
LBL-14810
~.d-

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Computing Division LAWRENCE
BERKELEY LAf3()RIlTORY

M/~k 14 1984

LIBRARY AND
DOCUMENTS S6:t"

Presented at Graphics Interface '82, Toronto, un~~~io,
Canada, May 17-21, 1982; and published in the
Proceedings

ON THE GRAPHIC DESIGN OF PROGRAM TEXT

A. Marcus and R. Baecker

May 1982
.I

TWO-WEEK lfJAN copy .
. . Cif~ulating Co.py f-

This IS a Llbr~ry d f r two. weeks.
be bo.rro.we 0. . ~ -

which may . n co.py, caH.
. nal retentlo. t

fo.r a perso. ..' Ext. 6782. .
Tech. Info.. DlvlSlo.n, I

-
Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098-

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

303

ON THE GRAPHIC DESIGN OF PROGRAM TEXT

Aaron Marcus
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720 USA

Ronald Baecker
Human Computing Resources Corporation

10 St. Mary Street
Toronto, Ontario M4Y lP9

ABSTRACT

Computer programs, like literature, deserve attention not only to conceptual and ver
bal (linguistic) structure but also to visual structure, i.e., the qualitities of al
phanumeric text fonts and other graphic symbols, the spatial arrangement of isolated
texts and symbols, the temporal sequencing of individual parts of the program, and the
use of color (including gray values). With the increasing numbers of programs of ever
greater complexity, and with the widespread availability of high resolution raster
displays, both soft copy and hard copy, it is essential and possible to enhance signi-
ficantly·the graphic design of program text. .

The paper summarizes relevant principles from information-oriented graphic design,
especially book design, and shows how a standard C program might be translated into a
well~designed typographic version. The paper's intention is to acquaint the computer
g·raphics community with the available and relevant concepts, literature, andexpe'r
tise, and to demonstrate the great potential for the graphic. design of computer pro
grams.

INTRODUCTION

After three decades of continuGus and in
some cases revolutionary development of
computer hardware and software systems,
one aspect of computer technology has
shown resilience to change: the presenta
tion of computer programs themselves.
Even though computer graphics systems
have achieved dynamic, color, and multi
font display capabilities, the visual
qualities of alphanumeric and graphic
symbols of program code has remained re
latively simple. There are limited exten
sions of symbols in some languages, e.g.,
in APL, and some attempts to visually
structure the page with simple indenta
tions for control statements and groups
of code lines. There are also more ela
borate schemes such as Nassi-Schneiderman
diagrams [Nassi], Warnier-Orr diagrams
[Higgins], contour diagrams [Organick],
and SADT diagrams [Ross]; however, the
typographic repertoire and appearance of
programs often remains little changed
from the manner in which teletypewriters
first printed out programs.

Three other relevant developments should
be noted. First, many programs have
grown longer, more complicated, and im
penetrable to even skilled programmers.
Second, programmers themselves have con
tinued to be nomadic, often shifting
jobs, inheriting programs from others ~nd
passing on a legacy of programs to stlll
others. Third, the number of non
professional programmers, i.e., hobby
ists, occasional programmers, or those
without formal degrees in computer sci
ence, has increased considerably. Thus
there is an increasing need for more ef
fective, more productive means to create
and maintain programs. Software engineer
ing has recognized i~ a number of ways
that programming is a kind of literature
which requires good writing. The most
widespread development has been the con
cern with the logical structure and ex
pressive style of programs. Out of this
concern have emerged many of the modern
software development techniques, includ
ing top-design design and stepwise 7e-
finement (Wirth], structured programmlng
(Dahl], modularity (parnas], and software
tools [Kernighan] • Another kind of

Reprinted with permission from the National Computer Graphics Association,Fairfax, VA.

Graphics Interface '82

development has occurred in the organiza
tion of the editoral and production team
that produces the writing, for example,
the concepts of Chief Programmer Teams
[Baker] and Structured Walkthroughs
[Yourdon] • A third more recent develop
ment is the increase of interest in
enhancing the technology to support the
writing and maintaining of good programs,
by providing, for example, integrated
software development environments
[Wasserman] and high-performance personal
workstations specialized to the task of
program development [Teitelman, Deutsch,
Gut;z].

