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1.

Equilibrium and nonequilibrium transport of radionuclides discussed

in our previous report (Hl, Pl) has dealt with transport in porous media,

wherein radionuclides are retarded entirely by sorption. The purpose of

this chapter is to develop the mathematical analysis for transport of

radionuclides in fractured media, wherein radionuclides are convected by

groundwater flowing through planar fissures. Here molecular diffusion into
-

~~ an-d-~o-uf-of-mlcr-opore~s--penetr-at-fng--the--roc~k~-sur:faces of the fi ssures pl ays

an important role in retarding the migration of radionuclides through the

fissures, as has been pointed out by Neretnieks (Nl).

We first formulate the equations governing fissure-flow transport of

radionuclides with micropore diffusion, and we present analytical solutions

to the transport of a radionuclide with no precursor, with no dispersion

within the fissure, considering equilibrium sorption within the micropores.

Solutions are present for an impulse release, stop release, band release,

and solubility-limited dissolution.

5. 1

5.1.1.

Mathematical Modeling and formulation

Transport Equations in a Finite Diffusion Field With One-Dimensional

Fissure Flow

Consider a rock matrix containing planar parallel fissures extending

in the direction and micropores penetrating the rock surfaces of the fissures.

Within each fissure water is flowing at a constant velocity v in the z-

direction, but the water in the micropores is assumed to be at rest. The

spacing b between rock surfaces of each fissure and the distance d between

adjacent fissures are assumed to be constants, as shown in Fig. 5.1.1. Three

phases to be considered are the flowing water phase, the stationary water
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phase, and the solid phase. Dispersion in the flowing water phase is

neglected. Let N,.(z,t), M.(z,y,t) and S.(z,y,t) be the concentrations, 1
of the nuclide i in the flowing water phase, in the stationary water phase,

and in the solid phase, respectively. Since the water in the micropores is

at rest, the transport of nuclides there is governed by molecular diffusion.

Sorption on the planar surfac€-S--l>-f--the---fissure--j-s---assumed-tO--b-e---smal-l ~--------------

compared to sorption on micropore surfaces and is neglected. The concen-

trations of the nuclide i in these three phases are then governed by the

following transport equations:

aN. aN. 2, 1-;-t + v ~+ A.N. = A. IN. 1
- -

b
J.a oZ, , ,- 1- , (5.1.1)

(5.1.2)

(5.1.3)

t > 0, z > 0, 0 < y < d/2, ; = 1,2,3, ...

where Di is the diffusivity of the nuclide i in the micropore fissures which

includes any goemetric factors of the micropores; e: is the volume fraction of

micropores in rock, excluding the fissure; A. is the radioactive decay constant,
of the nuclide i; J. is the diffusive rate of the nuclide i at surfaces of1

the fi ssure per uni t area of fi ssure surface, and q. is the rate of1

sorption per unit surface area within the micropores. The diffusive current

and sorption rate are given by, respectively

aM. a2M.

e: at - ED.--f- + e:A.M.= e:A. 1M. 1 - q., 1 1 1- 1- 1
. ay

as.

(l-E) at + (l-E)AiS; = (1-e:)Ai-1Si-l + q;



--- --------------------.--------------------

~ . Flowdirectionz
C1)-
(f)

0

3:

v

Rockmedium with
mlcropores

Domain contaminated
by nuclides

d

d

d

b

d

XBL827-6193

Fig. 5.1.1 Rock matrix, fissure and micropores in a
fractured medium of finite spacing of fissures.
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aM.
,

J.(z,t) = - EDi a)', y=O
1

t > 0, z > 0, i = 1,2, .. (5.1.4)

S.

qi(z,y,t) = kma (Mi - r.)' t > 0, z > 0, 0 < y < d/2, i = 1,2, ..
D,l

(5.1.5)

where km is the mass transfer coefficient, ~ is the interfacial area between

--~-~tatJQ_Ogr~__Wgt_e_r~a-.n~-~pJt~p_eJ'Hunj t voJume of water, and Kn,i is the di stri -

bution coefficient.

In this model it is noted that there are two independent transport

processes which can retard the migration ~elocity of the nuclides. One is

the removal by molecular diffusion of the nuclides into and out of micropores

penetrating the surfaces of the fissures and the other is mass-transfer by

sorption on the micropore surfaces. The effect of diffusion into and out

of mi cropores wi 11 be call ed the II surface reta rdati on effect II and sorpti on

within micropores will be called lithe bulk retardation effect". The

surface retardation effect has not bee~ considered in the analysis for

porous-flow transport.

5.1.2 Initial and Boundary Conditions

If we assume that there are initially no nuclides in the water flow

field and in the rock matrices prior to the beginning of dissolution of

the nuclides, we can set the initial concentrations of nuclides in each

phase as

N.(z, 0) = 0, z > 01 (5.1.6)

~'1.(z,y,O) = 0, Z > 0,1
d/2 > y > 0 (5.1.7)

Si(Z,y,O) = 0, Z > 0, d/2 > Y > 0 (5.1.8)
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The boundary condition for Ni(z,t) for an infinite plane source of

dissolving waste at z = 0 is:

Ni(O, t) = ~i(t), t > 0 (5.1.9)

where the function ~.(t) is the general time dependent concentration of1

the nuclide i at z = O. We further assume that the concentration of
~-- ~ ~ ..- ~- ~ - .-- --------------.

nuclide i in the micropores should equal that of nuclide in the fissures.

Then we can write the boundary condition for Mi(z,y,t) at y = 0 as

Mi(Z, 0, t) = Ni(z, t), t > 0, Z > 0 (5.1.10)

Another boundary condition for Mi(z,y,t) to be specified at the center of

spacing of the mediurn is, from symmetry:

aMi(z ,y , t)

ay I = 0
y:;d/2

z > 0, t > 0 (5.1.11)

Equations (5.1.1) through (5.1.11) give a complete set of equations for

the transport problem to be solved.

i) Step release

When the radionuclides are released stepwise from the waste repository,

the function ~i(t) is given by

~i (t) = Bi (t) h(t), t > 0 (5.1.12)

where the function Bi(t) is the Bateman equation given by (Hl):

i

Bi(t} = L
j=l

-A.t
b.. e J

lJ (5.1.13)

with the coefficient:
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j

bi j = :Em=l

NOm

i

~ A£
£=m

(5.1.14)

Ai ir (AR,-Aj)
£=m

(£f j )

N~ is the initial concentration of the nuclide m at the waste repository.

ii) Band release
~ ~__n- -~ n n_n_--

For a band release, the func~ion ~i(t) is given by

~i(t) = B;(t) [ h(t) -. h(t-T) ] (5.1.15)

where T is the duration time of release, 4.e., the leach time. If we

assume that the waste and its contained radionuclides dissolve at a constant

total rate over the time period T, the initial concentration of the nuclide

i can be related to the initial total amount w~ of waste per unit cross

sectional area of water flow:

0 0

N~ = ni WT, vT (5.1.16)

where n~ is the initial (t = 0) amount of nuclide i per unit amount of

waste.

i i i ) impulse release

The impulse release is given by:

~i(t) = TN~ o(t) (5.1.17)

5.1.3 Transport Equations for Shallow Penetration in Micropores

If the depth of penetration of nuclides from a fissure surface into

the rock medium is much less than the fissure space d, the micropores
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can be treated as being of infinite length. The transport equations presented

in the foregoing section are still valid over the time and field space, so

the equations to be solved are

aN. aN. 21 , --
t + v - + A.N. - A. IN. 1

- -
b J.a az, 1 1-'- , (5.1.18)

2
Ma .,

£ ~ t - £0 ,. -
2 + £~\.M. = EA. 1

M. 1 - q.a 1 1 1- 1- 1ay

- ~-- --------------------

(5.1.19)

as.

(1-£ ) at' + (1 -E ) Ai Si = (1 -E )Ai -1 Si -1 + qi (5.1.20)

t > 0, z > 0, y > 0, i = 1,2,3, ...

The diffusive flux Ji and the rate of sorption qi in these equations are

given by

The initial and boundary conditions are

(5.1.23)

(5.1.24)

(5.1.25)

The boundary condition for Ni (z,t) is

Ni(O,t) = ~i(t), t > 0 (5.1.26)

The surface and infinite boundary conditions for M.(z,y,t) are,1

respectively

aM.

J.(z t) = - ED. --.l.1
' t > 0, z > 0 (5.1.21)

1 ' , ay y=0

s.

qi(z,y,t) = kma(M; - ), t > 0, z > 0, y > 0 (5.1.22)
0, ,

Ni(z, 0) = 0, z > 0

Mi(z,y,O) = 0, z > 0, y > 0

S. (z ,y ,0) = o. z > 0, y > 01
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Mi(z,O,t) = N;(z,t), t > 0, z > a (5.1.27)

M.(z,oo,t) = 0,1 t > 0, z > 0 (5.1.28)

The difference of the set of governing equations in this section from that

of Sect. 5.1.2 for transport in an finite diffusion field is the replacement

of the symmetry boundary condition, Eq. (5.1.11) by the infinite-medium

---~ bound-a-ry--condtti-oT1)-£q-~--(-5-~--l~--2-B)-~- -- - -

5.2 Diffusion Governing Transport in an Infinite Diffusion Field

In this section we present the analytical solution to fissure-flow

transport in an infinite diffusion field with local sorption equilibrium

and we explore the retardation due to the molecular diffusion into micro-

pores in the rock matrix.

5.2.1 Transport EquationWith Local Sorption Equilibrium

Here we consider the transport of a mother nuclide (i = 1), with no

precursor. When the rate of mass transfer of nuclide between water and

solid phases in micropore fissures is so rapid that the concentration of

the nuclide in the solid phase is local equilibrium with that of the

nuclide in the micrqpore water, we can write

Sl = KO,lMl (5.2.1)

where KO,l is the distribution coefficient. Adding Eq. (5.1.19) to Eq.

(5.1.20) and using the above relation we obtain:

aMl °1 a2M
at - K ---t + A M l = a

1 'dy 1
t > 0, y > ° (5.2.2)
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where K. is the sorption coefficient defined by1

K. = 1 + (l -E) Ko .
1 ,1 (5.2.3)

E

In Eq. (5.2.3), E is the porosity of rock medium excluding the

fissures. Equation (5.2.2) shows that diffusion of a nuclide in micropores

in the y-d;rection should be characterized by the ratio of diffusivity to

t he-s orption e-Quil ihriuffi--coeffi-c-ienty r othe-~-than--by-t-Re--moleGul a r-----

diffusivity itself. This implies that a weakly sorbed species can

penetrate more deep into the rock mediumthan a strongly sorbed species.

The transport equation for the first nuclide in the flowing water

phase is

aN, aNl 2-+v-+)..N=--Jat az 1 1 b 1 t > 0 z > 0 (5.2.4)

where J, is the diffusive flux at top surface of the fissures, given

by Eq. (5.1.4)

The initial conditions are

N,(z, 0) = 0 (5.2.5)

Ml(z,y,O) = 0 (5.2.6)

The boundary conditions are

Nl(O, t) = ~l(t) (5.2.7)

Ml(z,O,t) = N,(z,t) (5.2.8)

Ml(z,CXI,t) = 0

5.2.2 Analytical Solution

(5.2.9)

The set of equations (5.2.2) through (5.2.9) can be solved by the
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method of Laplace transform with the aid of initial and boundary

conditions. Taking the Lap'ace transform of Eqs. (5.2.2) and (5.2.4),

we have

2"v
a M,(z,y,s)

ay2

S+A1 "v

-0-- K1M,(z,y,s) = 01
(5.2.10)

--~--~ ~ ~ ~------

"v "v( ) S+A "v 2
( )aN] Z,s + ~N](Z,s) = - bv J] Z,s (5.2.11)

where s is the transformed variable with respect to time t and the functions
"v "v

M,(z,y,s) and N,(z,s) are the transformed subordinate functions of M1(z,y,t)"v

and N,(z,t), respectively. Jl(z,s) is the transformed diffusive flux at

the fissure surface

"v "v

J] (z ,5) = - 8 DaM] (z ,y ,5 ),
y=O

z > 0 (5.2.12)

Solving Eq. (5.2.10) with the initial and boundary conditions, Eqs. (5.2.6),
"v

(5.2.8) and (5.2.9), we have the transformed solution for Ml(z,y,s)

Kl
"v - "v -y~D(s+A1)
M,(z,y,s) - Nl(z,s) e 1 (5.2.13)

and the transformed diffusive flux in the form:

"v . rv .../ K,
J1 (z,s) = e:D,N, (z,s),,1f-(s+A1),

(5..2.14)

Solving Eq. (5.2.10) after substitution of Eq. (5.2.14) subject to

the boundary condition given by Eq. (5.2.7), we have the tran~formed 501ution
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'V 'V (>..,+S)
Nl(Z.5) = 161(5) e- V - alz 15+>', (5.2.15)
'V

where ~1(5) is the transformed concentration at the repository and a, is

the constant defined by

- 2ED, .AfK1
a, - bv ,,~ (5.2.16)

(5.2.13),
--~ ~ -----

(s+>.. )
.

'V '
Ml(Z.Y.5)= 61 (5)e v Z - (alz+'1Y) 15Hl (5.2.17)

where b, is the constant:

b = ~Kl1 D1
(5.2.18)

The inverse of Eqs.(5.2.15) and (5.2.17) with respect to s can be found

by using the formula:

L-'~e-d 15+>'1 !

2
a

= - 4t - A,t
2I'11't3e " P,(t;a)

(5.2.19)

The sol uti on for aqueous concentration of the nuclide in the fissure

and micropores are given by, respectively

It 1 t-~--z 1 v

N1(z " t) = e v ~1(t -~ -T ) P, (T ;a1z )dT, Z<vt
0

(5.2.20)



11.

Al t - ~--Z J v

M1 (z ,y ,t) = e v ~1( t -~ -.r) P1(T;a1Z+b1Y)dT,
0

(5.2.21 )

z<vt

5.2.3 Transport With an Impulse Release

When the function ~l(t) is charac~erized by the impulse release

function given by Eq. 5.1.18 , the solutions for the concentration of

the nuclide in the fissure and micropores become
Al- - z

Nl(z,t)=(TN~)e v Pl(t-~, alz), z<vt

Al- - z
Ml(z,y,t)=(TNf)e v Pl (t-~, alz + blY)' z<vt

(5.2.22)

(5.2.23)

The concentration profiles of 237Npwith no precursor nuclide for transport

with impulse release at various migration times are shown in Fig. (5.2~1)~

5.2.4 Solution For a Step Release

For a step release, the time dependent function" ~l(t) is given by

Eq. (5. 1. 12) . For the first nuclide,

-A t

~l(t) = N~ h(t} e 1 (5.2.24)

Subs tit uti ng Eq . (5. 2. 24) i nto Eqs . (5. 2. 20 ) and (5. 2. 21), we have

the solutions for the space-time dependent aqueous concentrations of the

nuclide in the fissure and in the micropores

(5.2.25)

(5.2.26)

0 -,t alz
N,(z,t) = Nl e erfc(. ), z < vt

2/t-z/v

A
0 -,t a,z+b,y

M,(z,y,t) = N, e erfc( ), z < vt2/t-z/v
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2 -2
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D, =0.01 m2/yr
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104
1 10 102 03

Axial distance along fissure. m
104

XBL827-6195

Fig. 5.2.1 Concentration profiles of 237NP~ fissure flow
transport with- impulse release~



12.

Penetration Thickness of Nuclide in Fractured Medium5.2.5

In Equation (5.2.2) for the diffusion of a nuclide through micropores

the coefficient of the second-order space derivative of the concentration

is inversely proportional to the sorption equilibrium constant Kl of the
rock medium. Hereafter this coefficient will be called an apparent

diffusivity designated as Dl/K,. In Fig. 5.2.2, the aqueous concentration

profi 1es of 237Np in the microporesat a gi ven-time-T-=---li)-;OOO-yr ~-----------------------------

for a step release are shown for various values of the sorption

retardation constant. For times of the order of one year, a weakly

sorbed nuclide, with an assumed retardation constant K, = " can penetrate

about 40m into the rock at a migrati on di stance z = '00 m, whereas a

strongly sorbed nuclide, with Kl = 10,000 can penetrate only about 0.2 m.

Because of long railing edge of the concentration profile, the concept of

penetration depth remains ambiguous. The penetration depth or IIthicknessll,

is usually defined as a fictitious distance that corresponds to an

arbitrarily specified amount of the nuclide penetrating into the medium

per unit cross sectional area of the medium, normalized to the concentration

at the surface of the medium. Here we define the penetration thickness

n(z,t) at a given distance z and time t as
00

J M](z,y,t)dy

nez, t) = 0 M](z,O,t)
(5.2.27)

Substituting Eq. (5.2.26) into Eq.(5.2.27), we have the local penetration

thickness

11(z, t )=C'

{
- 21 - c,

}
2 .fIT eCl erfc(C,)

(5.2.28)
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where

c, = alD]Klbv/-
(5.2.29)

IKlDl

C2 = 2/-
(5.2.30)

Tniab le-s 5-:-2-~-rl-a)-~---5-:-2~-T-Tc-J~--v-arratfo-n--of -the p-ene t rat i on

thickness with distance z at a given time which are calculated from Eq.

(5.2.28) are shown for various values of the retardation constant. The

assumed parameters used in calculations are listed in these tables. As

seen from these tables~ the penetration thickness depends strongly on

thickness is only 0.01 m.

For t = 10,000 yr and at z = 100 m for Kl = 1,

;s 11 m, whereas for Kl = 10,000 the penetration

Because of. the smaller penetration thickness of

the retardation constant.

the penetration thickness

the strongly sorbed species, the concentration gradient of the nuclide at

the fissure surface of the medium is greater, which results in a greater

diffusive flux into the micropores. Also the greater diffusive flux of

the nuclide into the medium results in greater retardation of the nuclide

in its migration within the fissure.

5.2.6 Retardation Due to Molecular Diffusion

Profiles of the aqueous concentration of 237NPin the fissure of

a step release, calculated for three different values of the sorption

retardation constant of the rock medium, are shown as the solid lines in

Fig. 5.2.3~ The diffusivity of the nuclide in micropore water, including

the effect of geometric factors, is assumed to be D, = 0.01 m2/yr. The
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Table 5.2.1

Time

t (yr)

lxl04

lxl03

lxl02

14.

Penetration thickness for various sorption coefficients, assumed
-2 2 -2-2

Dl=1.0x10 m/yr, v=10m/yr, b=1.0xl0 m, s=1.0xl0 .

Distance

z (m)

-1
1 . Ox 1 0 - 15.0xlO
1.0
5.0
1. Ox10
5.0xlO2
1. Oxl°2
5.0xl03
1.0xl03
5.0xl04
1.0xl04
5.0xl051.Ox10

-1
1.0xl0-15.0xl0
1.0
5.0
1. Ox10
5.0xl02
1.Ox102
5.0xl03
1. Oxl03
5.0xl041. Ox10

-1
1 . Ox 10_15.0xlO
1. °
5.0
1. Ox1°
5.0xl02
1. Ox1°2
5.0xl031. Ox1°

Penetration thickness, n (m)
2 4

Kl=l Kl=lx10 Kl=lxlO

1.128x1°
1.128x10
1.128xlO
1.128xlO
1 . 1 2 8x 1 °

1.124x10
1.121xlO
1.090xlO
1. 053xl0
8.056
5.906
1.00 101.0 xlO-

3.568
3.568
3.567
3.564
3.559
3.523
3.479
3.139

2.753 -1
8.110xl0-101. ° xl °

1. 128
1.128
1.127
1. 122
1.115
1.064

1.001 -1
5.252xl0-101. ° x10

1. 128
1.128
1. 128
1.12"5
1. 121
1.093
1.058 -1
8.300xlO-l
6.345xl0-1
1.899xlO-2
9.00 xlO-2
1.00 x10-121.0 xl°

-1
3.568xlO-l
3.565xlO-l
3.561xl0-1
3.531xlO-l
3.495xl0-1
3.219xl0-1
2.913xl0-1
1.479xlO-l
5.007xlO-l
1.00 x10-121.0 xl°

-1
1.128xl0-1
1.125xl0-1
1.121xl0-l
1 . 090x 1 ° - 1
1.053x10-2
8.056x10-2
5.906xlO-3
9.999xlO-121.0 xlO

-1
1.128xlO-l
1.125x10-1
1.121xl0-l

--~~1_Jl91xlO-=-T--~----------------------
1.059xlO-2
8.324x10-2
6.388xl0-2
1.989xl0-3
9.900xlO-3
1.90 xlO-4
9.00 xlO-4
1.00 x10-14
1.0 xlO

-2
3.561xlO-2
3.532x10-2
3.496x10-2
3.227xl0-2
2.930xlO-2
1.539xlO-3
6.162xlO-3
1.900xlO-4
9.00 xlO-4
1.00 xlO-141.0 xlO

-2
1.121xl0-2
1.093xlO-2
1.058xl0-3
8.300x10-3
6.345xlO-3
1.899xlO-4
9.00 xlO-4
1.00 xlO-141.0 xlO
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other assumed parameters are included in the figure. For the assumed time

of 10,000 yr and an assumed water velocity of 10 mjyr, the water travel

distance is 105 m. A'nuclide with Kl = 10,000 is found to be much retarded

by molecular diffusion into the micropores. Even a nonsorbed nuclide with

Kl = 1 is retarded by molecular diffusion into the micropores. The dashed

lines show the concentration profiles of the same nuclide assumed to be
-~ ~ ~ ~_._-- ~--- --

convected by porous flow at the same water velocity with local sorption

equilibrium with the porous solid. For a strongly sorbed nuclide, the

migration distance of that nuclide convected by fissure flow is greater

than that of the nuclide convected by porous flow, defining "migration

distancell as the distance reached by the half maximumof the leading

edge of the concentration profile. For a weakly sorbed nuclide, however, the

migration distance in fissure flow is less than that in the porous flow.

This implies that the porous flow model with local sorption equilibrium,

if it is -app1i ed to the transport of nuc 1ides in fractured media, may

overestimate the retardation capacity for a strongly sorbed nuclide and may

underestimate the retardation capacity for a weakly sorbed nuclide.

5.2.7 Transport With a Band Release

The solutions for space-time-dependent aqueous concentrations of the

nuclide in the fissure and in the micropores for a band release can be

obtained by direct application of the theorem of superposition (Hl). They

are given by, respectively
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0 -A1t

[
z

(
al z

)Nl(z,t) = Nle h(t-v) erfc
2/t-z/v

- h(t- T-~) erfC(Ut:~ :z/v ) ]
(5.2.31)

-~~0,Y ,~)~~~~~F~-z/v;er0:~::~:r--- --

(
a z + blY

)]- h(t- T-~) erfc 2~t- T-z/v
(5.2.32)

where the constants al and bl are given by Eqs. (5.2.16) and (5.2.18).

Figure 5.2.4 shows the concentration profiles of 237Np in the

fissures for the band release. The leach time is assumed to be T = 30,000 yr,

and the other parameters used in the calculations are the same as those used

for the step release. Because of the removal at the front of the band

by diffusion into micropores and the release of the penetrated nuclide at

the rear of the band, the concentration profiles for fissure flow, for various

Kl values, show the long smoothed curves with long trailing edges, and with

highly curved leading edges. All of the fissure-flow curves converge at

Nl= 0 and at the water-transport distance of 5xlO5 m, because no sorption

retardation occurs within the fissures. The dashed lines show the

concentration bands of the nuclide calculated from the porous-flow model.

The effect of diffusion into and out of the micropores is to greatly spread

the concentration band, qualitatively similar to the effect of a large

dispersion coefficient for dispersion in the direction of convective flow.

Because of the spreading of the concentration profile in fissure
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flow, the maximum concentration, even for a weakly sorbed nuclide, is

much lower than that predicted from the porous-flow model. The maximum

concentration is relatively unaffected by the magnitude of the sorption

retardation constant.

The concentration profiles of 237NP in micropores in the y-direction

at a given distance z = 10 m are shown for some different migration times

17.

in Fig. 5.2.5. In this calculation, the leach time is assumed to be

---~ "~ --~-~ ~ u_-------_._--
I "U-- _u_- -- - "--- -

10,000 yr. At t = 10,000 yr, when the band-release solution is identical

to the step-release solution, the nuclide still continues to penetrate

into the rock medium and the concentration gradient of the nuclide is

negative throughout, i.e. the concentration decreases monotonically with

distance at a time less than the leach time. At t = 105 yr, when the

trailing edge of the seed concentration band has already passed the

distance of z = 10 m, the concentration of the nuclide in the fissure is

lower than that in the micropores, and the nuclide diffuses back out into

the flowing water. Consequently, the concentration in the micropore now

increases with distance at a smaller y, reaches a maximum, and decreases

again with distance at a greater penetration distance. The diffusion of

the nuclide at the fissure surface into the flowing water fissure causes

the long trailing edges of concentration in the fissure as shown in

Fig. 5.2.4. The locus of the maximum concentration of the nuclide in the

micropore moves more deeply into the medium with increasing time.

In evaluating the biological hazard due to radioactive wastes, the

maximum concentration of the contained nuclide is an important index.

As described above the maximum concentration of the nuclide predicted for

fissure flow transport shows an appreciably lower value than that
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predicted from the porous-flow transport model. Because the broadening

of the concentration profiles in fracture flow is qualitatively like the

effect of axial dispersion in porous flow, we can calculate the

magnitude of an axial dispersion coefficient that would result in a

porous-flow concentration maximumas low as that calculated for fissure

flow. Fi g. 5.2.6 shows a compari SQILj)L_l~e~J!!Sl)(jJ111.J1R~or'tc:~J1_tLi:!Jj_QIL9i_~~37N_R__~__~--------------

predicted in porous-flow transport with dispersion with that predicted in

fissure-flow transport without dispersion. This figure demonstrates that

even with a dispersion coefficient orders of magnitude greater than

commonly used, the attenuation of the concentration equivalent to that

predicted in fissure flow transport cannot be expected in porous-flow

transport. In this assumed case, an axial dispersion coefficient greater

than about 4xlO4 m2/yr will be needed to obtain the same attenuation

as that predicted in fissure-flow transport.

Transport With a Finite Plane'Source5.3

In a real waste repository the waste sources will be arranged in

a finite array. Although the analytical solutions for fissure-flow transport

with an infinite plane source, which neglect transverse flow and dispersion

in the fissures, give important insights into radionuclide transport in

fissure flow, application of these solutions will lead to an over-

estimate of the concentrations at the point of discharge to the environment.

Here we consider the transport of radionuclides released from a finite plane

source into infinite plane fissures surrounded by an infinite rock medium,

with one-dimensional water flow in the fissures.
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5.3.1 Formulation and Analysis

Consider a coordinate system with z in the flow direction, y in the

direction of pore diffusion into the rock and x in the transverse direction

parallel to the surface of the fissure as shown in Fig. 5.3.1. In the

case of dispersion free, the convective transport of the nuclide in the

z direction is usually muchmore effective than dispersive transport in
-~ ~ ~-- -------------

the z direction, so the latter will be neglected. In the transverse

x direction, however, because of no water flow in that direction,

dispersion and even molecular diffusion play an important role in nuclide

transport. Here we will s91ve the problem literally for infinite planar

fissures, so the appropriate coefficient 0 for Fickian transport in thex

transverse planar direction x is the molecular diffusivity °ml of the

nuclide in the liquid. When sorption in the micropores is locally

equilibrated, the transport equations for the aqueous concentrations of

the nuclide in the fissure and in the micropores are given by

2
aNl aNl a Nl 2
at+ Vaz - °ml --y-+ A1N, = - h Jlax

(5.3.1)

aMl 01 a2M-- 1

at - Rl ay2 + A1Ml = 0
(5.3.2)

t > 0, z > 0, - 00 < x < + 00, y > 0

where N,(z,x,t) and M,(z,y,x,t) are the aqueous concentrations of the

mother nuclide in the fissure and micropores, respectively, v is the water
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Fig. 5.3.1 Coordinate system for release from a finite source into
planar fissures.
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velocity, 0, is the pore molecular diffusivity, Dml is the pure molecular

diffusivitY,.Al is the radioactive decay constant, Kl is the retardation

constant, b is the spacing of the interstice fissure walls, and Jl is the

diffusive flux of the nuclide due to transport into the micropores.

aMl
J = -ED, ~1 , t. > 0, z > 0, - 00 < x < + 00 (5.3.3)

y=O
__m ~ U_-' U--"-"- _.m - -- --

where E is the porosity of the fractured medium excluding the fissures.

The initial conditions are

Nl (z, x, 0) = 0, z > 0, - 00 < x < + 00 (5.3.4)

~1l (z,y,x,O) = 0, z > 0, - 00 < x < + 00, y > a (5.3.5)

The boundary conditions are

Nl(O, x, t) = {:l {t}, t > 0,

1 x I < a/2

1 xl> a/2

(5.3.6)

Ml (z,O,x,t) = N,(z,x,t) ,

for

t > 0, z > 0, -oo<x<+oo

M,(z,+oo,x,t) = 0, t > 0, z > 0, - 00 < x < + 00 (5.3.8)

Taking the Laplace transform of Eq. (5.3.2) with respect to t and

solving with the aid of the initial and boundary conditions, we obtain the

concentration of the nuclide in the micropores and diffusive flux at the

surfaces of the fissure in the transformed form:
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~ ~ - I~
M,(Z,y,X,S) = N,(z,x,s) e y OJ (s+Al) (5.3.9)

f
-- ----

"V 'V. . K,
Jl(z,x,s) = ED,N,(z,x,S) ]I (S+A,),

(5.3.10)

"V

where M,(z,y ,x, s) is

'V

f
oo -st

Ml(z ,y , x, s) = e Ml(z ,y ,x, t) dt (S-03~-LL) -----------

Defi ne 0
"

f
oo

r'V. -;xcu-st
Nl(z,~,s) = e N,(z,x,t) dt dx

-00 0

(5.3.12)

Taking Laplace and Fourier transforms of Eq.(5.3.1) with respect to t and

x, and solving the resultant equation with the appropriate initial and

boundary conditions, we have

S+A 0
"V 'V A - --.l . 2 m1
Nl (z,cu,s) = CP1(s) H(cu) e v z - a1zvs+A1 + (l:~) V z (5.3.13)

where a1 is the same constant as given by Eq. (5.2.16) and the function

H(w) is given by

H(oo) = 2 sin (6200)
(J,)

(5.3.14)

Inversion of Eq. (5.3.13) can be found by using the Fourier inversion

formulae:
2x2

} , e- 48

F-' {e(i (0) e = 2J.;" re
(5.3.15)

F-' {H(oo)}= h(x + t) - h(x - t) (5.3.16)



thus, from the convolution rule

2 +00 - ~2/49
F-1

{
H(W)e(iW) e

}
= -.l j e . [h(X-f;+%)- h(x-~- t)] d~f7f 2re-00

= E, (%!. x,e)I
i
I
i

I wnere 1;;E-ij-dun'IirtYintegral variable and the function E1(a!2::x, e) is given

(5.3.17)

by

~ + x t - x
E (~+ x,e) = _21 rerf (2 ) + erf ( IA)]1 2 - L 2(8 2 e

(5.3.18)

and the Laplace inversion formula:

-1
{

-a t/s+1.. 1

}

ex 2

L e . = CI. e- 4t - A,t -
. ~ = P,(t;a)

2"'TIt.J

(5.3.19)

There results the solution for the concentration of the nuclide in the

fissure 1..1

f
t - ~0 --z v

N1(z ,x, t ) = E, (~ ~ x, ~1 z) e v P1(-r;a1z)<7>,(t - T- V) dT (5. 3.20)
0

The concentration of the nuclide in the micropores is then, from

Eqs. (5.3.9), (5.3.13), and (5.3.19)

0 . /..1

(
a ml - - z

Ml z,Y, x,t) = El(-2~ x, V z) e v

j
t - ~

v z
. Pl(t;alz+blY) <7>1(t-T- y-) dT

0

(5.3.21)

22.

~---
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where the constant bl is given by Eq.(5.2.1B).

Solution for an Impulse Release5.3.2

When the function <1>1(t) is specified by the impulse release function:

<1>,(t) = TN~ <5(t ) (5.,3.22 )

the solutions can be written as

, )q

( )
0 - v z

(
z

(
a Dm,

) (
z

) ( )N1 z,x,t = T N,e h t- v-) El "2 ~ x, -V- z Pl t- v; alz 5.3.23

," ~1 0 1( ) 0 --z z a m
M, z,y,x,t = T Nl e v h(t - v) El(2~x, V-z)

.P1(t - f; a, z + b, y) (5.3.24)

where N~ is the initial concentration of the nuclide at the waste repository.

Because of infinite characteristic of the boundary data, the concentration

N, shows an infinite value at the leading edge at z = vt when 0, + o.

5.3.3 Solution For a Step Release

The step release function is characterized by Eq. (5.1.12), especially

for the fir£t nuclide

<Pl(t) = Bl(t) h(t) (5.3.25)

where the function Bl (t) is given by

-~ t
Bl (t) = bll e" 1 , b'l = N~ (5.3.26)
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Substitution of Eq. (5.3.25) into Eqs. (5.3.20) and (5.3.21) gives the

solutions for the aqueous concentrations of the nuclide in the main and

micropore fissures. They are respectively,

0 -Alt a 0 lZ a,z
N,(z,x,t) = N, e El(2 ~ x,~) erfc( ) h(t-z/v)

v 2/t-z/v
(5.3.27)

A -t~ ~ ~ Q.'.-Tz- ~~ ~ a-.-z-+b-Y n ~~~~ ----------

Ml(z,y,x,t) = N~e ' E,(~ ~ x,~) erfc(~~) h(t-z/v) (5.3.28)
2/t-z/v

where a, and bl are the constants given by Eqs. (5.2.16) and (5.2.18),

re s pe c t i vel y ,

5.3.4 Solution For a Band Release

For a band release, the function ~l(t) is given by

~l (t) = Bl(t) [h(t) - h(t - T)] (5.3.29)

where T is the leach time.

The solutions for a band release can be obtained directly by applying

the theorem of superposition (H-l). The concentrations of the nuclide in

the fissure and in the micropores are given .by, respectively

-A T,
N,(z,y,t) = N,(z,y,t; bl1) - N,(z,y,x,t-T; b'l e ) (5.3.30)

-A T1
M,(z ,y ,x, t) = M1(z ,y ,x, t; b11) - M1 (z ,y ,x, t -T; bl1 e ) (5.3.31)

5.3.5 Effect of Transverse M:olecular Diffusioh on Fissure-Flow Transport

The concentration profiles of 237NP released stepwise from a finite
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plane source, with the ratio of fissure width b to fissure spacing d of

30, along the transverse direction x at various values of the migration

distance z are shown in Fig. 5.3.2. The molecular diffusivity in the

water in the main fissure D . is assumed to be 0.05 m2/yr, five timesml

higher than the assumed micropore diffusivity Dl. The micropore diffusivity

is usually related to the pure 11D1eculardiffusivity D . as Dl = D ./q2,ml ml
~ ~~~~~-~~ ~-

is a geometric factor, the tortuosity coefficient. The assumed
-~-------

where

parameters are listed in the figure. For a relatively small axial distance

z the concentration profile in the transverse direction shows a smaller

diffusion path length and a greater gradient in concentration, which would

cause a greater diffusive flux in that direction. The concentration

gradient becomes smaller and the diffusion path length becomes greater

with increasing migration distance z. This behavior is quite different

from that noticed in the concentration profile in the y-direction in the

rock mediurn. The profiles along y-direction shows a smaller diffusion path

length but a greater concentration gradient at a greater distance z.

This behavior in concentration in the transverse x-direction is well

understood by introducing the concept of an effective diffusion time t .e

Since the diffusion field ;n the transverse x-direction moves with the

water at the same velocity, the effective time for the molecular diffusion

in this field can be determined by t = z/v.e At z = 10 m, for instance,

te = 1 yr, whereas at a greater distance z = 1000 m, te = 100 yr. Therefore,

at a greater distance z there is a greater effective time for diffusion in

the x-direction.

The diffusion field in the y-direction in the rock medium, on the

other hand, is a stationary field, since the water in the micropores is



26.

at rest. Therefore, the effective time for diffusion in the micropores is

given by te = t - z/v. At a given time, te at a smaller z gives a greater

effective time for the diffusion in the micropore fissures. The case is

just contrary to the case for the transverse diffusion in the flowing water

in the main fissure. Because of the longer effective time, a nuclide at a

~-gr-eateY' z-c-an-d--i-ffus-e tO r-each-a--9re-ate-r-.d~.stance-.l n--the trans verse x

direction,. thereby resulting in a considerably lower ,concentration along

z at x = '0.

The concentration gradient in micropores becomes very steep near the

leading edg~ of the band moving through the fissures, whereas the

concentration gradient in the transverse direction becomes quite low in

that region' far from the source but becomes infinite in the medium adjacent

to the ~source, at the edges of the source. Therefore, attenuation of

concentration at x = 0 due to transverse diffusion is very small at the

leading convection edge of the band, and consequently transverse diffusion

has no significant effect in retarding nuclide migration velocity, even

though it does appreciably attenuate the maximumconcentration of the

nuclide.

In fact, taking a limit of the solution given by Eq. (5.3.27) of

Dl ~ 0 yields
-A t D z

( )
0 1 Z

) (
a ml

)N, z,x,t = Nl e h(t-v El 2 ~ x, ~ (5.3.32)

This equation shows that the nuclide convected from the waste repository

is only attenuated in concentration by a ratio of the function

E,(a/2 ~ x, Dml z/v). Although the El function decreases with distance

z at a given x, it is still finite at the water-travel edge. This means
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that El function contributions has nothing characteristic of a retardation

effect on the nuclide migration velocity. When the molecular diffusivity

°mi becomes zero, on the other hand, the solution approaches the'solution

for transport without transverse diffusion, namely,

0 -~lt z alz

N1(z ,x, t) = N1(z , t) = N1 e h (t --y) e r f c (21L -_L_~--~ i~_~3_2~~ ~----------

This equation gives zero concentration at the leading edge z = vt.

In Figure 5.3.3 the concentration profiles of ~37Np at the center of

the repository source (x = Q)-andalong the z-direction, for a step release,

are compared with the concentration of that nuclide in transport without

transverse molecular dtffusion. As seen from this figure, the concentra-

tion at a given z is reduced appreciably by transverse diffusion in the

x-direction, even with a relatively smaller diffusion coefficient.

Figure 5.3.4 also shows a comparison of the concentration profile along

z-direction at x = Q in transport with transverse diffusion with that in

transport without transverse diffusion, but for band release. The size,

of the repository source is assumed to be same as that assumed in transport

with step release. The figure shows that the maximumconcentration is much

reduced by transverse diffusion, even with a small value of the diffusivity.

The maximumconcentration with °ml = 0.05 m2/yr for instance, gives a

value almost a hundredfold less than the maximumconcentration without

transverse diffusion. However, transverse diffusion has negligible effect

on the locus of the maximumconcentrat'ion, nor does it appreciably shift

the leading edge of the concentration band.
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Transport of "a Nuclide Released From Arrayed Finite plane Sources5.3.6

When many plane sources are arrayed at a plane at z = 0 as shown in

Fig. 5.3.5, nuclides released from one source will affect the concentration

from another source. Let hl' hz, ... hi' ... be the positions at x axis

of the each plane source, then the concentrations of the nuclide in the

fissure and micropores are given by the superposition of the solutions
--~ --~ -

n

[

-,-A t . " a z 0 Z

N1(z,x,t) = N~ e 1 h(t-z/v) erfc(~) I E1 ~(x-h ), m~ J
(5.3.34)

'2/t-z/v ,t=l

0 -Alt alz+b,y ~ r

[
a °mlz

]Ml(z,y,x,t)= Nl e h(t-z/v) erfc( ) ~ cl ~(x-h ),--v- (5.3.35)
21t-z/v ,t=l

when n is the number of finite plane sources.

