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Equilibrium and nonequilibrium transport of radionuclides discussed
in our previous report (H1, P1) has dealt with transport in porous media,
wherein radionuclides are retarded entirely by sorption. The purpose of
this chapter is to develop the mathematical analysis for transport of
radionuclides in fractured media, wherein radionuclides are convected by
groundwater flowing through planar fissures. Here molecular diffusion into
and out of micropores ﬁenetrating the rock surfaces of the fissures plays
an important role in retarding the migration of radionuclides through the
fissures, as has been pointed out by Neretnieks (N1).

We first formulate the equations governing fissure-flow transport of
radionuclides with micropore diffusion, and we present analytical solutions
to the transport of a radionuclide with no precursor, with no dispersion
within the fissure, considering equilibrium sorption within the micropores.
Solutions are present for an impulse release, stop release, band release,

and solubility-1imited dissolution.

5] Mathematical Modeling and formulation

5.1.1.  Transport Equations in a Finite Diffusion Field With One-Dimensional

Fissure Flow

Consider a rock matrix containing planar parallel fissures extending
in the direction and micropores penetrating the rock surfaces of the fissures.
Within each fissure water is flowing at a constant velocity v in the z-
direction, but the water in the micropores is assumed to be at rest. The
spacing b between rock surfaces of each fissure and the distance d between
adjacent fissures are assumed to be constants, as shown in Fig. 5.1.1. Three

phases to be considered are the flowing water phase, the stationary water



phase, and the solid phase. Dispersion in the flowing water phase is
neglected. Let Ni(z,t), Mi(z,y,t) and Si(z,y,t) be the concentrations

of the nuclide i in the flowing water phase, in the stationary water phase,
and in the solid phase, respectively. Since the water in the micropores is
at rest, the transport of nuclides there is governed by molecular diffusion.
Sorption on the planar surfaces of the fissure is assumed to be small
compared to sorption on micropore surfaces and is neglected. The concen-
trations of the nuclide i in these three phases are then governed by the

following transport equations:

oN, N, ,
ET A T L B TR LT Bl (5.1.1)
oM, 2M,
e i~ 6l T Sy ™ ety - B (5.1.2)
25,
(T-e) 5+ (=)A= (V=e)ry S5y * 9 (5.1.3)

t#0, zZzZ=20, O=yedid, 1= 1,2,3, ..s

where Di is the diffusivity of the nuclide i in the micropore fissures which

includes any goemetric factors of the micropores; e is the volume fraction of

micropores in rock, excluding the fissure; xi is the radioactive decay constant

of the nuclide i; J_i is the diffusive rate of the nuclide i at surfaces of
the fissure per unit area of fissuresurface, and a5 is the rate of
sorption per unit surface area within the micropores. The diffusive current

and sorption rate are given by, respectively
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oM,

Ji(z,t) = - EDi 3y y=0 y T>0sz>» 0,5 1 TaZas wi (5.1.4)

qi(z,y,t) = kma (Mi - 53—%), E B0 25D DR FRP2,] & 1ids o ({B.1.5)
where km is the mass transfer coefficient, a is the interfacial area between
stationary water and solid per unit volume of water, and KD,i is the distri-
bution coefficient.

In this model it is noted that there are two independent transport
processes which can retard the migration velocity of the nuclides. One is
the removal by molecular diffusion of the nuclides into and out of micropores
penetrating the surfaces of the fissures and the other is mass-transfer by
sorption on the micropore surfaces. The effect of diffusion into and out
of micropores will be called the "surface retardation effect" and sorption
within micropores will be called "the bulk retardation effect". The

surface retardation effect has not been considered in the analysis for

porous-flow transport.

5.1.2 Initial and Boundary Conditions

If we assume that there are initially no nuclides in the water flow
field and in the rock matrices prior to the beginning of dissolution of

the nuclides, we can set the initial concentrations of nuclides in each

phase as
Ni(z, 0) =0, z>0 (5.1.6)
M.(z,y,0) =0,2z>0, d/2>y>0 (5 17)

$;(z,y,0) =0,z>0, d/2>y>0 (5.1.8)



The boundary condition for Ni(z,t) for an infinite plane source of

dissolving waste at z = 0 is:
N, (0, t) = 8, (t), t>0 (5.1.9)

where the function ¢i(t) is the general time dependent concentration of
the nuclide i at z = 0. We further assume that the concentration of
nuclide i in the micropores should equal that of nuclide in the fissures.

Then we can write the boundary condition for Mi(z,y,t) at y = 0 as

Mi(z, 0, t) = Ni(z, t)s t20, z>0 (5.1.10)

Another boundary condition for Mi(z,y,t) to be specified at the center of

spacing of the medium is, from symmetry:

aMi(z,y,t)

3y =0 z¥0: =0 (5.1.11)

y=d/2
Equations (5.1.1) through (5.1.11) give a complete set of equations for

the transport problem to be solved.

i) Step release
When the radionuclides are released stepwise from the waste repository,

the function ﬁi(t) is given by
61(1:) = Bi(t) hit)s t>0 (5.1.12)

where the function Bi(t) is the Bateman equation given by (H1):

=kt

1.
B j
B, (t) J; by © (5.1.13)

with the coefficient:



J m o %=m X
by b (5.1.14)
m=1 i
\i o oar {xi-xa)
2=m
(223)

N; is the initial concentration of the nuclide m at the waste repository.
ii) Band release

For a band release, the function ﬁi(t) is given by

¢i(t) = Bi(t) [ h(t) —_h(t—T) ] (5.1.15)

where T is the duration time of release, i.e., the leach time. If we

assume that the waste and its contained radionuclides dissolve at a constant
total rate over the time period T, the initial concentration of the nuclide
i can be related to the initial total amount w$ of waste per unit cross

sectional area of water flow:

0 n? w$
Ny = (5.1.16)
where n? is the initial (t = 0) amount of nuclide i per unit amount of

i
waste.

i11)  impulse release

The impulse release is given by:

g.(t) = NS s(t) (5.1.17)

5.1.3 Transport Equations for Shallow Penetration in Micropores

If the depth of penetration of nuclides from a fissure surface into

the rock medium is much less than the fissure space d, the micropores



can be treated as being of infinite length. The transport equations presented
in the foregoing section are still valid over the time and field space, so

the equations to be solved are

0 in 0 o e 2
T VT MM TN Y (Bl AE)
8M1 azMi

€ 3f ED‘E 5 ¥ E:J\_iMi EA -1 Mi—] - G4 (5.1.19)
3y
E}S_i
(1-¢) '-a-t—'l' (1 -5)7\1-51. = (1 -s)li_-l 51-_-' + q; (5.1.20)

Tt > 0, z>0, y=>0, i=1,2,3, ..

The diffusive flux Ji and the rate of sorption 9; in these equations are

given by
| aM, i
J; (2, t)='501‘W!y=0 »t>0, z>0 (B.1.27)
>
q; (z.y5t) = kaMy - g—), t>0, z>0, y>0 (51.22)
D,i

The initial and boundary conditions are

N;(z, 0) = 0, z ¥ 0 (5.1.23)
Mi(z,y,O) =0, 250, ¥5:1O (5.1.24)
S;(z5y,0) = 0 z>0, y>0 (5:1.25)

The boundary condition for Ni(z,t) is

Ni(O,t) = éi(t), t>0 (5.1.26)

The surface and infinite boundary conditions for Mi(z,y,t) are,

respectively
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(5:1.28)

The difference of the set of governing equations in this section from that
of Sect. 5.1.2 for transport in an finite diffusion field is the replacement
of the symmetry boundary condition, Eq. (5.1.11) by the infinite-medium

boundary condition, Eq. (5.1.28).

5.2 Diffusion Governing Transport in an Infinite Diffusion Field

In this section we present the analytical solution to fissure-flow
transport in an infinite diffusion field with lTocal sorption equilibrium
and we explore the retardation due to the molecular diffusion into micro-

pores in the rock matrix.

5.2.1 Transport gquation With Local Sorption Equilibrium

Here we consider the transport of a mother nuclide (i = 1), with no
precursor. When the rate of mass transfer of nuclide between water and
solid phases in micropore fissures is so rapid that the concentration of
the nuclide in the solid phase is local equilibrium with that of the

nuclide in the micropore water, we can write

S] = KD,1M1 {8l

where Kp.q is the distribution coefficient. Adding Eq. (5.1.19) to Eg.
(5.1.20) and using the above relation we obtain:
fy Wy

TR Y. toaM =0 t>0, y>0 {6.2.2)




where Ki is the sorption coefficient defined by
K, =1+ U7¢) Kp s (5.2.3)

€
In Eq. (5.2.3), ¢ is the porosity of rock medium excluding the
fissures. Equation (5.2.2) shows that diffusion of a nuclide in micropores
in the y-direction should be characterized by the ratio of diffusivity to
the sorption equilibrium coefficient, rather than by the molecular
diffusivity itself. This implies that a weakly sorbed species can
penetrate more deep into the rock medium than a strongly sorbed species.

The transport equation for the first nuclide in the flowing water

bhase is
BN1 BNI 2
?t_ Ty ‘W + ATN-I = - 'b" J-l . t>0 z>0 (524)

where -J1 is the diffusive flux at top surface of the fissures, given

by Eq. (5.1.4)

The initial conditions are

N1(z, 0) =0 (5.2.5)

M, (z,y,0) = 0 (5:2:6)

The boundary conditions are

N, (0, t) = ¢4(t) (5:2.7)
Ml(z,O,t) = N1(z,t) (5.2.8)
M, (z,=5t) = 0 (5.2.9)

5.2.2 Analytical Solution

The set of equations (5.2.2) through (5.2.9) can be solved by the



method of Laplace transform with the aid of initial and boundary
conditions. Taking the Laplace transform of Eqs. (5.2.2) and (5.2.4),

we have

2’\;
3 Ml(z,y,s} sty

- K M, (z,y,s) = 0 (5.2.10)
3y2 ]J.I 11
aN](z,s) StA v 5, v
v tis Nl(z,s) = & o J](z,s) {5.2.11)

where s is the transformed variable with respect to time t and the functions
n v

M](z,y,s) and Nl(z,s) are the transformed subordinate functions of M](z,y,t)
L")

and N](z,t), respectively. JT(z,s) is the transformed diffusive flux at

the fissure surface
4"
4" 3M~I(Zsy’S)
Ji(z,s) = - aD1 ————53;*~— z>0 (5.2.12)

y=0

Solving Eq. (5.2.10) with the initial and boundary conditions, Eqs. (5.2.6),
Ny

(5.2.8) and (5.2.9), we have the transformed solution for M1(z,y,s)
K

N a" -y ‘DL{S'FA-])

Mi(z,y.8) = Ny(z,s) e 1 (5.2.13)
and the transformed diffusive flux in the form:

A . N K}

J(z55) = eDyN, (z,5) W(Sﬂ‘) (5.2.14)

Solving Eq. (5.2.10) after substitution of Eq. (5.2.14) subject to

the boundary condition given by Eq. (5.2.7), we have the transformed solution



10.

(Ay+s)
v

- a]z J5+A1

Ni(z,s) = g4(s) e (5.2.15)

"y
where ﬁ](s] is the transformed concentration at the repository and 3 is

the constant defined by

2ED'[ -]
a1 = By ‘\fﬁ;‘ (S.2.16)

Also from Egq. (5.2.13),

. N z - (a1z+b]y) Vs+i
M, (z,y,s) = 8,(s)e (5.2.17)

where b] is the constant:

Ky
b, =:1qu— (5.2.18)

The inverse of Eqs.(5.2.15) and (5.2.17) with respect to s can be found

by using the formula:

-1; -d /54, &
L e

2
w B o g b
= —2—e T 2 (i) (5.2.19)
2/ 3

The solution for aqueous concentration of the nuclide in the fissure

and micropores are given by, respectively

M t-Z
- —2z v
N}(z,t) = e ' “{T ﬁ}(t'%"T)P1(T;a}Z)dT, z<vt (5.2.20)



11.

<|N

M -
M](z,y,t) e VY 6[ ¢](t-% ‘T)PI(T;G]Z‘I'b-]‘Y)dT, (5.2.21)

zZ<vt

5.2.3 Transport With an Impulse Release

When the function ﬂl(t) is characterized by the impulse release
function given by Eq.(5.1.18), the solutions for the concentration of

the nuclide in the fissure and micropores become

A
- e B
N, (z,t)=(TN)e VP (t-2, a;z) z<vt (5.2.22)
o ol
M}(z,y,t)=(TN?)e ¥ Pl(t‘%’ ajz + b1y), z<vt {5.2.23)

The concentration profiles of 237Np with no precursor nuclide for transport

with impulse release at varjous migration times are shown in Fig. (5.2.1).

5.2.4 Solution For a Step Release

For a step release, the time dependent function-ﬁl(t) is given by
Eq. (5.1.12). For the first nuclide,

0 hy b
d](t) =N h(t) e (5.2.24)

Substituting Eq. (5.2.24) into Eqs. (5.2.20) and (5.2.21), we have
the solutions for the space-time dependent aqueous concentrations of the

nuclide in the fissure and in the micropores

5 -A1t a2z
Ni(z,t) = Nje erfec(- Y, z < vt (5.2.25)
2vVt-z/v
o -A1t a]z+b1y
M1(z,y,t) = NI e erfc(- Y 2 <« Nt (5.2.26)

2Vt-z/v
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Fig. 5.2.1 Concentration profiles of 237Np, fissure flow

transport with impulse release.



5.2.5 Penetration Thickness of Nuclide in Fractured Medium

In Equation (5.2.2) for the diffusion of a nuclide through micropores
the coefficient of the second-order space derivative of the concentration
is inversely proportional to the sorption equilibrium constant K1 of the
rock medium. Hereafter this coefficient will be called an apparent
diffusivity designated as D]/K1. In Fig. 5.2.2, the aqueous concentration

23?Np in the micropores at a given time t =10,000 yr

profiles of
for a step release are shown for various values of the sorption

retardation constant. For times of the order of one year, a weakly

sorbed nuclide, with an assumed retardation constant K1 = 1, can penetrate
about 40m into the rock at a migration distance z=100 m, whereas a
strongly sorbed nuclide, with K1 = 10,000 can penetrate only about 0.2 m.
Because of long railing edge of the concentration profile, the concept of
penetration depth remains ambiguous. The penetration depth or "thickness",
is usually defined as a fictitious distance that corresponds to an
arbitrarily specified amount of the nuclide penetrating into the medium

per unit cross sectional area of the medium, normalized to the concentration

at the surface of the medium. Here we define the penetration thickness

n(z,t) at a given distance z and time t as

oo

M} (z,y,t)dy
M'] (Z !Ost)

n{z, )= (5.2.27)

Substituting Eq. (5.2.26) into Eq.(5.2.27), we have the local penetration

thickness

_ 1 1
net)e { — - ¢ (5.2.28)
2 C
Y1 e”l erfc(C])

! 48
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Fig. 5.2.2 Concentration profiles of Np in micropores, step release



where
ezvD, K

C, = — 11 (5.2.29)
bwt-z/v

i)
C & == {5.2.30)
2Vt-z/v

In Tables 5.2.7 (a) ~ 5.2.1 (c), variation of the penetration
thickness with distance z at a giﬁen time which are calculated from Eq.
(5.2.28) are shown for various values of the retardation constant. The
assumed parameters used in calculations are Iisted in these tables. As
seen from these tables, the penetration thickness depends strongly on
the retardation constant. For t = 10,000 yr and at z = 100 m for K? = 3
the penetration thickness is 11 m, whereas for K] = 10,000 the penetration
thickness is only 0.01 m. Because of. the smaller penetration thickness of
the strongly sorbed species, the concentration gradient of the nuclide at
the fissure surface of the medium is greater, which results in a greater
diffusive flux into the micropores. Also the greater diffusive flux of
the nuclide into the medium results in greater retardation of the nuclide

in its migration within the fissure.

5.2.6 Retardation Due to Molecular Diffusion

23?'Np in the fissure of

Profiles of the aqueous concentration of
a step release, calculated for three different values of the sorption
retardation constant of the rock medium, are shown as the solid lines in
Fig. 5.2.3. The diffusivity of the nuclide in micropore water, including

the effect of geometric factors, is assumed to be 01 = 0.01 mzfyr. The

13:
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Fig. 5.2.3 Concentration profiles of 237Np in fissure, step release.



Table 5.2.1 Penetration thickness for various sorption coefficients, assumed

D]=1.0x10"2m2/yr, v=10 m/yr, b=1.0x10"2m, e=1.0x10"2.

Time Distance Penetration thickness, n (m)

t (yr) z (m) Kp=T K,=1x10° K, =1x10*
1.0x107) 1.128x10 1.128 1.128x107;
5.0x10 1.128x10 1.128 1.125x107
1.0 1.128x10 1.128 1.121x10°
5.0 1.128x10 1.125 1.093x10 ]
1.0x10 1.128x10 1.121 1.059x107,

i 5.0x10, 1.124x10 1.093 8.324x10 5
1x10 1.0x105 1.121x10 1.058 . 6.388x1075
5.0x105 1.090x10 8300107, 1.989x1075
1.0x103 1.053x10 6.345x10 1 9.900x107;
5.0x10; 8. 056 1.899x107, 1.90 X107,
1.0x10, 5. 906 9.00 x1075 9.00 x1075
5.0x10; 1.00 o 1.00x1075,  1.00 x1077,
1.0x10 1.0 x10 1.0 x10 1.0 xi0
1.0x107) 3.568 3.568x107) 3.561x1075
5.0x10 3.568 3.565x10_] 3:532x10 %
1.0 3.567 3.561x107 3.496x10 5
5.0 3.564 3.531x107 3.227x10 5
' 1.0x10 3.559 3.495x107, 2.930x10 5
1x10 5.0x10, 3.523 3.219x10 1 1.539x107
1.0x105 3.479 2.913x10" 6.162x10 3
5.0x105 3.139 1.479x107, 1.900x107;
1.0x103 2.753 . 5.007x107} 9.00 x1075
5.0x10; 8.110x1071 1.00 x107,,  1.00 x1077,
1.0x10 1.0 x10 1.0 x10 1.0 x10
1.0x10] 1.128 1.128x107] 1.121x1072
5.0x10 1.128 1.125x107] 1.093x1075
1.0 1.127 1.121x107, 1.058x1075
5 5.0 1.122 1.090x10", 8.300x10 5
1x10 1.0x10 1.115 1.053x107, 6.345x103
5.0x10, 1.064 8.056x10 5 1.899x107;
1.0x105 1.001 . 5.906x1073 9.00 X107,
5.0x103 5.252x10;,  9.999x1073,  1.00 x107,
1.0x10 1.0 x10 1.0 x10 1.0 x10




other assumed parameters are included in the figure. For the assumed time
of 10,000 yr and an assumed water velocity of 10 m/yr, the water travel
distance is 105 m. A-nuclide with KT = 10,000 is found to be much retarded
by molecular diffusion into the micropores. Even a nonsorbed nuclide with
K] = 1 is retarded by molecular diffusijon into the micropores. The dashed
Tines show the concentration profiles of the same nuclide assumed to be
édﬁ;ected by poroué flow at the same water velocity with local sorption
equilibrium with the porous solid. For a strongly sorbed nuclide, the
migration distance of that nuclide convected by fissure flow is greater
than that of the nuclide convected by porous flow, defining "migration
distance" as the distance reached by the half maximum of the leading

edge of the concentration profile. For a weakly sorbed nuclide, however, the
migration distance in fissure flow is less than that in the porous flow.
This implies that the porous flow model with local sorption equilibrium,

if it is applied to the transport of nuclides in fractured media, may
overestimate the retardation capacity for a strongly sorbed nuclide and may

underestimate the retardation capacity for a weakly sorbed nuclide.

5.2.7 Transport With a Band Release

The solutions for space-time-dependent aqueous concentrations of the
nuclide in the fissure and in the micropores for a band release can be
obtained by direct application of the theorem of superposition (H1). They

are given by, respectively



a]z

—_— (5.2.31)
2vt-T-z/v

—-h(t-T—%J erfc(

_ . —111'““ S ai2+5iy_._“”m
2Vt-z/v

M1(z,y,t)= N, e h(t-z/v)erf (*

(5.2.32)

a,2z + b]y
2vt-T-z/v

- h(t-T-%) erfc(*ﬂ-++**—-

where the constants a, and b, are given by Egs. (5.2.16) and (5.2.18).

7Np in the

Figure 5.2.4 shows the concentration profiles of 23
fissures for the band release. The leach time is assumed to be T = 30,000 yr,
and the other parameters used in the calculations are the same as those used
for the step release. Because of the removal at the front of the band
by diffusion into micropores and the release of the penetrated nuclide at
the rear of the band, the concentrationprofiles for fissure flow, for various
K1 values, show the Tong smoothed curves with long trailing edges, and with
highly curved leading edges. A11. of the fissure-flow curves converge at
N1= 0 and at the water-transport distance of 5x105 m, because no sorption
retardation occurs within the fissures. The dashed lines show the
concentration bands of the nuclide calculated from the porous-flow model.

The effect of diffusion into and out of the micropores is to greatly spread
the concentration band, qualitatively similar to the effect of a large

dispersion coefficient for dispersion in the direction of convective flow.

Because of the spreading of the concentration profile in fissure

16;
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flow, the maximum concentration, even for a weakly sorbed nuclide, is
much lower than that predicted from the porous-flow model. The maximum
concentration is relatively unaffected by the magnitude of the sorption
retardation constant.

7Np in micropores in the y-direction

The concentration profiles of =3
at a given distance z = 10 m are shown for some different migration times
in Fig. 5.2.5. In this ca]cu1atiqn, the leach time is assumed tb Bé.m-”
10,000 yr. At t = 10,000 yr, when the band-release solution is identical
to the step-release solution, the nuclide still continues to penetrate
into the rock medium and the concentration gradient of the nuclide is
negative throughout, i.e. the concentration decreases monotonically with
distance at a time less than the leach time. At t = 105 yr, when the
trailing edge of the seed concentration band has already passed the
distance of z = 10 m, the concentration of the nuclide in the fissure is
lower than that in the micropores, and the nuclide diffuses back out into
the flowing water. Consequently, the concentration in the micropore now
increases with distance at a smaller y, reaches a maximum, and decreases
again with distance at a greater penetration distance. The diffusion of
the nuclide at the fissure surface into the flowing water fissure causes
the long trailing edges of concentration in the fissure as shown in
Fig. 5.2.4. The Tocus of the maximum concentration of the nuclide in the
micropore moves more deeply into the medium with increasing time.

In evaluating the biological hazard due to radioactive wastes, the
maximum concentration of the contained nuclide is an important index.

As described above the maximum concentration of the nuclide predicted for

fissure flow transport shows an appreciably lower value than that

17.
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predicted from the porous-flow transport model. Because the broadening
of the concentration profiles in fracture flow is qualitatively like the
effect of axial dispersion in porous flow, we can calculate the

magnitude of an axial dispersion coefficient that would result in a
porous-flow concentration maximum as Tow as that calculated for fissure
flow. Fig. 5.2.6 shows a comparison of the maximum concentration of 237Np
predicted in porous-flow transport with dispersion with that predicted in
fissure-flow transport without dispersion. This figure demonstrates that
even with a dispersion coefficient orders of magnitude greater than
commonly used, the attenuation of the concentration equivalent to that
predicted in fissure flow transport cannot be expected in porous-flow
transport. In this assumed case, an axial dispersion coefficient greater

4

than about 4x10 mz/yr will be needed to obtain the same attenuation

as that predicted in fissure-flow transport.

5.3 Transport With a Finite Plane Source

In a real waste repository the waste sources will be arranged in
a finite array. Although the analytical solutions for fissure-flow transport
with an infinite plane source, which neglect transverse flow and dispersion
in the fissures, give important insights into radionuclide transport in
fissure flow, application of these solutions will lead to an over-
estimate of the concentrations at the point of discharge to the environment.
Here we consider the transport of radionuclides released from a finite plane
source into infinite plane fissures surrounded by an infinite rock medium,

with one-dimensional water flow in the fissures.



B Formulation and Analysis

Consider a coordinate system with z in the flow direction, y in the
direction of pore diffusion into the rock.and X in the transverse direction
parallel to the surface of the fissure as shown in Fig. 5.3.1. In the
case of dispersion free, the convective transport of the nuclide in the
z direction is usually much more effective than dispersive transport in
'the z direction, so the latter will be neglected. In the transverse
x direction, however, because of no water flow in that direction,
dispersion and even molecular diffusion play an important role in nuclide
transport. Here we will solve the problem literally for infinite planar
fissures, so the appropriate coefficient Dx for Fickian transport in the
transverse planar direction x is the molecular diffusivity Dm] of the
nuclide in the Tiquid; When sorption in the micropores is locally
equilibrated, the transport equations for the aqueous concentrations of

the nuclide in the fissure and in the micropores are given by

aN} aN] 32N1 ?

EERRE TR 1 w2 L il g Bl

oM, D aZM]

B E_I—‘ W, + }\]M-I =0 (532)
'y

el S 6 Z: 3 0y - o< X< + o, y >0

where NI(z,x,t) and M](z,y,x,t) are the aqueous concentrations of the

mother nuclide in the fissure and micropores, respectively, v is the water
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velocity, D] is the pore molecular diffusivity, Dml is the pure molecular

diffusivity, A, is the radioactive decay constant, K.I is the retardation

1
constant, b is the spacing of the interstice fissure walls, and J1 is the

diffusive flux of the nuclide due to transport into the micropores.

oM,
]="ED1W O,t_>g’z>o,_m<x<+w (5.3.3)
y:

where ¢ is the porosity of the fractured medium excluding the fissures.

The initial conditions are

N

I
[ew]
-
N
v
(w]
-

(z, x, 0) = o< X< tow (5.3.4)

1

|
o
-
™~
A4
o
-

MI (z,y,x,0) = —o< X< +e,y>0 {5.3.5)

The boundary conditions are
Ny (0, x, t) = (&(t), t >0, | x| <a/2 (5.3.6)
0 | x| > a/2
My (2,0,x,t) = Ny(z,%,t)

for

t >0, z >0, - ® <X <+ o
M](z,jygx,t) =0, t >0, z >0, -®w<x < + o (53.8)

Taking the Laplace transform of Eq. (5.3.2) with respect to t and
solving with the aid of the initial and boundary conditions, we obtain the
concentration of the nuclide in the micropores and diffusive flux at the

surfaces of the fissure in the transformed form:

20.



%
n n Yoo (S+J\]]
M](z,y,x,s) = N](z,x,s) e 1 (5.3.9)

" i v K'!
J}(z,x,s) = sD]N1(z,x,s)V 5; (s+24) (5.3.10)

V]
where M}(z,y,x,s) is

o0

s -st
Mi(z,y,x,8) = [ e77° My(z,y,x,t) dt (5.3.11)
Define g
i . -ixw-st
N](z,w,s) = e N](z,x,t) dt dx (5.3.12)
-0 0

Taking Laplace and Fourier transforms of Eq.(5.3.1) with respect to t and
x, and solving the resultant equation with the appropriate initial and

boundary conditions, we have

st D
AY) v ”~ -._.I 5 2 m'I
Ni(z,0,8) = ¢1(s) H(w) e ~ v z - ajzVstry + (fw)” <~z (5.3.13)

where a; is the same constant as given by Eq. (5.2.16) and the function

H(w) is given by

2 sin (%?)

H(m) = *—w— (5-3-14)

Inversion of Eq. (5.3.13) can be found by using the Fourier inversion

formulae:
2

o AR e
F-1{e(m)e}= 1 e T

5 fo

(5.3.15)

FJi {H(w)} = h(x + %0 - h(x - %) (5.3.16)



thus, from the convolution rule

] (10)? I A
- w) 8| _ e
F {Hhﬂe }-f§ j; _?;:T" DNX£+2) h(x-¢g- )]di

= £ (%i X,6) (5.3.17)

where ¢ is a dummy integral variable and the function E](a/ij,B) is given

by a + X a. X )
Ey (3 + x,0) = l:erf I 2"’_e_) + erf (£ = ] (5.3.18)

and the Laplace inversion formula:

2

- ays+) - s ek
7! {e "}- a__ o 4t 7 = P, (t;a) (5.3.19)

There results the solution for the concentration of the nuclide in the

fissure

a Dy -z (T z
N](z,x,t) = E](—-j_x, e V P](T;a1z)¢1(t—1— §J dt (5.3.20)

The concentration of the nuclide in the micropores is then, from

Eqs. (5.3.9), (5.3.13), and (5.3.19)

a Dmi -3ilz
Mi(zoysxst) = B2 x, ——2) e v
z
t-2 ]
s P](t;a]z+b1y) ¢](t—1- ;J dt (5.3.2T)
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where the constant b1 is given by Eq.(5.2.18).

5.3.2 Solution for an Impulse Release

When the function ¢](t) is specified by the impulse release function:
¢,(t) = TN &(t) - (5.3.22)
the solutions can be written as

M
= S D
N (zox,t) = TAQe v "h(t- 2) £,(3 + x, Il 2) Py(t- &5 a2) (5.3.23)

M

M2yt = TH T i - B gG e x L)
Pyt - 35 ayz + by y) (5.3.24)

where N? is the initial concentration of the nuclide at the waste repository.
Because of infinite characteristic of the boundary data, the concentration

N1 shows an infinite value at the leading edge at z = vt when D1 + 0.

5.3.3 Solution For a Step Release

The step release function is characterized by Eq. (5.1.12), especially

for the first nuclide

$,(t) = By (t) h(t) (5.3.25)
where the function B1 (t) is given by

-, t

- - = O



Substitution of Eq. (5.3.25) into Egs. (5.3.20) and (5.3.21) gives the
solutions for the aqueous concentrations of the nuclide in the main and

micropore fissures. They are respectively,

g -A]t 4 Dm1z 2,2
N](z,x,t) =Nje 51(§'i X% ) erfc( ) h(t-z/v) (5.3.27)
2vt-z/v
At s e T —
M1(z,y,x,t) = N?e ! E](%-j_x, ul ) erfc(—l- 1 ) h(t-z/v) (5.3.28)
2vt-z/v

where a and b, are the constants given by Egs. (5.2.16) and (5.2.18),

respectively,

5.3.4 Solution For a Band Release

For a band release, the function ¢1(t) is given by
6,(t) = By(t) [n(t) - n(t - 1] (5.3.29)

where T is the leach time.
The solutions for a band release can be obtained directly by applying
the theorem of superposition (H-1). The concentrations of the nuclide in

the fissure and in the micropores are given by, respectively

T
Ni(z,y,t) = Ny(z,y,ts byy) = Ny(z,y,x,t-T; byq e "y (5.3.30)

=, T
My (z,ysx,t) = M (2,y,5t5 byg) = My(zy,x,t=T; by e | ) (5.3.31)

5.3.5 Effect of Transverse Molecular Diffusion on Fissure-Flow Transport
2

The concentration profiles of 37’Np released stepwise from a finite

24.
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plane source, with the ratio of fissure width b to fissure spacing d of

30, along the transverse direction x at various values of the migration
distance z are shown in Fig. 5.3.2. The molecular diffusivity in the

water in the main fissure Dmi is assumed to be 0.05 mzlyr, five times
higher than the assumed micropore diffusivity D]. The micropore diffusivity
is usually related to the pure molecular diffusivity Dmi as Dl = Dmilqz,
where q2 is a geometric factor, the tortuosity coefficient. The assumed
parameters are listed in the figure. For a relatively small axial distance
z the concentration profile in the transverse direction shows a smaller
diffusion path length and a greater gradient in concentration, which would
cause a greater diffusive flux in that direction. The concentration
gradient becomes smaller and the diffusion path length becomes greater

with increasing migration distance z. This behavior is quite different
from that noticed in the concentration profile in the y-direction in the
rock medium. The profiles along y-direction shows a smaller diffusion path
length but a greater concentration gradient at a greater distance z.

This behavior in concentration in the transverse x-direction is well
understood by introducing the concept of an effective diffusion time te'
Since the diffusion field in the transverse x-direction moves with the
water at the same velocity, the effective time for the molecular diffusion
in this field can be determined by te =2z/v. At z =10 m, for instance,
te = 1 yr, whereas at a greater distance z = 1000 m, t; = 100 yr. Therefore,
at a greater distance z there is a greater effective time for diffusion in
the x-direction.

The diffusion field in the y-direction in the rock medium, on the

other hand, is a stationary field, since the water in the micropores is

29,
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at rest. Therefore, the effective time for diffusion in the micropores is
given by te =t - 2z/v. At a given time, te at a smaller z gives a greater
effective time for the diffusion in the micropore fissures. The case is
just contrary to the case for the transverse diffusion in the flowing water
in the main fissure. Because of the longer effective time, a nuclide at a
greater z can diffuse to reach a greater distance in the transverse x
direction,. thereby resulting in a considerably lower .concentration along
Zz.at x =1,

The concentration gradient in micropores becomes very steep near the
leading edge of the band moving through the fissures, whereas the
concentration gradient in the transverse direction becomes quite low in
that region far from the source but becomes infinite in the medium adjacent
to the source, at the edges of the source. Therefore, attenuation of
concentration at x = 0 due to transverse diffusion is very small at the
leading convection edge of the band, and consequently transverse diffusion
has no significant effect in retarding nuclide migration velocity, even
though it does appreciably attenuate the maximum concentration of the
nuclide.

In fact, taking a 1imit of the solution given by Eq. (5.3.27) of

D1 - 0 yields

o & D

Ny (z,x,t) = N? e ) (5.3.32)

This equation shows that the nuclide convected from the waste repository
is only attenuated in concentration by a ratio of the function

E;(a/2 + x, D1 2/v). Although the E, function decreases with distance

z at a given x, it is still finite at the water-travel edge. This means
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that E., function contributions has nothing characteristic of a retardation

1
effect on the nuclide migration velocity. When the molecular diffusivity
Dmi becomes zero, on the other hand, the solution approaches the solution

for transport without transverse diffusion, namely,

-A1t . a,z
h(t—;ﬁ erfc (————) (5.3.33)

N.(z,x,t) = Ni(z,t) = N0 e
& 1 1 2/i-ZIV o

This equation gives zero concentration at the"1eading edge z = vt.

In Ficure 5.3.3 the concentration profiles of 25/Np at the center of
the repository source (x :_O)'and along the z-direction, for a step release,
are combared with the concentration of that nuclide in transport without
transverse molecular diffusion. As seen from this fiqure, the concentra-
tion at a given z is reduced appreciably by transverse diffusion in the
x-direction, even with a re1ative1y.5ma11er diffusion coefficient.

Figure 5.3.4 also shows a comparison of the concentration profile along
z-direction at x = 0 in transport with transverse diffusion with that in
transport without transverse diffusion, but for band release. The size,
of the repository source is assumed to be same as that assumed in transport
with step release. The figure shows that the maximum concentration is much
reduced by transverse diffusion, even with a small value of the diffusivity.

