fourier analysis proceeds as

follows:

1. set ao = 1

2. solve for aq, q=l, M by fitting the data 12

3. set aq = 0 for q = M+1,qmax where qmax is a large

power of 2, e.g. qmax=2048

4. fast Fourier transform the full sequence [aqJ

5. invert the square modulus of the transform.

While this approach has the greatest potential resolution, it is

difficult to apply to real data. The resulting peaks are all very

sharp, making it difficult to distinguish spurious from real hidden

peaks. The peaks are strong functions of the order chosen and of the

signal-to-noise power ratio in the data. Furthermore, only the power

spectrum is retrieved; the phase information is not available.

For these reasons we have adopted a more conservative approach

which sacrifices some resolution in favor of greatly enhanced

reliability and control. This procedure is: 1
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1. solve for the aq, q=l,m by fitting the data

2. use equation 6 to extrapolate the data sequence forward

3. use equation 7 to extrapolate backward

4. multiply the resulting sequence by a weighting function

5. set aq=O for q=M+l,qmax where qmax is a large power of

2, e.g. qmax=2048

6. fast Fourier transform the sequence [aqJ.

The Fourier coefficients derived from this procedure can be

further analyzed with the usual Hilbert back transformation. 3,4 We

have usually chosen an order equal to one half the number of data

points, and we can typically extrapolate for approximately as many

data points forward and backward as we originally measured.

The inherent control of this procedure comes in the examination

of the extrapolated sequence. At some point in the extrapolation the

new values begin to increase rapidly in amplitude and/or noise content

(Fig. 3c). By placing the edge of our taper window at these points

the unstable part of the extrapolation is eliminated. Furthermore,

the window weights the extrapolated points significantly less than the

real data values, moderating the effect of the new values on the final

spectrum.

An example of the extrapolation is shown in Figure 3e, and its

effect on the Fourier spectrum is shown in Figure 3d. The signal in

Figure la was fitted to an AR process of order 128. Extrapolation

gives Figure 3c. Figure 3d dramatically illustrates the potential of



-15-

this method for increasing resolution in Fourier analysis.

At this point it is useful to note that the ARLP-Fourier

transform method is not a "deconvolution" of the data which can

produce spurious peaks through unreliable resolution enhancement. As

we illustrated in Figure 4, our net process solves a problem with the

taper-and-transform Fourier method. In Figure 4a it is obvious on

visual inspection that more than one frequency is present, but the

Fourier transform will have Gibb's oscillations. When the taper

(weighting function) is applied as in Fig. 3b, the beat structure is

lost while the Gibb's oscillations in the Fourier transform are

suppressed (Figure 3(b)). From this perspective the unadorned Fourier

transform and the taper-and-transform process are clumsy operations

that obscure the frequency information inherent in the data. When the

ARLP is applied, Figure 4(c), data on the ends of the measurement are

no longer lost when the window function is applied, Figure 4(d).

Up to this point we have assumed that our measurement can De

successfully approximated by an auto-regressive process. In

reexamining this point we divide the question in two parts: i) hOw

closely can a cosinusoidal series be represented by an auto-regressive

process, and ii) how closely does a cosinusoidal model fit ARPEFS

data? For the first part we can note the discussion of Ulrych and

Ooe8 . Beginning with a finite difference equation for a sinusoidal

series, they demonstrate that such a series can be represented by a

combination auto-regressive, moving average (ARMA) mOdel; they also

show that such an ARM A model can be represented by an infinite order
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pure auto-regressive model. Numerical work 1 supports the conclusion

that AR models can represent sinusoidal series.

The second question is more difficult to address, but it impacts

every method of harmonic analysis applied to ARPEFS. Specifically, if

the cosine form breaks down, the taper-and-transform approach will

fail as the auto-regressive approach does. We will examine some of

the possible problems in the next section.

V. DISCUSSION

Two important features neglected in the sine wave model spectrum

are the amplitude and phase variation with k in real ARPEFS data. The

sine wave model spectrum neglected any variation in frequency due to

nonlinearity in ¢. and any variation in amplitude due to
J

If(oj) lexp[-a2k2(1-cos (lj)-Lj/>.k].