Unfortunately, there is yet another ap
proach to improving program writing and
maintenance which also recognizes. pro
grams as literature but which has been
systematically ignored. This approach
concerns the visible language in which
textual information is embodied.

Books embody literature. Graphic
designers of books are concerned with le
gibility and readability, i.e., func
tionality and appeal to the reader. It
se~ms reasonable that computer programs
viewed· as literature can be reformulated
in typographic and graphic formats to
better convey the content of well-written
programs. By adopting the model of book
literature, computer science can adapt
and apply the expertise available from
graphic design.

GRAPHIC DESIGN AND COMPUTER GRAPHICS

Graphic design is a discipline concerned
with portraying facts, concepts, and emo
tions, as well as the logic of space and
time (structure and process) in effective
visible language. Information-oriented
graphic design in particular is familiar
with the concept of algorithms, for much
of its work involves specifying algo
rithms for visual parameters to convey
complex information. Traditionally,
graphic designers have worked in printed
media such as books, charts, diagrams,
and maps. There is considerable profes
sional literature [Tinker, Zachrisson,
:-!artley, Williamson] dealing with the
subjects of typographic legibility, spa
tial composition, sequencing of pages,
organization of content, use of color,
and use of illustrative material. This
discipline and its literature have
knowledge appropriate to and helpful for
the task of designing verbal/visual
displays for computer technology.

304

A potentially symbiotic relatione,hip ex
ists between graphic design and computer
graphics in creating the "three faces" of
computer systems: outer-faces, inter
faces, and inner-faces [Marcus 1981b].
Outer-faces are the end display products
of data processing: images of information
such as texts, tables, charts, maps, and
diagra~s. Inter-faces are the user
oriented human-machine interfaces used to
create outer-faces. These inter-faces are
comprised of frames (online) and pages
(offline) of process control, data struc
tures, and their documentation. Inner
faces are the frames and pages of source
cOde programs and documentation which
builders and maintainers of computer sys
tems require in order to support the
inter-faces and outer-faces. Bv combin
ing intuitive, practical skills and
scientific knowledge, graphic designers
can help synthesize prototype solutions
for any of the three faces and assist in
analyzing and developing finished
displays which are not merely 'pretty',
but which communicate information better.

In other articles [Marcus 1980, Marcus
1981a] ,the pr imary author has expla·ined
the relationship of graphic design to
outer-faces and inter-faces. This present
article extends the relevance of graphic
design to inner-faces, to the design of
programs as texts, and suggests further
directions for research in program visu
alization. In order to emphasize book
oriented graphic design principles that
are most relevant to the graphic design
of inner-faces, most of the discussion
will focus on the display of a single
frame or page rather than the
viewer/reader's response to an interac
tive display.

VISUAL PARAMETERS
FOR PROGRAM VISUALIZATION

The graphic design of programs requires
the designer to select symbols and for
mats for the primary components of pro
grams: variables, constants, logical
structures, processes, commentary, and
documentation aids. Numerous choices ex
ist for layout grids, typographic styles,
size and spacing of text lines, organiza
tion of lists, and other means of visual
emphasis. Explicit decisions on these
matters are usually unspecified in the
original conception of programming
languages. The graphic designer can now
specify them using the principles of
Similarity, proximity, clarity, con-

Graphic. Interface '82

I
'J

'.I

\ I .'

sistency, and simplicity [Marcus 1980) as
a guide to organizing all the visual
parameters into effective and attractive
frames or pages.

These graphic design specifications con
stitute a visual/verbal algorithm for the
construction of frames and pages. Program
visualization should facilitate learning
of the program text, aid memorization of
its features, encourage concentrated at
tention, and assist in revealing a clear
conceptual structure, especially in si
tuations where the viewer/reader may be
distracted or poorly motivated.