The maximum concentration with Dm = 0.05 mz/yr for instance, gives a

]
value almost a hundredfold less than the maximum concentration without
transverse diffusion. However, transverse diffusion has negligible effect
on the locus of the maximum concentration, nor does it appreciably shift

the Teading edge of the concentration band.

£l
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5.3.6 Transport of a Nuclide Released From Arrayed Finite Plane Sources

When many plane sources are arrayed at a plane at z = 0 as shown in
Fig. 5.3.5, nuclides released from one source will affect the concentration
from another source. Let h1, hz, 5 & hi’ ... be the positions at x axis
of the each plane source, then the concentrations of the nuclide in the

fissure and micropores are given by the superposition of the solutions

—A]t . : alz A 1
N1(z,x,t) = N? e h(t-z/v) erfc(———) E1'§+( x-h ) —} (5.3.34)
ok by

o Mt a,z+by il s D 12
M](z,y,x,t)= N1 e h(t-z/v) erfc(——) 2: E] Ei(x-h ¥y {5.3.35)
2v/t-z/v = ¥

when n is the number of finite plane sources.

The step-release concentration profiles in the transverse x-direction
of 23?Np assumed to be released from array of finite waste sources with
an assumed scale b = 0.0l my d = 0.3 m, and Ah = 3 m, and at a given time
t = 10,000 yr are shown in Fig. 5.3.6, with the migration distance z as a
parameter. As seen from the figure, the distinctly separated concentration
steps travel along z-direction at a smaller z, but because of the effect
of transverse diffusion, the separated concentration steps superpose with
each other and make a new wavelike concentration step at a greater distance
z. In this assumed case, the concentration profile becomes almost flat
at z = 100 m. The dashed lines show the concentration profiles resulting
from transport without transverse diffusion. The figure shows that neglect-
ing transverse diffusion can lead to significantly overestimates not only

of the maximum concentration but also of the local concentration of a

nuclide.
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5.4 Transport of a Nuclide in a Plane Fissure With Flow in the Surrounding

Permeable Rock

In the previous analysis we have neglected water flow through micro-
pores. However, it is possible that a transverse pressure gradient may
induce very slow water flow through micropores. The purpose of this section
is to derive the analytical solution to the transport of a mother nuclide

through a fissure with some crossflow of water through the micropores.

5.4.1 Formulation and Analysis

Consider a single infinite-plane fissure of average interstice b,
both sides of which are bounded by rock surfaces permeable to water. If
there exists a pressure gradient in the direction as shown in Fig. 5.4.1,
water should flow in the y+ direction in the micropores in the upper medium
A, and in the negative of the y direction in the micropores in the lower
medium B. Although water flow through micropores is usually very small,
due to the considerably lower permeability of the rock, it can affect the
concentration profile of the nuc]iae in the fissure, especially at small
z distances where the concentration gradient of the nuclide in micropores
near the surface of the fissure is so small that convective transport by
permeating water in micropores becomes comparable to diffusive transport.
Let Nl(z,t) be the aqueous concentration of the nuclide in the fissure
and MT (z,y+,t) amd M{ (z,y ,t) be the concentrations of the nuclide in
the medium A and in the medium B, respectively. The transport equations
which govern these concentrations are given by

BN1 BN1

i e [ i 7
PR RS L I o AN N (5.4.1)
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+ + 2t
M + oM D, o°M
5% + %— l _ Kl ]2 - A1MT =0 (5.4.2)
1 2y 1 oy+
- - 2
BM1 . BM1 D1 ) MI _
3— = 'K— - - K_ 5 T J\]M] =0 (543)
1 3y 1 3y-

where v is the water velocity in the fissure, u+ and u_ are the velocities
of the permeating water in the micropores in media A and B, respectively,
D] is the pore molecular diffusivity of the nuclide, K1 is the sorption
retardation constant, k1 is the radioactive decay constant, and b is the
width of the fissure. The functions J; and J{ are the sums of the
convective and diffusive fluxes of the nuclide at the surface of the

fissure given by

oM
3= - — +eut Ny (5.4.4)
A
y =0
_ o
7= - e — - €U N, (5.4.5)
oy |
¥y &g

where € and ¢ are porosities of media A and B, respectively. If we
assume that the water velocity v in the fissure is independent of space
and time, and there is no accumulation of the water in the fissure, we

can write from the equation of continuity

E U =€ U (5.4.6)

o



Especially, when et =g,

Ut == (5.4.7)

The initial conditions are

N(z, 0) = 0, 2> 0 (5.4.8)

Mr{(z,y,0) = 0, 250, y= >0 (5.4.9)

L

The boundary conditions are

N0, t) = ¢y (1), t>0 (5.4.10)
M-It(z,y,{}) = Np(z, t), z>0, t>0 (5.4.11)
r«{—(z,m,t) =0, z>0, t>0 (5.4.12)

Equations (5.4.1) (5.4.3) with the appropriate initial and
boundary conditions of Eqs. (5.4.7) (5.4.11) can be solved by the method
of Laplace transforms. Taking the Laplace transform of Eqs. (5.4.2) and
(5.4.3) with respect to time t and introducing new transformed functions

+
E? (z,y— ,s) defined as

+
M (2.y,5) = Ty (2.y,s) Y72 (5.4.13)
where -
g N
My (z,yi,s) = j e M;i (z,yi,t)dt (5.4.14)
o]
Y=t (5.4.15)
1

we have the differential equations which govern the functions ﬁ;{z,y,s)
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dm K 2
1 1 u o
ot N :
my (2,0,5) = Ny(z,s) : (5.4.17)
my (z,%,5) = 0 (5.4.18)

The transformed solutions of Eq. (5.4.16) subject to the boundary

1 u
-y D_ (5+A]+ ——4[} T ) (5.4.]9)

conditions are ]K >
1 1™

n
mMI— (z,y,s) = N] (z,s) e

From Eqs. (5.4.13) and (5.4.19), we can obtain the convective and
diffusive transport rate of the nuclide at surface of the main fissure

in the transformed form:

K 2
A B £u 1 u e
JT (z,s) = [i 5 * eD]\/—-D1(s+)\]+ %4[)] 2 ﬂN](Z,S) (5.4.20)

Taking the Laplace transform of Eq. (5.4.1) with respect to t, and
solving the resultant equation after substitution of Eq. (5.4.20)

subject to the boundary condition, we have

s+ ‘/ u2
a, Z - a;z [s+i.+
Ny (z,5) =By(s)e " 1 1" 4Dk, (5.4.21)

a1 % by 0, (5.4.22)

22



Using the Laplace inversion formula:

a,z s + x] +u /40 K

L {
2
M R '“1*@”
st
= 24 (t;a]z) (5.4.23)

we have the space-time-dependent aqueous concentration of the nuclide in

the main fissure
Nty
- —1z
N, (z,t) = e ¥ J tb_](t'ﬂ:-;z;)f_]('r;a}z) dt (5.4.24)
0

From Eq. (5.4.13) with Eqs. (5.4.19) and (5.4.21), the concentration

of the nuclide in the micropores in media A and B becomes

A t-—
+
i-?%?'y_" T} z‘]' ¢](t-r- )Py (32y2+ bTYF) dr (5.4.25)
MT (Z,y— t) e A
where the constant b1 is
K
by = |5 (5.4.26)

5.4.2 Solutions For an Impulse Release

When the aqueous concentration of the nuclide at repository is

given by an impulse release function,

¢ (t) = (TN]) & (t) (5.4.27)
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the solutions become

A
i (P
Ny(z,t) = (EN) e V' P(t-25a2) hit-5 (5.4.28)
A
u + 1
Lt

Me- (z,yi,t) =(T N?) e

+
1 By gz i) Blery) (BE20Y

where N? is the initial concentration of the nuclide at the repository,
the function P, (t,a) is given by Eq. (5.4.22), and the constants a; and
B1 are given by Egs. (5.4.21) and (5.4.25).
5.4.3 Solutions for a step release

When the boundary value of the concentration of the nuclide is

given by a step release, the function ¢](t) is given by
¢1 (t) = B} (t) h(t) (5.4.30)

where the function B](t) is given by Eq. (5.1.13)
Substituting Eq. (5.4.30) into Egs. (5.4.23) and (5.4.24), we have the

solutions for a step release,
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oo

- At 2
N (z,t) = by e h(t-z/v) V=

-9 a-IZUzZ2
exp ~{nt—m—> dn
a1z JGD]K]H

ZJf-z/v
] -5t a,uz a,z/K{D; + u(t - z/v)
- E—b11h(t-1/v) e e erfc [
2!"K1 D 2/KDy Tt - z/v)
i a]uz
S TG il o Bt il b
=& e'”fc[ ] (5.4.31)
ZJK]D] (t - z/v)
u o 2
T yx a,z+yvK,/D;y"u
?‘111(2,}’1,1:)= byy @ M 2Dy " (tozv) & exp [- R 12 1) jdﬂ
a 2ty /KDy 1ok Bym

2vt - z/v
(%zwimﬂD1u
At E gyt Y
h(t-z/v) e

b 1 11

1

| —

+ rd
a.2vK; D, + Kiy— + u (t - &)
-erfcl:] 1na Bl v:l
2/K101 (t - z/v)

3 (a,z+yiJK1/D])u

2 4t a}z¢K1D] + K]yi - u(t - z/v)
+e erfc [ (5.4.32)
2/K1D](t - z/v)
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5.4.4 Solutions for a Band Release

For a band release, the time-dependent concentration at the reposi-

tory is given by

¢ (£) =By (8) [h(t) - h(t - )] (5.4.33)

The solutions for a band release are obtained by applying the

theorem of superposition (H-1). They are

T
N, (2,t) = Ny (2,t5 byy) - Ny (z,t-T; bpge ) (5.4.34)

-A]T

M%(Z,yiyt) - M%{z,yi,t;b11) - M% (z,yi3t-T; b]] e ) (5.4.35)

where the functions Nl(z,t; bij) and M} {z.v3 bij) stand for the space
and time dependent concentrations of the nuclide for the step release

with Bateman coefficient bij’ respectively.

5.4.5 Effect of Micropore Flow on Fissure-Flow Transport
237

Figure 5.4.2 shows the concentration profiles of Np in the
micropore fissures in the rock media A and B at fixed distance z = 1 m,
at time = 10,000 yr and at t = 100,000 yr, with a permeating water
velocity u = 0.05 m/yr in the positive y+ direction. The release mode
is assumed to be a band release with a leach time T = 10,000 yr. Note
that the concentrations at t = 10,000 yr are equivalent to those for the

step release. The concentrations of the nuclide in transport without

permeable water, i.e., with u = 0, at corresponding times are shown as
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dashed 1ines. The concentrations with u = 0 in medium B are not given
in this figure; their profiles are completely symmetrical to the profiles
in medium A.

The permeating water in medium B acts on the nuclide to migrate
in the negative y- direction against molecular diffusion, whereas the
water in the medium A convects the nuclide in the positive y+ direction
in the same direction as that of molecular diffusion. Many of the
nuclides that have diffused into medium B are convected to the medium
across the flowing water in the main fissure, resulting in a nonsymmetric
concentration profile with a greater diffusive path length in medium A
but with a smaller path length in medium B. The penetration thickness
of the nuclide at t = 10,000 yr reaches almost y+ = 10 m in medium A,
but the thickness in medium B is only 1 m deep.

The effect of penetrating water on the concentration along the yi
direction becomes more significant as the migration time increases. At
t = 100,000 yr, the concentration band of the nuclide in medium A travels
a greater distance in that medium. The concentration of the nuclide in

the medium B, on the other hand, is extremely small and the concentration

band does not appear in this figure. Also, because of convective transport

from medium A to B, nuclide transport with permeating water shows a
greater maximum concentration within the micropore, and the maximum
occurs at a greater distance from the fissure surface.

237\p in the

Fig. 5.4.3 shows the aqueous concentration profiles of
fissure with permeating water velocities of u = 0.005 and 0.01 m/yr, as
well as for u = 0. This figure shows that convective transport in the

medium across the flowing water decreases the concentration of the nuclide
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over the entire migration distance. This means that the convective
increase in the amount of nuclides entering the upper micropores is more
important than the convective decrease in the amount of nuclides diffus-
ing into the Tower micropores. The permeating water in micropores has
no effect on the retardation capacity, i.e., the maximum concentration,
as well as the concentration band, occur at almost the same position, at

all values of the micropore velocity shown in Figure 5.4.3.

5.5 Solubility Limited Migration of a Radionuclide in Fractured Media

In the foregoing analysis for transport of nuclides in fractured
media, the effect of a solubility 1imit of the nuclide has not been
taken into consideration. However, many of actinide elements, such as
plutonium, uranium, and neptunium, may exist in chemical forms of very
low solubility. Such a species of the nuclide released directly from
the dissolving waste matrix can precipitate at the waste surface, and
the aqueous concentration of that nuclide will remain constant at the
waste location while the precipitate is present, thereby changing the
boundary condition for transport of that nuclide. Neglecting the Timited
solubility will lead to an overestimate of the maximum concentration of
the nuclide.

It is important to develop the analysis presented in this chapter
to include the effect of 1limited solubility of the nuclide. For porous
flow the solution for transport of a parent nuclide with a limited
solubility has been presented in our previous report (P1). This section
presents the solutions for transport of a parent nuclide in a fractured

medium with a solubility-1imit boundary condition. It demonstrates the
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importance of limited solubility on the transport behavior. For this
purpose, we first consider the material balance of the nuclide at the
waste location in order to know the time-dependent aqueous concentration
at the source boundary. We then derive the solutions for the concentra-

tions of the nuclide in the fissure and in the micropores.

5.5.1 Transport Equations

The transport equations which govern the aqueous concentrations of
the nuclide in the fissure and micropores are, assuming local sorption

equilibrium,

=% T ¥ aNE sp g (5.5.1)
M, D, BZM] (

5 M =0 5.5.2)
i e i b

t>0, ez, y>0

where N](z,t) and Ml(z,y,t) are the concentrations of the nuclide in the
fissure and micropores respectively, v is the water velocity, D1 is the
pore molecular diffusivity, Kl is the sorption retardation constant,_A1
is the decay constant of the nuclide, b is the interstice of the main
fissure, and J] is the diffusive flux of the nuclide at surface of the

main fissure

Jy = - €Dy 5~ t >0, z>0 (5.5.3)
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The initial and boundary conditions are

N](z, 0) =0, z%0 (5.5.4)
Ml(z,y,U) =0, z>0, y>0 (5.5.5)
N1(0f ;).= o7 (t), t>0 (5.5:6)
M1(z,0,t) = N1(z,t), 2 B 0; t>0 (65:5.7)
My (z,,t) = 0

The function 9 (t) is determined from a material balance of the nuclide

at the waste surface, as shown in the next section.

5.5.2 Material Balance at the Waste Surface

Consider a waste form of length L in the axial direction z and of
infinite width in the x direction of the fissure plane, as shown in
Fig. 5.5.1. Suppose that the waste matrix is dissolving continuously
from that surface -into the water flowing in the fissure of width b. For
a mother nuclide with no precursors, if its precipitate forms it will appear
at the beginning of waste-form dissolution. While the precipitate is
present the liquid at the waste location will be at a constant concentra-
tion Nl* of the nuclide, where N* denotes the solubility. Assuming
complete mixing of the nuclide in the water immediately above the waste
surface, we can write the total material balance for the precipitate of
that nuclide in the form:

ap] + . d 1 il *
FIAEA 1 Tl o B B L LE
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where P] is the amount of precipitate per unit volume of water at z = 0,
¢; (t) is the release rate of the nuclide into the water from the waste

per unit width of waste, and 1 is the residence time determined by

e % (5.5.9)
The initial condition for P1 is
P, (0) = 0 | (5.5.10)
The solution of Eq. (5.5.8) subject to Eq. (5.5.10) is
t
Py(t) = e-l]tj e k]B[B%T— ¢1] (6) - (r, + JT-) N]*:l do (5.5.11)
0

The release rate ¢£ (t) of the nuclide from the waste, per unit
width of waste is

0
n (t)wa

o () = 1 (5.5.12)

where N% is the total initial amount of waste per unit cross-sectional
area of water flow in a fissure, b is the spacing of the fissure walls,
T is the leach time, and n](t) is the time-dependent atom fraction of
the nuclide in the waste. For the mother nuclide
g “HF

n](t) =n; e {5.5:13)
where n]0 is the initial atom fraction of nuclide i in the waste form
by an initial total amount of nuclides in the waste form and n1(t)

is the time-dependent atom fraction in the waste.



Substituting Eq. (5.5.12) into Eq. (5.5.11), we have

N,

T

=A;t

- N.I*(l + A—:?)(l sig ¥} (5.5.14)

“Aqt
P](t) =

where N]0 is the initial aqueous concentration of the nuclide that would

occur if there were no precipitate,

N, = - (5.5:15)

where m1° = nloMo/bT is the initial release rate of nuclide i per unit
cross-sectional area of water flow. We now introduce the amount P1S(t)

of precipitate per unit surface area of waste at z = 0

L
P.S (t) = [ Py (t) dz = L Py (t) (5.5.16)

0
Multiplying Eq. (5.5.14) by L and taking the limit of L -~ 0, we have

PS () = v NSOt ol Ny f%—(1 - evk}t) (5.5.17)
This is equivalent to the solution presented for porous-flow transport
in our previous report (P1).

We can now evaluate the aqueous concentration of the nuclide at the
waste. Since time is measured from the time at the beginning of

precipitation, the aqueous concentration remains at the saturated

concentration until the accumulated precipitate all dissolves. Then,

¢ (£) =Ny t 2t (6.5.18)

where t* is determined from Eq. (5.5.14) or from Eq. (5.5.17) by setting

42.
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PI(t) equal to zero. Note that Eq. (5.5.17) gives t* at the limit of
T > 0.
At t > t*, the following material balance holds for the aqueous

concentration of the nuclide at the waste surface

s B PIRES T I T P Y (5.5.19)
st - M1 T T T bt B 2

The initial condition is
*
¢ (t*) = Ny (5.5.20)

The solution of Eq. (5.5.19) subject to Eq. (5.5.20) gives the time-

dependent aqueous concentration of the nuclide at the waste surface.

1 1
A t*F -t - (A )t (2 D)t
p(t") = Nl0 e | [? Peg'l T ] : N]* g & B
t'" >0 {5.5:21)
where
= =g, = gF (5:5:2¢2]
When T -+ 0, this equation reduces to
5 —A1t* -A1t'
¢’](t) = N] € € > 18 (5:5:23)

This equation is equivalent to that derived in our previous report (P1)
for the plane boundary condition for porous-flow transport. In this case

when the residence time approaches zero, the aqueous concentration of the
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nuclide at the waste surface has a discontinuous jump at t = t*. The
residence time usually is much smaller than the half 1ife of the nuclide,
e.g., forL=10mand v =10 m/yr, Tt = L/v =1 yr. This means that

Eq. (5.5.23) gives a sufficiently good approximation to the time-dependent
boundary concentration of a nuclide of long half 1life. For a nuclide of
very short half 1ife, this approximation becomes less valid. When

T + o, Eq. (5.5.19) reduces to a.simple decay equation for the mother
nuclide in a stationary system. Also, from Eq. (5.5.8) and the initial
condition given by Eq. (5.5.10), we find that there no longer exists a
precipitate at the repository at t > 0. If we consider the case wherein
a finite concentration P1O of the precipitate designated exists
initially, the solutions give a nonzero value for the concentration of

the precipitate

i t -, t
P, (8) = (P%e | -NT(-e 1), t<t
1 1 1
0 Lt eF . (5.5.24)
The aqueous concentration of the nuclide is

*
9 (t) = N, t < t*

*')\](t"t*)

N, e % R g {5.5.25)
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where by solving for P](t') = 0 in Eq. (5.5.24) we get:

tr= X in (1 + o ) (5.5.26)

The boundary condition for the transport equations is, from

Egs.. 45.5.18) and {5.5.21)

o (8= (N7 | i
A(ttr) (g D) (et .
Cyq8 tey, e ., T3 £* [5.5.27)
where
A, t* -A,t*
- i O 1 _w® 0 1
C-I] - N-l e ) C]z - N-l - N'I e (5-5.28)

5.5.3 Solubility-limited Transport With a Step Release

The space-time-dependent concentrations of the nuclide can be
obtained by solving the basic transport equations subject to the initial
conditions given by Eqs. (5.5.4) and (5.5.5) and the boundary conditions
given by Eqs. (5.5.6) and (5.5.7) with the function given by Eq. (5.5.27).

The solutions are

N](z,t)

1]
=

1 e h(t-z/v) E1(z,t,alz) -

- N, e h(t-t*-z/v) E}(z,t—t*,a z] +

1

t —AT(t-t*) 2,2
hitst* <) Ciy @ Bl s e
2vt-t*-z/v

+

v

_ +
+ Cl?. exp ['G%f - (A1+ }r-)(t-t*):l - B (z,t-t*,a]z) (5.5.29)



L.V
M1(z,y,t) =N, e
+ h (t-t* - z/v)
z
+ CIZ exp [;? -
where
] =25D1J5
1 bv D]
. |
1 D]

[h(t - %J E} (Z,t,alz + b}Y) -

h (t-t* - z/v) E] (z,t-t*, a;z + b]y)] +

e—k!(t-t*) ayztbyy

c =)
2/t-t*-z/v

. erfc (

'(A+%)(t—t*)] . E1+ (z,t-t*,ayz+byy)

OL2
- - At
P](t;a) = 2 e 4t L
2vmt
o 2 A az
E,(2,t50) 2/ g BE=g
Zstap) = = n
’ b= . 4n
2vt-z/v
o 2
2 o
ET(z,t;a) - J[ e * 4 2 dn
yr a n

j

(5.5.30)

(5.5.31)

(5.5.32)

(5.5.33)

(5.5.34)

(5.5:85)



The function E.l (z,t;a) can be reduced in terms of the complementary error

function with the aid of the formula:

22 b

2
/e X dx = 4—’];5 [EZab erf(ax + ;t:-) 28D o g (ax - 5—)} (5.5.36)

1) oA
E](z,t;oz) s £ erﬂ:{

g+ 2(E - Z/V)/TT]
2/t-z/v

-a/l] [a - 2(t - z/v)/f{
+ e erfc ]
2vt-z/v

(5.:5:87)

When 1 -+ 0, the solutions can be simplified as

k]z

s v
N](z,t) = I\i1 e h(t - z/v) E} (z,t,a1z) -

- h (t-t* - z/v) E1 (z,t—t*,a1z)] +

- J\-l(t—t*) a-{z
C” e h(t-t*-z/v) erfc ( ) (5.5.38)
2/(t-t*-z/v

*
M](z,y,t) = N1 e YV [:h(t-z/v) E1 (z,t,aTz+b]y) -

h(t-t* -z/v) E](z,t—t*,a]z+b}y)] +

- Aq(t-t*)

a,z+b
e h(t-t*-z/v) erfc (#1——]}—

_— ) (5.5.39)

2vt-t*-z/v
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5.5.4 Solubility-limited Transport With a Band Release

Let T be the time of duration of the release. The function ¢](t)

for the band release can then be written as

* * "(}\ ""')t

8y () = Ny [h(t) - h(t-t*ﬂ LN e DT (t-t*) +
x ]
=Xt A (t-t*) -(A, ) (t-t*)
+ N]D h{ T-t*) e L (e ! g J a
[h(t-t*) - h(t-T)] (5.5.40)
The solutions are
- A2

N,(z,t) = N ) e Vv [h(t-z{v) E,(z,t,a;2) - h (t-t* -z/v)x E,(z,t-t* ﬂ
1 > 1 1 wililly ) -IZ," ,aIz

1 Z
. Tt T .
t N e h(t-t* - z/v) x E, (z,t-t*,a1z)

a]z

th-t*-z/v

+ N1 e h(T—t*)-[E(t—t* - %J x erfc ( )

a,z
- h(t-T-z/v). erfc (—————————J] =
2vt-T-z/v

1

+ N]O h(T-t*). exp E-A]t— ;—(t-t* - z/v)] : [h(t-T-z/v)x

+ +
X E] (z,t-T,a,z) - h(t-t* - z/v) E} (zt=t=, a]zi]

(5.5.41)
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N;'r e Y [h(t—z/v) E1(z,t,a}z+b]y) - h(t-t*-z/v)x

1

Ml(z,‘v,t)

- At- L (t-2/v)

B2 E-t%, 0 5By ] & Ny 8 T h(t-t*-z/v) x
& L #i 15’] 1

- Mt
X El(z,t—t*,a]z+b]y) + N]O e " h{T-t*)[h(t—t*—z/v)x
a1z+b}y a1z+b1y
x erfc (———— ) - h(t-T-z/v). erfc (~—:| +
2vt-t*-z/v 2vt-T-z/v

(t-t*—z/v)jl . [h(t—T—z/v)x

A=

+ th(T-—t*) exp[- Ay -

. E1+ (z,t-T,a

]z+b]y) - h(t-t*-z/v). EI+ (z,t—t*,a] z+b]y)]

(5.5.42)
when T - 0 the solutions become
*
N](z,t) =N, e ¥ [h(t—z/v) E1(z,t,a,z) - h(t-t*-z/v)x
o - }\-!t
X E1 (z,t—t*,a1z) + N e h(T-t*)| h(t-t*-z/v) x
a,2 2,2
x erfc (——— ) - h(t-T-z/v). erfc (———)] (5.5.43)
2v/t-t*-z/v 2/t-T-z/v
A2

1

M](Zny!t) = NI* e v [h(t“ZfV) ET(z,t,a,z+b,y) - h(t-t*-Z/V)x

- At
X E1(z,t—t*,a1_z+b1y)] + N1° e 1 h(T-t*) [h(t—t*-z/v)x

a,z+b,y
x erfc ( a12+b1y ) - h(t-T-2/v).erfc( I” 1

):| (5.5.44)
2Y/t-t*-z/v 2/t-T-2z/v
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where t* is the solution to the following equation

M a * L 1
—e [t*—(t*—?)h(t*-T)} N ) (ke ) (5.5.45)

5.5.5 Aqueous and Precipitate Concentrations of a Nuclide at Repository

Figure 5.5.2 shows a variation of relative concentration of precipitate
at repository with the time measured from the beginning of precipitating.

These curves show the concentrations of 2371

Np which are calculated for
various assumed values of saturated concentration from Eq. (5.5.14) with
a parameter assumed to be unity. As is expected, the precipitate first
increases from zero with the time, reaches a maximum, and then decreases
to redissolve into the water with increase of the time. A1l of these
curves intercept zero concentration, the time axis. Each of these inter-
ceptions is corresponding to the time t* defined in Eq. (5.5.18). After
that the precipitate no longer exists. The figure shows that a lower
saturated concentration causes a higher concentration of the precipitate
and a greater time of t*.

237\ with the time for

The variation of aqueous concentration of
various assumed normalized values of saturated concentration are given in
Fig. 5.5.3. The time t* when the precipitate has all dissolved is
determined from Eq. (5.5.14) by setting the precipitate P](t) equal to
zero. The concentration of the nuclide at the waste surface remains
constant at NT* until the time t* decreases almost discontinuously at
t = t*, and then decreases smoothly subject to the exponential function

as given by Eq. (5.5.23). The concentration jump at t = t* is attributed

to the resident time, T assumed here to be extremely small compared with
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the inverse of the radioactive decay constant of the nuclide. For

T %2 Ifll,Eq. (5.5.23) is a good approximation for the time-dependent
concentration of the nuclide with precipitation. For a short-1ived
nuclide, Eq. (5.5.23) becomes less exact, and the exact solution

Eq. (5.5.27), which gives a continuous concentration profile at t = t*,

should be used.

5.5.6 Effect of Limited Solubility on Fissure-flow Transport
37

Relative concentrations of 2 NP for step release calculated from
Eq. (5.5.29), with different normalized values of the solubility concen-
tration, are shown in Fig. (5.5.4). The solid lines show the concentra-
tion profiles for transport with solubility 1imit and broken lines show
those without solubility Timit. Two typical cases, with the retardation
constant assumed to be K] = 10000 and with K1 = 100, are considered. The
pore diffusivity and the other relevant parameters are listed in the
figure. For this case with no precursor, precipitation occurs only at
the waste surface,'causing a decrease in the aqueous concentration of -the
nuclide over the whole range of migration space. The concentrations

shown by the broken lines for K, = 10000 and for KT = 100 are reduced to

.
a lower concentration by a factor almost equal to the ratio N1°/N]* of
the maximum possible initial concentration to the solubility concentration.
However, because of the accumulated precipitate, the aqueous concentration
at the saturated level can persist at a greater time than expected when

neglecting the Timited solubility. The space-time concentration surface

is shown in Fig. 5.5.5.
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Fig. 5.5.5 Space-time-dependent aqueous concentration in fissure-
flow transport with step release and solubility Timit.
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transport by porous flow, assuming the same porosity as the fractured
medium excluding the main fissure. As is already discussed in section 5.2
for transport without solubility 1imit, the porous-flow model gives an
overestimate of the retardation capacity for transport with a larger
retardation coefficient and an underestimate of the retardation capacity
for transport with a smaller retardation coefficient. In concluding,
precipitation of the nuclide at the repository has two important effects,
one is to reduce the maximum concentration as well as the local concentra-
tion of the nuclide and the other is to shift the concentration band at

a given distance to a greater time.

5.6 Transport of a Radionuclide in Multi-Layered Fractured Media

Fissures and micropores in fractured media usually form a geometrically
complicated matrix with layered solid phases of different geophysical
properties, and it is important to analyze radionuclide transport in
layered fractured media. We here consider the transport of a mother nuclide
through a series of many planar fissures, each bounded by surfaces of

rock of different physiochemical properties.

5.6.1 Formulation and Analysis

Consider the transport of a mother nuclide through series of fissures
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of different interstices, as shown in Fig. 5.6.1. Let us designate the
fissure of interstice M, and the surrounding rock medium, located between
distances z=z 1 and z=z  as, the mth fissure and mth medium, respectively.
We take a distance z frbm the waste in the flow direction and the distance
my from surface of the mth fissure in the mth rock medium. If we assume
that the concentration of the nuclide in the solid phase is equilibrated
locally with that in the water phase in the micropores, the transport
equations which govern the concentrations of the nuclide in the mth fissure

and micropores are given by, respectively

m m
0 N1 i @ NI

My, _ 2 m
m m 2
3'M D, 3°™
L 1 eas ™ =0 (5.6.2)
at rnK m 2 1 1 U
1 oY

where mN](z,t) and mM1(z,y,t) are aqueous concentrations of the nuclide
in the mth fissure and micropores, respectively, mD1, is the pore molecular
diffusivity, mK] is the sorption retardation constant, My is the water

velocity, and mJ] is the diffusive flux of the nuclide at surface of the

mth fissure.

| (5.6.3)

i 152453 s



Initial conditions are
le(z, 0) = 0,

zZ >0,

mM1(z, y, 0) =0, z >0, my

From the equation of continuity, assuming a

water,

m-1

v m'1b

m m
= v 'b

s m =

Also from the mass conservation of the

Tongitudinal diffusion

LD wen

54.

T2y s (5.6.4)

3
(]

|5 S

>0 m (5.6:5)

constant density of

(5.6.6)

nuclide, assuming transport without

T TR L S T - A [5.8.5
The boundary condition for mN1(z,t) at z =z, is given by

" (zgpt) = "IN (2 1s 1), m=2,3, ... (5.6.8)
The boundary conditions for mM](z,y,t) are

™ (2,0,t) = "™ (z,t) ,  m=1,2, .. (5.6.9)

™, (z,=,t) = 0, m=1,2, ... (5.6.10)
Let us introduce a new variable:

m, _ m

z=2z-2 45 2, -z,1>2>0 (5.6.11)



Then the transport equations can be rewritten as

m m
o N o N
T,m 1 my, _ 2 m
v + AN, = - =—="J (5.6.12)
ot A, 171 m 1
o™, ™. 2™
1 10 1 m, _
5t tmoomz M M=0 (5.6.13)
K] 9
t >0, my > 0, z, - zm;1 > mz >0, m=1,2, ...
The initial and boundary conditions become
o ("z,0) =0, oz -z . >"z2>0 (5.6.14)
mM.I (Mz, my,O) =0, 2y = Ry B2 0, my >0 (5.6.15)
™, (0,t) = Ml (t),  t>o0 (5.6.16)

I

mM1 (mz,O,t) mN] (mz,t), E & 0 2,20 1 > M, 50 (5.6.17)

>M2 50, t>0 (5.6.18)

(mzsmst) D, Z - g

m m=1

where the function "Plx(t) is defined as

x(t) = ¢1(t), t20, m=1

m—]N

}(zm_] st)s t > Os 2:3’ L (5.6.]9)

3
n



The system of Egs. (5.6.12) (5.6.19) is the same as the equations for the
transport of a nuclide in a single fissure as presented in section 5.2.
Therefore the solutions in that section can be directly applied to this

problem. The solutions are given in the recursive form by

m
_ )\_'imZ t- £
m my, me-] mz m.om
mN}( z,t) = e . Xi(t'T- E;JP1(T; a z)dt (5.6.20)
u v
m
A Z
1m t- =
m.m - ﬁ; o mvm-1 mz m_ m_.,m_m
mM]( Z, Y,t) = e J’ X](t-T— Er0P1(T; ay zt b1 y)dr
v
0
(5:6.21)
where
m m m
M, = § mem i mK1 (5.6.22)
b™v D1
(5.6.23)
a2
- -t
Pi(tsa) = —2%—e t 1 (5.6.24)
2 'th3

5.6.2 Transport in a Two-layered Fractured Medium

Equations (5.6.20) and (5.6.21) are still in recursive form. We now

56.
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apply these solutions to the transport of a nuclide in a two-Tayered
fractured medium for three different release modes |
i) Impulse release

When the function ¢1(t) in Eq. (5.6.19) is given by the impulse

release function, the solutions become

A
- .?_.Z -l
N(z,t) = (%) e V(e - TZ:; a,2) hit - TZ:) 2,520 (5.6.25)
(Z"Z-I Z-[)
2 g By MR ET 221 2y 2
N}(z,t) = (TN1 ) e \ v P1(t - _2\;_ - T;’ a](z-z.l) +
1 Z'-21 Zz
a]z) h(t - ZV - 7 i, 2,>2>24 (5.6.26)
Ay
- Z
1 0 1 1, 1
Ml(z,t] = (TN] ) e ¥ P}(t - ﬁ; a z+ b1 y) h(t - -Z;)
1y>0, 2,520 (5.6.27)
L=L z
1 1
- M Fivg=]
12 1 z-Z z
2 _ o} v v 1 1. 2
M](z,t) = (TN1 ) e P1(t - 2v ~ -1—;, a](z—z1) +

1 (5.6.28)



ii) Step release

For a step release, the solution for the concentration of the nuclide
in the fissure is given by
g = At

1312
N, e F = {EJ erfc , 2,250 (5.6.29)
v

—
—
—
™~
-
[ 5.
—
1]

M, 2R 2 a,(z-2))+ a2
ZNI(Z’t) =N%e Th(t - - ) erfc( _—
v v z_z}

2y

il
Ty
2,>2>2, (5.6.30)

The concentration of the nuclide in the micropores is given by

1 1.1
- At a,z+ by 'y
M(z,t) = N%e h(t - &) erfc( 11 ) - y>0,2,5250
Y 2ft-z/v
(5.6.31)
o 5 = l1t z-2y 2z, 2aT(z—z])+ a1z1+2b12y
M}(z,t) = N1 e h(t - N T—J erfc - >
v v v{ z-2, 1,
2ft- - —
2 1
v v
2
y>0, 2,>2>2, (5.6.32)

iii) Band release
The band-release solutions can be obtained by employing the super-

position theorem (H-1).
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5.6.3 Migration Behavior in a Two-Layered Fractured Medium
237

The aqueous concentration profiles of Np in a two-layered frac-
tured medium with a contact surface at z = z, (= 500 m) for a step release
are compared in Fig. 5.6.2 with the concentration profiles of the nuclide
in transport in a single layered fractured medium. The solid lines show
the concentrations of the nuclide in the two-layer medium and the broken
lines show the concentrations in the single-layer medium. (The dashed
1ine which connects the solid 1ine in each phase shows an expected
asymptote. Numerical integration of Eq. (5.6.30) gives a less exact

value for a smaller value of z - z].) The assumed parameters are included
in the figure. Because of the assumption of transport without dispersion
in the fissure, the nuclide at a distance less than z = Z; is not affected
by the existence of the second layer. Here we assume a greater water
velocity and a smaller pore diffusivity in the second layer, so the
nuclide can migrate a greater distance than would be predicted for in a

single layered medium, even though there is a greater assumed value of

the sorption retardation constant for the second layer.