To examine a model containing realistic amplitude and phase

functions on a scale similar to our data we have generated a spectrum

by adding 10 percent noise to

( 9)

where f and ¢ are derived from summed partial-wave phase Shifts. 13

Direct application of the AR linear prediction gives the result in



-17-

Figure 5a and the Fourier transform in Figure 5b. The increase in

amplitude at low k in the linear prediction is a consequence of the

amplitude structure for scattering through 116°: If(116°) I peaks at

R-l- 5 ~ -rad as shown in Figure 6. The AR method presumes that this

is a rising signal and continues the trend to lower k. At higher k,

the AR method tries to force this single decaying frequency to be

modeled by infinite sine waves: it must sum two nearby frequencies to

simulate the amplitude decline. The Fourier spectrum then contains a

split peak for this scattering event.

The rising low k amplitude effect can be recognized in the

predicted spectrum and remedied by analyzing kX(k). The k weighting

helps to cancel the decline of /f(aj)' at higher k and has been used

extensively for analysis of EXAFS data. 5 This weighting evens out

the linear prediction shown in Figure 5c, and the resulting Fourier

transform amplitudes (Fig. 5d) are more similar to the average

amplitudes of the signals within the real measurement range.

Whatever weighting is employed, the important separation of the

Fourier frequencies is still effected by the auto-regressive linear

prediction followed by Fourier transformation. The amplitude varia-

tion places an upper limit on the resolution obtainable from the AR

analysis of real data. When the amplitude function falls with the

same shape as the beat envelop, then the AR analysis cannot distin-

guish between them.

Variation of the frequency with k violates the stationary

assumption in the application of the auto-regressive model. Thus.
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ARPEFS peaks with phase functions strongly nonlinear in k will be

modeled incorrectly, probably being represented as more linear than

they really are. If the phase has an average slope at the beginning

of the data range which is different from its average slope at the

end, the extrapolation procedure sometimes yields a slightly doubled

or asymmetric peak which must not be mistaken for two.

The frequency variation may also explain the empirical selection

of a large process order m. In the usual application of the AR

technique8 the order is chosen by some criterion based on the

prediction error; that is, the difference between the linear

prediction and the data values. While this criterion can give a

prediction filter for pure sinusoids in the presence of noise, valid

for infinite range, we seek an adequate representation of a more

complex oscillating signal over a small range. Our signal does not

result from any auto-regressive process, and a large order may model

nuances of nonlinear phase and noise.

The impact of modelling this non-stationary signal with an

auto-regressive filter is minor because we do not rely on the Fourier

spectrum itself for the final analysis. Following Martens,4 we

apply a Hilbert transformation 3 to our data. From the complex

exponential form of the cosine

A. i(p.k+~.) A. -i(p.k+~.)

A.cos(p.k + ~.) = --2J e J J + --2J e J J (10)
J J J

we see that the transform of the cosine is real and peaked near p.
J
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and -Pj. By using only the positive frequency components, a complex

back transform gives

The amplitude and phase functions of the original cosine wave can be

derived as the amplitUde and phase of this complex sequence. For our

signal the actual cosine argument is k(rj-rj ) + ~j' so we sub­

tract the potential phase shift, Pj , and fit the resulting sequence

to a line. The slope of this line gives the averaged geometrical

position we seek. The crucial point is this: we only use the cosine

phase function in the region of k where we made actual measurements.

Thus the entire AR prediction Fourier analysis serves only to isolate

a single frequency. The position and amplitUde of the Fourier peaks

need not be accurate for us to obtain accurate geometries. It is

important to recognize that the extrapolated region is not used for

the evaluation of the geometry: we need only fit our line over the

region of k where our measurements were made. The extrapolation

prevents mixing the arguments of two nearby cosine signals.

Since there are a large number of variable parameters in even

this simple model, we cannot yet give a complete analysis of the

effects of background subtraction and signal/noise ratio. Generally,

the AR linear prediction produces a "peakier" spectrum than one might

imagine being correct. l Thus, errors in background subtraction

appear as small peaks at harmless low r. values. When the beat
J



-20-

pattern of two peaks approaches the width of the actual measurement

range, then errors in background subtraction may interfere with

resolution.

Signal/noise power ratios greater than 10 allow approximately

double the resolution of the taper approach, with errors in geometry

of < 0.02 A. Errors increase rapidly for signal/noise ratios falling

below 4. Until more experience is acquired with the AR method,

prudence suggests examination of these effects for model spectra

closely mimicking the actual data before assigning error limits.

