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7.1 Mass Transfer From a Fuel Canister by Diffusion
~

Paul L. Chambre

Consider a cylinder of finite length imbedded in a porous medium. The

cylinder matrix contains a diffusing specie such as Si(OH)x or U02which

is set free at the surface of the cylinder at the solubility limit c ofs

this specie in water and then diffuses into the exterior unbounded space.

The diffusion coefficient is assumed constant. The governing equation for

the conservation of mass of the diffusing species outside the cylinder in

absence of any losses is
"

K ae - 0 2"

at - fV C
(7.1.la)

Here Of is the diffusion coefficient of the species in water and Kits

retardation coefficient.

The boundary conditions are respectively

'" '"

c = Cs (7.l.lb)

on the surface of the cylinder and
A

C :::: 0 (7.l.lc)

on ah infinite spherical surface enclosing the cylinder. If the concentra-

tion at infinity is non-zero, a change in the reference datum of 2 reduces

that problem to the above formulation. Prior to the time t = 0 the. diffusing

nuclide has zero concentration in the exterior (porous) medium.

For a cylinder of finite length, the Laplace operator in eq. (7.1.la)

has the form

V2( ) = if
ar2

L + 1.£1
r ar

2
L + L a( ) + .u

222
r ae az

(7.1.2)
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where r, 8, z are cylindrical coordinates. For the exterior diffusion

problem which we wish to solve, compact analytical solutions of eqs. (7.1.1)

and (7.1.2) are not possible because the interior bounding surface is a

cylinder and the exterior surface is a sphere. This of course does not

mean that the posed problem does not possess a solution. Indeed one can

obtain it in numerical form or by analytical approximations. Since we

wish to retain a compact analytical solution to this problem, a suitable

approximation is made for the shape of the cylinder. The finite cylinder

shape is approximated by a slender prolate spheriod which is generated by

rotating a family of confocal ellipses about their major axis. This

family generates not only the replacement for the finite cylinder, but

produces also the outer spherical boundary which ;s a member of this

family.

One might consider also other forms for the approximation. Suppose

the inner surface of the domain is maintained in the exact form of a

finite cylinder and the outer boundary is now a cylinder, but of infinite

extent. For simplicity, consider furthermore that a steady state prevails

so that one deals with the solution of Laplaces equation in the exterior

field. Subject to the boundary condition (7.1.lb) the solution sought is

mathematically equivalent to the problem of determining the capicitance

of a cylinder in an infinite cylindrical box. It is well known that this

problem does not possess an exact closed form solution although it can

be readily shown that such a solution exists and is unique and can be

approximated by various means. With these comments in mind, we reiterate

that the interior cylinder surface will be approximated by a slender

prolate spheroid which is described by the prolate spheroidal coordinates

(a,S,w). Since the reader may not be familiar with this coordinate system,
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we review and summarize in the following its main characteristics.

The relationship between prolate spheroidal coordinates (~,S,~) and

. the commonrectangular coordinates (x,y,z) are given by

x = f sinha sins cosw

y = f sinha sins sin~ (7.1.3)

z = f cosha coss

where f is the focal distance of the prolate spheroid measured from the

coordinate origin, see Fig. 7.1.1. To exhibit the geometric significance

of a, take a to be constant and let

a = f cosha, b = f sinha (7.1.4)

in eq. (7.1.3). If these three equations are squared and added, there

results

(FY +(~r +(~r = 1
(7.1.5)

Since a and hence a and b are constants, this represents a prblate spheroid

in the x,y,z coordinate system (see Fig. (7.1.1)). One observes from

(7.1.4) that as a becomes small, the prolate spheroid tends to a small diameter

"cyl inderll. This IIcylinderll has a radius b and a length given by (7.1.5)

as 2a. In the following, we shall approximate the cylinder by small

positive values of a. On the other hand, as a becomes very large, so do

both a and band (7.1.5) tends to the description of a sphere of large

radius. The entire a range generates a family of prolate ellipsoids.

In order to exhibit the geometric significance of B, take S .to be a

constant and let

a = f cosS, b = f sinS (7.1.6)

Again square the equations in (7.1.3) and add so that
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- (X2b;y2)+(t)2 = 1
(7.1.7)

Hence for 6 constant and thus a and 5 constant" this equation represents

a family of hyperbolo;ds of two sheets with foci at ~ f as shown in

Fig. (7.1.1). When B = 0, a = f and.5 = 0, while when B = TI, a = -f

and 5 = o. For either of these cases (7.1.7) reduces in the limit to

the collapsed hyperboloid, i.e., the positive and negative z axis from f

to 00 and -f to -00 respectively. When B = ~, ~ = 0,6 = f for which (7.1.7)

reduces in the limit to z = 0, i.e., the x-y plane. Finally, as can be

seen from Fig. (7.1.1), the family of half planes ~ = const~nt with

0 ~ W ~ 2 ~ forms the third member of orthogonal coordinate system a,S,~

which has the range

0 ~ a ~ 00 ; 0 ~ 6 ~ ~ ; 0 ~ w ~ 2~ (7.1.8)

In this coordinate system the square of the element of arc length is

given with help of (7.1.3) by

(ds )2 = f2
(sinh2a + sin2s) Gda)2 + (dS)2] +

+ f2sinh2~ sin2S(d~)2 (7.'1.9)

From this one obtains the metric coefficients of this coordinate system

as

ha = ha = f (sin h2a + sin 2a) 1/2; h1/1= f sin ha sin a (7.1.10)

Nowthe form of the governing eq. (7.1.1a) in this curvilinear orthogonal

coordinate system is

oe - 1 {o (ha d) +0' (hah1/J(2)

+
K at - Df hahah1jJ aCt ha aCt as ha as

d

( haha (2)} ]
(7.1.11)tp h$ d1/J
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which reduces with help of (7.1.10) to

,..

[
1

dC - D 2
K dt - f .f(sinh2a + sin a) {

1 ,,
(

"

)

() . dC
sinha da slnha aa +

(

"

) (

. 1

)

a2c

}J
1 d . dC. + 1 +. -

+ sinl3 as s1n13al3 sinh2a s1n213 ai
(7.1.12)

a < ex < ~t 0 < B, ~t 0 < ~ ~ 2~s

An alternate form of this. equation is useful. Let

~ = cosha, ~ = cosa, ~ =~ (7.1.13)

then (7.1.11) transforms into

K ae = 0f
{

-L
[(z;?-1) ae ] +..!..

[(1- 2) ae ] +

at f2(~2_~2} a~ a~ a~ ~ a~

2 2
~ -1J .

+ . 2 2
(~ -1)(1-1J )

a2e
}a'll

(7.1.14)

~s < ~ < 00, -1 ~ 1J ~ 1,0 < ~ ~ 2TI

as one can readily show. In (7.1.12) and (7.1.14) as and ~s describe

the cylinder (prolate spheroid) surface. Particular solutions to this

equation can be constructed by separation of variables. With

" -s2t
c(~,~,~,t} = e 4> (~, lJ,$) (7.1.15)
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~ satisfies the Helmholtz equation in prolate spheroidal coordinates

.L

[
( l;;2 -1) .fuiJ

+ .L
[(1-1l2) .2!tJ + -l- 112 . b +

al;; al;; all all (z:2-1) (1-1l2) d1J;2.

+ k2 (~2_1l2) ~ = 0, where k2 = ~~ (7.1.16)

This equation can be separated again with

cf> (Z:,ll,tIJ) = Rmn (k,l;;) Smn (k,~) ~~~ (IDtIJ) (7.1.17)

Here the radial function Rmn (k,l;;) and the angular function Smn (k,W

satisfy the differential equations

d [ 2 d ] (
22m2

)d~ (~-1) d~ .Rmn(k,~) - Kmn- k ~ + ~ ~(k,~) = 0

L
[(l-J

)
~

d~ dll Smn(k,Il)] + (Kmn-k2/ - 1::2)Smn (k,ll) = 0
(7.1.18)

The separation constants k2 and Kmn' which are eigenvalues in our problem, would

be determined by boundary conditions imposed on Rand S n o This methodmn . m

of solution is not pursued in the following since the determination of the

spher;odal eigenfunctions and eigenvalues for the exterior problem are

mathematically quite involved. We will instead obtain the necessary
. .

. , .

information about the solution by application of Laplace transform techniques.

Before proceeding with this, we make the simplication that the concen-

tration of the diffusing element on the cylinder surface is independent of
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the angle $ and coristant over the enti~surface so that c(~,~,t) obeys,

see eq. (7. 1. 14) .

~ = 1
{
L ~( 2 dC

]
+ L

aT (I;;2-~n al;; L1 I;; -1) al;; alJ [(l-IJ 2) ~ ]}

~s < ~ < 00, -1, ~ , 1 (7.1.19)

c (~,~ ,0) = 0, ~s ~ Z; < 00, -1 ~ ~ ~ 1 (7.1.20)

C(~S,~,T) = 1, -1 ~ ~ ~ 1, T > 0 (7.1.21)

C(OO,~,T)= 0 -1 ~~~ 1, T~O ( 7 . 1 .22 )

dc(~,o,T) = 0
all

~ ~Z;<oo,T~OS (7.1.23)

where

C(Z;'~'T) = C(t,u,T)"
Cs

Oft
; T = 2Kf

(7.1.24)

The initial condition ;s given by (7.1.20). The boundary conditions on

the sur-face of the cylinder and on the spherical surface at the point at

infinity are given by (7.1.21) and (7.1.22) respectively. Eq. (7.1.23) describes

the symmetry of c about the midplane ~ = 0 of the cylinder. Wenow develop

the steady solution as well as the early time and large time (approach to

the equilibrium) behavior of this solution.

J_~~ Steady State Sol~tion

For this case the governing equation for c(Z;) and its side conditions

red uce to

d
dZ; [( 1;;2-1) ~~] = 0 . Z;s ~ Z; < 00

(7.1.25)
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c(r;s) = 1

c(GO)= 0

(7.1.26)

(7.1.27)

If the concentration at infinity is non-zero, a change in the reference
A .

datum (c) reduces that problem to the above formulation. Here c has no

II dependence because the boundary condltions (7.1.21) to (7.1.23) can be

met in the indicated way. The 'solution to this problem is elementary

and is gi ven by

Qo(1;)

c{Z;) = ~) Z;s~ r; < GO
(7.1.28)

where

1 !;+1
Qo( Z;) = '2 log r;-=T

(7.1.29 )

is the Legendre function of the second kind and zero order.

~ = cosha +1 = th2 ~
Z;-1 cosha -1 co 2

In view of

(7.1.30)

Eq. (7.1.28) yields

a
log coth "2

c(a) = a ' as ~ a < GO

log coth r
The di ffusi on f1 ux is then gi ven by

-+ A

J = -De Cs grad c

(7.1.31)

- -De 2s dc
- h daa

Here De= EDf is the effective diffusion coefficient of the species in the

water saturated porous medium, and E ;s the porosity of the medium. Eq.(7.1.32)

( 7 . 1 . 32 )

with the help of (7.1.10), yields the diffusion flux from the surface of the

prolate spheroid

, -t =
(

De Cs
)

1
Js f . a

. ~sinh2as + sin2(3)1/210g(coth 2$) sinh as

(7.1.33)
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One observes that although the concentration is uniformly distributed over

the surface a = as' the surface flux is a function of position B. The

flux is largest over the top and ~ottom caps of the cylinder where B is

close to 0 and n as shown in,Fig. (7~1.1). The expression (7.1.33) is

typical of the surface flux from an arbitrarily shaped body, ;n a diffusion

field governed by Laplace's equation, subject to boundary conditions

of type (7.1.26), (7.1.27). Dimensional analysis shows that

js = (De}s~ function of body geometry

where 1 is some characteristic body dimension, which in the present case

can be readily identified from (7.1.33). In order to obtain the total
+

rate of mass transport from the cylinder, one must integrate js over the
surface S of the prolate spheroid

m = J lIs1s
dS (7.1.34)

Since dS = hSh~ dSdWone obtains with (7.1.10) and (7.1.33) the formula for

the total rate of mass transport from a prolate spheroid

. 4nDeCsfm =
ex

log(coth f)

(7 . 1 .35)

For a slender prolate spheroid which is to approximate a cylinder of

length to radius ratio -bL > 10, ex «1. Hence one can approximate- s

as 2 L
coth (~) ~ a- ' b ~ f as by using (7.1.4) and f ~ 2s

thus,

L 2 Lb =- ex or - = -2 s a bs
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With this (7.1.35) yields

. 21TDecsLm=
log (~)

(7 .1.36)

an approximation for the total rate of -mass transport from a slender

cylinder of length L and radius b.

The principal physical feature of this formula is that m diminishes

with decreasing radius b (L being held constant) but for a fixed radius

m increases with L. These formulas and the equation for the fractional

dissolution rate will be illustrated in section 7.5.

We consider next the question of the length of time required to

establish the steady state solution.