Traditional literature on typographic le
gibility [Rehe) and book design [Hartley,
Williamson) concern printed texts rather
than computer graphics displays. However,
many of the p.rinciples would appear to be
transferable to the computer graphics en
vironment. The following principles are
based on this literature and the primary
author's own professional experience as a
graphic designer in both traditional and
computer-based media.

·BASIC PRINCIPLES

The Layout Grid

Programs often appear with no particular
attention to position in the frame or
page. However, horizontal and vertical
axes in the composition can b~ specified
to create limits for the columns of text,
margins, and documentation apparatus such
as page numbers, special headings, etc.
The grid determines the extent of por
tions of the program text, tab stops,
areas for other standard components of
the display, and the space in between
these areas.

Typography

While fixed-width chara.cters are usually
used for program depiction, current
typesetting equipment and a growing
number of high resolution hardcopy dev
ices (e.g., Xerox 9700) and display ter
minals (e.g., Three Rivers Perq, Xerox
Star) can display variable-width charac
ters. This has a significant impact on
typefont variation, size of characters
and width of text lines. General practice
suggests the following:

Font variation should usually be limited
to a single typeface or at most two, ex
cept for special mathematical needs.

305

Within a typeface family, regular (ro
man), italic, and bold roman are standard
means of increasing emphasis. Unless a
great amount of effort is expended on the
design of characters, adapt ions of well
established typefaces such as Times Ro
man, Helvetica, Garamond, Universe, etc.
should be used. Frame presentations allow
for reversed video characters, blinking,
variable intensities, and other means of
emphasis. These should be used sparingly
because of their strength of differentia
tion from normal text. Type size varia
tion should be limited to at most three
sizes for text materials, and these sizes
should be quickly and easily dis
tinguished. Generally 9 or 10 point type
for a 14 inch viewing distance is stan
dard printed text size. Optimum size
will vary with the detailed characteris
tics of a display device and. the viewing
situation. Column widths should be limit
ed to allow 40-60 characters per line
[Rehe). In the interrupted texts of pro
grams, lines are usually unjustified on
the right and a 'ragged right' approach
to overall page composition is appropri
ate, i.e., titling,. headings, and other
elements should usually be flush left and
ragged right.

Line spacing of text lines varies with
display devices, but should usually pro
duce greater space between lines of text
than between words. Spacing variations
should be limited to a maximum of three
variations and should be used consistent
ly to signify changes in content. Like
wise tab settings should be limited to a
few regular horizontal positions.

With respect to capitalization, all
capital settings should be avoided for
continuous text materials. All capital
words are more uniform in the shape of
their outline and may slow reading speed
by as much as 13% [Rehe, 36]; however
they may be used for isolated keywords
and phrases.

Sequencing

Page sequencing and organization in book
literature has evolved specific com
ponents of complicated text structures,
e.g., title pages, tables of contents,
abstracts, indices, and running heads
which appear on every page. Programs
often appear without this standard docu
mentation apparatus, but large programs
viewed as literature should contain these
items. In book literature, their exact
form varies dramaticly depending on con-

Graphics Interface '82

.'t:'.' .

tent. While there are no universal stan
dards, certain technical conventions ar
ise, and it would seem reasonable to as
sume that conventions for programs could
be· established.

AN EXAMPLE: TYPESETTING A SHORT C PROGRAM

The above summary is not meant to be an
operational specification, only a clarif
ication of what more detailed principles
might involve. Principles are often best
seen in application. Those presented here
are worked out in the accompanying illus
trations. Figures 1 and 2 present a 'be
fore and after' version of typographic
program visualization.

Figure 1 presents a program in an elemen
tary typographic form using fixed-width
characters of a single font with limited
horizontal spacing variation. There is
little typographic hierarchy. The program
is more readable than those.presentations
which use all-capital typography and mul
tiple commands per line, but there are
still ways in which it can be made more
readable.

Figure. 2, a protypical black"';and-whi te
visualization, requires a very high reso
lution bit map display terminal or a very
high quality hardcopy ~evice. The actual
images of Figure 2 were generated in
Times Roman type using a computer
controlled phototypesetter. Figures 1
and 2 are part of a series of experimen
tal prototypes pages for online or off
line documentation which illustrates the
full potential of a graphic design ap
proach to textual program visualization.
Spatial location, typographic symbol
heirarchies, figure-field enhancements,
indexes, abstracts, etc. are combined to
create a clear, consistent, explicitly
structured page that is legible and ap
pealing to the reader. The following
paragraphs detail the features of this
design and elaborate upon the basic prin
ciples suggested above.