As a practical example of the improved analysis of ARPEFS data,

we have analyzed 7 the modulations (Figure 7a) in the sulfur ls

photoemission intensity emitted along the [110] direction from a

c(2x2)S/Ni(100) adsorbate system. The Fourier transform via the taper

approach shows distinct peaks (Figure 7b), but each peak is an average

of several path-length differences. The AR linear prediction is shown

in Figure 7c, and the Fourier transform gives Figure 7d. Now the

individual peaks are clearly separated and they can be assigned to

scattering path-length differences. 7

VI. SUMMARY

Auto-regressive linear prediction provides a method for greatly

increasing the resolution of Fourier analysis of sinusoidal data.

Using the extrapolate-taper-transform method described here, we can

always do as well or better than the taper-transform approach. If the
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signal/noise ratio is so poor that the extrapolation fails immedi-

ately, then the AR procedure reverts to the usual taper method. For

all other cases the resolution is improved. Furthermore, the method

is easy to implement, computationally efficient, and controllable.

The resolution improvement afforded by the auto-regressive linear

prediction method scales with the quality of the experimental measure­

ments. Low precision or widely spaced measurements do not contain

enough information to accurately detemine the auto-regressive coeffi­

cients. Our moderate precision measurements yield moderate precision

auto-regressive coefficients; our coefficients allow successful extra­

polation as we have demonstrated, but they are not precise enough for

the analytic power spectrum formula.

Two improvements in the application of auto-regressive linear

prediction to spectroscopic data require further investigation.

First, the statistical accuracy of the data values can vary signif­

icantly across a spectrum; the least-squares fit of the auto­

regressive coefficients should be weighted accordingly. Second, the

auto-regressive method assumes equal intervals between measurements;

for ARPEFS we do not have equally spaced data. This problem is more

difficult: the AR process given in equation (6) steps by a single

fixed amount. However, there should be some AR process whose Fourier

spectrum closely approximates the Fourier specrum of our oata even if

our measurements do not fallon an even mesh. These questions bear

further examination from a purely mathematical viewpoint.

Our final procedure is empirical for the same reasons tne
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familiar taper-and-transform method is empirical. Ideal frequency

analysis--the separation of our signal into each component 05cil­

lation--cannot be accomplished with noisy, finite-range measurements.

Furthermore, harmonic analysis is only approximately valid for our

spectroscopy: nonlinear phase shifts and energy-dependent scattering

power preclude pure sine-wave signals. The procedure we have

described here will, however, give a useful, high-resolution Fourier

transform from real spectroscopic signals.

Formulation of the auto-regressive linear prediction method from

the vantage of information theory has led to its description as

maximum entropy spectral analysis. 8 Faced with the problem of

estimating the Fourier transformation of an oscillatory signal given

only a short measurement range, the auto-regressive method fits a

general oscillatory model to the measurements. The resulting over­

determined set of equations are reduced by maximizing the entropy of

the model. Thus, of all the possible models which give the same least­

squares error, we select the model which adds the least new informa­

tion, i.e. the one with the most signal entropy.

Data analysis methods can generally be compared by examining the

information they add to the measurement. The AR method assumes that

the data represent a process whose Fourier spectrum does not change

outside the data sequence: it attempts to add no new information. 8

The taper-and-transform approach added the "information" that the

signal was zero where it was not measured; this is contrary to any

reasonable expectation. Directly fitting the data to a model of the
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physical process (eqn. (1)) would be the ultimate addition of

information, but small uncertainties in the measurement and in the

model usually prevent this approach5 from being successful.

Finally we note that this conservative approach to AR Fourier

analysis can also be applied to a number of spectroscopic problems.

Extended X-ray Absorption Fine Structure (EXAFS) has a nearly

identical form to eq. (1), and the auto-regressive prediction WOuld

allow high resolution Fourier analysis of more general utility than

the beat method of Martens. 14 Many proo1ems in spectroscopic

deconvolution via the Fourier transform can also benefit from this AR

approach. Direct AR power spectral analysis has Deen successfully

applied to this problem,15 but the danger of spurious peaks is

particularly acute when we are seeking resolution enhancement. An

extrapolation-taper procedure would allow a more controlled, aloeit

more moderate resolution enhancement.



-24-

Acknowledgements

The authors are grateful for instructive discussions with J. D.