The Transient Solution

The analysis is conducted in two parts, the early time behavior and

the large time behavior of the solution to equations (7.1.19-23), since

the complete solution to these equations is difficult to obtain. The

large time behavior is of greatest interest since it gives an indication

of the time span necessary to establish the steady state. We will compute

only the dominant leading term of the solutions since it will furnish

the desired information.

The Large Time Behavior

The governing equation (7.1.19) and its side conditions are subjected

to a Laplace transform with respect to the variable T and a Legendre

transform with respect to the variable ~. C(~,~,T) thereby changes in

succession into

c ( ~, ].1,p) = fOOe-PT C(~,~,T) dT
0

(7.1.37)



1
c(e;;,2n,p) = I C(r;,Il,P) P2n (~)d~0

where the P2n (~) are the Legendre polynomials of even order. Only even

members of the set are required on account of the symmetry condition

(7.1.38)

(7.1.23). We have shown that for the leading term of the solution~ only

Po(~) = 1 and thus c(r;,o,p) are required. The details are omitted.

Applying (7.1.37) to (7.1.19) yields with help of (7.1.20).

L r( 2-1) ~.!.Ell + L [ ( 1 -~2) ac ( t: , tl , P )]= p ( ~2 _}l2 ) c ( r; , II , P )
ae;; L e;; ae;; J a}l all

Then applying (7.1.38) gives with n = 0,

(7.1.39)

!L
[(

2-1) ~ ]+ (1- 2) l£.(z:,u,p)
d r; l; d l; II all

1

= p [' (r;2-ll2).0
0

.C(l;,ll,P) dl1 ( 7 . 1 . 40 )

One observes, having first Laplace transformed equations (7.1.19) - (7.1.23),

that the second (integrated) term in (7.1.40) vanishes by (7.1.23). The

integral on the right hand side of (7.1.40) has the form

..1 2 2
(

2 1

)

2 J
1

{ (s -~ ) c(s, ~,P)d~ = S -"3 c(s ,0 ,p) - "3 0 c (s, ~,p)P 2(~)d~
(7.1.41)

The last integral can be shown to have no contribution to the leading term,

so there results for c(~,o,p) = c(l;,P)

d
dr; [(

2 dC
]

-
(

21

)1; -1) d1; - P r; -"3 c, ~s < r; < 00 (7.'.42)

with the boundary conditions

1
c(r;s'p) = p ; c(oo,p) = 0 (7.1.43)

11.
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We propose a solution to (7.1.42) of the form

-q ( r;-r; )
c(r;,q) = <t>(r;,q)e s, q = IP (7.1.44)

where <f>(r;,q)is to be determined by substitution into (7.1.42). There

results

~
[(r;2-1) !!!] = R(<f> q)dr; dr; , (7 .1.44a )

where

R(.p.q)=2q[(r;2_l)~ +r;.p]+~ q2.p (7.1.44b)

In view of eq. (7.1.43) we take the boundary conditions on <f>(~,q)to be

1
<P( Ss ' q) = "2

q

<f>(oo,q) = 0

(7.1.45)

We now define the Green's function G(~,~) for the differential operator

in (7.1.44a) in order to solve that equation. Let

L
[

(s2-1) dG(l;,t,;t] = -o(~-~)ds dl; ( 7 . 1 .46 )

G(ss'~) = G(oo,~) = 0
b

Then with F(a,b) = f ~
a (r;2-1)

(7.1.47)

we have

(r;2-1) ~~ = Aor G(l;,~) = AF(~s'~) , r;s < r,; < ~ (7 .1.48)

2 dG
(r; -1) ~ = -B or G(r,;,~) =-BF(~,oo) , ~ < l; < 00

The continuity of G(r,;,~) and the unit jump discontinuity of (1';2-1) ~~
at r; = ~.
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determines

A = D-1F(~,00) , B = D-1F(~S:~) ; 0 = F(~S'oo)

so that

(7.1.49)

G(~,~) =
[D-1F(!;,00)] F(~S'~) , ~s ~ ~ ~ !;

(7.1.50)