5.7 Transport in an Infinite Diffusion Field With Nonequilibrium Sorption

Analytical solutions for transport in a porous medium without local
chemical equilibrium of radionuclides in the liquid and solid have been
presented in our previous report. In fissure-flow transport, as described
in section 5.2, the retardation effect originates not only from the
sorption process but also from the molecular diffusion into and out of
micropores within the rock medium. Here the effect of nonequilibrium
sorption becomes more important than expected in porous flow transport, even

for the transport of long-lived radionuciides. In this section, we consider



the more general case of fissure-flow transport with nonequilibrium

sorption in micropores.

STEN Analysis
The governing transport equations to be solved are from Eqs. (5.1.18)

through (5.1.20)

oN, aN,

2
= + V-EE-+ ANy = -5 Y (51
2
oM M
1 1 m m. _
Yl D] ayZ + A] M] - K1 51 =0 (5. 7.2
as ,
“5%1‘* 7Sy - KMy = 0 (5.7.3)
t>0, z>0, y>0
where
k_a
B =y B (5.7.5)
k a
S m
= A + (5 7 5)
ﬂ1 1 iT—EiKD 1
k a
m m
k.M = (5.7.6)
1 EKD1
5 kma
R | (5.7.7)
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and J] is given by

BM1
J](z,t) = = gDy Tl 5 ) £ 50 250 (5.7.8)

The initial and boundary conditions are, from Eqs. (5.1.23) through

5.1:28)
N-I (z,0) = 0, zZ 50, (5.7.9)
M](z,y,O) = 0, z >0, y >0 (5.7.10)
S](z,y,O) =0, z >0, y >0 (5.7.11)
N1 (0,t) = &, (t), £ >0 (5.7.12)
M](Z,O,t) = N](z,t), £ 5 0 # 5 0 (5.7:-15]
M](z,w,t) =0, t >0, zxD {5.7.14)

The solutions of these equations can be obtained by the method of Laplace
transform. Taking the Laplace transform of Egs. (5.7.1), (5.7.2), and

(5.7.3), we have

2 -
Py W Ry =0 (6.7 15}



N

(=

My - Lp A - T g
y
v My n,
S S =
S S] + ﬂ1 S]- Kl M1— 0 {5:.7:17)

Eliminating the transformed concentration of the nuclide in the solid
phase from Egs. (5.7.16) and (5.7.17) and solving the diffusion equation
subject to the boundary conditions given by Eqs. (5.7.13) and (5.7.14),

we can find the transformed solution for the concentration of the nuclide

in the micropores

__y_Js-]-n_[m - 1 l
Jﬁ; (5+A] )

V] v
M](z,y,s) = N1(z,s) e (5.7.18)
and the transformed diffusive flux:
v " n KK
Jq (z,5) = ¢ |ﬁﬂ'N}(z,s) S - (5.7.19)
(s+1y°)
Also from Eq. (5.7.17) R
Y ]
Vo (s )
1 1 11
b 5 v e
S, (z,y,8) = Ky N](z,s) 5 (5.7.20)
S+A]

Substituting Eq. (5.7.19) into Eq. (5.7.15) and solving the
resultant equation with the boundary condition given by Eq. (5.7.12), we

have

" " Agts | n KK
N1 (z,s) = ¢](s)exp (- ek d}z s+ﬂ] - = ¥ (5.7.21)
- 5+AI ,
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where d1 is the constant defined by

2&»751_

4 = oy

(5.7.22)

The transformed function of the form similar to Eq. (5.7.21) has been
studied by Lapidus and Amundson in their analysis in adsorption of species
in bed (L-1). In order to find the inverse of Eq. (5.7.21), we use the

following general formula for the Laplace transform:

" _
L {j (%) sz [21/aut— au2]f(u)du =;2151T9(S+ -E—) (5.7.23)

. 0

where g(s) is the transformed function of f(t) with respect to t,

L [f(t)] = g(s) (5.7.24)

Especially, when v = 0, we can write

i
L {[Jo EZJaut- auz:' f(u)du } = %g(s+ %) (5.7.25)
0

From the displacement rule,

t |
-t
L {e ] IJO [2fau(t-u)] f(u) du}
0

S

g(s+n® + —2) (5.7.26)

5



Let k.M S
- dizys+A" - Bl (5.7.27)

1 S+ﬁ1s
H(s) = e

For a direct application of Eq. (5.7.26), we split the function g(s)

into two parts, thus
H(s) = A,° h(s) + s h(s) (5.7.28)

where the function h(s) is defined by

2 m,, s m, s m, s
; J s +(ﬁ.I thy )5+A} A7 KK
e S

e s+f‘L1
h(s) = = (5.7.29)
S+ﬂ]
Now consider the function g(s) which takes the form:
- d]z st+c
g(s) = e (5.7.30)
of which the inversion is
d1222
d}Z - T - ct
f(t;d]z) = e (5.7.31)
Z TTtB
Then
g 5 J52+(2A1S+c)s+(A1s)2+cﬁ1s+a
g(s+ﬂ.1 + s) - d]z
5+A] e s+ATS
= {5.7.32)




Equating Eq. (5.7.32) with Eq. (5.7.29), we find

3 (5.7.33)

"'-thing"'that the relation among Eqs. (5.7.30)~(5.7.32), we can write the

inverse of function h(s) directly from Eq. (5.7.26)

! {h(s)} '
st (Y a2 -Etlj—-z——(ﬂm-ﬂ $)u
= e L [ 1 e bu 1 ] -IOEZJK.ImK]mu(t-u)] du
. o2 wu3
= F(t;d12) (5.7.34)

where Io(x) is the modified Bessel function of zero order. Also since

F(O;d]z) = il

L { S h(s)} = B%F(t;i.lz)

= e f(tsdz) - A]SF(t;d]z) + 6(t5d,2) (5.7.35)

where the function f(t;d1z) is given by Eq. (5.7.31) and the function

G(t;d1z) is given by
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d 2 2

- A1 ‘K K1 u dyz - __U—_ - (ﬂlm—A1S)u ik

G(t;d z) 11[2 \} K] K u(t—u)] du
f -u 241 u

{6736
where I](x) is the modified Bessel function of first order. From
Eqs. (5.7.34) and (5.7.35), we have the inversion of the function H(s),

il .
L {H(s)} = e f(tsdyz) + 6(t;dy2) (5. 7.37)

Applying the equation directly to Eq. (5.7.21) and using the shift
rule, we can finally obtain the solution for the aqueous concentration

of the nuclide in the fissure

5

-TZ t-%h 7 -A]T
Nl(z,t)'= e ¢1(t—r— =) [e f(r;d]z] + G(T;d]z)]

v
0

(5.7.38)

The concentration of the nuclide in the micropores is, from Eq. (5.7.18)

t S
: - AT
M] (Z,}’,t) = / N1(Zst‘T)[e L ‘F(T;E}_\/) o+ G(T‘,e]}’)] dt
0
(5:7:39)
where
e, = 1 (5.7.40)
YO,

Also, the concentration of the nuclide in the solid phase is given by

£ -
- AT
S}(z,y,t)= KES/ e ! M1(z,y,t-r)dr (5.7.41)
0
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5.7.2 Transport With an Impulse Release

The solution for the concentration of the nuclide in the fissure,
Eq. (5.7.38), involves a double integral term and is not suitable for direct
numerical calculations. However, if the boundary value of the concentra-
tion at the repository is given by the impulse function given by

Eq. (5.1.18), the solution can be simplified, and is given by

N

ﬁ z - hls(t B %) z z
T(z,t) = (TN1 ) h(t - ;J [e f(t- V;dlz)+ G(t- ;1d12)] (5.7.42)

where the functions f(t;d1z) and G(t;dlz) are given by Egs. (5.7.31) and
(5.7.42). The solutions for the concentrations of the nuclide in the
micropores and in the solid phase are given by Egs. (5.7.39) and (5.7.41),
with substitution of Eq. (5.7.42).

The concentration profiles of 231

Np at t = 10,000 yr for transport
with nonequilibrium sorption, which are calculated from Eq. (5.7.42) are
shown as the solid lines in Fig. 5.7.1 for different assumed values of the
mass-transfer coefficient k and the interfacial area a per unit volume.
Each nonequilibrium curve shows a higher concentration at greater
distances than the concentration given by the equilibrium curve, whereas
the nonequilibrium concentration is Tower at the smaller distances. For
the migration times considered here, the "seed pulse" has moved with the
water velocity to a distance of 105m. Therefore the long concentration
tail results from nuclides emerging from the micropores by molecular
diffusion. The penetration thickness within the micropores is greater

for nonequilibrium sorption, resulting in a smaller concentration gradient

and a smaller diffusive flux of nuclides returning to the fissure in the
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region of the concentration tail. The effect at the greater distances in
the region of the leading edge of the concentration band, non-equilibrium
sorption promotes faster penetration into the micropores, thereby Towering
the concentration in that region. As seen from the figure, nonequilibrium
sorption spreads the concentration profile over a greater distance than

for equilibrium sorption, resulting in a lower maximum concentration.

As the mass-transfer coefficient increases, the nonequilibrium concentration
curve approaches the equilibrium curve.

Shown in Fig. 5.7.2 is the variation of the concentration profile of
23?Np with migration time. The pore diffusivity and the mass-transfer
coefficient are assumed to be D, = 0.01 n°/yr and k a = 10™* 1/yr. The
time required to reach equilibrium depends mainly on these two parameters.
For a greater diffusivity, the nonequilibrium characteristic is governed
predominantly by sorption, whereas for a smaller diffusivity, the transport
is governed by diffusion process. In this assumed case, the nonequilibrium

effect persists until a time of almost 50,000 yr.

5.8 Transport of a Multi-Member Nuclide Chain, Convective Transport in

Micropores

In the foregoing sections the fissure-flow transport of a single
mother nuclide has been discussed. In evaluating the biological hazard
due to long-lived actinide elements which are possibly released into a
migration field from high-level waste repositories, it is desired to provide
the analytical solutions for the transport of a multi-member nuclide chain,
in order to estimate the chromatbgraphic behavior of daughter nuclides.

Among the nuclide chains contained in radioactive wastes, the following



nuclide chains are considered to be important, because of the relatively

high biological hazard of the radium daughters.

246, 282, 238, , 234 , 230; 226

z2azm, - 242, T

233 8Bij 5 Dy, B0

Ra

23?Np -

Pa. o e
In succeeding sections the transport of a_mu]ti—member nuclide chain in
fractured media is considered. Numerical demonstration of the solutions
applied to three-member nuclide chains are also given.

As one of the simplest cases, we first consider the fissure flow

transport of a nuclide chain with convective transport of the nuclides

in the micropores.

5.8.1 Formulation and Transport Equations

Consider water flow in the z-direction in an infinite plane fissure
~of interstice b. The fissure is bounded by surfaces of rock of porosity
e, through which the water can penetrate outwards in the transverse
y-direction at a constant velocity w, as shown in Fig. 5.8.1. Because

of the water flow through the medium, the water velocity v in the fissure

is space-dependent and is specified by the conservation equation:
v _  2ew
- (5.8.1)

Thus the water velocity is given by

g
v(z) = v, - ﬁfz (5.8.2)

where Vi is the water velocity in the z-direction at the repository site.



The transport equations which govern the concentrations of the nuclide
i in the main and micropore fissures are given by, with assuming local

sorption equilibrium in the micropore fissures

i i _ 2
BE T Mg T Mgy E B e D SR
oM oM, N K

i W i _ o M-T1 -1
it K MM T TR Mia (5.8.4)

t =0, Z & fg ¥ 3 0y T R -
where Ni(z,t) is the concentration of the nuclide i in the main fissure,
Mi(z,y,t) is the concentration of the nuclide i in the micropore fissures,
Ai is the radioactive decay constant, and Ki is the sorption equilibrium
coefficient.

The initial conditions are given by

Ny (z,0) = 0, z>0 (5.8.5)

M; (z,y,0) =0, z>0, y >0 (5.8.6)

The boundary conditions are

N; (0,t) = o.(t), t >0, (5.8.7)

Mi (z,0,t) = N,

i (z,t),  t>0, z >0 (5.8.8)

where the function ¢i(t) is the time-dependent concentration of the nuclide i
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at the repository, given in section 5.1.2. The Mi(z,y,t) tends to zero

as y - o,

5.8.2 Solutions to Pore Convection Transport

Since Egs. (5.8.3) and (5.8.4) are related to each other only by the
boundary condition given by Eq. (5.8.8) and are not coupled; they can be
solved independently.

Now we introduce a new variable z' defined as

z
i ] . |
Z / v—(?)—dz, ZF 2 0, z>0 (5.8.9)
_ 0
then Eq. (5.8.3) becomes

oN. N 2

i i _ :

The initial and boundary conditions for Ni(z',t) are, from Eqs. (5.8.5)

and (5.8.7)
Ni(z',O) =0, z! >0 (5.8.11)
Ni(O,t) = ¢i(t)’ t>D0 (5.8.12)

The solution for the space-time-dependent concentration of nuclide
i in the fissure can be obtained by Laplace transform, and is given in

the general form:
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g i |
+ (J\q)z ei ¢j(t-z Yh(t-z") (5.8.13)
;12 (Ar-lg)

r{ L

In the original coordinate system, the solution becomes

Ni(z,t) = e h(t-q(z)) ¢;(t-a(z))

; . 2ew

i-1 23 1 - (AR.+ _b—) q(z)

“La 0, (r) ; e h(t-a(z)) ¢5(t-a(z))
= =J ::]:] (}Y— 'X,Q.)
r{ L (5.8.14)
where
q(z) = - ggg- n (1- ﬁ;fz) (5.8.15)
0

The system of Eqgs. (5.8.4), (5.8.6), and (5.8.8) is just the same
form as that employed in analysis for the porous flow transport,"wifh the
exception of a slight difference in the expression of the boundary condition.
Therefore, we can directly apply our previous solution for porous flow
transport (H-1) to this problem. The solution for the concentration.of

the nuclide i in the micropores is then given by



(5.8.16)

- (A;/w.)y
, _ | Rope W
Mi(z'ayst) = ¢ Ni(z',t wi)
i-1 () J - (J\m/“’m)}’ 1 (3) t
e 1
+ &_[ Z Tﬂ— z Erm ] g_m(t-T)NJ(Z ,T)dT
3=1 m=J -m r=J 0
r#m
where
Wy = WKi (5.8.17)
: i-1 A K
) o e
AL = (=== (5.8.18
2 r=j wr+1Kr+1 )
B(i)_.;r(L_l_) (5.8.19)
= r=j Y W o
r#m
g(J) = 1 (5.8.20)
rm
m (A, -A_)
o3 —=qr —=m
gFm#r
with
}\rw - AW
él‘"m = “_w—_—"'w— (5.8.21)
m o r
The function g (t) is given by
rm
- . X
v ér‘m(t wm)
g (t)=h{t-L)e (5.8.27)

rm m
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5.8.3 Transport With an Impulse Release

When the function ¢1 (t) is given by an impulse release function
given by Eq. (5.1.17), Eq. (5.8.14) becomes

2€w

- ( + 29 a(2)
Ni(z,t) = TN e 5(t - a(z))
i-1 ., = kg +@—) q(z
FTY (rg) L e NJ.O §(t - q(z)) (5.8.23)
j=1 9 B O - )
=]
r{ g

This equation shows that every concentration pulse travels along the
z-t line given by t = gq(z). Thus, if the removal mechanism of the nuclide
in the fissure is only from convective transport, every nuclide can
migrate at the same velocity with no retardation. The only effect to
be expected is attenuation in concentration of the nuclide.

The concentration of the nuclide i in the micropores can be

obtained by substitution of Eq. (5.8.23) into Eq. (5.8.16), and is given by

2ew
= (A/ws) - (Ag ¥ ==
M.(z,y,t) = e i [T NCe 10D i) 8(t - % 5 q(z))]

i-1 i 2ew
i-1 - (A, + =)q(z)
a () e % P N2 8(t - L - q(2))
=1 4 9 i - d .
: 3o By Ay
r=j
r#g
- (5o =0 : - 5 a0 22k
S Wi ZE(J)[”'Oe MR )
FAom T g @) I J -
m
2w
-1 50 J - (A SHal2)
8 & () Z N e ] (t—q(Z)):l (5.8.24)
k=1 a7k L=k T (A =2 ™



The characteristics of the solution given by Eq. (5.8.24) have already

been discussed in our previous reports (H-1, P-1).

5.9 Transport of a Multi-Member Radionuclide Chain, Diffusive Transport

in Micropores

In sections 5.2~ 5.7, analytical solutions to the transport of a
single mother nuclide in a planar fissure, with diffusive transport in
micropores, are presented. In this section we develop the analysis for
the equilibrium transport of a multi-member nuclide chain in a fractured
media, with diffusive transport in micropores. Here we present the exact
solutions to the problem in recursive form. Because of mathematical
difficulty in reduction of the recursive solutions, the nonrecursive
solutions in general form are not given here. Mathematical approximations
yield nonrecursive formulae which describe the space-time-dependent
concentrations of the nuclide in the fissure and micropores, as given in

the following section.

5.9.1 Recursive Exact Solutions

The transport equations of an arbitrary radionuclide chain with one-

dimensional fissure flow are, assuming local sorption equilibrium

BN1 BNi 2

-§E‘+'V 7;—-+ AiNi = - E’Ji -+ A1-T Ni—] (5.9.1)
M, D, oM, B, R o

N P b + %M. = R e D M.- (5.92)
ot 3 ayZ i Ki i-1

758



where Ni(z,t) is the aqueous concentration of the nuclide i in the main
fissure, Mi(z,y,t) is the aqueous concentration of the nuclide i in the
micropore fissures, v is the water velocity, Di is the pore molecular

diffusivity, K, is the sorption equilibrium coefficient, Ai is the radio-

.i
active decay constant, and b is the interstice of the main fissure. The

function Ji(z,t) is the diffusive flux at the fissure surface, given by

M :
Ji(z,t)=-gDi'a—y- K z >0, EHDs 1 =23
y=0

(5.9.3)
The initial and boundary conditions are
Ni(z,O) =0 z >0 (5.9.4)
Mi(z,y,O) =0, z>0, y >0 (5.9.5)
N;(0,t) = ¢; (t), t>0 (5.9.6)
Mi(z,O,t) = Ni(z,t), z 5.0, t >0 (5.9.7)

where the function ¢1(t) is the general time-dependent concentration
of the nuclide i at the waste repository. The function ¢i(t) is given
by Eq. (5.1.12) for a step release, by Eq. (5.1.15) for a band release,
and by Eq. (5.1.17) by an impulse release. The pore concentration
Mi(z,y,t) approaches zero as y approaches infinity.

Equations (5.9.1) and (5.9.2) are connected by Eq. (5.9.3), subject
to the appropriate initial and boundary conditions given by

Eqs. (5.9.4) - (5.9.7), and can be solved by Laplace and Fourier sine
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A
transforms. The transformed solutions for Ni(z,s) and Mi(z,w,s) are
given in recursive form:

s+xi EgDiZ K

- - - z - - (s#;)
Ni(zss) - ¢i(s) g ¥ bv D1 i
S+x ZeDzo—1i:
4 i i
A - r - 7 (s+i;)
i-1 v bv D. i
& e j Ni-I(z'C’S)_ e i dz
0

+
o
<
—
™M
o
Py N
3
_—
D‘?‘b
Py
S

5
rE} =] o %
a7r (5.9.8)

o i B 1 5K i
u ny
Mi(z,0,8) = D - T () 7T : e——al; (2,5) (5.9.9)

J=1 11 4% L r=] r

w +U;{5+Ar)

where s and w are the transformed variables with respect to t and y,

respectively.

Inversion of theseequations gives the aqueous concentrations of

the nuclide i in the fissure and micropores in recursive form:



Aj
N;(z,t) = e . '[ ¢5 (- -) P.(t-t;a52)dr
t oM,
v
j f -i_'[(z't,')t' %) P.i(t—T ;aiz)d'r di;
i=] o i
ZgDi D i )\£K£ 51
" by e 1) .
11 2= L A q
: J =1 q=
j=1 r=J q=J
qfr
t i
Z t-1 ===
1 v
. f j f e Nj (Z'Cst' %,-) P-i(t'Ts'Tz;a.iC)
0fo0 o
Qe (tg ) drpdrydg (5.9.10)
t
M.I(z;.Yst) =f N.i(Z,'t-’r) P.E(T;b.i)’)d‘f
- _
i-1 i i t
B i 2K i =
+ ) o T (D Z By j N;(z,t-1)RA(y,7)dr
F1 TR 36 0
qFr
(5.9.11)
where
23‘ DiKi
Gy = v T #E 15268 & i (5.9.12)

by = | o7 s H= 023, ' (5.9.13)
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and the function Pi(t;“)’ qu (t), and qu (y,t) are given by

o
- == - At
B sl 2 S B (5.9.14)
Ata) = v
i 24—,”- t3/2
g 2 3 __I_
q ” r - 1 2
Qy (t) = - D. qu Ap w] = e’ dg, A < qu
s (qu—- }\r)t
< Kr e- Apt J_—* -D;r‘t J‘*
F{ =ty - erf [\ -
Dr = ll" qu e er (Y‘ qu)t:l
A > O
>
r
N * (5.9.15)
q . art 2 ( &y ____l:) *
R.'(y,t) = e vf’ﬁj exp | - £7- (A, qu)fﬁj g dg.Ay. < D
. r
1/4Drt/Kr
V-0
* .y A = n *
} = Dyt roareh, y + ZtJ(kr— Dyr)Dp/K,.
> e o erfc (
VﬂfDrthr
V- o o
_y r‘_ Y. >
qr'D_ J
y -2t Y(x.- D_)D /K
+ e erfc ( LN | il o

1/ 4D t/K,

A.>D (5.9.16)
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with the constants:

- -1
iio_ 1 i * ok
Bq T d s [akr (Dir qu)J

1=
gqr J

#q

o g
Dar = €qr /4gr

(1]
n

G lqKq/Dq - Ar Kr/Dr

dqr

Kq /Dq = K. /1D, (5:9.17)

For the mother nuclide, Egs. (5.9.10) and (5.9.11) give, for a step

release
o k1t Arz z
N](z,t) = N;7e erfc(———) h(t - VJ (5.9.18)
2yt-z/v
0 'J\'l t a]z+b1y

2 (5.9.19)

17y pn(t -
Eft—z/v) ( v

M1(z,y,t) =N, e erfc(

The equations are just the same as those given by Egs. (5.2.25) and
(5.2.26). Equations (5.9.10) and (5.9.11) give the recursive expressions
for the space-time-dependent aqueous concentrations of nuclide i in the
fissure and micropores. Our remaining problem is to reduce the solutions
into nonrecursive expressions. However, because of the rather complicated
mathematical forms, it is difficult to derive nonrecursive solutions
directly from these recursive solutions. In the following section, the

approximations that allow us to derive nonrecursive solutions will be

presented.
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5.10 Approximate Solutions in Fissure-Flow Transport of a Multi-Member

Nuclide Chain, With Diffusion in Micropores

In the foregoing section, the exact solutions to the transport of
radionuclide chain of arbitrary length, in fractured media with one-
dimensional fissure flow, is given in recursive form. We here present
approximate solutions in which the radiocactive decay of an individual
daughter nuclide in the micropore 1iquid and in the solid phase are
neglected. For a chain of long lived radionuclides, the resulting solutions
can give a good approximation to the exact recursive solutions described in

the foregoing section.

5.10.1 Formulation

Consider an infinite plane fissure of interstice b in which water
is flowing in the z-direction at a constant velocity v. The nuclides
released from the waste repository located at z = 0 migrate in this
fissure and can diffuse into the stationary water in the micropores. The
transport equation that describes the aqueous concentration of the nuclide

i in the fissure is

aN, N, 2
Ve TN Tt Ny (5.10.1)
T ox i, 0 <2z < o, y >0, ¥ B 1323 « s

where Ni(z,t) is the concentration of the nuclide i in the fissure,

Ji(z,t) is the removal rate of the nuclide i at surfaces of the fissure,

and Ai is the radioactive decay constant of the nuclide 1,
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For diffusive transport in the micropores, and neglecting the radio-

active decay of the nuclides in the micropores, the: transport equation is

codll g gl el oo I t>0, y>0, i-=1,2,3,... (5.10.2)

where Mi(z,y,t) is the concentrat%on of the nuclide i in the statioﬁary
water in the micropores, Di is the pore molecular diffusivity, and'Ki is
the sorption retardation constant of nuclide i in the rock medium.

The diffusive flux Ji(z,t) which relates Eq. (5.10.1) to Eq. (5.10.2)

is given by

oM,

J.(z,t) = - D, —- , z>0, t>0, i
i 1 3y y=0

n

15245 wew (5:30:3)

The initial conditions are

Ni(z,O) = 1, z > 0, b B ES e (5.10.4)

M.(z,y,0) =0, z>0, y>0, i=1.2,3... (5.10.5)
The boundary conditions are

Ni(O,t) = ¢1(t), t>0, i #1288 s (5.10.6)

Mi(z,O,t) = Ni(z’t)’ t >0, ¥ =L, T2 183 s (5.10.7)
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where the function ¢1(t) is the general time-dependent concentration of
the nuclide i at the waste location. The Mi(z,y,t) approaches zero as

y approaches infinity.

5.10.2 Nonrecursive Solution

Let s be the Laplace transformed variable with respect to time t,
the transformed solution of Eq. (5.10.2) subject to the initial and boundary
conditions given by Eqs. (5.10.5) and (5.10.7) is

i

M (z,y,s) = N (z s) e (5.10.8)

The diffusive flux in the transformed form is then given by

" K, "
Ji(z,s) = g Dij_%;.J?? Ni(z,s] (5.10.9)

Taking the Laplace transform of Eq. (5.10.1) with respect to t and
with respect to z with the aid of the initial and boundary conditions,

and solving the resultant equation with substitution of Eq. (5.10.9), we

have .

- Mg &

o §5(s) + == N. o (p,s)

N;(p,s) = (5.10.10)

s+k1
pt—7—+ aiqg_

where p is the transformed variable with respect to z.

Let the solution take the form:

1
N (2. t) zz: K:ulz,t) (5.10.11)

J=1



the general form of Nij (p,s) is then

L7
¢;(s) o
Nyg(pss) = f ST, ’ o
pE=s +a-i‘_5—
< (5.10.12)
i-1
_ &, _ _
Tr KAR) = L $.(s)
gl o . it
KB % W
=5 opr——+ays
with constants:
g5z i
e = T (——) (5.10.13)
r=j A, tu S
r#1 re T'RJ_
Ppg 8. -3 5T £ 2 (5.10.14)
A A
= _r_22
ﬂr‘g g = (5.10.15)
2eD K
_ r e
a, % 5= Dr (5.10.16)

.
el ey -
Nglzt) = e Vg (t- D)L Pu(tsa,2) ) =
i-1 :
Tr()\ﬁ) i i p 13 e ,
Q,‘:j L e A (t- E)G ( t) Lo
i-J i L v/ g V22 , 1#J
A
R=j r=j f;j(um)
\ e

(5.10.17)



with the functions Pi(tyx)andﬁrz (z,t):

2
o
(t:a) o e ' (5.10.18)
P.{t:a) = — .10.
! 24 ‘|’t3
2.2
- s /4t agﬁ z + 62£t a,z
6., (z,t) = & -5 ,e T erfc(-—-{—_+ 5. 08)  (5.10.19)
2Vt

and the constants:

. 1
ad = T (6—‘—6——-) (5.10.20)
g=j ~qg-°rg
r#
g#r
A e, = 3
il r L
s = (5.10.21)

Hrg v(av - af,)

Substituting Eq. (5.10.17) into Eq. (5.10.11), we have the space and
time dependent concentration of the nuclide i in the fissure in the

nonrecursive form:

Ay t
TR z
Ni(z,t) = e f ¢i(t'T' V) P_i(T;a,Iz)d'r
0
N iz A e £
-1 (A) i 4 Al - L
+ =3~ i © Y 6. (t-1- )6, (z,7)dt
i=] i J viopd
; v sck ol Gij. ) 0
j=1 22) r=j TN
r¢g r=J
r# g

(5:10.22)
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The concentration of the nuclide i in the micropores is given by, from

Eq. (5.10.8)
t
Mi(z,y,t) =j Ni(z,t-'r) P_i(T ,biy) dr (5.10.23)
0
where
Ki _
b,i = 'D_ (5-10.24)

i) Solution for a step release
When the function ¢i(t) is given by the step release concentration

given by Eq. (5.1.12), the solution becomes

i B i | i om Apghh = %J £ 1n( £) v
n=1

2 z 2
boj Sra (248042 * Syt - D- 77




where the function f12n(z,t) and fzgn(z,t) are given by
2.2
VA stezfv) o, Mol
n 2
fTR”(z,t) = f% e M h(t-z/v) (5.10.26)
0
B : aﬁzzz
¢ 2 Nt AN R
f, " (z5t) = = e 4nS dn h(t=z/v) (5.10.27)
ﬁ a,.z :

ii) Solution for a band release

The solution for a band release is given by, from the superposition
theorem (H-1)

")\jT

Ni(z,t) = Ni(z,t;bij)h(t)- Ni(z't’bij e Yh(t-T) (5.10.28)

AT
lJ

Mi(2,y,t) = Mi(z,t5b55)h(t)- M;(z,t,by5 e I h(e-T) (5.70.29)

where the functions Ni(z,t; bij) and Mi(z,y,t; bij) mean the solutions
for the aqueous concentrations of the nuclide i for step release with the

Bateman coefficient bij'

5.10.3 Accuracy of Approximate Model

In Table 5.10.1, the time-dependent concentration profiles of the

mother nuclide 2.14x106—yr 237

Np, calculated from Eq. (5.10.25), are
compared with the exact profiles given by Eq. (5.9.18). The approximate

solution gives a fairly good approximation to the exact solution over the
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Table 5.10.1 Comparison of approximate solution, neglecting radioactive
decay in the micropores, with the exact solution for a
first-member nuclide 237Np, step release, K}=100, D]=0.01 mthr,
v=10 m/yr, b=0.01 m, €=0.01.

Distance N1 (z,t)/N? x 10

m t=1.0x10% yr £=1.0x10° yr t=1.0x10% yr
approx. exact approx. exact approx. exact.

0.1 9.967 9.967 9.681 9.681 1803 7.233

2 9.965 9.965 9.681 9.681 7233 TsCas

0.4 9.963 9.963 9.680 9.680 7233 7:233

0.6 9.961 9.961 9.679 9.679 7:233 7.233

0.8 9.959 9.959 9.679 9.679 7233 1.233

1.0 9.956 9.956 9.678 9.678 7.232 7.232

2.0 9.945 9.945 9.674 9.674 7.232 t- 232

4.0 9.923 9.923 9.668 9.667 7.230 7.230

6.0 9.900 9.5800 9.661 9.661 7.228 7.228

8.0 9.878 9.878 9.654 9.654 Fi22] T:227

10. 9.855 9.855 9.647 9.647 722D 7.225

20. 9.743 9.743 9.614 9.612 7.218 12117

40. 9.519 9.518 9.547 9.543 7.206 F.201

60. g.295 9.293 9.480 9.474 7.194 7.184

80. 9.072 9.069 9.413 9.405 7:183 7.168

100 8.849 8.846 9. 346 9.336 F. 112 7.152

200 7.751 7.746 9.011 8.991 7.119 7.070

400 5.696 5.690 8.342 8.307 7.009 6.907

600 3.941 3.934 7.680 7.633 6.895 6.744

800 2.556 2.552 7030 6.974 6.776 6.582

1000 1.550 1.547 6.398 0337 6.655 6.420

2000 0.04273 0.04261 3.646 3.588 6.013 5.622

4000 0.00000 0.00000 0.7239 0.7073 4.650 4,134

6000 0.00000 0.00000 0.07076 0.06889 3.349 2.864

8000 0.00000 0.00000 0.003268 0.003176 2.246 1.864

10000 0.00000 0.00000 0.000070 0.000067 1.401 1:136
20000 0.00000 0.00000 0.000000 0.000000 0.04401 0.03354
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Fig. 5.10.1 Concentration profiles of the decay chain,
234U—> 230Th+ 226Ra, for a step release.
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entire range of migration distance, for times smaller than and comparable

to the half life.

5.10.4 Transport of Three-Member Nuclide Chain

The relative concentrations of a three member-nuclide chain
28y , 230, 26

Ra at t = 10,000 yr, with no daughter initially present,
calculated from Eq. (5.710.25) for.a step release, are shown as the solid
lines in Fig. 5.10.1. The pore diffusivity of each nuclide is assumed

to be a constant value, DT = 0.01 mzfyr. The other parameters used in
this calculation are listed in the figure. At this assumed migration
time of 10,000 yr, the water can travel in the fissure to a distance of
100,000 meters from the waste. Because of the surface retardation

effect due to the molecular diffusion into the micropores, however, all
of these nuclides cannot arrive at such a great distance during this time.