The step-release concentration profiles in the transverse x-direction

of 237Np assumed to be released from array of finite waste sources with

an assumed scale b = 0.01 m, d = 0.3 m, and ~h = 3 m, and at a given time

t = 10,000 yr are shown in Fig. 5.3.6, with the migration distance Z as a

parameter. As seen from the figure, the distinctly separated concentration

steps travel along z-direction at a smaller z, but because of the effect

of transverse diffusion, the separated concentration steps superpose with

each other and makea newwavelike concentration step at a greater distance

z. In this assumed case, the concentration profile becomes almost flat

at z = 100 m. The dashed lines show the concentration profiles resulting

from transport without transverse diffusion. The figure shows that neglect-

in9 transverse diffusion can lead to significantly overestimates not only

of the maximumconcentration but also of the local concentration of a

nuclide.
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Transport of a Nuclide in a Plane Fissure With Flow in the Surrounding5.4

Permeable Rock

In the previous analysis we have neglected water flow through micro-

pores. . However, it is poss ib1e that a transverse pressure gradi ent may

induce very slow water flow through micropores. The purpose of this section

;s to derive the analytical solution to the transport of a mother nuclide
~ ~---------_._------

through a fissure with some crossflow of water through the micropores.

5.4.1 Formulation and Analysis

Consider a single infinite-plane fissure of average interstice b,

both sides of which are bounded by rock surfaces permeable to water. If

there exists a pressure gradient in the direction as shown in Fig. 5.4.1,

water should flow in the y+ direction in the micropores in the upper medium

A, and in the negative of the y- direction in the micropores in the lower

mediumB. Although water flow through micropores is usually very small,

due to the considerably lower permeability of the rock, it can affect the

concentration profile of the nuclide in the fissure, especially at small

z distances where the concentration gradient of the nuclide in micropores

near the surface of the fissure is so small that convective transport by

permeating water in micropores becomes comparable to diffusive transport.

Let Nl(z,t) be the aqueous concentration of the nuclide in the fissure

and M~ (z,y+,t) amd M, (z,y-,t) be the concentrations of the nuclide in

the medium A and in the medium B, respectively. The transport equations

which govern these concentrations are given by

aN, aNl 1 + -
at: + v ~ + A,N, = - b (J, + J, ) (5.4.1)
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aM~ + aM+, D a2M+
-+~ l' +
at K, ~ + K, 2 + ~lM, = 0

oy ay+
(5.4.2)

aM- - 2
.-l - ~ aM1 0, a Mi -
at K, - - K ~ + A,M, = 0ay , ay-

(5.4.3)

---~ ~ ~ - -----

t > 0, z > 0,
+

y > 0,
-

y > 0

where v is the water velocity ;n the fissure, u+ and u- are the velocities

of the permeating water in the micropores in media A and B, respectively,

D1 is the pore molecular diffusivity of the nuclide, Kl is the sorption

retardation constant, ~l is the radioactive decay constant, and b is the

wi dth of the fi ssure. The functions J~ and J; are the sums of the

convective and diffusive fluxes of the nuclide at the surface of the

fissure given by

+ +
J = + aM1, - £ D1-

ay+

+ +
+ £ u N1 (5.4.4)

+
y = 0

- - aMi

I

J =-£0 - -£ U N
1 1 ay- . 1

y- = 0

(5.4.5)

where £+ and £- are porosities of media A and B, respectively. If we

assume that the water velocity v in the fissure is independent of space

and time, and there is no accumulation of the water in the fissure, we

can write from the equation of continuity

+ +
£ u =£ U (5.4.6)
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+ -
Especially, when £ = £ ,

+ -
U = U = U (5.4.7)

The initial conditions are

Nl(Z, 0) = 0, Z > 0 (5.4.8)

_m__- --- - ::+

Mf(Z ,y ,0) = 0,
+

Z > 0, y- > 0
- ~------_._--------

(5.4.9)

The boundary conditions are

Nl(0, t) = <P1 (t), t > 0 (5.4.10)

+
Mf(z,y,O) = Nl(z, t), z > 0, t > 0 (5.4.11)

+
M-f(z,00,t) = 0, z >0, t > 0 (5.4.12)

Equations (5.4.1) (5.4.3) with the appropriate initial and

boundary conditions of Eqs. (5.4.7) (5.4.11) can be solved by the method

of Laplace transforms. Taking the Laplace transform of Eqs. (5.4.2) and

(5.4.3) with respect to time t and introducing new transformed functions

rilf(z,y2:. ,s) defined as

+~
)

- 'V+
) y-z

M1 (z,y, s - my-(z,y, s e (5.4.13)

where
00

~ +

J
-st + +

M1 (z,y-,s) = e MT (z,y-,t)dt

0

(5.4.14)

+ U

y- = 2:.2D,
(5.4.15)

we have the differential equations which govern the functions ~(z,y,s)
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2'V+
. d"1 Kl 2
~ - 0 (s +.:\, + 4~ 0 ) ~= °
<Py 1 1 1

(5.4.16)

'Vi- 'V

mr (z,O,s) = N1(z,s) (5.4.17)

"4

m;- (z,oo,s) = ° (5.4.18)

The transformed solutions of Eq.. (5.4.16) subject to the boundary

conditions are
'Kl 2

"4 'V -Y/O (s+:\ + u )

m;- (z,y,s) = N] (z,s) e oj] ] 4D]K]

(5.4.19)

From Eqs. (5.4.13) and (5.4.19), we can obtain the convective and

diffusive transport rate of the nuclide at surface of the main fissure

in the transformed form:

K 2'Y+
[

E:U J 1 u \l 'VJ,(z, s) = ~ 2" + EDl O( s+:\1+ 4D Kb N1(z ,s )1 1 1
(5.4.20)

Taking the Laplace transform of Eq. (5.4.1) with respect to t, and

solving the resultant equation after substitution of Eq. (5.4.20)

subject to the boundary condition, we have

s+:\,

J
2

'V 'V - - Z - a z s+:\ + u

N1 (z,s) = 8,(s) e v 1 1 4D1K, (5.4.21 )

where ~ is the same constant as before, defined by

- 2eD] J K]a, - bY D,
(5.4.22)
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Using the Laplace inversion formula:

L -1
{

-a, z J s + A + u2/40

}
ell Kl

2 2

= a, z - a, z 2 .e - (
u

r3
.

3 4t - )., + 4D ) t
2J 7r!~-- - ---'-~- -------

= f.l (t;alz)
(5.4.23)

we have the space-time-dependent aqueous concentration of the nuclide in

the main fissure
Z

- ~ z

i
t-v

N, (z. t) = e v .p"(t-T-~)f., (-r:al z) dT
0

(5.4.24)

From Eq . ( 5.4 .13) wit h Eqs. (5. 4 .19) and (5. 4 . 21 ), the concent rat ; on

of the nuclide in the micropores in media A and B becomes

A

J

t-~u + 1. v z +
~ 2D y- - v z <P,(t-T-v)!:.1 (T ;a, z+ bl y-)+ + 1

M1 (z ,y-, t) = e 0

dT (5.4.25)

where the constant b, is

b = ~
1 Ji; (5.4.26)

5.4.2 Solutions For an 1mpulse Release

When the aqueous concentration of the nuclide at repository is

given by an impulse release function,

<Pl ( t) = (T N~) 0 (t) (5.4.27)
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the solutions become

Al- - z
0 v

(
z z

N,(z,t) = (t N,) e £', t - -V;a,z) h(t --V) (5.4.28)

u + A,
+-y---z

+ + 0 - 2°, v z + Z
Mr (z,y-,t) =(T N,) e f,(t- -V; alz+ blY-) h(t-v) (5.4.29)

----~~-~~~~-~~~~~~~

where N~ is the initial concentration of the nuclide at the repository,

the function fl (t,a) ;s given by Eq. (5.4.22), and the constants a, and

81 are given by Eqs. (5.4.21) and (5.4.25).

5.4.3 Solutions for a step release

When the boundary value of the concentration of the nuclide is

given by a step release, the function ~l(t) is given by

~, (t) = B, (t) h(t) (5.4.30)

where the function 8, (t) is given by Eq. (5.1.13)

Substituting Eq. (5.4.30) into Eqs. (5.4.23) and (5.4.24), we have the

solutions for a step release,
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N, (z t t) = bll

00

(

2 2 2

)

- At. 2 al u z
e 1 h(t-z/v) ~J exp - T) + . 2 dT)

a,z .160,K,n

2/t-z/v

, :- ~t

{

a, uz

[
a, z/K, 0, + u(t - z/v) ]= "2 b'lh(t-T/v) e . e erfc

2/K,D, 2/K,D, (t - z/v)

--~ --~u~~ n__----a, u z-

- 21'S °1
[

a,zlKlDl- u(t - Z/

.

V)

]
.

}
+ e erfc

2/K,D, (t - z/v)

--~-~ ~-

(5.4.3')

u 002

J
+ + ~A,t~2D y.:!:. 2 2 a,z+y/K,/O, u

Mf(Zty-,t)= b'l e , h(t-z/v) - J exp [- n -( . 2) dn
. vTT + + ~K D

16K, D
, n

a, Z y-v 1\,u,

2/t - z/v

+ - (a1Z+y:!:.tK1/°1 )u
-A t + ~ y-

{

~
= ~ b" e 1 - 2°, h(t-z/v) e. e 2 K,O,

r;;-;:;;- + Z

[
alZYK1D, + K,y- + u (t - -)

]
eerfc V

2/K,0, (t - z/v)

+ e

- (a,Z+Y~/Kl/0,)u

2v'K,0,

[
a,zlKA + K,y.:!:.- u(t - Z/V)

]}
(5.4.32)erfc

)2/K,0, (t - z/v
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5.4.4 Solutions for a Band Release

For a band release, the time-dependent concentration at the reposi-

tory is given by

<Pl (t) = B1 (t) [h (t) - h(t - T)]
(5.4.33)

whe re Tis the ~urat i ~~~.i me_~!_!:~!~a~_~~ ~ ---~-------

The solutions for a band release are obtained by applying the

theorem of superposition (H-l). They are

- AT1
Nl (z,t) = Nl (z,t; bll) - Nl (z,t-T; blle ) (5.4.34)

+ + + + + + . -AlT
M1(z,y-,t) = M1(z,y-,t;bl1) - My-(z,y-,t-T; b" e ) (5.4.35)

+
where the functions Nl(z,t; bij) and M1 (z,y; bij) stand for the space

and time dependent concentrations of the nuclide for the step release

with Bateman coefficient b.., respectively.lJ

5.4.5 Effect of Micropore Flow on Fissure-Flow Transport

Figure 5.4.2 shows the concentration profiles of 237Np in the

micropore fissures in the rock media A and B at fixed distance z = , m,

at time = 10,000 yr and at t = 100,000 yr, with a permeating water

velocity u = 0.05 mjyr in the positive y+ direction. The release mode

is assumed to be a band release with a leach time T = 10,000 yr. Note

that the concentrations at t = 10,000 yr are equivalent to those for the

step release. The concentrations of the nuclide in transport without

permeable water, i.e., with u = 0, at corresponding times are shown as
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dashed lines. The concentrations with u = 0 in medium B are not given

in this figure; their profiles are completely symmetrical to the profiles

in mediumA.

The permeating water in mediumB acts on the nuclide to migrate

in the negative y- direction against molecular diffusion, whereas the

water in the medium A convects the nucl ide in -lhe--pCfslt-;ve--y:J---ofrect,-orr------------------------

in the same direction as that of molecular diffusion. Many of the

nuclides that have diffused into medium B are convected to the medium

across the flowing water in the main fissure, resulting in a nonsymmetric

concentration profile with a greater diffusive path length in medium A

but with a smaller path length in medium B. The penetration thickness

of the nuclide at t = 10,000 yr reaches almost y+ = 10 m in mediumA,

but the thickness in medium B is only 1 m deep.

The effect of penetrating water on the concentration along the y~

direction becomes more significant as the migration time increases. At

t = 100,000 yr, the concentration band of the nuclide in medium A travels

a greater distance ;n that medium. The concentration of the nuclide in

the medium B, on the other hand, ;s extremely small and the concentration

band does not appear in this figure. Also, because of convective transport

from medium A to B, nuclide transport with permeating water shows a

greater maximumconcentration within the micropore, and the maximum

occurs at a greater distance from the fissure surface.

Fig. 5.4.3 shows the aqueous concentration profiles of 237NP in the

fissure with permeating water velocities of u = 0.005 and 0.01 m/yr, as

well as for u = o. This figure shows that convective transport in the

medium across the flowing water decreases the concentration of the nuclide
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over the entire migration distance. This means that the convective

increase in the amount of nuclides entering the upper micropores is more

important than the convective decrease in the amount of nuclides diffus-

ing into the lower micropores. The permeating water in micropores has

no effect on the retardation capacity, i.e., the maximum concentration,

as well as the concentration band, occur at almost the same position, at
-- - -.------

all values of the micropore velocity shown in Figure 5.4.3.

5.5 Solubility Limited Migration of a Radionuclide in Fractured Media

In the foregoing analysis for transport of nuclides in fractured

media, the effect of a solubility limit of the nuclide has not been

taken into consideration. However, many of actinide elements, such as

plutonium, uranium, and neptunium, may exist in chemical forms of very

low solubility. Such a species of the nuclide released directly from

the dissolving waste matrix can precipitate at the waste surface, and

the aqueous concentration of that nuclide will remain constant at the

waste location while the precipitate is present, thereby changing the

boundary condition for transport of that nuclide. Neglecting the limited

solubility will lead to an overestimate of the maximum concentration of

the nuclide.

It is important to develop the analysis presented in this chapter

to include the effect of limited solubility of the nuclide. For porous

flow the solution for transport of a parent nuclide with a limited

solubility has been presented in our previous report (Pl). This section

presents the solutions for transport of a parent nuclide in a fractured

medium with a solubility-limit boundary condition. It demonstrates the



39.

importance of limited solubility on the transport behavior. For this

purpose, we first consider the material balance of the nuclide at the

waste location in order to knowthe time-dependent aqueous concentration

at the source boundary. We then derive the solutions for the concentra-

tions of the nuclide in the fissure and in the micropores.

~ ~-~ ~ ~ u_- -

5.5.1 Transport Equations

The transport equations which govern the aqueous concentrations of

the nuclide in the fissure and micropores are, assuming local sorption

equilibrium,

aN, aN, 2
at + v az + A1N,~ ~b Jl

(5.5.')

2M
aM °1 a 1 + A M = 01 - -~ l'
at Kl ay

(5.5.2)

t > 0, O<z<oo, y > 0

where N,(z,t) and M,(z,y,t) are the concentrations of the nuclide in the

fissure and micropores respectively, v is the water velocity, °1 is the

pore molecular diffusivity, K, is the sorption retardation constant, ~
is the decay constant of the nuclide, b is the interstice of the main

fissure, and Jl is the diffusive flux of the nuclide at surface of the

main fissure

aM, I

Jl = - s 0, ay 'y = 0
t > 0, z > 0 (5.5.3)
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The initial and boundary conditions are

N,(z, 0) = 0, z > a (5.5.4)

Ml(z ,y, 0) = 0, Z > 0, y > 0 (5.5.5)

Nl(0, t) = <1>1(t),
t > 0 (5.5.6)

----.----------------....-

Ml(z,O,t) = Nl(z,t), z > 0,
t > 0 (5.5.7)

Ml(z ,ex>,t) = 0

The function <1>1(t) is determined from a materia' balance of the nuclide

at the waste surface, as shown in the next section.

5.5.2 Material Balance at the Waste Surface

Consider a waste form of length L in the axial direction z and of

infinite width in the x direction of the fissure plane, as shown in

Fig. 5.5.1. Suppose that the waste matrix is dissolving continuously

from that surface -into the water flowing in the fissure of width b. For

a mother nuclide with no precursors, if its precipitate forms it will appear

at the beginning of waste-form dissolution. While the precipitate is

present the liquid at the waste location will be at a constant concentra-

tion Nl* of the nuclide, where N* denotes the solubility. Assuming

complete mixing of the nuclide in the water immediately above the waste

surface, we can write the total material balance for the precipitate of

that nuclide in the form:

dP, 1,
at + Al P, = b\>T <1>1

1.. * *
(t) - T Nl -)'IN, (5.5.8)
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where Pl is the amount of precipitate per unit volume of water at z = 0,

~i (t) is the release rate of the nuclide into the water from the waste

per unit width of waste, and T is the residence time determined by

L
T = V (5.5.9)

The initial condition for P is
-- n u --- l- --- -- - -- --- --- -

Pl (0) = 0 (5.5.10)

The solution of Eq. (5.5.8) subject to Eq. (5.5.10) is

-A t

f t Aer *]p] (t) = e 1 e] Lb~T <1>]] (e) - (,,] + ~) N] de
a

(5.5.11)

The release rate ~~ (t) of the nuclide from the waste, per unit

width of waste is

<1>; (t) = "1 (1:}W~b (5.5.12)

where w~ is the total initial amount of waste per unit cross-sectional

area of water flow in a fissure, b is the spacing of the fissure walls,

T is the leach time, and nl(t) is the time-dependent atom fraction of

the nuclide in the waste. For the mother nuclide

nl (t) = a -A.-tn1 e--I (5.5.13)

where nlo is the initial atom fraction of nuclide i in the waste form

by an initial total amount of nuclides in the waste form and nl (t)

is the time-dependent atom fraction in the waste.
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Substituting Eq. (5.5.12) into Eq. (5.5.11), we have

0
N1 - Alt * 1 -A1t

Pl (t) = T t e - N, (1 + A1T)(' - e )
(5.5.14)

where Nlo is the initial aqueous concentration of the nuclide that would

occur if there were no precipitate,
° ° . °

0 nl WT m,N = =-1 vT v (5 ~S;l5 )--

where mlO = nlOMo/bT is the initial release rate of nuclide i per unit

cross-sectional area of water flow. We now introduce the amount P,s(t)

of precipitate per unit surface area of waste at z = 0

L

P1S (t) = J P1 (t) dz = L P1 (t )°
(5.5.'6)

Multiplying Eq. (5.5.'4) by L and taking the limit of L -t- 0, we have

-A t
Pls (t) = v N,o tel * l (1

N, A,

-A t
e 1 ) (5.5.17)

This is equivalent to the solution presented for porous-flow transport

in our previous report (Pl).

We can now evaluate the aqueous concentration of the nuclide at the

waste. Since time is measured from the time at the beginning of

precipitation, the aqueous concentration remains at the saturated

concentration until the accumulated precipitate all dissolves. Then,

*
<Pl (t) = Nl t < t* (5.5.18)

where t* is determined from Eq. (5.5.14) or from Eq. (5.5.17) by setting
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P,(t) equal to zero.

T + O.

Note that Eq. (5.5.17) gives t* at the limit of

At t > t*, the following material balance holds for the aqueous

concentration of the nuclide at the waste surface

a<p
l+Ar" +1,., - 1 ,."at 1'+'1 :r '+'1 - bVT '+'1

t > t* (5.5.'9)
~-_.~.__.__._--

The initial condition ;s

*
<1>1(t *) = N1 (5.5.20)

The solution of Eq. (5.5.19) subject to Eq. (5.5.20) gives the time-

dependent aqueous concentration of the nuclide at the waste surface.

0 -A,t* r. -A,t' -(A,+ l)t' ] * -(Al+ l)t'
<P1(t') = N, e Le - e T + N, e T,

tl > 0 (5.5.21 )

where

tl = t - t* (5.5.22)

When T + 0, this equation reduces to

.,(t) = N 0 -A,t* -A t', e e' , t > t* (5.5.23)

This equation is equivalent to that derived in our previous report (Pl)

for the plane boundary condition for porous-flow transport. In this case

when the residence time approaches zero, the aqueous concentration of the
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nuclide at the waste surface has a discontinuous jump at t = t*. The

residence time usually is much smaller than the half life of the nuclide,

e.g., for L = 10 m and v = 10 mjyr, T = Ljv = 1 yr. This means that

Eq. (5.5.23) gives a sufficiently good approximation to the time-dependent

boundary concentration of a nuclide of long half life. For a nuclide of

very short half life, this approximation becomes less valid. When

T ~ 00, Eq. (5.5.19) reduces to a simple decay equation for the mother

nuclide in a stationary system. Also, from Eq. (5.5.8) and the initial

condition given by Eq. (5.5.10), we find that there no longer exists a

precipitate at the repository at t > O. If we consider the case wherein

a finite concentration Plo of the precipitate designated exists

initially, the solutions give a nonzero value for the concentration of

the precipitate

P, (t) = P 0 -Alt
1 e

* -Al t
- N, (1 - e ) , t < t *

0 t ? t* (5.5.24)

The aqueous concentration of the nuclide is

*
<Pl (t) =

J N,

t < t*

* -A, (t-t*)
t ? t* (5.5.25)Nl e ,
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where by solving for P,(tl) = a in Eq. (5.5.24) we get:
0

1 Pl
t* = - ln (1 + - )

Al Nl*
(5.5.26)

The boundary condition for the transport equations is, from

Eqs. (5.5.18) and (5.5.21)

<Pl (t) =
*

N, t < t*

1
~A (t-t*) -(A + -)(t-t*)1 1 T

( )clle + c12 e , t > t* 5.5.27

where

ell = Nl0 e -A1t* ,
*

c12 = N,
N 0 -Alt*1 e (5.5.28)

5.5.3 Solubility-limited Transport With a Step 8elease

The space-time-dependent concentrations of the nuclide can be

obtained by solving the basic transport equations subject to the initial

conditions given by Eqs. (5.5.4) and (5.5.5) and the boundary conditions

given by Eqs. (5.5.6) and (5.5.7) with the function given by Eq. (5.5.27).

The solutions are

-ZA1
* v

Nl(z,t) = N, e h(t-z/v) El(z,t,a,z) -

-ZA1

- Nl* e v h(t-t*-z/v) El(z,t-t*,alz) +

{

-A (t-t*)

(
a z

)+ h(t-t* - ~) ell e 1 erfc 1
2/t-t*- z/v

+ C12exp[:T - (Al+~)(t-t*) J. El+(z, t-t* ,alz )}

+

(5.5.29)
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-ZA
- ,

* V
[

z
M, (z ,y , t) = N, e h(t - v) E, (z ,t ,a1z + b, y) -

- h (t-t* - z/v) E1 (z,t-t*, a1z + b1Y)] +

{

-A (t-t*) a z+b y

+ h (t-t* - z/v) ell e 1 erfc ( 1 1 .) +
2/t-t*-z/v

+ C12exp [vzT - JA+~)(t-t*) J. E/ (z, t-~*,a1z-+~y~T-- ~~.5.~-O~ u --

where

a = 2£D1 fK,
, bvJ ~

(5.5.31)

b =1 [5
D,

(5.5.32)

The functions P, (t;a), E,(z,t;a), and E,+(z,t;a) are given by

2
a

P1(t;0.} = 0. e- 4t - A1t
2g-

(5.5.33)

00

E1(z,t;0.} = ~ f 0.

2

e- Tj2 - A10.
4T)2 dT) (5.5.34)

2/t -z/ v

E~(Z,t;o.) = ~ ! 00 0.

2

2+~
e-T) 4 T) dT) (5.5.35)

2/t-zl v
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The function E, (z,t;a) can be reduced in terms of the complementary error

function with the aid of the formula:

J
-a2x2 - b2

2 liT 2ab b -2 b b
e x dx = 4a [e erf(ax + x) + e a erf (ax - x)]

. - 1

{
ahl

[
a + 2(t - z/V)v'Al

]El(z,t,a) - f e erfc
. 2/t-z/v

-ahl [a - 2(t - z/ v) v'Al

] }
+ e erfc

2 v't-z/v '

When T ~ 0, the solutions can be simplified as

* - A~Z

[N, (z ,t) = N1 e h(t - z/ v) E, ( z , t , a, z) -

- h (t-t* - z/v) E, (z,t-t*,a,z) ]
q,Z

- A, (t-t*)h(t-t*-z/v) erfc (2/(t-t*-z/v
Cll e

+

- A z
* +

[M,(z,y,t) = N, e h(t-z/v) E, (z,t,alz+blY)

- h(t-t* -z/v) E,(Z,t-t*,a,z+b,y)]
+

- A (t-t*) a z+b y+ C
" e 1 h(t-t*-z/v) erfc ( 1 1 )

2/t-t* -z/ v

(5.5.36)

(5.5.37)

(5.5.38)

(5.5.39)
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5.5.4 Solubility-limited Transport With a Band Re~

Let T be the time of duration of the release. The function ~l(t)

for the band release can then be written as

1
* * -(:\ +--:-)t

CP,(t) = Nl [h(t) - h(t-t*U + N, e 1 T h(t-t*) +

* ,
0 -A t -~ (t - t *) - (:\1~)( t..:t *)

+ N, h( T- t *) e 1 (e 1 - e ~ T )

[h(t-t*) - h(t-TU (5.5.40)

The solutions are

- f'l z
* v

[ \ ~
N,(z,t) = N, e h(t-z/v) E,(z,t,alz) - h (t-t* -z/V)X E,(z,t~t*~alzU

~ 1 z- tl +- ) + -
, T VT* +

+ N, e h(t-t* - z/v) x E, (z,t-t*,a,z)

0 -:\, t ~ z a1z
+ N e h(T-t*).~(t-t* - -) x erfc ( )

1 v 2it-t*-z/v

alz
- h(t-T-z/v). erfc ( )] +

2/t - T- z / v

+ Nlo h(T-t*). exp ~ Alt - + (t-t* - z/v)]. [h(t-T-Z/v)x

x E,+(z,t-T,a,z) - h(t-t* - z/v) El+ (z,t-t*, alz)]

(5.5.41 )
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A1z
* -Yfj

M,(z,y,t) = N, e Lh(t-z/v) E,(z,t,alz+blY) - h(t-t*-z/v)x

1
* - A,t- - (t-z/v)

x El(Z,t-t*,a1z+b1Y)] + N, e T h(t-t*-z/v)x

x E,(z,t-t*,a,z+~y) + N,o e- ~\(T-t*{h(t-t*-Z/V)X

a, z+b1Y a, z+b,y

]x erfc ( ) - h(t-T-z/v). erfc ( ) +
2/t -t *-z/ v 2It -T-z/ v

+ N,oh(T-t*) exp[- A, - ~ (t-t*-z/V)] . [h(t-T-Z/V)X

+ +

]x E, (z,t-T,a,z+b,y) - h(t-t*-z/v). E1 (z,t-t*,a,z+b,y)
(5.5.42)

when T + 0 the solutions become

* - A~ z [Nl(z,t) = N1 e h(t-z/v) E,(z,t,a,z) - h(t-t*-z/v)x

]
0 - A,t

[x E1 (z,t-t*,a,z) + N, e h(T-t*) h(t-t*-z/v)x

a, z a z ]x erfc ( ) - h(t-T-z/v). erfc ( 1 ) (5.5.43)
2/t-t*-z/v 2/t- T-z/v

A1z

M,(z,y,t) ~ N,* e- -V-[h(t-Z/V)
El(z,t,a,z+b,y) - h(t-t*-z/v)x

]
- A t

[x E, (z,t-t*,alz+blY) + N,O e 1 h(T-t*) h(t-t*-z/v)x

a z+b y aJ z+b,y ]Xerfc ( 1 1 ) - h(t-T-z/v).erfc( )
2/t-t*-z/v 2/t- T-z/v

(5.5.44)
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where t* is the solution to the following equation

0
Nl - A t*

[ ]
-A t*

--- e 1 t*-(t*-T)h(t*-T) = Nl *(l+ ---
.

1 ) (l-e 1 )
T . AlT

(5.5.45)

5.5.5 Aqueous and 'Precipitate Concentrations ofaNuclide at Repository

Figure 5.5.2 shows a variation of relative concentration of precipitate

at repository with the time measured from ,the beginni~g of precipitating.

These curves show the concentrations of 237NPwhich are calculated for

various assumed values of saturated concentration from Eq. (5.5.14) with

a parameter assumed to be unity. As is expected, the precipitate first

increases from zero with the time, reaches a maximum, and then decreases

to redissolve into the water with increase of the time. All of these

curves intercept zero concentration, the time axis. Each of these inter-

ceptions is corresponding to the time t* defined in Eq. (5.5.18). After

that the precipitate no longer exists. The figure shows that a lower

saturated concentration causes a higher concentration of the precipitate

and a greater time of t*.

The variation of aqueous concentration of 237Npwith the time for

various assumed normalized values of saturated concentration are given in

Fig. 5.5.3. The time t* when the precipitate has all dissolved is

determined from Eq. (5.5.14) by setting the precipitate Pl (t) equal to

zero. The concentration of the nuclide at the waste surface remains
*

constant at Nl until the time t* decreases almost discontinuously at

t = t*, and then decreases smoothly subject to the exponential function

as given by Eq. (5.5.23). The concentration jump at t = t* is attributed

to the resident time, T assumed here to be extremely small compared with
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the inverse of the radioactive decay constant of the nuclide. For

T « l/A, ,Eq. (5.5.23) is a good approximation for the time-dependent

concentration of the nuclide with precipitation. For a short-lived

nuclide, Eq. (5.5.23) becomes less exact, and the exact solution

Eq. (5.5.27), which gives a continuous concentration profile at t = t*,

should be used.

5.5.6 Ef.fect of Limited Solubility on fissure-flow Transport

Relative concentrations of 237NPfor step release calculated from

Eq. (5.5.29), with different normalized values of the solubility concen-

tration, are shown in Fig. "(5.5.4). The solid lines show the concentra-

tion profiles for transport with solubility limit and broken lines show

those without solubility limit. Two typical cases, with the retardation

constant assumed to be Kl = 10000 and with Kl = 100, are considered. The

pore diffusivity and the other relevant parameters are listed in the

figure. For this case with no precursor, precipitation occurs only at

the waste surface, causing a decrease in the aqueous concentration of -the

nuclide over the whole range of migration space. The concentrations

shown by the broken lines for Kl = 10000 and for Kl = 100 are reduced to

a lower concentration by a factor almost equal to the ratio N,o/Nl* of

the maximumpossible initial concentration to the solubility concentration.

However, because of the accumulated precipitate, the aqueous concentration

at the saturated level can persist at a greater time than expected when

neglecting the limited solubility. The space-time concentration surface

is shown in Fig. 5.5.5.
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transport by porous flow, assuming the same porosity as the fractured

medium excluding the main fissure. As is already discussed in section 5.2

for transport without solubility limit, the porous-flow model gives an

overestimate of the retardation capacity for transport with a larger

retardation coefficient and an underestimate of the retardation capacity

for transport with a smaller retardation coefficient. In concluding,

precipitation of the nuclide at the repository has two important effects,

one is to reduce the maximumconcentration as well as the local concentra-

tion of the nuclide and the other is to shift the concentration band at

a given distance to a greater time.

5.6 Transport of a Radionuclide in Multi-Layered Fractured Media

Fissures and micropores in fractured media usually form a geometrically

complicated matrix with layered solid phases of different geophysical

properties, and it is important to analyze radionuclide transport in

layered fractured media. We here consider the transport of a mother nuclide

through a series of many planar fissures, each bounded by surfaces of

rock of different physiochemical properties.

5.6.1 Formulation and Analysis

Consider the transport of a mother nuclide through series of fissures
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of different interstices, as shown in Fig. 5.6.1. Let us designate the

fissure of interstice mb and the surrounding rock medium, located between

distances z=z l and z=z as, the mth fissure and mth medium, respectively.m- m

Wetake a distance z from the waste in the flow direction and the distance

my from surface of the mth fissure in the mth rock medium. If we assume

that the concentration of the nucl ide in the sol id phasf;ni_~__~_quilibrated

locally with that in the water phase in the micropores, the transport

equations which govern the concentrations of the nuclide in the mth fissure

and micropores are given by, respectively

m
amN a N, 2 m

, m + A mN = - - J 1at+vaz 11mb
(5.6.1)

m 2mMamMl
Dl a 1 + Al m~~ = 0-+- 2

at mKl amy
(5.6.2)

t > 0, z > 0, y > 0, m = 1,2,3, ...

where mN,(z,t) and mM,(Z,y,t) are aqueous concentrations of the nuclide

in the mth fissure and micropores, respectively, mOl' is the pore molecular

diffusivity, mKl is the sorption retardation constant, mv is the water

velocity, and mJl is the diffusive flux of the nuclide at surface of the

mth fi ssure.

amMlm D -
mJ, = - £ , amy

(5.6.3)
m
y = 0

m = 1,2,3 ...
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Initia' conditions are

mN,(z, 0) = 0, z > 0, m=',2, ... (5.6.4)

~, (z, y, 0) = 0, z > 0, my > 0 m = 1,2, ... (5.6.5)

From the equation of continuity, assuming a constant density of

water,

m-1 m-1 m m
v b = v b m = 2,3, ... (5.6.6)

Also from the mass conservation of the nuclide, assuming transport without

'ongi~udina' diffusion

m-'N, m-'v m-'b = mNmv mb , m = 2,3, ... (5.6.7)

The boundary condition for mN,(z,t) at z = zm-l is given by

mN,(Zm-l,t) = m-' N (zm-" t) , m= 2,3, ... (5.6.8)

The boundary conditions for mMl(z,y,t) are

mMl(z,O,t) = mN,(z,t) m= 1,2, ... (5.6.9)

"M,(z ,00,t) = 0 , m = 1,2, ... (5.6.10)

Let us introduce a new variable:

mz= z-zm-l '
m

Z - Z , > Z > 0
m m- (5.6.11)



Then the transport equations can be rewritten as

,:\mN amN 2 m
0 1 m 1 + A mN = - - J 1-+ v--m- '1 fibat a z

m 2mMa"M
, Dl a , + A' mM1= 0+- 2

at mK, amy

t > 0, my > 0, z - z 1 > mz > 0, m = 1,2, ...m m-

The initial and boundary conditions become

mN1 (mz, 0) = 0, z - Z mm m-1 > z > 0

m m m
)M, ( z, y , 0 = 0, Zm - zm-l> Z > 0,

m
y > 0

m m-1
( )Nl (0, t) = Xl t , t > 0

m
(
m

) - m
(
m

)M1 z,O,t - N1 z,t, t > 0, zm-zm-1 > mz > 0

mM1 (mz ,00, t) = 0,
mz - z 1 > z > 0,m m- t > 0

where the function m-1x(t) is defined as

m-l
x(t) =

<Pl (t ) , t ~ 0, m = 1

m-1N1(zm-1,t), t > 0, m = 2,3, ...
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(5.6.12)

(5.6.13)

(5.6.14)

(5.6.15)

(5.6.16)

(5.6.17)

(5.6.18)

(5.6.19)
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The system of Eqs. (5.6.12) (5.6.19) is the same as the equations for the

transport of a nuclide in a single fissure as presented in section 5.2.

Therefore the solutions in that section can be directly applied to this

problem. The solutions are given in the recursive form by

1.1- m
m m m Z

Nl ( z, t) = e v

m
Z

f
t - mv m

m-1 . z m m
X1 (t -T - m) P1 (T; a 1 z)d T

0 v
(5.6.20)

~l (mz,my, t )

1.1 m
- mmz

j
. t- mZ

= e v .. vm-1

0

m
(

Z
) (

m m m m )Xl t-T- m P1 T; al z+ b1 y dTv

(5.6.21 )

where

2 m mO mKm £: 1 1a = -
1 mbmv mO1

(5.6.22)

p;;
mb, =j ~ (5.6.23)

The function P,(t;a) is given by Eq. (5.2.19), i.e.,

2ex---At
P1(t; a) = a e 4t 1

2ht3
(5.6.24)

5.6.2 Transport in a Two-layered Fractured Medium

Equations (5.6.20) and (5.6.21) are still in recursive form. Wenow
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apply these solutions to the transport of a nuclide in a two~layered

fractured medium for three different release modes

i ) Impulse release

When the function ~l(t) in Eq. (5.6.19) is given by the impulse

release function, the solutions become

A,- - z

\(z,t) = (TN1O) e lv Pl(t - f;\lz) h(t - -r) zl>z>O (5.6.25)v v

Z-zl Z1
- A (- + -) z-z, z, 2

2N (z,t) = (TN 0) e 1 2v lv P,(t - ~ - r-; a,(z-z,) +l' v v

, z-zl z,
a,z) h(t - ~ - ,-), Z2>z>z,V v

(5.6.26)

Al- - z,, 0 v Z' 11 z
M,(z,t) = (TN, ) e P, (t -,; a,z+ b, y) h(t - ,-)v v

,
y>O, z, >z>O (5.6.27)

z-zl zl
- A (- + -)

2 0 1 2v' z-z, z, 2
Ml(z,t)= (TN,)e VP1(t-~-,-; a,(z-z,)+v . v

z-z, 2, 2

lalz+2b12y) h(t - ~ - ~), y O,z2>z>zl (5.6.28)
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ii) Step release

For a step release, the solution for the concentration of the nuclide

in the fissure is given by

(

1

)

1 0 - ~ t z al z

Nl(z,t) = Nl e (t - 1) erfc . ,zl>z>OV ,It-I
v

(5.6.29)

2 0 - 1.1t z-z, z,
N,(z,t) = N, e h(t - ~ - r-)v v (

2al(Z-Zl)+lalzl

)
erfc ,

I z-zl zl2 t-- - -
2v lv

z2>z>Z, ( 5 . 6.. 30 )

The concentration of the nuclide in the micropores is given by

(

l 1 1

)
1 0 - Alt alz+ b, y ,
M,(z,t) = N, e h(t .- r) erfc . y>O,z,>z>O

V 2~t-z/v

(5.6.31 )

- Alt z-z, zl2M(z,t) = N, o e h(t - ~ - r-), v v (

2 ,
a,(z-z , )+ a z +2b 2

)

erfc 1 1 1 Y

~ z-z z '2 t- --1- 1
2 ,-v v

2
y>O, z2>z>z, (5.6.32)

iii) Band release

The band-release solutions can be obtained by employing the super-

position theorem (H-l).



0-
Z -I" 10
+J

..
N-
z

c:
0-
0
....-
c:
OJ
U
c:
0
u

CV
>-
0
Q)
a:

104
1

-2
10

-3
10

Nucl ide; 237Np \\
. \
\ ., \
\ '
, \
\ '
. \
\ ', \
, .
. \
, .
. ,

I ,
.

,
.

I
.

I
.

I

two -Ioyer medium-.- sin9'e medium

'~I . 0.01 m2/yr

'K, . 100
'v . 10 m/yr
'b 18 0.01 m
'E . 0.01

10

2DI 1:0.001 m2f1r

21<tI: 1000
Zy . 20 m/yr

2b I: 0.005 m
ZE I: 0.001

Medium I
.

Medium 21
... .

I.
I.
I

104 105

XB L 827- 6216

Fig. 5.6.2 Concentration profiles of 237Np in a two-layered
fractured medium.

..

I, =500 m

102 103
Distance Z, m



59.

5.6.3 Migration Behavior in a Two-Layered Fractured Medium

The aqueous concentration profiles of 237Np in a two-layered frac-

tured medium with a contact surface at Z = zl (= 500 m) for a step release

are compared in Fig.. 5.6.2 with the concentration profiles of the nuclide

in transport in a single layered fractured medium. The solid lines show

the concentrations of the nuclide in the two-layer medium and the broken

lines show the concentrations in the single-layer medium. (The dashed

line which connects the solid line in each phase shows an expected

asymptote. Numerical integration of Eq. (5.6.30) gives a less exact

value for a smaller value of Z - zl.) The assumed parameters are included

in the figure. Because of the assumption of transport without dispersion

in the fissure, the nuclide at a distance less than Z = zl is not affected

by the existence of the second layer. Here we assume a greater water

velocity and a smaller pore diffusivity in the second layer, so the

nuclide can migrate a greater distance than would be predicted for in a

single layered medium, even though there is a greater assumed value of

the sorption retardation constant for the second layer.