[D-1F( ~s ,!;~ F(~,00)
~~~<oo

On evaluating D and F there results

Returning now to the solution of eq. (7.1.44) we consider as our starting

point Green's theorem

{ {G ~~s
[(r,2-1) ~] - ~ ~~ [(r,2-1) ~n } d~ =

=
{

(r;2-1) [G Q1 - <p dG
J } I

00

dr; dr, r;s

(7.1.52)

One substitutes for the differential operators under the integral sign the

equations (7.l.44a) and (7.1.46), then one makes use of the integral

property of the delta function and applies the boundary conditions (re-stated)

G(oo,~)= ct>(oo,s)= 0; G(Z;;s,E;)= 0, <P(~s,q) = ~
q

(7.1.53)

Qo()
[Qo() - Qo(s U

<
Qo(ss)

, s

G(,) = < (7.l.5l)

Qo(r;)
[Qo() - Qo(r;s) ] ,l;<oo

Qo(r;s)
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There resul ts

2 dG(r;s ' ~) 1 ex) -

~(~,q) = (~s -1) dr p - J G(r;,~} R (~(r;},q) dr;
~s

(7 .1.54 )

But by (7.1.48)

2 dG(~s,E::)
(ss -1) --- = A (7.1.55)

where A is given-by (7.1.49). 'If one evaluates the integrals, substitutes

the result into (7.1.54) and interchanges the labels ~ and ~,there results

the Fredholm integral equation

Qo(~) 1 . ex)

~(~,q) = n (~) '2 -J G(~, ~) R (<p(~) ,q) d~0 s q ~s

(7.1.56)

The large time behavior of the solution is determined by the "small p"

behavior of its transform. For this reason, one usually expands the

transform of the solution ~ in powers of p or q. This amounts to the

iterative solution of the integral equation in form of a Neuman series.

For our purpose (7.1.56) shows that the leading term in such a series is

the first (integrated) term on the right hand side, i.e.,

Qo(~) 1
<j>°(r;,q)= no(r;s) l (7.1.57)

Higher approximations can be computed by substituting this into (7.1.44b)

and then eva1uati~g the integral (7.1.56) provided that this is done to

the correct order of the dismissed ~ terms. In the present, we restrict

ourselves to the zeroth, i.e., the leading approximation to c(~,q) which

is a combi.nation of e.qs. (7.1.44) and (7.1.57)

Q (s) -q(~-ss)

c(s,q) = QO(~) ~2
0 s q

( 7 . 1 . 58 )
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The Laplace and Legendre inversions produce then the desired approximation

for the large time solution

Qo{r;)

(

r;-r;s

)
C(t,~,T) =~ erfc 1/20 r;s 2T

(7.1.59)

As T + oo,the complementary error function tends towards unity so that

this expression agrees with the steady solution given by Eq.{7.1 .28).

The diffusion flux from the surface of the prolate spheroid is given in

the ~ coordinate system by

"
+ Decs dC
j=-t1 ~r; - where h = f J /;.

2-ll2

r;-r; Z;; 2s Z;;-1

j = - Dees

{
Q: (I;s) - L

}
hr ([TQ {1fT

':»$ 0

(7.1.60)

The time span necessary to establish the steady state to 1% requires that

1

'{1fT = 10-2

--

Qo(z;;s )

Qo(z;;s )
(7.1.61)

'"

Qo{z;;s) 1 __ffO)2 ~5 cm2
Qo(z;;sf ~ 4" .109TWT = 33.5 Df = 5xlO sec' K=lOO

and f = 150 em, eq (7.1.24) yields

With (LIb) = 20,

104 x 2.25 x 104 xl02 = 1 28 x 1011 sec= 5 2..tsteady state 3.14 x 5 x 10- x (33.5)

= 4000 yrs (7.1.62)

This is an appreciably long time period and its consequencein establishing

the steady state ;n laboratory experiments must be appreciated.

increased retardation this time span increases.

For
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It is within the context of such experiments that the early time

behavior of the solution is of interest. Weturn next to the analysis of

The Early Time Behavior

In contrast to the large time behavior which is characterized by

small values of the Laplace transform parameter p, we are now interested

in the large valued parameter 'case as p ~ 00.

The starting point of the analysis is eq. (7.1.42) for c(~,p)

d

[
2 dC] 2 1

d~ (~-l) d~ = P (~ - 3) c , ~s < ~ < 00 (7.1.63)

with the boundary conditions (7.1.43)

1
c(~s'p) = p; c(oo,p) = 0 (7.1.64)

One of the most useful techniques for obtaining the asymptotic solution

of (7.1.63) for p ~ 00 is with help of the Lfouville approximation. For

this introduce the new independent variable

n = ('
(

(~--)2-t
)

1/2 '*

)~ (~_)2 -1 d~s

(7.1.65)

and the new dependent variable

N =
( [~2-1] [~2_}] r /4 c

(7.1.66)

There results the greatly simplified equation

d2N = ~ + 9 (ni] N
dT)2

(7.1.67)



17.

for which

N(oo,p) = 0 (7. 1. 68)

Since one treats p + 00, the function g(n} is as usual treated as a

negligible contribution and its specific form is of no further interest

in the following except for the fact that it is a continuous and bounded

function.

The dominant solution of (7.1.67) which satisfies (7.1.68) is

1/2

N(n,p) = Ae-P n (7.1.69)

If this is substituted into (7.1.66) and the boundary condition (7.l.64)

is applied there results

(7 .1.70)

(7.1.71)

where n(s) ;s given by (7.1.65). The early time surface diffusion flux

can be determined from this equation and it exhibits, analogous to the

second term in eq. (7.1.60), a T-l/2 behavior, but with a different

numerical coefficient.

( G 2- Q G 2- 1]r4 -p1/211
c(,p) =

Z:s 1 s '! e

2-1J 2 -}J P-

Oninversion there results

2 il [ 2 1] 1/4

- ( s -1 s - 3 ) ( 11 )C(,)l, T) - 2-1] 2- }] erfc 2T1/2
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7.2 Mass Transfer From a Fuel Canister by Diffusion and Forced Convection

Paul L. Chambre

Consider a cylinder of infinite length imbedded tn a porous. medium

through which water is flowing steadily in accordance with Darcy's law.

The cylinder matrix contains a diffusing nuclide which is set free at the

surface of the cylinder at the solubility limit. of the species in. water and

then diffuses into the exterior unbounded space. All material properties

are assumed constant. The flow i$ taken normal to the axis of the cylinder,

but inclined flows can also be treated by the analysis given below. The

governing equation for the conservation of mass of the diffusiryg species

from a cylinder of radius ro in the presence of radioactive decay is

A '" '" '"

(

2'" A 2",

)
K ~+ ("'e ) ~+~.£f.=D ~+~~+.L~ -AK~"t u r, "r r ae f "2 " "'2 2 '

0 0 ar r or r ae

ro < r < 00 , 0 ~ e ~ 2TI, t > 0 (7.2.1)

Here

(

2

(

2

)
ro A ro

u(r,S) = -u 1- ;2 ) cosS; vCr,s) = U 1 + ;2 sinS
(7.2.2)

are the radial and tangential pore velocity components derived from D'Arcy's

potential flow in the porous mediumwith U the free stream pore velocity far away

from the cylinder. r is the radial distance from the center of the

cylinder and e the angle measured in the tangential flow direction from

the frontal stagnation point at the cylinder surface. K is the retarda-

tion coefficient and Df is. the diffusion coefficient of the species in the

liquid.

Prior to the time t = 0, the diffusing nuclide has zero concentration
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in the porous medium. At time t = 0 the concentration at the surface of

the cylinder is changed to a constant value cs

c(ro,e,t) = cs' 0 ~ e ~ 2~, t ~ 0 (7.2.3)

and maintained at this surface concentration Cs subsequently. The

boundary condition far from the cylinder is held at zero concentration

'"

c(oo,e,t) = 0 , 0 ~ e ~ 2~, t 9 0 (7.2.4)

It is convenient to introduce non-dimensional variables with

Ut "T=- r_r "'"Kro ' - r ,c(r,e,T ) = ~(r,e,t) At
0 c - es

Ur

Pe = 0 0 , the Peclet numberf
(7.2.5)

KAr
. 0

Oa =~, the Oamkohler number for convective mass transport.

Then the governing equations for c(r,e,T) transform to

ac -
(

1 - L
)

cose.£f.. +
(

1 + L
)

sine ~ = L
(

a2c + 1 ~ + L a2c
)dT 2 ar 2 r ae Pe '" 2 r ar 2 ') e2

r r or r 0

1 < r < 00, 0 ~ e ~ 2~ T > 0 (7.2.6)

)
OaT

c(1,e ,T = e ,0 ~ e ~ 2'JT, T >,.-0 (7.2.7)

c (00, e ,T) = 0, 0 ~ e ~ 2~, T ~ 0 (7.2.8)

with the initial condition that c(r,e,O) = o.

2.
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For typical porous media flows the Peclet number Pe maybe l~rge.

Typically, with U=2m/yr, ro = 0.15 m, and Of = lx10-5 cm2/sec will

yield a Peclet number of 10.

This suggests an asymptotic solution of the equation system for

large Peclet numbers. In this case the principal resistance to mass

transfer from the cylinder surface is in a direction normal to the fluid

layer surrounding the cylinder, i.e., in the r direction. The diffusion
. 2

transport tangential to the surface, i.e., the term ~ a ~, can then ber ae
neglected as will be shown below. To obtain the asymptotic form of the

equations, introduce the new independent variable R in place of r

R ,
r= 1 +fPe

(7.2.9)

then eq. (7.2.6) takes on the form

ac - 2R cose.Q£+ 2 sine E.f..= a2c + 0
(

pe-l/2
)aT aR ae aR2

This is to be solved for c(R,e,T) subject to, see (7.2.7), (7.2.8)

(7.2.10)

c(o,e,T) = eDaT , 0 ~ e ~ 2u, T ~ 0 (7.2.11)

c(OO,e,T) = 0, 0 ~ e ~ 2u, T ~ 0 (7.2.12)

with zero initial condition.

For large Pe numbers the last term in eq. (7.2.10) is neglected. By an

additional change of the independent variables, one can reduce the time

dependent diffusion and convection equation (7.2.10) to a simpler time

dependent diffusion problem without convection. New independent variables

~(R,a), ~(T,e) are introduced which transform c(R,8,T) into c(n,s)
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i.e., c{n,~) = c{R,8,T)

These variables are given by

(7.2.l3)

. 1 1 r l-f T ,8
}Z;{T,e) = - '2 cose +"2 ll+f T,8

f(-r.e) = e-4, ~ with a(e) = ( l+~ose ) .

(7.2.14a)

where
b(e) = (1-c20se)

and

rdR,e) = R sine. (7.2.14b)

As the reader can readily verify, these transfonmations, which are

deduced by group-theoretical considerations, change eq. (7.2.10) to a

very simple equation for c(n,~), i.e.,

ae a2c
~ = 2 ' 11 > 0, ~ > 0an

subject to the side conditions

(7.2.15)

c{o,zJ = 1 , <;~ 0 (7.2.16)

c(oo,<;) = 0, ~ ~ 0 (7.2.17)

with the condition that c(n,o) = O.

The solution to this problem is

c(n.~) = erfc L1z)
(7.2.18)

The solution in R,8,T variables is obtained by substituting n(R,8),

and <;(e,T) in (7.2.18). One obtains after some simplifications that:

c(R,8,T) = erfc (R /coth 2J + cos8) (7.2.19)

This solution satisfies (7.2.10) with side condition (7.2.11)

replaced by unity. To obtain the T dependent boundary condition given



5.

by (7.2.11) we use Duhamell.~integral, i.e.,

c(R,6..r) = IT c(0,6 ,T ') '}T [erfC (R ~2(T-r) + cos6 )}T'0

(7.2.20)

Integrating by parts and transforming back to the original variable cone

obtains

/\ /\ Da Ut ,

[ r ~pe 2Ut ]c (r ,Pe ,Da ,t ,e) = csex p(- K ) er f c (- - 1) -2-(cot h -K- + cose ) +
ro ro ro

Ut

+ Cs Da ~Kr 0 e -DaT erfc [ (:0 - 1) vP2e (coth 2T + cos6) ] dT

(7.2.21)

This solution (7.2.21) describes the time dependent concentration field

in the presence of radioactive decay in a Darcy flow about a cylinder.

The surface mass flux for a diffusing nuclide is

ae

I
}(Pe,Da,t,6) = - De d~ r=ro

Decs ~pe

[ (- Da Ut ) ~oth 2Ut + cose +- - - exp Kr ¥( Krr 'IT 0 00

Ut

j
Kr

+ Da 0 e-DaT ~coth 2T + cose
0 dT ] (7.2.22)

where De = £ Df in the effective diffusion coefficient of the diffusing

nuclide and £ the porosity of the medium.

The surface mass flux, according to (7.2.22) depends on time and the

angular position. The angular dependence is removed by averaging the

surface mass flux over the cylinder perimeter. On the account of symmetry

we have
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... 1

1
1T~

J av (pe, Da,t) = -IT J (Pe, Da, t ,e) de
0

Ut

= Decs ~2pe [exp (- Da Ut) I (~) + D J
Kro

1Tr 1f Kr Kr a
000 0

e ~ DaT I (T) dT]
(7.2.23)

where

j
1f 1/2'

I (T) :: (coth 2T + cose) de
0

To evaluate I(T) we proceed as follows

I
1T l 2 2T 1/2 '

I(T} = ,1 + e2T~e-2T + cose) de0

f
Tr/2 1/2

= 2 ( 1-e=4T- 2 sin2 <f» d<f>

0

_2{2 2
- mTTT E [m (T)J (7.2.24)

1/2
where m(T) = (1-e-4T) and E[x] is the complete elliptic integral of the

second kind. Substituting for I(T) in (7.2.23) one obtains

Da Ut 2 Ut Ut
4D

{

exp(- ---)E[m (-) ]

J
-

}

c . Kr Kr Kr 2
J (Pe,Da,t) = ~ E --.2. 0 + Da 0 e-DaT E[m (T)]d

av TIro 1f (
Ut

) m(T) TIn K 0
ro

(7.2.25)

In absence of radioactive decay (A=Da=O)there results
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40 c

JPijav(Pe,o,t)= e s Pe
1Tr0 1T

E[m2(w. )]
0

Ut
m(Kr )

0

(7.2.26)

For application in section (7.5), we require the steady state,

average ,surface mass flux in absence of radioactive decay. Hence, (7.2.26)

yields as t~, with m(co)= land E[l] = 1, that

40ecs

J a v = 1Tr0 ~ (7.2.27)

The mass transfer per unit length of cylinder under steady state condition

; s then g; yen by

. .~
m= Jav x 21Tro= 4.5135 ~eCs vPe (7.2.28)

a result well known in heat and mass transfer studies where it is shown

to be valid for a range of Pe>4 (K2),(L1).

From (7.2.26) one can estimate the time necessary to establish the

surface mass flux to 99%of the steady state mass flux. From table of

complete ellipti~ integral of the second kind one obtains that the

criteria is given by

Ut = 1.2
Kro

(7.2.29)

For a flow of U = 1 m/yr, ro = ~.15 m, and K= 100, t = 18 years,

a relatively short time for the establishment of a steady state when

compared with the case of pure diffusion. Theret = 4000 years was obtained

(see 7. 1. 62) .

The analysis leading to the solution (7.2.21) for the time independent boundary

condition is readily generalized to a time dependent boundary condition.

The starting point for this analysis is Eq.(7.2.20). If in (7.2.3), cS' is
0 ' .

(

'(~Kr

)replaced by Cs $(t), one must change c(o,e,T') in (7.2.20) to e aT $ U Q
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As an illustration consider the radioactive decay of the surface concentra-

tion according to

~

c(r ,e,t) = c e-)..t0 s o<e ~ 27r, t~o (7.2.30)

in place of Eq.(7.2.3). Here <I>(t ) :: e -At. Hence, we have

-ATI Kr
0

c ( o,Bt'! I) = eOaTleU. = 1 (7.2.31)

After substitution of c(o,e,,!I) into (7.2.20) one can perform the