Klein and S. W. Robey.

This work was supported by the Director, Office of Energy

Research, Office of Basic Energy Sciences, Chemical Sciences

Division of the U.S. Department of Energy under Contract No.

DE-AC03-76SF00098. It was performed at the Stanford Synchrotron

Radiation Laboratory, which is supported by the Department of Energy,

Office of Basic Energy Sciences and the National Science Foundation,

Division of Materials Research.



-25-

References

1. S. M. Kay, S. L. Marple, Jr., Proc. IEEE 69, 1380 (1981).

2. E. O. Brigham, The Fast Fourier Transform, Prentice-Hall,

Englewood Cliffs, N.J., 1974.

3. J. F. C1aerbout, Fundamentals of Geophysical Data Processing,

McGraw-Hill, New York, 1976.

4. G. Martens, P. Rabe, N. Schwentner, and A. Werner, Phys. Rev. B

lZ, 1481 (1978).

5. P. A. Lee, P. A. Citrin, P. Eisenberger, B. M. Kincaid, Rev.

Mod. Phys. 53, 769 (1981).

6. Z. Hussain, D. A. Shirley, C. H. Li, S. Y. Tong, Proc. Nat1.

Acad. Sci. USA 78, 5293 (1981).

7. J. J. Barton, C. C. Bahr, Z. Hussain, S. W. Robey, J. G. Tobin,

L. E. K1ebanoff, and D. A. Shirley, Phys. Rev. Lett. ~, 272

(1983).

8. S. Haykin, ed. Nonlinear Methods of Spectral Analysis, Topics in

Applied Physics, v. 34, Springer-Verlag, Berlin, 1983.

9. Derived by analogy with P. A. Lee and J. B. Pendry, Phys. Rev. B

ll, 2795 (1975).

10. F. J. Harris, Proc. IEEE 66, 51 (1978).

11. A. H. Nuttall, IEEE Trans. Acoust. Speech and Signal Proc.,

ASSP-29, 84 (1981).

12. L. Marple, IEEE Trans. Acoust. Speech, Signal Process. vol.

ASSP-28, 441 (1980). This reference reports a FORTRAN program

to calculate the AR coefficients.



-26-

13. C. S. Fadley, private communication.

14. G. Martens, P. Rabe, N. Schwentner, A. Werner, Phys. Rev. Lett.

~, 1411 (1977).

15. R. P. Vasquez, J. D. Klein, J. J. Barton, F. J. Grunthaner~ J.

Electron Spectrosc. Relat. Phenom. ~, 63 (1981).



Table I.

Resolution factors and side lobe ratios for Fourier weighting functions. For a data range
of 6k, the full width of the Fourier amplitude mainlobe for these weighting functions is

6R where 6r6k = 2nf. The ratio of the maximum sidelobe peak value to mainlobe peak is SL.
These results are displayed in Figure 2.

Curve in Weighting Formula
Figure 2 Function h = fJ.k/2 8 f SL

None w(x) = 1 1.20 .22

(a) Tukey; 10 .75 1.38 .21
for 8=0 for IX-hi < Bh w(x) = 1; .66 1.43 .20 D

Hanning .50 1.57 •18 N

for x-h > Bh w( x) = .......
.33 1. 72 •13

I

1 1 r (x-h -h ]
.25 1.80 • 11

2 - Z cos _n Bh) .00 2.00 .03

(b) Gaussian Step, •125 1.37 .21
or .250 1.47 · 18
Error function [1 + ~ erf( x-Bh l] [l _I erf( 2h-Bh-Xl] .333 1. 72 · 14

"Z L 12 Bh 2"Z 12 Bh .500 2.02 .04
.750 2. 18 .02

(c) Riesz lO
l.0 -I ~I

2 - 1.59 .09

(d) Cosine 10
cos [( ~hh) n/ 2]

- 1.65 .07

(e) Riemann - 1. 74 .05
[ . (x-h) ] x-hs1n rl n / (h") n



Table 1 continued.