5.7 Transport in an Infinite Diffusion Field With Nonequilibrium Sorption

Analytical solutions for transport in a porous medium without local

chemical equilibrium of radionuclides in the liquid and solid have been

presented in our previous report. In fissure-flow transport, as described

in section 5.2, the retardation effect originates not only from the

sorption process but also from the molecular diffusion into and out of

micropores within the rock medium. Here the effect of nonequilibrium

sorption becomes more important than expected in porous flow transport, even

for the transport of long-lived radionuclides. In this section, we consider
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the more general case of fissure-flow transport with nonequilibrium

sorption in micropores.

5.7.1 Analysis

The governing transport equations to be solved are from Eqs. (5.1.18)

through (5.1.20)

aN, aN, . 2
at + v az + A, N, = -i) J, (5.7.1)

aM, a2M,
at - D, -a:2 + A,mM, - K,mS, = 0

y
(5.7.2)

as, .s s
at + A, S, - K, M, = 0 (5.7.3)

(5.7.5)

k am

~ = A1 + ( 1- c) KD 1
(5.7.5)

k a
m_~

K, - cKDl
(5.7.6)

KlS = kma1-£
(5.7.7)

t > 0, z > 0, y > a

where

k a
Am=).. +, 1 c
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and J, is given by

aMl

J 1 (z , t) = - 8 Dl W I y=0
t > 0, z > 0 (5.7.8)

The initial and boundary conditions are, from Eqs. (5.1.23) through

(5. , . 28)

N, (z,O) = 0, z > 0, (5.7.9)

M1(z,y,O) = 0, z > 0, y > 0 (5.7.10)

51(z,y,O) = 0, z > 0, y > 0 (5.7.11)

N,(0 , t) = <P1(t ) ,
t > 0 (5.7.12)

t~l(z ,0 , t) = N1(z , t), t > 0,
z > 0 (5.7.13)

Ml(z,oo,t) = 0, t > 0, z > 0 (5.7.14)

The solutions of these equations can be obtained by the method of Laplace

transform. Taking the Laplace transform of Eqs. (5.7.1), (5.7.2), and

(5 . 7 . 3), we have

dt{ sH,:v + 1... 'J = a' + - N1 bv'dZ v (5.7.15)
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2'\i
'\i d Ml m '\i m '\i

s Ml ~ Dl -'2 + Al Ml - Kl 51= 0
dy

(5.7.16)

'\i S '\i S '\i

s 51 + Al 51- K1 Ml= 0 (5.7..17)

Eliminating the transformed concentration of the nuclide in the solid

--P ha_sgfrol11~Eg~~~~_.1_--19J~a n d__Jp---LJ11~Cll1 d~Q1yi Jl9__t~~c!jfJtJ s i QrL~_g!J~-tJQIL - un_un.- --

subject to the boundary conditions given by Eqs. (5.7.13) and (5.7.14),

we can find the transformed solution for the concentration of the nuclide

in the micropores

- ...L

'\i - '\i vTIl
M,(z,y, s) - Nl(z, s) e

K m s

S+A1m - 1 K1
(s+A1 s)

(5.7.18)

and the transformed diffusive flux:

J
K mK s

'\i m 1 1

J1 (z,s) =E; AilN1(z,s) s+A1 - (S+A1S)
(5.7.19)

- ..L
.JD1

K m s

S+A1m- 1 K1
D1(s+ Al s)

Also from Eq. (5.7.17)

'\i S '\i e
Sl (z,y, s) = K1 Nl(z , s ) s+A s1

(5.7.20)

Substituting Eq. (5.7.19) into Eq. (5.7.15) and solving the

resultant equation with the boundary condition given by Eq. (5.7.12), we

have

'\i '\i

(

A +5 ~ K mK s

)N1 (z,s) = <Pl(s)exp - \ z - dlz ~S+Alm- :+A\1
(5.7.21 )
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where dl is the constant defined by

dl = 2E:1D.] (5.7.22)

The transformed function of the form similar to Eq. (5.7.21) has been

studied by Lapidus and Amundson in their analysis in adsorption of species
- "-~--~ ~---------

in bed (L-l). In order to find the inverse of Eq. (5.7.21), we use the

following general formula for the Laplace transform:

L {~\~-Uu) VJ2v[daut- al] f(U)dU} = ~2~+1 g(s+~)

(5.7.23)

where g(s) is the trans formed funct i on of f (t) with respect to t,

L [f (t )] = g(s ) (5.7.24)

Especially, when v = 0, we can write

t

L {{Jo [2Jaut- au2] f(U)dU} = t g(s+~)
(5.7.25)

From the displacement rule,

s t "

L {e-Al t ~ Jo [2~au(t-u>J f(u) du }

= 1 "( +A s + a )s 9 s 1 c

s+Al s+Al

(5.7.26)
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m sI K, K,

Let - d,zyS+A,m- s+A,
H(s) = e

(5.7.27)

For a direct application of Eq. (5.7.26), we split the function g(s)

into two parts, thus
--- ----------------------

s
H(s) = 1\, h(s) + s h(s)

(5.7.28)

where the function h(s) ;s defined by

- d z
e 1

2
(

m s m 5 m 5
s + 1\1 +A, ) s +A, 1\1 -K, K,

5+1\ 5
1

s+A s1

(5.7.29)h(s) =

Nowconsider the function g(s) which takes the form:

g(s) = e- d,z4s+c (5.7.30)

of which the inversion is

d,z

f(t;d,z) = J 32 1ft

2 2

d,~ - ct
e (5.7 .3' )

Then

s+1\ s1

2 5 S
s +(21\, +c)S+(A, )

-dzV
1 +1\ s

s ,
s

s+1\,

S

+c1\., +a
sa)

g(S+A, + S+A,S = e (5.7.32)
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Equating Eq. (5.7.32) with Eq. (5.7.29), we find

a =- K mK S, ,

(5.7.33)

m S
c = A, - A,

- -

Noting that the relation amongEqs. (5.7.30)~(5.7.32), we can write the

inverse of function h(s) directly from Eq. (5.7.26)

L-l {h(S)}
t

- A,st f d1z
= e . rJ

. 0 2~1TU-

2 2 s

J
1

d] z - (A m-A])U f2 K mKmu(t-u)J du4u 1 . 10L 1 1e

= F(t;dlz) (5.7.34)

where Io(x) is the modified Bessel function of zero order. Also since

F(O;d,z) = 0,

L-] { S h(S)} = dF(t;d]z)

- A St1 s
= e f ( t ;d, z) - A, F( t ; d, z) + G(t ;d, z ) (5.7.35)

where the function f(t;d,z) is given by Eq. (5.7.31) and the function

G(t;d,z) is given by
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A s

J
t J m s d 2 2- 1 t K K u d z - 1 z - m s

G(t;d,z) = e .'" e 4u (A, -A, )u [ J m s ]
0 {t-u 2i7fu3 I, 2 K, K, u(t-u) du

(5.7.36)

where I,(x) is the modified Bessel function of first order. From

Eqs. (5.7.34) and (5.7.35), we have the inversion of the function H(s),
..- ---~_._-_._------------_._----_._---------------_._------------------

. A St

L {H(S)} = e ' f(t;d,z) + G(t;diz)
(5.7.37)

Applying the equation directly to Eq. (5.7.21) and using the shift

rule, we can finally obtain the solution for the aqueous concentration

of the nuclide in the fissure

_iz
J

t-~

[
-AST

]N1(z , t) .= e v CP, (t -T- ~) elf ( T ;d1z) + G(T;d1z) dT
0

(5.7.38)

The concentration of the nuclide in the micropores is, from Eq. (5.7.18)

( . - A ST

M,(z,y,t) = In. N,(Z,t-T)[e ' f(T;e,y) + G(T;e,y)] dT0
(5.7.39)

where

1

e, ={D]
(5.7.40)

Also, the concentration of the nuclide in the solid phase is

(t - A ST

S,(z,y,t) = K,s~ e ' M,(Z.y,t-T)dT0

gi ven by

(5.7.41)
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Transport with an Impulse Release5.7.2

The solution for the concentration of the nuclide in the fissure,

Eq. (5.7.38), involves a double integral term and is not suitable for direct

numerical calculations. However, if the boundary value of the concentra-

tion at the repository is given by the impulse function given by

Eq. (5.1.18), the solution can be simplified, and is given by
-- --- -.-------

S
(

Z
)

[
-A t--

]Nl(z,t) = (TNlo) h(t -~) e 1 v f(t- ~;dlZ)+ G(t- ~;dlz) (5.7.42)

where the functions f(t;dlz) and G(t;dlz) are given by Eqs. (5.7.31) and

(5.7.42). The solutions for the concentrations of the nuclide in the

micropores and in the solid phase are given by Eqs. (5.7.39) and (5.7.41),

with substitution of Eq. (5.7.42).

The concentration profiles of 237Np at t = 10,000 yr for transport

with-nonequilibrium sorption, which are calculated from Eq. (5.7.42) are

shown as the solid lines in Fig. 5.7.1 for different assumed values of the

mass-transfer coefficient kmand the interfacial area ~ per unit volume.

Each nonequilibrium curve shows a higher concentration at greater

distances than the concentration given by the equilibrium curve, whereas

the nonequilibrium concentration is lower at the smaller distances. For

the migration ti.mes considered here, the "seed pulse" has moved with the

water velocity to a distance of 105m. Therefore the long concentration

tail results from nuclides emerging from the micropores by molecular

diffusion. The penetration thickness within the micropores is greater

for nonequil ibrium sorption, resul ting in a smaller concentration gradient

and a smaller diffusive flux of nuclides returning to the fissure in the
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region of the concentration tail. The effect at the greater distances in

the region of the leading edge of the concentration band, non-equilibrium

sorption promotes faster penetration into the mic~opores, thereby lowering

the concentration in that region. As seen from the figure, nonequilibrium

sorption spreads the concentration profile over a greater distance than

for equilibrium sorption, resulting in a lower maximumconcentration.- - - --_uu ~ ----------

As the mass-transfer coefficient ~ncreases, the nonequilibrium concentration

curve approaches the equilibrium curve.

Shownin Fig. 5.7.2 is the variation of the concentration profile of

237NPwith migration time. The pore diffusivity and the mass-transfer

coefficient are assumed to be D1 = 0.01 m2/yr and kma= 10-4 l/yr. The

time required to reach equilibrium depends mainly on these two parameters.

For a greater diffusivity, the nonequilibrium characteristic is governed

predominantly by sorption, whereas for a smaller diffusivity, the transport

is governed by diffusion process. In this assumed case, the nonequilibrium

effect persists until a time of almost 50,000 yr.

5.8 Transport of a Multi-Member Nuclide Chain, Convective Transport in

Micropores

In the foregoing sections the fissure-flow transport of a single

mother nuclide has been discussed. In evaluating the biological hazard

due to long-lived actinide elements which are possibly released into a

migration field from high-level waste repositories, it is desired to provide

the analytical solutions for the transport of a multi-member nuclide chain,

in order to estimate the chromamgraphic behavior of daughter nuclides.

Amongthe nuclide chains contained in radioactive wastes, the following
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nuclide chains are considered to be important, because of the relatively

high biological hazard of the radium daughters.

246 242p 238
U 234U 230Th

226Rcm-+ u -+ -+ -+ -+ a
242mAm-+ 242Cm ~

237Np -+ 233pa -+ 233U -+ 227Th -+ 225Ra

i ng sect; ons thetranspoY't of -amult i -member--n-uc1_ideJ:hain-irL~~n--~--------------

fractured media is considered. Numerical demonstration of the solutions

applied to three-member nuclide chains are also given.

As one of the simplest cases, we first consider the fissure flow

transport of a nuclide chain with convective transport of the nuclides

in the micropores.

5.8.1 Formulation and Transport Equations

Consider water flow in the z-direction in an infinite plane fissure

of interstice b. The fissure is bounded by surfaces of rock of porosity---~ ~

8, through which the water can penetrate outwards in the transverse

y-direction at a constant velocity w, ~s shown in Fig. 5.8.1. Because

of the water flow through the medium, the water velocity v in the fissure

is space-dependent and is specified by the conservation equation:

av - 28W

az--b (5.8.1)

Thus the water velocity is given by

v(z) = Vo - 2~wz (5.8.2)

where Vo is the water velocity in the z-direction at the repository site.
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The transport equations which govern the concentrations of the nuclide

i in the main and micropore fissures are given by, with assuming local

sorption equilibrium in the micropore fissures

aN. aN . 21 1
---;:;-t + v - + A.N. = - £ -b wN. + ).. I N. 10 az 1 1 1 .., - 1- (5.8.3)

--~--

aM . aM . A. 1 K. 11 W 1 1- 1-
-;;-t

+ -
K -;;- + A.M. = K M'-l

0 i oy 1 1 i 1
(5.8.4)

t > 0, z > 0, y > 0, i = 1,2,3, ...

where N;(z,t) is the concentration of the nuclide i in the main fissure,

M.(z,y,t) is the concentration of the nuclide i in the micropore fissures,1

Ai is the radioactive decay constant, and Ki is the sorption equilibrium
c oe f f i c i en t .

The initial conditions are given by

N; (z,O) = 0, z > 0 (5.8.5)

Mi (z,y, 0) = 0, z > 0, y > 0 (5.8.6)

The boundary conditions are

Ni (O,t) = ~i(t), t > 0, (5.8.7)

Mi (z,O,t) = Ni (z,t), t > 0, z > 0 (5.8.8)

where the function ~i(t) is the time-dependent concentration of the nuclide;
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at the repository, given in section 5.1.2. The M.(z,y,t) tends to zero1

as y -+- 00.

5..8.2 Solutions to Pore Convection Transport

Since Eqs. (5.8.3) and (5.8.4) are related to each other only by the

. -I)ouncfary co-ncrrrron-gw en-by-Eq-:-~~8-~-Err-anda re-nofc.oupTe-a-;--fney-- can--be

solved independently.

Nowwe introduce a new variable Zl defined as

z' = f Z 1
VTZTdz ,

0

Z 1 > 0, z > 0 (5.8.9)

then Eq. (5.8.3) becomes

aN. aN. 2-
t' + ---+ + A. N. = - E: -b w N. + A. , N , . , t > 0, Z 1 > 0a az 1 1 1 1- 1- (5.8.10)

The initial and boundary conditions for Ni(z' ,t) are, from Eqs. (5.8.5)

and (5.8.7)

N.(z',O) = 0,1
Zl > 0 (5.8.11)

Ni(O,t) = cp;(t), t > 0 (5.8.12)

The solution for the space-time-dependent concentration of nuclide

i in the fissure can be obtained by Laplace transform, and is given in

the general form:



- ~ ;,+2~W)Z'
N.(z' ,t) = e1

;-1 . 1 ;

+2: l~ (Xq>L
j=l q-J t=j

72.

h(t-z') cf1;(t-z')

- (A+ ~)z't b
e. cf1j(t-z')h(t-z')1

rr. (Ar-Ao)
r= J 7v
rt£

(5.8.13)

- ---~- --~---~ ~ ~ -.-

In the original coordinate system, the solution becomes

- (A;+ 2~W)q(z)

Ni(z,t) = e

i-l . 1 i

+ 2: ~ (Xq> L
j =1 q=J t= j

where

q(z) = - ~ ln (1- 2swz)2sw bv0

h(t-q(z)) cf1;(t-q(z))

- (At+ 2~) q(z)

e. h(t-q(z)) cf1j(t-q(z))1

1T. (fiy.- At)
r=J
rtt (5.8.14)

"

(5 .8. 15)

The system of Eqs. (5.8.4), (5.8.6), and (5.8.8) is just the same

form as that employed in analysis for the porous flow transport, 'with the

exception of a slight difference in the expression of the boundary condition.

Therefore, we can directly apply our previous solution for porous flow

transport (H-l) to this problem. The solution for the concentratiori0of

the nuclide i in the micropores is then given by
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- (A./w.)y
M;(z.,y,t)=e 11 N.(z',t-L)1 W.1

i -1 (j ) i - (AmiWm)y i (j)

I
t

+ L ~i L ~ L Q rm !!rm(t-T)Nj(z' ,T)dT
j=l m=j ~ r=j 0

rrm

--------.------ Q~-~~t§)------------------

where

w. = w/Ko, 1 (5.8.17)

. ;-1 AK

A(J) = 7T C r ~ )- 2 r=j Wr+1 r+ 1
(5.8.18)

B(j) = -ir (l - 1- )
m r=j wr wm

rIm

(5.8.19)

. 1D(J) = 0

- 1 ~ )rm 'fro (~r- -rmq=J
qlmlr

(5.8.20)

with

ArW - A W
~ = r m r
-rm W- W

m r
(5.8.21 )

The function.9. (t) is given by
rm

.9.r (t) = h(t- L - "'rm(t- L)m W ) e wmm (5.8.22)
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5.8.3 Transport With an Impulse Release

Whenthe function ~i (t) is given by an impulse release function

given by Eq. (5.1.17), Eq. (5.8.14) becomes

- (A; + 2~W) q(z)0
N.(z,t) = T N. e o(t - q(z))1 1

; - (Ai + 2~W)q(z)

(Aq) L'e . NjO o(t - q(z}) (5.8.23)
i=j 1r (Ar - Ai)

r=j
r:f 9-

shows that every concentration pulse travels along the

; -1 .

+TL :ri
j=l q=j

This equation

z-t 1ine given by t = q(z). Thus, if the removal mechanism of the nucl ide

in the fissure is only from convective transport, every nuclide can

migrate at the same velocity with no retardation. The only effect to

be expected ;s attenuation in concentration of the nuclide.

The concentration of the nuclide i in the micropores can be

obtained by substitution of Eq. (5.8.23) into Eq. (5.8.16), and is given by

- (\ / w.)y [
- (A. + 2 EW) q ( z )

]M;(z,y,t) = e' 1 T N;O e 1 b o(t - ~;- q(z)).

i - (A + 2EW) ( )

Le. Ji, b qz
~=j 1 (A' - A )7T. r 9-

r=J
r"l~

i -1 i (A i 2
+ T 1: ~(j) \' e- m/wm)Y \' D(j) [N ° - (;\,;+ ~W)q(z)

J=1 i~. ( . ) ~ - j e -9- (t-q (z) )J B. J r=j rm rm
m

i-1 . 11-

+ T L 1[. (Aq)
j= 1 q J

j -1 . 1J..
+ T L 11' (Aq)

k=l q=k

N.o o(t - ~ - q(z))
J wi

.
(

2EW
)J - Ak+ b q(z)

L: NkO e ; R (t-q(Z)) ]
£=k 7r (Ar - Ai) rm

r=k
r"l'l

(5.8.24)
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The characteristics of the solution given by Eq. (5.8.24) have already

been discussed in our previous reports (H-l, P-l).

5.9 Transport of a Multi-Member Radionuclide Ohain, Diffusive Transport

in Micropores

-- ID s~j:_0.Q!!_~-j_._?~_5. 7_L_~J}~lyj:i~~]_soltJ1J9n~__t()_j:Jl~_Jr~.D?j)~()Tj:--Qt._~-- - ---

single mother nuclide ;n a planar fissure, with diffusive transport ;n

micropores, are presented. In this section we develop the analysis for

the equilibrium transport of a multi-member nuclide chain in a fractured

media, with diffusive transport in micropores. Here we present the exact

solutions to the problem in recursive form. Because of mathematical

difficulty in reduction of the recursive solutions, the nonrecursive

solutions in general form are not given here. Mathematical approximations

yield nonrecursive formulae which describe the space-time-dependent

concentrations of the nuclide in the fissure and mic-ropores, as given in

the following section.

5.9.1 Recursive Exact Solutions

The transport equations of an arbitrary radionuclide chain with one-

dimensional fissure flow are, assuming local sorption equilibrium

(5.9.1 )

(5.9.2)

t > 0, 00> z > 0, y > 0, i = 1,2,3...

aN. aN. 21 1

+ v + AiNi = - b Ji + Ai-l Ni-l

2
aM. D. aM. A. 1 K. 11 1 1 1- 1-

at - Ki ay2 + AiMi = Ki Mi-1
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where N.(z,t) is the aqueous concentration of the nuclide i in the main1

fissure, Mi(z,y,t) is the aqueous concentration of the nuclide i in the

micropore fissures, v is the water velocity, Di is the pore molecular

diffusivity, Ki is the sorption equilibrium coefficient, Ai is the radio-

active decay constant, and b is the interstice of the main fissure. The

function Ji(z,t) is the diffusive fl_~~_~!~~~_fissu~_~--~~~~_~~~_12~~_~Y_~--------------

aM.

IJ.(z,t) = - £ Di a; y=o'
1 z > 0, t > 0, i = 1,2,3,

(5.9.3)

The initial and boundary conditions are

N.(z,O) = 01
z > 0 (5.9.4)

Mi(z,y,O) = 0, z > 0, y > 0 (5.9.5)

Ni (0, t) = <Pi (t), t > 0 (5.9.6)

M.(z,O,t) = N.(z,t),1 1 z > 0, t > 0 (5.9.7)

where the function <Pi(t) is the general time-dependent concentration

of the nuclide i at the waste repository. The function <Pi(t) is given

by Eq. (5.1.12) for a step release, by Eq. (5.1.15) for a band release,

and by Eq. (5.1.17) by an impulse release. The pore concentration

Mi(z,y,t) approaches zero as y approaches infinity.

Equations (5.9.1) and (5.9.2) are connected by Eq. (5.9.3), subject

to the appropriate initial and boundary conditions given by

Eqs. (5.9.4) - (5.9. 7), and can be solved by Laplace and Four;er sine
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transforms.
A

The transformed solutions for N;(Z,s) and Mi(z,w,s) are

given in recursive form:

s+Ai 2£D.z
TV TV --z-~
N;(z,s) = ~i(s) e v bv

K.
1

"i)":-(S+A.)
1 1

A.-1 l
z S+Ai 2£0 .-l,:j

- K-.u~~~ ~

+ + N;-1 (Z-I;,5) e- y- I; - bv1 D~ (S+A;) - ------------

o' 1 dl;

;-1 D. ; Alf)2sD; ~ ---L -rr: (0:-
+ ~ ~ AiKi £=J £j=l

i i

I I B~;
r=j q=j

qir

K
r

Or (S+Ar)j
Z S+).. 2£0
TV - 1 il,:

* -l,:-
s+D . Nj(z-I;,s)e v bV

qr 0

K.
)~ (s+)..

O. 1 de,:1

(5.9.8)

~ ~ D. ; A£K£ i 1 rv

Mi(z ,(D,s) = ~ ~ ~ (0-) "! (K )(DNj(z ,s)
J= 1 1 1 £- J . t r- J w2+ r (S+A )[) rr

(5.9.9)

where sand ware the transformed variables with respect to t and y,

re S pe c t i ve 1y .

Inversion of these equations gives the aqueous concentrations of

the nuclide i in the fissure and micropores in recursive form:



78.

Ai t

Ni(Z,t) = e- V ZJ <Pi(T-~) Pi(h;aiz)dr0

1
Z

J
t . A;

A' --l;
+ -1.:.l e v N. 1(z - l; , t - ~) P. ( t -T ; a ,.Z ) dr dl;v 1- V 1

0 0

.. ...1 . . . 1 ;

-- ~£ Di--~-TT-~- (At K~)L l: B~i
bv ~ Ai i ~=j ~ r=j q=J

j=l q,r
A .

1

. ~ Zit 10t-T1e - v I;; Nj (Z-I;;,T2- %) Pi (t-T ,-T 2;ail;;)

.Q r q ( T 1 ) dT 2 dT 1 d l; (5.9.10)

t

Mi(z ,y, t) =J Ni(~~t-T ) Pi (T ;biY )dT
0'

1 " t
i- 0 i A K 11 ..

1
-

+ L
.

;.1 "!. ( ~ ~) I )' B~l Nj(Z,t-T)Rrq(y,T)dT
j;:~1 1 1 R--J ~ r=j ~ 0

qfr (5.9.11)

where

2£[D;K; i = 1,2,3 ....,a. =
1 (5.9.12)

~
bi = ~ TIi

, i = 1,2,3, ... (5.9.13)
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and the function P. (t;a), Q q (t),1 r
2a---At

a e 4t i
P;(t;Ct) = r::- 3/2

2y 1T t

and Rrq (y,t) are given by

(5.9.14)

Qrq-( t )-=-1- --f~~ .J~~r-*r~*i;/( ~-;; ~,=-e~\~~X;-<[)~r-- .

{K; J - Art -0* t

}
~ rf~ er;t + JAr- o;r e qr .erf [/(Ar- O;r)tJ

*

\. > °qr
(5.9.15)

1 -
"2e ~

J * Kr I *

* Y (Ar-Oqr)Or Y + 2tY(Ar- Oqr)Or/Kr)
°qrt e erfc ( ~ 40rt/Kr

+ e-Y\I (Ar- O:r) ~~ Y - 2t Y(Ar- O;r) O/Kr)

]erfc ( y 40 t/Kr r

*
Ar > Dqr (5.9.16)

* 00 2

- ° t 2 ) (2 * Y Kr) *Rrq(y,t) = e qr y-TI exp - (A - 0 ) . - 2 d,A < 0r qr 40 r qr
y r

140rt/Kr
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with the constants:

. . 1Jl - -
Bq - dqr

+r: [dtrt=J
t1q
t1r

- e Id qr- qr

* *

]
-1

(Dtr - Dqr)

*
D
qr

-- ~ -~-~ ~ ~ ~--- ~_.__._-----------_._--------

eqr = AqKq/Dq - Ar Kr/Dr

dqr = Kq IDq - Kr lOr (5.9.17)

For the mother nuclide, Eqs. (5.9.10) and (5.9.11) give, for a step

release
- A t a z

N, (z,t) = Nloe 1 erfc(n'~ ,) h(t - ~) (5.9.18)

-A t a z+b y
M,(z,y,t) = N,o e ' erfc( 1 1) h(t -~)2yt-z/v

(5.9.19)

The equations are just the same as those given by Eqs. (5.2.25) and

(5.2.26). Equations (5.9.10) and (5.9.11) give the recursive expressions

for the space-time-dependent aqueous concentrations of nuclide i in the

fissure and micropores. Our remaining problem is to reduce the solutions

into nonrecursive expressions. However, because of the rather complicated

mathematical forms, it is difficult to derive nonrecursive solutions

directly from these recursive solutions. In the following section, the

approximations that allow us to derive nonrecursive solutions will be

presented.
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5.10 Approximate Solutions in Fissure-Flow Transport of a Multi~Member

Nuclide Chain, With Diffusion in Micropores

In the foregoing section, the exact solutions to the transport of

radionuclide chain of arbitrary length, in fractured media with one-

dimensional fissure flow, is given in recursive form. We here present

~~ ~-p~t_<?~lma~~__~q1Y_~JQnsin .which the radioactive decay- of an individlli:lJ ~---~-----

daughter nuclide in the micropore. liquid and in the solid phase are

neglected. For a chain of long lived radionuclides, the resulting solutions

can give a good approximation to the exact recursive solutions described in

the foregoing section.

5.10.1 Formulation

Consider an infinite plane fissure of interstice b in which water

is flowing in the z-direction at a constant velocity v. The nuclides

-released from the waste repository located at z = 0 migrate in this

fissure and can diffuse into the stationary water in the micropores. The

transport equation that describes the aqueous concentration of the nuclide

i in the fissure is

aN . aN . 21 1---
t + v --- + A' Ni

= - -
b J. + Ai 1 N. 1a az 1 1 - 1- (5.10.1)

t > 0, 0 < Z < 00, y > 0, i = 1,2,3, ...

where N.(z,t) is the concentration of the nuclide i in the fissure,1

J;(z,t) is the removal rate of the nuclide i at surfaces of the fissure,

and ~ is the radioactive decay constant of the nuclide i.
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For diffusive transport in the micropores, and neglecting the radio-

active decay of the nuclides in the micropores, the' transport equation is

aM. D. a2M .
-.l 1 i
at - r -y = a

1 ay
t > 0, y > 0, i = 1,2,3, ... (5.10.2)

where Mi(z,y,t) is the concentration of the nuclide; in the stationary

water in the micropores, Di ;s the pore molecular diffusivity, and'Ki is

the sorption retardation constant of nuclide i in the rock medium.

The diffusive flux Ji(z,t) which relates Eq. (5.10.1) to Eq. (5.10.2)

is gi ven by

aM.

J;(z,t) = - ED; a; Iy=o'
z > 0, t > 0, i = 1,2, ... (5.10.3)

The initial conditions are

N.(z,O) = 0,, z > 0, i = 1,2,3 ... (5.10.4)

Mi(z ,y ,0) = 0, z > 0, y > 0, ; = 1,2,3... (5.10.5)

The boundary conditions are

Ni ( a , t) = CPi( t) , t > 0, ; = 1,2,3, ... (5.10.6)

M;(z,O,t) = N;(z,t), t > 0, y > 0, i = 1,2,3, ... (5.10.7)
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where the functi~n ~i(t) is the general time-dependent concentration of

the nuclide i at the waste location. The M.(z,y,t) approaches zero as,
y approaches infinity.

5.10.2 Nonrecursive Solution

-- Let sbe-the LapTate~tra-ns-formea~va flaDIe~ wftnrespeet:---fo-tlme--t,-~ ~-- -------

the transformed solution of Eq. (5.10.2) subject to the initial and boundary

conditions given by Eqs. (5.10.5) and (5.10.7) is

'" ~
Mi(z,y,s) = N. (z )

- y~ IT; ~
, .,s e i (5.10.8)

The diffusive flux in the transformed form is then given by

IV ~ IV

J;(z,s) = £ D;~ ~rs N;(z,s)
--- (5.10.9)

Taking the Laplace transform of Eq. (5.10.1) with respect to t and

with respect to z with the aid of the initial and boundary conditions,

and solving the resultant equation with substitution of Eq. (5.10.9), we

have
~ A ~

IV ~.(s) + i-l "v

N;(p,s) = 1 -V Ni-l (p,s)
S+A.

p + --.l + a .r::-
v iYs

(5.10.10)

where p is the transformed variable with respect to z.

Let the solution take the form:

i

N;(z,t) = L N;j(z,t)
j=l

(5.10.11)
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the general form of N;j (p,s) is then

Nij{P,S) =

'V

<Pi (s )
s+)...

p + ---1. + a.(Sv 1

i=j

(5.10.12)

~i -1 ~ .''V-- ...u

~ .()) t1 ij CPj(s) ,i;lj~=J C. s+)..

r;. . ~ ~ sl-J .
P +-+anv ~J v N

with constants:

i 1)
Cij = -rr ( rs

Q r=j Ar~ +ll r~V~
r;f~

(5.10.13)

p r~ = ar - a~ ' r ~ ~. (5. 1o. 14)

).. )..~A =-1:.--
r~ v v (5.10.15)

2£D ~r r

ar = bV Dr
(5.10.16)

Inversion of Eq. (5.10.10) gives

N..(z,t) =
lJ

)...
1- - Z

e v <Pi(t- ~) " Pi (t;aiz) ;=j

i-1
7r.()..~)

Q,=J
iT-v

. i A ij
1 .Q,

~ ~ ~(~r£)
£=J r- J r=J

r;fQ r~Q,

)..~- - Z

e v .<Pi(t- ~),Gr~(z~t) ~ irj

(5.10.17)
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with the functions P.(t;~) andG n (z,t):1 rJV

2
~

- 4t
a. ~

P;(t;a) = 2r;- ~
(5.10.18)

I

- a2z2/4t 2
~ t --acS z +--0 - t - a z -- - - ---~--

. GrJt(z,t) = e r:;;t - °rJt e Jt r~ rJt erfC(2ft+ °rJt{t) (5.10.19)

and the constants:

.. i
( 1

1J - 7T - 0
AR, - q=j °qR,- rR,

rt- R,
qt-r

(5.10.20)

A n A - AR,
cS - rx' - r

rR, _~_n~rR,- v(av - aR,)
(5.10.21)

Substituting Eq. (5.10.17) into Eq. (5.10.11), we have the space and

time dependent concentration of the nuclide i in the fissure in the

nonrecursive form:

Ai t

N; (z , t) = e- v zf <1>; (t -T - ~) P; (T ;a i z )dT
0

. 1
i-1

1-

+ I. Jt~; (~Jt)
j=1 v-J

t t ;A~j
R,=j r=j 1T (}l

rt- 9.-r= j r
rt- R,

z
AR,

j
t- V

e- "Z ~.(t-T- ~)G n(z,T)dT
J v rJV

) 0

(5.10.22)
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The concentration of the nuclide i in the micropores is given by, from

Eq. (5. 10 .8)

t

M.(z ,y, t) = j N.(z , t -T) P. ('[ , b,.y) dr, "
0

(5.10.23)

where
~ - ~

~
~. - ~. -- --~ ~-~ --- --------.-

K.,b = -; D.
1

(5.10.24)

i) Solution for a step release

Whenthe function ~.(t) is given by the step release concentration,
given by Eq. (5.1.12), the solution becomes

. - A.Z
~ - A (t -~). -2

N;(z,t) = ~ bni e n v f2,n(z,t) e v
n=l

;-1 ; i

+2:rI
j=l R,=jr=j

rt-£

i -1
1T (A) . . .
q=j q A 1J J. £ \'
~ (llqR.) vi-j L.
q=j n=l
rt-£

b
At - A

n . - A - n.J!J.. e nt v Z £

fin .f, n(z,t)

2 At
)Z + 0 (t - ~)- - z a£z

bnj 0rR. (aR.°rR. rR. v v . erfc ( + °rdt-z/v
- 2 e 2/t-z/vA +0 nn rN

A ~A

b 0 - ~ ~ ~ 'n
- nj r£ . nt. v . z [

0

2 e r £ £n £n

. An + <5rR. [\ f, (z,t ) - f2 (z, t) ]
(5~lO~25)
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W
f 2 -(z,-t)

2 2
00 2 a£ z

_2 f
- Tj +"A -

-. --- - .1l - - 2

- {iT a 9.z e-- .-1fii-lfffnhit~Z7V' \5~1v.L7T --------

2yt-z/v

i;) Solution for a band release

The solution for a band release is given by, from the superposition

theorem (H-l)

-)..T

N;(z,t) = Ni(z,t;b;j)h(t)- Ni(z,t,bij e J )h(t-T) (5.10.28)

-"A.T

Mi(z,y,t) = M;(z,t;bij)h(t)- Mi(z,t,bij e J )h(t-T) (5.10.29)

where the functions Ni(z,t; bij) and Mi(z,y,t; bij) mean the solutions

for the aqueous concentrations of the nuclide i for step release with the

Bateman coefficient bij.

5.10.3 Accuracy of Approximate Model

In Table 5.10.1, the time-dependent concentration profiles of the
. 6 237

mother nucllde 2.l4xlO -yr Np, calculated from Eq. (5.10.25), are

compared with the exact profiles given by Eq. (5.9.18). The approximate

solution gives a fairly good approximation to the exact fiolution over the

where the function fln(z,t) and f2n(z,t) are given by

1"An/t-z/v)
"Aa 2z2

2- n £

1
Tj 2

n 4Tj
dTj h(t-z/v) (5.10.26)fl (z,t) = e

0
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Table 5.10.1 Comparison of approximate solution, neglecting radioactive

Distance

_._ffi.

o. 1
0.2
0.4
0.6
0.8
1.0
2.0
4.0
6.0
8.0

10.
20.
40.
60.
80.

100
200
400
600
800

1000
2000
4000
6000
8000

10000
'20000

decay in the micropores, with the exact solution for a

first-member nuclide 237Np, step release, K1=100, D,=O.O' m2/hr,

v=lO m/yr, b=O.Ol m, £=0.01.

a
Nl (z,t)/N1 x 10

456
t=l.DxlO yr t=l.DxlO.- yr -- - t=:..t.-OxlQ:--y.~--_._-------------

approx. exact approx. exact approx. exact.

9.967
9.965
9.963
9.961
9.959
9.956
9.945
9.923
9.900
9.878
9.855
9.743
9.519
9.295
9.072
8.849
7.751
5.696
3.941
2.556
1.550
0.04273
0.00000
0.00000
0.00000
0.00000
0.00000

9.967
9.965
9.963
9.961
9.959
9.956
9.945
9.923
9.900
9.878
9.855
9.743
9.518
9.293
9.069
8.846
7.746
5.690
3.934
2.552
1. 547
0.04261
0.00000
0.00000
0.00000
0.00000
0.00000

9.681
9.681
9.680
9.679
9.679
9.678
9.674
9.668
9.661
9.654
9.647
9.614
9.547
9.480
9.413
9.346
9.011
8.342
7.680
7.030
6.398
3.646
0.7239
0.07076
0.003268
0.000070
0.000000

9.681
9.681
9.680
9.679
9.679
9.678
9.674
9.667
9.661
9.654
9.647
9.612
9.543
9.474
9.405
9.336
8.991
8.307
7.633
6.974
6.337
3.588
0.7073
0.06889
0.003176
0.000067
0.000000

7.233
7.233
7.233
7.233
7.233
7.232
7.232
7.230
7.228
7.227
7.225
7.218
7.206
7. 194
7.183
7.172
7.119
7.009
6.895
6.776
6.655
6.01 3
4.650
3.349
2.246
1.401
0.04401

7.233
7.233
7.233
7.233
7.233
7.232
7.232
7.230
7.228
7.227
7.225
7.217
7.201
7. 184
7. 168
7.152
7.070
6.907
6.744
6.582
6.420
5.622
4. 134
2.864
1.864
1. 136
0.03354
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Fig. 5.10.1 Concentration profiles of the decay chain,

234U~ 230Th~ 226Ra, for a step release.
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entire range of migration distance, for times smaller than and comparable

to the half life.

5.10.4 Transport. of'Three~;ember Nucl ide Chain

The relative concentrations of a three member-nuclide chain

_~34~ -+2_~?~~_:_:~~_a_ilt t_= "LQ-,-Q_Q_9__l!:~___~_it~_--~9__Q~il_9_~!~I__!_~}_~_i~Jly pr_esent,

calculated from Eq. (5.10.25) for. a step release, are shown as the solid

lines in Fig. 5.10.1. The pore diffusivity of each nuclide is assumed

to be a constant value, Dl = 0.01 m2/yr. The other parameters used in

this calculation are listed in the figure. At this assumed migration

time of 10,000 yr, the water can travel in the fissure to a distance of

100,000 meters from the waste. Because of the surface retardation

effect due to the molecular diffusion into the micropores, however, all

of these nuclides cannot arrive at such a great distance during this time.

At 200 m from the concentration of 234U,wa:ste is attenuated a thousand...

fold below the concentration at the waste. Because of its relatively low

assumed retardation constant, 226Ra can migrate farther than its precursor

nuclides 234U and 230Th. The dashed lines show the concentration profiles

of the nuclide chain calculated from the porous-flow transport model. The

migration path length for each nuclide in porous-flow transport is less

than for fissure-flow transport. In fissure flow transport, the maximum

concentration for both parent and daughter nuclides occurs always at the

waste location.

In Fig. 5.10.2, the concentration profiles of 237Np~ 233U~ 229Th in

fissure-flow transport with step release and those in porous flow transport

with step release are compared.
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The concentration profiles of 234U~ 230Th~ 226Ra at t = 50000 yr,

with no daughter nuclide initially present, calculated for a band release

from Eq. (5.10.28), are shown as the solid lines in Fig. (5.10.3). The

dashed curves show the concentration profiles calculated for the porous-

flow transport.

in the fi gure.

Assumed values used in these calculations are included

The relatively sharp concentration band of the nuclides
--~~~ ~ ~---~ ~ ~--~~-----------------------

in porous flow transport is smoothed in fissure-flow transport by pore

diffusion, with a lower maximumconcentration than in porous-flow

transport. Even at a time exceeding the leach time, a nuclide can still

remain at the waste location, because of re-release of the nuclide from

the rock medium by molecular diffusion.
. . 237 233 229

Concentratlon proflles of Np~ U'~ Th for a band release are

shown in Fig. 5.10.4. For the nuclide 237Np, with a lower retardation

constant, the maximumconcentration occurs at a smaller distance than

expected in porous-flow transport, whereas for lb~daughter nuclides, 233U

and 229Th, with higher retardation constants, the maximumconcentrations

are found at greater distances than in porous-flow transport. The

maximumconcentration of each nuclide is an order of magnitude less than

in porous flow transport.
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a

a.1
ma.