integration analytically. Transforming back to the c and evaluating

surface mass flux one obtains

-+ 0.
(

eCs 0
J Pe,Oa,et)= -r-- exp(- ~ Ut)

0 ro

2P

~ [coth (~Ut) + cose] .
7r ro

(7.2.32) .

This shows that the surface mass flux no longer reaches a steady state

but tends toward zero as t -+ 00.

For a flow parallel to the cylinder axis the mass transfer can be

approximated as follows. The lateral cylinder surface is unwrapped into

a flat plate of length L and width 2wr , and subjected to a flow in thea

direction of the plate length. The steady mass transfer from a flat plate

of width 27rr and length L under longitudinal flow is given by0

(
UL

)

1/2

Mlong = 2.257 °ecs Of 27rro ' (7.2.33)

while the mass transfer from a cylinder of length L with the flow normal

to the cylinder axis ;s ;n view of (7.2.25)

.
Mnorm= 4.513 0 c. (

uro
)

1/2

e SOL
f

(7.2.34)
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Hence

M
..!lQ!!!! = 4.513
M r;;-

long (2.257~ 2 ~
(2~J 1/2

For a canister. with an aspect ratio 2~ = 13.2
0

M
norm:= 1.63

M10ng

This indicates that for flow parallel to the cylinder axis, the mass

transfer is decreased by about 63%compared to that due to the-flow normal

to the cylinder axis because the thickness of the diffusion boundary layer. .
is greater for Mlong than for Mnorm.

Finally we note that the large Peclet number approximation made in

the analysis prevents one from letting the free stream Darcy velocity U

become small. If U + 0. in eq. (7.2.1), the convection terms drop out and

the equation describes then a temporal balance between the effects of

diffusion and radioactive decay. For a constant surface concentration,

given byeq. (7.2.3), the modified eq. (7.2.1) generates then a steady

state solution as t +~. Since the e dependence is no longer needed, the

governing equation is

2A A 2A.L£ + 1 ]£ - a c = 0. r > 12 r arar

where

A

r2 r =- .
a = , ro

(7.2.35)

with the boundary conditions

2(1) = Cs ' c(~) = o. (7.2.36)
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The solution is given by

" - ~.
c(r) - Cs ~ ' r > 10

(7.2.37)

so that the surface mass flux is

-+ Decs

f
. Kl(B)

}J(ro) = r;;- a Q8T (7.2.38)

Here Ko(T)), Kl(T)) are the modified Bessel functions of zero and first

order respectively.

A detailed numerical evaluation of thecmass transfer without radio-

active decay, i.e., eq. (7.2.28), as well as the fractional dissol~tion

rate are given in section 7.5.- The other. formulae derived above including

their dependence ,on radioactive decay will be investigated in the future.
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7.3 MassTransfer Froma Fuel Canister by Diffusion and Free Convection

,Paul L. Chambre

The problem concerns the mass transfer from a heated vertical cylinder

which is imbedded in a water saturated porous medium. The temperature of

the cylinder exceeds that of the surrounding with the result that a free

convection pattern develops which drives the fluid along the cylinder

surface. This induced velocity affects the mass transport of a diffusing

species from the cylinder surface into the surrouRding medium. It is

thought that the effects of free convection might be important during that

time when the fuel canister generates a sufficiently large amount of decay

heat to maintain a temperature difference of about 50°C (or more) between

the canister surface and the surrounding medium. The aim of the analysis

is to determine the velocity, temperature and concentration fields and to

develop a formula for the surface massflux.

The following assumptions are made:

a) A steady state description is adopted.

b) The vertical cylinder surface is replaced by a flat plate surface

having the same length as the cylinder and a width equal to the cylinder

circumference.

c) The pore water is assumed to have temperature independent properties

except for its density. The water flow obeys Darcy's law. The fluid

filling the porous medium is assumed to be a single phase.

d) Boundary layer theory simplifications are assumed valid, see eq.

( 7 . 3. 14) be 1ow .

The governing equations are:

Conservation of Mass .£!!. + dV = 0
ax 3y (7.3.1)
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Conservation of Momentum(Darcy's Law)

u = - !.
(
~ + pg

)~ ax
(7.3.2)

v= _!'.Q£.
~ ay

(7.3.3)

Conservation of Energy

aT aT 2 - Aeu-+v-=a.'VT a =-ax aye' e pcp
(7.3.4)

Conservation of~ecies

A " 2
~ + v ~ =ED 'V cu ax ay f

(7.3.5)

Equation of State of Liquid

p = Poo {l - S (T - Too)}
(7.3.6)

where
2 d2 a2

'V =2+2ax ay
(7.3.7)

The coordinate system is shown in Fig. (7.3.1). The velocity components U,v

point respectively into the x and y direction. In the above equations

p,T,p,Cp are the pressure, temperature, density and heat capacity of the

liquid and Poo its density far away from the plate. k is the permeability of

the porous medium. Ae is the effective thermal conduction of water saturated

porous medium as measured in the laboratory. ~ and S are dynamic viscosity

and coefficient of thermal expansion of the liquid in the porous medium

respectively. Df is the diffusion coefficient of the diffusing species in

the liquid.

The boundary conditions for our problem are

v(x,o) = 0, T{x,o) - Tw; e(x,o) = cs' for x>o

u(x,oo)= v(x,oo) = 0; T(x, ) = Too;e{x,oo) = 0, for x>o

(7.3.8)

(7.3.9)
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X8l828.0»

Fig. 7,,3.1. Co-ordinate system used in the
free convection model.

r('1'.
"('I).
c("1)

TJ

XBL828 - 6306

Fig. 7.3.2. Qualitative shape of f(n), f~(n) and
c(n) for large Lewis number.
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There will be a "slip" condition for the u corrponent of the velocity at

the plate surface which is as yet unknown. Furthermore, the temperature

difference (Tw-T~)which depends amongother parameters on the heat

release from the cylinder is also determined subsequently.

Eq. (7.3.1) can be satisfied in the usual way by introducing the

stream function w{x,y) with

u(x,y) =~ ; v(x,y) = - ~ .uy ax
(7.3.10)

If one differentiates (7.3.2) with respect to y, (7.3.3) with respect to

x and then algebraically adds the resulting equations, one obtains with

help of (7.3.6) and (7.3.10),

(~ Pooag) ~~ = ;w (7.3.11)

On the other hand (7.3.4) and (7.3.5), expressed with (7.3.10), give

aw aT ~ aT- _2
ay ax - ax ay - cxe\IT

(7.3.12)

~ ae - ~ ae =e:D v22
ay ax ax ay f (7.3..13)

One has thus these three governing equations for the determination of

the unknown functions W,T and c. For the purpose of establishing the

main physical features of the solution, it is convenient to utilize the

boundary layer simplifications. These imply that the transport of mass,

energy and concentration in the major flow direction (i.e., u) is small

compared to that normal to the plate. With

~ ~ a2T a2T a2c a22
2« 2' 2 « 2 ' 2 « 2ax ay ax ay ax ay

(7.3.14)
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Equations 7.3.11-13 result in,

(p ~ 0' )
aT- '02".

co 1..1t-Jg ay - ~ay
(7,3..15)

~ aT ~ aT - a2T
'Oy ax - ax 'oy - Cte ay2

(}.3~16}

" " 2"
~ ac - ~ ae =£D a c
ay ax ax ay f ay2

(7.3,17)

These equations are subject to the boundary conditions a (see (7.3.8),
(7.3.9) and (7.3.10»

aw{x,o) = 0, T(x,o) = T ; c(x,o) = Csax w (7..3~18)

'Ow(x, cot = ~ = 0 , T(x ,eo) = Teo; c(x,co) = 0ax ay (7.3,19)

valid for x>o.

Equations (7.3.15) and 7.3.16), which are coupled equati~ns for T and $,

are solved first. One determines thereby the temperature induced stream

function $(x,y) which describes the free convection flow pattern. With

knowledge of $, one can then solve for the concentration c(x,y) separately.

For this reason we concentrate first on the solution of (7.3.15) and

(7.3.16). These partial differential equations are reduced to ordinary

differential equation by the introduction of the similarity variables

n = Ral/2 (y/{xL) (7.3,20)

$ = ae (Ra)1/2 (~)1/2 f(n) (7.3~21)



T-T
00

aCT)) = T -Tw CO

(7.3.22)

"
c

c(rd = c; (7.3.23)

where

Pco9 k
Ra = --- (-) 8 (T -T )La. II w 00e

(7.3.24)

Here L is the length of the plate. and Ra the Rayleigh number of the

liquid saturated porous medium. With these variables the governing

equations reduce to

f" (n) - a' (11) = 0 (7.3.25)

e" (n) + ~ f (n) e' (n) = 0 (7.3.26)

A-lc" (T)) + ~ f (T) c' (Tl) = 0 (7.3.27)

where
ex

A=~=Le
EDf

(7.3.28)

is the Lewis number. The boundary conditions transform to

f(o) = 0 ; a(o) = 1 ; c(o) = 1 (7.3.29)

f'(oo) = 0 ; 6(00) = 0 ; c(oo) = 0 (7.3.30)

as can be seen by introducing the new variables into (7.3.18) and (7.3.19).

A final integral of eq. (7.3.25), which satisfies the boundary

conditions (7.3.30) for f' and 6 at n = 00, is given by

f' (n) = 6(11) (7.3. 31)

5.
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Since the x component of the free convection velocity is determined by

ae
)u = ~ = (-L Ra) f I (11ay (7.3.32)

'"

one observes that the normalized vertical velocity u(n) anda

. ( ~ Ra)
the temperature distribution 8(n) are, according to (7.3.31), of the same

form. Thus, the determination of the function f(n) is of central

importance. To obtain an equation for f(n),e1iminate 8 between equations

(7.3.25), (7.3.26) and (7.3.31), with the result that

3 2
df+lf df=O
dn3 2 dn2

(7.3.33)

Exactly the same differential equation arises in the problem of the

boundary layer flow of a viscous fluid over a flat plate, the famous Blasius

problem (82). But in contrast to the boundary conditions f(o) = f'(o) = 0,

f'(oo) = 1 in that problem, the conditions for the present case read

f(o) = 0 ; f'(o) = 1 ; f'(oo) = 0 (7.3.34)

The qualitative shape of the solution f(n) of (7.3.33), (7.3.34) and that

of its derivative f'(n) are shown in Fig. (7.3.2). As already stated,

the free convection induced vertical velocity component and the temperature

distribution normal to the plate are both characterized by the shape of

the f'(n) function.

Next we determine the mass transfer from the vertical surface. For

this one requires the normal derivative ~y
C

I
which in turn involves ~c

l

.
y=o n n=O

But n contains Ra and in this Rayleigh number there occurs the as yet

unknowntemperature difference (Tw-T~). (Tw-T~) is determined by the heat

flux through the canister surface and the convective and conductive heat
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transport into the porous medium. So one must first find (T -T). Thew 00

local heat transfer from the surface of the plate is defined by

aT
Iq" = - "e ay y=O

which with (7.3.20) and (7.3.22) yields

q" = -;\ (T -T )3/2 (~ PooS9)
, 1/2 -1/2 ,

e w ex) 11 ex x e (0)e
(7.3.35)

where;\ is the' effective thermal conductive of the saturated porous medium.e

The total rate ~f heat transfer from a plate of length and width W is then

L

Q = W i q" (x) dx0

= - W;\ (T -T )3/2 (!.e w ex) 11

1/2
po)39_

)
2L1/2 a' (0)

ae
(7.3.36)

Fig. (7.3.3) shows the variation of spent fuel heat generation with time.

We now define the magnitude of the average heat flux from the entire plate as

q-'I = ~- WL

3/2

(

. 89

)

1/2

= A (T -T) 4!.~ l a'(o) le w ex) 11 Lae
(7.3.37)

Hence the desired temperature difference between plate surface and the porous

media is given by

{
(-II) 2 }

1/3

( T T ) - q
w- 00 - P 89 2

4;\2 Js. ~ [e' (o~
~ 11 Lae ~

(7.3.38)

(TW-T~) is seen to be a function of the average heat flux issuing from

the fuel canister and the properties of the porous medium. The assumption
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Time. yr
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.eL 111- 1107

Fig. 7.3.3. Variation of normalized decay heat generation of a
spent fuel with time Q (0) is the initial decay heat
generation and is equal to 0.55 Kw.

.°
Velocity--+

0

... 8.8.1.
Fig. 7.3.4. Variation of temperature difference (T ~T )

and free convection velocity with timeWfor a spent
fuel canister.



8.

is ~ade that the average heat flux varies so slowly with time so that

(7.3.38) can be applied to a quasi-steady state. Fig. (7.3.4) shows a

typical trend for this temperature difference as a function of time for a

given q" (t) descriptive of a spent fuel. The temperature difference

drops to 10QoCin about 130 years. The calculation is based on the fo110w-

. 1ng parameters values

A = 2.894 w/m oK (l)

.k = 2.96 x 10-14 m2 (1)

~ = 5.5 x 10-4 kg/m sec

Poo= 103 kg/m3

cp = 4.184 x 103 J/kg oK

8 = 2.07 x 10-4 1/0K

L = 4.7 m

r = 1.78 x 10-1 m

Q (0) = 5.5 x 102 w

61(0) =.:..1..1T

(2)

(2)

(2 )

Before proceeding with the mass transfer analysis we estimate next

the magnitude of the vertical slip velocity component u for the above

data. From (7.3.32) and (7.3.34) the free convection velocity component

along the plate surface is given by

-
(

aeRa
)

u- -L

= pooSg(T -T ) ~w 00 11
(7.3.39)

For a temperature difference of 100°C one computes u = 0.34 m/yr. This is

competitive with commonly assumed groundwater flows of 0.1 to 1 m/yr which

are used in the far-field calculations. Fig. (7.3.4) gives the magnitude

of the free convection velocity as a function of time.

The local mass transfer rate from the plate is now computed from the

solution of (7.3.27) subject to the boundary conditions (7.3.29) and
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(7.3.30) for c(n). The desired solution is

rn (
A rT'l'

C(TI) = 1 - '-!O""exp -"2 Jci f(s )dS) dil'

fa exp (- ~~T:l1f(s )dS)~-

(7.3.40)

so that the surface mass flux is

-T ':!.:: ( \I ,
J = - D £ ~f ay

= - Dfc £.2n. ~
s ay dn (7.3.41)

y=O n=O

where £ is the porosity of the medium.