234

At 200 m from the concentration of U, waste is attenuated a thousand-

fold below the concentration at the waste. Because of its relatively Tow

assumed retardation constant, 226

234 230Th.

Ra can migrate farther than its precursor

nuclides U and The dashed 1ines show the concentration profiles
of the nuclide chain calculated from the porous-flow transport model. The
migration path length for each nuclide in porous-flow transport is less
than for fissure-flow transport. In fissure flow transport, the maximum
concentration for both parent and daughter nuclides occurs always at the

waste location.

237 233 229

In Fig. 5.10.2, the concentration profiles of Np - U- Th in
fissure-flow transport with step release and those in porous flow transport

with step release are compared.
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234 230 226

The concentration profiles of U- Th- Ra at t = 50000 yr,
with no daughter nuclide initially present, calculated for a band release
from Eq. (5.10.28), are shown as the solid lines in Fig. (5.10.3). The
dashed curves show the concentration profiles calculated for the porous-
flow transport. Assumed values used in these calculations are included
in the figure. The relatively sharp concentration band of the nuclides
in porous flow trénsport-is smoothed in fissure-flow transport by pore
diffusion, with a Tower maximum concentration than in porous-flow
transport. Even at a time exceeding the leach time, a nuclide can still
remain at the waste location, because of re-release of the nuclide from
the rock medium by molecular diffusion.

3yp 233y . 229

shown in Fig. 5.10.4. For the nuclide 23?Np, with a Tower retardation

Concentration profiles of € Th for a band release are

constant, the maximum concentration occurs at a smaller distance than

233

expected in porous-flow transport, whereas for the daughter nuclides, U

229Th, with higher retardation constants, the maximum concentrations

and
are found at greater distances than in porous-flow transport. The
maximum concentration of each nuclide is an order of magnitude less than

in porous flow transport.



Nomenclature

: interfacial area between stationary water and solid phases
width of waste repository/ constant defined by Eq. (5.7.33)
. constant defined by Eq. (5.2.16) or by Eq. (5.9.12)

: constant defined by Eq. (5.6.22)

: constant defined by Eq. (5.8.18)

. constant defined by Eq. (5.10.20)

: interstice of main fiséure (distance between planer walls)

. constant defined by Eq. (5.2.18) or by Eq. (5.9.13)

: constant defined by Eq. (5.6.23)

: Bateman coefficient, Eq. (5.1.14)

: constant defined by Eq. (5.8.19)

: constant defined by Eq. (5.8.19)

: constant defined by Eq. (5.9.17)

: Bateman function, Eq. (5.1.13)

: constant defined by Eq. (5.7.32)/ integration constant in
Eq. (5.5.36)

: constant defined by Eq. (5.2.29)

: constant defined by Eq. (5.2.30)

- relative concentration of nuclide i normalized by total
concentration at repository

: initial concentration of nuclide i at repository, Eq. (5.5.13)

: constant defined by Eq. (5.5.28)

: constant defined by Eq. (5.10.13)

: width of repository/ spacing of fissures

: constant defined by Eq. (5.7.22)



d : constant defined by Eq. (5.9.17)

qr

D : dispersion coefficient

Di : molecular diffusivity of nuclide i in micropores

mDi : molecular diffusivity of nuclide i in micropores in the mth
medium

Dini : molecular diffisivity of nuclide i in water )

Qﬁ%) : constant defined by Eq. (5.8.20)

qu : constant defined by Eq. (5.9.17)

ey : constant defined by Eq. (5.7.40)

eqr : constant defined by Eq. (5.9.17)

E](x,e) : function defined by Eq. (5.3.18)
E1(z,t;a): function defined by Eq. (5.5.4)

E(z,t;a) : function defined by Eq. (5.5.5)

f(t;a) : function defined by Eq. (5.7.31)

f%n(z,t) : function defined by Eq. (5.10.26)
5 (z,t) : function defined by Eq. (5.10.27)
F(t;a) : function def%ned by Eq. (5.7.34)
g(s) : function defined by Eq. (5.7.30)
ﬂrm(t) : function defined by Eq. (5.8.22)
G(t;a) : function defined by Eq. (5.7.36)

Grk(z,t) : function defined by Eq. (5.10.19)

hz : spacing of repositories

h(s) : function defined by Eq. (5.7.29)
h(t) : Heaviside unit step function
H(s) : function defined by Eq. (5.7.27)

Ji(z,t) : diffusive flux of nuclide 1 at surface of fissure



mJi(z,t) : diffusive flux of nuclide i at surface of fissure in mth medium

: mass transfer coefficient

-~

D.i : distribution coefficient

Kl . sorption equilibrium coefficient defined by Eq.(5.2.3)

ke : Tength of waste repository in direction at water flow

mi(z,y,t) : function defined in Eq. (5.4.12)

m. : release rate of nuclide i per unit time and unit cross-sectional
area of water flow |

Mi(z,y,t) : concentration of nuclide i in stationary water in micropores

+ . . s o : ; :

M7{z,y,t) : concentration of nuclide i in water in micropores with
permeating water

mMi(z,y,t): concentration of nuclide i in stationary water in micropores

in mth medium

n; : amount of nuclide i in waste per unit amount of total waste,
Eq. (5.1.16)
Ni(z,t) : aqueous concentration of nuclide i in fissure
mNi{z,t) : aqueous concentration of nuclide i in fissure in mth medium
Ni : initial concentration of nuclide i at waste location
*
Ni : saturated concentration of nuclide i in water
Pi : concentration of precipitate of nuclide i
P? : concentration of precipitate defined by Eq. (5.5.16)
P? : initial concentration of precipitate of nuclide i

p.(t;a) : function defined by Eq. (5.10.18)
Pi(t;a) : function defined by Eq. (5.2.19) or by Eq. (5.9.14)
P.(t;a) : function defined by Eq. (5.4.23)



q : geometric factor, tortuosity coefficient

q; : rate of mass transfer of nuclide i at interface between water
and solid phases

q(z) : function defined by Eq. (5.8.15)

s : Laplace transform variable

Si(z,y,t) : concentration of nuclide i in solid phase

£ : migration time

t* : duration of a finite amount of precipitate

! : relative time defined by Eg. (5.5.22)

T : duration of release, leach time

T : time defined by Eq. (5.5.45)

u : dummy integration variable

u,u+,u' : velocity of permeating water

v : velocity of water in fissure

v : water velocity main fissure at waste location

W : velocity of water in micropores

W : migration velocity of nuclide i defined by Eq. (5.8.17)

N? : dissolution rate of total waste per unit width of fissure

X : distance in transverse direction parallel to the fissure surface
y,yi- : depth of rock medium, distance in rock medium measured from

surface of main fissure

my : depth of mth rock medium

z : distance from waste in direction of water flow

z' : time variable defined by Eq. (5.8;9)

2 : distance of interface surface of (m-1)th and mth media from waste
m : distance defined by Eq. (5.6.11)



o : arbitrary parameter

yi : constant defined by Eq. (5.4.14)
8 i : constant defined by Eq. (5.10.21)
s(t) : delta function
B : constant defined by Eq. (5.8.21)
: porosity of fractured medium excluding main fissure
Me : porosity of mth rock medium
z : dummy integration variable
n : dummy integration variable
n(z,t) : penetration thickness defined by Eq. (5.2.30)
B : parameter in Eq. (5.3.15)/ dummy integration variable
A5 : radioactive decay constant of nuclide i
ﬂT : constant defined by Eq. (5.7.4)
Mg : constant defined by Eq. (5.10.15)
Mg : constant defined by Eq. (5.10.14)
£ : dummy integral variable
T : resident time defined by Eq. (5.5.9)/ dummy integral variable
¢i(t) . time-dependent aqueous concentration of nuclide i at waste location
¢1(t) : time-dependent source of nuclide i
M (t) : function defined by Eq. (5.6.19)

w : Fourier transform variable
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6. Radionuclide Transport Based on EPA Assumptions for Generic Repositories

6.1. Introduction

As technical support for its draft proposed standard for a geologic
repository, EPA has applied a one-dimensional calculation to estimate the
long-term release of radionuclides from conceptual repositories and to
estimate the health effects therefrom (S1). EPA has included in its model
the effects of solubility 1imit of radionuclides and the time-dependent
thermally driven buoyant flow of groundwater within the host rock due to
decay heat. These effects have not been included in analyses by DOE
contractors (C1) of the long-term radionuclide release from conceptual
repositories in salt, granite, and basalt. The EPA approach also differs in
that it provides for element-specific release rates of radionuclides from the
dissolving waste form, due to solubility effects, whereas the DOE contractors
have assumed congruent dissolution.

However, the EPA analysis is Timited to the transport of a single radio-
nuclide, with no decay precursor, so EPA's consideration has been limited to
the fission products and the first member of actinide decay chains. EPA has
neglected the important daughter nuclides, such as radium-226, that contribute
significantly to the total release and health effects. As an aid to under-
standing the EPA analysis and conclusions of the performance of conceptual
repesitories and the implications therefrom, we present here our derivation
of the analytical solutions of radionuclide transport consistent with the
assumptions stated by EPA. We have extended the EPA-type analysis to deal
with the transport of radionuclide decay chains. The results are illustrated
for the radionuclides considered in the EPA calculations and for the decay

chains leading to radium-226.



6.2 EPA's assumptions

In reviewing EPA's calculations of the transport of radionuclides to the
accessible environment, it was concluded that EPA made the following
assumptions:

1. The repository is a porous medium containing a finite volume of

water, in which the dissolved radionuclides are well-mixed.

2. The repository lies between an underlying lower aquifer and an
overlying upper aquifer, with a natural flow of groundwater from a
lower aquifer to an upper one.

3. Time-dependent thermally driven buoyant flow, due to decay heat, is
superimposed on the natural flow which was described in 2.

4., Contaminated water from the repository is injected as an equiva-
lent plane source into the upper aquifer.

5. There is one-dimensional advective transport of a radionuclide in
a one-dimensional flow field in the upper aquifer.

6. The effect of dispersion is neglected.

6.3 Time-Dependent Concentrations Within The Repository

6.3.1 General Concentration Equation

Although EPA's assumption of complete mixing of water within the
repository is of questionable validity, we will adopt this assumption for
the purpose of developing a general analytical solution to compare with EPA's
calculated results. For complete mixing within the repository, the time-

dependent concentration Ci(t) of radionuclide i within the repository is

given by:
dC, (t) Qr(t)Ci(t) Bi(t)

>0 Ag =0, 1 =1,2,3... (6.1)



where Qr(t) is the time-dependent volumetric flow rate of water through the
repository, V is the volume of water within the repository, Ai is the decay
constant of the ith member and Bi(t) is the time-dependent rate of dissolution
of nuclide i within the repository. EPA's analysis does not include the
terms relating to the precursor radionuclide i-1.

Assuming that at time t = 0 the dissolution begins, the initial
condition is:

C1(0) =0 9= 1;2,3.%. (6.2)

According to our previous studies (H1,P1), the dissolution rate Bi(t)
can be expressed by any one of four different release modes, or by
combinations thereof:

(1) band release, wherein the waste dissolution rate is constant
during the leaching process, i.e., congruent release.

(2) exponential release, wherein all radionuclides in the undissolved
waste undergo dissolution at the same constant fractional amount
per unit time,

(3) preferential release, wherein the fractional dissolution rate
constant of (2) can differ for different radionuclides,

(4) solubjlity-limited release, wherein the dissolution rate of
each element is controlled by its solubility limit in
groundwater.

Applying the technique of our earlier study (H1), the solution for

Eq. (6.1) with Eq. (6.2) can be obtained recursively:
t
C;(t) = exp [- 2;t-R(t)] ] exp [AyT#R(t)] x
0
x [;_1C5_1(7) + B.(x)/v] dr (6.3)



or generally

. t & Fi-1
¥ &0l M //rexP[(li'ki—l)Ti](/;Xpuki-l'li-Z)Ti—ijx /[
3=11=] A o A
TJ+-[
.,,L:/(__exp_[kj1j+R(Tj)] Bj(Tj)de.._...dTi_1dTi (6.4)
where 0
t
0, (t)
Rit) = it (6.5)
0

R(t) is the number of repository water volumes that have flowed through the
repository during a time period t.

For a radionuclide with no precursors, i = 1, and Eq. (6.4) becomes:

——

t
C](t) = 7 exp [-}.I‘t-—R(t)] ]exp[ J\1T+R(T)] B, (t)dr
o]
£ (6.6)
For a nuclide whose concentration reaches a solubility Timit C]*, the

time-dependent concentration is studied in greater detail in Section 6.3.3.

6.3.2 Time-Dependent Flow Through The Repository

The time-dependent volumetric flow rate of water through the repository

is given by:

Q,.(t) = k.AG.(t) (6.7)

where kr (m/yr) is the time independent hydraulic conductivity (m/yr)
of the repository, Ar (mz) is the cross-sectional area of the repository,
and Gr(t) is the time-dependent potential gradient for flow through the

repository. EPA approximates the latter by:



-t -t -ost
Gr(t) = a,e +a,e * Go(l *+age ) (6.8)
where GO is the constant gradient between the lower and upper aquifer, and
a; and o (i = 1,2,3) are constants determined empirically from separate
calculations of the time-dependent thermally induced flow through the
repository.
Substituting Eqs.(6.7) and (6.8) into (6.5) yields:

k A a -o.t  a, -o,t a, -o.t
R(t) rvr[___l_e 1 "&'22“.8 2 +G(t-—3e 3)} (6.9)

where R(0)

n

0.

6.3.3 Concentration of a Single Radionucliide With a Solubility Limit

Here we consider the time-dependent concentration of the first member
of a radionuclide chain in the repository. In EPA's model of rapid mixing
of liquid and dissolved radionuclides in the repository, the concentration
Ci(t) of a radionuclide is initially zero at the beginning of dissolution
(t = 0). It increases with time, and if it reaches a solubility limit C}*,

* %*
it does so at a time t, . From Eq. (6.9), C} and t1* are related by:

*
* 'i * * t-l
¢, = v eXP |- Mty - R(t1 ) exp | AT+ R(T) R](T)dT (6.10)
The radionuciide will begin precipitating at time tl*' To determine the

length of time that the precipitate will exist within the repository, we
write a material balance on the amount P](t) of precipitate of species
1 per unit volume of water in the repository:

dpy(t) 0, (t)c,” B8]
T R LS T A i

*
t> tl > (6.11)



The initial condition is

P1(t] ) =0 (6.12)

Equation (6.11) can be solved with Eq. (6.12) to yield

t
Py(t) = § exp ('th),/. exp(2y7) [ By (1) -61*(A1V + Qu(1)) 1 du
t*

—

,
Bl 5 (6.13)-

As a result of radiocactive decay, convective transport from the repository,
and complete dissolution of the solid waste, the precipitate will eventually

*
dissolve at a time t2 » which satisfies the equation:

* *

*
P](t2 ) =0 |, t] <t (6.14)

After the precipitate disappears, the concentration of the nuclide again
*
becomes time-dependent, as given by Eq.(6.1) for t > t, and with the

initial condition:
I(t2 ) = C1 (6.15)

Equation (6.1) for i = 1 is solved with the side condition Eq.(6.15) to

yield: t
C'I(t) = :TEXD [_ ;\'lt - R(t)]{ f exP[}x]T g R(T)] B](T) dr +
2
* * * *
+ ‘l.’C-i exp [ Aty + R(t2 )] }, t, <t (6.16)

In summary, the concentration Cl(t) for a mother nuclide with a solubility
limit C;” is given by:
C1(t) - Eq.(6.6) , tl* 5450

* * *

C.t ,t] ititz

*

Eq:(6.16) . t, <t (6.17)



6.3.4 Approximate Solution For Concentration in the Repository

The time-dependent concentrations given in Section 6.3 and 6.5 are
complicated because of the time-dependent integral R(t) of repository
flow. To simplify, and to obtain a nonrecursive solution for the nuclide
chain, we approximate the time-dependent normalized water flow rate
Qr(t)fv by‘a constant value A averaged over a time period from t = 0 to

t = te, SO that

]
r_V_"f (t*)dt’ (6.18)
(

Substitution of (6.18) in (6.1) yields:

dc.(t) B, (t)
T+ (A + 2y Colt) = ——+ A5 4y (t)

T, A =20, 1% 1,2,8 +. (6.19)

The initial condition is the same as Eq.(6.2). Taking the Laplace

transform of Eq.(6.18) with respect to time:

o

o o i s

where E} is the transformed concentration:

oo

fa = C}(s) = g( exp (-st) Ci(t) dt (6.21)
From Eq.(6.20), f% is
B. A: 1 C.
= 1 i-1 ~i-1
Ci = S+ki + ‘__EIE;“* (6.22)
where

ki = kr + A.I (6-23)



For i = 1 through n:

B

5 & V(s7k;)

R L
2V | stk, T_+k ) (s+k )

il -5 + *n=1"Bn-1
NV stk stk g )(s+ky)
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‘ (s+k1)(s+k2)...(s+kn)

+

The general form for C. 145

7 sl Z(_J.Ti_

1OVA S
=1
LT (s+g)

By using the same technique as in our previous report (H1,

Eq.(6.25) can be rewritten as

. B.
= _ 1 i i 7
C'I_VJ\' 2 E;j ZFﬂ 5+¥<1
j=1 1=]
where
E.) = 717‘ A
i g=j "q
: i -1
-I - 1 -y
Fj] [ égﬁ (kq kI)J
g#1

The inverse of Eq.(6.26) is

J

jad i d i
C, (t) 'Vh] ): E. T=Ej Fj] exp(—k]t)@Bj(t)

J=1

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)



where

exp (-k t)@B(t)

t

'~I‘exp (- t)B;(t-T)dt (6.30)
0

Equation (6.29) is the general expression of the approximate solution for

the radionuclide concentration in the repository, under the constant-flow
approximation. As mentioned in Section 6.3 we have four different dissolu-
tion modes for Bi(t)‘ The constant-flow solution for the three different
release modes which does not include the solubility Timits of individual
radionuclides is derived below.

(a) Band release mode: Here Bi(t) is given by

n, (t)M°
B;(t) = —5— [h(t)-h(t-T)] (6.31)
and )
;
ni(t) = ;2% bij exp (-Ajt) (6.32)

where ni(t) is the concentration of nuclide i in the solid waste, MO is the
initial amount of waste, h(t) is the Heaviside step function, T is the

leach time, i.e., the time for total dissolution, and bij is the Bateman

coefficient
: i
b, = o/ (O - A-{] (6.33)
1] g=m 9 1=p 17
143

By substituting (6.31) in (6.29) one obtains the concentration of nuclide

J
an—[
=y Ai

m

i in the repository as

L v L 4l by
GOy 2 B N Xk M) VE-21)
ij-1 1=3 m 1
m=1
where wlm(t) is:

Win(t) = [exp(-kyt) - exp(-2 t)] h(t) -

- exp(-kyT) [exp(-k;(t-T))-exp(-2 (t-T))] h(t-T) (6.35)



(b) Exponential release mode: In this case the Bi(t) is defined as

B (t) = fni(t)MOh(t)

and
i

2: 1§8%P (- 2 t)

where f is the fractional release rate for all nuclides, and Qﬁ is

The Bateman coefficient bij is given by Eq.(6.33).

The concentration of nuclide i in the repository is then

i . 4 . b.
_ P 1 i jm
C.(t) = o— Z Fs X (%)
1 V i=1 B J1 %;% g.-ky TIm

where X]m(t) is

Xy (t) = [exp(-kyt) - exp(-0 t)] h(t)

Tm

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

(c) Preferential release mode: For this release mode the Bi(t) is given by

. 0
Bi(t) = fini(t)M h(t)
and
i
n](t) 2 bij exp(-0.t)
‘}..-
where
Q.= x. + f
J AJ J

The Bateman coefficient bij now becomes:

(6.41)

(6.42)

(6.43)

(6.44)

10.



The concentration of nuclide i in the repository is then

-ty

£ .M°

;A R
B0 = g T K, F, ety = Vg E) (6.45)
i VA : J z: 1 ng% (ﬂm-—k1 m

J= =]
where Y1m(t) is
V(1) = [ex (-kt) - exp (-g.t)] ht) - (6.46)

6.4 Far-Field Concentration of Radionuclides

6.4.1 Exact Solution for a Single Nuclide

The contaminated water from the repository is assumed to mix
uniformly with the upper aquifer which it crosses. The mixing point is
designated by z = 0. Assuming that the flow rate Qa of the upper aquifer
is constant and is much greater than the repository flow rate Dr(t),
the concentration boundary condition Ni(O,t) in the upper aquifer at

= 0 is:

c, (), (t)
N_[(O,t) = Q— ,t >0 (6.476)

a

The governing equation in the one-dimensional flow field without dispersion
given by:

oN. aN. K 1
_-!-l- V. 1 - - N
ot i 3z 17 K i-1 7i-1

, with o = 0 1=1,2,3.4. (6.47h)

By substituting the C](t) given by Eq.(6.6), and the general solution to

the above transport problem (H1, Eq.(ﬁ.]?)) one obtains
Nl(z,t) = VQ exp [ Mt - R(t-z/v )]Q (t- z/v1) X

t-z/v
1
[ e By R, tozy (6.9)

1.



where z 1is the distance from the discharge point in the upper aquifer,

and Vi is the migration velocity of nuclide 1:
iy = v/K1 (6.49)

where v is the pore velocity in the upper aquifer and K] is the sorption
retardation constant for nuclide 1. 1In general, for local sorption
equilibrium

vi = v/K; (6.50)

The far-field concentration Nx(z,t) of the mother nuclide with a
solubility 1imit is obtained by substituting the C1(t) from Eq.(6.17)

into (6.47a);

Ny(z,t) = Eq.(6.48) , 0 < t-z/v; <t (6.51a)
¢, Q. (t-z/v,)
-z/v
" - 0 ! exp (-A1 z/v1) :
* *
t; 5_t-z/v1 <t (6.51b)
Q,.(t-z/v
il | exp [} S R(t—z/v})] ¥
t-z/v1
* * *
x{[ exp [l-lT + R( )] B](T)d—l +VCy exp I}‘]tZ + R(t2 )]}
J ox
k2
*
sty < t-z/v} (6.51c)

Equations (6.48) and (6.51b,c) have been numerically integrated to obtain
the results shown later in Section 6.5.

6.4.2 Approximate Solution for Daughter Nuclides

For the daughter radionuclides we adopt the approximation in

Section 6.3.4 that the repository flow rate Qr is constant. Substituting

12.



into Eq.(6.47) the equations (6.34), (6.39), and (6.45) derived for band
exponential, and preferential release modes, respectively, one obtains

the general expression for the concentration of the above release

modes as:
A M i 1
Ni(Z’t) = —y\}‘O‘-eXp (—A_iz/'vi) Z Ej1 z Fj] %
o 3= 1=3
J b'm
x 3 s g p(t-z/voh (t-z/vs) +
=1 "m ]

M 5 jod
! vQ, 2 A 2 (ew (-Ag2/ V) /By") 2 01% .

J=1 m=Jj 1=
_ 1#m
q‘ 5 J j p b .
x 2 E 2. Fap Y ab- x
p:‘] q:p S:'I S g
t
X‘}( 91m(T)qu(t-T)Qr(t-r)dT - (6.52)
0

where Ni(z,t) is the concentration of nuclide i at distance z and time t, and

R ™ [’1KT ; band release
f ; exponential release (6.53)

]\ f1 ; preferential release

i i-1
T (Aq/vq) (6.54)
q=J

™=
1]

c
BY = 7T (1/v_ - 1/v.) (6.55)
q q
q
o, <[ (Bgm = b1 (6.56)

9yn(t) = exp E?lm (t-Z/an] h(t-z/v,) (6.57)



(}‘]/V'l = )‘m/\fm)

A, = (6.58)
m (1/v1 - 1/vm)
qu; band release
g™ Mg exponential release (6.59)

qu ; preferential release

The convolution integral in Eq.(6.52) has been performed analytically,
and Ni(z,t) can be easily calculated from Eq.(6.52).

6.5 Numerical Demonstration Using EPA Parameters

Here we demonstrate the application of the foregoing analytical
equations to calculate the time-dependent concentrations and cumulative
releases of radionuclides from the generic repositories considered by
EPA. The same parameters adopted by EPA (S1) were used in numerical
evaluations. Principal assumptions and parameters are:

1. The repository contains unreprocessed spent fuel initially

containing 100,000 Mg of uranium.

2. Dissolution begins 500 years after emplacement.

3. Dissolution follows the exponential release mode, with a rate

constant f = 10_4/yr.

4. The effective transport distance in upper aquifer from the

mixing point z=0 to the biosphere is 1600 m.
5. The average groundwater velocity in the upper aquifer is 2.1 m/yr,
resulting in a water transport time to the biosphere of 760 years.
Table 6.1 shows the radionuclide inventories (S1), sorption retardation
constants (S1), solubilities (S1), and health effects per curie released

to the environment (S2) used by EPA.

14.



Table 6.1 EPA's Properties of Radionuclides /4

Retardation Solubility Health

Nuclide Half Life Inventory Coefficient Limit Effect
Factor
Yr ci ppm

c-14 5730 2.8 x 10° 1 - 4.58 x 1072
Sr-90 28 6.0 x 10° ] - 1.21 x 107
7r-93 1.5 x 10° 1.9 x 10° 100 0.001 -
Tc-99 2.12 x 10° 1.4 x 10° 1 0.001 2.86 x 1077
Sn-126 1.0 x 10° 5.6 x 10° 10 1.0 1.20 x 107
1-129 1.7 x 10’ 3.8 x 10° 1 2 1.09 x 1072
Cs-135 2.0 x 10° 2.3 x 10° 1 - 3.83 x 1073
Cs-137 30.2 8.6 x 10° 1 - 1.98 x 1072
U-234 2.5 x 10° 1.5 x 10° 100 s »
Np-237 2.1 x 10° 3.3 x 104 100 0.001 5,98 x 107
Pu-238 86.4 2.2 x 108 100 9.001 2.29 x 1072
Pu-239 2.44 x 10 3.3 x 107 100 0.001 6.93 x 1072
Pu-240 6600 4.9 x 10 100 0.001 6.54 x 1072
Pu-242 3.87 x 10° 1.7 x 10° 100 0.001 6.77 x 107
An-241 458 1.7 x 10° 100 50 731 % 10
Am-243 7370 1.7 x 10° 100 50 2.77
Ra-226 1620 . 1 g 3.11

a/ A1l values, except for radium-226, were taken from (S1). For radium the retardation
coefficient is set to be equal to that of strontium, and the health effects factor is
derived from data in (S2).

‘G



6.5.1 Repository Characteristics and Groundwater Flow Specifications

Two different conceptual repository sites were considered by EPA which are
discussed here. The first site considered is basalt which is characterized
as a host rock of high permeability (conductivity) and with an underlying
aquifer. The second site is granite which has a low permeability and no
underlying aquifer. EPA assumes that those of a geological characteristic
are identical to basalt site. For the same retardation constants and
solubilities calculated results for EPA's basalt repository will be identical
to EPA's tuff repository. EPA also considers a salt repository, but the
emphasis is on the unexpected failure mechanisms so the salt repository
is not considered here.

Egs.(6.7) and (6.8) are the governing equations for the thermally
driven buoyant flow in basalt and granite repositories respectively. Fig.
6.1 shows the buoyant flow as a function of time given by Eqs.(6.7) and
(6.8) and are shown for these sites. Empirical constants of Eq.(6.8),
dimensions of the repositories, and the conductivities of host rocks are
listed in Table 6.2. EPA has adopted for granite a hydraulic conductivity
and hydraulic gradient which is tenfold smaller than that of a basalt
site. Water flowrate in the basalt repository decreases by about tenfold
during the thermal period. After 20,000
years of implacement a constant flowrate of 2,400 m3/yr is obtained. In
the first two hundred years after waste dmplacement the water flow rate in
the granite repository is 1/100 that of the basalt site. The water flow
rate in granite decreases rapidly thereafter and eventually reaches zero.
This is caused by lack of lower aquifer to supply water.

Dissolution of the radioactive waste is assumed to begin 500 years

after waste implacement. The flowrates through the repositories are
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Table 6.2 Parameters used by EPA in

driven buoyant flow (S1)

calculating thermally

basalt granite

Empirical a, 1.323%30"L 1.32x10"2
constants for 1 5
thermally as 1.02x10° 1.02%10™
driven buoyant e B
gradient aj 2.88 i -

o TP L . l.ex1073

oy, yr-l 3.1x10%

33, yr-l 2.6x10-4
Constant
gradient from | Gy 1.0x10~1 -
lower aquifer
Conductivity _4
of host rock Ky, m/yr 3.0x10~3 3.0x%x10
Cross- 6
sectional AL, = 8.0x10
area of
repository
Volume of 3 6
water in the V, m 2.0x10
repository

—p e m——— - ——T—— — e —

Holdup time of 2
repository water, yr, 1.67%10 5,7x104

at 500 yr

b
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12,000 m3/yr for basalt and 35.2 m3/yr for granite.

6.5.2 Radionuclide Concentrations

Fig. 6.2 shows the variation of the concentration of plutonium-239
in the repositories with time, in absence of solubility Timit. The higher

concentration of Pu239

in the granite repository is due to lower groundwater
flow in the site. Figure 6.3 shows the calculated time-dependent rate of
discharge of plutonium-239 from the dissolving waste and from the repository,
neglecting the plutonium solubi]ity limit. The discharge rate of plutonium-239
from the dissolving waste to the repository water is almost the same as the
discharge rate from the repository to the upper aquifer, because of the
relatively small assumed holdup time of the groundwater in the basalt repository.
From EPA's data we estimate a holdup time of groundwater in the basalt
repository of 170 yr at the beg{nning of dissolution,increasing to 830 yr

at 20,000 yr after emplacement. The discharge rate in the basalt repository
will decrease eventually because of the exponentially decreasing dissolution
rate of the undissolved waste.

From the EPA data we estimate the holdup time of groundwater in the
granite repository to be about 6 x 104 yr when dissolution begins, increasing
to 2 X 106 yr at 10,000 yr after emplacement. Because of this relatively
long holdup time, the increasg in the concentration and discharge rate in
granite is slower than that of a basalt repository. During the period of
concentration increase, the groundwater flowrate is continuously decreasing,
and the product of the concentration (Fig.6.2) and flowrate in (Fig.6.1)
yields a maximum at about 2,500 yr. As the flowrate tends to zero so does
the product of concentration and flowrate. After 104 yrs radioactive decay

of plutonium-239 further decreases this product.

EPA assumes a plutonium solubility of 1 part per billion (ppb) in
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5 Ci/m3 for plutonium-239.

groundwater, which corresponds to 6 x 10~
Solubility interference from other plutonium isotopes is neglected. The
calculated concentrations shown in Fig. 6.2 for basalt and granite repositories
exceed the solubility, so the results shown in Figs. 6.2 and 6.3 are un-
realistically high. The calculated concentrations of plutonium-239 at EPA's
assumed distance of 1600 m to the biosphere are shown in Fig. 6.4. The
concentrations are calculated with and without the solubility 1imit. There

is a thousand fold reduction in maximum concentration due to solubility

1imit. For basalt, the solubility 1imit causes an increase in discharge

of Pu239

to the biosphere. This is due to formation of precipitate in the
repository. This broadening of the release band is not seen for granite
within the concentration range of Fig. 6.4.. The solubility 1imit greatly
decreases the maximum concentration of plutonium discharged to the environ-
ment from EPA's granite repository, because the lower water flow rate through
granite reduces the rate of dissolution of plutonium and the rate of discharge

of plutonium to the upper aquifer.

6.5.3 Cumulative Releases

In EPA's analysis, the cumulative amount of radionuclides released
during 10,000 years is used to evaluate the total health effects from the
geologic repository. Here we will calculate the cumulative release as a
function of time, but the time period of this release will not be
arbitrarily terminated at 10,000 years.

The cumulative release Ui(z,t) of radionuclide i at position z and up

to time t is obtained by:
t
U, (z,t) =Qa/ N.{z,r)dt (6.60)
0

Fig. 6.5 shows the increase of the cumulative release with time at z = 1600 m

for basalt; similar results for granite are shown in Fig. 6.6. Parameters
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used by EPA (S1) in calculating these releases are listed in Table 6.2.

As shown in Figs. 6.6 and 6.7, carbon-14, technetium-99, iodine-129, and
ceéium-135, which are the radionuclides with no sorption retardation,
appear in the environment after a time delay of 1262 yrs, which is the sum
of two delay times, a 500-year delay in the onset of dissolution plus EPA's
assumed water transport time of 762 years. The Tin-126 with assumed
retardation constant of 10 is released to the biosphere after 8100 years.
EPA assumes retardation constants of 100 for the actinides, so actinides
are released to the biosphere after 76,700 years. Consequently, health
effects from released actinides do not enter into EPA's analysis of the
potential health effects of its conceptual repositories, because EPA does
not consider radionuclides released after 10,000 years.

EPA's analysis (S1) does not include radium-226, possibly because this
radionuclide is not the first member of a decay chain. Radium-226 is not
initially present in the radioactive waste, but is a decay product of
plutonium-238, americium-242m, and curium-242, which are present in the waste.
Although the precursors of radium-226 are all actinides and, according to
EPA's assumptions, until well after EPA's cut-off time of 10,000 years, the
daughter radium-226 is more mobile and must be considered. In our analysis
we include the effect of Ra226. We assume that the radium sorption constant
is the same as that of the other aikaline earth, e.g., strontium, for which
EPA assumes no retardation, i.e., K= 1. On this basis some amount of
radium will appear in the environment, along with the other non-sorbing
radionuclides, after 1,260 years.

The curves for radium-226 in Figs. 6.5 and 6.6 are examples of the
application of the equations developed in this chapter for the transport of

radionuclides in a decay chain of arbitrary length. In the first 1000 years
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after emplacemenf for the basalt and granite repositories, neglecting
solubility Timit, only technetium-99 and cesium-135 are predicted to have
curie releases exceeding that of radium-226. As we shall see later, the
calculated health effects from released radium-226 far outweigh those from
the other radionuclides released during this time period. It is apparent
that the release of radium-226 must be considered in a realistic analysis
of the potential hazards from a geologic repository, even during the
relatively short time period of 10,000 years assumed by EPA. The equations
for the transport of radionuclide decay chains are vital for this ané1ysis.

The equations used to predict the transport and release of radium-226
are the approximate exponential-release solutions of Section 6.4.2, where
it is assumed that the flowrate of groundwater through the repository is
constant. To estimate the value of the flowrate to use in these calculations,
the cumulative release of uranium-234 predicted for time-dependent flow is
compared in Fig. 6.7 with that predicted for constant flow. The calculated
curve for uranium-234 for an assumed constant repository flowrate of 3,850
.m3/yr is identical with the exact curve for uranium-234, calculated by
applying Eq.(6.6) and using the time:dependent repository flowrate deduced
by EPA. A constant flowrate of 3,850 m3/yr through the basalt repository
is used to estimate the cumulative release of radium, in the absence of
solubility Timits. It is this average flowrate that has been used in the
calculations for Figs.6.5 and 6.6.