1

A~j)-1

Aij£

b

b.1

mb.
1

b. .
J1

B(j)m

B(j )
~

Bj i
q

Bi(t)

c

c1

c2

Ci(t)

c~1

C. .
lJ

cij£

d

d1

Nomenclature

: interfacial area between stationary water and solid phases

width of waste repository/ constant defined by Eq. (5.7.33)

: constant defined by Eq. (5.2.16) or by Eq. (5.9.12)

: constant defined by Eq. (5.6.22)

: constant defined by Eq. (5.8.18)

: constant ..defined --byE q-:- {5 -:-11T:-2-o-) ~-----------------------

: interstice of main fissure (distance between planer walls)

: constant defined by Eq. (5.2.18) or by Eq. (5.9.13)

: constant defined by Eq. (5.6.23)

: Bateman coefficient, Eq. (5.1.14)

: constant defined by Eq. (5.8.19)

: constant defined by Eq. (5.8.19)

: constant defined by Eq. (5.9.17)

: Bateman function, Eq. (5.1.13)

: constant defined by Eq. (5.7.32)/ integration constant in

Eq. (5.5.36)

: constant defined by Eq. (5.2.29)

: constant defined by Eq. (5.2.30)

: relative concentration of nuclide i normalized by total

concentration at repository

: initial concentration of nuclide i at repository, Eq. (5.5.13)

: constant defined by Eq. (5.5.28)

: constant defined by Eq. (5.10.13)

: width of repository/ spacing of fissures

: constant defined by Eq. (5.7.22)



dqr
0

D.
1

mD.
1

: constant defined by Eq. (5.9.17)

: dispersion coefficient

: molecular diffusivity of nuclide i in micropores

: molecular diffusivity of nuclide i in micropores in the mth

medium

molecular diffisivity of nuclide i in water
- -~ ~ ~------

0 (j)~m

Dqr

e,

: constant defined by Eq.

: constant defined by Eq.

: constant defined by Eq.

eqr : constant defined by Eq.

E, (x,e) : function defined by Eq.

El(z,t;a): function defined by Eq.

E(z,t;a) : function defined by Eq.

f (t; a)

in
fl (z,t)

fin(z,t)

F(t;a)

g(s)

.9.rm(t)

G(t;a)

Gri(Z,t)

hi

h(s)

h(t)

H(s)

Ji(z,t)

: spacing of repositories

(5.8.20)

(5.9.17)

(5.7.40)

(5.9.17)

(5.3.18)

(5.5.4)

(5.5.5)

(5.7.31)

(5.10.26)

(5.10.27)

(5.7.34)

(5.7.30)

(5.8.22)

( 5 . 7 °.36 )

(5.10.19)

: function defined by Eq. (5.7.29)

: Heaviside unit step function

: function defined by Eq. (5.7.27)

: diffusive flux of nuclide i at surface of fissure

: function defined by Eq.

function defined by Eq.

function defined by Eq.

: function defined by Eq.

: function defined by Eq.

: function defined by Eq.

: function defined by Eq.

function defined by Eq.



mJ.(z,t)1

km

K
o

.

,1

Ki

L

diffusive flux of nuclide i at surface of fissure in mth medium

: mass transfer coefficient

: distribution coefficient

: sorption equilibrium coefficient defined by Eq.(5.2.3)

: length of waste repository in direction at water flow

mi(z,y,t) : function defined in Eq. (5.4.12)

m : release rate of nuclide i per unit time and unit cross-sectional

area of water flow

Mi(z,y,t) : concentration of nuclide i in stationary water in micropores

Mf(z,y,t) : concentration of nuclide i in water in micropores with

permeating water

mMi(z,y,t): concentration of nuclide i in stationary water in micropores

in mth medium

n.
1

N.(z,t)1

mN. (z , t )1

N.
1

*
N.1

p.
1

p~
1

p?
1

pi(t;a)

p.(t;a)1

E.i(t;a)

amount of nuclide i in waste per unit amount of total waste,

Eq. (5.1.16)

: aqueous concenEr-alion of nuc1ide i in fissure

: aqueous concentration of nuclide i in fissure in mth medium

initial concentration of nuclide i at waste location

saturated concentration of nuclide i in water

: concentration of precipitate of nuclide i

: concentration of precipitate defined by Eq. (5.5.16)

: initial concentration of precipitate of nuclide i

: function defined by Eq. (5.10.18)

: function defined by Eq. (5.2.19) or by Eq. (5.9.14)

: function defined by Eq. (5.4.23)



q

qi

: geometric factor, tortuosity coefficient

: rate of mass transfer of nuclide; at interface between water

and solid phases

q(z) : function defined by Eq. (5.8.15)

s : Laplace transform variable

Si(z,y,t) : concentration of nuclide i in solid phase

t -:--ml g-ratron-t~iifie---~~ ~ ----

t* : duration of a finite amount of precipitate

tl : relative time defined by Eq. (5.5.22)

T : duration of release, leach time

TI : time defined by Eq. (5.5.45)

u : dummyintegration variable

: velocity of permeating water
+

U,u ,u

v : velocity of water in fissure

: water velocity main fissure at waste locationv

w : velocity of water in micropores

w., : migration velocity of nuclide i defined by Eq. (5.8.17)

Wo
T : dissolution rate of total waste per unit width of fissure

x : distance in transverse direction parallel to the fissure surface
+

y,y- : depth of rock medium, distance in rock medium measured from

surface of main fissure

my : depth of mth rock medium

z : distance from waste in direction of water flow

Zl : time variable defined by Eq. (5.8.9)

: distance of interface surface of (m-l)th and mth media from wasteZm

mz : distance defined by Eq. (5.6.11)
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+
y-

°rQ,

8(t)

~m
€

m
€

z;;

11

11(Z,t)

e

A.
1

Am1

ArQ,

1JrQ,

~

T

<Pi ( t)

<Pi( t)

mx(t)

u.l

: arbitrary parameter

: constant defined by Eq. (5.4.14)

: constant defined by Eq. (5.10.21)

: delta function

: constant defined by Eq. (5.8.21)

: poros i ty of fractured medi urn exc ItJ~j!}_g__l!l~in___tL~J.I~e~_~___----------------------

: porosity of mth rock medium

: dummyintegration variable

: dummyintegration variable

: penetration thickness defined by Eq. (5.2.30)

: parameter in Eq. (5.3.15)/ dummyintegration variable

radioactive decay constant of nuclide i

: constant defined by Eq. (5.7.4)

: constant defined by Eq. (5.10.15)

cons tant defi ned by Eq. (5.10. 14)

: dummy integral variable

: resident time defined by Eq. (5.5.9)/ dummy integral variable

: time-dependent aqueous concentration of nuclide i at waste location

time-dependent source of nuclide i

: function defined by Eq. (5.6.19)

: Fourier transform variable
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6. Radionuclide Transport Based on EPAAssumptions for Generic Repositories

6.1. Introduction

As technical support for its draft proposed standard for a geologic

repository, EPAhas applied a one-dimensional calculation to estimate the

long-term release of radionuclides from conceptual repositories and to

estimate the health effects therefrom (51). EPAhas included in its model

the effects of solubility limit of radionuclides and the time-dependent
~"--" ~ ~- -"--~ -- " ~ - ~ ~-~ ~-- ~---~--~~~"--~--

thermally driven buoyant flow of groundwater within the host rock due to

decay heat. These effects have not been included in analyses by DOE

contractors (Cl) of the long-term radionuclide release from conceptual

repositories in salt, granite, and basalt. The EPAapproach also differs in

that it provides for element-specific release rates of radionuclides from the

dissolving waste form, due to solubility effects, whereas the DOEcontractors

have assumed congruent dissolution.

However, the EPAanalysis is limited to the transport of a single radio-

nucl ide, with no decay precursor, so EPAIS cons i dera ti on has---been 1imi ted to

the fission products and the first member of actinide decay chains. EPA has

neglected the important daughter nuclides, such as radium-226, that contribute

significantly to the total release and health effects~ As an aid to under-

standing the EPAanalysis and conclusions of the performance of conceptual

repositories and the implications therefrom, we present here our derivation

of the analytical solutions of radionuclide transport consistent with the

assumptions stated by EPA. We have extended the EPA-type analysis to deal

with the transport of radionuclide decay chains. The results are illustrated

for the radionuclides considered "in the EPAcalculations and for the decay

chains leading to radium-226.
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6.2 EPA's assumptions

In reviewing EPA's calculations of the transport of radionuclides to the

accessible environment, it was concluded that EPAmade the following

assumptions:

1. The repository is a porous mediumcontaining a finite volume of

water, in which the dissolved radionuclides are well-mixed.

2. The-repository lies between an under1 yi-nglow-er-aquif-e-r---and-an-----------------------

overlying upper aquifer, with a natural flow of groundwater from a

lower aquifer to an upper one.

3. Time-dependent thermally driven buoyant flow, due to decay heat, is

superimposed on the natural flow which was described in 2.

4. Contaminated water from the repository is injected as an equiva-

lent plane source into the upper aquifer.

5. There is one-dimensional advective transport of a radionuclide in

a one-dimensional flow field in the upper aquifer.
- - --

6. The effect of dispersion is neglected.

6.3 Time-Dependent Concentrations Within The Repository

6.3.1 General Concentration Equation

Although EPA's assumption of complete mixing of water within the

repository is of questionable validity, we will adopt this assumption for

the purpose of developing a general analytical solution to compare with EPAls

calculated results. For complete mixing within the repository, the time-

dependent concentration C.(t) of radionuclide i within the repository is1

gi ven by:

dCi(t) Qr(t)C;(t) + ' .C. (t) . Bilt) + AO-l Ci-llt)- + .. ,'\, 1 V 1

t > 0, Ao = 0, i = 1,2,3... (6.1)
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where Qr(t) is the time-dependent volumetric flow rate of water through the

repository, V is the volume of water within the repository, A. is the decay1

constant of the ith member and Bi(t) is the time-dependent rate of dissolution

of nuclide i within the repository. EPA's analysis does not include the

terms relating to the precursor radionuclide ;-1.

Assumingthat at time t = 0 the dissolution begin~ the initial

condition is:

C;(O) = 0 i = 1,2,3... (6.2)

According to our previous studies (Hl ,Pl), the dissolution rate Bi(t)

can be expressed by anyone of four different release modes, or by

combinations thereof:

(1) band release, wherein the waste dissolution rate is constant

during the leaching process, i.e., congruent release.

(2) exponential release, wherein all radionuclides in the undissolved

waste undergo dissolution at the same constant fractional amount

per unit time,

(3) preferential release, wherein the fractional dissolution rate

constant of (2) can differ for different radionuclides,

(4) solubility-limited release, wherein the dissolution rate of

each element is controlled by its solubility limit in

groundwater.

Applying the technique of our earlier study (Hl), the solution for

Eq. (6.1) with Eq. (6.2) can be obtained recursively:
t

C; ( t ) = exp [- A;t -R(t )] f e xp [Afr t R(.r)] x0

x [Ai - 1Ci - 1 (1") + Bi (T:)/ v] d-r (6.3)
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or genera lly
1

Ci(t) = V exp [-~it - R(t)] x
.' .

1 i
t

i
Ti

1 1-

X .~ 1T. Al
. . exp[(Ai-Ai-l)TiJ expHAi-l-Ai-2)Ti-l]X

J=1 1=J 0 0 1 ; -'. .. .0

Tj+l

- ..~~~pX,P---l1j~iJl.L'{j-nBjtr.t>~-,-.-,~.Jh;-l~tr;---
where 0

t

1
Qr(t)

R(t) = " dt
0

(6.4)

(6.5)

R(t) is the number of repository water volumes that have flowed through the

repository during a time period t.

For a radionuclide with no precursors, i = 1, and Eq. (6.4) becorres:

t

C, ( t) = ~ exp [ -A, t -R(t) J 1e xp [ A, T+R(T) J B, (T ) dT0

t > 0 (6.6)

For a nuclide whose concentration reaches a solubility limit Cl*' the

time-dependent concentration is studied in greater detail in Section 6.3.3.

6.3.2 Time-Dependent Flow Through The Repository

The time-dependent volumetric flow rate of water through the repository

is given by:

Qr(t) = krArGr(t) (6.7)

where k (m/yr);s the time independent hydraulic conductivity (m/yr)r

of the repository, A (m2) is the cross-sectional area of the repository,r ~

and Gr(t) is the time-dependent potential gradient for flow through the.

repository. EPAapproximates the latter by:
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-a,t -a2t -a t
Gr(t) = ale + a2e + GO(l + a3e 3) (6.B)

where GOis the constant g:adient between the lower and upper aquifer, and

a. and a. (i = 1,2,3) are constants determined empirically from separate1 1

calculations of the time-dependent thermally induced flow through the

repository.

Subs tit uti ng Eqs. (6.. 7) and (.6.~-j nt~~J~~~J__1_~~_~L~~___~-~---~ ~ -.

krAr

[
al -alt a2 -a2t a3 -a3t ]R(t) = --- - - e - - e + G (t - - e )

V a, a2' 0 a3
(6.9)

where R(O) = O.

6.3.3 Concentration of a Single Radionuclide With a Solubility Limit

Here we consider the time-dependent concentration of the first member

of a radionuclide chain in the repository. In EPA's model of rapid mixing

of liquid an'd dissolved radionuclides in the repository, the concentration

Cl(t) of a radionuclide is initially zero at the beginning of dissolution
*

(t = 0). It increases with time, and if it reaches a solubility limit--Ci '
* * *

it does so at a time tl . From Eq. (6.9), Cl and tl are related by:
t*

R(t, *)] 1 ~XP [ A1T + R(T)] R, (T)dT

* 1

[
*

C1 = V exp - A1t 1 - (6.10)

*
The radionuclide will begin precipitating at time tl . To determine the

length of time that the precipitate will exist within the repository, we

write a material balance on the amount Pl(t) of precipitate of species

1 per unit volume of water in the repository:
*

dPl(t) °r(t)C, - B,(t) *
- + .. + It 1P1 - V - It 1Cl

*
t > t1 (6.11)
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The initial condition is
*

P1(t1 ) = 0 (6.12)

Equation (6.'1) can be solved with Eq. (6.12) to yield

-------------

1

J
t *

P,(t) = Vexp (-A,t) *exP(A1T)[B, (T) -C, (A,V + Qr(T))] dT -
* tl

--- t 1 < t ,__u_m__m__n '-6-.-l3-+~------------------

As a result of radioactive decay, convective transport from the repository,

and complete dissolution of the solid waste, the precipitate will eventually
*

dissolve at a time t2 ' which satisfies the equation: --~-~---------------

*
Pl(t2 ) = 0

* *
, tl < t2 (6.14)

After the precipitate disappears, the concentration of the nuclide again
*

becomes time-dependent, as given by Eq.(6.1) for t > t2 and with the

initial condition:

* *

Cl(t2 ) = C, (6.15)

Equation (6.1) for i = 1 is solved with the side condition Eq.(6.l5) to

yield: t

C,(t) = ~exp [- A,t - R(t)]{ 1 exp[ A1T+ R(T)] B,(T) dT +
-t*2

* * *

}

*
+ VCl eXP[Alt2 + R(t2)] , t2 < t (6.16)

In summary, the concentration Cl(t) for a mother nuclide with a solubility
*

limit Cl is given by:

C, (t) =
*

Eq. (6.6) , tl > t > a
* * *

C1 ' tl ~ t ~ t2
*

Eq. (6. 16) , t2 < t (6.17)



6.3.4 Approximate Solution For Concentration in the Repository

The time-dependent concentrations given in Section 6.3 and 6.5 are

complicated because of the time-dependent integral R(:t) of repository

flow. To simplify, and to obtain a nonrecursive solution for the nuclide

chain, we approximate the time-dependent normalized water flow rate

Qr(t)/V by a constant value Ar avera~ed over a time period from t.= 0 to

---~~--~-_t_::--tf-,--s_o.__th_at__~ - --

A .= l JfQ (t' )dt'
r Vtf r

0

Substitution of (6.18) in (6.1) yields:

(6.18)

dC. (t) Bi (t)
, + (Ar + Ai) C;(t) = V + Ai-1 C1-1 (t)

t > 0, A = 0, i = 1,2,3, ...0 (6.19)

The initial condition is the same as Eq.(6.2). Taking the Laplace

transform of Eq.(6.l8) with respect to time:

- Bi -sC. + (A + Al ) C. = _V + A. 1 C. 11 r , 1- 1- (6.20)

where C; is the transformed concentration:
00

Ci = Ci(s) = [ exp (-st) C;(t) dt

From Eq.(6.20), C; is

13,' A. 1 C. 11- ,-
V(s+k;) + S+ki

(6.21 )

c., (6.22)

where

k. = A + A.1 r , (6.23)

7.

~



For i = , through n:

8,

C, = V(s+k,)

,

[
82 /..18, ]c2 = V s+k2 + (s+k, )(s+k2)

c~--:-~-I~;~. ~n-l:~I1~rn, .. +___n__- - . - .._n ..-

n . . .

/..1. . . An-, B, ]+ (s+k,) (s+k2)... (s+kn) .

The genera' form for Ci is:

(

i

)

-
. ;r Ak B.

- 1 1 k=j J
C. =- L1 VA.. 1

'
'i J= 'Tr. (s+k , )

l=J
By using the same technique as in our previous_report (Hl, p4-40),

Eq.(6.25) can be rewritten as

i . i . B.--, ~, , J
C; - VA. f...J Ej L: Fj' s+k

'1 j=l l=j 1

where:

. i
E.' = ~ A
J q=j q

.

[
i

]
-1

Fj l' = ;Ij (kg - k1)
q11

The inverse of Eq.(6.26) is

, i . i .
C.(t)=V A;

L E.' L: F. , ' exp(-k, t)@B.(t)1 . . , J
"

J J
J= =J

8.

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)
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where t

e xp (- k1 t ) ti- B . ( t ) :: ' 1 e xp (- k 1 t ) B . ( t - T) d T
J 0 J

Equation (6.29) is the general expression of the approximate solution for

(6.30)

the radionuclide concentration in the repository, under the constant-flow

approximation. As mentioned in Section 6.3 we have four different dissolu-

t i on modes for B. (t) . The constaftt~f-lew--sal-u'tion--f{}r---the--thre-e-diffeTent--~ ~1

release modes which does not include the solubility limits of individual

radionuclides is derived below.

(a) Band release mode: Here B.(t) is given by1

ni(t)Mo
Bi(t) = T [h(t)-h(t-T)] (6.31 )

and
i

n.(t) = L: b.. exp (-A.t)1 . 1 lJ J
J=

where ni(t) is the concentration of nuclide i in the solid waste, MOis the

initial amount of waste, h(t) is the Heaviside step function, T is the

(6.32)

leach time, i.e., the time for total dissolution, and bij is the Bateman
coefficient

- j 01 [
. i

Jbi j - ~nm r. t Aq / 1! (Al - Aj) .m-1 1 q-m 1-m
1;1j

By substituting (6.31) in (6.29) one obtains the concentration of nuclide

(6.33)

i in the repository as

Mo; .; . j b .- '"' 1 ~ 1 Jm ( )Ci (t)-~.L- EJ' Li. FJ'l L (A -k ) ~llm t
1 J -1 1=J

,
m=l

(6 .34)

where \~'m(t) is:

Wlm(t) = [exp(-k,t) - exp(-Amt)]h(t) -

- exp(-klT) [exp(-k,(t-T»-exp(-Am(t-T»] h(t-T) (6.35)



(b) Exponential release mode: In this case the Bi(t) ;s defined as

B;(t) = fni(t)MOh(t)

and
;

n . (t ) = Lb.. exp (- S1.t )
1 j=l lJ J

where f ;s the fractional release rate for all nuclides, and D. isJ

rtj ==Al + f

10.

(6.36)

(6.37)

- ~~ ~ ~~---

The Bateman coefficient b;j ;s given by Eq.(6.33).

The concentration of nuclide i in the repository is then

fMo i .; . j b .
Ci(t) = VA. ~ EJ.' L. FJ." L D ~~ X1m(t)

1 J=l l=J 01=1 01 1

where Xlm(t) is

X'm(t) = [exP(-k,t) ... exp(-Dmtj] h(t)

(6.38)

(6.39)

(6.40)

(c) Preferential release mode: For this release mode the Bi(t) is given by

B.(t) = f.n.(t)MOh(t)111

and
i

n . (t) = l: b.. exp(- rt.t )
1 J=l lJ J

where

rt. == A. + f.
J J J

The Bateman coefficient bij now becomes:
j

{

O

[
i i

Jbi. = L
.

Nm 7r A / 7T (Q, - Dj)
J 01=1 q=m q '=01

lfj
(;: )}

(6.41 )

(6.42)

(6.43)

(6.44)
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The concentration of nuclide i in the repository is then

f M
o, , ,

. , i 1 ,J b,
C; (t) = -JA , .~ Ej 2::,-Fjl' L (0. ~~ rylm(t)

1 j~ l=J m=l -111 1
(6.45)

where Y1m(t) i s

ylm(t) = [exp (-k,t) - -exp (-0mtU h(t) (6.46)

6.4 Far-Field Concentration of Rad;onuclides

6.4.1 Exact Solution for a Single Nuclide

The contaminated water from the repository is assumed to mix

uniformly with the upper aquifer which it crosses. The mixing point is

designated by z = O. Assum;ng that the flow rate Qa of the upper aquifer

is constant and is much greater than the repository flow rate °r(t),

the concentration boundary condition N.(O,t) in the upper aquifer at1

z = 0 is:

Ci(t)Q (t)
N;(O,t) = n r , t > a (6 .47a )

The governing equation in the one-dimensional flow field without dispersion

given by:

aN . aN . K. 11 1 N 1- . h
. 1ar+ vi az+ Ai i = ~ Ai-l Ni-l ' Wlt 1.0= 0 1= ,2,3.~.

1
(6..47b)

By substituting the Cl(t) given by Eq.(6.6), and the general solution to

the above transport problem (Hl, EQ.(6.ll)) one obtains

Nl(z,t) = v6 exp r: A,t - R(t-z/Vl)] Qr(t-z/vl) xa

t-z/vl

x f exp [?-IT + R(-r)]Bl(,:)dT, t > z/vl
(6.48)
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where z ;s the distance from the discharge point in the upper aquifer,

and v1 is the migration velocity of nuclide 1:

vl = v/K, (6.49)

where v is the pore velocity in the upper aquifer and Kl is the sorption

retardation constant for nuclide 1. In general, for local sorptiqn

equilibrium
- ~ ~ --"-" ~ un --"---

v. = v/K.1 1 (6.50)

The far-field concentration N,(z,t) of the mother nuclide with a

solubility limit is obtained by substituting the Cl(t) from Eq.(6.17)

into (6.47 a) ;

Nl (z,t) = Eq. (6 .48)
*

, 0 < t-z/vl < tl (6.5la)

c,* Qr(t-z/v,) exp (-A, z/v,)

* *
tl 2. t-z/v, .::..t2 (6.5.1b )

Q (t-z/v, [ ~ t - R(t-z/vl )]= r exp - 1\1 x

t-z/vl

x{J*exp [A, T + R(
t2

)] B,(T)dT +vc,*exp [Alt2*+ R(t2*)]}

*

, t2 < t-z/vl (6.5lc)

Equations (6.48) and (6.5lb,c) have been numerically integrated to obtain

the results shown later in Section 6.5.

6.4.2 Approximate Solution for Daughter Nuclides

For the daughter radionuclides we adopt the approximation in

Section 6.3.4 that the repository flow rate Qr is constant. Substituting
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into Eq. (6.47) the equations (6.34), (6.39), and (6.45) derived for band

exponential, and preferential release modes, respectively, one obtains

the general expression for the concentration of the above release

modes as:
A MO i.

N.(z,t) = W
VQ

exp (-A.Z/V i ) L E.1
1 a 1 j=l J

j b.

x ~ A ~~. Xlm(t-Z/Vi )h(t-zJv,)n*-_____------------

i

L F.~ x1 . J
=J

+ ~~o ~ Aij ~ (exp (-AmZ/Vm)/Bmj) t Dl~ x
a j =1 m=j 1=j

11m
j . j . P b

~ l~J"PSx
x L- Ep L- Fqp L- ~ -k

p=l q=p s=l s q

where Ni(z,t)

t

xj 91m(T )xqs (t-T )Qr( t-T )dT0

is the concentration of nuclide

(6.52)

i at distance z and time t, and

~ = fliT; band release
If; exponential release

l f; ; preferential release

i i-1
Aj = 7r. (Aq/Vq)

q=J

(6.53)

(6.54)

. i
B J = 1r (l/v - l/v )
m q=j q m

q~m
.

[
i

0 J = 7r
1m q=j

q~m, 1~m

g1m(t) = exp E~lm (t-Z/VrnU

(6.55)

-1

(~qm - ~l m)J (6.56)

h(t-z/vrn) (6.57)
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e.llvl - Am/vm)~ -
1m- (1/v1 - l/vm)

(6.58)

Wqs; band release

Xqs= Xqs; exponential release
(6.59)

Yqs ; preferential release

-~ Ttie--co-nvoT litic-flUintegra 1 in Eq. (6.52) has been performed analyti cally ;--~----------------------

and N.(z,t) can be easily calculated from Eq.(6.52).1

6.5 Numerical Demonstration Using EPAParameters

Here we demonstrate the application of the foregoing analytical

equations to calculate the time-dependent concentrations and cumulative

releases of radionuclides from the generic repositories considered by

EPA. The same parameters adopted by EPA (51) were used in numerical

evaluations. Principal assumptions and parameters are:

1. The repository contains unreprocessed spent fuel initially

containing 100,000 Mg of uranium.

Dissolution begins 500 years after emplacement.2.

3. Dissolution follows the exponential release mode, with a rate
-4

constant f = 10 Iyr.

4. The effective transport distance in upper aquifer from the

mixing point z=O to the biosphere is 1600 m.

The average groundwater velocity in the upper aquifer is 2.1 m/yr,5.

resulting in a water transport time to the biosphere of 760 years.

Table 6.1 shows the radionuclide inventories (51), sorption retardation

constants (51), solubilities (51), and health effects per curie released

to the environment (52) used by EPA.



Nuclide

C-14

5r-90

Zr-93

Tc-99

5n-126

1-129

Cs-135

Cs-137

U-234

Np-237

Pu-238

Pu-239

Pu-240

Pu-242

Am-241

Am-243

Ra-226

Half Life

Yr

5730

28

61.5x10

5
2.12 x 10

51.0x10

71.7xlO

62.0 x 10

30.2

2.5 x 105

2. 1 x 106

86.4

2.44 x 104

6600

53.87 x 10

458

7370

1620

Table 6.1 EPAls Properties of Radionuclides ~
Health
Effect
Factor

4~58 x 10...2

-1
1 ~21 x 10

2'!86 x 10~4

1..20 x 10-1

1.09 x 10'"2

3.83 x 10~3

1. 98 x 10" 2

-15.98 x 10

2.29 x 10-2

6.93 x 10...2

6.54 x 10-2
-2

6.77 x 10

7.31 x 10...1

2.77

3. 11

a/ All values, except for radium-226, were taken from (51). For radium the retardation
- coefficient is set to be equal to that of strontium, and the health effects factor is

derived from data in (52).

Inventory
Ret~rdation
Coeffi,cient

Solubility
Limit

Ci ppm

2.8 x 104

9
6.0 x 10

51.9 x 10

1.4 x 106

5.6 x 104

3.8 x 103

2.3 x 105

8.6 x 109

1.5 x 105

3.3 x 104

2.2 x 108

3.3 x 107

4.9 x 107

1. 7 x 105

81.7xl0

1. 7 x 106

1

100 O. 001

0.0011

10 1.0

1

1

100

100

100

0.001

0.001

100

100

0.001

0.001

100 0.001

100

100

50

50

U1
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6.5.1 Repository Characteristics and Groundwater Flow Specifications

Two different conceptual repository sites were considered by EPAwhich are

discussed here. The first site considered is basalt which is characterized

as a host rock of high permeability (conductivity) and with an underlying

aquifer. The second site is granite which has a low permeability and no

underlying aquifer. EPAassumes that those of a geological charac;teristic

are i denti ca1- to--b-a-sart-s'-te-~--For--rhe---sa-me--retaraali on--c.onsta-n-fs--ancr -

solubilities calculated results for EPAls basalt repository will be identical

to EPAls tuff repository. EPAalso considers a salt repository, but the

emphasis is on the unexpected failure mechanisms so the salt repository

is not considered here.

Eqs.(6.7) and (6.8) are the governing equations for the thermally

driven buoyant flow in basalt and granite repositories respectively. Fig.

6.1 shows the buoyant flow as a function of time given by Eqs.(6.7) and

(6.8) and are shown for these sites. Empirical constants of Eq.(6.8),

dimensions of the repositories, and the conductivities of host rocks are

listed ;n Table 6.2. EPAhas adopted for granite a hydraulic conductivity

and hydraulic gradient which is tenfold smaller than that of a basalt

site. Water flowrate in the basalt repository decreases by about tenfold

during the thermal period. After 20,000

years of Implacement a constant flowrate of 2,400 m3/yr is obtained. In

the first two hundred years after waste 4mplacement the water flow rate in

the granite repository is 1/100 that of the basalt site. The water flow

rate in granite decreases rapidly thereafter and eventually reaches zero.

This is caused by lack of lower aquifer to supply water.

Dissolution of the radioactive waste is assumed to begin 500 years

after waste implacement. The flowrates through the repositories are
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Table 6.2

-----.---

Empirical
constants for
thermally
driven buoyant
grad-i-ent -

17.

Parameters used by EPA in calculating thermally
driven buoyant flow (51)

.-

-....-.----...---.---.-.---------

a3 2.88 1 -
--- '___00-- --------.-.----.-----..-.-.------..----.-

ell' yr-l " .-- '.'---' !._~-~~..~~.~~----------

~2' yr-l 3.1xlO-4>-,-,,-,',___00.-..,.. -"- ,, "--"..' _..'_'0'_- -", ,---, ",-,--,-"., ,.' 00_.'_"----

--- .---....----------------

.. --'''''''00' '--- _. "-"--" '-'----.--

do3, yr-l 2.6xlO-4

Constant
gradient from
lower aquifer

Go 1.0xlO-l -
. .'" .--.. .0.. . --.

Conductivity
of host rock

Cross-
sectional
area of
reposi tory

kr' rn/yrl 3. OxlO-3 3.0xlO-4

.- ... '..."__00_"'" oo L--- -' ' '.' '--"-

Ar' rn2 8.0xlO6

-- -' ..., ...--.--
Volume of
water in the
repository

- ......-...---......-.-------.--------

V, m3 2.0xlO6

. . - -- '''-'''--'-'' '' ...-.-----

Holdup time of
repository water, yr,
at 500 yr

1.67xlO2 5.7xlO4

- --

basalt granite

al O-l l.32xlO-2

a2 1.02xlO-l I 1.02xlO-2
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12,000 m3/yr for basalt and 35.2 m3/yr for granite.

6.5.2 Radionuclide Concentrations

Fig. 6.2 shows the variation of the concentration of plutonium-239

in the repositories with time, in absence of solubility limit. The higher

concentration of pu239 in the granite repository is due to lower groundwater

flow in the site. Figure 6.3 shows the calculated time-dependent ,rate of

d-i-s-charge--o-f---pluton-i-um-2-39-from-the-nf-s-so-lv-ing--waste-andfrom the repos i tory,

neglecting the plutonium solubility limit. The discharge rate of plutonium-239

from the dissolving waste to the repository water is almost the same as the

discharge rate from the repository to the upper aquifer, because of the

relatively small assumed holdup time of the groundwater in the basalt repository.

From EPA's data we estimate a holdup time of groundwater in the basalt

repository of 170 yr at the beginning of dissolution, increasing to 830 yr

at 20,000 yr after emplacement. The discharge rate in the basalt repository

will decrease eventually because of the exponentially decreasing dissolution

rate of the undissolved waste.

From the EPAdata we estimate the holdup time of groundwater in the

granite repository to be about 6 x 104 yr when dissolution begins, increasing

to 2 x 106 yr at 10,000 yr after emplacement. Because of this relatively

long holdup time, the increase in the concentration and discharge rate in

granite is slower than that of a basalt repository. During the period of

concentration increase, the groundwater flowrate is continuously decreasing,

and the product of the concentration (Fig.6.2) and flowrate in (Fig.6.l)

yields a maximumat about 2,500 yr. As the flowrate tends to zero so does

the product of concentration and flowrate. After 104 yrs radioactive decay

of plutonium-239 further decr~ases this product.

EPAassumes a plutonium solubility of 1 part per billion (ppb) in
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groundwater, which corresponds to 6 x 10-5 Ci/m3 for plutonium-239.

Solubility interference from other plutonium isotopes is neglected. The

calculated concentrations shown in Fig. 6.2 for basalt and granite repositories

exceed the solubility, so the results shown in Figs. 6.2 and 6.3 are un-

realistically high. The calculated concentrations of plutonium-239 at EPAls

assumed distance of 1600 m to the biosphere are shown in Fig. 6.4~ The

---concentrat-i-ons-a-re--calc-u-l a t-ed--w-i-th--and-w-i-th(')ut~the -sol tlbi-l i ty 1im; t. -There

is a thousand fold reduction in maximumconcentration due to solubility

limit. For basalt, the solubility limit causes an increase in discharge

of pu239 to the biosphere. This is due to formation of precipitate in the

repository. This broadening of the release band is not seen for granite

within the concentration range of Fig. 6.4. The solubility limit greatly

decreases the maximumconcentration of plutonium discharged to the environ-

ment from EPAls granite repository, because the lower water flow rate through

granite reduces the rate of dissolution of plutonium and the rate of discharge

of plutonium to the upper aquifer.

6.5.3 Cumulative Releases

In EPAls analysis, the cumulative amount of radionuclides released

during 10,000 years is used to evaluate the total health effects from the

geologic repository. Here we will calculate the cumulative release as a

function of time,but the time period of this release will not be

arbitrarily terminated at 10,000 years.

The cumulative release Ui(z,t) of radionuclide i at position z and up

to time t is obtained by:
t

Ui{z,t) = Qa1 Ni{z,T)dT0

Fig. 6.5 shows the increase of the

(6.60)

cumulative release with time at z = 1600 m

for basalt; similar results for granite are shown in Fig. 6.6. Parameters
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used by EPA(51) in calculating these releases are listed in Table 6.2.

As shown in Figs. 6.6 and 6.7, carbon-14, technetium-99, iodine-129, and

cesium-135, which are the radionuc1ides with no sorption retardation,

appear in the environment after a time delay of 1262 yrs, which is the sum

of two delay times, a 500-year delay in the onset of dissolution plus EPA's

assumed water transport time of 762 years. The Tin-126 with assu~ed

r.etar!la t i on constant of 10 is released to the biosphere a-f-t-e-r-&WQ-year-s ~----------

EPAassumes retardation constants of 100 for the actinides, so actinides

are released to the biosphere after 76,700 years. Consequently, health

effects from released actinides do not enter into EPA's analysis of the

potential health effects of its conceptual repositories, because EPAdoes

not consider radionuclides released after 10,000 years.

EPA's analysis (51) does not include radium-226, possibly because this

radionuclide is not the first memberof a decay chain. Radium-226 is not

initially present in the radioactive waste, but is a decay product of

plutonium-238, americium-242m, and curium-242, which are present in the waste.

Although the precursors of radium-226 are all actinid~s and, according to

EPAls assumptions, until well after EPAls cut-off time of 10,000 years, the

daughter radium-226 is more mobile and must be considered. In our analysis

we include the effect of Ra226. We assume that the radium sorption constant

is the same as that of the other alkaline earth, e.g., strontium, for which

EPA assumes no retardation, i.e., K= 1. On this basis some amount of

radium will appear in the environment, along with the other non-sorbing

radionuclides, after 1,260 years.

The curves for radium-226 in Figs. 6.5 and 6.6 are examples of the

application of the equations developed in this chapter for the transport of

radionuclides in a decay chain of arbitrary length. In the first 1000 years
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after emplacement for the basalt and granite repositories, neglecting

solubility limit, only technetium-99 and cesium-135 are predicted to have

curie releases exceeding that of radium-226. As we shall see later, the

calculated health effects from released radium-226 far outweigh those from

the other radionuclides released during this time period. It is apparent

that the release of radium-226 must be considered in a realistic analysis

of the potential hazards from ageol °9is--_~epQs -i~g~.y!__~ve~_Eur!~_~~he ~----

relatively short time period of 10,000 years assumed by EPA. The equations

for the transport of radionuclide decay chains are vital for this analysis.

The equations used to predict the transport and release of radium~226

are the approximate exponential-release solutions of Section 6.4.2, where

it is assumed that the flowrate of groundwater through the repository is

constant. To estimate the value of the flowrate to use in these calculations,

the cumulative release of'uranium-234 predicted for time-dependent flow is

compared in Fig. 6.7 with that predicted for constant flow. The calculated

curve for uranium-234 for an assu~d constant repository flowrate of 3,850

'm3/yr is identical with the exact curve for uranium-234, calculated by

applying Eq.(6.6) and using the time-dependent repository flowrate deduced

by EPA. A constant flowrate of 3,850 m3/yr through the basalt repository

is used to estimate the cumulative release of radium, in the absence of

solubility limits. It is this average flowrate that has been used in the

calculations for Figs.6.5 and 6.6.

6.5.4 Cumulative Health Effects FromReleased Radionuclides

A stated objective of EPA's draft proposed standard is that there shall

be no more than 1,000 calculated health effects over 10,000 yr from the

environmental releases of radionuclides from a repository containing waste

from 105 Mgof uranium fuel. EPAhas provided data (52), shown in Table 6.1,
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to be used in calculating the number of health effects per curies of

activity released to the biosphere, based upon its estimates of world

population and worldwide averages for the consumption of surface water for

drinking and for the consumption of food grown in or irrigated by water.

Our resulting calculations of the cumulative health effects as a function of

time for EPA's basalt and granite repositories are shown in Fig. 6.8~ and 6.9.

1 Ib~~__lq~~I~__Qr1__:t~~-~-~ryg~_JQ~_the_tQJilJ_--hea1th effects of all radi o~

nuclides other than radium-226 indicate the radionuclides that are the main

contributors to the cumulative health effects during the period indicated.

Within this mixed group, technetium-99 is the main contributor during the

period up to 10,000 yr, except when the solubility limit of technetium is

considered. In the latter case carbon-14 becomes the main contributor.

Tin-126 is the main contributor from 104 to 105 yr.
5 6

From 10 to 10 yr

plutonium-239 is the main contributor if solubility limits are not

considered, and tin-126 and americium-243 are the main contributors when

solubility limits are considered.

EPA's draft proposed standard lists curie releases of individual radio-

nuclides that are upper-limit releases for 10,000.yr. The upper-limit

release for technetium-99 is 2 x 103 Ci per 1000 Mg of U, which corresponds

to 2 x 105 Ci for a 105 Mg repository. This compares to our calculated

cumulative release of 6.4 x 105 Ci of technetium-99 in 104 yr, as shown in

Fig. 6.5, ignoring solubility limit. There is an apparent inconsistency,

in that the calculated curie releases of technetium-99 for basalt are ten-

fold greater than allowed in EPA's draft standard, yet the calculated

health_effects from technetium-99 just meet EPA's goal of 1,000 health

effects in 10,000 yr. The discrepancy occurs because EPA has decreased the

allowable curie release of technetium-99 tenfold below that which ;s

calculated by EPA data to result in 1,000 health effects (Pl). This results
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from EPAls view that uncertainties in the data on uptake of technetium-99

by plants justify this reduction in the allowable curie release limit for

technetium-99.