In view of (7.3.20) and (7.3.40).

( )

1/2 1

+ Ra TIt,
J = DfEcs xL r: exp (- ~ fa f(s)dS) dn0

(7.3.42)

The definite integral

00

(

I)'

)I (A) = fa exp - ~ fa . . f( s )ds dn' (7.3.43)

involves the function f(n)~i.e., the solution of (7.3.3~ and the Lewis.

number parameter (7.3.28).

ae
A= £[)

f
(7.3.44)

We shall discuss the complete evaluation of I(A) for arbitrary A values

at a later time, but develop now the asymptotic form of this integral for

large values of A which may arise due to small values of the diffusion

coefficient in porous media. In this case the concentration boundary

layer is very thin compared with the thermal layer, as sketched in



Fig. (7.3.2). One can then approximate f(n) by the first term of its

power series expansion, i.e.,

2
f(l1)= T'I + 0(11 ) (7.3.45)

2
If one neglects terms of 0(11 ),

A 2__11

I(A) ~ Joo e 4 dl1,0

= R. forA large

Thus (7.3.42) yields,

(7.3.46)

-T
(

Ra A

)

1/2

J = Dfccs xL;r , for A 1arge (7.3.47)

If one expresses Ra by (7.3.24) one has in terms of the physical parameters

-r
(

1 k Poo9 1

)

1/2 0 cc
J = Df cC --~ 8(T -T ) - = ~ s

S 7T}.IEDf W 00 x . ~
.(7 .3.48)

where the length t is given ~y

(

' k poog
)

1/2
,Q,=- - - S(T -T ) 1

7T}.IcDf W 00 x
(7 .3.'49)

The average rate ofmass transfer per unit length of plate for a plate

of length L is readily computed from equation (7.3.48).
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7.4 A Model for leach and Diffusion Rates From Glass Bodies

Pau1 L. Chambre

Experimental evidence indicates that when a typical silica base glass

is brought into contact with water two physical processes occur in the

dissolution of the glass. One of these is an alkali ion transfer, such

as for example, Na+, across the glass-water interface which gives rise to

a gel-like 5i02 transition layer. The second process appears to be the

corrosion of this layer resulting" in the dissolution of the glass matrix.

A number of theories have been proposed, differing in various detailed

mechanistic ways, which attempt to explain qualitatively or quantitatively

various aspects of experimental observations on glass dissolution. In the

following, we develop a model which is based on only the two, generally

accepted, experimental pieces of evidence. These are

i) The movement of the glass interface with a (regression) velocity Vt

which is initiated by

ii) The diffusion of an alkali ion across the glass-water interface.

Three simplifying assumptions will be made. The interface velocity is

assumed to be constant in time. The support for this assumption is indirect~-

It will be shown in the following analysis that a constant regression

velocity leads to the often observed experimental result (M4) that the

fractional release of a particular nuclide f(t) follows the empirical

formula

f(t) = c1 [t + c2t (7.4.1)

where c1 and c2 are constants. On the other hand there exists also some

experimental evidence yielding a different time dependence for f(t){~3).

This has been interpreted by investigators to be due to a corrosion layer

which is developing on the glass surface, gradually increasing the resistance
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of mass transfer from the interface. In the analysis, the case of accretion,

is also included and the f(t) function deduced. The remaining assumptions

concern the nature of the diffusion mechanism of the alkali ion. We shall

assume a constant diffusion coefficient for the ion in the bulk glass and

the gel-like surface transition layer despite the fact that the diffusion

coefficient is considerably larger in this layer (H2). Furthermore, we shall

ignore the effect of the negative surface potential on the ion transfer.

Such a potential is generated when glass is immersed in water. The effects

of the latter two assumptions require future study.

The Analysis

The analysis applies to a body of planar, cylindrical and spherical

shape. We take as the governing equation

-

{
2- -

}
~ = 0 1S.. :,. !!! ~ - AC
at ar2 r ar

Here c(r,t) is the concentration of the nuclide, 0 the diffusion coefficient

(7.4.2)

and A the radioactive decay constant if the nuclide is radioactive.

m describes the geometric character of the diffusion field. For the case

of the sphere m = 2, ~or the cylinder (of infinite length) m = 1 and for

the slab m = O. r is the position variable within the region of interest,

t the time and R(t) the position of the movable boundary which will be

prescribed below. The initial nuclide concentration is given as c(r) so that

c(r,O) = c(r), 0 < r < R(O) ~ a. (7.4.3)

At the surface of the solid

C{R (t). t} = 0,
t > 0 (7.4.4)

but if the surface concentration ;s instead Cs 1 0, it is always possible
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to reduce this to the condition given by eq.(7.4.4) by taking the reference

datum for the concentration at cs' provided A= O. In addition to the

above conditions, one prescribes in case of the sphere and the cylinder

that ~ (O,t) is bounded and in the case of the slab of thickness 2R(t) that

ae (O,t)/ar vanishes for all times.

The equation for the moving boundary R(t) is based on the simple

hypothesis that
a

R(t) = a - vt, 0 ~ t ~ / v (7.4.5)

where a is the initial position and v the surface regression velocity.

A regressive surface at time TL = a/v the finite sized body has completely

dissolved. This limits the time span for the solution. If there is

accretion, we take v negative in the expression for R(t) and consider

t ~ O. The equations(7.4~2) to (7.4.5) completely define the model.

The solution for the different geometric configurations (fig. 7.4.la) is

carried out below. It turns out that the solutions for the sphere, cylinder

and slab are very similar. The case of the sphere is treated in detail,

then the changes which need to be made in case of the slab are indicated

and the final solution is given. These results are exact and are valid

for any range of the parameters entering the problem. The cylinder is

analyzed by an approximation method which is valid for the large values

of the parameter (va/D) usually encountered in practice. By forming the

product of the solutions for slabs of different or identical widths one

obtains at once the solution to the case of a parallelopiped or cube,

respectively. Similarly multiplication of the slab and (infinite)

cylinder solutions yields the solution for a cylinder of finite le.ngth

(fig. 7.4.1b). Theseresults are consequencesof somewell knowntheorems

and are valid for a time span in which the smallest initial dimension of

the body has been reduced to naught by the leaching process.
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The Sphere

Let

c(r,t) = exp (At)rcsp(r,t)

then eqs. (7.4.2) to (7.4.5) reduce with m=.2.to

(7.4.6)

dC d2c .
dt = D-:2' 0 ~ r < a - vt, 0 < t < al,VIar

(7.4.7)

c(r,O) = rc(r) = g(r), 0, r , a, (7.4.8)

c(a - vt,t) = 0 0 ~ t , a/tVI (7.4.9)

and on account of the boundednesscondition on c (O,t),

c(O,t) = 0, 0 < t <a/lv) (7.4.10)

Now the Kelvin function,

1'.

(

2

)
-ex r

2(~Dt)1/2 p - 4Dt '

is a particular solution to ~q. (7.4.7). By the super-position principle

and the method of images one can construct a more general solution to

eq. (7.4.7) which satisfies conditions (7.4.8) and (7.4.10) as a detailed

verification shows.

This solution has the form,

00

c(r , t ) = 1 112 {Ia 9(s) S (r , t ;s) ds + J h(s )S(r ,t ;s )ds } ,2( 'JTDt ) 0 a

(7.4.11)

0 , r ~ a - vt, 0, t ~ allVI
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where the source function

[
2

J [
2

J
. - (r-s) ~

S(r,t,s) - exp - 4Dt - exp - 4Dt

In eq. (7.4.11), g(s) is the initial concentration distribution and h(s)

(7.4.12)

is an as yet unknownsource density function which is determined by imposing

the last remaining condition on the moving boundary, i.e., eq.(7.4.9,),

a 00

J g(s )S(a -vt , t ; s) ds + f h(s )S(a-vt ,t ;s) ds = O.
0 a

(7.4.13)

Nowthe functions g(s) and h(s) are partly at our disposal. Since:g(s)

is prescribed only for 0 < s < a, we a~alytical1y continue it in the

following manner

0, Is\ > a
g(s) = (7.4.14)

-g(-s), \s\ < a .

Similarly h(s), which must be determined according to the solution (7.4.11)

and the condition (7.4.13) in the span a < s < 00 , is chosen in the remaining

part of the range as

h(s) , s > a

Isl < ah(s) = 0,

arb; trary, s < -a. (7.4.15)

With this choice one can now combine both integrals in eq. (7.4.13) by

elementary transformations resulting in integrals with the same integration

1i mits, i. e. ,

~"'{h(s+a) exp (- ~s) - h(s-a) -g(s-a)} .exp ( - ~~t ) ds = O.
(7.4.16)
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The satisfaction of this condition requires that h(s) must obey the

ordinary difference equation,

h(s+a) exp (-vs/D) -h(s-a) = g(s-a). (7.4.17)

~-

The solution to this equation can be constructed in successive s spans of

width 2a, utilizing the properties of the initial distribution g(s) and

the continuation properties of h(s) with the result

h(s) = g(s-2na) exp [nv(s-na)/D].

(2n-l)a < s < (2n + l)a, n = 1,2,. . . (7.4.18)

Having found the unknown source distribution h(s), c(r,t) given by

eq. (7.4.11) can be shown to satisfy all the conditions of the problem.

There results, on returning to the original variables, after some minor

simplifications

- - ~ a [
2

]csp(r,t) - 2r(1TDt)1/2 { .[asc(s)exp - (~D~L ds +

00

+ ~ jasc(s) exp Ev(s+na)(D] S (r,t;s + 2na) d~}Jn=l -a

0 ~ r ~ a-vt, 0 ~ t ~ all v1 (7.4.19)

For bounded c{s), the series can be shown to converge for the indicated

t range, i.e., for all times for which sphere material remains. It should

be noted that, in view of eqs. (7.4.8) and (7.4.14), the initial distribu-

tion c(s) must be an even function about s = o.

A case of practical interest is the one where the initial concentration

is uniform throughout the sphere, i.e., c(r) = Cofor 0 ~ r' a. The
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integration in eq. (7.4.19) then yields the following explicit result for

the concentration ;n the interior of the sphere,

-' ,r
A

(1: ) = Cspla,T) = ~~
Csp a,T c ~

0

.{2(r/a) - (erfc £1 - erfc £2) - 2Tl/2 (ierfc £1 - ierfc £2) -
ex>

- L [(erfc 621 + erfc 6'11) exp (-n~ol) -n=1
(7.4.20)

-(erfc 622 + erfc 612) exp (-n~o2) +

+ 2T1/2 (ierfc 821 - ierfc 811) exp (-n~ol) -

- 2Tl/2 (ierfc 822 - ierfc 812) exp (-nSo2)} ,

where

e . .
lJ

{2n(1-~T) + (-1); t (-l)j (r/a)l

(2Tl/2)

°i ~ n(l-ST) + (~l)i(r/a), (7.4.21 )

- {l + (-l)i(r/a)}E> = -
( 1/2

)1 2T

and T ~ Dt/a2; ~ ~ va/D, the interface Peclet number. (7.4.22)

erfc (z) and ;merfc (z) denote, respectively, the complementary error

function and the m repeated integral error function which are tabulated in(4}.
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For S = 0, this reduces to

2-
l°!:T) -A!T

f
00

[ J2n+l)-r/a
CS[>a' = e 0 1 -~ L erfc 1/2-c r n=o 2T0

(7.4.22a)

- erfc (2n+1) + rIa
]}. 2T1/2

The spatial distribution of the nuclide concentration given byeq. (7.4.20)

is shown in fig. (7.4.2) for a specific value of the dimensionless time

(T = 0.01) and for different values of the dimensionless regression

parameter S. One observes as S increases that the regression of the inter-

face steepens the concentration gradient compared to a stationary interface

(8 = 0). Fig. (7.4.2) also shows the effects of accretion. In contras t to

the previous case the concentration profile is S-shaped and the surface

mass flux shows a marked decrease which indicates a resistance to mass

transfer.

A quantity of primary interest to the experimentalist is the fractional

release of the radionuc1ide due to the combined effects of diffusion and

interface movement. This may be obtained by integrating the concentration

at any time t over the volume of the sphere, dividing the result by the

initial amount of diffusant present and subtracting this quotient from

unity. Thus for the case of an initially uniform concentration,

f(T) = 1 - Q(T)/QO'

(l-ST)a 2
where Q(T) = Jr 4TIr csp(r/a,T) dr,0

(7.4.23)

4 3
Qo = '3 1TaCo (7.4.24)



9.

f(1) has been evaluated numerically with help of eq. (7.4.20) for A = O.

Fig.(7.4.3) shows the numerical results of the evaluation of eq. (7.4.23) for a

number of regression Peclet numbers B and for a limited range of a < 1 < 2xlO-3.

One observes that the fractional release' is initially a linear function of

11/2 and then it becomes quadratic in 11/2. This is exactly the behavior

observed in many laboratory leaching experiments as already stated in

eq. (7.4.1). More extensive numerical evidence will be given in Section

(7.6). To pressage this result, we will show here that eq. (7.4.23) is

closely approximated by

(
Dt

)

1/2 3

(

vt

)

+

f (t) = 6 1Ta2 + 2" a a ~ t ~ t ~ 0.4 TL
(7.4.25)

for both regression (v>o) and accretion (v<o).

The Slab

The system of eqs. (7.4.7) to (7.4.9) describes the diffusion process

in a slab of half width (a-vt), with an initi~l concentration distribution

g(r) = c(r), in absence of radioactive decay. If the solid is exposed to

regression over both faces, with the center of the slab located at r = 0,

the boundary condition is replaced by the syrrrnetry condition

aCsL(o,t) = 0, 0 ~ t ~ ailviar (7.4.26)

In order to satisfy this relation, one chooses as the source function

S(r,t;s) = exp [- ~ ] + exp [- {~;~}2 ] ,

instead of eq. (7.4.12). The analysis proceeds then along the same lines as

(7.4.27)
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for the sphere. However, the function g(s) must now be defined as follows:

g(s) = (7.4.28)