Spatial Organization

The entire page/frame is a mosaic of con
tent units with standrad locations but in
some cases variable size. In an interac
tive environment, each of these areas
could be a window to a higher or lower
level of information.

The upper part of the first page (or
frame of a high resolution terminal) is

306

intended to be a standard documentation
cluster of header units grouped in a na
tural order. These include a documenta
tion source, a program title, program
subtitle(s), reViSion or last update,
unique code number, chapter reference·and
page number. The items are then repeated
on every frame/page.

In a strong titling banner below the
headers, the title is bresented in a size
larger than all of the others and on a
field of 50% ~ray to distinguish it
clearly but not in an overpowering way
from the rest of the text. The version
date and unique code numbers are intended
to advise the reader of the particular
version of this program. There may be
others similar to it that must be dis
tinguished. The abstract is intended to
be a 100 word summary of the function and
significance of the program. It appears
in italic to set it off from other ele
ments. The author/guide and location
band are intended to identify specific
persons at the installation site who can
be contacted for assistance in interpret
ing or using the program. Note the use
of a tab setting at approximately half
the width of the main column of text for
presenting two columns of informa.tion.

Modules of the program are indicated by
unique 50% gray bands with bold roman
module names. Their size is the largest
of three standard sizes of type for the
textual material of the program. Bold
type is used to keep the type legible on
a gray background.

comments appear in 7 point type as
separate marginalia to the left of the
main column of text. These are intended
to be single line phrases that can help
the reader to understand individual code
lines. The comments column is approxi
mately 40 characters wide and appears in
the smallest of the three text sizes. As
phrases, the comments appear without ini
tial capital or periods. In keeping with
all clusters of text, they are flush
left, ragged right.

Footnotes appear as 8 point type ~n a
separate band of space at the bottom of
the page/frame set off by a thin rule as
wide as the main text. They are more de
tailed and complete explanations of the
significance of code lines (or any other
element such as a title). They appear as
full sentences with initial capitals and
closing periods.

Graphic. Interlace '82

J

,.
\

'.0'

" (I

Spatial Grid

Because of variable-width typesetting, a
given phrase is approximately one third
narrower than its typewritten equivalent.
To usefully divide the page/frame, the
main text column allows approximately 60
characters of 10 point type. The wide
column permits code to be indented in 1/2
inch increments several hierarchical lev
els while still maintaining approximately
40 or more characters per line.

Code Conventions

within the 10 point type of the primary
column of code, the following typographic
conventions are used. The first time that
a function (e.g., -calc-) is defined
within the program, it is set off by re
peating the name of the function in 12 .
point bold type followed by a thin rule.
In order to call attention to local func
tions, these functions defined within the
program are shown in bold while global
functions appear in regular roman. Con
stants are often digits: therefore, to
keep them all similar· in appearance,
named constants are shown in· all
capitals. Variables appear as italic.
The standard C symbol syntax has been al~
tered slightly, e.g., -/*- and -*/- are
not used to surround comments, and -{
and -}- as procedural symbols are not
used because of explicit spatial struc
ture which makes them redundant. These
redundant symbols have been centatively
removed to reduce visual clutter.

CONCLUSIONS

The intention of the prototype in Figure
2 is not to establish standards but to
demonstrate how explicit typographic
specifications based on graphic design
principles might affect the presentation
of computer programs. The prototype is
intended only to focus attention on this
approach, to raise expectations of pro
gram readability, and to raise interest
ing questions which further research in
the visible language of computer programs
might explore.

These questions can be clustered into six
categories.