The curves for the health effects from radium-226 are calculated on the

basis of no solubility limit of the uranium precursors of radium-226. It

is apparent that even during the 10,000 yr period adopted by EPAradium-226

contributes over an order of magnitude more~~~~lth ~ff~<;!s tb~!1n!_b_~__~LJ_rJl__~L______----------------

all the other radionuclides released during this period. The cumulative

health effects increase rapidly and level off only after about 105 yr,

based upon the use of EPAls assumptions and parameters. Separate calculations,

to be reported later, show a decrease in the cumulative health effects from

radium-226 when the solubility of uranium is taken into account, but the

conclusions concerning the importance of radium-226 remain valid.

It is apparent from Fig. 6.8 that when radium-226 is considered EPAls

goal of no more than 1,000 health effects in 10,000 yr is not met by EPA's

basalt repository. This is a consequence of the large flowrate of ground-

water within the basalt repository, as estimated by EPA.



6.6 Nomenclature

a., (i=1,2..) Emperically fitted constant for buoyancy1

A.j1 Defined by Eq.(6.54)

Ar Cross-sectional area of repository, (m2)

B..
lJ

Bateman coefficient, Eqs.{6.33) and (6.44)

t) -- Release rate of nuc1ide i from waste, (atoms/yr ) ~~-------------------

BJl i Defined by Eq.{6.55)

Ci{t) Concentration of nuclide i at repository, (atoms/m3)

Ci(s) Defined by Eq.(6.2l)

*
C.

1 Solubility limit of nuclide i, (atoms/m3)

--o--j -- --1m

--- ~ --~ -- - --

Defined by Eq.(6.56)

E.i
J Defined by Eq.(6.27)

f Fractional release rates of all nuclides, (l/yr)

f.1 Fractional release rate for nuclide i, (l/yr)

Fjl i Defined by Eq.(6.28)

91m(t) Defined by Eq.(6.57)

Go Constant hydraulic gradient from lower aquifer

Gr(t) Hydraulic gradient from repository

kr Permeability of host rock, (m/yr)

K.1 Retardation coefficient of nuclide i
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n.D
1

ni(t)

Ni(zt)

p

Initial amount of nuclide i, (atoms)

Initial concentration of nuclide i in the solid waste

Concentration of nuclide i in the solid waste

Concentration of nuclide i in groundwater, (atoms/m3)

Amount of precipitate at repository, (atoms/m3)

Qa

Qr(t)

R(t)

t

*
tl

*
t2

T

U.(z,t)1

v

v.1

v

Wlm(t)

Xlm(t)

Ylm(t)

Volumetric water flow rate in upper aquifer, (m3/yr)

Time dependent water flow rate from repository, (m3/yr)

Defined by Eq.(6.5)

Time after beginning of leach, (yr)

Beginning time for precipitation, (yr)

Time at precipitate disappears, (yr)

Leach time for band release, (yr) .

Cumulative amount of nuclide i at distance z and up to time
t, (atoms)

Groundwater velocity in upper aquifer, (m/yr)

Migration velocity of nucl ide i, (m/yr)

Volume of ' water within the repository, (m3)

Defined by Eq.(6.35)

Defined by Eq.(6.4D)

Defined by Eq.(6.46)
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<:1T ( i = 1 , 2 , 3 )

61m

K.
1

A.1

Ar

r2.1

Distance from repository, (m)

Emperically fitted constant for buoyancy flow, (l/yr)

Constant defined by Eq.(6.58)

Constant defined by Eq.(6.23)

Decay constant of nuclide i, (l/yr)

- -

Constant defined by Eq.(6.l8)

Constant defined by Eqs.(6.38) or (6.43)
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7.1 Mass Transfer From a Fuel Canister by Diffusion

Paul L. Chambre

Consider a cylinder of finite length imbedded in a porous medium. The

cylinder matrix contains a diffusing specie such as Si(OH)x or U02which

is set free at the surface of the cylinder at the solubility limit Cs of

this specie ;n water and then diffuses into the exterior unbounded space.

The diffusion coefficient is assumed constant. The governing equation for
- ~ n ~ n n - -~---" ~----

the conservation of mass of the diffusing species outside the cylinder in

absence of any losses is

K dC = 0
2A

dt fV c (7.1.la)

Here Of is the diffusion coefficient of the species in water and Kits

retardation coefficient.

The boundary conditions are respectively

A A

C = Cs (7.l.lb)

on the surface of the cylinder and

C= 0 (7.1.1c)

on an infinite spherical surface enclosing the cylinder. If the concentra-

tion at infinity is non-zero, a change in the reference datum of c reduces

that problem to the above formulation. Prior to the time t = 0 the diffusing

nuclide has zero concentration in the exterior (porous) medium.

For a cylinder of finite length, the Laplace operator in eq. (7.1.1a)

has the form

'12( ) = il
~r2

l.+l~
r or

d2(
dz2

(7.1.2)
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where r, 8, z are cylindrical coordinates. For the exterior diffusion

problem which we wish to solve, compact analytical solutions of eqs. (7.1.1)

and (7.1.2) are not possible because the interior bounding surface is a

cylinder and the exterior surface is a sphere. This of course does not

mean that the posed problem does not possess a solution. Indeed one can

0bta tn--i-t--i n--fluneri cal-form-or -by--a-n-al-yti--c-a-'1--approxi ma-tion s . Since we

wish to retain a compact analytical solution to this problem, a suitable

approximation ;s madefor the shape of the cylinder. The finite cylinder

shape is approximated by a slender prolate- spheriod which is generated by

rotating a family of confocal ellipses about their major axis. This

family generates not only the replacement for the finite cylinder, but

produces also the outer spherical boundary which is a member of this

fami ly.

One might consider also other forms for the approximation. Suppose

the inner surface of the domain is maintained in the exact form of a

finite cylinder and the outer boundary is now a cylinder, but of infinite

extent. For simplicity, consider furthermore that a steady state prevails

so that one deals with the solution of Laplaces equation in the exterior

field. Subject to the boundary condition (7.l.lb) the solution sought is

mathematically equivalent to the problem of determining the capicitance

of a cylinder in an infinite cylindrical box. It .is well known that this

problem does not possess an exact closed form solution although it can

be readily shown that such a solution exists and is unique and can be

approximated by various means. With these comments in mind, we reiterate

that the interior cylinder surface will be approximated by a slender

prolate spheroid which is described by the prolate spheroidal coordinates

(a,S,ljJ) . Since the reader may not be familiar with this coordinate system,
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we review and summarize in the following its main characteristics.

The relationship between prolate spheroidal coordinates (a,S,~) and

the common rectangular coordinates (x,y,z) are given by

x = f sinha sins cos~

y = f sinha sins sin~ (7.1.3)

z = f cosha cosS
---~ ~ - ~ - ~ ~ -------

where f is the focal distance of the prolate spheroid measured from the

coordinate origin, see Fig. 7.1.1. To exhibit the geometric significance

of a, take a to be constant and let

a = f cosha, b = f sinha (7.1.4)

in eq. (7.1.3). If these three equations are squared and added, there

results

(~y+(fr +(~r= 1
(7.1.5)

Since a and hence a and b are constants, this represents a prolate spheroid

in the x,y,z coordinate system (see Fig. (7.1.1)~ One observes from

(7.1.4) that as a becomes small, the prolate spheroid tends to a small diameter

"cyl inderll. This IIcylinder" has a radius b and a length given by (7.1.5)

as 2a. In the following, we shall approximate the cylinder by small

positive values of a. On the other hand, as a becomes very large, so do

both a and band (7.1.5) tends to the description of a sphere of large

radius" The entire a range generates a family of prolate ellipsoids.

In order to exhibit the geometric significance of S, take B to be a

constant and let

a = f cas B, b = f sin 13 (7.1.6)

Again square the equations in (7.1.3) and add so that
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- (x\;i)+ (~t = 1
(7.1.7)

Hence for 8 constant and thus a and I) constant, this equation represents

a family of hyperboloids of two sheets with foci at + f as shown in

Fig. (7.1.1). When B = 0, a = f and I) = 0, while when S = TI, a = -f
and b = o. For either of these cases (7.1.7) reduces in the limit to

nn--- -- - -- _un_-- --- --

the collapsed hyperboloid, i.e., the positive and negative z axis from f

to 00 and -f to -00 respectively. When S =¥, a = 0, 6 = f for which (7.1.7)

reduces in the limit to z = 0, i.e., the x-y plane. Finally, as can be

seen from Fig. (7.1.1), the family of half planes ~ = constant with

0 ~ 1jJ~ 2 7Tforms the third member of orthogonal coordinate system a,fj,\jJ

which has the range

0 ~ a ~ 00 ; 0 ~ B ~ 7T ; 0 ~ 1jJ ~ 2TI (7.1.8)

In this coordinate system the square of the element of arc length is

given with help of (7.1.3) by

(ds )2 = f2
(sin h2a + sin 2s) Q da) 2 + (d S)2J +

+ f2sinh2a sin2S(d1J;)2 (7.1.9)

From this one obtains the metric coefficients of this coordinate system

as

ha = h13= f (5 i nh2a + 5in 213)1/2; h1jJ= f 5i nha 5i nB (7.1.10)

Now the form of the governing eq. (7.1.la) in this curvilinear orthogonal

coordinate system is

4.

----------

A {(h A) (hh A)
de- 1 d S ()C + '0' dC +

K at - Df hahgh1jJ aa ha aa as he as

3

( hahB a2)} ]
(7.1.11)31jJ

h$ 31jJ
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'which reduces with help of (7.1.10) to

'"

~

1
.£f.= D 2

K at f f2 (s i nh2a + s; n f3) {Si~ha a: (Sinha ~~) +

(

"

) (

1 . 1

)

d22

}Jn___~Sjlru\ a~ -- S ~"-~--~~- --"'"--si n h2 a-"'" -s in~- --ai . ..

(7.1.12)

~ < a < ~,'o < B' w, 0 < ~ ~ 2ws

An alternate form of this equation is useful. Let

~ = cosha, ~ = cosS, ~ =~ (7.1.13)

then (7.1.11) transforms into

'" D

{ [
A

] [
A

]dC - f a 2 dC a 2 dC

K at - f2( <;2-i) ~ (<; -1) ~ + ~ (1-1l ) all +

2 2
<; -1.1

+ , 2 2
(<; -1)(1-11 )

2"

}

d C

a~2
(7.1.14)

~s < ~ < ~, -1 ~ 11 ~ 1, 0 < ~ ~ 2TI

as one can readily show. In (7.1.12) and (7.1.14) as and ~s describe

the cylinder (prolate spheroid) surface. Particular solutions to this

equation can be constructed by separation of variables. With

" -s2t
c(Z;,}.1,~,t) = e 4> (<;, lJ,~) (7.1.15)
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~ satisfies the Helmholtz equation in prolate spheroidal coordinates

.L [(T;:2-1) 2Jt] + L
[

( 1-112) .ilit]+ '[,2- "1l fi +

aT;: aT;: ail all (r;2-1) (1- 1J2) alj/

2
(

2 2
)

2 2

+ k ~ -~ ~ = O. where k = (S~~ K
(7.1.16)

- ~ ~ --~

This equation can be separated again with

cP (T;:, lJ,1jJ) = Rmn (k, r;) Smn (k, lJ) ~~~ ( ffitJ1) (7.1.17)

Here the radial function Rmn (k,T;:) and the angular function Smn (k,w

satisfy the differential equations

d

[
2 d ] (

22m2

)d~ (~-1) d~ Rmn(k.~) - Kmn- k ~ + ~ Rmn(k.~) = 0

~~ [(1-~2) ~~ Smn(k.~)J + (Kmn-k2~2- 1::2 )Smn(k.~) = 0
(7.1.18)

The separation constants k2 and Kmn' which are eigenvalues in our problem, would

be determined by boundary conditions imposed on Rand S n . This methodmn m

of solution is not pursued in the following since the determination of the

spheriodal eigenfunctions and eigenvalues for the exterior problem are

mathematically quite involved. Wewill instead obtain the necessary

information about the solution by application of Laplace transform techniques.

Before proceeding with this, we make the simplication that the concen-

tration of the diffusing element on the cylinder surface ;s independent of
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the angle 'IJ and constant over the entire surface so that c(z;:,11',1) obeys,

see eq. (7.1.14).

Qf..= 1
{
L r( 2 dC]

+ L
aT (1;;2- )12) a 1;; L' 1;; -1) a1;; dIJ [(l-l) ~~ ]}

z;: < z;: < 00, -1 ~ 1J ~ 1s - --- -~j 7_.- t~J ~) - -- ----

c(Z;:,1J,o) = 0, Z;:s ~ z;: < 00, -1 ~ ~ ~ 1 (7.1.20)

C(Z;:S,~,1) = 1, -1 ~ ~ ~ 1,1 > a (7.1.21)

C{oo,1J,T) = a -1 ~1J~1,1~0 (7.1.22)

aC(Z;:,o,T)= a-a1J 1:;s ~ 1:; < 00 , 1 ~ 0 (7.1.23)

where

C{Z;:'~'1)= 2(t,~,T)A

Cs

Dft
; 1 = 2Kf

(7.1.24)

The initial condition is given by (7.1.20). The boundary conditions on

the surface of the cylinder and on the spherical surface at the point at

infinity are given by (7.1.21) and (7.1.22) respectively. Eq. (7.1.23) describes

the symmetry of c about the midplane 1J= 0 of the cylinder. Wenow develop

the steady solution as well as the early time and large time (approach to

the equilibrium) behavior of this solution.

The Steady State Solution

For this case the governing equation for c(z;:) and its side conditions

reduce to

~
dz:; [(l-1) ~~] = 0 , Z;:s ~ z;: < 00

(7.1.25)
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C(7;S) = 1

c(00) = 0

(7.1.26)

(7.1.27)

If the concentration at infinity is non-zero, a change in the reference

datum (c) reduces that problem to the above formulation. Here c has no

~ dependence because the boundary conditions (7.1.21) to (7.1.23) can be

me_t-io_the _i ndi ca ted way. The so1uti on -to--th is-prob 1em--i$-e le-menta~* ~-------

and is given by

Qo(Z;)

c(z;} = ~} 7;5 ~ 7; < 00
(7 .1.28)

where

Q (z;) = 110g ~.:!:l0 2 7;-1 (7.1.29)

is the Legendre function of the second kind and zero order.

~ = cosh~ = th2 ~7;-1 cosha -1 co 2

In view of

(7 .1. 30)

Eq. (7.1.28) yields

a
log coth "2

c(a) = , a ~ a < 00a S

log coth r
The diffusion flux ;s then given by

-+ A

J = -De Cs grad c

- -De 2s dc
- h daa

(7.1.31)

(7.1. 32)

Here De = EDf is the effective diffusion coefficient of the species in the

water saturated porous medium, and E is the porosity of the medium. Eq . (7 . 1 . 32 )

with the help of (7.1.10), yields the diffusion flux from the surface of the

prolate spheroid

js = (De/s ) 1 (7.1.33)
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One observes that although the concentration is uniformly distributed over

the surface a = as' the surface flux is a function of position s. The

flux is largest over the top and ~ottom caps of the cylinder where B is

close to 0 and TI as shown in Fig. (7.1.1). The express i on (7. 1.33) is

typical of the surface flux from an arbitrarily shaped body, ina diffusion

- -_tL~Jc!_gg'{~!:ne~_~x_!:_~pJ~E~~?_~9~~_~_i_~~,su~-j~ct to boundary cond; tions

of type (7.1.26), (7.1.27). Dimensional analysis shows that

(

"

~

De Cs
15 = 1 function of body geometry

where i is some characteristic body dimension, which in the present case

can be readily identified from (7.1.33). In order to obtain the total
-+

rate of mass transport from the cylinder, one must integrate js over the

surface S of the prolate spheroid

m = f
s I j s 1___95

(7.1.34)

Since dS = hBh~ dBd~ one obtains with (7.1.10) and (7.1.33) the formula for

the total rate of mass transport from a prolate spheroid
A

47TD ec f. sm ::;
a.

log(coth f)

(7 . 1 . 35 )

For a slender prolate spheroid which is to approximate a cylinder of

length to radius ratio hb > 10, a «1. Hence one can approximate- s

as 2 L
coth (~) ~ a- ' b ~ f as by using (7.1.4) and f ~ 2s

thus,

L 2 Lb = - a or - = -2 s a bs
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With this (7.1.35) yields

"-

. 21TDecsLm = L
log (b)

(7 .1.36)

an approximation for the total rate of mass transport from a slender

cylinder of length L and radius b.
- - n_- n- --- - n_- -- --

The principal physical feature of this formula is that m diminishes

with decreasing radius b (L being held constant) but for a fixed radius

m increases with L. These formulas and the equation for the fractional

dissolution rate will be illustrated in section 7.5.

We consider next the question of the length of time required to

establish the steady state solution.

The Transient Solution

The analysis is conducted in two parts, the early time behavior and

the large time behavior of the sol uti on to equal-ions (7.1.19-23), since

the complete solutiqn to these equations is difficult to obtain. The

large time behavior is of greatest interest since it gives an indication

of the time span necessary to establish the steady state. We will compute

only the dominant leading term of the solutions since it will furnish

the desired information.

The Large Time Behavior

The governing equation (7.1.19) and its side conditions are subjected

to a Laplace transform with respect to the variable l and a Legendre

transform with respect to the variable ~. C(~,~,l) thereby changes in

succession into

c ( ~, }.I,p) = J~e-Pl C(~,~,l) dl
0

(7.1.37)
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1
c{l,:,2n,p)= I C(l,:,ll,P) P2n (lJ)dlJ0

where the P2n (1J) are the Legendre polynomials of even order. Only even

members of the set are required on account of the symmetry condition

(7. 1.38)

(7.1.23). We have shown that for the leading term of the solution~ only

Po(~) = 1 and thus c(l,:,O,p) are required. The details are omitted.

App1yi ng (7. 1 .37) -to -(7.1 ~ 19)- yi e 1d$--wi-th-he-~ fT-of --(-7-.-l-.20 }--.--------------------------------

~r; [(r;2-1)~(~'lJill]+ ~ [(l-}) ae(~a~,P)] = p( r,?-/ )e( 1,;,\l,p)

Then applying (7.1.38) gives with n= 0,

( 7 . 1 . 39 )

~
[(

2-1) ~ ]+ (1- 2) ac(z:,u,p)d~ ~ d~ lJ

1

= p l' (~2-lJ 2) .
0

0

.c ( ~, l-1'p) dlJ (7.1.40 )

One observes, having first Laplace transformed equations (7 .1.19) - (7.1.23),

that the second (integrated) term in (7.1.40) vanishes by (7~1.23). The

integral on the right hand side of (7.1.40) has the form

f
1 2 2

(

2 1
)

2
f

1

0 (~-].1 ) c(~,~,p)d].1 = ~ -"3 c(~,o,p) - 3" 0 .C(~'11,P)P2(lJ)dlJ
(7.1.41)

The last integral can be shown to have no contribution to the leading term,

so there results for c(~,o,p) = c(~,p)

d
d~ [( 1,;2-1) ~~J= P (1,;2- t) e, 1,;5 < 1,; < '"

(7.1.42)

with the boundary conditions

1
c(~s'p) = p ; c(oo,p) = a (7.1.43)
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We propose a solution to (7.1.42) of the form

-q(r;-r;; )
c(r;,q) = cf>{r;,q)e s, q = IP (7 . 1 . 44 )

where cf>(~,q)is to be determined by substitution into (7.1.42). There

results

: .- ~t(~2-1T~ J = R(~,q)

~--_._----_.

(7 .1.44a )

where

R(~,q) " 2q[ (I;?-1) ~ + 1;~] + i q2~ (7.1.44b)

In view of eq. (7.1,.43) we take the boundary conditions on cp(r;:,q) to be

1
<P{l;;s,q)= "2

q

~(oo,q) = 0

(7.1.45)

We now define the Green's function G(s,~) for the differential operator

in (7.l.44a) in order to solve that equation. Let

L
[ (s2-l) dG(l;;,~t J = -c(s-tJdr; dr; (7.1.46)

G( r;s ,~) = G(00,~) = 0
b

Then with F(a,b) = f ~
a (r;2-1)

(7.1.47)

we have

(s2-1) ~~ = A or G(l;;,~) = AF(l;;s'~) , Ss < l;; < ~ (7 .1. 48 )

(s2-1) ~= -B or G{r;,~)=-BF(~,oo), ~ < ~ < 00

The continuity of G(~,~) and the unit jump discontinuity of (~2-1) ~~
at r; = t,:.
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determi nes

A = D-1F(~,co) , B = D-1F(Z;;s~~) ; D = F(Z;;s'co)

so that

(7.1.49)

[O-lF{I;,oo)] F{1;s,1;), 1;s.~ 1;~ I;
G(z;;,~) = (7.1.50)

- --------------------------------

[O-lF{1;S,I;~ F{1;,oo)
~.:sz;;<co

On evaluating 0 and F there results

Returning now to the solut-i-on of eq. (7.1.44) we consider as our starting

point Green's theorem

(CO
{

G ~
[ (Z;;2-1)~

J
- <P ~ [ (Z;;2-1) dG

J. }
dZ;; =

)... dZ;; dZ;; dZ;; dZ;;

Z;;s

=
{

(z;;2 -1) [G Q1 - <p dG
J } I

co

dZ;; dr, Z;;s

(7.1.52)

One substitutes for the differe,ntial operators under the integral sign the

equations (7.l.44a) and (7.1.46), then one makes use of the integral

property of the delta function and applies the boundary conditions (re-stated)

G{co,~) = ~(oo,~) = 0; G(~s'~) = 0, ~(~s,q) = ~
q

(7.1.53)

Qo()
[Qo(Z;;) - Qo(Z;;sU Z;; r;<t;

Qo(ss)
, s

G(Z;;,tJ = < (7.1.51)

Qo(Z;;)
[Qo() - Qo(z;;s)J ,r;<co

Qo(z;;s)
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There resul ts

2 dG( r,;s ,~ ) 1 00

~(~,q) = (ss -1) dr p - f G(s,~) R (~(s),q) d~
<;s

(7. 1 . 54 )

But by (7.1.48)

2 dG(r,;s'~)
- (.r:.s -J} et; --_=:_--~ ---n (]. l_~_~~_)-

where A is given by (7.1.49). If one evaluates the integrals, substitutes

the result into (7.1.54) and interchanges the labels ~ and ~,there results

the Fredholm integral equation

- Qo(s) 100

~(r,; ,q) = n (s) .2 -J G(~, s) R (~(~) ,q) d~
0 s q Ss

(7. 1.56)

The large time behavior of the solution is determined by the "small pIt

behavior of its transform. For this reason, one usually expands the

transform of the solution ~ in powers of p or q. This amounts to the

iterative solution of the integral equation in form of a Neumanseries.

For our purpose (7.1.56) shows that the leading term in such a series ;s

the first (integrated) term on the right hand side, i.e.,

Qo(~) 1
<l>°(~,q)= no(~s) q2

(7.1.57)

Higher approximations can be computed by substituting this into (7.1.44b)

and then evaluating the integral (7.1.56) provided that this is done to

the correct order of the dismissed ~ terms. In the present, we restrict

ourselves to the zeroth, i.e., the leading approximation to c(s,q) which

is a combination ofeqs\(7.1.44) and (7.1.57)

Q(s) -q(i;-i;s)

c(s,q) = QO(~) ~2
0 s q

( 7 . 1 . 58 )
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The Laplace and Legendre inversions produce then the desir~d approximation

for the large time solution

Q (z;)

(

z;-z:s

)C(t.~.T) = ~~(~.) erfc 2T1/2
(7.1.59)

As T -r oo,the complerrentary error function tends towards unity so that

th i s expression agreeswithn the ste-ady.sol ution--gi.ven-Dyr:.q-:t7~-1-~28-)~----------------_._._--------.

The diffusion flux from the surface of the prolate spheroid ;s given in

the ~ coordinate system by

-r Decs dC
J=-t1~ ~ where h = f J 1'" 2-i~ = t ~ 2s ~ -1

-+ - Dees

{

Q:(~s) 1

}
J - - ~ Q (l;s) - fiIT

~s 0

(7 .1.60)

The time span necessary to establish the steady state to 1%requires that

1
{1fT = 10-2

~

Qo(l;s)

Qo(l;s )
(7.1.61)

With (Lib) = 20,

~

Qo(z:s )

Qo(Z:s)

2 2
1 (20)'- ..5em

~ "4 TOg(2TIT= 33.5 Df = 5xlO sec' K=100

and f = 150 cm, eq (7.1.24) yields

4 4 2 11
10 x 2.25 x lOx 10 = 1.28 x 10 sec= .52

tsteady state 3.14 x 5 x 10- x (33.5)

= 4000 yrs (7.1.62)

This is an appreciably long time period and its consequence in establishing

the steady state in laboratory experiments must be appreciated. For

increased retardation this time span increase$.
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It is within the context of such experiments that the early time

behavior of the solution is of interest. We turn next to the analysis of

The Early Time Behavior

In contrast to the large time behavior which is characterized by

small values of the Laplace transform parameter p, we are now interested

' ~---~ ;n-the--large-val uedm-parameter case as p -+ oo'~
~- ~_._-----

The starting point of the analysis is eq. (7.1.42) for c(~,p)

d

[
2 dc] 2 1

d~ (~-l) d~ = p (s - 3) c , Z;;s < Z;;< 00
(7.1.63)

with the boundary conditions (7.1.43)

1
c(Z;;s,p) = p; c(oo,p)= a (7 .1.64)

One of the most useful techniques for obtaining the asymptotic solution

--of- (7.1.63) for p -+ 00 is with help of the Liouville approximation. For

this introduce the new independent variable

Tl = (~
(

(z;;~)2-l

)

1/2

)~ (~-) 2 -1 d~-s

(7.1.65)

and the new dependent variable

N =

([~2-1J [~2-tJ r/4 c
(7 .1.66)

There results the greatly simplified equation

d2N -

dn2 - ~ + g (nU N (7.1.67)
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for which

N(oo,p) = 0 (7 .1.68)

Since one treats p + 00, the function g(n) is as usual treated as a

negligible contribution and its specific form is of no further interest

in the following except for the fact that it is a continuous and bounded
~ n ~--- -~---~- - noon --------------------

function.

The dominant solution of (7.1.67) which satisfies (7.1.68) is

-pl/2n
N(n,p) = Ae (7.1.69)

If this is substituted into (7.1.66) and the boundary condition (7.1.64)

is applied there results

(7.1.70)

(

r: 2 ;t r 2 1]
1/4

LS -lJ lr; --

C(1;;,~,T) = fstII r1;;~ - tl) erfc CT~/2)
(7.1.71)

where n(s) is given by (7.1.65). The early time surface diffusion flux

can be determined from this equation and it exhibits, analogous to the

second term in eq. (7.1.60), a l-1/2 behavior, but with a different

numerical coefficient.

. G 2 0 G 2 'J f4

1/2

( 1;;5 -1 1;;5 - "3

-p 11

c(r;,p) =
2-1 ] 2 -tj- p

On inversion there results
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7.2 Mass Transfer From a Fuel Canister by Diffusion and Forced Convection

Paul L. Chambre

Consider a cylinder of infinitelength imbedded in a porous. medium

through which water is flowing steadily in accordance with Darcy's law.

The cylindermatrix contains a diffusing nuclide which is set free at the

surface of the cylinder at the solubility limit of the species in.water and

then .£1i ffuse s.; nto..-~the-.-exte}"Jor.--unbounded-space A-l-1-mater--:ia~pJ'9per-t-~-e s-- ---.

are assumed constant. The flow ;s taken normal to the axis of the cylinder,

but inclined flows can also be treated by the analysis given below. -The

governing equation for the conservation of mass of the diffusingspecies

from a cylinder of radius ro in the presence of radioactive decay is

" A A A

(

2'" A 2",

)

K ~ + (" e) ~ + ~ ~ = D .LS. + ~ ~ + .L £...£ - AKc
at u r, ar r ae f a~2 r ar r2 ae2

ro < r < 00 , 0 ~ e ~ 2TI, t > 0 (7.2.1)

Here

(

2

(

2

)

ro A ro

u(r,e) = -U 1- ~2 ) cose; v(r,e) = U 1 + ~2 sine
(7.2.2)

are the radial and tangential pore velocity components derived from D'Arcy's

potential flow in the porous medium with U the free stream pore velocity far away

from the cylinder. r is the radial distance from the center of the

cylinder and e the angle measured in the tangential flow direction from

the frontal stagnation point at the cylinder surface. K is the retarda-

tion coefficient and Of is the diffusion coefficient of the specie$ in the

1iquid.

Prior to the time t = 0, the diffusing nuclide has zero concentration
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in the porous medium. At time t = 0 the concentration at the surface of

the cylinder is changed to a constant value cs

A

c(rot8tt) = cst 0 ~ 8 ~ 2TIt t ? 0 (7.2.3)

and maintained at this surface concentration Cs subsequently. T~e

, u--o<Ytindarycondition far from the cyl inder--isheltl-atuzero--con~en-tr-atiol1---------------------------

C(OOt8tt) = 0 t 0 ~ e ~ 2TIt t ? 0 (7.2.4)

It is convenient to introduce non-dimensional variables with

T - Ut r A- Kr
o

' r = r ' c(r,e,T) = c(r,e,t} At0 - e

Uro
Pe = 0-- ' the Peclet numberf

(7.2.5)

~r
Da = T' the Damkohler number for convective mass transport.

Then the governing equations for c(r,8,T) transform to

dC -
(

1 _L
)

cose ac+
(

1 +L
)

sin8 ~=L
(

d2c+lac+La2c
)dT 2 ar 2 r ae Pe ~ 2 r ar 2 ~ e2

r r or r 0

1 < r < 00, 0 ~ 8 ~ 2TI T > 0 (7.2.6)

( )
DaT

c 1,8, l = e , 0 ~ e ~ 27T, T >,.- 0 (7.2.7)

c (00, e,T) = 0, 0 ~ e ~ 2TI, T >,.. 0 (7.2.8)

with the initial condition that c(r,e,O) = O.
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For typical porous media flows the Peclet number Pe may be large.

Typically, with U=2m/yr, ro = 0.15 m, and Of = lxlO-5 cm2/sec will

yield a Peclet number of 10.

This suggests an asymptotic solution of the equation system for

large Peclet numbers. In this case the principal resistance to mass

Ip_n t~an$f-e-~-from---the--cylinder-surface is in a direction normal to the fl-ui-d-- -- ------------

layer surrounding the cylinder, i.e., in the r direction. The diffusion
- 2

transport tangential to the surface, i.e., the term ~ a ~, can then ber 09
neglected as will be shown below. To obtain the asymptotic form of the

equations, introduce the new independent variable R in place of r

R1 +- ,
r = {fie (7.2.9)

then eq. (7.2.6) takes on the form

_nac-- - 2R cose .£f. + 2 s ine ~ = a2c + 0
(
pe-1/2

)dT aR ae aR2

This is to be solved for c(R,e,T) subject to, see (7.2.7), (7.2.8)

(7.2.10)

( )
DaT

c o,e,T = e ,0 < e ~ 2n, T ~ 0 (7.2.11 )

c(OO,e,T) = 0, 0 ~ 8 ~ 2n, T ~ 0 (7.2.12)

with zero initial condition.

For large Pe numbers the last term in eq. (7.2.10) is neglected. By an

additional change of the independent variables, one can reduce the time

dependent diffusion and convection equation (7.2.10) to a simpler time

dependent diffusion problem without convection. New independent variables

n(R,e), ~(T,e) are introduced which transform c(R,8,T) into c(n,~)
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i.e., c(n,~) = c(R,8,T) (7.2.13)

These variables are given by

1 1 f l-f T,e
}~(T,e) = -"2cose +"2 ll+f T,e

--- -. _w~e~("e) =~-4'J:fft~:~~~e_~:j_~~~~eJ_,__b~e)=j l-Zose )
and

(7.2.14a)

T}(R,e) = R sine. (7.2.14b)

As the reader can readily verify, these transformations, which are

deduced by group-theoretical considerations, changeeq. (7.2.10) to a

very simple equation for c(n,~), i.e.,

dC - a2C
~ - 2 ' n > 0, r; > 0an

subject to the side conditions

(7.2.15)

c(o,r;) = 1 , ~ ~ 0 (7.2.16)

c(oo,s) = 0, s ~ 0 (7.2.17)

with the condition that c(n,o) = O.

The solution to this problem is

c (11,1;) = erfc ( 2~)
(7.2.18)

The solution in R,8,T variables is obtained by substituting n(R,8),

and s(8,T) in (7.2.18). One obtains after some simplifications that:

c(R,8,T) = erfc (R Icoth 2; + case) (7.2.19)

This solution satisfies (7.2.10) with side condition (7.2.11)

replaced by unity. To obtain the T dependent boundary condition given
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by (7.2.11) we use Duhamel"$ integral, i.e.,

c(R,eor) =I' c(o,e" ') dd,[erfC ( R~2('-f) + case)}"
0

(7.2.20)

Integrating by parts and transforming back to the original variable cone

obtains

A A Da Ut

[ r ~pe 2Ut ]c (r ,Pe,Da,t ,e) = cs exp(- Kr-) erf c (- - 1) -2( coth -K + cos6 ) +
0 ro ro

- n - nUt --- - ----.------.---------

+ Cs Da ~KrO e-Da, erfc [(:0- 1) ~P2e (coth 2, + cose) Jd'
(7.2.21)

This solution (7.2.21) describes the time dependent concentration field

in the presence of radioactive decay in a Darcy flow about acyl inder.

The surface mass flux for a diffusing nuclide is

dC

I

}(Pe,Da,t,e) = - De d; r=ro

- Decs J 2Pe [exp(- DaUt) Jcoth ~~t + coss +
r n ~o 00

Ut

j
Kr

0 -Da1"
+ Da e ~coth 21" + cosS

,0
d, ] (7.2.22)

where De = £ Of in the effective diffusion coefficient of the diffusing

nuclide and £ the porosity of the medium.

The surface mass flux, according to (7.2.22) depends on time and the

angular position. The angular dependence is removed by averaging the

surface mass flux over the cylinder perimeter. On the account of symmetry

we have
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1

1
'lr :+-

J av (Pe, Oa, t) = ;- J (pe, Oa, t , e) de
0

0 c ~ [ J
~;

= ~ ~ exp (- Oa Ut ) I (~) + 0 07Tr 7T Kr Kr a
0 0 0

0
e ~ DaT I (T) dT]

(7.2.23)

-- -. where.- u--7T .

1
1/2

I(T) = (coth 2T + cose) de

0

-~ ~---~--~~~._---------_._---

j
7T/2 1/2

= 2 (1-e=41: - 2 sin 2 <p) d<p

0

_2{2 2
- ffiTTT E [m (T)] (7.2.24)

1/2
where m(T) = (1-e-4T) and E[x] is the complete elliptic integral of the

second kind. Substituting for I(T) in (7.2.23) one obtains

Oa Ut 2 Ut Ut
40 c rr;;;:-

{

exp (- Kr-) E[m (/<:r")] fir 2

}
3 (Pe, Da,t) = -~- "P-rre -_C? ~ + Oa 0 e -OaT E[m (T) JdTav 1Tr 7T

(
Ut

) m(T)
0 111 Kr 0

0

(7.2.25)

In absence of radioactive decay (A=Oa=O)there results

To evaluate I(T) we proceed as follows

7T

f 2T f/2I (T) =1
-1 + 2e +cos8 de2T -2Te -e

o
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-.. 40 c ~j av (Pe ,0, t ) = e s Pe
TIro TI

E[m2(~ )]
0

Ut
)m(Kr

0

(7.2.26)

For application in section (7.5), we require the steady state,

average surface mass flux in absence of radioactive decay. Hence, (7.2.26)

yields as t~, with m(oo)= 1 and E[l] = 1, that

+ 4Decs ~e
J = -

-~ ~ ~ ~-~~ ~~ ~ ~~ -~ ~~~--a -V rr~ ~- r- -~~-- ~- ---~~-~-~--- -

0
-( Z~.-2.2])~__-

The mass transfer per unit length of cylinder under steady state condition

is then given by

. + .~
m = Jav x 27Tro= 4.5135 DeCs vPe (7.2.28)

a result well known in heat and mass transfer studies where it ;s shown

to be va1i d for a range of Pe>4 (K2), (L1).

From (7.2.26) one can estimate the time necessary to establish the

surface mass flux to 99%of the steady state mass flux. From table of

complete elliptic integral of the second kind one obtains that the

criteria is given by

Ut = 1.2
Kro

(7.2.29)

For a flow of U = 1 m/yr, ro = ~.15 m, and K = 100, t = 18 years,

a relatively short time for the establishment of a steady state when

compared with the case of pure diffusion. Theret = 4000 years was obtained

(see 7. 1.62) .

The analysis leading to the solutio~ (7.2.21) for the time independent boundary

condition is readily generalized to a time dependent boundary condition.

The starting point for this analysis is Eq.(7.2.20).If in (7.2.3), cs. is
D I .

(

l' ~.Kr

)replaced by Cs ~(t), one must change c(o,e,T'} in (7.2.20) to e aT ~ U 0
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As an illustration consider the radioactive decay of the surface concentra-

tion according to

~

c(r ,e,t) = c e-At0 s o<e ~ 2rr, t~o (7.2.30)

in place of Eq.(7.2.3). Here <p (t ) :: e -At. Hence, we have

-AT'Kr

c(o,8, ~~eB3L-'--e-uu1t O",u 1mu_u- u_uuuu_-_u nu (7.2.31)

After substitution of c(o,e,TI) into (7.2.20) one can perform the

integration analytically. Transforming back to the € and evaluating

surface mass flux one obtains

-+ D.
(

eCs 0
J Pe,Oa,e~)= exp(- aUt)

r 0 Kr0

2P

rre [coth (~~t) + cose] .

0
( 7. 2. 32) .

This shows that the surface mass flux no longer reaches a steady state

but tends toward zero as t -+00.

For a flow parallel to the cylinder axis the mass transfer can be

approximated as follows. The lateral cylinder surface is unwrapped into

a flat plate of length L and width 2rrr , and subjected to a flow in the0

direction of the plate length. The steady mass transfer from a flat plate

of width 2rrr and length L under longitudinal flow is given by0

(

UL

)

1/2
M

1 = 2.257 °ec --0 2rrr,
on g s f 0 (7.2.33)

while the mass transfer from a cylinder of length L with the flow normal

to the cylinderaxis is in view of (7.2.25)

.

Mnorm = 4.513 0 c (
Ur0

)

1/2

e sOL
f

(7.2.34)
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Hence

.Mn0 rm = 4. 513

A'ong (2.257){2 1T
( 2~0 ) 1/2

For a canister, with an aspect ratio 2; = 13.2
0

Mnorm " 1.63

M10ng ~ ~~ ~ ~- -~ ~ ~ ~-~ ~~-~--~-- .~------

This indicates that for flow parallel to the cylinder axis, the mass

transfer is decreased by about 63%compared to that due to the flow normal

to the cylinder axis because the thickness of the diffusion boundary layer. .
is greater for M10ngthan for Mnorm.