0, Isl > a

9(-S), Isl < a.

The final result ;s

c (r . t) = exp(-At L fa c(s) exp [- (r-s )2
] ds

sL 2('lTDt)1/2 -a 4Dt

00 a
+ ~ ( -1)n J c (s) exp G v(s+na )/ DJ . S(r , t ; s + 2na) ds }n=l -a

(7.4.29)

0 ~ Irl ~ (a-vt), 0 ~ t ~ a/lvl

For a bounded even function c(s) this result can be shown to converge to

the solution of our problem. Again if the initial concentration ;s

uniform throughout the slab one obtains with the shorthand notations

introduced in eqs. (7.4.21) and (7.4.22) the following result

A r - 1 2'
C(a,T) = csL(r/a,T)/co = 2 exp (-Aa T/D) {(erf £2 + erf £1)

00

+ 2: (-1)n Uerf e21 - erf e12) exp (-nSOl) +n=l
(7.4.30)

+ (erf e22 - erf e12) exp (-nSo2U} .
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For B = 0, this reduces to

C (r..T)
(

2

){

00

[
(2n+1) - !. (2n+1) +" !:.

]
}

sLa' -Aa T n a a "

= exp D 1- I (-1) erfc 1/2 + erfc 1/2
Co n=O 2T 2T

. (7.4.30a)

The total fractional release is given by eq.(7.4.23) with

(l-aT)a .
Q (t) = 2 1 Cs L(r / a,T) dr0

(7.4.31)

Q = 2ac .0 0

Performing the integration one obtains

[
1/2

]f(T) = ~'[ + '[ 1/2 ierfc (~'[2 ) - ierfc (~1/2) +

00 (-1 )n-1

{

"

n~l ~ exp [nS(n-1i]. (erfpll- erfp12) +

+ exp [ns(n+l)]. (erf P22 - erf P21) + 112(n) -111 (n) }
where

(7.4.32)

= 2n + l:.Di + (-1 )~(1-aT) .

11ij - 2t 1/2

Qi(n) "exp {- nS(l-S'[)[n+(-l)iJ}.

For S=Othis reduces to

f( '[) = 2'[l/zf,;. + 2 1: (-l)n ierfc mJ~1T n=l "[

(7.4.34)



A numerical evaluation for A = 0 is shown in Fig. 7.4.4 for some ranges

in a and 1".

In section (7.6) we will give numerical evidence that eq. (7.4.32)

can be closely approximated by

f ( t) = 2
(

Dt

)
1/2 + 1

(

va

)

Dt

7Ta2 2 0 2a
(7.4.35)

The conclusions for the slab are thus quite comparable to those obtained

for a sphere.

The Cylinder

In the case of the cylinder one can proceed in the same manner as

above. Instead of the source function eq. (7.4.12) one utilizes the

fundamental solution.

S(r,t;s) = {s/(2Dt)} exp ~ (r2+s2)/(4DtU. 10 {rs/(2Dt)} (7.4.36)

, .

where 10(z) is the modified Bessel function of the first kind, zero

order. However, this case leads to a rather complicated integral equation

for the unknown source density h(s) and for this reason the following

approximate solution is recommended.

For large values of the parameter S = va/D (about 200 or more) the

interface regresses at such a rapid rate compared to temporal changes in

the diffusion pattern that the latter is affected primarily ;n a very

thin boundary layer of thickness c close to the surface as the calcula-

tions show, see Fig. 2. Hence, in order to describe the rate of the

diffusion of the ion through the interface, it is important to take

12.
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account of the steep concentration gradient close to the boundary.

this reason one introduces the transformation

For

c(r,t) = eXP(At)rl/2 CCy(r,t)
(7.4.37)

into eq.(7.4.2), where now m=l. There results

ac = D

(
a2c + c

)at ar2 4r2
(7.4.38)

Nowclose to the boundary where the diffusion effects are most prominent

the two terms on the right hand side are of entirely different order of

magnitudes, a2c/ar2 = 0(1/02) and c/4r2 = 0(1/r2). Since 0 is very

small compared to r, the second term is dropped in favor of the first

and there result the eqs. (7.4.6) to (7.4.10) with the initial distri-

bution g(r) = r1/2 c(r). Hence the approximate solution to the cylinder

problem can be obtained by simply replacing the term sc(s) by sl/2c(s)

on the right hand side of eq. (7.4.19). It is worthwhile to point

out that if one merely drops the term (l/r)ac/ar in eq. (7.4.1) in

favor of a2c/ar2, one obtains a less accurate approximation to the

solution than the one given above.

The exact analysis of the cylinder is planned for the future.
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7.5. External Massloss Rate and leach Time for a Glass Cylinder

7.5.1. Introduction

Two mathematical models for the rate of mass transport from a waste

cylinder surrounded by groundwater in an infinite porous mediumhave been

developed in sections (7.1) and (7.2). In the first model, the cylinder is

approximated by a prolate spheroid and the rate of mass transfer of a

species dissolved from the waste solid is assumed to be governed by the

rate of molecular diffusion of the dissolved species into stagnant ground-

water. This theory is illustrated by analyzing the steady-state mass

transfer rate from the cylinder with the dissolved species having a

constant concentration on the cylinder surface. The maximumvalue of this

surface concentration is the solubility of the dissolved species in ground-

water, and this saturation concentration at the surface is assumed in the

illustration.

In the second model, the mass transfer of the dissolved species from

the waste surface is due to both molecular diffusion and forced convection

by the groundwater moving in D'Arcy's flow in the surrounding porous medium.

Again, the theory is applied to the steady-state mass transfer with a

constant saturation concentration of the diffusing specie on the cylinder

surface. The waste cylinder is idealized as a cylinder of infinite length,

and the groundwater is assumed to flow perpendicular to the cylinder axis.

This allows one to obtain the rate of mass transfer from a unit length of

the cylinder. Numerical calculations are made for a cylinder with the

same radius as that of a cylindrical waste form with end effects accounted

for.

Calculations are made for the rate of dissolution of silica, in

amorphous form, from a borosilicate glass cylinder, and for the rate of
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dissolution of low-solubility radioelements in the borosilicate glass,

using the two models described above.

In Section 7.5.2, the steady-state mass transfer rate, mass transfer

rate per unit length, and average surface mass flux of a species from a

prolate spheroid and slender cylinder which is defined as a cylinder with

a ratio of height to radius of 10 or greater are given. In Section 7.5.3,

the leach times of the prolate spheroid and slender cylinder are derived,

subject to the assumptions that the waste form consists of a single species

and that the ratio of height to radius of the cylindrical waste-form is

constant during the leaching process. In Section 7.5.4, the governing

equations for obtaining the dimensions of the prolate spheroid approximating

a cylindrical waste form are given. In Section 7.5.5 we present the

dimensions of the cylindrical waste-form, calculated dimensions of the

equivalent prolate spheroid, diffusivity of a species in a water-saturated

porous medium, solubility of amorphous silica in water, and borosilicate

glass density. In Section 7.5.6, a comparison between the dissolution rate

and the leach time of different waste forms consisting only of amorphous

silica are made. These sections deal primarily with the mass transport by

molecular diffusion.

In Section 7.5.7, the steady-state mass transfer rate by molecular

diffusion and convection are given. The mass transfer rate for a finite

cylinder is derived subject to the assumption that the surface mass flux

from the ends of the cylinder has the same value as the surface mass flux

of the infinitely long cylinder. In Section 7.5.8 the leach time for the

cylinder ;s derived. Section 7.5.9 contains data used for numerical

evaluation of mass loss rate and leach time. In Section 7.5.10 a compari-

son ;s madebetweensurface mass flux for diffusion and for the diffusion-

convection model.
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In Section 7.5.11, the diffusion and diffusion-convection models are

applied to a silica-base glass cylinder containing low-solubility radio-

elements. Section 7.5.12 is the conclusion of the above analyses.

7.5.2. Dissolution Rate Due to Molecular Diffusion

At steady state the mass transfer rate per unit area (surface mass

flux) is nonuniform for the prolate spheroid and depends on the position

on the surface. The mass flux has a maximumat the poles and a minimumat

the equatorial plane (see Fig. 7.1.1 in Section 7.1). The total rate of

dissolution mps of a given species of effective surface concentration Ns is

obtained by integration of the surface mass flux over the surface area of

the prolate spheroid, and is given by (see Section 7.1)

4~E Df Ns f
mps = a

log[coth(~)]

(7.5.1)

where:

mps = the total mass loss rate of the prolate spheroid, g/sec

Df = molecular diffusivity of diffusing specie in water, cm2/sec

E = porosity

Ns = Cs - Coo= effective surface concentration, g/cm3

Cs = solubility limit in groundwater, g/cm3

c = concentration in groundwater far from waste surface, g/cm300

as = surface shape factor of the prolate spheroid defined in

Section 7.1 by Eq.(7.1.4)

f = focal distance of the prolate spheroid, cm

For a slender cylinder, i.e., L ~ lOr, Eq.(7.5.1) simplifies to

21TEDf Ns L
. - L
msc - 10g(-;;-)

(7.5.2)
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where:

mse = dissolution rate for a slender cylinder, g/sec

l = cylinder length, cm

r = cylinder radius, cm

From Eq.(7.5.l) the dissolution rate per unit length and the average

dissolution rate per unit surface area of the prolate spheroid are given

by Eqs.(7.5.3) and (7.5.4), respectively

.t 2~£ Df Nsm =
ps a

cosh(as}lo9[coth(lf)]

(7.5.3)

. 2£ Df Ns f
Jps = -

b(b+ ~ sin-le}lOg[coth(lf)]

(7.5.4)

where:

m~s = mass loss rate per unit length of the prolate spheroid,
g/cm sec

jps = average surface mass flux of the prolate spheroid, g/cm2 sec
e = f/a

a = semi-major axis of the prolate spheroid, cm

b = semi-minor axis of the prolate spheroid, cm

7.5.3. Leach Time Derivation

The leach time T is defined as the time interval between the beginning

of dissolution and the completion of dissolution of the waste form. Assum-

ing here a waste form consisting of a single species, the time-dependent

w~ste form volume V(t) is given by

ddt (pV(t)) = - m(t) (7.5.5)
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where:

p = waste form density, g/cm3

V(t) = waste form volume at time t, cm3

m(t) = mass-loss rate at time t, g/sec given by Eqs.(7.5.l) and (7.5.2).

The'initial condition is V(O) = Vo ' where V is the initial volume of the0 .

waste form.

Here we assume that at any time t the dissolution rate can be approxi-

mated by the steady-state solutions, Eqs.(7.5.l) and (7.5.2), so that

Eq.(7.5.5) can be solved for V(t). From definition of the leach time T

we have that

V(T) = 0 (7.5.6)

and leach time is obtained by solving Eq.(7.5.6) for T.

Wehave for the slender cylinder

Vsc(t) =~r2(t) L(t) (7.5.7)

and from (7.5.2)

. 2TI£Df Ns L(t)
msc = 1 [L(t ) ]og rrtT

(7.5.8)

with the initial condition (I.C.) that

r(O) = ro initial radius, cm

L(O) = Lo initial height, cm

Substituting Eqs.(7.5.7) and (7.5.8) into (7.5.5) yields

:t [p ~ r2(t) L(t)] = - 2~£ Df Ns L(t)~ (7.5.9)
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with I.C.

r(O) = ro

L(O) = La

To solve Eq.(7.5.9), it is necessary to have another relation between L(t)

and ~(t). We assume that the ratio of height to radius remains constant

during the leaching process, i.e.,

L(t) = L r.ill.
0 r 0 .

(7.5.10)

Substituting Eq.(7.5.l0) into Eq.(7.5. 9) and solving for r(t) results in

r(t) = ro [1 - 4 E Df Ns t ]

1/2

2 L
3r 0 p log(r 0)0

(7.5.11)

From the definition of leach time we have from (7.5.6-7) that r(Tsc) = 0,

so that 2

[
Lo

]
3 p r log-

0 roT - .

sc - ~ £ Df Ns
(7.5.12)

where:

Tsc = leach time for the slender cylinder, see

In deriving the leach time of the prolate spheroid it is assumed that

the ratio 'of the minor axis to the major axis is constant during the leach-

ing process, resulting in the following equation (see Appendix A for details):

2 ex

T = p b0 cosh (CIS) 109 [coth ( 2s)]
ps 2 £ Df Ns

(7.5.13)
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where:

TpS = leach time for the prolate spheroid, sec

bo = initial semi-minor axis of the prolate spheroid, cm

7.5.4. Approximating a Cylinder by a Prolate Spheroid

We assume that the prolate spheroid has the same volume and surface

area as the cylindrical waste form. Thus, equating their volumes,

4 ~ a b2 = ~ r2 L3 (7.5.14)

and equating their surface areas

a -1
)2 ~ b(b+- sin e) = 2 ~ r(r+Le (7.5.15)

Solution of "Eqs.(7.5.14) and (7.5.15) for a and b defines the desired

prolate spheroid. As is seen from the above equations, a closed-form

mathematical solution for ~ or ~ cannot be obtained, so a numerical analysis

is required.

7.5.5. Parameters of the Problem

The following table shows the physical characteristics of the waste form

used in the numerical calculations:

Table 7.5.1. Physical characteristics of waste forms (R1)

a/ Assumedthat 80%of waste canister is filled with waste glass.

Commercial Defense
high level high level

Canister dimensions waste waste

Inner diameter, cm 30.5 59. 1
2a/ 2 a/

Length, cm 2.4xlO - 2.4xlO -

Surface area,
2 2.446xl04 5.005xl04em

Volume, cm3 1.75xlO6 6.58xlO6

Ratio L/r 15.7 8. 1
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The dimensions of the commercial high level waste form are used in numerical

evaluation of the slender cylinder mass loss rate and leach time, listed in

Table 7.5.4.

Table 7.5.2 is obtained by approximating the waste forms by a prolate

spheroid using Eqs.(7.5.l4) and (7.5.15), with the aid of a (computer)

program described in Appendix C.

Table 7.5.2. Physical dimensions of prolate spheroid approximating

cylindrical waste forms.