The first research topic deals with the
appropriate use of typography to reveal
formal syntactic, semantic, and pragmatic
properties of programs and program ele
ments. For example, what is the ap-

307

propriate use of boldface
Should multiple fonts be
should color be employed?

and italic?
used? How

A second concern is with the design and
layout of program elements on the page
using systems of grids, overlays, and
windows. How important is redundancy, as
for example in the use of brackets plus
horizontal spacing? How should secondary
text (comments and commentaries) be
clustered around the primary text (code)?

A third area for research is the possi
bility of substituting a set of well
designed icons or symbols (pictograms or
ideograms) for certain combinations of
alphanumerics that occur repetitively in
program code. What should these icons or
symbols be? To what extent can program
documentation become more diagrammatic,
and rely less on the linear text forms of
current programming languages?

A fourth set of questions arise out of
the possibilities that interactive com
puter graphics offer in the inclusion of
movement, blinking, and other kinds of
change into program documentation. More
fundamentally, we· mus·t explore the rela-·
tionship betwe.n static pap~r and dynamic
screen representations of computer pro
grams.

A fifth problem area is in the depiction
of large directed graphs of great com
plexity, networks in which nodes are not
single points but entire frames (combina
tions of signs) and in which links are
explicitly stated or implied connections
between nodes. The spatial layout and
user navigation problems that occur may
be seen, for example, in the enhancement
of program text into Nassi-Schneiderman
diagrams, Warnier-Orr diagrams, contour
diagrams, and SADT diagrams.

The final research topic concerns the
ability of a program visualization to fa
cilitate the integration of the various
conceptual levels at which a program may
be described. What relation should exist
between high resolution detailed views
and low resolution overview images of the
same program? What is an optimal se
quence for the basic units of a "program
book"? What would its other parts such
as tables of contents and indices look
like? How are they to be used?

Finally, what is the relation between
reading and writing such complex visual
representations?

Graphic. Interface '82

If Figure 2 has some merit as a workable
format for C programs and other
languages, it is the authors' hope that
designing a visible language scheme will
be recognized as a distinct and demanding
task requiring the assistance of graphic
design. Other researchers and design pro
fessionals may be moved to explore the
subject further with the goal of turning
computer graphics capabilities back on
their sources in computer programming to
develop more effective and humane pro
gramming literature.

ACKNOWLEDGEMENTS

The authors acknowledge the work of Mr.
Richard Sniderman of Human Computing
Resources Corporation in executing the
typesetting. They would also like to
thank John McCarthy, Mike O'Dell, and
Dennis Hall of Lawrence Berkeley Labora
tory for their helpful advice. This work
was supported by Human Computing
Resources Corporation, and by the Applied
Mathematics Sciences Research Program of
the Office of Energy Research of the
Department of Energy under contract W-
7.405-ENG-48.

REFERENCES

Baker, F.T., Chief Programmer Team
Management of Production Programming, IBM
Systems Journal 11:1 (1972), 56-73. ---

Dahl, O.-J., Dijkstra, E.W. and Hoare,
C.A.R., Structured programming, Academic
Press, London, 1972.

Deutsch, L. Peter and Taft, Edward
"Requirements for an Experimental
gramming Environment," Xerox Palo
Research Center Report CSL-80-l0,
1980.

A. ,
Pro
Alto
June

Gutz, 5., Wasserman, A.I. and Spier,
M.J., Personal Development Systems for
the Professional Programmer, Computer,
April 1981, 45-53.

Hartley, J., Designing Instructional
~, Nichols, New York, 1978.

Higgins, David A., Program Design and
Construction, prentlce-Hal1, Englewood
Cllffs NJ, 1979.

Kernighan, Brian W. and P.J. Plauger,
Software Tools, Addison-Wesley Publishing
Company, Readlng, 1976.

308

Marcus, Aaron, "Computer-Assisted Chart
Making from the Graphic Designer's Per
spective", Computer Graphics, 13:3, 1980,
247-254.

Marcus, Aaron, ·Designing the Face of an
Interface", Proceedings, NCGA-81, Nation
al Computer Grapfilcs Assoclation National
Conference, 1981, 207-215.

Marcus, Aaron, "Graphic Design and Com
puter Design: Know Business is Show Busi
ness·, Centerline, Center for Design, San
Francisco, July 1981, 6-7.