6.5.4 Cumulative Health Effects From Released Radionuclides

A stated objective of EPA's draft proposed standard is that there shall
be no more than 1,000 calculated health effects over 10,000 yr from the
environmental releases of radionuclides from a repository containing waste

from 105 Mg of uranium fuel. EPA has provided data (S2), shown in Table 6.1,

'
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to be used in calculating the number of health effects per curies of
activity released to the biosphere, based upon its estimates of world
population and worldwide averages for the consumption of surface water for
drinking and for the consumption of food grown in or irrigated by water.

Our resulting calculations of the cumulative health effects as a function of
time for EPA's basalt and granite repositories are shown in Fig. 6.8, and 6.9.
~The labels on the curves for the total health effects of all radio-

nuclides other than radium-226 indicate the radionuclides that are the main
contributors to the cumulative health effects during the period indicated.
Within this mixed group, technetium-99 is the main contributor during the
period up to 10,000 yr, except when the solubility 1imit of technetium is
considered. In the latter case carbon-14 becomes the main contributor.
Tin-126 is the main contributor from 104 to 105 yr. From 205 to 106 yr
plutonium-239 is the main contributor if solubility limits are not
considered, and tin-126 and americium-243 are the main contributors when
solubility Timits are considered.

EPA's draft proposed standard 1ists curie releases of individua1 radio-
nuclides that are upper-limit releases for 10,000 yr. The upper—]imi£
release for technetium-99 is 2 x 103 Ci per 1000 Mg of U, which corresponds
to 2 x 105 Ci for a 105 Mg repository. This compares to our calculated
cumulative release of 6.4 x 105 Ci of technetium-99 in 104 yr, as shown in
Fig. 6.5, ignoring solubility limit. There is an apparent inconsistency,
in that the calculated curie releases of technetium-99 for basalt are ten-
fold greater than allowed in EPA's draft standard, yet the calculated
health effects from technetium-99 just meet EPA's goal of 1,000 health
effects in 10,000 yr. The discrepancy occurs because EPA has decreased the
allowable curie release of technetium-99 tenfold below that which is

calculated by EPA data to result in 1,000 health effects (P1). This results
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from EPA's view that uncertainties in the data on uptake of technetium-99
by plants justify this reduction in the allowable curie release limit for
technetium-99.

The curves for the health effects from radium-226 are calculated on the
basis of no solubility limit of the uranium precursors of radium-226. It
is apparent that even during the 10,000 yr period adopted by EPA radium-226
contributes over an order of magnitude more health effects than the sum of
all the other radionuclides released during this period. The cumulative
health effects increase rapidly and level off only after about 105 yr,
based upon the use of EPA's assumptions and parameters. Separate calculations,
to be reported later, show a decrease in the cumulative health effects from
radium-226 when the solubility of uranium is taken into account, but the
conclusions concerning the importance of radium-226 remain valid.

It is apparent from Fig. 6.8 that when radium-226 is considered EPA's
goal of no more than 1,000 health effects in 10,000 yr is not met by EPA's

basalt repository. This is a consequence of the large flowrate of ground-

water within the basalt repository, as estimated by EPA.



6.6 Nomenclature

ass (i=1,2..) Emperically fitted constant for buoyancy

A Defined by Eq.(6.54)

Ar Cross-sectional area of repository, [m2)

Bij Bateman coefficient, Egs.(6.33) and (6.44)

Bi(t) Release rate of nuclide i from waste, (atoms/yr)
By L Defined by Eq.(6.55)

Ci(t) Concentration of nuclide i at repository, (atoms/ms)
Ci(s) Defined by Eq.(6.21)

Ci* | Solubility 1imit of nuclide i, (atoms/m3)

D, Defined by Eq.(6.56)

g Defined by Eq.(6.27)

f Fractional release rates of all nuclides, (1/yr)
f. Fractional release rate for nuclide i, (1/yr)
FJ.]i Defined by Eq.(6.28)

g1m(t) Defined by Eq.(6.57)

G0 Constant hydraulic gradient from lower aquifer
Gr(t) Hydraulic gradient from repository

K. Permeability of host rock, (m/yr)

K: Retardation coefficient of nuclide i



M Initial amount of nuclide i, (atoms)
n_]0 Initial concentration of nuclide i in the solid waste
ni(t) Concentration of nuclide i in the solid waste
Ni(zt) Concentration of nuclide i in groundwater, (atoms/m3)
Pi(t) Amount of precipitate at repository, (atoms/m3]
Qa Volumetric water flow rate in upper aquifer, (m3fyr)
Qr(t) Time dependent water flow rate from repository, (m3/yr)
R(t) Defined by Eq.(6.5)
£ Time after beginning of leach, (yr)
t]* Beginning time for precipitation, (yr)
*
t, Time at precipitate djsappears. (yr)
T Leach time for band re]eése, (yr) =
Ui(z,t) Cumulative amount of nuclide i at distance z and up to time
t, (atoms)
v Groundwater velocity in upper aquifer, (m/yr)
Vs Migration velocity of nuclide i, (m/yr)
v Volume of water within the repository, (m3)
H]m(t) Defined by Eq.(6.35)
Xm(t) Defined by Eq.(6.40)
Y1m(t) Defined by Eq.(6.46)



Distance from repository, (m)

Emperically fitted constant for buoyancy flow, (1/yr)
Constant defined by Eq.(6.58)

Constant defined by Eq.(6.23)

Decay constant of nuclide i, (1/yr)

Constant defined by Eq.(6.18)

Constant defined by Egs.(6.38) or (6.43)
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7.1 Mass Transfer From a Fuel Canister by Diffusion

Paul L. Chambre

Consider a cylinder of finite length imbedded in a porous medium. The
cylinder matrix contains a diffusing specie such as Si(OH)x or U0, which
is set free at the surface of the cylinder at the solubility Timit ES of
this specie in water and then diffuses into the exterior unbounded space.
The diffusion coefficient is assumed constant. The governing equation for
the conservation of mass of the diffusing species outside the cylinder in

absence of any losses is

Kk %€ - p g (7.1.1a)

Here Df is the diffusion coefficient of the species in water and K its

Iretardation coefficient.

The boundary conditions are respectively

¢ = ES (7.1.1b)

on the surface of the cylinder and

c=0 (Poldit)

on an infinite spherical surface enclosing the cylinder. If the concentra-
tion at infinity is non-zero, a change in the reference datum of C reduces
that problem to the above formulation. Prior to the time t = 0 the diffusing
nuclide has zero concentration in the exterior (porous) medium.

For a cylinder of finite length, the Laplace operator in eq. (7.1.1a)

has the form

2 - 0 ! ) }_3! } 1 B{ ) 3 ( )
v{ ) w ¥ et ;? s ~—2—az (7.1.2)



where r, 6, z are cylindrical coordinates. For the exterior diffusion
problem which we wish to solve, compact analytical solutions of egs. (7.1.1)
and (7.1.2) are not possible because the interior bounding surface is a
cylinder and the exterior surface is a sphere. This of course does not
mean that the posed problem does not possess a solution. Indeed one can
obtain it in numerical form or by analytical approximations. Since we
wish to retain a compact analytical solution to this problem, a suitable
approximation is made for the shape of the cylinder. The finite cylinder
shape is approximated by a slender prolate spheriod which is generated by
rotating a family of confocal ellipses about their major axis. This
family generates not only the replacement for the finite cylinder, but
produces also the outer spherical boundary which is a member of this
family.

One might consider also other forms for the approximation. Suppose
the inner surface of the domain is maintained in the exact form of a
finite cylinder and the outer boundary is now a cylinder, but of infinite
extent. For simplicity, consider furthermore that a steady state prevails
so that one deals with the solution of Laplaces equation in the exterior
field. Subject to the boundary condition (7.1.1b) the solution sought is
mathematically equivalent to the problem of determining the capicitance
of a cylinder in an infinite cylindrical box. It .is well known that this
problem does not possess an exact closed form solution although it can
be readily shown that such a solution exists and is unique and can be
approximated by various means. With these comments in mind, we reiterate
that the interior cylinder surface will be approximated by a slender
prolate spheroid which is described by the prolate spheroidal coordinates

(asBs¥). Since the reader may not be familiar with this coordinate system,



Lo ]

we review and summarize in the following its main characteristics.

The relationship between prolate spheroidal coordinates (a,g,y) and
the common rectangular coordinates (x,y,z) are given by

x = f sinha sing cosy

y = f sinha sing siny (Z.1.3)

z = f cosha cosg -
where f is the focal distance of the prolate spheroid measured from the
coordinate origin, see Fig. 7.1.1. To exhibit the geometric significance
of a, take o to be constant and let

a = f cosha, b = f sinha il Tl )
in eq. (7.1.3). If these three equations are squared and added, there

results

(£)2+(x)2+(5)2=1 ' (7.1.5)

b b a

Since a and hence a and b are constants, this represents a prolate spheroid

in the X,y,z coordinate system (see Fig. (7.1.1)). One observes from

(7.1.4) that as o becomes small, the prolate spheroid tends to a small diameter
“cylinder". This "cylinder" has a radius b and a length given by (7.1.5)

as 2a. In the following, we shall approximate the cylinder by small

positive values of a. On the other hand, as o becomes very large, so do

both a and b and (7.1.5) tends to the description of a sphere of large

radius. The entire o range generates a family of prolate ellipsoids.

In order to exhibit the geometric significance of R, take g to be a

constant and Jet

a="f cosR, b =f sing 0

Again square the equations in (7.1.3) and add so that
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o= const [ ==F-X/|\ y=m/2
l“ '1F
y=0 .
-y
X
XBLB828-6304

Fig. 7.1.1. Prolate spheroidal coordinates (a,8,V).
Coordinate surfaces are prolate spheroids
(o = const), hyperboloids of revolution
(B = const), and half-planes (¥ = const).

won
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2 (ﬁ_:%%JL)+ (g) =1 (ko)

Hence for B constant and thus a and b constant, this equation represents

a family of hyperboloids of two sheets with foci at + f as shown in

Fig. (7.1.1). When B =0, a = fand b = 0, while when g = 1, a = -f

and b = 0. For either of these cases (7.1.7) reduces in the limit to

the collapsed hyperboloid, i.e., the positive and negative z axis from f

to = and -f to -» respectively. When g = %3 a=0,b=f for which (7.1.7)
reduces in the limit to z = 0, i.e., the x-y plane. Finally, as can be
seen from Fig. (7.1.1), the family of half planes ¥ = constant with

0 <Y 2w forms the third member of orthogonal coordinate system a,g.y

ey

which has the range
OLage; 0BT 0L Y g 2T {4.1.8)

In this coordinate system the square of the element of arc length is

given with help of (7.1.3) by

s 2

(ds)2 = f° (sinh®q + sinzs) [Eda)z % (dg)?] +

+ f2sinh?a sinZg(dv)? (7.1.9)

From this one obtains the metric coefficients of this coordinate system

as

hy = hg = f (sinh%a + sinZg) /2, h, = f sinha sing (7.1.10)

Now the form of the governing eq. (7.1.1a) in this curvilinear orthogonal
~ h " h h
Fo [ 15 (R E) 5 () -
a By e g o 8 R

T
g%- ( ﬁ@ﬁ %%) :] (7110

coordinate system is

>

oy
Lex]




‘which reduces with help of (7.1.10) to

58 1 { 1) ( o )
K—-=0D : — |{sinha -— +
PR NN sinB'gé) + ( 1] ) 28 } (7.1.12)
sInB__9p 3B Sinﬁza sinzé sz

oy <o <™, 0<BgMOLYPLK2T
An alternate form of this equation is useful. Let

g = cosha, u = cosB, Yy =y (F.1.13)

then (7.1.11) transforms into

~ D ~ -~

oC _ f { 3 [ 2 ac ? 2y oC
(. [ £] 02 [0t £] -

ot f2(€2_UZ) 14 9z H au

+ - Q?“Uz > 328}
(Z-1)01-8)

- (7.1.14)

CS <g<eo, -l gugl,0<yg 2T

as one can readily show. In (7.1.12) and (7.1.14) . and ¢ describe

the cylinder (prolate spheroid) surface. Particular solutions to this

equation can be constructed by separation of variables. With

-52t

c(z,usPst) = e 6 (2> 1Y) - (7.1.15)



¢ satisfies the Helmholtz equation in prolate spheroidal coordinates

22 2
3 2 1y 93¢ 3 .2y 3¢ L - 3 ¢
= [:(c 1) a;] = [U u) ap]+ BRI '

2
+ K2 (gz—pz) ¢ = 0, where K2 = 15%1~5 (7:1.16]
f‘

This equation can be separated again with

¢ (zowy) = Ry (koz) S (ko) 5 (my) (7.1.17)

Here the radial function R (k,z) and the angular function - (k, 1

satisfy the differential equations

2

gE [(c2-1) %E- an (k,g)] - (Kmn . kZCZ + Eg:;-) Rmﬂ(k,c) =0
2

(1) 8 ] e -

(7.1.18)

The separation constants k2 and K which are eigenvalues in our problem, would

be determined by boundary conditions imposed on Rmn and Smn' This method

of solution is not pursued in the following since the determination of the

spneriodal eigenfunctions and eigenvalues for the exterior problem are

mathematically quite involved. We will instead obtain the necessary

information about the solution by application of Laplace transform techniques.
Before proceeding with this, we make the simplication that the concen-

tration of the diffusing element on the cylinder surface is independent of



the angle y and constant over the entire surface so that c(z,u,t) obeys,

see eq. (7.1.14).

ac . 1 Ja |2, 8¢ |, 8 IRAN:I4
- oyl [en il 5 [o05])

L <L <, -1gpgl (7.1.19)
clzous0) =0, gg g g <=, -Tgugl (7.1.20)
c(geoust) =1, =1gus1, >0 (T:1:21)
C(e,u,1) = 0 1gsugl, 120 (7.1.22)
BC!%;IO,TJ = 0 CS <o, 120 (? ]'23)
where
o Dt
C(CsUaT) = & ,\, — y = Lz (7124)
Ce Kf

The initial condition is given by (7.1.20). The boundary conditions on

the surface of the cylinder and on the spherical surface at the point at

infinity are given by (7.1.21) and (7.1.22) respectively. Eq. (7.1.23) describes
the symmetry of ¢ about the midplane p = 0 of the cylinder. We now develop

the steady solution as well as the early time and ]argé time (approach to

the equilibrium) behavior of this solution.

The Steady State Solution

For this case the governing equation for c(z) and its side conditions

reduce to

%5 [(cz-nﬁ—‘;] =0, g . gt<= (7.1.25)



clzg) =1 (7.1.26)
cle) =0 (7.1.27)
If the concentration at infinity is non-zero, a change in the reference
datum (c) reduces that problem to the above formulation. Here ¢ has no
u dependence because the boundary conditions (7.1.21) to (7.1.23) can be
met in the indicated way. The solution to this problem is elementary

and is given by

elg) = gﬂ%;l) gk b (7.1.28)
0'>s
where
0,(c) = % log %%J]— (7.1.29)

is the Legendre function of the second kind and zero order. In view of

g+l _ cosha +1 _ 2o
2=T ™ SosFa o7 ¢ ooth™y (7.1.30)
Eq. (7.1.28) yields
log coth %
C(a)=--——a, aséo;<°° (7.1.31)
S
log coth 5
The diffusion flux is then given by
J=-D, ¢ d
J = -Dy cg grad c
D¢
= 86 e
= ha i (7))

Here De = EDf is the effective diffusion coefficient of the species in the
water saturated porous medium, and € is the porosity of the medium. Eq.(7.1.32)
with the help of (7.1.10), yields the diffusion flux from the surface of the

prolate Spheroig

D, ¢
+ e s 1
Jg = ( 7 e i 7 £7:1:33)
(sinh . + sin“B) "“log(coth z—J sinh a




One observes that although the concentration is uniformly distributed over
the surface a = Og s the surface flux is a function of position g. The

flux is largest over the top and bottom caps of the cylinder where g is
close to o and 7 as shown in Fig. (7.1.1). The expression (7.1.33) is
typical of the surface flux from an arbitrarily shaped body, in a diffusion

field governed by Laplace's equation, subject to boundary conditions

of type (7.1.26), (7.1.27). Dimensional analysis shows that

- De ES
Jg = S function of body geometry

where 2 is some characteristic body dimension, which in the present case
can be readily identified from (7.1.33). In order to obtain the total
rate of mass transport from the cylinder, one must integrate 35 over the

surface S of the prolate spheroid

m=_]s' 13| ds (7.1.34)
Since dS = hshlp dBdy one obtains with (7.1.10) and (7.1.33) the formula for
the total rate of mass transport from a prolate spheroid

4nD_c_f
M= A : (7.1.35)

o
log{coth gi)
For a slender prclate spheroid which is to approximate a cylinder of

length to radius ratio %—2_10, a, << 1. Hence one can approximate

X
coth () v &, b f o by using (7.1.4) and " L
s

thus,
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With this (7.1.35) yields

5 21TDe CSL

m = r (7.1.36)
Tog (7)

an approximation for the total rate of mass transport from a slender
cylinder of length L and radius b.

The principal physical feature of this formula is that m diminishes
with decreasing radius b (L being held constant) but for a fixed radius
m increases with L. These formulas and the equation for the fractional
dissolution rate will be illustrated in section 7.5.

We consider next the question of the length of time required to

establish the steady state solution.

The Transient Solution

The ané]ysis is conducted in two parts, the early time behavior and
the large time behavior of the solution to equations (7.1.19-23), since
the complete solution to these equations is difficult to obtain. The
large time behavior is of greatest interest since it gives an indication
of the time span necessary to establish the steady state. We will compute
only the dominant leading term of the solutions since it will furnish

the desired information.

The Large Time Behavior

The governing equation (7.1.19) and its side conditions are subjected
to a Laplace transform with respect to the variable T and a Legendre
transform with respect to the variable p. c(z,u,t) thereby changes in

succession into

clz,mp) = fme"JT Bl gnx) dn (7.1,37)
o]



: |
c(g2np) = [ clzaup) Py (u)dy (7.1.38)

where the P2n (u) are the Legendre polynomials of even order. Only even
members of the set are required on account of the symmetry condition
(7.1.23). We have shown that for the leading term of the solution, only
Po(“) = 1 and thus c(z,0,p) are required. The details are omitted.

Applying (7.1.37) to (7.1.19) yields with help of (7.1.20).

[(cz-l) —(-E—”gf; 2 ﬂ} = [(1-112) 3—‘:(—%1“1—9]} = p(f)elpanp)  (7.1.39)

Then applying (7.1.38) gives with n = o,

3
og

1
=P 4? (cz"uz)-

0

d 2 d LY 3 2 3 3
g [(g ) Mc_(_&co_p_l] r (142 2elgaw)

.c(zsusp) dy (7.1.40)

One observes,having first Laplace transformed equations (7.1.19) - (7.1.23),
that the second (integrated) term in (7.1.40) vanishes by (7.1.23). The

integral on the right hand side of (7.1.40) has the form

1
.!)- .C(C!U,p)Pz(U)d].l (?]41)

1
S (P4°) clzmnp)du = (cz— %)C(c.o,p) B

0

W

The last integral can be shown to have no contribution to the leading term,

so there results for c(z,0,p) = c(z,p)

2 e 1. 2 .
z [(i -1) HE]"p (c - 3-) e g S 4 (7.1.42)

with the boundary conditions

Q..‘Q.

c(Zgsp) = o5 c(=p) = 0 (7.1.43)

1
P

11.



We propose a solution to (7.1.42) of the form

-q(z-z)
c(z,q) = ¢(z.q)e 5 G B WAy

where ¢(z,q) is to be determined by substitution into (7.1.42).

(7.1

There

(7l

7.

In view of eq. (7.1.43) we take the boundary conditions on ¢(z,q) to be

results
%—Déq)%]=awa)
where
R(4,q) = Zq[(cz-n g% + c¢]+%-
1
#{Z.-q) = 5
S q2
¢(maQ) =0

(7:]

We now define the Green's function G(z,£) for the differential operator

in (7.1.44a) in order to solve that equation.

‘;—; [(c2-1) dﬁdc’ ]=-6(c—£)

G(ESsg) = G(m,g) =0

b
Then with F(a,b) = [ e
4 (=l

we have

(£5-1) G = Aor G(z,E) = AF(zguE) » gg <z <&

2 dG _ »
(1) § = -B or G(z,E) =-BF(£,%) , £ < g <=

The continuity of G(z,£) and the unit jump discontinuity of (c2~1)

at ¢ = E.

(T

(.

G

d
dzg

12.

.44)

.443)

.44b)

.45)

.46)

.47)

.48)



determines

A=D F(g) , B=D Flz,&) 3 D= Flzg,») (7.1.49)
so that ,
[D"1F(E,m)] Fltgst) » toc L < & _
G(z,E) = (7.1.50)
k [D—IF(ES sgﬂ F(Z.,sm) 3 Sip =

On evaluating D and F there results

:
Q (&)
) [o,2) - o ()] » x cz<e

)=k

6(z.e) = { . e
Q.(z

607?) [QO(E) - QO(CS)] » € L LK

0" °S

\

Returning now to the solution of eq. (7.1.44) we consider as our starting

point Green's theorem

f”{e & | En d;] -0 E [(cz-n %] }d; -

_ 2 [ d d6 -
- (ol o g]]

One substitutes for the differential operators under the integral sign the

|8

{7-1.52)

Es

equations (7.1.44a) and (7.1.46), then one makes use of the integral

property of the delta function and applies the boundary conditions (re-stated)

6(=,E) = $(=,E) = 0; G(zg,E) = 0, d(zg.q) = (7.1.53)
q
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There results _

~ o dG(ZS’E) 1 pd
6(£:0) = (gg"-1) —q— 5 - [ 6(z.E) R (8(z).0) dt (7.1.54)
E
S
But by (7.1.48)
d&(z.E)
(r,s‘?—i) ---3-;-— = A (7)ubb)

where A is given by (7.1.49). If one evaluates the integrals, substitutes
the result into (7.1.54) and interchanges the labels £ and z,there results

the Fredholm integral equation

o ) - o) Lo/ e R (7.1.56)
z.q m) q2 . £:C ¢(£)sQ) dg - b
S

The large time behavior of the solution is determined by the "small p"
behavior of its transform. For this reason, one usually expands the
transform of the solution ¢ in powers of p or q. This amounts to the
iterative solution of the integral equation in form of a Neuman series.
For our purpose (7.1.56) shows that the leading term in such a series is
the first (integrated) term on the right hand side, i.e.,

4°(z.q) = 99%537- 3 o (7.1.57)
Qlzs) g

—

Higher approximations can be computed by substituting this into (7.1.44b)
and then evaluating the integral (7.1{56) provided that this is done to
the correct order of the dismissed p terms. In the present, we restrict
ourselves to the zeroth, i.e., the leading approximation to c(z,q) which
is a combination of eqs. (7.1.44) and (7.1.57)

Qd(C) 'Q(E-ES)

e
c(z,q) = 6;(5;7 éﬁz _ (7.1.58)



The Laplace and Legendre inversions produce then the desired approximation
for the large time solution

: ) Q,(z) ; G, 760
c +1ls = -Q—(—-T ertTc —I——Z' i N
ot 0'%s 21 /

As T + »,the complementary error function tends towards unity so that
this expression agrees with the steady solution given by Eq.(7.1.28).
The diffusion flux from the surface of the prolate sphefoid is given in

the T coordinate system by

T DeCs ac
J hy 93¢
B
P 5 %s %) (7.1.60)
h‘;s Q,(zg) ¥/t

The time span necessary to establish the steady state to 1% requires that

Q’{r; )

1 _ -2 o'~s

7t 10 @Es_)' (7.1.61)
Qo (zg) 2

~ 1 %= 33.5 D, = 5x107° a’ 100
G;TE;T 4 Tog : f sec ’

and f = 150 cm, eq (7.1.24) yields

With (Lfb) = 20,

4 5 4 2
tsteady state 10X 2.2 X Ig x10 »= 1.28 x 10" sec
3.14 x5 x 10 % (33.5)

4000 yrs (7.1.62)

This is an appreciably long time period and its consequence in establishing
the steady state in laboratory experiments must be appreciated. For

increased retardation this time span increases.

15+



It is within the context of such experiments that the early time
behavior of the solution is of interest. We turn next to the analysis of

The Early Time Behavior

In contrast to the large time behavior which is characterized by
small values of the Laplace transform parameter p, we are now interested
in the large valued parameter case as p + =.

The starting point of the analysis is eq. (7.1.42) for c(z,p)

—

d 2.4y d 2
gz[(t;—” gg—]ﬂn(c Bl € ibguem (7.1.63)

with the boundary conditions (7.1.43)

c(zg,p) = —;— 3 cle,p) =0 (7.1.64)

One of the most useful techniques for obtaining the asymptotic solution
of (7.1.63) for p » » is with help of the Liouville apphoximation. For

this introduce the new independent variable

[ (z7)%- 1.y1/2
s 3 =
T = J/ — 7 . dr (7.1.65)
c A7) = -
and the new dependent variable

1/4
N = ([;2-1:! I:gz- %]) ¢ (7.1.66)

There results the greatly simplified equation

2
:—2 = [pram] n (7.1.67)
n

16.



for which

N(w,p) = 0 . (7.1.68)

Since one treats p + =, the function g(n) is as usual treated as a
negligible contribution and its specific form is of no further interest
in the following except for the fact that it is a continuous and bounded
function.

The dominant solution of (7.1.67) which satisfies (7.1.68) is

_ -P1/2n

N(n,p) = Ae (7.1.69)

If this is substituted into (7.1.66) and the boundary condition (7.1.64)

is applied there results

el = E’sz'ﬂ [‘:sz' ]3]
o <Ef-q 1)

On inversion there results

--p n .
) £ (7.1.70)

o (LG ) o

where n(z) is given by (7.1.65). The early time surface diffusion flux
can be determined from this equation and it exhibits, analogous to the
second term in eq. (7.1.60), a T-]/z behavior, but with a different

numerical coefficient.

17.



7.2 Mass Transfer From a Fuel Canister by Diffusion and Forced Convection
Paul L. Chambre

Consider a cylinder of infinite length imbedded in a porous medium
through which water is flowing steadily in accordance with Darcy's Tlaw.
The cylinder matrix contains a diffusing nucfide which is set free at the
surface of the cylinder at the solubility 1imit of the species in water and
then diffuses into the exterior unbounded space. All-material properties
are assumed constant. The flow is taken normal to the axis of the cylinder,
but inclined flows can also be treated by the analysis given below. The
governing equation for the conservation of mass of the diffusing species

from a cylinder of radius s in the presence of radioactive decay is

A ~ ~ ~ 2A T 2A
aC 5 ac , v(r,8) 3c e, |l de. 1 5% 5
K—+U( !9)_"+ ) = =D ~ +TT+,\____“. ')\KC:
ot or r 36 (arz ¥ ar r2 882 )
rO<F<w,oses2n,t>0 17:2:1)
Here 2 9
8 . i
u(r,) = -U (1- :5—) cos8; v(r,8) = U ( 1+ 5 ) sind (7.2.2)
r r

are the radial and tangential pore velocity components derived from D'Arcy's
potential flow in the porous medium with U the free stream pore velocity far away
from the cylinder. r is the radial distance from the center of the

cylinder and 6 the angle measured in the tangential flow direction from

the frontal stagnation point at the cylinder surface. K is the retarda-

tion coefficient and Df is the diffusion coefficient of the species in the
Tiquid.

Prior to the time t = 0, the diffusing nuclide has zero concentration



in the porous medium. At time t = O the concentration at the surface of

the cylinder is changed to a constant value C,
C(r,.6,t) =c, 08¢ 2m, t >0 (7:23)

and maintained at this surface concentration Cs subsequently. The

boundary condition far from the cylinder is held at zero concentration

c(x,0,t) =0 ,056g2m, t30 (7.2.4)
It is convenient to introduce non-dimensional variables with
Ut 7 S(r,0,t) .M
=_K?, r=F 5 C(r‘,s,T) = {,: 2 e
0 0 S
UrD
Pe = 5 the Peclet number (7.2.5)
f
; Klro
Da = U the Damkohler number for convective mass transport.

Then the governing equations for c(r,8,t) transform to

- (1o L) comdee (101) s s (g 1 Lo
r r ar
ler<woacbg2rr>0 (7.2.6)
c(1,8,1) = eDaT s 0 0 2m T >0 (1:=2:3)
c(»,0,7) =0, 06 <21, T >0 (7.2.8)

with the initial condition that c(r,8,0) = 0.



For typical porous media flows the Peclet number Pe may be large.

5

Typically, with U=2 m/yr, Py = 0.15 m, and Df = 1x10° cm2/sec will

yield a Peclet number of 10.

This suggests an asymptotic solution of the equation system for
large Peclet numbers. In this case the principal resistance to mass
transfer from the cylinder surface is in a direction normal to the fluid

layer surrounding the cylinder, i.e., in the r direction. The diffusion
2

transport tangential to the surface, i.e., the term lg-g-%, can then be
r 08

neglected as will be shown below. To obtain the asymptotic form of the

equations, introduce the new independent variable R in place of r

r=1+- , (7.2.9)

VPe

then eq. (7.2.6) takes on the form

2

.a_c_ a_c 1 QG._:M _]/2
5t - 2R cose 7x + 2 sing % " o + 0 (Pe ) (7.2.10)

This is to be solved for c(R,8,t) subject to, see (7.2.7), (7.2.8)

ePT L oco gm0 (7.2.11)

c(0,8,1)

c(e,8,1) =0, 0506 <2, T30 (7.2.12)

with zero initial condition.

For large Pe numbers the last term in eq. (7.2.10) is neglected. By an
additional change of the independent variables, one can reduce the time
dependent diffusion and convection equation (7.2.10) to a simpler time
dependent diffusion problem without convection. New independent variables

n(R,8), z(t,8) are introduced which transform c(R,8,t) into ¢(n,z)



i.e., c(n,z) = c(R,8,1) (7.2.13)

These variables are given by

+

_ =4t als 4 _ 2 = -2—
where f(1,0) = e B%g%‘”‘th a(e) = (]+cosa ), b(e) = ( 1_C055)

and

z(t,8) = - %-cose +-% {

| b
—h|~h

1,6
L8 ] (7.2.14a)

n(R,8) = R sing . | (7.2.14b)

As the reader can readily verify, these transformations, which are
deduced by group-theoretical considerations, change eq. (7.2.10) to a

very simple equation for c(n,z), i.e.,

& B
%§'= é‘%" n>o0,t%>0 (7.2.15)
on

subject to the side conditions

(B2 Y s B0 (7.2.16)
c(=,z) =0,z 30 (7:2:17)
with the condition that c(n,0) = O.
The solution to this problem is
c(n,z) = erfc (—ll-) (7.2.18)
2\t

The solution in R,6,T variables is obtained by substituting n(R,6),

and £(8,7) in (7.2.18). One obtains after some simplifications that:

TR p—— 2~ cosh (7.2.19)

This solution satisfies (7.2.10) with side condition (7.2.11)

replaced by unity. To obtain the 1 dependent boundary condition given



by (7.2.11) we use Duhamel's integral, i.e.,

T
c(R,08,1) =[ c{o.851") 5% [erfc(R\,COth ZLT"EI—) 1 K050 )]d'r' (7.2.20)

0

Integrating by parts and transforming back to the original variable C one

obtains =
¢(r,Pe,Da,t,b) = € exp(- Q%F9£J erfc (;ﬁ—- 1) J%?{coth %gﬁ + cose):’ +
Ut - ~ .
+cg Da [Kro e 03T orfe (—f— - 1) Pz_e (coth 2t + coseé) }dr
5 | Vo

(7.2.21)

This solution (7.2.21) describes the time dependent concentration field
in the presence of radioactive decay in a Darcy flow about a cylinder.

The surface mass flux for a diffusing nuclide is

3¢
-0, &

n

H(Pe,Da,t,e)

r=
0

D c
M “EEQ- exp (- DQ—QE){Loth 2Ut | osp +
r‘o T KI"O Kr

0

Ut
Kr
Da 0 e—DaT

+

Vcoth 27 + cose dT] {7.2:22)

where De = € Df in the effective diffusion coefficient of the diffusing
nuclide and € the porosity of the medium.

The surface mass flux, according to (7.2.22) depends on time and the
angular position. The angular dependence is removed by averaging the
surface mass flux over the cylinder perimeter. On the account of symmetry

we have



™

1
Ao (Pe,Da,t) = 1;-] j (Pe,Da,t,e) de
0
ut_
Dc Kr
_ e’s _|2Pe Da Ut Ut 0 ~Dat
o F_[GXP( Kr‘)I(KT')+Da I()d]
0 0 0
0
(7.2.23)
where i
1/2
I(t) = (coth 2t + cosé) de
A _
To evaluate I(t) we proceed as follows
¢ o 12
I(t) =j ("1 + e—z'_—r:;-:‘e?[- + COSG) do
0
ey o (172
=2 /[ ( ol 2 sin ¢) do
1-
0
_ 2\(_
= m e E [m )] (7.2.24)
47,172
where m(t) = (1-e ") and E[x] is the complete elliptic integral of the

second kind. Substituting for I(t) in (7.2.23) one obtains

Da Ut 2Ut
4D _c J;“‘- il a"_JE[
1 I e
Jav(Pe,Da,t) s e "

/ -Da'c E[m (1)]
0 m (_K" m(r)

{7.2.25)

In absence of radioactive decay ()A=Da=0) there results

dT



-+ 4D ¢ P E[mZ('% )]
. _ e’s ’i 0
l(r'0

For application in section (7.5), we require the steady state,
average surface mass flux in absence of radioactive decay. Hence, (7.2.26)

yields as t+w, With m(«») = 1 and E[1] = 1, that

4p ¢
R [

o]

The mass transfer per unit length of cylinder under steady state condition

is then given by

m=3, x2m, = 4513 0c, (Pe (7.2.28)

a result well known in heat aﬁd mass transfer studies where it is shown
to be valid for a range of Pe>4 (K2),(L1).

From (7.2.26) one can estimate the time necessary to establish the
surface mass flux to 99% of the steady state mass flux. From table of
complete elliptic integral of the second kind one obtains that the

criteria is given by

Ut
Kr0

= 1.2 (7.2.29)
For a flow of U =1 m/yr, By & 0.15 m, and K = 100, t = 18 years,
a relatively short time for the establishment df a steady state when
compared with the case of pure diffusion. Theret = 4000 years was obtained
(588 7.7:62)-
The analysis leading to the solution (7.2.21) for the time independent boundary

condition is readily generalized to a time dependent boundary condition.