The molecular diffusion coefficient of most nuclides in water-saturated

porous media is usually lower than that in the unconfined water. The

diffusivity of most species in water is between 1 to 5xl0-5 cm2/sec (W2).

The molecular diffusion coefficient of silicon dioxide and other species

inwater is taken to be lX10-5 cm2/sec.

Table 7.5.3 shows the solubility of two forms of silicon dioxide, i.e.,

a quartz and amorphous silica, in water at a pressure of 0.1013 MPa, pH of 7.0,

and at different temperatures. The solubility of silicon dioxide as a

function of pressure and temperature is given (Wl) in Appendix B.

Table 7.5.3. Solubility limit of silicon dioxide in water

}"ef!!P.erature, DC

25°C 100°C
3 -':-6 -5

Alpha quartz, g/cm 4xlO 5xlO
3 -4 -4

Amorphous silica, g/cm 1.2xlO 4.lxlO

A surface concentration of 1.2xlO-4 g/cm3 and a density of 2.8 g/cm3 are

chosen for a pure amorphous silica cylinder. This density corresponds to that

of typical borosilicate glass (Tl),(M3).

Waste Forms a, cm b, cm c, cm e as-

Defense high-
level waste 158 31.5 155 0.980 0.202

Commercial high-
level waste 145 16.9 144 0.993 0.117
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7.5.6. Numerical Results for Dissolution Rate and Leach Time for a .Pure

AmorphousSilica Cylinder

Table 7.5.4 shows the calculated dissolution rates and leach times,

using Eqs.(7.5.l), (7.5.2), (7.5.12), and (7.5.13) with the aid of a computer

program (Appendix C). Aporosity of 0.01 and the solubility of amorphous

silica from Table 7.5.3 were used. The concentration of silicon dioxide in

the groundwater far from the waste form is assumed zero.

Table 7.5.4. Mass loss rate and leach time for a pure amorphous silica in

stagnant water at 25°. C and porosity of °:91.

All three waste forms yield similar results. There is reasonable

agreement of mass loss rate and leach time between a prolate spheroid

approximating the commercial high level waste form and the slender cylinder.

Thus, Eqs.(7.5.2) and (7.5.12), derived for the mass loss rate and leach

time of the slender cylinder respectively, can be used.

7.5.7. Dissolution Rate Due to Molecular Diffusion and Groundwater Motion

The mass loss rate per unit length of an infinite cylinder with ground-

water flow normal to its axis is given by (see Section 7.2)

ffi: = ~ Df £ Ns (Pe)1/2 . valid for Pe > 4
(7.5.16)

where:

m; = mass loss rate per unit length of cylinder, g/em see

Pe = Ur/Df' Peclet number

U = groundwater pore velocity, em/see

Massloss rate, g/day Leach time, Yf

Slender cylinder
-4 65.6xlO 3.54xlO

Commercial high
6.6xlO-4 3.03x106level waste

Defense high -4 6level waste 8.8xlO 8.58xlO
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From Eq.{7.5.1), the mass loss rate per unit surface area of the cylinder is

obtained

j = 8 (
u 0

)
1

e 3/2 f: N --1 12'IT S r
Pe > 4 (7.5.17)

where:
.R,
m " 2

j = 200 = mass loss per unit surface" area of the cylinder, g/cm secC 'ITr

From this, one obtains the dissolution rate for a cylinder of length L,

subject to the assumption that the mass flux from the ends of the cylinder

has the same value as the surface mass flux from the cylindrical surface.

The result is

me = ~Df f: Ns (r+L) (pe)1/2 , Pe ~ 4

where mc = dissolution rate from cylinder, g/sec

(7.5.18)

7.5.8. Leach Time for a Cylinder, Diffusion and Convection

As a result of dissolution, the radius decreases with time as does the

Peclet number. The leach time T is defined as the time interval from the

beginning of the steady-state dissolution of an infinitely long cylinder

until the cylinder has completely dissolved. For simplicity it is assumed

that Eq.(7.5.16) is also valid for Peclet numbers less than four. The

following expression for the leach time is obtained (see Appendix A for

derivation).
3/2 2

'IT P roT ::

c 6. D N Pe 1/2
£ f s 0

Uro

, peo == Of
(7.5.19)

where:

T = leach time for the cylinder located in flowing groundwater, secc

r = initial radius of the cylinder, cm0
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7.5.9. Parameters of the Problem

Groundwater pore velocities of 10, 5, and 1 m/yr are assumed. The radius

of the cylinder is 15.2 cm, which is the same as that of a commercial high

level waste glass cylinder. The cylinder consists of silicon dioxide. The

surface concentration of silicon dioxide is 1.2xlO-4 g/cm3 and the concentration

of silicon dioxide in the groundwater far' from the cylinder is assumed to be

zero. The diffusivity of Si02 in groundwater is taken to be lx10-5 cm2/sec.

The porosity of the mediumis 0.01.

7.5.10. Numerical Results for Surface Mass Flux

In Table 7.5.5 are presented the calculated average surface mass fluxes

for diffusion and convection in flowing groundwater (Eq. 7.5.17) and for

diffusion in stagnant groundwater (Eq. 7.5.4), using the computer program

described in Appendix C. A porosity of 0.01 is chosen.

Table 7.5.6 Average surface mass flux of silicon dioxide g/cm2 day for

the diffusion and diffusion-convection models, porosity = 0.01,
-4 3 -5 2

Ns = 1.2xlO g/cm, Of = lxlO cm /se~, r = 15.2 cm, and
L = 2.4 m.

2
Surface mass flux, g/c~ day

~Molecular diffusion model, Eq.(7.5.4)

For the pure amorphoussilica cylinder (r = 15.2 cm)emplacedin a mediumwith

porosity of 0.01 and groundwater pore velocity of 10 m/yr, from Eq.(7.5.19), we

obtain Tc = 2.3x105 yr. The proper value may be less, if an accurate'solution

for Pe< 4 were available. Such an analysis is presently being completed.

For example, from Eq.(A.29), we find that after 1.7xl05 years the cylinder

radius has decreased from the initial value of 15.2 ernto 1.2 emwhenthe

Pec1et number becomes four.

Groundwater pore velocity, m/yr

10 5 1 O-

3.5xlO-7 -7 1.1xlO-7 2.7xlO-82.5xlO
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7.5.11. Solubility Limited Dissolution of Silica and Low-Solubility Radio-

elements in a Silica-Base Glass Cylinder

In the previous sections two mathematical models of dissolution from a

cylinder with only one diffusing component were considered. In this section,

a silica-base glass cylinder containing additional low solubility components,

such as various radioelements, is considered.

The time-dependent fractional dissolution rate of component j is defined

as

fj (t) = mj (t)/ Mj (t) (7.5.20)

where:

f. (t) = fractional dissolution of component j at time t, l/secJ

mj (t) = dissolution rate of component j at time t given. by

Eq.{7~5.l) for molecular. diffusion and Eq.(7.5.l8) for the

molecular diffusion-convection models, g/sec

M. (t) =J

V. (t) =J

nj (t) = density of j in undissolved solid waste at time t, g/cm3

Substituting the mj (t) given by Eqs.(7.5.1) and (7.5.18) into (7.5.20) yields

Vj (t) nj (t) = mass of j at time t in glass, 9

volume of undissolved waste at time t, cm3

N .. S,J
f.{t) = ~)J J

3£ Dfj e

b2 109[coth(~S )]

. . 1/2 r

8£ DfJ (PeJ) (l+[) molecular diffusion~convectiQn
2 '.1T-. - r

PeJ :: U~ > 4
J -

Df

~ molecular diffusion

~ 0 < t < T

(7'~5~'2l )
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where:

N
Jo = difference between the concentration of j in the groundwaters,

on the waste surface and concentration of j in groundwater far
3

from waste surface, g/cm

Dfj = diffusion coefficient of specie j in groundwater, cm2/sec

T = leach time given by Eq.(7.5.l3) and Eq.(7.5.l9), sec

In the above equation it is assumed that the ratio of the major axis to the

minor axis of the prolate spheroid. is constant during the leaching process.

In Eq.(7.5.21) r. and b are functions of time, with functional forms given

by Eqs.(A.29) and (A.10), respectively.

To apply Eq.(7.5.2l), it is assumed that the rate of bulk dissolution

of the solid waste is controlled by dissolution of the silica matrix, i.e.,

the preferential release of a waste-component by diffusion in solid is

neglected. As the silica matrix dissolves, all the components in the silica

matrix are released congruently from the solid but are not necessarily

dissolved. If the solubility of an individual waste component is so low that

its fractional dissolution rate is less than that of the waste matrix, then

precipitates of the low-solubility component will form. It is assumed that

the precipitates remain on the waste surface and slowly dissolve at a rate

given by the rate of mass transfer of the low-solubility species into the

surrounding liquid, with the concentration of the low-solubility species in

the liquid adjacent to the waste surface given by the solubility of that

species in groundwater. The possibility of forming colloids or other non-

dissolved suspended particulates within the groundwater is neglected.

These assumptions can be written as

fj(t) = Min (fsilica (t), fj (t» j = 1,2,..,N
where:

(7.5.22)

Min (X,Y) = minimum value of X or Y
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For numerical demonstration we consider a borosilicate waste glass with

r = 15.2 cm and L = 2.40 m emplaced in a porous mediumwith a porosity of

0.01 and groundwater pore velocity of 1 m/yr. The concentration of each of

the components in the groundwater far from waste cylinder is assumed zero.

The molecular diffusion coefficient in groundwater is assumed to be 1xlO-5

cm2/sec for all the diffusing components.' The initial inventories and solu-

bilities of constituents ;n groundwater and the corresponding calculated

fractional release rates are given in Table 7.5.7. Table 7.5.8 shows the

calculated fractional release rate of the constituents from the above waste

glass in absence of groundwater flow. For this case the prolate spheroid

has the same volume and surface area as the waste cylinder.

Table 7.5.8 also shows the experimental results of fractional release

rate for some radionuclides(Ml). The experimental results are adjusted for

the surface area of the waste cylinder on the assumption that the release

rate is proportional to surface area exposed. Comparison between these

calculated values indicate that in the repository conditions dissolution of

the low-solubility radionuclides is controlled by the concentration boundary

layer and not by the kinetics inside the glass matrix.

7.5.12. Conclusion

Two solubility-limited dissolution models were developed in Sections 7.1

and 7.2. The models permit one to calculate the steady-state dissolution

rate of a diffusing species from a cylinder which is embedded ;n a water

saturated porous medium. In one model the mass loss is due to molecular

diffusion only, while ;n the other it is governed by molecular diffusion

and groundwater convection.

The models are applied to an amorphous silica cylinder embedded in a

mediumwith porosity of 0.01. The cylinder radius of 15.2 cm and height

of 2.4 m are used, which are dimensions of a commercial high level waste
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glass cylinder. For the diffusion model an average surface mass flux of

2.7xlO-8 g/cm2 day and leach time of 3xlO6 yr are calculated.

The models are applied to a borosilicate high level waste glass. The

fractional release rates of some low-solubility components are calculated.

The numerical results indicate that if the solubility of these constituents is

low enough, and their initial inventorie~ high enough, they will not initially

dissolve congruently with the waste matrix. Comparison of fractional release

rates due to diffusion and those due to diffusion-convection indicates that

the groundwater pore velocity of 1 m/yr causes a four fold increase in

dissolution rate. This indicates a narrow range for dissolution rates

obtained by the two models.

Comparison between calculated fractional release rate and experimental

values indicates that for low-solubility glass components the dissolution

rate may be controlled by concentration boundary layer, porosity of the medium,

and groundwater po~e velocity and not by kinetics inside the glass matrix

or solid-liquid interactions. Therefore, interior cracks of the waste solid,

devitrification, and other mechanisms that could increase the rate of solid-

liquid interaction would not be expected'to affect the solubility-limited

dissolution rate, unless they have some affect on the solubilities. If the

solubility ;s sufficiently large, then the kinetics of interaction between

the solid waste and water may be dominant.
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Table 7.5.7 Calculated fractional release rates for borosilicate glass
waste in flowing groundwater.

Waste cylinder: r = 0.152 fi, L = 2.40 m, fission-product and actinide oxides

from 460 kg of uranium fuel. Groundwater pore velocity of

1 mlyr.

Si02

Tc

Constituent

U

Np

Pu

Am

~ Reference (M2).

Q/ Assumed0.5% U and Pu and all fission products and actinides (Bl).

fI For amorphous 5i02 (51).

sl/ Reference (Kl) \

Initial species
concentration Fractional
in the waste, Solubi 1i ty, Disrolution rate,g/cm3 g/cm3 yr-

1.6 al 1.2xlO-4 Sf 3.4xlO-6

1. 92xl0-3 bl 3x10-9 Q/ 7xlO-8

1.22xl0-2 bl 2xlO-9 Q/ 8xlO-9

1.92xlO-3bl 2.4xlO-ll cy 5.7xlO-1O

1.l5xlO-4!y 1xlO-9 9J 4xlO-7

3.56xlO-4 'QI 1.8xlO-12Q! 2.3xlO-1O
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Table 7.5.8 Calculated fractional dissolution rates for borosilicate glass
waste in stagnant groundwater.

Waste cylinder: r = 0.152 ro, L = 2.40 ro, fission-product and actinide

oxides from 460 kg of uranium fuel.

a/ Reference (M1).

Q! Reference (M2).

c/ Assumed 0.5% U ~n.d Pu ~nd all the fission. products and actinides (81).

Q! For amorphous 5i02.

£I Reference (Kl).

Initial specie
Fractional dissolution rate, yr-lconcentration

in the wste, Sol ubi 1; ty ,