Nassi, I. and Schneiderman, B.,
-Flowcharting Techniques for Structured
Programing," ACM Sigpan Notices, August
1973. ---

Organick,
generated
ConCJress,
898-902.

E. and Thomas, J.W., Computer
Semantics Displays, Proc. IFIP
Applications Volume;-- l~

Parnas, D.L., On
in Decomposing
Corom. of the ACM
I'lTS1' -1 ~8:- ---

the Criteria to be Used
Systems into Modules,

15: 12 (December 1972),

Rehe, Rolf, Typography: How to Make it
Most Legible, Deslgn Reseach Ynternation=
ar;-Carmel, Indiana, 1974.

Ross, Douglas T., Structured Analysis
(SA): A Language for Communicating Ideas,
IEEE Transactions on Software Engineering
S!=!:1, January 1977, 16-34.

Teite1man, Warren, "A Display Oriented
Programmer's Assitant," Int. Jour. Man
Machine Studies, 11, 1979,~7-~

Tinker, M.A., Legibility of Print, Iowa
State University Press, Ames, 1963.

Wasserman, A.I., Tutorial: Software
Development Environments, IEEE Computer
Soclety Press, Los Alamltos CA, 1981.

Williamson, Hugh, Methods of Book Design,
Oxford University Press, New York, 1966.

Wirth, N., Program Development by Step
wise Refinement, Comm. of the ACM 14:4
(April 1971), 221-2~ -- --- ---

Yourdon, E., Structured walkthrou~hs,
Prentice-Hall, Englewood Cliffs NJ, 1 79.

Zachrisson, B.
Text, Alqvist
~.

L~ibilit! of Printed
an Wlkse 1,--Stockfiolm,

Graphlca Interface '82

. .J-

I

'"

\

~I

I
f

i
ci
N

.~ -'"

Figure lA

'includ. (stdio.h)
'd.f1n. HAX(lP ZO
'd.fin. NUHBER '0'
'd.fin. TOOBIC .,.

/* aaM siz. ~f op.rand. ~p.rator */
/* signal that nuab.r found 1/
/1 signal that string is too big */

calcC) /1 r.u.r~. Polish d.sk calculator 1/
(

int typ.;
char dHAXOP1;
double ~pZ. at~fC). p~pC). push(),

whil. C(typ •• g.topCa. HAXOP" 1= EOF)
swHetl Uyp.H
c ill. NlIl1BER I

puhlatof"»;
bruk,

CilS :
pUlhlpopC) .. popC)),
bruk,

CilS. '1':
pUlh(p~pC) I p~pC)),
bruk,

casl '-'1
opZ = p~pl)1
pUlhlpopC) - opZ);
bruk;

caal '/'1
opZ ': (&(II'();
if lopZ 1'= 0.0)

pUlh Ip~pl) / ~pl)1
.151

prirltfl":ur~ diuiur p~pp.dO);
bruk;

Cilll ':':
printf("XfO. pu'h(p~p()));
break I

ca5. 'c':
eli ar () ;
brlak;

til .. TOOBIG:
~.rintfC"X.ZO, ••• 11 to~ lorlgO, "~I
br.ak; d.'ilult:
prirlt'("urlkrl~1I1r1 (('''"/Iand 7.cO. typ');
bruk;

,"y

<. ~,_i:

Figure 18

'd.fio. "AXVAL 100 /1 ~axi~u. depth of vill stilck *'
/* stilck polnt.r */ Irlt sp : 0;

doubl. vill("AXVAL1; '* villue stilck */

doubll pu'~lf'
double fl

/* push f onto villu. stilCk */

<

}

if hp ("AX VAL)
return IVill[sp""] : f'l

elu <

}

prirlUI"error; stilck fullO);
clearl';
r,turnIO';

double ~.opl'
<

/* pop top villue fro. stilck *'

}

clear ()
<
}

if e iP > 0'
returnevill[--sp]);

ehe (
prlntfl",rror: stack e~ptyO);
c I tilr () ;
returnlO) ;

}

/* cleilr stack *'

i~' : 0;

w
o
II)