The starting point for this analysis is Eq.(7.2.20). If in (7.2.3), ¢ fis
1 Kr
Dat! (T o)

replaced by ¢, ¢(t), one must change c(0,6,7') in (7.2.20) to e i ~q



As an illustration consider the radiocactive decay of the surface concentra-

tion according to

g(ro,e,t) =Cg e At oeo < 27, tzo (7.2.30)
in place of EQ.(7.2.3). Here ¢(t) = aAR, Hence, we have
-AT Kro
clogr') =eXT e U o (7.2.31)

After substitution of c(o0,8,7"') 1hto (7.2.20) one can perform the
integration analytically. Transforming back to the ¢ and evaluating

surface mass flux one obtains

3 (Pe,Da,st)= Dics exp(- DirUt) \]2:9 [coth (%%EJ + cose] ; (7.2.32).
0 0 0

This shows that the surface mass flux no longer reaches a steady state
but tends toward zero as t -+ «.

For a flow parallel to the cylinder axis the mass transfer can be
approximated as follows. The lateral cylinder surface is unwrapped into
a flat plate of length L and width 2wr0, and subjected to a flow in the
direction of the plate length. The steady mass transfer from a flat plate
of width ano and length L under longitudinal flow is given by

: uL\1/2
Mong = 2-257 Decg | £ 2nr (7.2.33)

while the mass transfer from a cylinder of length L with the flow normal

to the cylinder axis is in view of (7.2.25)

1/2

s Ur
_ 0
Morm = 4:513 Decs ( Df ) L (7230



Hence

Mnorm _ 4.513 ( L )”2
or
Mlong (225721 \%%o

For a canister, with an aspect ratio E%— = 13.2
0

ﬁ"ﬂﬂ.sa

M1ong
This indicates that for flow parallel to the cylinder axis, the mass
transfer is decreased by about 63% compared to that due to the flow normal
to the cylinder axis because the thickness of the diffusion boundary layer
is greater for H1ong than for ﬁnorm'

Finally we note that the large Peclet number approximation made in
the analysis prevents one from letting the free stream Darcy velocity U
become small. If U+ o, in eq. (7.2.1), the convection terms drop out and
the equation describes then a temporal balance between the effects of
diffusion and radioactive decay. For a constant surface concentration,
given by eq. (7.2.3), the modified eq. (7.2.1) generates then a steady

state solution as t - =. Since the o dependence is no longer needed, the

governing equation is

c .1 3¢ 24
— e == wReEf), P
arz r ar
where

2

2 To AK r

g = # P == 7:2.38
Df ro ( )

with the boundary conditions

c(1) = cg » (=) = 0. (7.2.36)
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The solution is given by

% K
c(r) = € EQ%%§1 o T3 (r.2.97)
()

so that the surface mass flux is

= Decs 'K1(8)
J(To) = _ﬁ;_ B R;TET _ (7.2.38)

Here Ko(n), K1(n) are the modified Bessel.functions of zero and first
order respectively. | |

A detailed numerical eva]uatioh of the mass transfer without radio-
active decay, i.e., eq. (7.2.28), as well as the‘fractiona] dissolution
rate are given in section 7.5. The other fdrmuTae derived above including

their dependence on radioactive decay will be investigated in the future.



7.3 Mass Transfer From a Fuel Canister by Diffusion and Free Convection
Paul L. Chambre

The problem concerns the mass transfer from a heated vertical cylinder
which is imbedded in a water saturated porous medium. The temperature of
the cylinder exceeds that of the surrounding with the result that a free
convection pattern develops which drives the fluid along the cylinder
surface. This induced velocity affects the mass transport of a diffusing
species from the cylinder surface into the surrounding medium. It is
thought that the effects of free éonvection might be important during that
time when the fuel canister generates a sufficiently large amount of decay
heat to maintain a temperature difference of about 50°C (or more) between
the canister surface and the surrounding medium. The aim of the analysis
is to determine the velocity, temperature and concentration fields and to
develop a formula for the surface mass flux.

The following assumptions are made:

a) A steady state description is adopted.

b) The vertical cylinder surface is replaced by a flat plate surface
having the same length as the cylinder and a width equal to the cylinder
circumference.

c) The pore water is assumed to have temperature independent properties
except for its density. The water flow obeys Darcy's law. The fluid
filling the porous medium is assumed to be a single phase.

d) Boundary layer theory simplifications are assumed valid, see eq.
(7.3.14) below.

The governing equations are:

Conservation of Mass —t+ == (7:3.1)




Conservation of Momentum (Darcy's Law)

= Pl _3_24. g (7.32)
L {8x
y= =t OF (7.3.3)
u oy
Conservation of Energy
- aT_+ L 2T é} _ u_ _ e (7.3.4)
Uax T Vay " %¥ ' o e~ oc,
Conservation of Species
at A€ - ep o2 7.3:5)
u oy +v 3y eva ¢ (
Equation of State of Liquid
P = P {1 - g {T = Tm)} [7.3.6)
where 5 5
2.8 48 (7.3.7)
v =2 2
ax 3y

The coordinate system is shown in Fig. (7.3.1). The velocity components u,v
point respectively into the x and y direction. In the above equations
p,T,p,cp are the pressure, temperature, density and heat capacity of the
liquid and p_ its density far away from the plate. k is the permeability of
the porous medium. le is the effective thermal conduction of water saturated
porous medium as measured in the laboratory. u and B are dynamic viscosity
and coefficient of thermal expansion of the 1iquid in the porous medium
respectively. De is the diffusion coefficient of the diffusing species in
the liquid..

The boundary conditions for our problem are

v(x,0) = 0, T(x,0) = Ty E(%,0) = cg» for x>0 12:3.8)

o]

u(x,2 = v(x,») = 0; T(x, ) = T_; &(x,») = 0, for x>0 (7.3.9)
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Fig. 7.3.1, Co-ordinate system used in the
free convection model,
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Fig. 7.3.2. Qualitative shape of f(n), f'(n) and
c(n) for large Lewis number.



There will be a "s1ip" condition for the u component of the velocity at
the plate surface which is as yet unknown. Furthermore, the temperature
difference (Tw—Tm) which depends among other parameters on the heat
release from the cylinder is also determined subsequently.

Eq. (7.3.1) can be satisfied in the usual way by introducing the

stream function Y(x,y) with

u(x,y) = %%-; v(x,y) = - %% ' (7:3:10)

If one differentiates (7.3.2) with respect to y, (7.3.3) with respect to
x and then algebraically adds the resulting equations, one obtains with

help of (7.3.6) and (7.3.10),

k T | 2
(u 0., B9) y - V¥ (7.3.11)
On the other hand (7.3.4) and (7.3.5), expressed with (7.3.10), give

oy of _ 3y 3T _
R L uevZT (7.3.12)

W 3 _ 3 BC _.pn o2 ;
5y 0%~ 3x 3y EDfV 5 (7.3.13)

One has thus these three governing equations for the determination of
the unknown functions ¢,T and C. For the purpose of establishing the
main physical features of the solution, it is convenient to utilize the
boundary layer simplifications. These imply that the transport of mass,
energy and concentration in the major flow direction (i.e., u) is small

compared to that normal to the plate. With

2 24
8_12£ e BV BT L, % , d¢C o 8¢ (7.3.14)
3y




Equations 7.3.11-13 result in,

E f .E'.T.: _B__IE
Y
3w 8T sy T azT '
By 'é?(‘ - ax §= ae - (._?-3~161
ay
W 3 s o 228
3y SE,_ aX §§-=5Df ;;Z . (7.3.1?)

These equations are subject to the boundary conditions,(see (7.3.8),

(7.3.9) and (7.3.10))

BQ{x,o]

ax - 0» T(x0) = Ty 5 €(x,0) = cg (7.3.18)
BQg:,m! = 9 a;gm =0, T(x,o) = Tm 3 E(x,m) = 0 (?.3‘19)

valid for x»o.

Equations (7.3.15) and 7.3.16), which are coupled equations for T and v,
are solved first. One determines thereby the temperature induced stream
function P(x,y) which describes the free convection flow pattern, With
knowledge of Y, one can then solve for the concentration C(x,y) separately.
For this reason we concentrate first on the solution of (7.3.15) and
(7.3.16). These partial differential equations are reduced to ordinary

differential equation by the introduction of the similarity variables

n = Ra'/2 (YD) (7.3,20)

=
I

= a, (Ra)'/2 (B2 ¢(n) (7.3.21)



8(n) = =—= (7.
Tw—ﬂm
c(n) = & (¥
Cs
where
P9 ;
Ra = ‘c? (1-1-) g (Tw—Tm)L (7.

Here L is the length of the plate.and Ra the Rayleigh number of the
liquid saturated porous medium. With these variables the governing

equations reduce to

f' (n) -8 (n)=0 {7
0" (n) + 5 (n) 8 (n) =0 (7.
-1 ] 1 _
Ac” (n)+zf(n)c (n)=0 {2
where
. %
A—EG;—L_e (?

is the Lewis number. The boundary conditions transform to

f(o) =0 ; 6(0) =13 c(o) =1 (7

f'(=) =03 68(x) =03 c(x) =0 (7.

as can be seen by introducing the new variables into (7.3.18) and (7.

A final integral of eq. (7.3.25), which satisfies the boundary

conditions (7.3.30) for f' and 6 at n = =, is given by

f' (n) = e(n) (7.

.22)

«23}

.24)

ve5)

.26)

27)

.28)

.29)

.30)

.19).

.31)



Since the x component of the free convection velocity is determined by

_ W e |
u & ( [ Ra) f'(n) {7.3.32)
one observes that the normalized vertical velocity —Eﬁll— and
(T Ra)

the temperature distribution 6(n) are, according to (7.3.31), of the same
form. Thus, the determination of the function f(n) is of central
importance. To obtain an equation for f(n), eliminate § between equations
(7.3.25), (7.3.26) and (7.3.31), with the result that

d’f _

f' —
dn2

0 {7.3.33)

N| —

o

dn3
Exactly the same differential equation arises in the problem of the
boundary layer flow of a viscous fluid over a flat plate, the famous Blasius

problem (B2). But in contrast to the boundary conditions f(o) = f'(0) = 0,

f'(») = 1 in that problem, the conditions for the present case read
f(o) =0; f'(0) =1 f'(x) =0 (7.3.34)

The qualitative shape of the solution f(n) of (7.3.33), (7.3.34) and that
of its derivative f'(n) are shown in Fig. (7.3.2). As already stated,
the free convection induced vertical velocity component and the temperature
distribution normal to the plate are both characterized by the shape of
the f'(n) function.

Next we determine the mass transfer from the vertical surface. For

this one requires the normal derivative 2L which in turn involves 25

oy y=0 Bn|n=0
But n contains Ra and in this Rayleigh number there occurs the as yet

unknown temperature difference (Tw'Tm)' (Tw'Tm) is determined by the heat

flux through the canister surface and the convective and conductive heat



transport into the porous medium. So one must first find (Tw-Tm). The

local heat transfer from the surface of the plate is defined by

| | - BT
g ek, &
e oy y=0

which with (7.3.20) and (7.3.22) yields

p.B9. 1/2
32 (& =

- g TS 5 x "% 51 (0) (7.3.35)

where Ao is the effective thermal conductive of the saturated porous medium.

The total rate of heat transfer from a plate of length and width W is then

L
Q =W .]- q® (x) dx
0
1/2
. 3/2 [k PP 12 .,
= - W ,\e (Tw_Tm) (E —&'e—-) 2L 3] (0) (7336)

Fig. (7.3.3) shows the variation of spent fuel heat generation with time.

We now define the magnitude of the average heat flux from the entire plate as

= AL
1/2

n

Mgl ligel)

3/2
( [s'(o)| (7.3.37)

p.Bg )

k
4 2
u Lae

Hence the desired temperature difference between plate surface and the porous

media is given by

)2 1/3
(T-T) = (323

£7.3.38)

(T,~Te) is seen to be a function of the average heat flux issuing from

the fuel canister and the properties of the porous medium. The assumption
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Fig. 7.3.3. Variation of normalized decay heat generation of a
spent fuel with time Q (0) is the initial decay heat
generation and is equal to 0.55 Kw.
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Fig. 7.3.4. Variation of temperature difference (Tw:Tm)
: and free convection velocity with time for a spent
fuel canister.
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is made that the average heat flux varies so slowly with time so that
(7.3.38) can be applied to a quasi-steady state. Fig. (7.3.4) shows a
typical trend for this temperature difference as a function of time for a
given g" (t) descriptive of a spent fuel. The temperature difference
drops to 100°C in about 130 years. The calculation is based on the follow-

. ing parameters values
4

A = 2.894 w/m °k (1) o g=2.07x107% 175
k=2.96 x 1074 w? (1) L=4.7 m (2)
f = 5.5 x 10-4-k9/m sec r=1.78 x 10"] m (2)
_=10° kg/m ' Q (0) = 5.5 x 102 w (2)
5 = 4.184 x 10° J/kg °K 9'(0) = X

Before proceeding with the mass transfer analysis we estimate next
the magnitude of the vertical slip velocity component u for the above

data. From (7.3.32) and (7.3.34) the free convection velocity component

along the plate surface is given by

L aeRa
L

ouBy (T,-T,) & (7.3.39)

For a temperature difference of 100°C one computes u = 0.34 m/yr. This is
competitive with commonly assumed groundwater flows of 0.1 to 1 m/yr which
are used in the far-field calculations. Fig. (7.3.4) gives the magnitude
of the free convection velocity as a function of time.

The local mass transfer rate from the plate is now computed from the

solution of (7.3.27) subject to the boundary conditions (7.3.29) and



(7.3.30) for c(n). The desired solution is

[ exp (- %‘f;ni f(s)ds) dn'

c(n) =1 -2 . (7.3.40)
A '
j; exp (— 2-‘]; f(s)ds) dn
so that the surface mass flux is
* ac(y) - . an dc(n)
J Dfe 5y Dec e il R 2A1)
: y=0 n=0
where ¢ is the porosity of the medium.
In view of (7.3.20) and (7.3.40).
1/2
2 = Ra 1
J = Dpecg (-ﬂ-_-) . —5 . (7.3.42)
f:exp (- '2'1(: f(s)ds) dn
The definite integral
0 n' : .
I(A) = J; exp (- %fo f(s)ds) dn’ | (7.3.43)

involves the function f(n),i.e., the solution of (7.3.33) and the Lewis

number parameter (7.3.28).

ae
£e (7.3.44)

f
We shall discuss the complete evaluation of I(A) for arbitrary A values
at a later time, but develop now the asymptotic form of this integral for
large values of A which may arise due to small values of the diffusion
coefficient in porous media. In this case the concentration boundary

layer is very thin compared with the thermal layer, as sketched in
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Fig. (7.3.2). One can then approximate f(n) by the first term of its

power series expansion, i.e.,
f(n) = n + 0(n°) (7.3.45)

If one neglects terms of O(nz),

— _ ;_Q_nz
W= "e * @,
= Jr-, for A large (7.3.46)
Thus (7.3.42) yields,
1/2
= Deecy (Ei A) , for A large (7.3.47)

If one expresses Ra by (7.3.24) one has in terms of the physical parameters

1/2 Dgec
: i 1 k Ped . iy -
J = Deecg ( ﬁ'_ff_ B(T -T.) —-) S (7.3.48)

where the length & is given by
(7.3.49)

The average rate of mass transfer per unit length of plate for a plate

of length L is readily computed from equation (7.3.48).
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7.4 A Model for Leach and Diffusion Rates From Glass Bodies

Paul L. Chambre

Experimental evidence indicates that when a typical silica base glass
is brought into contact with water two physical processes occur in the
dissolution of the glass. One of these is an alkali ion transfer, such
as for examp]e,Na+, across the glass-water interface which gives rise to
a gel-like 5102 transition layer. The second process appears to be the
corrosion of this layer resulting in the dissolution of the glass matrix.

A number of theories have been proposed, differing in various detailed

mechanistic ways, which attempt to explain qualitatively or quantitatively

various aspects of experimental observations on glass dissolution. In the

following, we develop a model which is based on oniy the two, generally

accepted, experimental pieces of evidence. These are

i) The movement of the glass interface with a (regression) velocity v,
which is initiated by

ii) The diffusion of an alkali ion across the glass-water interface.

Three simplifying assumptions will be made. The interface velocity is
assumed to be constant in time. The support for this assumption is indirect.
It will be shown in the following analysis that a constant regression
velocity leads to the often observed experimental result (M4; that the
fractional release of a particular nuclide f(t) follows the empirical

formula

f(t) = C]F+ cpt (7.4.1)

where c and c, are constants. On the other hand there exists also some
experimental evidence yielding a different time dependence for f(t)(M3).
This has been interpreted by investigators to be due to a corrosion layer

which is developing on the glass surface, gradually increasing the resistance



of mass transfer from the interface. In the analysis, the case of accretion,
is also included and the f(t) function deduced. The remaining assumptions
concern the nature of the diffusion mechanism of the alkali fon. We shall
assume a constant diffusion coefficient for the ion in the bulk glass and

the gel-like surface transition layer despite the fact that the diffusion
coefficient is considerably larger in this layer (H2). Furthermore, we shall
ignore the effect of the negative surface potential on the ion transfer.
Such a potential is generated when glass is immersed in water. The effects

of the latter two assumptions require future study.

The Analysis

The analysis applies to a body of planar, cylindrical and spherical
shape. We take as the governing equation

_ 2.

ac _ 8 C

T
ar

8_ .
- AC (7.4.2)

n
r
Here c(r,t) is the concentration of the nuclide, D the diffusion coefficient
and A the radioactive decay constant if the nuclide is radioactive.

m describes the geometric character of the diffusion field. For the case

of the sphere m = 2, for the cylinder (of infinite length) m = 1 and for

the slab m = 0. r is the position variable within the region of interest,

t the time and R(t) the position of the movable boundary which will be

prescribed below. The initial nuclide concentration is given as c(r) so that

c(r,0) = c(r), 0 <r < R(0) = a. (7.4.3)
At the surface of the solid
E{R (t),t} =0, t>0 (7.4.4]

but if the surface concentration is instead Es # 0, it is always possible



to reduce this to the condition given by eq.(7.4.4) by taking the reference
datum for the concentration at Es' provided A = 0. In addition to the
above conditions, one prescribes in case of the sphere and the cylinder
that ¢ (0,t) is bounded and in the case of the slab of thickness 2R(t) that
ac (0,t)/ar vanishes for all times.

The equation for the moving boundary R(t) is based on the simple
hypothesis that

R 2@~V DR ES™ T ¥ (7.4.5)
where a is the initial position and v the surface regression velocity.

A regressive surface at time TL = 2/v the finite sized body has completely
dissolved. This limits the time span for the solution. If there is
accretion, we take v negative in the expression for R(t) and consider

t > 0. The equations(7.4.2) to (7.4.5) completely define the model.

The solution for the different geometric configurations (fig. 7.4.1a) is
carried out below. It turns out that the solutions for the sphere, cylinder
and slab are very similar. The case of the sphere is treated in detail,
then the changes which need to be made in case of the slab are indicated
and the final solution is given. These results are exact aﬁd are valid
for any range of the parameters entering the problem. The cylinder is
analyzed by an approximation method which is valid for the large values
of the parameter (va/D) usually encountered in practicé. By forming the
product of.the solutions for slabs of different or identical widths one
obtains at once the solution to the case of a parallelopiped or cube,
respectively. Similarly multiplication of the slab and (infinite)
cylinder solutions yields the solution for a cylinder of finite length
(fig. 7.4.1b). These results are consequences of some well known theorems
and are valid for a time span in which the smallest initial dimension of

the body has been reduced to naught by the leaching process.
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Fig. 7.4.1. Geometries of problems considered
(arrows indicate direction of surface
regression).
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XBL82ZB-63I0

Fig. 7.4.2. Spatial distribution of the
concentration inside sphere r = 0.01
for various rates of surface
regression (A=0).



The Sphere
Let

c(r,t) = exp (Rt)rEsp(r,t) (7.4.6)

then eqs. (7.4.2) to (7.4.5) reduce with m = 2 to

2
2025, 0grca-vt, 0<t<a/jy L ATED
or
c(r,0) =rc(r) = g(r), 0Ogrga, (?.4.8)
clfa-vt,t) =0 0gtgalyvy (7.4.9)

and on account of the boundedness condition on ¢ (0,t),
c(0,t) =0, 0 <t <a/|v| (7.4.10)

Now the Kelvin function,

2
1 r
S —— - .
2(nnt)1/2 d ( Z”t)

is a particular so1ut10& to eq. (7.4.7). By the super-position principle
and the method of images one can construct a more general solution to

eq. (7.4.7) which satisfies conditions (7.4.8) and (7.4.10) as a detailed
verification shows. |

This solution has the form,

. a . ” :
c(r,t) = m {{ g(s) S (r,t;s) ds +{ h(s)S(r,t,s)ds} 5

(7.4.11)

Ogrga-vt, O<tgalv



where the source function

2 2
S(r,t;s) = exp [- i%ﬁ%l—] - exp [- 1%%%1—] ; {7.4.12)

In eq. (7.4.11), g(s) is the initial concentration distribution and h(s)
is an as yet unknown source density function which is determined by imposing

the last remaining condition on the moving boundary, i.e., eq. (7.2.9),

J'ag(s)S(a-vt,t;s) ds + Jgnh(s)s(a-vt,t;s) ds = 0. = A2.8:13)
0

Now the functions g(s) and h(s) are partly at our disposal. Since g(s)
is prescribed only for 0 < s < a, we analytically continue it in the
following manner

0, |s| > a

g(s) = _ (7.4.14)
-g(-s), |s] <a. '

Similarly h(s), which must be determined according to the solution (7.4.11)
and the condition (7.4.13) in the span a < s < » , is chosen in the remaining

part of the range as

h(s), s > a
h(s) = 0, |s| < a _
arbitrary, S < -3. (7.4.15)

With this choice one can now combine both integrals in eq. (7.4.13) by
elementary transformations resulting in integrals with the same integration

Timits, i.e.,

o 2
J; {h(s+a) exp (-‘%5) - h(s-a) -g(s-a)} .exp (- %ﬁf-)ds = 0. (7.4.16)



The satisfaction of this condition requires that h(s) must obey the
ordinary difference equation,

h(s+a) exp (-vs/D) -h(s-a) = g(s-a). (7.4.17)

The solution to this equation can be constructed in successive s spans of
width 2a, utilizing the properties of the initial distribution g(s) and

the continuation properties of h(s) with the result e

h(s) = g(s-2na) exp [bv(s-na)/D]_

(2n-1)a<s < (2n+ 1)a, n=1,2,... (7.4.18)

Having found the unknown source distribution h(s), c(r,t) given by
eq. (7.4.11) can be shown to satisfy all the conditions of the problem.
There results, on returning to the original variables, after some minor

simplifications

2
c_ (r,t) = =X At {_fﬁsc(s)exp - [ﬁ%ﬁ%l_.] ds +
-a

Ogrga-vt, O0gtga/lvl (7.4.19)

For bounded c(s), the series can be shown to converge for the indicated
t range, i.e., for all times for which sphere material remains. It should
be noted that, in view of egs. (7.4.8) and (7.4.14), the initial distribu-
tion c(s) must be an even function about s = 0.

A case of practical interest is the one where the initial concentration

is uniform throughout the sphere, i.e., c(r) = Co for 0 s r<a. The



integration in eq. (7.4.19) then yields the following explicit result for

the concentration in the interior of the sphere,

v ol
: Cspt531) - expﬁ-laZ/D)t}
arr < 2(r/a)

1)2

.{2(r/a) - (erfc ey - erfc 52) - 2t (ierfc € - jerfc 52) -

[+

- ngl [(erfc 6y + erfc e.ﬂ) e:fp (-ns(s}) -
(7.4.20)

-(erfc 8,, + erfc 81,) exp (-ngs,) +

+ 211/2 (ierfc g,y - ierfc 911) CxXp ('nBSI) -

- 211/2 (ierfc 6op - ierfc_e]z) exp (—ngsz)} 3
where _ )

nQ-gr) + (1) + (1) (r/a)}

1] | (2T1/2)

8

n(1-gr) + (-1)1(r/a), (7.4.21)

(=]
il

. =il (1) (r/a)) .
i (211/2)

and T = Dt/az; g = va/D, the interface Peclet number. (74229

erfc (z) and iMerfc (z) denote, respectively, the complementary error

(4),

function and the m repeated integral error function which are tabulated in



For 8 = 0, this reduces to

2
'Es (E“T) 'l%'T B (2n+1)-r/a
'_L"’ = g .I - Z ef‘fC 'l 2 e
o 5 n=o0 2t /

(7.4.22a)

) (2n+1) + r/a
erfc ) 172
T

The spatial distribution of the nuclide concentration given by eq. (7.4.20)
is shown in fig. (7.4.2) for a specific value of the dimensionless time

(t = 0.01) and for different values of the dimensionless regression
parameter B. One observes as B increases that the regression of the inter-
face steepens the concentration gradient compared to a stationary interface
(B =0). Fig. (7.4.2) also shows the effects of accretion. In contrast to
the previous case the concentration profile is S-shaped and the surface
mass flux shows a marked decrease which indicates a resistance to mass
transfer.

A quantity of primary interest to the experimentalist is the fractional
release of the radionuclide due to the combined effects of diffusion and
interface movement. This may be obtained by integrating the concentration
at any time t over the volume of the sphere, dividing the result by the
initial amount of diffusant present and subtracting this quotient from

unity. Thus for the case of an initially uniform concentration,

f(t) =1 - Q(1)/Q,, (7.4.23)
(1-B1)a 2.
where Q(1) = 4y csp(r/a,r) dr,
0
0, = %“33% , (7.4.24)



f(t) has been evaluated numerically with help of eq. (7.4.20) for x = O.

Fig.(7.4.3) shows the numerical results of the evaluation of eq.(7.4.23) for a
number of reagression Peclet numbers 8 and for a limited range of 0 < 1 < 2x10“3.
One observes that the fractional release is initially a linear function of

TI/Z and then it becomes quadratic in 11/2,

This is exactly the behavior
observed in many laboratory leaching experiments as already stated in

eq. (7.4.1). More extensive numerical evidence will be given in Section
(7.6). To pressage this result, we will show here that eq. (7.4.23) is

closely approximated by

1/2
f(t) = 6 (Dt—z) + -S— (lat—) Ozt & tt < 0.4TL (7.4.25)
ma

for both regression (v>0) and accretion (v<o).
The Slab

The system of eqs. (7.4.7) to (7.4.9) describes the diffusion process
fn a slab of half width (a-vt), with an initial concentration distribution
g(r) = ¢(r), in absence of radioactive decay. If the solid is exposed to
regression over both faces, with the center of the slab located at r = 0,
the boundary condition is replaced by the symmetry condition

acsL(o,t)

ar =0; 0zt a/1vl (?426)

~ ™~

In order to satisfy this relation, one chooses as the source function

2 2
S(r,t;s) = exp [— -(%)t—} + exp [- %L] . (7.4.27)

instead of eq. (7.4.12). The analysis proceeds then along the same lines as



for the sphere. However, the function g(s) must now be defined as follows:
0, |s| > a

g(s) = (7.4.28)
g(-s)., |s] < a.

The final result is

Cs.L(

2
r,t) = exp(-at) f c(s) exp |:- (r-s)® ] ds

2(m 1/2 it
s a
+ E] (-1)" Iac(s) exp nv(_s+na)/D].S(r,t;s + 2na) ds}

(7.4.29)

O.S lrl.ﬁ(a‘vt)! O<t<a/]V|

~ ~

For a bounded even function c(s) this result can be shown to converge to
the solution of our problem. Again if the initial concentration is
uniform throughout the slab one obtains with the shorthand notations
introduced in egqs. (7.4.21) and (7.4.22) the following result

~

'r‘ -
c(a—,'r) CoL

et

(r/a,r)/co = > exp (—Aazr/D} {(erf e, + erf 81)

* ‘2} (137 Berf 6,y - erf 8]2) exp (-nBcS-I) + (7.4.30)
n:

+ (erf 65, - erf 8}2) exp (-n862)]} .

10.
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Fig. 7.4.3. Variation of fractional release from sphere
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Fig. 7.4.4. Variation of fractional release from slab

(initial width 2a) with dimensionless time
T for different dimensionless glass-water
interface regression speed B.
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For B = 0, this reduces to

[..] < E -r-.-
CsL(g’T)_ (-laz‘r) j = 5 (_nn[ (2n+1) 5 (2n+1) + a]

erfc 1 + erfc —17
Ct:o . n=0 Vil /2 2T /
(7.4.30a)
The total fractional release is given by eq.(7.4.23) with
(1-r)a .
) =2 L& (r/a) dr | (7.4.31)
Qo = 2ac0.
Performing the integration one obtains
1/2
_ e ls BT y 2-RT
f(t) = B+ [1erfc (-——2—) - jerfc (—172-)] +
2t
© n-1
-1
ngl _(_Z—I)IB_ exp [ns(n-l)]. (erf uyp- erf ].1-12) * (7.4.32)
+ exp |nB(n+l )]. (erf Hop - erf “21) +Qz(n) - ﬂ](n) }
where )
Loz (e ) (e
s 2T1/2
(7.4.33)
. 2 : ’ ey
a;(n) = exp | - ng(1-pr) n+(-1)‘_']}. 2 (1) erfe [QBTJ EnJ{}ZU 1+(-1) ]
j=1 2T

For B=0 this reduces to

oo

f(1) = ZTUZ[J%—‘F 2 3 (-1)" derfc “—m} (7.4.34)

n=1 T
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A numerical evaluation for A = 0 is shown in Fig. 7.4.4 for some ranges
in g and T.
In section (7.6) we will give numerical evidence that eq. (7.4.32)

can be closely approximated by

1/2
£(t) = 2 (93—2-) + %(%)% (7.4.35)
ma '

The conclusions for the slab are thus quite comparable to those obtained

for a sphere.

The Cylinder

In the case of the cylinder one can proceed in the same manner as
above. Instead of the source function eq. (7.4.12) one utilizes the

fundamental solution.

S(r,t;s) = {s/(2Dt)} exp [- (r2+sz)/(4Dt):|. I, {rs/(20t)}  (7.4.36)

where Io(z) is the modified Bessel function of the first.kind, zero

order. However, this case leads to a rather complicated integral equation
for the unknown source density h(s) and for this reason the following
approximate solution is recommended.

For large values of the parameter B = va/D (about 200 or more) the
interface regresses at such a rapid rate compared to temporal changes in
the diffusion pattern that the latter is affected primarily in a very
thin boundary layer of thickness & close to the surface as the calcula-
tions show, see Fig. 2. Hence, in order to describe the rate of the

diffusion of the ion through the interface, it is important to take
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account of the steep concentration gradient close to the boundary. For

this reason one introduces the transformation
” 1/2 -
c(r,t) = exp(At)r ccy(r,t) (7.4.37)

into eq.(7.4.2), where now m=1. There results

2
—3C 9 C C
C - __?.+ ~ (7.4.38)
ot (Br 4r )

Now close to the boundary where the diffusion effects are most prominent
the two terms on the right hand side are of entirely different order of

2 - 0(1/6%) and c/4r2 = 0(1/r%). Since & is very

magnitudes, azc/ar
small compared to r, the second term is dropped in favor of the first
and there result the egs. (7.4.6) to (7.4.10) with the initial distri-
bution g(r) = r}lz c(r). Hence the approximate solution to the cylinder
problem can be obtained by simply replacing the term sc(s) by s1/2c(s)
on the right hand side of eq. (7.4.19). It is worthwhile to point

out that if one merely drops the term (1/r)dc/ar in eq. (7.4.1) in
favor of BZEXBrZ, one obtains a less accurate approximation to the

solution than the one given above.

The exact analysis of the cylinder is planned for the future.






7.5. External Mass Loss Rate and Leach Time for a Glass Cylinder

7.5.1. Introduction

Two mathematical models for the rate of mass transport from a waste
cylinder surrounded by groundwater in an infinite porous medium have been
developed in sections (7.1) and (7.2). In the first model, the cylinder is
approximated by a prolate spheroid and the rate of mass transfer of a
species dissolved from the waste solid is assumed to be governed by the
rate of molecular diffusion of the dissolved species into stagnant ground- -
water. This theory is illustrated by analyzing the steady-state mass
transfer rate from the cylinder with the dissolved species having a
constant concentration on the cylinder surface. The maximum value of this
surface concentration is the solubility of the dissolved species in ground-
water, and this saturation concentration at the surface is assumed in the
illustration.

In the second model, the mass transfer of the dissolved species from
the waste surface is due to both molecular diffusion and forced convection
by the groundwater moving in D'Arcy's flow in the surrounding porous medium.
Again, the theory is applied to the steady-state mass transfer with a
constant saturation concentration of the diffusing specie on the cylinder
surface. The waste cylinder is idealized as a cylinder of infinite length,
and the groundwater is assumed to flow perpendicular to the cylinder axis.
This allows one to obtain the rate of mass transfer from a unit length of
the cylinder. Numerical calculations are made for a cylinder with the
same radius as that of a cylindrical waste form with end effects accounted
for.

Calculations are made for the rate of dissolution of silica, in

amorphous form, from a borosilicate glass cylinder, and for the rate of



dissolution of low-solubility radioelements in the borosilicate glass,
using the two models described above.

In Section 7.5.2, the steady-state mass transfer rate, mass transfer
rate per unit length, and average surface mass flux of a species from a
prolate spheroid and slender cylinder which is defined as a cylinder with
a ratio of height to radius of 10 or greater are given. In Section 7.5.3,
the leach times of the prolate spheroid and slender cylinder are derived,
subject to the assumptions that the waste form consists of a single species
and that the ratio of height to radius of the cylindrical waste-form is
constant during the leaching process. In Section 7.5.4, the governing
equations for obtaining the dimensions of the prolate spheroid approximating
a cylindrical waste form are given. In Section 7.5.5 we present the
dimensions of the cylindrical waste-form, calculated dimensions of the |
equivalent prolate spheroid, diffusivity of a species in a water-saturated
porous medium, solubility of amorphous silica in water, and borosilicate
glass density. In Section 7.5.6, a comparison between the dissolution rate
and the leach time of different waste forms consisting only of amorphous
silica are made. These sections deal primarily with the mass transport by
molecular diffusion.

In Section 7.5.7, the steady-state mass transfer rate by molecular
diffusion and convection are given. The mass transfer rate for a finite
cylinder is derived subject to the assumption that the surface mass flux
from the ends of the cylinder has the same value as the surface mass flux
of the infinitely long cylinder. In Section 7.5.8 the leach time for the
cylinder is derived. Section 7.5.9 contains data used for numerical
evaluation of mass loss rate and leach time. In Section 7.5.10 a compari-
son is made between surface mass flux for diffusion and for the diffusion-

convection model.