Finally we note that the large Peclet number approximation made in

the analysis prevents one from letting the free stream Darcy velocity U

become sma 11 . If U ~ 0, in eq. (7.2.1), the convection terms drop out and

the equation describes then a temporal balance between the effects of

diffusion and radioactive decay. For a constant surface concentration,

given byeq. (7.2.3), the modified eq. (7.2.1) generates then a steady

state solution as t ~ ~. Since the e dependence is no longer needed, the

governing equation is

a2c "- + 1.2f. 2"
ar2 r ar - S c = 0, r > 1

where

2AK r
2 ro r =- ,

(3 = D ' rof (7.2.35)

with the boundary conditions

2(1) = Cs ' c(~) = O. (7.2.36)
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The solution is given by

A - KOp') )-c (r) - Cs K B ,r > 10
(7.2.37)

so that the surface mass flux is

-t Decs

{
, K, (s)

}J (r 0) = r;;- 13 QTI
(7.2.38)

~--~~---~--~- --~-- ~~ - _u- - --~---~~~---~ ~ ~--~- --~----

Here Ko(n), Kl(n) are the modified Bessel functions of zero and first

order respectively.
> ,>

A detailed numerical evaluation of the mass tr~nsfer without radio~

active decay, i.e., eq. (7.2.28), as well as the fractional dissolution

rate are given in section 7.5. The other formulae derived above including

their dependence on radioactive decay will, be investigated in the future.
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7.3 Mass Transfer From a Fuel Canister by Diffusion and Free Convection
,

Paul L. Chambre

The problem concerns the mass transfer from a heated vertical cylinder

which is imbedded in a water saturated porous medium. The temperature of

the cylinder exceeds that of the surrounding with the result that a free

convection pattern develops which drives the fluid along the cylinder

surface. This induced velocity affects the mass transport of a diffusing

, u-specres-rrom-lne-UcyTmdersurufauceu,olo-lhe---s urroun din g medi urn. It is

thought that the effects of free convection might be important during that

time when the fuel canister generates a sufficiently large amount of decay

heat to maintain a temperature difference of about 50°C (or more) between

the canister surface and the surrounding medium. The aim of the analysis

is to determine the velocity, temperature and concentration fields and to

develop a formula for the surface mass flux.

The following assumptions are made:

a) A steady state description is adopted.

b) The vertical cylinder surface is replaced by a flat plate surface

having the same length as the cylinder and a width equal to the cylinder

circumference.

c) The pore water is assumed to have temperature independent properties

except for its density. The water flow obeys Darcy's law. The fluid

filling the porous medium is assumed to be a single phase.

d) Boundary layer theory simplifications are assumed valid, see eq.

( 7 . 3. 14) be 1ow .

The governing equations are:

Conservation of Mass ~ + 8v = 0
8x 'dy (7.3.1)
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Conservation of Momentum(Darcy's Law)

u = - ~ (* + p9 )
(7.3.2)

v= -~ Q.P..
II ay

(7.3.3)

Conservation of Energy

~ x -- ___n_- - -- --- -

aT aT 2 - e (7 3 4)u---+v-=aVT a =- ..ax 8Y e ' e pcp

Conservation of Species

A A 2
u .Qf. + v ~ =EDfv 2ax ay

(7".3.5)

Equation of State of Liquid

P = Poo {1 - 13 (T - Too)}
where

(7.3.6)

2 2 a2
V =~+2

ax 'dY
(7.3.7)

The coordinate system is shown in Fig. (7.3.1). The velocity components U,v

point respectively into the x and y direction. In the above equations

p,T,p,cp are the pressure, temperature, density and heat capacity of the

liquid and Poo its density far away from the plate. k is the permeability of

the porous medium. Ae is the effective thennal conduction of water saturated

porous medium as measured in the laboratory. lland 8 are dynamic viscosity

and coefficient of thermal expansion of the liquid in the porous medium

respectively. Df is the diffusion coefficient of the diffusing species in

the liquid.

The boundary conditions for our problem are

v(x,o) = 0, T(x,o) = Tw; e(x,o) = cs' for x>o

u(x,oo)= v(x,oo}= 0; T(x, ) = Too;e(x,oo} = 0, for x>o

(7.3.8)

(7.3.9)
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t U(i,y)
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J(8L828.~

Fi.g.7.3.1, Co~ordinate system used in the
free convection model.

f ('7),
"('1),
c ('1)

1]

XBL828-6306

Fi 9 . 7. 3 . 2 . Qualitative shape of f(n), f~(n) and
c(n) for large Lewis number.
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There will be a "slip" condition for the u conponent of the velocity at

the plate surface which is as yet unknown. Furthermore, the temperature

difference (Tw-Too)which depends among other parameters on the heat

release from the cylinder is also determined subsequently.