I
1-
f

I •
ci
N

Figure 1C

O.topll
j

lia)
ehr ,[I

/. g.t n •• t ~p.r't~r or op.rlnd .,

hI~ lia.
l

)

hit i, q
.. hih lie. OUeh()):;: , , II en" II c •• '0) ,
i' Ie /. '.' " Ie

r.hr/lle) ,
'0' II c } ''I'))

1[0] • q
'or Ii • I. Ic • g,tct,u()) >. '0' " c <. ''I', lH)

11 11 < lial
,[I) • q

if Ic .. '.') (I. coll.ct fraction .,

}

if It <

} .lu

}

11 II < lIal
,[11 " q

'or II ••• Ie " g'teharl))
if Ii < lia)

>. '0' " c (. ''I'. I."
1[1] • q

Ha) (/. nuab.r i& ~k ./
ur,g.tch I c) •
I[Il.".
r.hrnINU"BER) I

(

wtoih
/. It'l ho

Ie /= '0 " c /- EOF)
c " gttchar I) I

,Clta - 1] " , "
r.hrr,ITOOBIG) I

blgl ,kip r.I' 0' lin •• /

'd"tn. BUFSIZf 100

chir bufCBUFSIZfll
int bufp - 0,

/. buff,r. for ung,teto ./
/. nt~t frtt p~'lti~n in buf ./

Oltchll
{

}

/. git ~ Ipo"ibly pU'~td b~ek) ehiricttr ./

r.turnllbufz) 0) ? bufC--bufp] I gitctoirl))1

ur,g.tchlc)
int CJ

/. pu,~ ctoiricttr biek Dn input ./

(
if Ibufp) BUFSIZEI

tin
printfl"ung.tcb: too ~~ny ebiriettr,O),

buf(t.uf~'Hl e I

-z-- -,.

k"l.c~dll"a
\.~IOII'n. ,\nl_bnc

For Assislance Call:

... .u. oI.,.RIJ. opt.oItPf

..... lb. nunlbcr ruun.J

.,.naalh.!. "'ri"li,wobi,

rc ... cr .. roo ' ... U .. IOf

Figure 2A

IJrc.'.~Of
("OI'Iuol .. '*'. 1,\ .. ,,,

11 '.~bJ

Desk Calculator I

Version 0(I AUIU51 1981

(lwpIcr'"
'.1011

Rd. No. l2.l4S.67

TIoIs prol,om Impkm,olJ 0 Jlmpk til'" CO/cU""Of which u ...
ftW!, .. PoIiJIo 00'0,100. Opt,ondJ Oft pushtd 00'0 0 Slock. Whto
an tJPtlalOl affiwi III o~'llnds aft popped. 1M optralOf Is
opp/wd, ond ,ht mul, iJ pushtd onto ,h. Slock.

Aaron Morcus
Lawrence Berkeley Laboralory
Univer5ily or Calirornia

Ronald Baecker" Richard Sniderman
lIuman Compulinl Resources Corp,
10 SI. Mary SI.

:n~:~el. S~7~ 94720
Toronlo Ont. M4Y 1M

Conlrol Module

lIindude < .. dio.h>
IIdcfine MA~UP 20
IIdefine NUMBioR '0'
lldefine TUUSIU '9'

calc
calc 0
inl/),fW,
char .IMA~Upl;
double opl, aloW, popll, 11;

416-922-1937

while ((/)'pt - letO, h, MA~UP)) ! a WFI
.witch (Ypt)
use NUMBER:

pus" (alo(hI);
break;

use '+':
... sb (pop II + popOl;
b,eak; .

case '.';
pusb (popll • pop());
break;

case '.':
opl ~ popll;
pusb (popll - Op})2;
b,eak;

Thil proaram was aUlhored b)' Brian Kerniahlln and Dennis Rllchie of BtU Laboralories.
MUfra)' tlill, New Jersey. These plotOI),pe visuill enhancemenls 101M C proaram
were desilned b)' Allron Marcu," Wilh the ilssiSllna: or Ronald Baecker and Rk'hard Sntderman.
Because + Ind· IIC commutalive operalolS, Ihe order in which Ihe popped operands Ire
combined is irrekvIIRI. fOI lhe • and I opcrluun, 1M kO and ,ilhl operands muSi be
diSiinluh,hed.