ObservedConstituent g/cm g/cm3 Calculated

5i02 1.6 b/ -4
8.7xl0-7 1.6xlO-31..2xl 0

Tc 1.92xlO-3 fl 3.0x10-9 1 . 8x1 0 -8 --

U 1.22xlO-2c/., 2.0xlO-9 y 1.9xlO-9 1.5xlO-6

Np 1. 92xl 0-3 £I 2.4xlO-11 fEJ 1.5xlO-1O 6.6xl0-4,

Pu 1. 15 xl 0-4 c / 1.OxlO-9 fE1 1.0xl0-7 2.6xlO-5

Am 3.56xlO-4 c/ 1.8x10-l2 Fd 5.ax10-1l 2.7xlO-6



7.5.13 Nomenclature

a

b

bo

Cs

Coo

Df

Dj
f

e

f

t"j(t)

je
-
jps
L

Lo

L(t)

m(t)

Semi-major axis of the prolate spheroid em

Semi-minor axis of the prolate spheroid em

Initial semi-minor axis of the prolate spheroid cm

Solubility limit in groundwater g/cm3

Concentration in groundwater far away from waste surface g/cm3

Molecular diffusivi,ty in water cm2/sec

Molecular diffusivity of component j in water cm2/see

Eccentricity of prolate spheroid

Focal distance of the prolate spheroid

Fractional dissolution rate of component j at time t sec-l

Average surface ~ass flux of infinitely long cylinder in flowinggroundwater g/cm sec
-" . 2

"Averagesurface mass flux of the prolate spheroid g/em sec

Cylinder height em

Initial cylinder height cm

Cylinder height at time t after dissolution begins cm

Dissolution rate 'at time t g/sec

m.(t) ,Dissolution rate of component j at time t g/secJ

mps
.L
mp

mse

me
.i
mc

Mj(t)

rij(t)

Ns

Total dissolution rate of the prolate spheroid g/sec

Dissolution rate per unit length of the prolate spheroid g/em sec

Dissolution rate for a slender cylinder g/sec

Dissolution rate from a cylinder in flowing groundwater

Dissolution rate per unit length of infinitely long cylinder in
flowing groundwater g/cm sec

Mass of j at time t in the waste glass g

Density of j in undissolved waste at time t g/cm3

Difference between concentration in the liquid adjacent to waste
surface and concentration in the groundwater far away from waste
surface g/cm3



NStj

r

r(t)

ro

T

TpS

Tsc

Tc
U

2.

Difference between concentration of component j in liquid adjacent
to the waste surface and concentration in the groundwater far away
from waste surface g/cm3

Cylinder radius cm

Cylinder radius at time t after dissolution begins cm

Initial cylinder radius cm

leach time (sec)

leach time for prolate spheroid sec

leach time for slender cylinder see

leach time for the infinitely long cylinder in flowing groundwater see

Groundwater pore velocity cm/sec

Volumeof undissolved waste at time t cm3
Vj(t)

Pe ==Ur
Df

Pe - Ura = ~
Df

Pej == Ur
Djf

Peclet number

Greek 1etters

p = waste form density g/cm3

£: = porosity
-1 1

a = cosh (-)s e Surface shape factor of prolate spheroid
Defined by Eq.(7.1.4)
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7.6 Calculations of Dissolution of a Glass Matrix by Internal Molecular

Diffusion and Surface Regression

P. L. Chambreand S. J. Zavoshy

1. Introduction

In this paper we consider the dissolution of a glass matrix containing

sodium oxide. It is experimentally o~served that sodium molecular diffusion

and ion-exchange at the glass-water interface depletes the glass matrix of

sodium ion. Further, the glass matrix is dissolved by water. This matrix

dissolution is viewed as regression of dissolved glass-water interface.

The fractional release of sodiumfrom the glass has a form of

cltl/2+c2t, where cl and c2 are two constants (Hl,M3). A dissolution model

that yields a fractional release which is initially parabolic (proportional

to tl/2), and then becomes linear function of time (proportional to t),

is developed in section 7.4.

A mathematical dissolution model is developed based upon these two

observed phenomena, i.e., internal molecular diffusion and glass surface

regression. It ;s assumed that the loss of the diffusing ion from the

interior of the glass due to molecular diffusion will lessen the integrity

of the glass matrix. Furthermore, it is assumed that -the glass-water

interface has a constant velocity during the dissolution process. The

regression speed is positive for the case of a regressive glass-water

interface, zero for stationary interface, and negative for the progressive

interface. The concentration inside the glass and fractional release of

the diffusant from the glass are obtained for a sphere and slab of finite

width.

For numerical evaluation a ternary sodium-borosilicate glass is con-

s;dered. Sodium ;s the diffusing nuclide. The concentration of sodium
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at the glass-water interface is chosen to be zero. The radius and half

width of the slab are equal to the radius of a spent fuel canister. A

-13 -11
range of regression speeds from -9.7x10 to 3.9x10 cmlsec is chosen.

The normalized concentration, surface mass flux, and fractional release

of sodium are evaluated.

2. Governing equations for the normalized concentration, surface mass

flux, and fractional release.

Case 1. Finite slab

The following equation defines the normalized concentration of the

diffusing specie in the slab of width 2a

n s 0 A

csL (x,t) = N + N csL(x,t)

where:

(7.6.1)

C~L (x,t) = normalized concentration of diffusinq specie in the slab

A

csL (x,t) = normalized concentration of the st~hle diffusing specie in

the slab with zero concentration on the boundary

(see Eq. (7.4.30) in section 7.4with 1.=0)

s CsN =-
C°

NO= (c - c ) I c0 s 0

Cs = surface concentration of the diffu~inq specie, 9/cm3

Co= initial bulk density of'diffusing specie in th~ glass~ g/cm3

x = position from center of slab; cm

t = time, sec

The fractional release is obtained by the following equation:
l-~T

fSL(t) = 1 - NS (l-vt/a) - NO)( 2SL (y,t) d Y0

(7.6.2)
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where:

fsL(t) = fractional release of diffusing specie at time t from the finite slab

a= va/D

a = initial half width of finite slab, em

D = molecular diffusion coefficient. of diffusing specie in the glass

matrix, em2/sec

T = Dt/a2

v = regression speed, em/see

An asymptotic form for fSL(t) is obtained which is

2 0 2 1/2 1./2
f sL (t) = nr N (D/a) t + vt/2d (7.6.3)

The surface mass flux is given by

'"

. aCsL

I
JsL = - D (co- cs) ax- + v Csa-vt

(7.6.4)

where jsL is the surface mass loss of diffusing specie from the finite slab,
2

g/cm sec.

Case 2. Sphere.

The normalized concentration of the diffusing specie in the sphere is given by

n s 0 A

esp (r,t) =.N + N csp(r,t)
where :

en (r,t) = normalized concentration of the diffusing specie in the spheresp

csp (r,t) = normalized concentration of stable diffusing speci.e in the. sphere

(7.6.5)

with zero concentration at the boundary

(see Eq. (7.4.20) in section 7.4 with A=O)

r = radial position from center of sphere, em
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From Eq. (7.6.5) we obtain the surface mass flux, i.e., .

"

J. = -D (c
- C )

dCSp

I

+ V C
sp 0 s ar sR-vt

where jsp ;s the surface mass loss of diffusing specie from sphere, 9/ei see

The fractional release is obtained'by

(7.6.6)

l-S't:

fsp(t) = 1 - NS (l-vt/R)3- 3No f csp(y,t) idy
0

(7.6.7)

where:

fSp(t) = the fractional release of diffusingspec1e from sphere at time t

t3= vR/D

R = initial radius of sphere, cm

An asymptotic form of fsp(t) for early period of dissolution is

0 1/2

fsp(t) = ~ (D/R2) + 3 (vt/2R) (l+Ns) (7.6.8)

and as the total dissolution time ;s approached the following asymptotic

relation is obtained

fsp(t) = 1 - (1 - vt/R)3 (7.6.9)

This is due to time dependency of surface area of the sphere.

3. Parameters of the problem

The values of a and Rwere chosen to be 17.8 cm, equal to the radius

of a spent fuel canister. The glass density is taken to be 2.8g/cm3.
..

Table 7.6.1 gives the value of molecular diffusion coefficient of sodium in

a ternary sodium-borosilicate glass at 1000 and20QoC. Table 7.6.1 was

obtained by applying the following equation (Fl)

OfT) = DoExp{- Q/RI) (7 ~6 . 1 0 )
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where :

D(T) = sodium diffusion coefficient at temperature T,

Do = frequency factor, cm2/s

Q = activation energy, Kca1/mo1e

R = gas constant = 1.99x10-3 'Kca1/mole oK

cm2/sec

T = temperature in degrees Kelvin, OK

~ For temperature range of 1000 to 250°C.

Q/ At 100°C.

U At 200°C.

For numerical evaluation a ternary sodium-borosilicate glass at 100°C

with the composition 28.6 Na20/14.3 82°3 mole % was considered. From

Table 7.6.1we obtain 0=°100 = 8.61xlO-13 cm2/s. The surface concentration is

taken to be zero.

Values of S = -20, -10, -5, 0, 5, 10, 50, and 800 were chosen. Value

of S = 800 corresponds to v = 3.3x10-6 em/day.

4. Numerical results and discussion

The numerical results are obtained with the aid of four computer

Table 7.6.1. Na self-diffusion in ternary Na20-B203$i02 glasses (Fl)

Na20/B203 mo1e%
2 a/

Q(Kcal/mo1e)
2 b/ 2 c/

°o(cm /s)- D100 (cm / s )- D200(cm /s)-

31.3/6.25 5.01x10-6 11 .5 ;6-xl-o:n- 2.84x10-11

3O.9/9. 1°
-6 11.7 9.00xlO-13 2.52x10-116.31 xlO

28.6/14.3
-5 13. 1 8.61x10-13 3.59x10-113.98x10

32.3/3.22
-4 13.4 7.24xlO-12 3.29xlO-1O5.01xl°

31.7/4.76
-4 13.0 3.00xlO-12 1.22xlO-l01.21xlO



1.0

0u
~ 0.8

..
c

.2...
c
~ 0.6
Q)
u
c
0
CJ

~ 0.4
.~
C5
e

~ 0.2

0
0

a = 1'7.8em .

0 = 8.6IXIO-13cm2/sec.
{j = - 5

I Boundary at time t

5

I02yr

10 15 20
0 i stan ce from center of s 10b, cm

25 30

XB L 828-6317

Fig. 7.6.5. Variation of Na normalized concentration in the slab (initial width 2a) with
position at different times after glass dissolution begins.



1.0
0

~
0

C 0.8
0.-..
0.....c
CI)0.6u
c
0
CJ

-0
:l 0.4.-
0e
...
0

z 0.2

0
0

a = 1"7. 8 em
D = 8.61 xIO-l3cm2/sec
S = -10.

! Boundary at time t
I

5 I0 f5 20 25
Dista nee frorre center of slob, em

30 35

xeLIZ' -6'18

Fig. 7.6.6. Variation of Na normalized concentration in the slab (initial width 2a)
with position at different times after glass dissolution begins.



LO

0
0 5 10 15

Di stance from center of sla b, .cm

103yr
0

u"
~ 0.8
c:
0
:;:
0'-
C 0.6
Q)
0
c:
0
0

~ 0.4
N

"6

E'-
0
z 0.2.-.

a = 17.8 cm
0 = 8.61 10-13 cm2/sec
13 = - 20

! Sou ndcry at time t
I

20 25

XBL828- 6319

Fig. 7.6.7. Variation of Na normalized concentration in the slab (initial width 2a) with
position at different times after glass dissolution begins.



6.

programs (see Appendix A for the program details). The cut off time for

calculations is the leach time TL' This is defined as

TL = I L/v I
, v ;. 0 (7.6.11)

where:

TL = leach time, see

L = initial characteristic length of the problem, cm

(half width of the finite slab or sphere radius).

The value of TL corresponds to tota 1 d.isso 1ut ion of the gl ass matri x if

v > 0, and doubling of L if v < O. The surface mass flux was obtained by

numerical differentiation of Eqs.(7.6.4) and (7.6.6).

Figs. 7.6.1 - 7.6.7 showthe normalized

concentration vs. half width of the finite slab, for ~ = 0, 5, 10, 800, -5,

-10, and -20 respectively. For v > 0, increase in v, (a) will result in

steepening of the concentration profile at th~ glass-water interface.

This effect can be best seen in Fig.7.6.4,where a = 800. Also, the absolute

value of the concentration gradient at the interface is increased as v

increases. For negative values of v, the normalized concentration profile

becomes $-shaped, see Fig. 7.6.5.

Fig.7.6.B shows the variation of the normalized surface mass flux of

the finite slab with time (T = Dt/a) for different values of a, (v). At

the early period of glass dissolution the normalized surface mass flux is

proportional to t-l/2 and is independent of the regression velocity. This

indicates the diffusion-controlled mass loss. For a = 800, after approxi-

mately 100 years, a constant surface mass flux of 2.4xlO-6g sodium/cm2 day

is obtained.

Fig.7.6.9shows the variation of the fractional release with time for
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different values of v. Fractional release has a behavior of the form

1/2
clt + c2t, where cl and c2 are two constants, see Eq. (7.6.6) for

values of c1 and c2'

Figs. 7.6.10 - 7.6.13 apply to the sphere and show the

normalized concentration vs. radius of sphere for S = 0, 10, -5, .and -10

respectively. Comparison with Figs. 7.6.1,3,5 and 6 indicates that sodium

depletion is faster for the sphere than for the slab. The plot obtained

for S = 800 is identical to Fig. 7.6.7. thus it is not reproduced..

Fig. 7.6.14 shows the variation of the normalized surface mass flux of

the sphere with time (T) for different values of S, (v). As leach time

is approached there is a drop in surface mass flux due to depletion of

sodium inside the sphere.

Fractional release for the sphere case is obtained by way of numer-

ical integration of the normalized concentration. Fig. 7.6.15 shows the

variation of fractional release with time (T) for different values of

s, (v).

5. Conclusion

A glass dissolution model based upon two observed phenomena, i.e.,

internal molecular diffusion and glass surface regression, is developed.

An asymptotic equation is obtained for fractional dissolution of diffusant

from the glass. The asymptotic equation has a form of clt1/2 + c2t where

c1 and c2 are a function of molecular diffusion coefficient and regression

speed. The experimental results of fractional dissolution of component

Ii' is of the form Cltl/2+ C2t, where C1 and C2 are two constants which

depend on the diffusing component. Values of C1 and C2 are obtained

from glass dissolution-experiment. By fittin9, Eq. (7.6.3) or (7.6.8) to the



8,

experimentally observed f(t) we can obtain the internal molecular

diffusion coefficient of component 'i' and the glass-water regression

speed. This is presently under study.
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