Eq. (7.3.1) can be satisfied in the usual way by introducing the

~~~ st1"e-am~functjon~-~lJJ( x ,y) wi th - ~--~--~---~~._--_.-

u(x,y) = 2i . v(x y) = - ~ay" ax (7.3.10)

If one differentiates (7.3.2) with respect to y, (7.3.3) with respect to

x and then algebraically adds the resulting equations, one obtains with

help of (7.3.6) and (7.3.10)~

(~p (3g) aT = '12".
1.1 00 ay 'I'

(7.3.11)

On the other hand (7.3.4) and (7.3.5), expressed with (7.3.10), give

~ aT ~ aT - ifay ax - ax ay - Cte T (7.3.12)

~ ac - ~ ac =e:D v22
ay ax dX ay f (7.3.-13)

One has thus these three governing equations for the determination of

the unknownfunctions ~,T and c. For the purpose of establishing the

main physical features of the solution, it is convenient to utilize the

boundary layer simplifications. These imply that the transport of mass,

energy and concentration in the major flow direction (i.e., u) is small

compared to that normal to the plate. With

n n
2« 2

ax ay

2 2 2A 2A
U «U ~« ~
dx2 ay2' ax2 dy2

(7.3.14)
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Equations 7.3.11-13 result in,

(p ~ o' )
aT - a2,It

00 1.J~9 ay - ~ay
(7~3._15)

~ aT ~ aT - a2T

ay ax - ax ay - C1e ay2
(..7.3~16}

A A 2A

~ .£f. -.Q.YJ.. ae =E:D a e
ay ax ax dY f ay2

(7.3.17)

These equations are subject to the boundary conditionsJ(see (7.3,B)?

(7.3.9) and (7.3. 10))

aw(x,o) = 0, T(x,o) = Tw; c(x,o) = Csax (7.3~lB)

aw{x,oo) = ~ = 0 , T(x,oo) = Too; c(x,oo) = 0ax ay (7.3~19)

va1i d for x>o.

Equations (7.3.15) and 7.3.16), which are coupled equati~ns for T and W,

are solved first. One determines thereby the temperature induced stream

function ~(x,y) which describes the free convection flow pattern. With

knowledge of W, one can then solve for the concentration c(x,y) separately.

For this reason we concentrate first on the solution of (7.3.15) and

(7.3.16). These partial differential equations are reduced to ordinary

differential equation by the introduction of the similarity variables

n = Ral/2 (Y/{;l) (7.3,20)

~ = a {Ra)l/~ {~)1/2 f(n}e L (7.3~21)
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T-T
00

e(n) =r-w 00

(7.3.22)

"
c

c(n) = c; (7.3.23)

where

poog k
Ra = --- (-) S (Tw-T )L (7.3.24)a 1-1 00e ---~~~--~ ~_u ~ -~-~-------

Here L ;s the length of the plate. and Ra the Rayleigh number of the

liquid saturated porous medium. With these variables the governing

equations reduce to

ftl (n) - e' (1)) = 0 (7.3.25)

e" (1)) + } f (r)) e' (1)) = 0 (7.3.26)

A-lc" (n) + } f (n) c' (n) = 0 (7.3.27)

where
a

A = ~ = Le
sDf (7.3.28)

is the Lewis number. The boundary conditions transform to

f(o) = 0 ; e(o) = 1 ; c(o) = 1 (7.3.29)

f'(oo) = 0 ; 0(00) = 0 ; c(oo) = 0 (7.3.30)

as can be seen by introducing the new variables into (7.3.18) and (7.3.19).

A final integral of eq. (7.3.25), which satisfies the boundary

conditions (7.3.30) for f' and e at n = 00, is given by

f' (n) = e(T1) (7.3.31)
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Since the x component of the free convection velocity is determined by

ex.

u = ~ = ( Le Ra) f' (1))ay
(7.3.32)

one observes that the normalized vertical velocity u(n) and
ex.

( ~ Ra)
the tempera ture dis t ri but ion e (n) _c1re, ac c:ordj!Jg_to__lI!)_.JJ1-,___Qf_:tb_~__~ame------------------

form. Thus, the determination of the function f(n) is of central

importance. To obtain an equation for f(n),eliminate e between equations

(7.3.25), (7.3.26) and (7.3.31), with the result that

3 2
df+lf df=O
dn3 2 dn2

(7.3.33)

Exactly the same differential equation arises in the problem of the

boundary layer flow of a viscous fluid over a flat plate, the famous Blasius

problem (B2). But in contrast to the boundary conditions f(o) = f'(o) = 0,

f'(oo) = 1 in that problem, the conditions for the present case read

f(o) = 0 ; f'(o) = 1 ; f'(oo) = 0 (7.3.34)

The qualitative shape of the solution f(1)) of (7.3.33), (7.3.34) and that

of its derivative f'(1)) are shown in Fig. (7.3.2). As already stated,

the free convection induced vertical velocity component and the temperature

distribution normal to the plate are both characterized by the shape of

the f'(1)) function.

Next we determine the mass transfer from the vertical surface. For

this one requires the normal derivative ~e
l which in turn involves ~c

l

.
Y y=O T) n=O

But 1) contains Ra and in this Rayleigh number there occurs the as yet

unknown temperature difference (Tw-Tm). (Tw-Tm) is determined by the heat

flux through the canister surface and the convective and conductive heat
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transport into the porous medium. So one must first find (T -T). Thew 00

local heat transfer from the surface of the plate is defined by

aT

Iq" = -:>'e ay y=O

which with (7.3.20) and (7.3.22) yields
~~ -------------------

q" = - A (T -T )3/2 (.Is PooS9 )
~ 1/2 -1/2 I

e w 00 ~ a x e (0)e
(7.3.35)

where Ae is the effective thermal conductive of the saturated porous medium.

The total rate pf heat transfer from a plate of length and width W is then

L

Q = w f q" (x) dx0

= - WA (T -T )3/2
(
~

e w 00 1.1

1/2
PooS9_

)
2L1/2 e1(0)

ae
(7.3.36)

Fig. i7:~.3) shows the variation of spent fuel heat generation with time.

We now define the magnitude of the average heat flux from the entire plate as

q-II = ~
- WL

3/2

(

k PooSg

)

1/2 I= A (T -T ) 4 - - l e (0 )
1e w 00 ~ Lae

(7.3.37)

Hence the desired temperature difference between plate surface and the porous

media is given

(T -T ) =w 00

by

{
(<i") 2

}

1/3

4:>'; * ~::g [e '(0 r (7.3.38)

(TW-T~) is seen to be a function of the average heat flux issuing from

the fuel canister and the properties of the porousrred.ium. The assumption
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is made that the average heat flux varies so slowly with time so that

(7.3.38) can be applied to a quasi-steady state. Fig. (7.3.4) shows a

typical trend for this temperature difference as a function of time for a

given qll (t) descriptive of a spent fuel. The temperature difference

drops to 10QoCin about 130 years. The calculation is based on the follow-

. ing parameters values
~ -- -

A = 2.894w/m oK (1)

.k = 2. 96x 10-14 m2 (1 )

P = 5.5 x 10-4 kg/m sec

Poo= 103 kg/m3

cp = 4.184 x 103 J/kg oK

s = 2.07 x 10-4 l/OK

L = 4.7 m

-1
r = 1.78 x 10 m

Q (0) = 5.5 x 102 w

e I (0) = .:l7T

(2)

(2)

(2 )

Before proceeding with the mass transfer analysis we estimate next

the magnitude of the vertical slip velocity component u for the above

data. From (7.3.32) and (7.3.34) the free convection velocity component

along the plate surface is given by

u = ( a~Ra )

= pooSg(T -T ) ~w 00 11
(7.3.39)

For a temperature difference of 100°C one computes u = 0.34 m/yr. This is

competitive with commonly assumed groundwater flows of 0.1 to 1 m/yr which

are used in -the far-field calculations. Fig. (7.3.4) gives the magnitude

of the free convection velocity as a function of time.

The local mass transfer rate from the plate is now computed from the

solution of (7.3.27) subject to the boundary conditions (7.3.29) and



9.

(7.3.30) for c(n). The desired solution is

rn ( A rn'
c(TI)= 1 - '.jO""exp- '2)0 f(S)dS) dl1'

fa exp(- ~~T1' f(s )dSjd:.-

(7.3.40)

so that the surface mass flux is

f .-- ~ ._~-- - ~ ~ ~ ~-_._--

(7.3.41)

( )
1/2 1

... Ra TjI I

J = DfECS xL r exp (- ~ fa f(S)dS) dTj0

(7.3.42)

The definite integral

00

(

11'

)I (A) = fa exp - ~ fa f(s )d~ dn' (7.3.43)

involves the function f(n)~i.e., the solution of (7.3.3~ and the Lewi~

number parameter (7.3.28).

ae
It = E:D

f
(7.3.44)

We shall discuss the complete evaluation of I(A) for arbitrary A values

at a later time, but develop now the asymptotic form of this integral for

large values of It which may arise due to small values of the diffusion

coefficient in porous media. In this case the concentration boundary

layer is very thin compared with the thermal layer, as sketched in

I = - DeE: En Q.fJ..nl
'7 ac
J = - D E:f ay f s ay dn

y=O I n=O

where E: is the porosity of the medium.

In view of (7.3.20) and (7.3.40).
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Fig. (7.3.2). One can then approximate f(~) by the first term of its

power series expansion, i.e.,

2
f(~) = ~ + O(~ ) (7.3.45)

2
If one neglects terms of O(~ ),

l---~~--~--~ ~ A~.n~ ~ -_.~-~

I (A) ~ J00 e 4 d~,0

--~ ~- _.~~ - -~~-~------

= H. for A large

Thus (7.3.42) yields,

(7.3.46)

+

(

Ra A

)

1/2

J = DfEcs xL ~ ' for A large (7.3.47)

If one expresses Ra by (7.3.24) one has in terms of the physical parameters

-1-

(

1 k P009 1

)

1/2 D EC
J = -Df

...ecs - - -:- S{T - T ) - = ..1-. s
'IT l..I e:Df W 00 x . t

.( 7 . 3 . 48 )

where the length t is given by

9v =
(
11. P009 S(T -T ) l

)

1/2

'IT l..IEDf W 00 x
( 7 . 3 .'49 )

The average rate of mass transfer per unit length of plate for a plate

of length L is readily computed from equation (7.3.48).
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7.4 A Model for Leach and Diffusion Rates FromGlass Bodies

Paul L. Chambre

Experimental evidence indicates that when a typical silica base glass

is brought into contact with water two physical processes occur in the

dissolution of the glass. One of these is an alkali ion transfer, such

as for example,Na+. across the glass-water interface which gives rise to
~ ~ ~ n ~ n---------------------

a gel-like 5i02 transition layer. The second process appears to be the

corrosion of this layer resu1ting- in the dissolution of the glass matrix.

A number of theories have been proposed, differing in various detailed

mechanistic ways, which attempt to explain qualitatively or quantitatively

various aspects of experimental observations on glass dissolution. In the

following, we develop a model which is based on only the two, generally

accepted, experimental pieces of evidence. These are

i) The movementof the glass interface with a (regression) velocity v,

which is initiated by

ii) The diffusion of an alkali ion across the glass-water interface.

Three simplifying assumptions will be mad~. The interface velocity is

assumed to be constant in time. The support for this assumption is indirect.

It will be shown in the following analysis that a constant regression

velocity leads to the often observed experimental result (M4) that the

fractional release of a particular nuclide f(t) follows the empirical

formula

f(t) = cl[t+ c2t (7.4.1)

where cl and c2 are constants. On the other hand there exists also some

experimental evidence yielding a different time dependence for f(t)(M3).

This has been interpreted by investigators to be due to a corrosion layer

which is developing on the glass surface, gradually increasing the resistance
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of mass transfer from the interface. In the analysis, the case of accretion,

is also included and the f(t) function deduced. The remaining assumptions

concern the nature of the diffusion mechanism of the alkali ion. We shall

assume a constant diffusion coefficient for the ion in the bulk glass and

the gel-like surface transition layer despite the fact that the diffusion

coefficient is considerably larger in this layer (H2). Furthermore, we shall
~ ~ ~~--~------------------------

ignore the effect of the negative surface potential on the ion transfer.

Such a potential is generated when glass is immersed in water. The effects

of the latter two assumptions require future study.

The Analysis

The analysis applies to a body of planar, cylindrical and spherical

shape. We take as the governing equation

ae = D

{
a2c+ ~ ae

}
- AC

at ar2 r ar

Here c(r,t) is the concentration of the nuclide, 0 the diffusion coefficient

(7.4.2)

and A the radioactive decay constant if the nuclide is radioactive.

m describes the geometric character of the diffusion field. For the case

of the sphere m = 2, for the cylinder (of infinite length) m = 1 and for

the slab m = O. r is the position variable within the region of interest,

t the time and R(t) the position of the movable boundary which will be

prescribed below. The initial nuclide concentration is given as c(r) so that

c(r,O) = c(r), 0 < r < R(O) ~ a. (7.4.3)

At the surface of the solid

C {R (t),t} = 0,
t > 0 (7.4.4)

but if the surface concentration is instead ~s ~ 0, it is always possible
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to reduce this to the condition given by eq.(7.4.4) by taking the reference

datum for the concentration at es' provided A = O. In addition to the

above conditions, one prescribes in case of the sphere and the cylinder

that ~ (O,t) is bounded and in the case of the slab of thickness 2R(t) that

ae (O,t)/ar vanishes for all times.

The equat i on for the moving boundary- B(~L i s- p~~~sL_on ~he__s i !Dpl~_~~ ~~-

hypothesis that

R(t) = a - vt, 0 ~ t ~ a/ v (7.4.5)

where a is the initial position and v the surface regression velocity.

A regressive surface at time TL= a/v the finite sized body has completely

dissolved. This limits the time span for the solution. If there is

accretion, we take v negative in the expression for R(t) and consider

t ~ O. The equations(7.4~2) to (7.4.5) completely define the model.

The solution for the different geometric configurations (fig. 7.4.la) is

carried out below. It turns out that the solutions for the sphere, cylinder

and slab are very similar. The case of the sphere is treated in detail,

then the changes which need to be..made in case of the slab are indicated

and the final solution is given. These results are exact and are valid

for any range of the parameters entering the problem. The cylinder is

analyzed by an approximation method which is valid for the large values

of the parameter (va/D) usually encountered in practice. By forming the

product of the solutions for slabs of different or identical widths one

obtains at once the solution to the case of a parallelopiped or cube,

respectively. Similarly multiplication of the slab and (infinite)

cylinder solutions yields the solution for a cylinder of finite length

(fig. 7.4.1b). These results are consequences of some well knowntheorems

and are valid for a time span in which the smallest initial dimension of

the body has been reduced to naught by the leaching process.
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The Sphere

Let

c(r,t) = exp (At)rcsp(r,t)

then eqs. (7.4.2) to (7.4.5) reduce with m=.2 .to

(7.4.6)

2

- --~~--=---Q~~--~--, o~~_x_-~~~__v_tL___~_<~~aiJY-L~ -- -J 7 .4_.7)ar

c(r.O) = rc(r) = g(r). 0, r , a, (7.4.8)

c(a - vt.t) = 0 0 ~ t ~ a/,vl (7.4.9)

and on account of the boundedness condition on c (O,t),

c(O,t) = 0, 0 < t <a/lvl (7.4.10)

Now the Kelvin function,

1

(

2

)
-ex r

2(nDt)1/2 p - 4Dt

is a particular solution to ~q. (7.4.7). By the super-position principle

and the method of images one can construct a more general solution to

eq. (7.4.7) which satisfies conditions (7.4.8) and (7.4.10) as a detailed

verification shows.

This solution has the form,

1

c(r,t) = 2(TIDt)1/2

00

{ fag(s) S (r,t;s) ds + f h(s)S(r,t;s)dS} ,0 a

(7.4.11)

0 ~ r ~ a - vt, 0 ( t ~ a/,VI
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where the source function

[
2

J [
2

J
. - ( r-s ) (r+s )

S(r,t,s) - exp - 4Dt - exp - 4Dt

In eq. (7.4.11), g(s) is the initial concentration distribution and h(s)

(7.4.12)

is an as yet unknown source density function which is determined by imposing.

the 1as t remai riih~f-cand i t fori-on - the-movTng--I>ouifdary ,:-r-:e-:-;--e-q:---(7:lJ.-~--gJ--'--
-------.---

a 00 .

f g(s)S(a-vt,t;s) ds + 1 h(s)S(a-vt,t;s) ds =0.
0 a

(7.4.13)

Now the functions g(s) and h(s) are partly at our disposal. Since g(s)

is prescribed only for 0 <s < a, we analytically continue it in the

following manner

g(s) = (7.4.14)
0, Is\ > a

-g(-s), \s\ < a .

Similarly h(s), which must be determined according to the solution (7.4.11)

and the condition (7.4.13) in the span a < s < 00 , is chosen in the remaining

part of the range as

h(s) =
h(s),
0,

s > a

Isl < a
arbi trary, s < -a. (7.4.15)

With this choice one can now combine both integrals in eq. (7.4.13) by

elementary transformations resulting in integrals with the same integration

1i mits, i. e. ,

~OO{h(s+a) exp (- ~s ) - h(s-a) -g(s-a)} .exp ( - ~~t) ds = O.
(7.4.l6)
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The satisfaction of this condition requires that h(s) must obey the

ordinary difference equation,

h(s+a) exp (-vs/D) -h(s-a) = g(s-a). (7.4.17)

The solution to this equation can be constructed in successive s spans of

width 2a, utilizing the properties of the initial distribution g(s) and

the--~onti-nuation properties of h(s )-wi ththe-resul t---

h(s) = g(s-2na) exp [nv(s~na)/DJ.

(2n-l)a < s < (2n + l)a, n = 1,2,... (7.4.18)

Having found the unknownsource distribution h(s), c(r,t) given by

eq. (7.4.11) can be shown to satisfy all the conditions of the problem.

There results, on returning to the original variables, after some minor

simplifications

- ~
{

a

[
( )2 ]csp(r,t) =

.

1/2 f sc(s)exp -~jj~- ds +2r( 7fDt) -a

00

+ L fa sc{s) exp Ev(s-tna)/o] S (r,t;s + 2na) d~}Jn=l -a

0 ~ r ~ a-vt, 0 ~ t ~ all vl (7.4.19)

For bounded c(s), the series can be shown to converge for the indicated

t range, i.e., for all times for which sphere material remains. It should

be noted that, in view of eqs. (7.4.8) and (7.4.14), the initial distribu-

tion c(s) must be an even function about s = O.

A case of practical interest is the one where the initial concentration

is uniform throughout the sphere, i.e., c(r) = Co for 0 ~ r ~ a. The
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integration in eq. (7.4.19) then yields the following explicit result for

the concentration in the interior of the sphere,

-. .r
A c l-,1") ~

2
/D

c (!. ) = sp a = ex -:\a 1"sp a,1" c 2 ria .
0

i
I

! ~~2tr-ta-)--~--i~r-fc---£1-~-e-rft-£2~)---~--2Tl/2 (i erfc £1 --i erfc £2)
- a - -

00

- ! r(erfc 821 + erfc 8'11) exp (-nSol) -n=l ~
(7.4.20)

-(erfc 822 +erfc 812)exp (-nSo2) +

+ 21"1/2 (ierfc 821 - ierfc ell) exp (-nBol) -

- 21"1/2(ier~~_~22 - ierfc 812) exp (...nS02)},

where

8 . .
lJ

{2n(l-S1") + (-1); + (-l)j (r/a)t

(2"[1/2)

°i ~ n(1-S1") + (~1)i(r/a), (7.4.21 )

- {l + (-l)i(r/a)}
E:i = ( .

1/2 ). 21"

and 1" ~ Dt/a2; S ~ va/O, the interface Pec1et number. (7.4.22)

erfc (z) and imerfc (z) denote, respectively, the complementary error

function and the m repeated integral error function which are tabulated in(4).
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For S = 0, this reduces to

2

. c (!:,T ) -AIT T

{
a; [ f -' 2n+1)-r/ a -

sp a = e 1 - - L er c 1/2c r n=o 2T0

.. . -- ~~J2n+l) + r/a
~}.

.

(7.4 .22a)

---,,---1- ~----'-T 1- u ~ ~-~- -~~ ~-~--

The spatial distribution of the nuclide concentration given byeq. (7.4.20)

is shown in fig. (7.4.2) for a specific value of the dimensionless time

(T = 0.01) and for different values of the dimensionless regression

parameter S. One observes as S increases that the regression of the inter-

face steepens the concentration gradient compared to a stationary interface

(s = 0). Fig. (7.4.2) also shows the effects of accretion. In contras t to

the previous case the concentration profile is S-shaped and the surface

mass flux shows a marked decrease which indicates-a-resistance to mass

transfer.

A quantity of primary interest to the experimentalist is the fractional

release of the radionuclide due to the combined effects of diffusion and

interface movement. This may be obtained by integrating the concentration

at any time t over the volume of the sphere, dividing the result by the

initial amount of diffusant present and subtracting this quotient from

unity. Thus for the case of an initially uniform concentration,

f(T) = 1 - Q(T)/QO'

(l-ST)a 2
where Q(T) = f 47Trcsp(r/a,T) dr,0

(7.4.23)

Qo = t 7Ta3co . (7.4.24)
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f(T) has been evaluated numerically with help of eq. (7.4.20) for A = O.

Fig.(7.4.3) shows the numeri.cal results of the evaluation of eq.(7.4.23) for a

numberof regression Peclet numbersa and for a limited range of 0 < L < 2xlO-3.

One observes that the fractional release is initially a linear function of

1:1/2 and then it becomes__q~~dratic if! _:r_~f_~~i~~_~~~~_~_l~~~_~e~~~i?~ ~-~ ~-~---

observed in many laboratory leaching experiments as already stated in

eq. (7.4.1). More extensive numerical evidence will be given in Section

(7.6). To pressage this result, we will show here that eq. (7.4.23) is

closely approximated by

(

Dt ..

)

1/2 3

(

vt

)
. +

f(t) = 6 'ITa2 + 2" a 0 ~ t ~ t ~ 0.4TL
(7.4.25)

for both regression (v>o) and accretion ,(v<o).

The Slab

The system of eqs. (7.4.7) to (7.4.9) describes the diffusion process

in a slab of half width (a-vt), with an initial concentration distribution

g(r) = c(r), in absence of radioactive ,decay. If the solid is exposed to

regression over both faces, with the center of the slab located at r = O~

the boundary condition is replaced by the syrrmetry condition

aCsL(o,t) = 0, 0 ~ t ~ a/iviar (7.4.26)

In order to satisfy this relation, one chooses as the source function

[
2

] [ ' )2 ]r-s (r+s
S(r,t;s) = exp - (4Df + exp - 4Dt ' (7.4.27)

instead of eq. (7.4.12). The analysis proceeds then along the same lines as
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for the sphere. However, the function g(s) must now be defined as follows:

g(s) = (7.4.28)

0, Is I > a

g(-s), Isl < a.

The final result is
.-.-...-.-.--..---------------..-----

c ( r , t) = exp( -At) f ac( ) [
1!2t ]sL 2(7rDt)1/2 -a s exp - 4Dt ds

00 a
+ :l: (-1)n J c (s) exp Gv(s+na )/0] . S(r , t ;s + 2na) ds}n=l -a

(7.4.29)

a ~ Irl ~ (a-vt), a ~ t ~ a/lvl

For a bounded even function c(s) this result can be shown to converge to

the solution of our problem. Again if the initial concentration is

uniform throughout the slab one obtains with the shorthand notations

introduced in eqs. (7.4.21) and (7.4.22) the following result

A r - 1 2'
C(a,T) = csL(r/a,T)/co = 2 exp (-Aa T/D) {(erf £2 + erf £1)

00

+ 2: (-l)n Qerf 621 - erf 612) exp (-n(3o,) +n=l
(7.4.30)

+ (erf 622 - erf 612) exp (-n(3°2U} .
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For a = 0, this reduces to

{

002
- 1:..1 -Aa 1 1- I
cSL(a Lexp (0 ) n=OCo [

(2n+1) _!. (2n+1) +or

J}
(-l)n erfc1/2 a +erfc 1/2 a .2L 2L

(7.4.30a )

The total fractional release is given by eq.(7.4.23) with
----.-------------------------------------------------------------------

(l-aL)a .

Q{,:) = 2 f csL(r/a,L) dr
0

Qo = 2aco.

(7.4.31)

Performing the integration one obtains

[
1/2

]f(T) = f3T+11/2 ierfc (fh2 ) - ierfc (~4j2) +

00 {-l )n-1

{
n~l -=rna exp [ns (n-1j]. (erf \In- erf)J 12) +

+ exp [ns(n+1)]. (erf )J22 - erf )J21) + n2(n) -n1(n) }
where

(7.4.32)

= 2n + (-1) i + (-1)j (l-SL) .

11i j - Cr1/2

. 2. /7.4. 33~

Qi(n) ::exp {- nS(l-SL)[n+(-l)'] } . ~ (-l)J erfc [(l-f3L)~n+("l) ]+(-l)J ]J=l 2Ll/2

For S=O this reduces to

f(.r) = 21112rJt 2 i (_1)nierfc ~ J~7T n=l L
(7.4.34)



12.

A numerical evaluation for A = 0 is shown in Fig. 7.4.4 for some ranges

in 13and T.

In section (7.6) we will give numerical evidence that eq. (7.4.32)

can be closely approximated by

f ( t) = 2
( Dt2

)
1/2 + l

(

va

)

Dt

1Ta --2. D 2a
(7.4.35)

--~~ ~ ~ n_n-

The conclusions for the slab are thus quite comparable to those obtained

for a sphere.

The Cyl inder

In the case of the cylinder one can proceed in the same manner as

above. Instead of the source function eq. (7.4.12) one utilizes the

fundamental solution.

S(r,t;s) = {s/(2Dt)} exp [- (r2+s2)/(4DtU. 10 {rs/(2Dt)} (7.4.36)

where Io(z) is the modified Bessel function of the first kind, zero

order. However, this case leads to a rather complicated integral equation

for the unknown source density h(s) and for this reason the following

approximate solution is recommended.

For large values of the parameter 13 = va/D (about 200 or more) the

interface regresses at such a rapid rate compared to temporal changes in

the diffusion pattern that the latter is affected primarily in a very

thin boundary layer of thickness 0 close to the surface as the calcula-

tions show!,see Fig. 2. Hence, in, order to describe the rate of the

diffusion of the ion through the interface, it is important to take
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account of the steep concentration gradient close to the boundary. For

this reason one introduces the transformation

c(r,t) = eXP(At)r1/2 cCy(r,t) (7.4.37)

into eq.(7.4.2), where nowm=l. There results

I m__~~~D(::r+-4~2 )
IIIII

I
I
I

I
I
I

I
I

---~ -

(7.4.38)

Nowclose to the boundary where the diffusion effects are most prominent

the two terms on the right hand side are of entirely different order of

magnitudes, a2c/ar2 = 0(1/02) and c/4r2 = 0(1/r2). Since 0 is very

small compared to r, the second term is dropped in favor of the first

and there result the eqs. (7.4.6) to (7.4.10) with the initial distri-

bution g(r) = rl/2 c(r). Hencethe approximate solution to the cylinder

problem can be obtained by simply replacing the term sc(s) by sl/2c(s)

on the right hand side of eq. (7.4.19). It is worthwhile to point

out that if one merely drops the term (l/r)ac/ar in eq. (7.4.1) in

favor of a2c/ar2, one obtains a less accurate approximation to the

solution than the one given above.

The exact analysis of the cylinder is planned for the future.
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7.5. External Mass Loss Rate and Leach Time for a Glass Cylinder

7.5.1. Introduction

Two mathematical models for the rate of mass transport from a waste

cylinder surrounded by groundwater in an infinite porous medium have been

developed in sections (7.1) and (7.2). In the first model, the cylinder is

approximated by a prolate spheroid and the rate of mass transfer of a

species dissolved from the waste solid is assumed to be governed by the

rate ofumo1ecu 1ar di-ffus-i-on---of-the-d-i-s--s{)lved-spe-e-ies--fnto-s-t-a-gnantground=---------

water. This theory is illustrated by analyzing the steady-state mass

transfer rate from the cylinder with the dissolved species having a

constant concentration on the cylinder surface. The maximumvalue of this

surface concentration is the solubility of the dissolved species in ground-

water, and this saturation concentration at the surface is assumed in the

illustration.

In the second model, the mass transfer of the dissolved species from

the waste surface is due to both molecular diffusion and forced convection

by the groundwater moving in O'Arcy's flow in the surrounding porous medium.

Again, the theory is applied to the steady-state mass transfer with a

constant saturation concentration of the diffusing specie on the cylinder

surface. The waste cylinder is idealized as a cylinder of infinite length,

and the groundwater is assumed to flow perpendicular to the cylinder axis.

This allows one to obtain the rate of mass transfer from a unit length of

the cylinder. Numerical calculations are made for a cylinder with the

same radius as that of a cylindrical waste form with end effects accounted

for.

Calculations are made for the rate of dissolution of silica, in

amorphous form, from a borosilicate glass cylinder, and for the rate of
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dissolution of low-solubility radioelements in the borosilicate glass,

using the two models described above.

In Section 7.5.2, the steady-state mass transfer rate, mass transfer

rate per unit length, and average surface mass flux of a species from a

prolate spheroid and slender cylinder which is defined as a cylinder with

a ratio of height to radius of 10 or greater are given. In Section 7.5.3,

the ~leach times of the prolate spheroid and slender cYIJtJQ~r_-~_r_~~__(t~!'1_ved~~ ~----

subject to the assumptions that the waste form consists of a single species

and that the ratio of height to radius of the cylindrical waste-form is

constant during the leaching process. In Section 7.5.4, the governing

equations for obtaining the dimensions of the prolate spheroid approximating

a cylindrical waste form are given. In Section 7.5.5 we present the

dimensions of the cylindrical waste-form, calculated dimensions of the

equivalent prolate spheroid, diffusivity of a species in a water-saturated

porous medium, solubility of amorphous silica in water, and borosilicate

glass density. In Section 7.5.6, a comparison between the dissolution rate

and the leach time of different waste forms consisting only of amorphous

silica are made. These sections deal primarily with the mass transport by

molecular diffusion.

In Section 7.5.7, the steady-state mass transfer rate by molecular

diffusion and convection are given. The mass transfer rate for a finite

cylinder is derived subject to the assumption that the surface mass flux

from the ends of the cylinder has the same value as the surface mass flux

of the infinitely long cylinder. In Section 7.5.8 the leach time for the

cylinder is derived. Section 7.5.9 contains data used for numerical

evaluation of mass loss rate and leach time. In Section 7.5.10 a compari-

son is madebetween surface mass flux for diffusion and for the diffusion-

convection model.
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In Section 7.5.11, the diffusion and diffusion-convection models are

applied to a silica-base glass cylinder containing low-solubility radio-

elements. Section 7.5.12 is the conclusion of the above analyses.

7.5.2. Dissolution Rate Due to Molecular Diffusion

At steady state the mass transfer rate per unit area (surface mass

flux) is nonuniform for the prolate spheroid and depends on the position

on---the--s-ur-face fhe--massfl-uxhas a maximumat the poles and a minimum-at ---------

the equatorial plane (see Fig. 7.1.1 in Section 7.1). The total rate of

dissolution mps of a given species of effective surface concentration Ns is

obtained by integration of the surface mass flux over the surface area of

the prolate spheroid, and is given by (see Section 7.1)

41[£ Df Ns f
mps = a

1og[coth (y)]

(7.5.1)

where:

mps = the total mass loss rate of the prolate spheroid, g/sec

Df = molecular diffusivity of diffusing specie in water, cm2/sec

£ = porosity

N = Cs - c = effective surface concentration, g/cm3s 00

cs = solubility limit in groundwater, g/cm3

c = concentration in groundwater far from waste surface, g/cm300

as = surface shape factor of the prolate spheroid defined in

Section 7.1 by Eq.(7.1.4)

f = focal distance of the prolate spheroid, cm

For a slender cylinder, i.e., L ~ lOr, Eq.(7.5.1) simplifies to

21T£ Dr Ns L. - L
msc - log(r)

(7.5.2)
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where:

mse = dissolution rate for a slender cylinder, g/sec

L = cylinder length, em

r = cylinder radius, cm

From Eq.(7.5.l) the dissolution rate per unit length and the average

dissolution rate per unit surface area of the prolate spheroid are g~ven

by--Eq s.-{J-.5-.3-) -~an d-~(]~_5-- tt)~-.r-esp-ect i-v~]y-- ~ --

'2 2TI8 Of Ns
m =
ps. a.

cosh(~s)log[coth(lf)J

(7.5.3)

. 28 Of Ns f
Jps = a.

b (b+ ~ sin -1e ) log [ cot h (If) ]

(7.5.4)

where:

~~s = mass loss rate per unit length of the prolate spheroid,
glcm sec

jps = average surface mass flux of the prolate spheroid, g/cm2 sec
e = f fa

a = semi-major axis of the prolate spheroid, em

b = semi-minor axis of the prolate spheroid, cm

7.5.3. Leach Time Derivation

The leach time T is defined as the time interval between the beginning

of dissolutionand the completion of dissolution of the waste form. Assum-

;n9 here a waste form consisting of a single species, the time-dependent

waste form volumeV(t) is given by

:t (pV(t))= - m(t) (7.5.5)
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where:

p = waste form density, g/cm3

V(t) = waste form volume at time t, cm3

m(t) = mass-loss rate at time t, g/sec given by Eqs.(7.5.l) and (7.5.2).

The-initial condition is V(O) = Vo' where Vo is the initial volume of the
waste form.

Here we assume that at any time t the dissolution rate can be approxi-

mated by the steady-state solutions, Eqs.(7.5.l) and (7.5.2), so that

Eq.(7.5.5) can be solved for V(t). Fromdefinition of the leach time T

. we have that ~

V(T) = 0 (7.5.6)

and leach time--is obtained by solving Eq.(7.5.6) for T.

Wehave for the slender cylinder

Vsc(t) = vr2(t} L(t) (7.5.7)

and from (7.5.2)

. 2~£ Df Ns L(t)

mse = 109[~]
(7.5.8)

with the initial condition (I.C.) that

r(O) = ro initial radius, cm
- -~ ~ ~ ___m -- --- - -

L(O) = L initial height, cm0

Substituting Eqs.(7.5.7) and (7.5.8) into (7.5.5) yields

:t [p ~ r2(t) l(t)] =- 2~£ Df Ns l(t)
lO9[Wt]

(7.5.9)
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with I.C.

r(O) = ra

L(0) = La

To solve Eq.(7.5.9), it is necessary to have another relation between L(t)

and r(t). Weassume that the ratio of height to radius remains constant

during the leaching process, i.e.,

L(t) = L r.1tl.0 r 0
(7.5.10)

Substituting Eq.(7.5.10) into Eq. (7.5. 9) and solving for r(t) resul ts in

r (t) = r 0 [1 - 4 e: Df Ns t ]

1/2

2 L
3ro p 109(ro)

0

(7.5.11)

From the definition of leach time we have from (7.5.6-7) that r(Tsc) = 0,

so that 2

[
Lo

,]3 p r 1og -
0 ro

Tsc = (7.5.12)

where:

Tsc = leach time for the slender cylinder, see

---~--_1_~-~-~!:j~~~-_~~~_~a~~__~iJll_eof the pro1 ate spheroid it is assumed that
' ~-'--

the ratio of the minor axis to the major axis is constant during the leach-

ing process, resulting in the following equation (see Appendix A for details):

2 a

T = p bo cosh (as)109 [coth(T) ]
ps 2 8 Of Ns

(7.5.13)
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where:

T = leach time for the prolate spheroid, secps

bo = initial semi-minor axis of the prolate spheroid, cm

7.5.4. Approximating a Cylinder by a Prolate Spheroid

Weassume that the prolate spheroid has the same volume and surface

area as the cylindrical waste form. Thus, equating their volumes,

4 ~ a b2 = TI r2 L3 (7.5.14)

and equating their surface areas

a -1
( )2 TI b(b+- sin e) = 2 TI r r+Le (7.5.15)

Solution of Eqs.(7.5.l4) and (7.5.15) for ~ and ~ defines the desired
- n

prolate spheroid. As is seen from the above equations, a closed-form

mathematical solution for a or b cannot be obtained, so a numerical analysis

is required.

7.5.5. Parameters of the Problem

The following table shows the physical characteristics of the waste form

used in the numerical calculations:

Table 7.5.1. Physical characteristics of waste forms (Rl)

'H ~--- u- _. un-Carli ster d; mensions

Commercial Defense
high level high level
was te-- __.Un ~ u_-- --wa-~te ~ -

Inner diameter, cm 30.5

2 . 4xl 02 !I

2.446xl04

1.75xlO6

15.7

59. 1

2 a/
2.4x10 -

5.005xlO4

6.58xlO6

8. 1

~ Assumed that 80% of waste canister is filled with waste glass.

Length, cm

Surface area,
2

cm

Volume, cm3

Ratio L/r
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The dimensions of the commercial high level waste form are used in numerical

evaluation of the slender cylinder mass loss rate and leach time, listed in

Table 7.5.4.

Table 7.5.2 is obtained by approximating the waste forms by a prolate

spheroid using Eqs.(7.5.14) and (7.5.15), with the aid of a (computer)

program described in Appendix C.

Table 7.5.2. Physical dimensions of prolate spheroid approximating

cylindrical waste forms.

The molecular diffusion coefficient of most nuclides in water-saturated

porous media is usually lower than that in the unconfined water. The

diffusivity of most species in water is between 1 to 5xlO-5 cm2/sec (W2).

The molecular diffusion coefficient of silicon dioxide and other species

in water is taken to be lxlO-5 cm2/sec.

Table 7.5.3 shows the solubility of two forms of silicon dioxide, i.e.,

a quartz and amorphous silica, in water at a pressure of 0.1013 MPa, pH of 7.0,

and at different temperatures. The solubility of silicon dioxide as a
~~__n__~-nnn ~~~ -- _n ~-~ ~ n --_~ n n- - -- ~ n

function of pressure and temperature is given (Wl) in Appendix B.

Table 7.5.3. Solubility limit of silicon dioxide in water
Jemperature, °C~

25°C lOO°C
3 --=-6 -5

Alpha quartz, g/cm 4xlO 5xlO
3 -4 -4

Amorphous silica, g/cm 1.2xlO 4.1xlO

A surface concentration of 1.2xlO-4 g/c013 and a density of 2.8 g/cm3 are

chosen for a pure amorphous silica cylinder. This density corresponds to that

of typical borosilicate glass (Tl),(M3).

Waste Forms a, cm b, cm c, cm e as-

Defense high-
level waste 158 31.5 155 0.980 0.202

Commercial high-
level waste 145 l6-;9-n 144 0.993 0.117
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7.5.6. Numerical Results for Dissolution Rate and Leach Timefot a"Pure

AmorphousSilica Cylinder

Table 7.5.4 shows the calculated dissolution rates and leach times,

using Eqs.(7.5.1), (7.5.2), (7.5.12), and (7.5.13) with the aid of a computer

program (Appendix C). A porosity of 0.01 and the solubility of amorphous

silica from Table 7.5.3 were used. The concentration of silicon dioxide in

the groundwater far from the waste form is assumed zero.

Table 7.5.4. Mass loss rate and leach time for a pure amorphous silica in

stagnant water at 25°. C and porosity of 0.01.

All three waste forms yield similar results. There is reasonable

agreement of mass loss rate and leach time between a prolate spheroid

approximating the commercial high level waste form and the slender cylinder.

Thus, Eqs.(7.5.2) and (7.5.12), derived for the mass loss rate and leach

time of the slender cylinder respectively, can be used.

7.5.7. Dissolution Rate Due to Molecular Diffusion and Groundwater Motion

The mass loss rate per unit length of an infinite cylinder with ground-

water flow normal to its axis is given by (see Section 7.2)

m: = ~ Of 8 Ns (pe}l/2 , valid for Pe > 4
(7.5.16)

where:

m: = mass loss rate per unit length of cylinder, g/cm sec

Pe = Ur/Df' Peclet number

U = groundwater pore velocity, em/see

Mass loss rate, g/day Leach time, Yf

Slender cylinder
-4 65.6xlO 3.54x10

Commercial high
6.6xlO-4 3.03xl06level.waste

Defense high -4 6
level waste 8.8xlO 8.58xlO
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From Eq.(7.5.1), the mass loss rate per unit surface area of the cylinder is

obtained

-
j - 8 (

u D
)

1

e - 3/2 £ N f. 12
1T S r

, Pe > 4 (7.5.17)

where:
.Q,

j = m2°O = mass loss per unit surface area of the cylinder, g/cm2 secc 1Tr

From this, one obtains the dissolution rate for a cylinder of length L,

subject to the assumption that the mass flux from the ends of the cylinder.

has the same value as the surface mass flux from the cylindrical surface.

The result is

me = ~Df E Ns (r+L) (pe)1/2 . Pe ~ 4

where me = dissolution rate from cylinder, g/sec

(7.5.18)

7.5.8. Leach Time for a Cylinder, Diffusion and Convection

As a result of dissolution, the radius decreases with time as does the

Peclet number. The leach time T is defined as the time interval from the

beginning of the steady-state dissolution of an infinitely long cylinder

until the cylinder has completely dissolved. For simplicity it is assumed

that Eq.(7.5.16) is also valid for Peclet numbers less than four. The

- ~~ll owj~~-~-xp~ess!~~ o~__~h_~n_~~a_ch~.i~~~i-s obtained (see Append i x A for. .----.------------

derivation).
3/2 r 2

'IT. P
T - 0

c - 6 D N Pe 1/2
E: f s 0

Uro

Peo .;: Of
(7.5.19)

ItJher"e:

T = leach time for the cylinder located ;n flowing groundwater, secc

ro = initial radius of the cylinder, cm
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7.5.9. Parameters of the Problem

Groundwater pore velocities of 10, S, and 1 m/yr are assumed. The radius

of the cylinder is lS.2 cm, which is the same as that of a commercial high

level waste glass cylinder. The cylinder consists of silicon dioxide. The

surface concentration of silicon dioxide is 1.2xl0-4 g/cm3 and the concentration

of silicon dioxide in the groundwater far from the cylinder is assumed to be

zero. The diffus;vity of Si02 in groundwater is taken to be lxlO-S cm2/sec.

The porosity of the mediumis 0.01.

7.5.10. Numerical Results for Surface Mass Flux

In Table-7.S.5 are presented the calculated average surface mass fluxes

for diffusion and convection in flowing groundwater (Eq. 7.S.17) and for

di ffus ion ins tagnant groundwater (Eq. 7. S.4), using the computer--program

described in Appendix C. A porosity of 0.01 is chosen.

Table 7.5.6 Average surface mass flux of silicon dioxide g/cm2 day for

the diffusion and diffusion-convection models, porosity = 0.01,
-4 3 -5 2

Ns = 1.2xlO g/cm, Of = lxlO cm /sec, r = 15.2 cm, and
L = 2.4 m.

~Molecular diffusion model, Eq.(7.5.4)
- -_.~-~--- ~ ~-~ ~--

For the pure amorphous silica cylinder (r = lS.2 cm) emplaced in a medium with

porosity of 0.01 and groundwater pore velocity of 10 mlyr, from Eq.(7.5.19), we

obtain Tc = 2.3xlOS yr. The proper value may be less, if an accurate solution

for Pe< 4 were available. Such an analysis is presently being completed.

For example, from Eq.(A.29), we find that after 1.7x105 years the cylinder

radius has decreased from the initial value of 15.2 cm to 1.2 cm when the

Peclet number becomes four.

Groundwater pore velocity, m/yr
10 5 1 oal

2 -7 -7 1.1xlO-7 2.7xlO-8Surface mass flux, g/cm day .3.5xlO 2.5xl0
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7.5.11. Solubility Limited Dissolution of Silica and Low';'Solubility Radio-

elements in a Silica-Base Glass Cylinder

In the previous sections two mathematical models of dissolution from a

cylinder with only one diffusing component were considered. In this section,

a silica-base glass cylinder containing additional low solubility components,

such as various radioelements, is considered.

The time-dependent fractional dissolution rate of component j is defined

as

fj (t) = mj (t)/ Mj (t) (7.5.20)

where:

f. (t) = fractional dissolution of componentj at time t, l/secJ

mj (t) = dissolution rate of componentj at time t given' by

Eq.(7.5.1) for moleculardiffusi~n and Eq.(7.5.18) for the

molecular diffusion-convection models, g/sec

Mj (t) = Vj (t) nj (t) = mas s 0f j at time tin 91ass, 9

Vj (t) = volume of undissolved waste at time t, cm3

nj (t) = density of j in undissolved solid waste at time t, g/cm3

Substituting the mj (t) given by Eqs.(7.5.l) and (7.5.18) into (7.5.20) yields

- u_- .. I 3£ Die. ~- ~~r ~ -~ .. . 2

f
J
o(t) = S,j I--b 1o9Icath/aS

)J ..
!t

..

mOleCUlar di ff
.

~) U\ z- .. . US1Qn
J -. . 1/2 r

8£ DfJ (PeJ) (l+[) molecular diffusion~convectiQn,
3/2 2 .

11 r PeJ =: Uj :::.4
Df

II 0 < t < T

(7"5.'21)
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where:

N . = difference between the concentration of j in the groundwaterS,J

on the waste surface and concentration of j in groundwater far
3

from waste surface, g/cm

Dfj = diffusion coefficient of specie j in groundwater, cm2/sec

T = leach time given by Eq.(7.5.l3) and Eq.(7.5.l9), sec

In the above equation it is assumed that the ratio of the major axis to the

minor axis of the prolate spheroid. is constant during the leaching process.

In Eq.(7.5.21) r- and b are functions of time, with functional forms given

byEqs.(~.29) and (A.~O), respectively. _7
To apply Eq.(7.5.2l), it is assumed that the rate of bulk dissolution

of-the solid waste is controlled by dissolution of the silica matrix, i.e.,

the preferential release of a waste-component by diffusion in solid is

neglected. As the silica matrix dissolves, all the components in the silica

matrix are released congruently from the solid but are not necessarily

dissolved. If the solubility of an individual waste component is so low that

its fractional dissolution rate is less than that of the waste matrix, then

precipitates of the low-solubility componentwill form. It is assumed that

the precipitates remain on the waste surface and slowly dissolve at a rate

given by the rate of mass transfer of the low-solubility species into the
-. - - - -- - -

surrounding liquid, with the concentration of the low-solubility species in

the liquid adjacent to the waste surface given by the solubility of that

species in groundwater. The possibility of forming colloids or other non-

dissolved suspended particulates within the groundwater is neglected.

These assumptions can be written as

fj(t) = Min {fsilica (t), fj (t)) j = 1,2,..,N
where:

(7.5.22)

Min (X,Y) = minimum value of X or Y
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For numerical demonstration we consider a borosilicate waste glass with

r = 15.2 cm and L =2.40 m emplaced in a porous medium with a porosity of

0.01 and groundwater pore velocity of 1 m/yr. The concentration of each of

the components in the groundwater far from waste cylinder is assumed zero.

The molecular diffusion coefficient in groundwater is assumed to be 1xlO-5

cm2/sec for all the diffusing components. The initial inventories and solu-

bilities of constituents in groundwater and the corresponding calculated

fractional release rates are given in Table 7.5.7. Table 7.5.8 shows the

calculated fractional release rate of the constituents from the above waste

glass in. absence of groundwater flow. For this case the prolate spheroid

has the same volume and surface area as the waste cylinder.

Table 7.5.8 also shows the experimental results of fractional release

rate for some radionuclides(Ml). The experimental results are adjusted for

the surface area of the waste cylinder on the assumption that the release

rate is proportional to surface area exposed. Comparison between these

calculated values indicate that in the repository conditions dissolution of

the low-solubility radionuclides is controlled by the concentration boundary

layer and not by the kinetics inside the glass matrix.

7.5.12. Conclusion

Two solubility-limited dissolution models were developed in Sections 7.1
- ~ - --------

- - ~--

and 7.2. The models permit one to calculate the steady-state dissolution

rate of a diffusing species from a cylinder which is embedded in a water

saturated porous medium. In one model the mass loss is due to molecular

diffusion only, while in the other it is governed by molecular diffusion

and groundwater convection.

The models are applied to an amorphous silica cylinder embedded in a

mediumwith porosity of 0.01. The cylinder radius of 15.2 cm and height

of 2.4 m are used, which are dimensions of a commercial high level waste
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glass cylinder. For the diffusion model an average surface mass flux of

2.7xlO-B g/cm2 day and leach time of 3xlO6yr are calculated.

The models are applied to a borosilicate high level waste glass. The

fractional release rates of some low-solubility components are calculated.

The numerical results indicate that if the solubility of these constituents is

low enough, and their initial inventories high enough, they will not initially

dissolve congruently with the waste matrix. Comparison of fractional release

rates due to diffusion and those due to diffusion-convection indicates that

the groundwater pore velocity of 1 m/yr causes a four fold increase in

dissolution rate. This indicates a narrow ra~ge for dissolution rates

obtained by the two models.

Comparison between calculated fractional release rate__and experimental

values indicates that for low-solubility glass components the dissolution

rate may be controlled by concentration boundary layer, porosity of the medium,

and groundwater pore velocity and not by kinetics inside the glass matrix

or solid-liquid interactions. Therefore, interior cracks of the waste solid,

devitrification, and other mechanisms that could increase the rate of solid-

liquid interaction would not be expected to affect the solubility-limited

dissolution rate, unless they have some affect on the solubilities. If the

solubility is sufficiently large, then the kinetics of interaction between

---l-hf~-s6 rid waste and waterUmay5eucromirn:ln-t-~ ~-
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Table 7.5.7 Calculated fractional release rates for borosilicate glass
waste in flowing groundwater.

Waste cylinder: r = 0.152 m, L = 2.40 m, fission-product and actinide oxides

~ Reference (M2).

Q! Assumed 0.5% U and Pu and all fission products and actinides (81).

fI For amorphous S;02 (51).

i/ Reference (Kl) \

- - - --- - --- --- ---------

from 460 kg of uranium fuel. Groundwater pore velocity of

1 m/yr.

Initial species
concentration Fractional
;n the waste, Solubility, Disiolution rate,Constituent g/cm3 g/cm3 yr-

5i02 1.6 a/ 1.2xlO-4 S! 3.4xlO-6

Te 1.92xlO-3b/ 3xlO-9 cy 7xlO-B

U 1.22x10-2 bl 2xlO-9 cy 8xlO-9

Np 1 .92 xl 0 - 3 'QJ 2.4xl0-1l cy 5.7xlO-10

Pu 1. 15xla-4 'pj lxlO-9 cy 4xlO-7

Am 3.56xlO-4 1.BxlO-12rjj 2.3xlO-10
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Table 7.5.8 Calculated fractional dissolution rates for borosilicate glass

waste in stagnant groundwater.

Waste cylinder: r = 0.152 m, L = 2.40 m, fission-product and actinide

oxides from 460 kg of uranium fuel.

~ Reference (Ml).

Q/ Reference (M2).

S:.I As.sumed0.5% U ~nd Pu ~nd all the fission. products and actinides (81).

ry For amorphous 5i02.

~ Reference (Kl).
- - ~~ ~ ~-

Initial specie
Fractional dissolution rate, yr-lconcentration

in the wste, Solubility,
ObservedConstituent g/cm g/cm3 Calculated

5i02 1.6 bl -4 cy 8.7xlO-7 -31..2x10 1. 6xl0

Tc 1.92xl0-3 fI 3.0xlO-9 1 . 8xl 0 -8

U 1.22xlO-2 fI 2.OxlO-9 1.9xlO-9 1.5xlO-6

Np 1.92xlO-3 £I 2.4xlO-ll 1.5xlO-1O 6.6xlO-4

Pu 1.15xlO-4 £I 1.OxlO-9 1.OxlO-7 2.6xlO-5

Am 3.56xlO-4 cl 1.8x10-12 y 5.8xlO-ll 2.7xlO-6



7.5.13 Nomenclature

a

b

bo

Cs

Coo

Df

ojf

e

f

lj(t)

jc

jps
L

La

L(t)

m(t)

mj(t)

mps
. L
mp

Semi-major axis of the prolate spheroid em

Semi-minor axis of the prolat~spheroid em

Initial se~i-minor.axis of the prolate spheroid em

Solubility limit in groundwater g/cm3

Concentration in groundwater far awayfromwaste surface g/cm3

Molecular djffusivity in water cm2/sec

Molecular diffusivity of component'j in water- cm2/see

Eccentricity of prolate spheroid

Focal distance of the prolate spheroid

Fractional dissolution rate of component j at time t sec-l

Average surface ~as-s flux of infinit~ly long cylinder in flowinggroundwater- g/cm sec
- - - '. ",' , 2
Average surface m~ss flux of the prol~te spheroidg/cm see

- Cy1inder height em

Initial cylinder height cm

Cylinder height at time t after dissolution begins cm

Dissolution rate at time t g/sec

Dissolution rate 'of tornponentj at time t g/sec

Total dissolution rate of the prolate spheroid g/sec

Dissolution rate per unit length of the prolate spheroid g/cm sec

--- - --urn -- lTfss-orutfo-ri---rale-- fo-r-a-s-ren-cfer--cyTfrfaef-gTsec -sc

mc

nlc

M.(t)J

r1j(t)

Ns

Dissolution rate from a cylinder in flowing groundwater

Dissolution rate per unit length of infinitely long cylinder in
flowing groundwater g/cm sec

Mass of j at time t in the waste glass g

Density of j in undissolved waste at time t g/cm3

Difference between concentration in the liquid adjacent to waste
surface and concentration in the groundwater far away from waste
surface g/cm3



Ns,j

r

r(t)

ro

T

Tps

Tsc

Tc
u

2.

Difference between concentration of component j in liquid adjacent
to the waste surface and concentration in the groundwater far away
from waste surface g/em3

Cylinder radius em

Cylinder radius at time t after dissolution begins cm

"Initial cylinder radius cm

Leach time (sec)

Leach time for prolate spheroid sec

Leach time for slender cylinder see

Leach time for the infinitely long cylinder in flowing groundwater see

Groundwater pore velocity cm/sec

t cm3Vj(t) Volumeof undissolved waste at time

Pe = gr Peclet numberf

- Uro
peo = ---

Of

Pej = Ur
ojf

Greek letters

p = waste form density g/em3

8 = porosity
-1

(
1

---~ ~s--= co~h_~L-Surfa_c~__s_~ape"_factor of p_rolate--Rpheroid
~ Defined by Eq.(7.1.4)

------------



-----.-.----.-----------------------------
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7.6 Calculations of Dissolution of a Glass Matrix by Internal Molecular

Diffusion and Surface Regression
,

P. L. Chambreand S. J. Zavoshy

1. Introduction

In this paper we consider the dissolution of a glass matrix containing

sodium oxide. It is experimentally o~served that sodium molecular diffusion

and ion-exchange at the glass-water interface depletes the glass matrix of

sodium ion. Further, the glass matrix is dissolved by water. This matrix

dissolution is viewed as regression of dissolved glass-water interface.

The fractional release of sodiumfrom the glass has a form of

cltl/2+c2t, where c, and c2 are two constants (Hl,M3). A dissolution model

that yields a fractional release which is initially parabolic (proportional

to tl/2), and then becomes linear function of time (proportional to t),

is developed in section 7.4.

A mathematical dissolution model is developed based upon these two

observed phenomena, i.e., internal molecular diffusion and glass surface

regression. It is assumed that the loss of the diffusing ion from the

interior of the glass due to molecular diffusion will lessen the integrity

of the glass matrix. Furthermore, it is assumed that the glass-water
--- __n__~ n ~ - ---

interface has a constant velocity during the dissolution process. The

regression speed is positive for the case of a regressive glass-water

interface, zero for stationary interface, and negative for the progressive

interface. The concentration inside the glass and fractional release of

the diffusant from the glass are obtained for a sphere and slab of finite

width.

For numerical evaluation a ternary sodium-borosilicate glass is con-

sidered. Sodium is the diffusing nuclide. The concentration of sodium
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at the glass-water interface is chosen to be zero. The radius and half

width of the slab are equal to the radius of a spent fuel canister. A

-13 -11
range of regression speeds from -9.7xlO to 3.9x10 em/see is chosen.

The normalized concentration, surface mass flux, and fractional release

of sodium are evaluated.

2. Governing equations for the normalized concentration, surface mass

flux, and fractional release.

Case 1. Finite slab

The following equation defines the normalized concentration of the.

diffusing specie in the slab of width 2a

n s 0 A .

csL (x,t) = N + N CsL(x,t)

where:

(7.6.1)

C~L'(x, t) = normalized concentration of diffusinq specie in the slab

A

esL (x,t) = normalized concentration of the st~hle diffusing ~pecie in

the slab with zero concentration an the boundary

(see Eq. (7.4.30) in section 7.4with A=O)
s CsN =-

Co

NO= (c - c ) / c
~,-,~,-- - , ,-~~.~-~ , Q-~~~~,-- -,,~~,--Q---~--~---~ ~ , ~-~ --,' - , ~

Cs = surface eoncentrationof the diffu5inq specie, g/cm3

Co = initial bulk density of diffusing specie in the glass, g/cm3

x = position from center of slab, em

t = time, see

The fractional release is obtained by the following equation:
l-ST

fSL(t) = 1 - NS (l-vt/a) - NO.)( 2SL (y,t) d y0

(7.6.2),
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where:

fsL(t) = fractional release of diffusing specie at time t from the finite slab

a=va/D

a = initial half width of finite slab, cm

D = molecular diffusion coefficient of diffusing specie in the glass

matri x, cm2/sec
2

l = Dt/a

v = regression speed, em/see

An asymptotic form for fsL{t) is obtained which is

2 0 2 1/2 1/2
f sL(t) =(1T N (D/a) t + vt/2d (7.6.3)

The surface mass flux ;s given by

A

. dCsL
I

JsL = - D(co- cs) ax + v Csa-vt
(7.6.4)

where jsL is the surface mass loss of diffusing specie from the finite slab,
2

g/cm sec.

Case 2. Sphere.

The normalized concentration of the diffusing specie in the sphere is given by

n s 0 A

~ ~ Csp- (r-;t}-=--:N'---+-N--cs p fr, t)- -- _n -- --- ----

where :

cn (r,t) = normalized concentration of the diffusing specie in the spheresp

csp (r,t) = normalized concentration of stable diffusing specie in the sphere

(7.6.5 ) u_- - ___n n__-

with zero concentration at the boundary

(see Eq. (7.4.20) in section 7.4 with A=O)

r = radial position from center of sphere, cm
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From Eq. (7.6.5) we obtain the surface mass flux, i.e., -

A

. acsp

\

J = -0 (c - c ) + v Csp 0 s ar s
R-vt

(7.6.6)

where jsp is the surface mass loss of diffusing specie from sphere, g/cm2 sec
The fractional release is obtained by

l-ST

f sp(t) = 1 - Ns (1- vt / R)3- 3 NOf 2sp(y ,t) i dy
0

(7.6.7)

where:

fsp(t) = the fractional release of diffusing speci.e from sphere at time t
S = vR/O

R = initial radius of sphere, cm

An asymptoticform of fsp(t) for early period of dissolution is

NO 1/2
fsp(t) =h (0/R2) + 3 (vt/2R) (l+Ns)

(7.6.8)

and as the total dissolution time is approached the following asymptotic

relation is obtained

fSp(t) = 1 - (1 - vt/R)3 (7.6.9)

Thi s is due to time dependency of surface area of the sphere.
m. ~-- ~-------_.

3. Parameters of the problem

The values. of a and R were chosen to be 17.8 cm, equal to the radius

of a spent fuel canister. The glass density is -taken to be 2.8g/cm3.

Table 7.6.1 gives the value ofmolecular diffusion coefficient of sodium in

a ternary sodium-borosilicate glass at. 100° and 200°C. Table 7.6.1 was

obtained by applying the following equation (Fl)

O(T) = DoExp(- Q/RT) (7.6.10)
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where :

D(T) = sodium diffusion coefficient at temperature T, cm2/s~c
2

D = frequency facto r ,. cm /50

Q = activation energy, Kcal/mole

R = gas constant = 1.99xlO-3 Kca11mo1eoK

T = temperature in degrees Kelvin, OK

~ For temperature range of 100° to 250°C.

b/ At 100°C.

c/ At 200°C.

For numerical evaluation a ternary sodium-borosilicate glass at 100°C

\4Jftn-tne-composftl0n2a-.oKa2o/ 14. 3-ff203 moTe--~wasconS1cIere(r:- From -- --- --- ~ -- ----

Table 7.6.1we obtain 0=°100 = 8.61xlO-13 cm2/s. The surface concentration is

taken to be zero.

Values of S = -20, -10, -5, 0, 5, 10, 50, and 800 were chosen. Value
-6

of S = 800 corresponds to v = 3.3xlO em/day.

4. Numerical results and discussion

The numerical results are obtained with the aid of four computer

Table 7.6.1. Na self-diffusion ;n ternary Na20-B203$i02 glasses (Fl)

Na20/8203 mole%
2 al

Q(Kcal/mole)
2 b/ 2 c/

°o(cm /5)- °100 (em / s)- D200(em Is)-

31 .3/6.25 5.0lx10-6 11 .5 -i-0-13- 2.84x10-11

3O. 9/9 . 10
-6 11.7 9.00x10-13 2.52xlO-ll6.31 x1Q-----

28.6/14.3
-5 13. 1 8.61x10-13 3.59xlO-ll3.98x10

32.3/3.22
-4 13.4 7.24xlO-12 3.29xlO-105.01x10

31.7/4.76
-4 13.0 3.00x10-12 1.22x10-101.21x10
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programs (see Appendix A for the program details). The cut off time for

calculations is the leach time TL' This is defined as

TL = I L/v I
, v :} a (7.6.11)

where:

TL = leach time, sec

L = initial characteristic length of the problem, cm

(half width of the finite slab or sphere radius).

The value of TL corresponds to total dissolution of the glass matrix if

v > 0, and doubling of L if v < O. The surface mass flux was obtained by

numerical differentiation of Eqs. (7.6.4) and (7.6.6).

Figs. 7.6.1 - 7.6.7 showthe normalized

concentration vs. half width of the finite slab, for ~ = 0, 5, 10, 800, -5,

-10, and -20 respectively. For v > 0, increase in v, (8) will result in

steepening of the concentration profile at the glass-water interface.

This effect can be best seen in Fig.7.6.4,where a = 800. Also, the absolute

value of the concentration gradient at the interface is increased as v

increases. For negative values of v, the normalized concentration profile

becomes S-shaped, see Fig. 7.6.5.

Fig.7.6.B shows the variation of the normalized surface mass flux of
~-- --~-~-~---~~ ~- -- - ~ ~ ~ ~~ ~-~ ~ ~ ~-_. -- ~

the finite slab with time (T = Dt/a) for different values of 8, (v). At

the early period of glass dissolution the normalized surface mass flux is

proportional to t-1/2 and is independent of the regression velocity. This

indicates the diffusion-controlled mass loss. For 8 = BOO, after approxi-

mately 100 years, a constant surface mass' flux of 2.4xlO-6g sodium/cm2 day

is obtained.

Fig.7.6.9shows the variation of the fractional release with time for
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different values of v. Fractional release has a behavior of the form

1/2
clt + c2t, where c1 and c2 are two constants, see Eq. (7.6.6) for

values of c1 and c2'

Figs. 7.6.10 - 7.6.13 apply to the sphere and show the

normalized concentration vs. radius of sphere for B = 0, 10, -5, .and -10

respectively. Comparison with Figs. 7.6.1, 3, 5 and 6 indicates that sodium

depletion is faster for the sphere than for the slab. The plot obtained

for S = 800 is identical to Fig. 7.6.7. thus it is not reproduced~w

Fig. 7.6.14 shows the variation of the normalized surface mass flux of

the sphere with time (T) for different values of S, (v). As leach time

;s approached there is a drop in surface mass flux due to depletion of

sodium inside the sphere.

Fractional release for the sphere case is obtained by way of numer-

icalintegration of the normalized concentration. Fig. 7.6.15 shows the

variation of fractional release with time (T) for different values of

8, (v).

5. Conclusion

A glass dissolution model based upon two observed phenomena, i.e.,

internal molecular diffusion and glass surface regression, is developed.
- ~-------_._--------.------------

An asymptoticequationis obtainedfor fractionaldissolutionof diffusant

from the glass. The asymptoticequationhas a form of cltl/2 + c2t where

cl and c2 are a function of molecular diffusion coefficient and regression

speed. The experimental results of fractional dissolution of component

Ii' is of the form C1tl/2+ C2t, where Cl and C2 are two constants which

depend on the diffusing component. Values of Cl and C2 are obtained

from glass dissolution. experiment. By fittin~ Eq. (7.6.3) or (7.6.8) to the
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experimentally observed f(t) we can obtain the internal molecular

diffusion coefficient of component Iii and the glass-water regression

speed. This is presently under study.

- .--------.-. ------ --------.-.---
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Appendix A

Derivation of the leach time for sphere, prolate ellipsoid, slender

cylinder, and infinite cylinder.

Conservation of mass is the governing equation which for a quasi-

steady state is

a
(

.
at pV(t)) = - m(t) (A1)

where:

p = density (g/cm3)

V(t) = volume at time t (cm3)

m(~t}--=mass loss rate at time t (g/sec)

With the proper initial condition (V(O) = Vo' initial volume) t Eq. (Al)

can be solved. The following geometries are considered and analyzed.

1. The sphere radius is r, the concentration on the surface is constant

and denoted by Ns' the concentration in the liquid tends to zero as

. r tends to infinity. For the sphere we have

V - 4 3
- J 1Tr (A2)

. - D N 0 = E Dm - ~~_~__e~__s__~__EL= f ~ ~---~-I ~-- (A3)

Initial condition r(O) = b~ (initial radius)

Substituting Eqs. (A2) and (A3) into Eq. (Al) and after some algebraic

manipulation yields

p r dr = - De Ns dt

Initial condition r(O) = bl
0

Integrating with respect to time from t = 0 to t yie.lds

(A4)

(b~)2 - r2 (t) = 2 De Ns tIp (AS)



2~'

For total dissolution of the sphere we require that r(Tsphere) = 0,
hence 2

p(b~)

Tsphere = 2 DeNs
(A6)

where:

Tsphere = leach time for sphere (see)

2. The concentration on the surface of the prolate ellipsoid is constant

(Ns)' and the concentration far away from the ellipsoid tends to zero.

For the prolate ellipsoid case we have

4 24 3,!2
V = 3 TI ab = 3 TI f slnh a cosh a (A7)

. 4 7T De Ns f
m 7, ,.

, . a

log [coth (2s U

(A8)

Initial condition,a (0) = as initial surface shape factor

f (0) = fo initial focal distance

Substituting Eqs. (A7) and (A8) into Eq. (Al) yields

3 ON fe s

~ (f3 s inh2 a cosh a) = - p log rcoth (~~at L
(A9)

--~--------- _u_-. --.-..---- . --.---------------------------

Initial condition f (0) = fo

a (0) = ~s

Eq. (A9) cannot be solved since there are two unknownsand one

equation. It is necessary to have another relation between f and a.

To overcome this difficulty we assume that either f, a, or some function

of f and a is constant during leaching. Hence', we analyze the following

two cases.



3.

Case1. a is constant and is equal to as.

The above assumption can also be stated as: the ratio of major axis

to minor axis is constant throughout the leaching. Thus, Eq. (A9) is

simpl ified to

df 2 a '" -1
f dt = - De Ns (p sinh (as) cosh (as) log(coth (yb (Ala)

Initial condition f(a) = f 0

By integrating Eq. (Ala) from t = a to t, we obtain

2 2 2 . . ~ \1-1
fo - f (t) = 2DeNs~ sinh (as)cosh(as)log(coth(~)U t

(All)

For total dissolution of the prolate ellipsoid we require that

f(Tp) = a and obtain
b2

p 0 as
Tp = 2D_N- cosh (as) log(coth(~))

(A12)

where:

Tp = leach time of prolate ellipsoid (see)

b = initial semi-minor axis (em)0

Case 2. The minor axis is constant.

From the above assumption implies that after sufficient time the
- -- --------------

- ~ ~ ~----------

prolate ellipsoid has shrunk to a sphere with radius equal to the semi-

minor axis. The volume and mass loss rate are rewritten as

4 2 4 3
V = - 11"ab = - 11"b coth a330 (A13)

-1

m = 411"De Ns bo [Sinh al0g(coth(~)U (A14)



4.

Initial condition a(O) = as

Substituting Eqs. (A13) and (A14) into Eq. (Al) yields

p b~ sin h a log (coth (~)) ddt (cot h a) = - 3De Ns "

(A15)

Initial condition a(O) = a
S

After some simplifications, we obtain

3 De Ns log [coth (~il
2 dt =. d a

p b s1nh a0
(A16)

Initial. condition cdO) = as

Integrating the above equation between t = 0 to t yields

6 De Nst as 2
2 = [109(coth{yill- OOg(coth(f) D

p b. . .0,

(A17)

From Eq. (A17), we obtain T~, the time that will take the prolate

ellipsoid to reduce to a sphere with radius bo' i.e., a ~ 00

b2 2
s p 0 [ as \1

T = 6 D N log(coth(y) LJPes
(A18)

The leach time for total dissolution of the prolate ellipsoid is viewed
--. ---- -- - ---

as the sum of two time intervals. The first time interval corresponds

to reduction of the prolate ellipsoid to a sphere. The second time

interval is the leach time of the sphere. Thus, from equation (A18)

and (A6) we have

Tp = T~ + Tsphere (A19)



5.

or 2
p bo [

a. 2

TP = 2 D- N- (1+ log (coth ( 2S)U 13) (A20)

Comparison of Eqs. (A12) and (A20) shows that the leach

two different cases differ only by a multiplier. From table of the hyper-

bolic functions, we have

disprove the validity of the assumptions used in their derivations.

The first case (exconstant) is chosen as the criterion for establishing

leach time.

3. Slender cylinder (L~10r)

For the slinder cylinder, we have

V= 7T r2L (A2l)

m = 2 7T De Ns L/log(L/r) (A22)
~~ ~ --

reO) = rd initial radius

L(O) = Lo initial height

We assume that the ratio of height to radius is constant during leaching.

Initial condition

This ;s written as

r = r q(t)0 (A23)

L = Lo q(t) (A24)

ex 2 ex

a.s/2 1+ Q09(coth(y)TI 13 cosh(a.s)log(coth(y»

0.05 4 3.01

0.07 3.36 2.68

0.13 2.40 2. 11

Therefore, both cases yield similar reu1ts. This does not prove nor



6.

Initial condition q(Q) = 1

Substituting Eqs. (A2l), (A22), (A23), and (A24) into Eq. (Al) and after

some transformations, we obtain

2 D N
q(t) ~ = - e s

dt 3 P ro2 log(Lo/ro)

Initial condition q(Q) = 1

(A25)

Integrating weithrespect to tinE from t = 0 to t yields

q(t) = (1 - 4 De Ns t 1/2
3 2 L).

rop log(ro)
0

(A26)

From definition'of the leach time we require that q(Tsc) = 0, and obtain
2 Lo

3 ro P log(y:-)
, 0

Tsc = 4 D Ne s
(A27)

4. Infinitely long cylinder

The mass balance in a unit length results in

8
..!L (7f r2p) = - {Tidt D N (Pe)1/2 Pe > 4e s ' /

(A28)

-----

Initial condition r(O) = r0

-- ----------------------

Integrating with respect to time from t = 0 to t for r(t) yields

r3/2(t) - r 3/2 =- ;/20 1T Ns De t (U/Df) 1/2 /p (A29)

From definition of the leach time r(T )eo

3/2 r 2 Urn p 0 - 0

Teo= 1/2,Pe = 0
6De Ns Pe f

= 0, we obtain

(A30)



Appendix B: The solubility limit of silica in water
as a function of temperature and pressure
(Ref. Wl).
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Appendix C The Computer Programs

UCB NE 70,71, 72,73,74

The following computer programs are written in Fortran IV and have been

executed on CDC-7600.

UCBNE-70 Calculates the surface mass flux and leach time due to diffusion

and diffusion-convection for a given glass cylinder.

Description of Data Cards:

1st Card: Free Format

Icont

Ipara

lvel

Igeo

2nd Card:

0, stop the program execution; otherwise continue.

0, same parameters as previous run; otherwise read

new input parameters.

0, samegroundwater pore velocity as previous run;

otherwise read the new value.

0, same geometry as previous run; otherwise read the new

values.

Free Format. Consists of 4 pieces of information.

1st surface concentration g/cm3

2nd

3rd

4th

porosity

diffusivity in groundwater cm2/sec

glass density
----------

~Carcr:-FreetOrmat --

1st

4th Card: Free Format

1

2

groundwater pore velocity m/yr

glass cylinder radius cm

glass cylinder height cm



UCBNE-7l

UCBNE-72

UCBNE-73

UCBNE-74

~--

2.

Calculates the normalized concentration of a species in a

slab with regressive surface.

Calculates the fractional release of a species from a slab

with regressive surface.

Calculates the normalized concentration and surface mass flux

of speci~from sphere with regressive surface.

Calculates the fractional release of a diffusing species from

a sphere with regressive surface.

~--~-----------



c
c
c
c
c
c
c
c
c
c
c
c
C
c

1000

7 00

800

9 CO

--u--

70/1

.. UC8NE-7.a ..
AUTHOR SHAWJ. ZAVOSHY
OATE OCT. 1981

THIS PRCGRAH CALCULATES THE SURFACE MASS flUX F~aM A GLAS: CYLINDER.
THE I~p~r PARA~ETERS ARE
cs= SURF~CE CO~CfNT~ATI(N (G/CM3)
EPS= POnOSIr Y
ow:: CIfFUSIVIT'f I" WATE~ (CH2/S(C)

RO ~ DENSITY CG/CHJ)
U= GROUt'OWATER VEL.CCIT'f (H/YRI
R:: GLASS CYLINDER RADIUS (CM)
HT= GL~SS CYLINDER HEIGHT (CM)

~ 44+

1

P~OGRAH NONNY (INFCT~OUTPUT,TAPE5=INPUT,TAPE6=CUT?UT)

C'lMENS!O~ Y(10),X(10J,F(20),E(10)
CONTINUE
REAO(S,.)ICQNTtiFARA.IVEL,IGEO
IF(rCO~T .Ea. 0> GO 10 0000
IF(1PA~A .EQ. D) GJ TO TCa
REAQ(S,.)CS,tPS.DW,RO
If ( I VEL. t. r,). ;J) GO TO BOO
READ(S,.)U
IFC!GEO .EO. Q) GO TO 3aO
READ(S,.) R,HT

CONTI~U E
NNN=O
Vl=3..~.".HT/4.
OE= OW.E F~
OH=l.E-"
Sl=R.(RfHr)
X(1)=HT/2.
Y(1)=SQRT(V1/X(1»
y (1 ) = Y ( 1 )-DH
00 13 1=1.3
X(I)=Vl/~tI)/V([)
E CI ) = SQRT (X (! ) .xf I T---~--Y-fI)--. y (r » ) I X ( I )
F(!)=Sl- Y(I)4o(Y(I) . I«I).ASI~(E(x")I/[(I1J
Y (I +1 ) = y ([ ) +JH
,...NN= NNNIit1
F~= (F (3 )-F (1» 12./~H
AC:=F(Z)/FP
ACJ=f(2)
IF(ABSCACO).LE.v.Ou1) GO TO ~O:
Y (1 ) = Y (Z ) -ACe

IF(NNN.GE.50) GO iC 500
GQ TO ~

CONTINUE
A=X (Z)
E=Y(Z)
IF(I3.GE-A' Go TC .s;}~
C=SLJRT (~"A-tJ.a)

ECC=C/A

--------------

: 3

101



SHAPE=ALOG«A+R)/C)

PI=ACOS( -1.)

S=2. *PI*R*(R+(A*ASIN(ECC}!ECC))

CTS=-ALOG(TANH(SHAPE/2.))

AREA=2.*PI*R*(R+HT) / 10000.

VOLUM=PI*R*R*HT/I000000.

vJRITE( 6,2)

FORMAT(lHl,* DlMENSIONS OF GLASS CYLINnER *)

WRITE( 6 ,S)R,HT/IOO. ,AREA, VOLUM

FORMAT(//,* RADIUS (CM)=*,FIO.2 ,6X,*HEIGHT (M)=*, FIO.2 ,6X

1,*STJRFACE AREA (M2)=*, FIO.2 ,6X,*VOLUME (M3)=*,FIO.2)

WRITE(6,15)DH,EPS,DE .

FORMAT(/ ,*DIFFURIVITY IN WATER(Clt2/SRC)=*,lPElS.7,6X,*POROSITY=*,

1IPEI5.7,6X,*EFFECTIVR DIFFUSIVITY (CM2/SEC)=*,lPElS.7)

~~1RITE(6,6 )CS

FORMAT(// ,6X,* CS (G/~i.3) =*,lPE15.7)

WRITE(6,7)

FORMAT(/,* nlMENSIONOF APPROX. PROLATE ELLIPSOID *)

WRITE(o,10)A/I00.,R,C/lOO.

FORMAT(//,* A (1)=*,lPEls.7,6X,*R (CM)=*,lPElS.7,6X,*C (M)=*,lPEl

15.7)

1~_ITE(6,12)ECC,SHAPE,S/lOOOO.

FORMAT(* E@C/A =*,F12.6,6X,*STJRFACE SHAPE FACTOR=*,F12.6,6X,*S (M

12)=*,lPEls.7)

DY=86400.

ZTOTAL=(4.*PI*DE*CS*C)/CTS

-- ZTOTAt;=1JY*ZTOTA't------------------------------------------

ZLENGT=ZTOTAIJ2 . / A

ZSTTRF=ZTOTAL/S

PELT=(RO*B*R*COSH(SHAPE)*CTS)/(2.*DE*CS)

PELT=PELT/DY/36s.2s

2

5

IS

1

7

10

12

30

WRITE(h,30)ZTOTAL,PELT

FORMAT(//,* P.E. MASS LOSS RATE (GR/D)=*,lPE15.7,9X,*P.E.LEACHT

lI~1E (YR)=*,lPEls.7)

~~ITE( h ,32) ZLF.NGT,ZSURF

FORHAT(* P.R. MASS LOSS PER UNIT LENGTH(GR/nAY)=*,lPElS.7,6X,32

7 (J/2 .



35

l*StTRFACE MASS FLUX (GR/CM2 OAY)-*,lPE15.7)

ZSCYL=(2.*PI*OE*CS*HT)/(ALOG(RT/R»

ZSCYL=ZSCYL*OY

SCLT=(3.*R*R*RO*ALOG(RT/R»/(4.*nR*CS)

SCLT=SCLT/DY/365.25

WRITR(6,35)HT/R,ZSCYL,SCLT

FORMAT(//,* S.CYL.RATOc*,FlO.2,7X,*S.CYL. MASS LORS RATE (OR/O)=-

1*,F14.7,7X,*S.CYL. LRACRTIMR (YR)=*,lPE10.2)

r,ffi.ITE(f) ,75)

FORMAT(//,* INFINITE CTI~INnER *)

CONTINUE

V=(U*100.)/365.25/86400.

PE=V*R/Ot~

IF(PE.LT.4.) GO TO 5000

HRITE(6,40) V*DY*3.6525,PE,OW

FORMAT(I//,* TJ (M/YR)=*,lPEIO.3,6X,*

1(CM2/SEC)=*,lPRIO.3)

ZTTL=4.5135*nE*CS*SORT(PE)

ZTJL= ZTJL*ny

75

500

40 PECLET NO.-*,lPEIO.3,6X,*nW

ZUS=ZTJL/(2. *PI*R)

RI=4.*nW/V

ZLT=O.92Rl*RO*(R*SORT(R)-RI*SORT(RI» I (CS*nE*SORT(" tOW»

ZLT=ZLT/nY/365.25

WRITE(6,50)R,RI,ZTJL

FORMAT(//,* INITIAL RADITJS(CM)=*,lPE10.3,6X,*F!NAJ~ RADIUS (CM);a*

1,lPEIO.3,6X,*MASS LOSS PERTmIT LENGTH (GR/CMDAY)=*,lPE15.7)

~~~-~~~~~ }lRlTKC6_,~~__ZT1S_,ZLT____-

55 FORMAT(* ~nJRFACRMASS FLUX (GR/CM2 DAY)=*,lPR15.7,6X,*LEACH TIHE

1(YR)=*, IPE15. 7)

5000 CONTI NTTE

GO TO 1000

50

1000 CONTINUE

STOP

END

7°{3

-- - ~- ---------
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III

...~...~.~. UCENE-7: ...............
AUT HC R \ S HAW J. Z A va SHY

0 ATE JU L . 198 1

THIS PRCGRAM C~lCUl~TE5 THE NCR~ALIZ[O CO~C~NTRATION ~ND SURFACE
MASS fLUX OF A DIFfUSING SPECIES FROM A SLA2 WI1H INIT!AL HALF
WIDTH OF 2A. THE )~PUT PA RAMETERS ARE
A -= I NIT r t.L HAL f: W I [}lH (C:1)

0= BIFfUS!ON CCEFFIC!E"'T (CM2/SEC)
8EiHA=V.A/O=DIMENSICNLES~ Gl~S~-WATtR REGRfSSIGN SPEiO

~ 4.~ &~.~.........................