<..
__ F

/'

\.oJ
o

I
f

i • N

. ",
~.A.,

"- ~

I~(·
C"oetroI

FiCJll1"8 2B

14 1 ...
UN'"

("at..
' .. hlJ

cue ./':
.,,1-_0;
if (.,,11- 001

.... ,-0/.,,11;
ebe

prinlf ("zero clivi.." popped\n"I;
break;

talC '-';

prinlf (.. \Mn ,-0111;
break;

case 'C';

d •• rO;
break;

cue TU08Ki:
priml (·~.1111 , .. I. 100 \n ... II;
break;

def.ult
priml ("unknown command 'Ik\n". &POl;
break;

, M..... ", ···'~~~,:·~10~

_..-, -... ---
..... ,

......... '"-1IiR

-_.

Ifdcftnc IoIAXVAL 100

Inl II' - 0;
doublc ... I(IoIAXVAL!;

pusb
double ... 11 VI
doublc /.

II (II' < IoIAXVALI

ebe

pop

relurn (... 1(11'+ +1 - /I;

prinll ("crror; lIack full\n"I;
.... rll;
relurn (o)~

doublc popO
il (II' > 01

else

clear

. relurn (... t1·-~I;

prinl, ("crror: slICk empry\n"I;
dcarll;
rClurn (o)~

dcarll
II' - 0;

The .Ikit and sla,k poinler which arc wred b)' and dell arc dcftned in lhe
Sed Manaacmenl MOl and arc noI referred 10 b)' Thuslhb piece 01 code
cuminCilhe lOp oIlhc .Iaell wi1hout dislurbina iI.

_"Inh!ctatnc Aft, An,,,,,.

......... 'IIIOf • .,....

.--

.~II.

1I· ... bII: or ...

!ou _""
JIll .. r,.. poUu." but

..... -
"*"CWKttr ... oa

IIrt~'''''IJWI''
1nJUf.t.1oIIu.

FiCJll1"8 2C

1'\"1,,\11911
11..l4~.'

.... eM ·

plOp

Pi., II. Uml
char sfl;
Inl Unr.
Inl4 c;

c -......... c

(....... .
'.hl)

while lit - letellOl --' 'It -_.'\1' It -- '\n')

lI(tl- ·.'U (t< '0' It > ','U
relurn (eI;

1101 - c;
for II - I; (t - plCh.rOl > - '0' U t < - '9'; 1+ +)

1((1< IIniJ
,I. - c;

iI(t-- '.')
if II < Um)

,M - c;
for (1++; (t - lelCharOl > - '0' AA t < - '9'; 1+ +1

II II < Urn)

if (I < Urn)
unletell (eI; ,I. - '\0';

1M - c;

return (NUIoIB~R);
ebe

while (tI- '\n' "" tI- wFI
t - actcharll;

I IUm - II - '\0';
return (TOOBKi);

Ifdcftne BUFSIZE 100

char bqfIBuFSIZEI4
;

Inl bqfp - 0;

Ideb
PlellO
rei urn ((bqfp > 0) ? bqfl--bqfpl : aclchar());

UDleteb
unletcll It)
inl c;

II (bqfp > BU~"StzEl
Printf ("uDielch: 100 many charIClers\n"I;

cbe
bllflbqfp++I- C;

4 A liflllc: dw"lCIcr rilher lhan In .nl,. wukl have been ulCd since in Ihis proarlm II it
ntwr lhe calC Ihi. morc than one CI.If. dlarKlCl" Iban rlCa:lI$Iir), is rcad. This b •
more lena" implementation.

1

w

(" . .I

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the:
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

~~_F'
-;~:~~~;,- ..

.•• ···.c"-
TECHNICAL INF,ORMATION DEPARTMENT

LAWRENCE BERKE-LEY L_ABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

t~f~

" .. "

'\

... ~ .. "