In Section 7.5.11, the diffusion and diffusion-convection models are
applied to a silica-base glass cylinder containing low-solubility radio-

elements. Section 7.5.12 is the conclusion of the above analyses.

7.5.2. Dissolution Rate Due to Molecular Diffusion

At steady state the mass transfer rate per unit area (surface mass
flux) is nonuniform for the prolate spheroid and depends on the position
on the surface. The mass flux has a maximum at the poles and a minimum at
the equatorial plane (see Fig. 7.1.1 in Section 7.1). The total rate of
dissolution hps of a given species of effective surface concentration NS is

obtained by integration of the surface mass flux over the surface area of

the prolate spheroid, and is given by (see Section 7.1)

e Do N_ f
M f s
mps = o (7.5.1)
1og[coth(7TJ]
where:
éps = the total mass loss rate of the prolate spheroid, g/sec

Df = molecular diffusivity of diffusing specie in water, cmzlsec

€ = porosity

Ns = ¢ - ¢, = effective surface concentration, g/cm3
Cg = solubility Timit in groundwater, gfcm3
c_ = concentration in groundwater far from waste surface, g/cm3
0 = surface shape factor of the prolate spheroid defined in
Section 7.1 by Eq.(7.1.4)
f = focal distance of the prolate spheroid, cm
For a slender cylinder, i.e., L > 10r, Eq.(7.5.1) simplifies to
i 2me Df NS b .53

> Tog(%)



where:

m

b ® dissolution rate for a slender cylinder, g/sec
L = cylinder length, cm '
r = cylinder radius, cm

From Eq.(7.5.1) the dissolution rate per unit length and the average
dissolution rate per unit surface area of the prolate spheroid are given

by Eqs.(7.5.3) and (7.5.4), respectively

. 2me Do N '
mﬁ - f''s (7.5.3)
ps G
cosh(as)]og[coth(??J]
B 2e Do N_ T
i o= f's (7.5.4)
ga a -1 Be
b(b+ E-sin e)log[coth(jfﬂ]
where:
ﬁgs = mass loss rate per unit length of the prolate spheroid,
g/cm sec
sps = average surface mass flux of the prolate spheroid, g/cm2 sec
e = f/a

a = semi-major axis of the prolate spheroid, cm

b = semi-minor axis of the prolate spheroid, cm

7.5.3. Leach Time Derivation

The leach time T is defined as the time interval between the beginning-
of dissolution and the completion of dissolution of the waste form. Assum-
ing here a waste form consisting of a single species, the time-dependent

waste form volume V(t) is given by

£ (V) = - A(t) | (7.5.5)



where:

p = waste form density, g/cm3
V(t) = waste form volume at time t, cm’
m(t) = mass-loss rate at time t, g/sec given by Eqs.(7.5.1) and (7.5.2).

The initial condition is V(0) = V,» Where V_ is the initial volume of the
waste form.

Here we assume that at any time t the dissolution rate can be approxi-
mated by the steady-state solutions, Eqs.(7.5.1) and (7.5.2), so that

Eq.(7.5.5) can be solved for V(t). From definition of the leach time T

" we have that

V(T) = 0 {7.5:6)

and leach time is obtained by solving Eq.(7.5.6) for T.

We have for the slender cylinder

Vo (t) = Tré(t) L(t) (7.5.7)

and from (7.5.2)

) 27e D‘F Ns Ll

sc [t ] (7:5:8)

m
log[r T

with the initial condition (I.C.) that
r(0) = i initial radius, cm

L(0) = Lo initial height, cm

Substituting Eqs.(7.5.7) and (7.5.8) into (7.5.5) yields

' 2me Do N_ L(t)
o m () L(t)] = - —T

(7.5.9)
]

G



with 1.C.
r(0)

"o

L

L(0) = L,

To solve Eq.(7.5.9), it is necessary to have another relation between L(t)
and r(t). We assume that the ratio of height to radius remains constant
during the leaching process, i.e.,

L(t) = Loﬁéﬂ | (7.5.10)

0

Substituting Eq.(7.5.10) into Eq.(7.5.9) and solving for r(t) results in

1/2

4 € Df Ns t
r(t) = ro 1 - [ (7.5.11)

2 0
3ry e 109(;;J

From the definition of leach time we have from (7.5.6-7) that f(Tsc) =0,

so that L
2 0
3pr " log [-~}
0 o : |
T .= 7:5.12
sC de Df NS
where:
Tsc = leach time for the slender cylinder, sec

In deriving the leach time of the prolate spheroid it is assumed that
the ratio of the minor axis to the major axis is constant during the leach-

ing process, resulting in the following equation (see Appendix A for details):

a
Dbo2 cosh(a.)log [coth(7§d]
Tps - 2 € D N (7.5.13)




where:
Tps

b

leach time for the prolate spheroid, sec

initial semi-minor axis of the prolate spheroid, cm

7.5.4. Approximating a Cylinder by a Prolate Spheroid

We assume that the prolate spheroid has the same volume and surface
area as the cylindrical waste form. Thus, equating their volumes,

4 % a bz = r2 L (?.5.14)

and equating their surface areas

1

2w b(b+-g— sin"' e) = 2 1 r(r+L) (7.5.15)

Solution of Eqs.(7.5.14) and (7.5.15) for a and b defines the desired
prolate spheroid. As is seen from the above equations, a closed-form
mathematical solution for a or b cannot be obtained, so a numerical analysis

is required.

7.5.5. Parameters of the Problem

The following table shows the physical characteristics of the waste form

used in the numerical calculations:

Table 7.5.1. Physical characteristics of waste forms (R1)

Commercial Defense

high level high level
Canister dimensions waste - waste
Inner diameter, cm 30.5 59.1

a/ a/

Length, em 2.4x10%~ 2.4x102~
Surface area, cm2 2.446x104 5.005x104
Volume, cm’ 1.75x10% 6.58x10°
Ratio L/r 15.7 8.1

a/ Assumed that 80% of waste canister is filled with waste glass.



The dimensions of the commercial high level waste form are used in numerical
evaluation of the slender cylinder mass loss rate and leach time, listed in
Table 7.5.4.

Table 7.5.2 is obtained by approximating the waste forms by a prolate
spheroid using Eqs.(7.5.14) and (7.5.15), with the aid of a (computer)
program described in Appendix C.

Table 7.5.2. Physical dimensions of prolate spheroid approximating
cylindrical waste forms.

Waste Forms a, cm b, cm c, cm e g
Defense high-
Tevel waste 158 31.5 155 0.980 0.202
Commercial high-
level waste 145 16.9 144 0.993 0.117

The molecular diffusion coefficient of most nuclides in water-saturated
porous media is usually lower than that in the unconfined water. The

5

diffusivity of most species in water is between 1 to 5x10° cmz/sec (W2).

The molecular diffusion coefficient of silicon dioxide and other species

5 cm2/sec.

in water is taken to be 1x10~
Table 7.5.3 shows the solubility of two forms of silicon dioxide, i.e.,

a quartz and amorphous silica, in water at a pressure of 0.1013 MPa, pH of 7.0,

and at different temperatpres. The sq?ubi1ity of silicon dioxide as a

function of pressure and temperature is given (W1) in Appendix B.

Table 7.5.3. Solubility 1imit of silicon dioxide in water
Temperature, °C

25°C 100°C
Alpha quartz, g/cm’ 4x107° 5x10™°
Amorphous silica, g/cm3 1.2x10_4 815107

A surface concentration of 1.2x]0'4 gfcm3 and a density of 2.8 g/cm3 are

chosen for a pure amorphous silica cylinder. This density corresponds to that

of typical borosilicate glass (T1),(M3).



7.5.6. Numerical Results for Dissolution Rate and Leach Time for a Pure
Amorphous Silica Cylinder

Table 7.5.4 shows the calculated dissolution rates and leach times,
using Eqs.(7.5.1), (7.5.2), (7.5.12), and (7.5.13) with the aid of a computer
program (Appendix C). A porosity of 0.01 and the solubility of amorphous
silica from Table 7.5.3 were used. The concentrafion of silicon dioxide in
the groundwater far from the waste form is assumed zero.

Table 7.5.4. Mass loss rate and leach time for a pure amorphous silica in
stagnant water at 25° C and porosity of 0.01.

Mass loss rate, g/day Leach time, yr
Slender cylinder 5.6x10™} 3.58x10°
Commercial high -4 6
level waste 6.6x10 3.03x10
Defense high <4 6
level waste 8.8x10 8.58x10

A1l three waste forms yield similar results. There is reasonable
agreement of mass loss rate and leach time between a prolate spheroid
approximating the commercial high level waste form and the slender cylinder.
Thus, Eqs.(7.5.2) and (7.5.12), derived for the mass loss rate and leach

time of the slender cylinder respectively, can be used.

7.5.7. Dissolution Rate Due to Molecular Diffusion and Groundwater Motion

The mass loss rate per unit length of an infinite cylinder with ground-

water flow normal to its axis is given by (see Section 7.2)

% . 8 1/2

m, = = D¢ e N, (Pe) /< , valid for Pe > 4 (7.5.16)
= al
m
where:
ﬁi = mass loss rate per unit length of cylinder, g/cm sec
Pe =

= Ur/Df, Peclet number

{ o
n

groundwater pore velocity, cm/sec



From Eq.(7.5.1), the mass loss rate per unit surface area of the cylinder is

obtained

- 8 U Df)1/2
Jc = =377 N (—,.—— , Pe > 4 (7.5.17)

=

: 9
m _
5 = ?%F'= mass 1oss per unit surface area of the cylinder, g/cm2 sec

From this, one obtains the dissolution rate for a cylinder of length L,
subject to the assumption that the mass flux from the ends of the cylinder
has the same value as the surface mass flux from the cylindrical surface.

The result is

I;lc - £ Df € Ns (r+L) (Pe)1/2 » Pe > 4 (7.5.18)
= ,

where ﬁc = dissolution rate from cylinder, g/sec

7.5.8. Leach Time for a Cylinder, Diffusion and Convection

As a result of dissolution, the radius decreases with time as does the
Peclet number. The leach time T is defined as the time interval from the
beginning of the steady-state dissolution of an infinitely long cylinder
until the cylinder has completely dissolved. For simplicity it is assumed
that Eq.(7.5.16) is also valid for Peclet numbers less than four. The

foilowing expression for the leach time is obtained (see Appendix A for

derivation).
HS/Z 5 roz Uro
T.= Pe, =w— (7.5.19}
S 1/2 **Fo ~ D
S Df N5 PeO i
where:
TC = leach time for the cylinder located in flowing groundwater, sec
r_ = initial radius of the cylinder, cm

10.
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7.5.9. Parameters of the Problem

Groundwater pore velocities of 10, 5, and 1 m/yr are assumed. The radius
of the cylinder is 15.2 cm, which is the same as that of a commercial high
level waste glass cylinder. The cylinder consists of silicon dioxide. The

surface concentration of silicon dioxide is 1.2x107% g/cm3

and the concentration
of silicon dioxide in the groundwater far from the cylinder is assumed to be
zero. The diffusivity of 510y in groundwater is taken to be 1x10'5 cm2/sec.

The porosity of the medium is 0.01.

7.5.10. Numerical Results for Surface Mass Flux

In Table 7.5.5 are presented the calculated average surface mass fluxes
for diffusion and convection in flowing groundwater (Eq. 7.5.17) and for
diffusion in stagnant groundwater (Eq. 7.5.4), using the computer program
described in Appendix C. A porosity of 0.01 is chosen.

Table 7.5.6 Average surface mass flux of silicon dioxide g/cm2 day for

the diffusion and diffusion-convection models, porosity = 0.01,
NS = 1.2x10_4 g/cmB. Uf = 1x10"5 cmzfsec, r = 15.2 cm, and

L=2.4m. - _
Groundwater pore velocity, m/yr
10 5 1 &/
Surface mass flux, g/cm’ day 3.5x1077  2.5x1077  1.x1077 2.7x1078

3a/Molecular diffusion model, Eq.(7.5.4)

For the pure amorphous silica cylinder (r = 15.2 cm) emplaced in a medium with
porosity of 0.01 and groundwater pore velocity of 10 m/yr, from Eq.(7.5.19), we
obtain TC - 2.3x105 yr. The proper value may be less, if an accurate solution
for Pe< 4 were available. Such an analysis is presently being completed.

For example, from Eq.(A.29), we find that after 1.?x105 years the cylinder
radius has decreased from the initial value of 15.2 cm to 1.2 cm when the

Paclet number becomes four.



7.5.11. Solubility Limited Dissolution of Silica and Low-Solubility Radio-

elements in a Silica-Base Glass Cylinder

In the previous sections two mathematical models of dissolution from a
cylinder with only one diffusing component were considered. In this section,
a silica-base glass cylinder containing additional Tow soﬁubi]ity components,
such as various radioelements, is considered.

The time-dependent fractional dissolution rate of component j is defined

as
%j (t) = hj (t)/ My (t) (7.5.20)
where:
%j (t) = fractional dissolution of ;omponent Jj at time t, 1/sec
hj (t) = dissolution rate of component j at time t given by
Eq.(7.5.1) for molecular diffusion and Eq.(7.5.18) for the
molecular diffusion-convection models, g/sec
Mj (t) = Vj (t) n (t) = mass of j at time t in glass, g
V. (t) = volume of undissolved waste at time t, cm3
nj (t) = density of j in undissolved solid waste at time t, g{cm3

Substituting the mj (t) given by Eqs.(7.5.1) and (7.5.18) into (7.5.20) yields

r 3e ij @
5 = » molecular diffusion
N - b 1og[coth(75)]
f(t) = S)J
J njlt) _ . 1/2
8¢ ofJ (PeY) (1+0)
3773 , molecular diffusion-convection
. ! ’ Pej = 95 > 4
DI ~
.r!

B2t T

(7,5.21)

/
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where:

Ns,j = difference between the concentration of j in the groundwater
on the waste surface and concentration of Jj in groundwater far
from waste surface, g/cm3

ij = diffusion coefficient of specie j in groundwater, e’/ sec

T = leach time given by Eq.(7.5.13) and Eq.(7.5.19), sec

In the above equation it is assumed that the ratio of the major axis to the
minor axis of the prolate spheroid is constant during the leaching process.
In Eq.(7.5.21) r and b are functions of time, with functional forms given
by Eqs.(A.29) and (A.}O), respectively. .
To apply Eq.(7.5.21), it is assumed that the rﬁte of bulk dissolution
of the solid waste is controlled by dissolution of the silica matrix, i.e.,
the preferential release of a waste-component by diffusion in solid is
neglected. As the silica matrix dissolves, all the components in the silica
matrix are released congruently from the solid but are not necessarily
dissolved. If the solubility of an individual waste component is so low that
its fractional dissolution rate is less than that of the waste matrix, then
precipitates of the low-solubility component will form. It is assumed that
the precipitates remain on the waste surface and slowly dissolve at a rate
given by the rate of mass transfer of the low-solubility species into the
'Sﬁfkbﬁhding liquid, with the concentration of the lTow-solubility species in
the liquid adjacent to the waste surface given by the solubility of that
species in groundwater. The possibility of forming colloids or other non-
dissolved suspended particulates within the groundwater is neglected.

These assumptions can be written as

F5(t) = Min (f1q5¢, (8), F5 (1)) §=1.2,..N (7.5.22)
where:

Min (X,Y) = minimum value of X or Y

6



For numerical demonstration we consider a borosilicate waste g]ass.with
r=15.2cmand L = 2.40 m emplaced in a porous medium with a porosity of
0.01 and groundwater pore velocity of 1 m/yr. The concentration of each of
the components in the groundwater far from waste cylinder is assumed zero.
The molecular diffusion coefficient in groundwater is assumed to be 1x10'5
cmzfsec for all the diffusing components. The initial inventories and solu-
bilities of constituents in groundwater and the corresponding calculated
fractional release rates are given in Table 7.5.7. Table 7.5.8 shows the
calculated fractional release rate of the constituents from the above waste
glass in_absence of groundwater flow. For this case the prolate spheroid
has the same voiume and surface area as the waste cylinder.

Table 7.5.8 also shows the experimental results of fractional release
rate for some radionuclides(M1). The experimental results are adjusted for
the surface area of the waste cylinder on the assumption that the release
rate is proportional to surface area exposed. Comparison between these
calculated values indicate that in the repository conditions dissolution of
the Tow-solubility radionuclides is controlled by the concentration boundary

layer and not by the kinetics inside the glass matrix.

7.5.12. Conclusion

Two solubility-limited dissolution models were developed in Sections 7.1
and ?.é; The models permit one to calculate the steady-state dissolution
rate 6f a diffusing species from a cylinder which is embedded in a water
saturated porous medium. In one model the mass loss is due to molecular
diffusion only, while in the other it is governed by molecular diffusion
and groundwater convection.

The models are applied to an amorphous silica cylinder embedded in a
medium with porosity of 0.01. The cylinder radius of 15.2 cm and height

of 2.4 m are used, which are dimensions of a commercial high level waste

14.
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glass cylinder. For the diffusion model an average surface mass flux of

8 g/cm2 day and leach time of 3x106 yr are calculated.

2.7x10°
The models are applied to a borosilicate high level waste glass. The
fractional release rates of some low-solubility components are calculated.
The numerical results indicate that if the solubility of.these constituents is
low enough, and their initial inventories high enough, they will not initially
dissolve congruently with the waste matrix. Comparison of fractional release
rates due to diffusion and those due to diffusion-convection indicates that
the groundwater pore velocity of 1 m/yr causes a four fold increase in
dissolution rate. This indicates a narrow range for dissolution rates
obtained by the two models.
Comparison between calculated fractional release rate and experimental
values indicates that for low-solubility glass components the dissolution
rate may be controlled by concentration boundary layer, porosity of the medium,
and groundwater pore velocity and not by kinetics inside the glass matrix
or solid-liquid interactions. Therefore, interior cracks of the waste solid,
devitrification, and other mechanisms that could increase the rate of solid-
l1iquid interaction would not be expected to affect the solubility-1imited
dissolution rate, unless they have some affect on the solubilities. If the
solubility is sufficiently large, then the kinetics of interaction between

the solid waste and water may be dominant.
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Table 7.5.7 Calculated fractional release rates for borosilicate glass
waste in flowing groundwater.

Waste cylinder:

r=0.152m, L =2.40 m, fission-product and actinide oxides

from 460 kg of uranium fuel.

Groundwater pore velocity of

1 m/yr.

Initial species

concentration Fractional

in the waste, Solubility, Disio1ution rate,

Constituent  g/cm3 g/cm3 yr-

si0, 1.6 3/ 1.2x107% ¢ 3.4x107°
P 1.92x1073 b/ 3x10"9 ¢/ 7x1078
U 1.22x1072 &/ 2x107 ¢/ 8x10™°
Np 1.92x1073 &/ 2.4x10" 11 &/ 5.7x10" 10
Pu 1.15x10"4 &/ 1x1079 &/ ax10”7
Am 3.56x10"% &/ 1.8x10712 ¢/ 2.3x10710

a/ Reference (M2).

b/ Assumed 0.5% U and Pu and all fission products and actinides (B1).

¢/ For amorphous Si0, (S1).

d/ Reference (K1),
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Table 7.5.8 Calculated fractional dissolution rates for borosilicate glass

Waste cylinder:

waste

in stagnant groundwater.

r=0.152 m, L = 2.40 m, fission-product and actinide

oxides from 460 kg of uranium fuel,

Initial specie
concentration

Fractional dissolution rate, yr"1

: _ in the wgste, So]ubiléty, 37
onstituent g/cm g/cm Calculated Observed
10, 1.6 b/ axiot & gaxo”? 1.6x1072

Te 1.92x1073 ¢/ 3.0x10° & 1.8x1078 -

U 1.22x1072 ¢/ 2.0x10° ¢  1.9x107° 1.5x1070
Np 1.92x1073 ¢/ 2.4x10711 &/ 1.5510710 6.6x10~
Pu 1.15x107% &/ 1.0x10? ¢ 1.0x1077 2.6x107
Am 3.56x107% &/ 1.8x10712 8/ 5.8x107"] 2.7x1070

a/ Reference (M1).

b/ Reference (M2).

¢/ Assumed 0.5% U and Pu and all the fission products and actinides (B1).

d/ For amorphous Si0,.
e/ Reference (K1).
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Nomenclature

IAverage surface mass flux of the prolate spheroid g/cm

Semi-major axis of the prolate spheroid cm

Semi—mfnor axis of the prolate spheroid cm

Initial semi-minor axis of the prolate spheroid cm

SoTibATILY: 11fift 40 groundwater ofca®

Concentration in groundwater far away from waste surface g/cm3
Molecular djffusivity in water cm2/sec

Mo]ecu]af diffusivity of ;omponent j in water'cmzfsec
Eccentricity of prolate spheroid

Focal distance of the prolate spheroid

Fractional dissolution rate of component j at time t sec-1

Average surface ?ass flux of infinitely long cylinder in flowing
groundwater g/cmésec

2 sec
Cylinder height cm

Initial cylinder height cm

Cylinder height at time t after dissolution begins cm

Dissolution rate at time t g/sec

Dissolution rate of component j at time t g/sec

Total dissolution rate of the prolate spheroid g/sec

Dissolution rate per unit length of the prolate spheroid g/cm sec
Dissolution rate for a slender cylinder g/sec

Dissolution rate from a cylinder in flowing groundwater

Dissolution rate per unit length of infinitely long cylinder in
flowing groundwater g/cm sec

Mass of j at time t in the waste glass g
Density of j in undissolved waste at time t g/cm3
Difference between concentration in the liquid adjacent to waste

surface and concentration in the groundwater far away from waste
surface g/cms



) S Difference between concentration of component j in liquid adjacent
to the waste surface ang concentration in the groundwater far away

from waste surface g/cm

r Cylinder radius cm

r(t) Cylinder radius at time t after dissolution begins cm

Py Initial cylinder radius cm
T Leach time (sec)
Tps Leach time for prolate spheroid sec
TSc Leach time for slender cylinder sec
Tc Leach time for the infinitely long cylinder in flowing groundwater sec
U Groundwater pore velocity cm/sec
Vj(t) Volume of undissolved waste at time t cm3
Pe = %?- Peclet number
Peo = 2;2
£

Pej = EL

03

Greek letters

3

©
n

waste form density g/cm

Q]
1

porosity

g _posh'l(%ﬁ Surface shape factor of prolate spheroid
Defined by Eq.(7.1.4)

2
n






7.6 Calculations of Dissolution of a Glass Matrix by Internal Molecular
Diffusion and Surface Regression

P. L. Chambre and S. J. Zavoshy

1. Introduction

In this paper we consider the dissolution of a glass matrix containing
sodium oxide. It is experimentally observed that sodium molecular diffusion
and ion-exchange at the glass-water interface depletes the glass matrix of
sodium ion. Further, the glass matrix is dissolved by water. This matrix
dissolution is viewed as regression of dissolved glass-water interface.

The fractional release of sodium from the glass has a form of

c]t1/2+c2t, where ¢, and c, are two constants (H1,M3). A dissolution model
that yields a fractional release which is initially parabolic (proportional
to tI/Z), and then becomes linear function of time (proportional to t),

is developed in section 7.4.

A mathematical dissolution model is developed based upcn these two
observed phenomena, i.e., internal molecular diffusion and glass surface
regression. It is assumed that the loss of the diffusing ion from the
interior of the glass due to molecular diffusion will lessen the integrity
of the glass matrix. Furthermoref”jp_jg_assumed that the glass-water
interface has a constant velocity during the dissolution process. The
regression speed is positive for the case of a regressive glass-water
interface, zero for stationary interface, and negative for the progressive
interface. The concentration inside the glass and fractional release of
the diffusant from the glass are obtained for a sphere and slab of finite
width.

For numerical evaluation a ternary sodium-borosilicate glass is con-

sidered. Sodium is the diffusing nuclide. The concentration of sodium



at the glass-water interface is chosen to be zero. The radius and half

width of the slab are equal to the radius of a spent fuel canister. A

range of regression speeds from -9.?x10-13 to 3.9x10_]] cm/sec is chosen.
The normalized concentration, surface mass flux, and fractional release

of sodium are evaluated.

2. Governing eguations for the normalized concentration, surface mass

flux, and fractional release.

Case 1. Finite slab
The following equation defines the normalized concentration of the

diffusing specie in the slab of width 2a

6, (e ) = N 3 WP e, (i) (7.6.1)
where:
ch (x,t) = normalized concentration of diffusing specie in the slab
ESL (x,t) = normalized concentration of the stahle diffusing specie in
the slab with zero concentration on the boundary
(see Eq. (7.4.30) in section 7.4 with A=0)
N> = 2_5
o
NC = (c0 - Cs) / <y

c. = surface concentration of the diffusing specie, g/cm3

c. = initial bulk density of diffusing specie in the glass, g/cm3
x = position from center of slab, cm |

t = time, sec

The fractional release is obtained by the following equation:
1-Bt

fo (t) =1 - N> (1-vt/a) - N”[ EsL (y,t) dy (7:6.2)
¥ |



where:

st(t)

fractional release of diffusing specie at time t from the finite slab

w
1]

va/D

a = initial half width of finite slab, cm

D = molecular diffusion coefficient of diffusing specie in the glass
matrix, cm2/sec

t = Dt/a’

v = regression speed, cm/sec

An asymptotic form for st(t) is obtained which is

2 0,2, /2 1/2
fo(t) = & N (7ah) "t + vijad (7.6.3)

The surface mass flux is given by

( ) oL (7.6.4)
jo, =-D(c.-c Y 7.6.4
sL 0 "ST X . vt S

where st is the surface mass loss of diffusing specie from the finite slab,

g/sz sec.

Case 2. Sphere.

The normalized concentration of the diffusing specie in the sphere is given by

n 4 b T
cSp (ryt)y =N +N csp(r,t) {7.6:5)

where:

cgp (r,t) = normalized concentration of the diffusing specie in the sphere
Esp (r,t) = normalized concentration of stable diffusing specie in the sphere
with zero concentration at the boundary
(see Eq. (7.4.20) in section 7.4 with A=o0)

r = radial position from center of sphere, cm



From Eq. (7.6.5) we obtain the surface mass flux, i.e.,

v (7.6.6)
R-vt

where jsp is the surface mass loss of diffusing specie from sphere, g/cm2 sec

The fractional release is obtained by

1-B1
fo(t) =1-N (1-vt/R)>- 3 N"f S (y.t) yidy (7.6.7)
p : Sp
0
where:
fsp(t) = the fractional release of diffusing specie from sphere at time t
8 = vR/D
R = initial radius of sphere, cm

An asymptotic form of fsp(t) for early period of dissolution is

6N° 1/2

2
fop(t) = = (D/RY) +3 (vt/2R) (1+N°) (7.6.8)

and as the total dissolution time is approached the following asymptotic

relation is obtained

. 3
FoglE) =1V = {1 = vE/R) (7.6.9)

This is due to time dependency of surface area of the sphere.

-

3. Parameters of the problem

The values of a and R were chosen to be 17.8 cm, equal to the radius
of a spent fuel canister. The glass denéity is taken to be 2.8 g/cm3.
Table 7.5.7 gives the value of molecular diffusion coefficient of sodium in
a ternary sodium-borosilicate glass at 100° and 200°C. Table 7.6.1 was

obtained by applying the following equation (F1)

D(T) = DOExp(- Q/RT) (7.6.10)
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where:

D(T) = sodium diffusion coefficient at temperature T, cm2/sec
D0 = frequency factor, cmzfs
Q = activation energy, Kcal/mole
R = gas constant = 1.99x10™° Kcal/mole °K
T = temperature in degrees Kelvin, °K —_—

Table 7.6.1. Na self-diffusion in ternary Na20-8203r5i02 glasses (F1)

Na20/8203 mole% Do(cmzfs)gf Q(Kca]/mole)gf DlOO(FmZIS)Q/ Dzog(cmzls)gf

31.3/6.25 5.01x107° 1.5 9.36x10°13 2 .gax10- 1]
30.9/9.10 6.31x10°° 1.7 9.00x10°13  2.52x10°1
28.6/14.3 3.98x107° 13.1 8.61x10713  3.59x10""
32.3/3.22 5.01x10™% 13.4 7.24x10°%%  3.29x10710
31.7/4.76 1.21x107* 13.0 3.00x10°'2  1.22x10710

a/ For temperature range of 100° to 250°C.
b/ At 100°C.
c/ At 200°C.

For numerical evaluation a ternary sodium-borosilicate glass at 100°C

with the composition 28.6 Na20/14.3 8203 mole % was considered. From

=13 cm2/s. The surface concentration is

Table 7.6.1we obtain D=D100 = 8.61x10
taken to be zero.
Values of B = -20, -10, -5, 0, 5, 10, 50, and 800 were chosen. Value

of B = 800 corresponds to v = 3.3x1070 cm/day.

4. Numerical results and discussion

The numerical results are obtained with the aid of four computer
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programs (see Appendix A for the program details). The cut off time for

calculations is the Teach time TL. This is defined as

T = lL/v] ,v#0 - (.61
where:
TL = leach time, sec
L = initial characteristic length of the problem, cm

(half width of the finite slab or sphere radius).
The value of TL corresponds to total dissolution of the glass matrix if
Y >-0, and doubling of L if v < 0. The surface mass flux was obtained by
numerical differentiation of Egs. (?;6.4) and (7.6.6).
Figs. 7.6.1 - 7.6.7 show the normalized

concentration vs. half width of the finite slab, for 8 = 0, 5, 10, 800, -5,
-10, and -20 respectively. For v > 0, increase in v, (B) will result_in
steepening of the concentration profile at the glass-water interface.
This effect can be best seen in Fig.7.6.4,where.8 = 800. Also, the absolute
value of the concentration gradient at the interface is increased as v
increases. For negative values of v, the normalized concentration profile
becomes S-shaped, see Fig. 7.6.5.

Fig.7.6.8 shows the variation of the normalized surface mass flux of
the finite slab with time (t = Dt/a) for different values of B, (v). At
the early period of glass dissolution the normalized surface'mass flux is

proportional to 7172

and is independent of the regression velocity. This
indicates the diffusion-controlled mass loss. For B = 800, after approxi-
mately 100 years, a constant surface mass flux of 2.4x10—ﬁg sodium/cm2 day
is obtained.

Fig.7.6.9shows the variation of the fractional release with time for
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Fractional release

T = Dt/d®
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Fig. 7.6.9. Variation of Na fractional release from slab (initial width 2a)
with time (t) for different glass water interface regression speed (B).



different values of v. Fractional release has a behavior of the form
c]t1f2+ cot, where c; and c, are two constants, see Eq. (7.6.6) for
values of ¢y and Co-

Figs. 7.6.10 - 7.6.13 apply to the sphere and show the
normalized concentration vs. radius of sphere for 8 =0, 10, -5, and -10
respectively. Comparison with Figs. 7.6.1, 3, 5 and 6 indicates that sodium
depletion is faster for the sphere than for the slab. The plot obtained
for B = 800 is identical to Fig. 7.6.7. thus it is not reproduced..

Fig. 7.6.14 shows the variation of the normalized surface mass flux of
the sphere with time (1) for different values of 8, (v). As leach time
is approached there is a drop in surface mass flux due to depletion of
sodium inside the sphere.

Fractional release for the sphere case is obtained by way of.numer—
jcal integration of the normalized concentration. Fig. 7.6.15 shows the

variation of fractional release with time (1) for different values of

B, (v).

5. Conclusion
A glass dissolution model based upon two observed phenomena, i.e.,

internal molecular diffusion and glass surface regression,is developed.

An asymptotic equation is obtained fﬁf_;ractional dissdiufion of d%;;ﬁéant

1/2

from the glass. The asymptotic equation has a form of c1t ¥ c2t where

Cq and c, are a function of molecular diffusion coefficient and regression
speed. The experimental results of fractional dissolution of component
"i' is of the form C]t1/2+ Czt, where C1 and C, are two constants which
depend on the diffusing component. Values of C1 and Cz are obtained

from glass dissolution-experiment. By fitting Eq. (7.6.3) or (7.6.8) to the



experimentally observed f(t) we can obtain the internal molecular
diffusion coefficient of component 'i' and the glass-water regression

speed. This is presently under study.
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Appendix A
Derivation of the leach time for sphere, prolate ellipsoid, slender

cylinder, and infinite cylinder.

Conservation of mass is the governing equation which for a quasi-

steady state is

= (pV(t)) = - m(t) | (A1)
where:
p = density (g/cm3)
V(t) = volume at time t (cms)

m(t) = mass loss rate at time t (g/sec)
With the proper initial condition (V(0) = Vy» initial volume), Eq. (A1)
can be solved. The following geometries are considered and analyzed.
1. The sphere radius is r, the concentration on the surface is constant
and denoted by Ny, the concentration in the 1iquid tends to zero as

r tends to infinity. For the sphere we have

3
v=§ﬁr (A2)
m=4mrd, N, D, =€ D (A3)

Initial condition r(0) = bé (initial radius)
Substituting Eqs. (A2) and (A3) into Eq. (A1) and after some algebraic
manipulation yields

prdr = - De Ns dt (A4)
Initial condition r(0) = ba

Integrating with respect to time fromt = 0 to t yields

() - ¥? (t) = 2 D N_ t/p (A5)



For total dissolution of the sphere we require that r(Tsphere) =0,
hence 2
. D(b ) (A6)
sphere 2 DeNS ‘
where:
T = leach time for sphere (sec)

sphere

2. The concentration on the surface of the prolate ellipsoid is constant
(NS), and the concentration far away from the ellipsoid tends to zero.

For the prolate ellipsoid case we have

2

V==mab" = 3

+ £ sinh® & cosh a (A7)

W[~
w| =~

4 7 De NS ;¢

I. Iog [cotﬁ (E%i)]_

Initial condition a (0) = &

s initial surface shape factor
f (0) = fo initial focal distance

Substituting Eqs. (A7) and (A8) into Eq. (A1) yields

3 De NS f

o log {coth (OZ—L)]

jl-(fS sinh?

5t a cosh a) = -

(A9)

Initial condition f (0)

1
-+

a (0)

n
‘R

Eq. (A9) cannot be solved since there are two unknowns and one
equation. It is necessary to have another relation between f and a.
To overcome this difficulty we assume that either f, a, or some function
of f and a is constant during leachina. Hence, we analyze the following

two cases.



Case 1. o is constant and is equal to ag-

The above assumption can also be stated as: the ratio of major axis

to minor axis is constant throughout the leaching. Thus, Eq. (A9) is

simplified to

[
f %% = - D, N, [? sinh? (@) cosh (a ) log(coth (T?ﬂ

Initial condition f(0) = fo

By integrating Eq. (A10) from t = 0 to t, we obtain

_ o -1
fg & fz(t) = 20N, [é sinhz(as)cosh(as)log(cothtéi)] t

For total dissolution of the prolate ellipsoid we require that

f(Tp) = 0 and obtain
2
bo

_ P Ctg
Tp = Eﬁ;ﬁ;' cosh (as) 1og(coth(1r))
where:
Tp = leach time of prolate ellipsoid (sec)
b0 = initial semi-minor axis (cm)

Case 2. The minor axis is constant.