Curve in Weighting Formula
Figure 2 Function h = 6k/2 B f SL

( f) Van Oer Maas B 11[B..}l-( (X-h/tl)2] .5 1. 14 .26
1.0 1. 17 .20

2h..}1-( (X_h)/h)2
2.0 1.28 · 15
3.0 1.38 .10
3.5 1.43 .08

1 1 4.0 1. 51 .06
+ 2 6(x-2h) + l6(X) 5.0 1.65 .03

(g) Gaussian .80 2.22 .001
1.00 1.82 .01 I

N
1.24 1.58 .03 co,

I ~X-hr 1.50 1.45 .07
2.0 1.33 •12e- 2" Bll*ll 2.4 1.29 · 15
3.0 1.26 •17
4.0 1.23 .19

(h) Kaiser-Bessel .5 1. 21 .21
1.0 1.24 · 18

Io[B~ 1-( (X-h)/h)-2]
1.5 1.29 · 15
2.0 1.36 · 12
3.0 1.50 .07

2h 3.5 1.58 .04
4.0 1.65 .03
5.0 1.80 .01
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Figure Captions

Figure 1. (a) Sum of two sine waves, periods of 5 and 6 A, plus 10

percent pseudo-Gaussian noise. (b) Fourier amplitude of

the sequence in l(a). (c) Extension of the sine waves of

(la) by appending zeros. Set above the signal is a plot of

the weighting window function; it has a baseline of zero

and a height of one. (d) Fourier amplitude of Fig. l(c).

Figure 2. Resolution factor versus sidelobe-to-mainlobe ratio for

several weighting functions. Abcissia is f in ~r~k = 2nf;

for a data range of 6.3 A-l-rad., f will be the Fourier

resolution in A. Ordinate is the maximum sidelobe peak

value divided by the mainlobe peak. The plotted values are

given in Table I. The point at f = 1.21 and side10be = .22

represents an unweighted Fourier transform. The weighting

functions are given in Table I. (a) Tukey weighting, ref.

10, pg. 66. This function is flat in the center and rolls

off as a cosine on the data extremes. (b) Gaussian Step

or Error function. Similar to (a) but using a Gaussian

roll-off. (c) Riesz polynomial, ref. 10, pg. 65.

(d) Riemann weighting, ref. 10, pg. 65. (e) cosine

weighting, ref. 10, pg. 60. (f) Van der Maas weighting,

ref. 11, pg. 90. (g) Gaussian weighting, ref. 10, pg. 69,

(h) Kaiser-Bessel weighting, ref. 11, pg. 89.
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Figure 3. (a) Extended sine wave from Fig. l(c) and, set above. the

weights used for taper-and-transform Fourier analysis. The

base of the weighting function is zero and its peak is

one. (b) Fourier transform of sine wave times weights

from Fig. 3(a). (c) Auto-regressive linear prediction of

the signal in Fig. l(a), using an order fTb128. Tne new

weights is set above. (d) Fourier amplitude of the

product of the prediction results and weights from Fig.

3(c).

Figure 4. Weighting function interaction with auto-regressive linear

prediction. (a) Test sequence of two sine waves and noise

as in Fig. 1. Note the beat structure. (b) Data from

(a) times Gaussian weights. Gaussian width is 5/8 times

the data range. Note the loss of beat structure. (c) AR

linear prediction of the data in (a). (d) AR prediction

from (c) times Gaussian weights. Gaussian width is 5/8

times the extended data range. Note the reduced emphasi s

of the extrapolated region.

Figure 5. (a) Auto-regressive linear prediction of a simulated

signal from equation (9). (b) Fourier amplitude of Fig.

3(a) times Gaussian weights. (c) Auto-regressive linear

prediction of k times the simulated signal in Fig. 3(a).

(d) Fourier amplitude of Fig. 3(c) times Gaussian weights.
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Figure 6. Magnitude of the scattering amplitude, If(a,k) I, for Ni

atom at a = 116
0

and a = 173
0

• The mi ld ampl itude behavior

of the scattering for 173
0

gives a simple Fourier peak

shape; the steep arop at high k for scattering through 116
0

leads to a doubled Fourier peak.

Figure 7. (a) Angle-resolved photoemission extended fine structure

from 5(ls) c(2x2)5/Ni(100) along [110J. The weighting

function used for the taper is plotted offset above the

data. Its minimum is zero and maximum is one. (b) Taper­

and-transform Fourier amplitude for (a). (c) Auto­

regressive linear prediction of (a). An order M=128 was

used. The weighting function is set above as for (a).

(d) Fourier amplitude of the product of the winaow ana

extrapolated data in (c).
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