PROGRAM ~OME (I~?U7,CUT?UTtTAPt5=IN?UT9TAP£6=CUT?UT)
O'::HENS1GN X(22),C(ZO'
DIMENSION DOC1C),BETHV(10)

H=1.E-6
RO=.67Z
RGS=O e.

C E F F = R' 0"- ~ 0 S

4=17.9
DD(1)=E.E:.(lO..-(-13J)
00(2}=3.59.(10...(-11»

BET~VL:')=O.
BETHV(Z)=5.
a::THV(3)=10.
BET H V (~ ) = 5 O. '

8ETHV (5)=800.
2ETt-'V(f)=1oQO.
8ET~V (7 ).=-5.

BE i H V (a ) ,= ":"1 Q.

8 E T H V ("9 ) = - 2 0-.

N8i=9 ' ~.

NOI=Z

DJ~ -6-0-0D--N 0=1 ,ND I

0=DO (NO) - .'.

00 500U f\2,=1,N51
8ETH=8ETI-V (N9)

2

:.3

~~~ ~---~ ~

i=.l
i=T.a64GO..365.2~

R01~(RO-ROS).n~86~JC.
v= 8E1"'.[1 A

~RITE (6t2)~,v,D.,8E1H
FCRMAT(l~:,.HALF HrC1H(CM)=..F12.6.,6Xt¥V(CH/SEC)=..lQE~5.7,6X9

1.0 (CHXC~/S€C)=.,loE15.7,&X,.BETHA=(VXA/()=.,lP£15."
W R r T E (0, 1 3 ) RoO

FORMAT (I,. DENS:TY (GR/CH3 )=.,1PE15.7)

IF(V.EQ.O.) GO TO 7



3
7
C
C
C

15

1C

c
c
c

150

101

2 CC

c

20

II/:::'

TLY=A/V/66~aO./365.~5
WRITE C6.3)TLY
FORHAT(/,-LEACH TIHECYR)=.,1?E15.7)
CONTINUE

BEGINNING OF TI~E 00 LOOP . ~ULTIPL!ER=10

DO 100 1(=0,25
IFCV.EQ.;.) GO TO lS
11='1T .r.E.ABS (A/V), GO TO 600

TSJ.=0)"1";4 tA

SQ=2."'SCRTCTA)
? X=1.-3E.TH-TA

OX=PX/:'C.

WR!TE(6~lD)PY..A,DX.AiTI66400./36S.25

FORHAT (II. ",1( T ) (C H) = + .F 1 41.ft, 6 X. .. DX (eM) = .. ,F 1 Q. 5, 6 Xt ..T I ME( YR ) =" ,1 P E
114.6)

BEGINNING OF NODAL LOOP.

00 50 I=1,Z3
IFCI.GE.l:) GO TO 150

X (I )=([-1).0)
GO TO ZOO
X(I)=X(I-l)+.1-0X
1FCI.GE.21) GO TO lu1
GO TO ZOO

M=I-20
XC!)=PX-M.H/A

CC1 ):; (ERF( ( 1. +X(I ) JIsa ) . ERF( (1. - X(! ) ) I SJ ) ) I 2.
Z=l.-X( I)
Y=l.+X(IJ

BEGIhNI~GOF SUM~AT!ONCF INFINITESERIES. MAX. OF ~o TERMS.
00 20 N=1.40

AR=N¥PX
S 1 = EX F C -~. .. BE T H .. Cn R -X (I ) ) ) ¥ (E R f" ( C2 . 11&A? + Z ) I sa) - E R F ( (2 .¥ A R .Y ) IS C » )

S 1=S 1/2 ~~ ~ ~-~ ~---~ ~_n~___~_-~--~ ~ ~--

S2=EXF(-~~BETH.(AR+)(I»). (ERF (2..AR+Y) ISQ)-E~F C(a..A~-2)/SO) )/2.
s = (S;. + S2 ) . C (-1 ) ..;,;. N )

C(N+l)=CCN)+S
IF(CCN+l).EQ.O.) riG TO 35

EPS=S/CCt<o+l)
lFCABSCEFSt.L£.ABSCC(N+l»/100a4) GO TO 35

CONTINUE



35

36

77

~5

55
50
100
5uO
5 0aa
b 0 C0

11/.~

~

IF(I.GE.21) GO TO 77
C(N+l)=(RDS+CEFf-ABSCC(h+l»)/RO
C(l)=C(l).CEFF/~O

WRI TE.(6. 36) X (:: ) -A t A8 S ( C( N+1) ) ,N ,G (N +1) -: ( 1 )
FORHAT(/,¥PQSIT:ON (CM):.,FlQ.4,12X,.CONCENTRATION=-,r1:.4,6X,

1¥N=.,I2,EXt.SUM{~)=~,F1Z.&)
GO TO 50

DERIV=-C(N+l)/H/H
WRITE(6.47)H.H,CERIV,-R01.0ERIV,N
FORMAT(/,.H(CH)=¥,~PE1S.7,&X,.DERIVAT!vE=.,lPEi:.7,6X,.~ASS FLLX

1(GR/CH2 OAY):.,1FE1S.7,GX,IZ)
TOT J = - ~ C1 .DE: R.! 'J" V" R 0 S .. 85 it 0 a .

WRITE(6,57) TOTJ
FOR HAT (II . .. TO,. AL '"J)S S LOS S RAT E (G I eM2 [)AY )= ~ ,1 PEl 5 .7 )

, CONTlt\Lt:
T=T"~C.

CONTIt\UE
: aNT INUC:
CONT!NUE

STnp----
{!tJv

~ ~ ~ ~ ~-~~



1

C *** lJCBNE-72 ***

C AUTHOR ~HA~-1J. ZAVOSHY
DATE AUG. 1981

THI~ PROGRAMCAJ~CULATESTHE FRACTIONAl.RELEASE,OF A nIFFUSING

C

C

C RADIO-NUCLIDE FROMA SLAB WITH INITIAL WIDTH OF 2A. THE INPUT

PARAMF.TRRS ARE

A-=-INI TIAL HALF WIDTH (CM)

DC.:::DECAY CONSTANT(1 /YR)

D= nIFFUSION COEFFICIENT (CM2/SEC)

B=.:V*A/n @ THE DIMF:NSIONLESS GLASS -WATER RE~RRSSION

C

C

C

C

C

C

SPEED

****************************************************************

C THE FRACTIONAL RELEASF. IS CALCULATE));BY DIRECT EVALUATION

OF THE EQUATION FOR B .LE. 90, AND ASYMPTOTIC AND UPPER. AND LOt-JERBOTJND

OF THE EOUATION FOR B .LE. 90, AND ASYMPTOTIC ANn UPPER

BOUNDLOWERBOUNDARE USEn FOR B .~T. 90.

C

C

C

c ******************************************************************

C

nIMRNSION STT(SO),SL(~O)

DIMENSION S(SO),AR(S),AF,(S),ASFC(S)

DIMENSION nD(10),BV(10)

RO=.672

ROS=O.

CF.FF=RO-ROS

DC=O.

DCYY=nC*R6400.*36S.25

~-i\=IT-;r -

Dn(1)=8.61*(10.**(-13))

nn(2)=3.S9*(10~**(-11»)

RV(1)=.OOOO01

RV(2)=S.

BV(3)=10.

BV(4)=SO.

RV(S)=ROO.

BV(fi)=1600.

BV(7)=-S.



21

2

TIN=.OOI

NO1=2

NRI=7

DO 6000 NJ)=1,NT)I

D=DD(Nn)

2

DO 5000 NR=1, NBI.,

R=BV(NB)

V=D*R/A

WRITF.(6,2)A,V,D,B

FORMAT(lH.l,*HALF WIDTH(CM)=*,F12.6,6X,*V(CM/RF.C)=*,lPE15.7,6X,

l*D (CMXDt/SEG)=*,lPRI5.7,6X,*RETHA=*,lPEI5.7)

13 '

TAlRITF,(fi ,13) RO
,'" "" ' ,

FORMAT(//,* DENSITY. (G/r:M3) =*,lPR15.7)

IF(DC.EQ.O.) GO TO 17

{JRITE(6 ,8)DCYY, .693/DCYY

FORMAT(!,2X,*DECAY CONSTANT(l/YR) =*,lPF,15.7,6X,*HALF LIFR(YR)=*,

11PF,10.4)

r.ONTINIJE

A

17

3

7

IF(V.F,O.O.) GO TO 7

TI~Y=A/V/R6400./365.25

WRITE(6,3)TLY

FORMAT(/,*LEACH TlME(YR)=*,lPF,15.7)

T=TIN

T=T*R6400.*365.25

IF(R.GE.90.) GO TO 234
~- - n ~ -"-------------

789

C

~TRITE(6,789)

FOro1AT(////,* DIRECTCALCULATION *)

c
c

BEGINNINGOF TIME no LOOP.MULTIPLIER IS 10.

DO 30 K=O,20

IF(V.EO.O.) GO TO 21

IF(ABS(T).GF..AR~(A/V»

TA=D*T/A/A

r.o TO 5000



3

TETH=l.-TA*B

C=2. *SORT( TA)

Fl=(l.+TETH)/C

F2=(1.-TETH)/C

TI=(1.+TETH)*F.RF(F1)-(1.-TETH)*ERF(F2)

S(1)=TI+C*(F.XP(-Fl*F1)-1.XP(-F2*F2»/1.772454

0=1.-8(1)/2.

S(l)=O

C

C BEGINNING OF INFINITE SUM DO LOOP. MAX. OF 40 TERMS.

c

DO 10 N=l,40

IF(N.EO.40) ~O TO 30

E1=EXP(-N*B*TETH*(N-1»

E2=1.XP(-N*B*TETH*(N+l»

1.=2. *N-1 .

F=2.*N+1.

Al=E*TETH

A2=F*TETH

10

P1=1.1*(ERF{(A1+1.) /C)-ERF{ (AI-I.) / C»

P2=F.2*(ERF«A2-1.)/C)-ERF«A2+1.)/C»

P3=EXP(N*B*(N-1»*(ERF«E-TF.TH)/C)-ERF«1.+TETR)/C»

P4=EXP{N*B*(N+l»*(ERF«F+TETR)/C)-ERF«F-TETH)/C»

PS=«-1.)**(N+l»*(Pl+P2+P3+P4)/(2.*N*R)

-. S (-N+-l) ==PS+R(N) ~ ----.----

IF(S(N+1).EO.O.) GO TO 100

EPS=(S(N+l)-S(N»/S(N+l)

IF(ABS(EPS).LR.AB~(S(N+1»/1000.) GO TO 100

CONTINUE

---------.---.---------

100 S(~~1)=1.+(S(N+1)-1.)*CEFF/RO -ROS*(l.-V*T/A)/RO

WRITE(6,105)T/R6400./365.25,S(N+l),S(N+l)*EXP(-nC*T),N

FORMAT(/,* TIME(YR)=*,lPEIO.4,6X,*FRACTINAL RELEASFF*,lPR15.7J~X

1,*FRAC. REL. WITH DECAY=*,IPE15.7,4X,*N=*,I2)

105



. 22

I~- ~ u_-

4

30 T=T*10.

GO TO 5000

CONTINUE234

456

C

WRITE(6,456)

FORMAT(////,* ABYMPTOTICMRTHOD USED *)

c BEGINNINGOF TIME no LOOP.~U~TIPLIER IS 10.

c

no 31 K=0,20

IF(V.EO.O.) r~ TO 22

IF(ABS(T).GE.ABS(A/v»

TA=D*T/A/A

TETH=l.-TA*B

C=2.*SORT(TA)

---~-F'I=( 1.+TETH) /C

F2=(1.-TETH)/C

TI=(I.+TETH)*ERF(Fl)-(I.-TETH)*ERF(F2)

S(I)=TI+C*(EXP(-F1*Fl)-EXP(-F2*F2»/1.772454

O=1.-S(1)/2.

8(1)=0

GO TO"235

c
c REGINNING OF INFINITE SHM no LOOP. MAX. OF 40 TERMS.
c

no 11 N=1,40

IF(N.EO.40) GO TO 31

El=EXP(-N*R*TRTH*(N-1»

EI~E-xpT=-N*R*TETH*(N+fj-y---------

E=2 . *N-l .

~

F=2.*N+1.

Al=E*TETH

A2=F*TETH

AR(1)=(E+TETH)/r.

AR(2)=(E-TETH)/C

AR(3)=(F-TETH)7c'

AR(4)=(F+TETH)/C

AE(l)=N*R*(N-l)-AR(l)*AR(l)



300

400

AE(2)=N*B*(N-l)-AR(2)*AR(2)

AE(3)=N*B*(N+l)-AR(3)*AR(3)

AE(4)=N*B*(N+1)-AR(4)*AR(4)

DO 400 J=1,4

ARYM= 1 .

DO 300 NN=1,4

AFT=2.*J+l.

AFB=J+ 1 .

FT=GAMFN(AFT,IERR)

FB=GAMFN(AFR,IERR)

SS=FT/(FB*«4.*AR(J)*AR(J»**NN»

ASYM=ASYM+(-l)**NN*SR

ARFr.(J)=EXP(AR(J»*ASYM/AR(J)/S~RT(3.1415)

P1=E1*(ERF«A1+1.)/C)-ERF«A1-1.)/C»

P2=E2*(ERF«A2-1.)/C)-RRF«A2+1.)/C»

IF(N.GE.2) C~ TO 250

P3=ERF(AR(2»-ERF{AR(1»

P4=ASFC(3)-ASFC(4)

GO TO 75

250 P3=ASFC(1)-ASFC(2)

P4=ASFC(3)~ASFC(4)

PS=«-1.)**(N+1»*(P1+P2+P3+P4)/(2.*N*B)

R(N+ 1) =PS+R( N)

IF(S(N+1)."O.0.) GO TO 101

EPS=(S(N+1)-S(N»/S(N+1)

rF1ARSrEPRr.LE.ARS(~rN+l»l1000.) GO TO 101

11 CONTINUE

101 R(N+1)=I.+(R(N+1)-I.)*CEFF/RO -ROS*(l.-V*T/A)/RO

WRITE(6,106)T/R6400./36S.2S,S(~*1),S(N+1)*EXP(-DC*T),N

106 FORMAT(/,* TIME(YR)=*,lPE10.4,6X,*FRACTINM~ RRLRASE=*,lPE15.7,6X

1,*FRAC. REL. WITH DECAY=*,lPE1S.7,4X,*N=*,I2)

T=T*10.

CONTINUE

75

31

235

c

~7RITE(6,576)

5

- .~ -. -.- _._~ ~_.



576

23

c

c
c

6

FORMAT(/ ,* BOUNDMETHODIS U~ED. IT.B. ~ UPPER BOTJNnFRACTIONAL REL

lEASE. DELTA@U.B. - L.B. *)
T=TIN*A~400.*3fi5.25

DO 32 K=0,20

IF(V.Eq.O.) GO TO 23

IF(ABS(T).GE.ABS(A/V»

TA=D*T/A/A

TETH=I.-TA*B

C=2.*SORT(TA)

Fl=(l.+TETH)/C

F2=(1.-TETH)/C

TI=(1.+TETH)*ERF(F1)-(1.~TETH)*ERF(F2)

S( 1)=TI+C*(EXP( -F1*F1 )-EXP( -F2*F2) )/1.772454

0=1.-8(1)/2.

SL( 1)=0

SU(1)=0

GO TO 5000

BEGINNING OF INFINITE STTM DO LOOP. MAX. OF 40 TF.RM~.

DO 12 N=1,40

El=EXP(-N*R*TETH*(N-l»

IF(N.Rq.40) GO TO 32

E2=EXP(-N*B*TETH*(N+l»

F.=2 . *N-l .

F=2.*N+1.

Al=E*TETH

A2=F*TETH
- --- ~ ~--~ ~~--~~----------

AR(I)=(E+TETH)/C

AR(2) = (E-TETH)1 C

AR(3)=(F-TETH)/C

AR(4)=(F+TETH)/C

AE(l)=N*B*(N-l)-AR(l)*AR(l)

AE(2)=N*R*(N-1)-AR(2)*AR(2)

AE(3)=N*B*(N+l)-AR(3)*AR(3)

AE(4)=N*H*(N+l)-AR(4)*AR(4)

CL31=AR(1)+80RT(AR(1)*AR(1)+2.)



7

CL32=AR(2)+SORT(AR(2)*AR(2)+1.2732)

CH31=AR(I)+SORT(AR(I)*AR(1)+1.2732)

CU32=AR(2)+RORT(AR(2)*AR(2)+2.)

CL41=AR(3)+RqRT(AR(3)*AR(3)+2.)

CL42=AR(4)+RQRT(AR(4)*AR(4)+1.2732)

CU41=AR(3)+RORT(AR(3)*AR(3)+1.2732)

CU42=AR(4)+SQRT(AR(4)*AR(4)+2.)

BLP3=RQRT(I.2732)*(EXP(AE(I»/CL31-EXP(AE(2»/CL32)

RUP3=SQRT(I.2732)*(EXP(AE(1»/CTT31-RXP(AE(2»/CU32)

BLP4=SQRT(I.2732)*(EXP(AE(3»/CL41-EXP(AE(4»/C142)

BUP4=SQRT(I.2732)*(EXP(AE(3»/CU41-EXP(AE(4»/CU42)

P1=E1*(ERF«A1+1.)/C)-ERF«A1-1.)/C»

P2=F.2*( ERF( (AZ-1. ) / C)-ERF( (A2+ 1. ) / C»

IF(N.GE.2) GO TO 50

BLP3=ERF(AR(2» -ERF(~(l»

RHP3=BLP3

PRU=(-1)**(N+-l)*(Pl+P2+RUP3+RUP4)

PRL=(-1)**(N+1)*(Pl+P2+BLP3+RLP4)

PSL=PSL/ (2 .*N*B)

PSU=PSU/ (2 .*N*B)

SU(1'H-l) =SU(N)+P SlJ

SL(N+-l)=SL(N)+PSL

EPSTJ=(SU(N+l)-SU(N»/SU(N+l)

EPSL=(SL(N+1)-SL(N»/SL(N+l)

IF(ABS(EPSU).LE.SU(N+l)/lOOO.) GO TO 410

GO TO 12

410 I F( ARS(EPSL )-.-bE.-RL(-N+l}!-lOOo-.-}--GD--TO--55(')------------------------

12 CONTINUE

550 SU(N+I)=I.+( STJ(N+1)-1. )*CEFF /RO -ROS*( I.-V*T/ A)/RO

SL(N+l)=l.+(SL(N+l)-l.)*CEFF/RO -ROS*(l.-V*T/A)/RO

WRITE(n,107)T/R6400./365.25,SU(N+l),ABS(SlJ(N+l)-SL(N+I»,SU(N+1)*

IEXP( -DC*T),N

107 FORMAT(/,* TIME(YR)=*,IPE10.4,4X,*U.R.=*,lPE15.7,nX,*nELTA~*,lPF.1

1S.7,6X,*U.B. WITH DECAY=*,lPE15.7,4X,*N=*,I2)
T=T*10.

50

32

5000 CONTINUE



1000

8

r.ONTINUF.

~TOP

END

\

1- " n --~ ~--------------



UCBNE-73
Author ShawJ. Zavoshy

Date August 1~81

OIMENSIC~ C(50),X(3~),ERC(10),E~I=:(10)t(~(10)
OIM~NSIO~ F~AC (3(;) ,QAV( 31J) ,SOI::;?(;)
DIMENSION rIM~(30'
OIMENSICN OO(10).9~jHV(10)
A=1'.'3

RO=.&72
RJ5=O.
C~:~=RO-~J5
00(1 )=8.El. (10 ...C-13)8
DOC2 )::;3.53" (iO .'. (-11»)

N) I=l
NS!=9

3~THV(1)=O.
3 ~ T HV ( 2 ) = 5 .
3 : T Hv (3 ) = 1 0 .
B~ r H-' ( 4 ) = 5 0 .
t3::r Hv(5, = 8 00 .
8:: T HV(6 ) = 16 0Ii.
8 ~ THV(7 ) = -5.

B::rHV(6)=-10.
B::rHV(9)=-20.
H=.OOOQl

a J 60 a a NJ =1. NOI
O=JOCND)
OJ 5QOO N8=1.Nor
8c:rH=E,ET~V (NS)
P01=(RO-~OS).O.6640Q.

V:8ETh"'C/L\
T=. 1
T=T.86~OO..365.25

w~rrE (6..2) A,V,D. BET"
FC~~AT(l~l,. RAOIJ> (~M)=",F12.6t)X."V(:M/SEC):.,1DE15.7,6X,

1 .. 0 (C HXC r-'I SEe) ='" ,1::> :: ~ r;. 7 , 6 X , ...3 ~ T HA= ( v )(~ 10» = '" , lP ( 15 . 7'
W~rTE(,,13)RC

- --- l-~--F8-.(.'i-A-r-(I," 0:: NS! TY ('; RI CM3 ) =..., 1 P:: 1 =-'.7)
IF(v.::Q.a.) GO TO 7

"
'"

7311

c THIS PRO~RAHM CALCJ_AT~S CONC~NTR~r[N 4NO 1A3S FLUX.
C4S£ SF"~~E.

'"
'oJ
'"
'oJ

""
'oJ
...

....
'oJ

2

~--------

J

r~Y=A/V/3~~QO./365.25
Tr ( A NS = 0 II/ I V

WRITE(6,3)TLY,TTRAN)/8&400./365.25
FO~HAT(/,.L~ACH TIH~(Y~)=(~/V)=-.1~!15.7,~(,.T~ANSIT!QN

!(Q/V2)= .,lPE15.7)
CONTINUE

TIHE(YR)=

.,

...

.;
"
..... 3 :: GIN NI N~ 0 F T I H: J 0 L.CJ P . ~u ~ r I;) LI:: R=1 ~
....
'"

IJ(=25
OJ 100 K=J,IJK'

SJIR(l)=O.
IF(V.~Q.C.) GO TO 17
IF(T.GE.A3SCA/V) GO TO 500

GO TO 301



L 1
301

10

...
oJ

c

150

101

200

~o

....
WI

"\0

oJ

..

...

38

1JI(=9
GONTINUE

r A=O"T/4/A

) Q=2 ."'sa~ T (T A)
)(=l.-B~TH.TA

IFCPX.LE. .OOl/A ) GO T050a
0 X= PX110.

W~[TE(6,1D)T/86400./3&5.Z5,PX.A,D(.~
FO~MAT(II, rV1E('f~)=..1~E1J.~t6(," ~(T) (CH)=",F12.4,6X,

1. JRCCM)=.,F12.5)

B~G1NN1NG OF NODAL .00'.
DO 50 1=1,23
IF(I.GE.l1) GO TO 1;0

X (1 )= (I -1 )"DX
(l)=.OOl/A

GO TO 200
X(I )=x (1-1)+.1"'OX
r=(I.GE.Z1) GO TO 101
GO TO 200

"'=1-20
X(I )=PX-'4 "'H/A

Z=l.-XCI)

Y=l.tX(I)
S[=2."X(!)
X)( (l)=Z/SQ
XX (Z)=Y/5Q

0) 40 11=1"
~~:: (I I ,=~ ~ Fe (XX (I I ) )

E RI FC (II) =. 56419.=: XP(-XX(II) "XX(II ~) -xx (II) "toRCCII'
C ( 1 ) ::1. - ( ~ RC (1 ) -[ RC ( 2) t S 1. (E RI F: ( 1 ) -~ R IF: ( 2)))ISI

BEGINNIN; JF SU~HArro~ CF INFINITE SERIES~ MAX. OF 40 TERMS.

D~ 20 N=l.~O
1F( N.GE. ~a) GO TO 100

~~:.N.PX
A~E1=N.B;TH.(N.PX-(I»
A~E2=N.3:TH.(N.PX+(I»

-- ~- ~ ~ --~ ~-~ -- ~ ~---

E:l::E)(P (-~RE1)
E! ::f.(P (-Ai(E2)
X( ( 1) = (2. . AR+ Z ) IS Q

. X(2)={2..AR-Y)/SQ
X( ( 3 ):: (2. .. AR + Y ) /S J
X~ (It ) = (2. .. Af\ - Z ) /s a

DJ 88 11=1,4
~-\: <I I ):: ~ RFC(XY (I I ) )
c:RIF C ( I I) = .5641 g4:: (;) ( .x x ( I I »"Xx (I I I) . xx ( I I ».t ~ C( I I'

StJ'11 = - E::" ( ERC ( 1 ) +::~ :: (2 ) ) IS I
S U'12 = :: 2. ( :: RC( 3 ) +~~:: ( 1+)) IS I

SJH3:-SQ"El.(ERI~C(1)-ERIFC(2)/SI
SJM4= SQ.E2.(ERIFC(3)-ERIFC(~»/SI



~ 0
35

3 ~.

77

.5

55

50

300

"
..JI
100
5 DO
5 000
~ 000

73/:3

S=SU~1.SUM2.SUM3.SJ~~
C(~.1)=C(N).S
IF(C(N+l).EQ.O.) GJ TO 35

E P S= SIC ( t +1 )

IFCABS(EF5).LE.ABS(:(N.l')/1.::i+, ;j ro 35
CJNTINL'E
r=(I.Gl.Zl) ::;0 ro 77

C (~'l.)= (~OS"CEFF.ABS(C(N+l J) )/RO

C(l)=C(l).CEFF/RO
. ,JRIT E (6, 3EdX (! ) ..A,' ABS( C( N.1 ) . ,N t : ( ~~..1) -: ( 1 ,

, F OR HAT ( I, .. P0 SIT ION (C ..., =" ,F 10 .c.,1 2 ( , .. C0 NC::NT RAT ION =', F 1 0 .4 t 6X ,
- 1..~ =" I 2 , t J( , ..SU H( N) =".F ~2 . 0 )

G J TO 50

J~~IV=-C(N+l)/H/~

WRrTE(6.~5)M.H,DE~IV.-R01'DERI~.N
FORHAT(/,.H(CH)=.,1~E15.7,6X,4D:~IiATIVE=",lP~15.7t6X..HASS FLUX

1(G~/C~2 04Y)=.,lPE15.7,6X,I2)
TJTJ=-RC1.DERIV .V'~O)"8&~OC.

W~ITE(6.55) TOTJ
FO~HATC.I/,... TOTAL -tAS) LJSS ~ATE (;/C'-1Z J4Y'=.,1PE:1S.7,
SGIRCH+l)=SDIR(M).J;RIV

~ 0 NT I NU ::

r=3
DIRAV=SDI~(I +1)/3.
FLJXAV=-R01"DIRAV
FLJXT=12.56637.FlUXA~.A.A.PX-PX

WRITE(6,3QO)OIRAV,FLUX~V,~LUXT
FO~HAT(/,.~VERAGE )IR.=.,lPE15.7,o(,-AVE~~GE FLUX(G~/CHZ DAY):.,

l1P;15.7,c(,.MASS LOSS(;R/DAY)=.,lP~15.7)

f:r-l0.
: 0 NT I NU ::

:ONTINU::
::0 NT I NU :

5TOP
~"O

-- ~--
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c
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c
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7 till

UCeNE-14 ~...
AUTHOR SHA~ J. ZAVOSHY
OAif S:;P. 1981

THIS P~CGRAM CALCUL~IES THE FRACTICN~L ~ELEJSE CF A O!FFUSING
SFECIES FROM SFHERE. THE INPU1 P~RAHETEQS ARE

A= RADIUS CM
RO= DENSiTY OF O~FFUSANT G/C~3
ROS= CO~CENTRATIONON THE SURfACEG/CH3
0= DIfFUSION COEFFICIENT (CH2/SEC)

eETHA=V.A/D = DIMENSIONLESS REGRESION SPEED
~ ~.4 ~~4¥ ~ ~..~ ~ *.~...*

0 IHE NS 10 ~ X (qq 9 ) ,C {gqq ) , YP (g 99 ) ,ypp (9'19) , YZ (q q9) t W(g',! 9, 3) ,A NS (5)
DIt1ENSIG~ ERC(1(,),X)((10) ,ERIFC(10)
OIHENS:CN OO(1t),BE7HV{10)
A=17.8

RO=.672
ROS::O.
CEFF=RO-ROS
OD(1)~a.El.(lO...(-13»
DQ(2)=3.S~~(10...(-1~))
NDI=1

NBI::9
BETHVCt)=O.
aETHV(2)=5.
8ETHV(3)=10.
8ETHV (It )=50.
8ETHV(5 )=80(;.
BETHV(6)=1GGO.
BE T HV (7 )=-1:).

BETHV(8)=-lO.

SE lH;\( (9,)::;- 3u .,
H=.ooa01

OJ 6000 ND=~f NOI
O::OQCND)

00 5000 N3=1,N81
8 E T H = 8 E T HI (NB )

V=8ET".!:1 A
T=.l
T=T.864C~..365.25

WRITE(E,Z)A,V,O,BEiH
2 FORHAT(l~l,. RADIUS (C~)=.,F12.6,6X,.V(CH/$EC)=..1P(15.7,6Y.,

,--_u ~ f-"D rCMXC-rJ-lS-ECT-=.~-1j:)t:1-5-;-t-;6-X ,-.8£ TJ.4A:;.(V XA10) =", 1P E 15.7 )
WRIT E (6. 1 J ) RO
FORMAT(/,. DENS~TY (GR/CH3)=~,:PE1S.7)
IFeV,EQ.C.) GO ~o 7

13

3

7
C
c
c

TLY=A/V/66400./365.25
TTRANS=O/V/V
WR!TE(6.3tTLy,TTRA~S/86~Q~./36:.2S
FORHAT(/,.LEACH lIHECYR):(A/V):.,1PE15.7,6X,-TRANSIrYON

1(O/V2)= ..lPE15.7)
CONTINUE

T 1"1 ~ ( Y J( )::

9EGINNING OF Tl~~ GO LCOP . rULTIPLIER=10

I J K=.;5
00 100 K=D,:JK

IF(V.EQ.O.) GO TO 17
IF(T.GE.ABS(~/V) GC TO 500



11
301

10

c
C

150

-
101
200

40

C
C
,..
\J

88

7 'If z

GO TO 301
IJ K=9
CONTINUE
TA=O.T/A/A

SQ=2..+SQRT(TA)
PX=1.-8ETH"'TA

IF(PX.LE. .DOl/A ) GO rtJ 500 .
OX=PX/IDO.

HRITEC6,lG)T/8640D./365.25,?X-A,JX.A
FORHATCII,+ TI~C (YR)="',lPEI0.2,&X,.R(T) (C~)=.,F12.4,6Xt

14 OR(CH)=.,F12.5)

BEGINNING OF NODAL lQO~.
NNN=992 '

DO 50 I=l,NNN
! F (I . G E. N NN ) GOT C 1 0 1

IF(I.GE.9Z) GO TO lSa
X (1)= (1.1) "0)(

X(l)=.OOt/A

GO TO 200
X ( I ) = X (g 1 ) +pX~ ( ! -9 1 ) /9OD C .

GO TO 2~O

)(!)=P)-H/A
Z=1.-X(I)

Y=1.4XCI)
SI=2."X(I)
XX (1 )=Z/SQ
XX (2) = y 1.5Q,
~ .' , ,-

DO 40 11=1,2
E RC (I I ) = E:RF C (X~ (! I ) )

ERIFC(I1)=.5&4ig.EXP(-(X(!!).XX(II) -XXCZI).ER(II)
C(l)=l.-(ERC(l)-ERC(Z) +SQ4(ERIFC(1)-ERIFCC2»)/SI

eEGINNI~G OF SU~~~TION CF INFINITE SER!ES. MAX. CF ~O TERHS.

DO 20 N=l,LtO
IF(N.GE. 40) GO TO 1UQ

AR=N.FX
ARE1=N.8ET~&CN.PX-X(I)'
ARE2=N"SETH+CN",cXiXCI»

-- u -- -- -

Ll= r.XP (-I. RE1)
E2=EXP(-~RE2)
XX(1)=(2..A~~Z)/SQ
XX(2)=(2."'AR-Y)/SQ
XX(3)=(Z..AR+Y)/Sa
XX(~)=(2..AR-Z)/SQ

O~ d8 11=1,4
ERC(II)=ERFC(XX(II»)
ERrFC(I1)=.5041S.~XP(-XX(I~).~X(I!)) -XX(II)~lP.(II)

SUM1=-E1.(£RC(1)+ERCCZ»/SI
SUM2= E24(ERC(3)+ERC(4)/SI
SUH3=-SC.El"'(ERIFC(1)-ER:FC(2»)/S!
SUM~= SQ.E2.(ERIFC(3)-ERIFC(~»/SI



7'/-13

S=SUH1.SUH2.SUH3+SC~~
CCN+1)=CCN)+S
IFCCCN.l).EQ.O.)GQ TO 35

EFS=S/C (~+1)
I F (A BS (EPS ) .LE.A3S (C '(N+1 ) ) 11. EIt » Gera 3;

CONTI NUE
YZ(I)=3..X(I)-XCI)¥ABS(CCN+l»

ZQ
35

50 c a tiT INUE
YPN=-YZeNNN)/H
YPN=VPN"PX¥PX

Al= -.5
AN=-.S

NNN=NNN-l
N=NNN
YP1=O.

e1=3. . ( (y Z ( 2) -YZ ( 1) ) I (X ( 2 ) -x (1 ) ) . Y?1 ) I (X (2 t -x (1 ) )
8N=-3..«YZCN)-YZCN-1»/(X(N)-XfN-1»)-VPN)/eXCN)-XeN.1)
CALL SFlIFT(X,YZ.VP,YPP,NNN,W,IERR,G,A1,Bl,AN,6N)
NUP=l

XLO=X (1)
XUP=X(NN~)
CALL SFLIQ(X,YZ9YF.VPP,nN~,XlO,XUP,NUP,ANs.!ERR2) .

FRAC=1.-ROS-(1.-V"T/A)-43./RO -C£FF.4~SCANS(1»/RO
~- WRITE(6,300)IERR,IERR2,fRAC

300 FORMATC/I,. IE=4.I2,6X,.lE2=4,I2,6X,. FRAC.=-,1PE1;.7)
100 T=T-l0. .

500 CONTINUE
5000 cot\TIN~£
6 000 CONTINUE

STOP
END

u.
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