(A10)

(A11)

(A12)

From the above assumption implies that after sufficient time the

prolate ellipsoid has shrunk to a sphere with radius equal to the semi-

minor axis. The volume and mass loss rate are rewritten as

T abz =

<

I
w| =
w| -~

T bg coth o

=-
L]

-1
4 m D, NS bo sinh o log (COth(%))]

(A13)

(A14)



Initial condition a(0) = a

Substituting Eqs. (A13) and (A14) into Eq. (A1) yields

2

p b0

sinh o Tog(coth(})) é%-(coth a) = - 30, N (A15)

Initial condition a(0) = o

After some simplifications, we obtain

3D, N log coth(g—ﬂ
e ’s _ Z
5 dt = sinh o do (A16)

o bo

Initial condition o(0) = ag

Integrating the above equation between t = 0 to t yields

6 D N t a 2
i B B _Sw. o
2 [1og(coth( 5 )EI Eog(coth(z)ﬂ (A17)
p by -
From Eq. (A17), we obtain T;, the time that will take the prolate

ellipsoid to reduce to a sphere with radius bo’ j.e., 0 >

2
o b a 2
T = 5o Llos(coth()]] - (A18)
e 5

The Teach time for total dissolution of the prolate ellipsoid is viewed
as the sum of two time intervals. The first time interval corresponds
to reduction of the prolate ellipsoid to a sphere. The second time
interval is the leach time of the sphere. Thus; from equation (A18)

and (A6) we have

.=k ¥

p: =P sphere (A19)



or
p b

a 2

Comparison of Eqs. (A12) and (A20) shows that the leach
two different cases differ only by a multiplier. From table of the hyper-

bolic functions, we have

ag 2 o
0, /2 1+ Eog(coth(T)ﬂ /3 cosh(a, )log(coth())
0.05 4 3.01
0.07 3.36 2.68
0.13 2.40 2.1

Therefore, both cases yield similar results. This does not prove nor
disprove the validity of the assumptions used in their derivations.
The first case (o constant) is chosen as the criterion for establishing

leach time.

3. Slender cylinder (L>10r)

For the slinder cylinder, we have

V=1 rlL | (A21)
m=2nm D, N, L/Tog(L/r) (A22)
Initial condition r(0) = ry initial radius

L(0) L, initial height
We assume that the ratio of height to radius is constant during leaching.

This is written as

]
n

ro a(t) (A23)

-
n

L, a(t) (A24)



Initial condition q(0) = 1
Substituting Eqs. (A21), (A22), (A23), and (A24) into Eq. (A1) and after

some transformations, we obtain

2D N
q(t) = - - (A25)
301, 109(L0/r0)

Initial condition q(0) = 1
Integrating with respect to time fromt = 0 to t yields
4 De NS t e
q(t) = (1 - T ) (A26)

2 0
3 re P 109(;;)

From definition of the leach time we require that q(TSC) = 0, and obtain

L
2 0
3r,mp 109(—%)

T.. = ' (A27)
sC 4 De Ns
4. Infinitely long cylinder
The mass balance in a unit length results in
& (n r%p) = - f: D, N, (Pe)'/2, pe > 4 (A28)
m
Initial condition r(0) = P
Integrating with respect to time fromt = 0 to t for r(t) yields
3/2 3/2 .. 6 172
(k) = X5 = T{3/2 Ny Do t (U/Df) /o (A29)

From definition of the leach time r(T_ ) = 0, we ohtain

ﬁ3/2 pr 2 Ur
T = 0

0 e
= iR B ace
S 1/2 D (A30)
ﬁDe NS Pe T




Appendix B: The solubility limit of silica in water

as a function of temperature and pressure
(Ref. W1).
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Appendix C The Computer Programs
~UCB NE 70, 71, 72, 73, 74

The following computer programs are written in Fortran IV and have been
executed on CDC-7600.
UCBNE-70 Calculates the surface mass flux and leach time due to diffusion
and diffusion-convection for a given glass cylinder.
Description of Data Cards: |
Ist Card: Free Format
Icont 0, stop the program execution; otherwise continue.
Ipara 0, same parameters as previous run; otherwise read
new input parameters.
Ivel 0, same groundwater pore velocity as previous run;
otherwise read the new value.
Igeo 0, same geometry as previous run; otherwise read the new
values.

2nd Card: Free Format. Consists of 4 pieces of information.

1st surface concentrafion g/cm3

2nd porosity

3rd diffusivity in groundwater cmzfsec
4th glass density

3rd Card: Free Format

Ist groundwater pore velocity m/yr
4th Card: Free Format

1 glass cylinder radius cm

2 glass cylinder height cm



UCBNE-71

UCBNE-72

UCBNE-73

UCBNE-74

Calculates the normalized concentration of a species in a
slab with regressive surface.

Calculates fhe fractional release of a species from a slab
with regressive surface.

Caicu]ates the normalized concentration and surface mass flux
of species from sphere with regressive surface.

Calculates the fractional release of a diffusing species from

a sphere with regressive surface.



O0O0O0O0O0O00O000000000

1000

700

800

9GO0

70/

* UCBNE-70 *
AUTHOR SHAW J. ZAVOSHY
CATE 0CT., 1981

THIS PRCGRAM CALCULATES THE SURFACE MASS FLUX FRCM 2 GLAST CYLINDER.
THE INFLT PARAMETERS ARE

CS= SURFACE CONCENTRATICN (G/CHM3)

EPS= POROSITY

OW= CIFFUSIVITY IM WATEFR (CMZ/SEC)

RO = DENSITY (G/7CM3)

U= GROUNDKWATER VELCCITY (M/YR)

R= GLASS CYLINDER RADIUS (CM)

HT= GLASS CYLINDER HEIGHT (CM)

Y Y T N Y R Yy Y Y P P NN TR TR PR NP

PROGRAM NONNY (INFUT,OUTPUT,TAPES=INPUT,TAPE6=CUTPUT)

CIMENSICON YU(10),X(10),FL10),EC1Q)
CONTINUE
READ(S5,*)ICONT, IFARA,IVEL, IGED
IF(ICOM .EQ. 9) GO 70 6000
IF(IPARA .EQ. C) GJ T0 7GO
READ(5,4*)CSycPS.0He RO
IF(IVEL «ENRe J) GO TO 800
READ(5,*)U
IF(IGED +EQ. 0) GO TGO 330
READ(5+®) RHHT
CONTINUE
NNN=0
V1=3.*K*R*HT/4 .
DE=CW*EFS
DH=1.E-4
S1=R*(R+KT)
X{31)Y=HT72,
Y{1)=SQRT(vi/X (1))
Y(1)=Y(1)-DH
0o 13 I=¢!3
X(I)=v1/YL(I)/2Yv (D)
E(I)=SQRT(X(I)*Xx(I)
FLY=S1i= YLL) YL Y (L)
Y(IL+1)=Y (1) +2H
NNN=NNN#1
FP=(F(3)=-F (1)) /2./CH
ACC=F{(2)Y/FP
ALd=F(2)
IF(ABS(ACD) .LE.C.0d41) GO TO 101
Y{1)=Y(Z2)=-ACC
IF(NNN.GE«59) GO 7C 500
GO TO <
CONTINUE
A=X(2)
B=Y(2)
IF(R.GE.AY GD T 5an
C=SURT LE*A-5*3)
ECC=C/A

- |
P
— g—



15

10

12

30

32

SHAPFE=ALOG( (A+B)/C)
PI=ACOS(=1.)

S=2 ., *PI*B*(R+(A*ASIN(FCC)/ECC))

CTS=-ALOG( TANH( SHAPE/2.))
ARFA=2 . *PT*R*(R+HT) /10000,
VOLUM=PI*R*R*HT/1000000.
WRITE(6,2)

FORMAT( 1H] , *==——emm DIMENSIONS OF GLASS CYLINDER========= *)
WRITE(6,5)R,HT/100.,AREA,VOLUM

FORMAT(// ,* RADIUS (CM)=*,F10.2 ,6X,*HEIGHT (M)=*, F10.2 ,6X
1,*SURFACE ARFA (M2)=%, F10.2 ,6X,*VOLUME (M3)=*,F10.2)
WRITE(6,15)DU,EPS,DE _

FORMAT(/ ,*DIFFUSIVITY IN WATER (CM2/SEC)=* 1PF15.7,6X,*POROSITY=*,
11PE15.7 ,6X,*EFFECTIVE DIFFUSIVITY (CM2/SEC)=*,1PE15.7) '
WRITE(6,6)CS '

FORMAT(//,6X,* €S (G/CM3) =* 1PFE15.7)
WRITFE(6,7)

FORMAT(/ ,*=—==DIMENSION OF APPRNX. PROLATE FLLIPSOID==-—-%)
WRITE(6,10)A/100.,B,C/100,

FORMAT(//,* A (M)=*,1PF15.7,6X,*B (CM)=* 61PE15.7,6X,*C (M)=*,1PFl

15.7)

WRITE(6,12)ECC,SHAPE,S/10000.

FORMAT(* F@C/A =*,F12.6,6X,*SURFACE SHAPE FACTOR=* F12.6,6X,*S (M
12)=% 1PE15.7)

DY=86400,

ZTOTAL=(4 ,*PI*DE*CS*C)/CTS

ZTOTAL=DY*ZTOTAL

ZLENGT=ZTOTAL/2./A

ZSURF=ZTOTAL/S

PFELT=(RO*B*R*COSH( SHAPF)*CTS) /(2 . *DE*CS)

PFLT=PFLT/DY/365.25

WRITE(6,30)ZTOTAL ,PELT

FORMAT(//,* P.FE. MASS LOSS RATE (GR/D)=*,1PR15.7,9X,*P .E.LFACH T
1IME (YR)=*,1PE15.7)

WRITE(6,32) ZLENGT,ZSURF

FOPMAT(* P.F. MASS L0OSS PER UNIT LENGTH (GR/DAY)=* 1PF15.7,6X,

70/2_



1*SURFACE MASS FLUX (GR/CM2 DAY)=*, 1PE15.7)
ZSCYL=(2 .*PI*DE*CS*HT)/ (ALOG(HT/R))
ZSCYL=ZSCYL*DY

SCLT=(3 .*R*R*RO*ALOG(HT/R) ) /(4 .*DE*CS)

SCLT=SCLT/DY/365.25
WRITE(6,35)HT/R,ZSCYL,SCLT
35 FORMAT(//,* S.CYL.RATO=% F10.2,7X,*S.CYL. MASS LOSS RATE (GR/D)=
1* ,F14.7,7X,*S.CYL. LFACH TIME (YR)=*,61PE10.2)
WRITE(6,75)
75 FORMAT(// ,%=======INFINITE CYLINDFR=======k)

500 CONTINUE
V=(11*100.)/365.25/86400,
PE=V*R/DW
IF(PE.LT.4.) GO TO 5000
WRITE(6 ,40) V*DY*3,6525,PE,DW
40 FORMAT(///,* 1 (M/YR)=*,1PE10.3,6X,* PECLET NO.,=* 6 1PE10.3,6X,*DW
1(CM2/SEC)=* 1PE10.3)
ZUL=4 .5135%DFE*CS*SORT(PE)
ZUL=Z1L*DY
ZUS=ZUL/(2.*¥PI*R)
RI=4 ,*DW/V
ZLT=0,9281*R0O* (R*SORT(R)=RI*SORT(RI) )/ (CS*NE*SORT(V/DW))
ZLT=ZLT/DY/365.25
WRITE(6,50)R,RI,ZIL
50 FORMAT(//,* INITIAL RADIUS (CM)=* 1PE10,3,6X,*FINAI, RADIUS (CM)=*
1,1PFE10.3,6X,*MASS LOSS PFR UNIT LENGTH (GR/CM DAY)=* 1PE15.7)
WRITE(6,55) ZUS,ZLT
55 FORMAT(* SURFACE MASS FLUX (GR/CM2 DAY)=* 1PF15,7,6X,*LEACR TIMF
L1(YR)=* ,1PE15.7)
5000  CONTINUE
GO TO 1000
1000  CONTINUFE
STOP
END

70/3
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AUTHCR ' SHAW J. ZAVOUSHY
DATE JuL. 1981

THIS PRCGRAM CALCULATES THE NCRMALIZEGC CONCcNTRATION AND SURFACE

MASS FLUX OF A DIFFUSING SPECIES FROM A SLAEZ WITH INITIAL HALF

WIODTH CF 2A. THE INPUT PARAMETERS ARE

A= INITIAKL HALF WICTH (CM)

D= DIFFUSION CCEFFICIENT (CM2/SEC)
BETHA=V*A/D=DIMENSICNLESS GLASI-WATER REGRESSICN SPEED

R R P P R e R R R R S Y P S YR TR PRSP Y TS e

PROGRAM MUME (INPUTsCUTPUT,TAFES=INPUT,TAPEE=CUTRUT)
O0IMENSICN X(22),C(20)
DIMENSION DD(1C)4BETHV(13)
H=1.E=6
RO:QE)?Z
ROS=0.
CEFF=R0O=- FUS
A=17.93
DDA ) =Bkl * L1l a»™ L =13))
CO(2)=3.C5*(10,**(=11))

BETEV(Z)=0.
BETHV(Z2)=5,
3ETHVI(3)=10.
BETHV (4)=50."
BETHV(5)=800.,
BETHVIB)I=1600.
BETHRV(7)==5.
BETHV(8)==-10.
EETHV{Q)“ZG.
NB1=9
NOI=2
0J) 6000 ND= 1,Nu_
D=DD(ND) LA
00 500U ANo=1,4NBI
BETH=BETFV (N3

-4

=s1
T=T*36L(0.*365.25
RO1=(RC-ROS)*N*864%dCe.
V=BETH*LrA
WRITE(By2VA4V40,3E7H
FORMAT (LF2Z 2 *HALF HICTH(CM) =™ 4Filets Xy *Y (CM/SEC) =" 1iPEL5,746X,

1%0 (CMXCF/SEC)=*,19E15,7 4ybXy*BETHAZ(VXA/C)=*,1FE15,7)

WRITE(B,13)R0O
FORMAT (/4* DENSZITY (GR/CM3)=*,iPE15.7)

IF(V.EQa0.) GO TC 7



OO0 NW

'H/'.i;

TLY=A/V/86400, 7385425
WRITE(643)TLY

FORMAT(/,*LEACH TIME(YR) =*,1PE15.,7)
CONT INUE

BEGINNING OF TIME DQ LOJDP o MULTIPLIER=1G

DO 100 X=0,25

IF(V.EQese) GO TO 15
TFIT.GE.ABS({A/V)) GO TO &G0
19 Ta=DxT7ATA

SQ=2,*SQRT(TA)
PX=1.=-3ETH*TA
0X=PX/30.

WRITE (6+10)PX*A ,DX*A,7/86400./365.25
10 FGRHAT(//+ *HIT)I(CHI =*yFLlUabsBXo*DX (CM)=* yF10.59EX,*TIME (YR )=*,1PE
114,6)

BEGINNING OF NODAL LooP,.

OO0

D0 50 I=1+23
IF(I.GE.12) GO YO 153
X(I)=(Q=1)"DX
GO TC 200
1538 X(I)=X(I-21)+,1%DX
IF(I.GE.,21) GO TO iut
GO TO 200

101 M=1=20
X{I)=PX-M*H/A
243 Cl1)=(ERF((1a4X(I))/SQI+ERF((1.=-X(I))/SA))72.
Z=14-X{1)
Y=1%X(I)
5 BEGINNING OF SUMMATION CF INFINITE SERIES. MAX. OF LQ TERMS.
DO 20 N=1,40

AR=N*PX
SI=EXP(=N¥BETH*(AR=X(I))) *(ERF ((2,%AP+Z)/S0) «ERF ((2.*AR=Y)/SQ))
S1=S1/2. ST N
SZ=EXF(=N*BETH®* {AR¢X(I)) )* (ERF ((2.*AR+Y) /SQ) -ERF ({2.*AR=7)/S0N))/2.
S=(S1+S2)*((=1)**N)

CIN+1)=C(N)+S
IF(C(N#1).EQ.0.) GG TO 35

EP3=S/C(n#1)
IF(ABS(EFS)LE.ABS(CIN+1))/71000.) GO TO 35
20 CONTINUE



35

36

L5

55
50
103
5G0
5000
6020

IF{I.GE.21) GO TC 77
CIN+1)=(ROS+CEFF*ABSICI(N+L)))/RO
C(1)Y=C(L)*CEFF /RO
WRITE(D436)X(Z) 2 ,ABSICIN®1)) JN,C(N+1)=2(1)
FOCRMAT (/. *POSITION lCH)=*.FLB.k.lZX.‘CONCENTRATION:‘.F1$.k.6!1
1¥N=P 4 I24,EX 3 *SUMINI=*,F 12 4b)
GO TC 50

DERIV==C(N#+1)/H/NM
WRITE (6945 )M*H ,CERIV+=-RO1*DERIV 4N
FORMAT (/4 ®H(CM)=%4iPELS 47 9DXy *DERIVATIVE=*,1PELZ.7,6X, *MASS FLLX
1(GR/CM2 CAY)=*,1FE15.7y6X,12)
TO0TJ==kC1*DERIV +V*ROS*8B400.
WRITE(ELS5%) TOTJ
FORMAT(//+* TOTAL FABSS LOSS RATE (G/CM2 DAY)=*,1PE15.7)
, CONTINE i
. T:T“‘lE-
CONTINUE
CONTINUE
CONTINUE
STneP
EN Y
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*%% [ICRNE-72 k%

AUTHOR SHAW J. ZAVOSHY

DATE AUG. 1981
THIS PROGRAM CALCULATES THE FRACTIONAL RELEASE. OF A DIFFUSING
RADIO-NUCLINDE FROM A SLAB WITH INITIAL WIDTH OF 2A. THE INPUT
PARAMETFRS ARE |
A= INITIAL HALF WIDTH (CM)
DC= DECAY CONSTANT (1/YR)
D= DIFFUSION COEFFICIENT (CM2/SEC) _
B=V*A/D @ THE DIMENSIONLESS GLASS -WATER REGRESSION SPEFD
khkhkkhkhhkhkhkhhkhhhhhhhhhhdhhhhhkhhhhhhhhbhhhhhhhdhhhhhhhhhhhihhhhhik
THE FRACTIONAL RELFASE IS CALCULATED .BY DIRECT EVALUATION
OF THE EOUATION FOR B .LE. 90, AND ASYMPTOTIC AND UPPFR AND LOWER BOUND
OF THE EOUATION FOR B .LE. 90, AND ASYMPTOTIC AND UPPER

BOUND LOWER BOUND ARE USED FOR B .GT, 90,
kkdkdkkkdkhkhhhhkkhhhhARrRrRARARhrhRARhhbhkhhhhddkhdkhhdhhehhdhhrhrhris

DIMENSION SU(50),SL(50)
DIMENSION S(50),AR(5),AR(5),ASFC(5)
DIMENSION DD(10),BV(10)
RO=.672

ROS=0.

CEFF=R0O~-ROS

nc=0,
DCYY=NC*86400.%365.25
A=17 .8
mM(1)=8.61*%(10,**(~13))
DP(2)=3.59*%(10.%*(-11))
RV(1)=.000001

RV(2)=5.

BV(3)=10.

BV(4)=50,

RV(5)=800.

BV(6)=1600,

BV(7)=-5.,



TIN=.001
NDI=2
NBI=7
PO 6000 ND=1,NDT
D=DD(ND)
N0 5000 NB=1,NBI.
B=BV(NB)
V=D*R/A
WRITE(6,2)A,V,D,B
) FORMAT( 171 ,*HALF WIDTH(CM)=* ,F12.6,6X,*V(CM/SFC)=* 1PE15.7,6X,
1%D (CMXCM/SEC)=*,1PF15.7,6X,*RBETHA=* ,1PE15.7)

WRITE(6,13) RO
13 FORMAT(//,* DENSITY (G/(M3) =*,1PF15.7)
IF(DC.E0.0.) GO TO 17
WRITE(6,8)NCYY, .693/DCYY
] FORMAT(/ ,2X,*DECAY CONSTANT(1/YR) =*,1PF15.7,6X,*HALF LIFR(YR)=*,
11PF10.4) ‘
17 CONTINUE
IF(V.E0,0,) GO TO 7
TLY=A/V/86400./365.25

WRITE(6,3)TLY
3 FORMAT(/ ,*LFACH TIME(YR)=%,61PF15.7)
7 T=TIN

T=T*86400.*365,25
IF(B.GE.90.) GO TO 234

WRITE(6,789)
789  ForRMAT(////,*————- DIRECT CALCULATION : *)

g A o

BEGINNING OF TIME DO LOOP . MILTIPLIER IS 10,

o

DO 30 K=0,20

IF(V.E0.0,) GO Tn 21

IF(ABS(T).CE.ARS(A/V)) GO TO 5000
21 TA=D*T/A/A



O O 0

10

100

105

TETH=1,-TA*R
C=2.*SORT(TA)
F1=(1.+TETH)/C
F2=(1.-TETH)/C

TI=(1.+TETH)*ERF(F1)-(1.-TETH)*ERF(F2)
S(1)=TI+C*(FXP(~F1*F1)-EXP(~-F2*F2))/1.,772454
0=1.-58(1)/2.

S(1)=0

BEGINNING OF INFINITE SUM DO LOOP. MAX, OF 40 TERMS.

DO 10 N=1,40
IF(N.E0.40) GO TO 30
E1=FXP(~N*B*TETH*(N-1))
E2=FXP(-N*B*TETH*(N+1) )
F=2.*N-1.

F=2 %N+1.,

Al=F*TETH

A2=F*TETH

P1=F1*(FRF((Al+1.)/C)-ERF((Al-1.)/C))
P2=F2*(FRF((A2-1.)/C)-FERF((A2+1.)/C))
P3=EXP(N*B*(N~1))*(ERF((E~-TETH)/C)=-ERF((F+TETH)/C))
P4=EXP(N*B*(N+1) )*(ERF((F+TETH) /C)-ERF((F-TETH)/C))
PS=((=1.)%*(N+1))*(P1+P2+P3+P4)/ (2 . *N*RB)
S(M1)=PS+S(N)

IF(S(N+1),E0,0,) GO TO 100

FPS=(S(M+1)=8(N))/S(MN+1)

IF(ABS(FEPS) .,LE.ABS(S(N+1))/1000.) GO TO 100
CONTINUE

S(M1)=1.+(S(N+1)-1.)*CEFF/RO ~-ROS*(1.=V*T/A)/RO
WRITE(6,105)T/86400,/365.25,S(N+1) ,S(N+1)*EXP(=DC*T) ,N
FORMAT(/,* TIME(YR)=*,1PE10.4,6X ,*FRACTINAL RELEASF=%,61PF15,7,6X
1,*FRAC. REL. WITH DECAY=*,61PE15.7,4X,*N=% T12)



234

456

Y & 8

2 2

O 0 o

T=T*10.

GO TO 5000

CONTINUE

WRITE(6,456)

FORMAT(//// ymmmmmm e —— ASYMPTOTIC MRTHOD USED

BEGINNING OF TIME DO LOOP.MULTIPLIER IS 10,

DO 31 R=0,20
IF(V.E0.0.) GO TO 22
IF(ABS(T).GE.ABS(A/V)) GO TO' 235
TA=D*T/A/A

TETH=1.,-TA*B

C=2.*SORT(TA)

F1=(1.+TETH)/C

F2=(1.-TETH)/C
TI=(1.+TETH)*ERF(F1)-(1.-TETH)*ERF(F2)
S(1)=TI+C*(EXP(~-F1*F1)-EXP(~-F2%F2))/1,772454
0=1,-8(1)/2.

S(1)=0

BEGINNING OF INFINITE SUM DO LOOP. MAX. OF 40 TERMS

nO 11 N=1,40
IF(N.E0.40) GO TO 31
F1=FXP(-N*B*TRTH*(N-1))
F2=FXP(-N*B*TETH*(N+1))
F=2.,%N-1,

F=2 ,%N+1.

Al=F*TETH

A2=F*TETH
AR(1)=(F+TETH)/C
AR(2)=(F~TETH)/C
AR(3)=(F-TETH)/C
AR(4)=(F+TETH)/C
AF(1)=N*R*(N=1)=-AR(1)*AR(1)

)



300
400

250

¥ies

11
101

106

31

235
G

AE(2)=N*B*(N-1)-AR(2)*AR(2)
AE(3)=N*B*(N+1)-AR(3)*AR(3)
AE(4)=N*B*(N+1)=-AR(4)*AR(4)

DO 400 J=1,4

ASYM=1,

DO 300 NN=1,4

AFT=2 . *J+1,

AFB=J+1.

FT=GAMFN( AFT , IERR)

FB=GAMFN(AFR, IERR)

SS=FT/(FB*( (4 .*AR(J)*AR(J))**NN))
ASYM=ASYM+(=1) **NN*SS :
ASFC(J)=EXP(AFR(J))*ASYM/AR(.J) /SORT(3.1415)
P1=E1*(ERF((Al+1.)/C)-ERF((Al-1.)/C))

P2=E2* (ERF((A2-1.)/C)=FRF((A2+1,)/C))

IF(N.GE.2) GO TO 250

P3=FERF(AR(2))-ERF(AR(1))

P4=ASFC(3)-ASFC(4)

GO TO 75

P3=ASFC(1)-ASFC(2)

P4=ASFC(3)-ASFC(4)
PS=((=1.)%*(N+1))*(P1+P2+P3+P4) /(2 ,*N*R)
S(W1)=PS+S(N)

IF(S(N+1).F0.0.) G0 TO 101
EPS=(S(N+1)=S(N))/S(M+1)

IF(ARS(EPS) .LE.ABS(S(M+1))/1000.) G0 TO 101
CONTINUE

S(N+1)=1.+(S(N1)-1.)*CEFF/RO =ROS*(1.-V*T/A)/RO
WRITE(6,106)T/86400./365.25,S(M1) ,S(N+1)*EXP(=DC*T) ,N
FORMAT(/ ,* TIME(YR)=* 1PE10.4,6X,*FRACTINAL RFLFASE=* 1PF15.7,6X
1,*FRAC. RFL. WITH DECAY=*,1PE15.7,4X,*N=* 12)
T=T*10.

CONTINUFE,

WRITE(6,576)



576  FORMAT(/,* RBOUND METHOD IS USED, U.B.@ UPPER BOUND FRACTIONAL REL
1FASF. DELTAQU,B, - L,B. *)
T=TIN*R6400.%365,25
DO 32 K=0,20
IF(V.E0.0.) GO TO 23
IF(ABS(T) .GE.ABS(A/V)) GO TO 5000
23 TA=D*T/A/A
TETH=1.-TA*R
C=2.*SORT(TA)
F1=(1.+TETH)/C
F2=(1.-TETH)/C
TI=(1.+TETH)*ERF(F1)~-(1.~TETH)*ERF(F2)
S(1)=TI+C*(EXP(~F1*F1)-EXP(-F2%F2))/1.772454
0=1.-S(1)/2.

SL{1)=0
Su(1)=0
C
5 REGINNING OF INFINITE SUM DO LOOP., MAX. OF 40 TERMS.

9}

DO 12 N=1,40
E1=FXP(-N*R*TETH*(N-1))
IF(N.E0.40) GO TO 32
E2=FXP(-N*B*TETH* (N+1))
F=2.,*N-1,

F=2,%N+1.

Al=F*TETH

A2=F*TETH

AR(1)=(E+TETH)/C
AR(2)=(E-TETH)/C
AR(3)=(F-TETH)/C
AR(4)=(F+TETH)/C
AE(1)=N*B*(N-1)-AR(1)*AR(1)
AFE(2)=N*R*(N-1)-AR(2)*AR(2)
AR(3)=N*B*(N+1)-AR(3)*AR(3)
AE(4)=N*B*(N+1)=AR(4)*AR(&)
CL31=AR(1)+SORT(AR(1)*AR(1)+2.)



50

410
12
550

107

32

CL32=AR(2)+SORT(AR(2)*AR(2)+1,2732)
CU31=AR(1)+SORT(AR(1)*AR(1)+1.2732)
CU32=AR(2)+SORT(AR(2)*AR(2)+2.)
CL41=AR(3)+SORT(AR(3)*AR(3)+2.)
CL&2=AR(4)+SORT(AR(4)*AR(4)+1.2732)
CU41=AR(3)+SORT(AR(3)*AR(3)+1.2732)
CU42=AR(4)+SORT(AR(4)*AR(4)+2.)
BLP3=SORT(1.2732)*(EXP(AE(1))/CL31-EXP(AE(2))/CL32)
BUP3=SORT(1.2732)*(EXP(AE(1))/CU31-EXP(AE(2))/CU32)
BLP4=SORT(1.2732)*(EXP(AE(3))/CL41-EXP(AR(4))/CL42)
BUP4=SORT(1.2732)*(EXP(AE(3))/CU41-EXP(AE(4))/CU42)
P1=E1*(ERF((Al+1.)/C)-ERF((Al-1.)/C))
P2=F2*(ERF((A2-1.)/C)-ERF((A2+1.)/C))

IF(N.GE.2) GO TO 50

BLP3=ERF(AR(2)) -FRF(AR(1))

BUP3=BLP3

PSU=(=1)*%(M+1)*(P1+P2+RUP3+RUP4)
PSL=(-1)**(N+1)*(P1+P2+BLP3+BLP4)

PSL=PSL/ (2 .*N*B)

PSU=PSU/(2.*N*B)

SU(N+1)=SU(N)+PSU

SL(M+1)=SL(N)+PSL

EPSU=(SU(N+1)=SU(N) ) /SU(N+1)

EPSL=( SL(M1)-SL(N))/SL{N+1)

IF(ABS(EPSU) ,LE.SU(M+1)/1000.) GO TO 410

GO TO 12

IF(ARS(FPSL) .LE.SL(M1)/1000.) GO TO 550

CONTINUF.

SU(N+1)=1.+(SU(N+1)=1.)*CEFF/RO =ROS*(1,=V*T/A)/RO
SL(M1)=1.+(SL(N+1)=1,)*CEFF/RO -ROS*(1.-V*T/A)/RO
WRITE(6,107)T/86400,/365.25,SU(N+1) ,ABS( SU(N+1)=SL(N+1)) , SU(N+1) %
1EXP(-DC*T) ,N

FORMAT(/,* TIME(YR)=*,1PE10.4,4X,*U.B,=* 1PE15,7 ,6X,*DELTA=*, 1PFl
15.7,6X,*U.,B, WITH DECAY=* 1PE15.7,4X,*N=* 12)
T=T*10.

5000 CONTINUE



1000 CONTINUE
STOP
END
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THIS PROGRAMM CALCU.ATIS CONCINTRATIN AND 4A3S FLUX.
CASE SFHIRES
3 UCBNE-73
Author Shaw J. Zavoshy
Date August 1381

DIMENSICN CU(S50) X (30)4ERS(L0VLZERITZ(13),XX(10)
DIMENSION FRAC(2C) ,Q4V(30),SDIR(3)
DIMENSION TIMZ (3D
DIMENSICN DD(10).3ZTHV(10)
Az17.8
RO=,672
RI3=10.
CE~F=RO-RJ3
D0(1)=8.€L*(10.**(-13))
DO(2)=3453%(50%*(=11))
N)I=1
N3[ =9
3zTHV(1)=0.
3iTHV(2)=5.
3iTHVI(3)=10.
BiTHV(w)=50.
BiTHvV(5)=800,
BiTHVI(6)=160GC.
8ZTHV(7)==-5,
BZTHV(B8)==10,
BZITHVI(9)==20,.
H=,000C1
J) 6000 NJX=1,NDI
D=J3D(ND)
0J 50300 NB3=1.NBI
BETH=EELTHV (NB)
POL=(RC-X0S)*0*864L0D.
V=BETH*C/A
T='l &
T=T*86L00.%365.25
HWAITE(B+2) AgV,eDBETH
FCRMAT(1FL ,* RADIJS (CM)=%4F12¢643Xy *V(ZM/SEC)=* ,1PE15.74+6X,
1*0 (CHYCM/SEC)I=* 41255, 7+BXy*3_THAZ(VXA/D) =*,1PL15.T)
WRITE(5,13)RC
FIRMAT-{/+* DENSITY (SR/CMI)I=*,1PZ18.7)
IFIV.ZQ43s) GO TO 7

TLY=4/V/354C0.7365.2
TTRANS=0/V/V
WRITE(EW3)TLYTTRANS/85L00./365.25

FORIMAT (/4*LZACH TIMI(YU)IZ(A/V)=*,13215.74y3X+*TRANSITION TIME(YR)=
1{0/V2)= *,1PEL5.7)
CONT INUE

SIGINNING OF TIM: 00 LCIP o MULTI?LIZIR=13D

IJX=25
0) 100 K=),Iux’
SJIR(L)Y=D0,
IF{V.2Q.0.,) GO 70 17
IF(T«GE.A3S(A/V)Y) 50 TO 500

G3 10 301



L7
301

10

e N E)

150

101
200

LS B O W ]

s

I1)JK=9
CONTINUE
TA=D*T/4/A

30=2,*SART(TA)

(=1 ,=-BITH*TA

IF(PXsLEs «001/A ) GO TO 506
DX=PX/10.

WRITE(B+10)T/BBL00.7365425+PX*A,0X*2

FORMAT (//y ¥ =c=cccea TIME(YR)=*41PE1).2,6Ky* R(T) (CMI=%,F12.404y56Xy

1* JR(CM)I=*4F12.5)

BEGINNING OF NODAL .002,.
00 50 I=1,23 :
IF(I.GE.1L) GO TO 150
X(I)=(I=-1)*0X
XK(1)=,00L/A

GO TO 200
X(I)=X(I=1)+.1%DX
IF(I.GE.21) GO TO 101
GO T0 203

¥=I=-20
X(I)=PX=-41*H/A
Z=1.=-X(I)}

*=1-’K‘I,
S[=24*X(I)
XX (1)=2Z/35Q
XX (2)=Y/3Q

0 II=1i,2
IIV=IRFCIXX(IIMN)

P AR L ]
l—‘-mﬂ\.)
~ L)

(L TP

CUII)=,5641S*ZXP (XX(II)*XX(IL)) =XX(IIV*ERC(II)
Ta=tiRC U I-ERCLZ]) #SI%MERIFCIL)=IRIFZ(2)1)/5]

8ZGINNINS JF SUMMATION CF INFINITE SERIESs MAXe. OF 40 TERMS,

DD 20 N=1, 40
IFI{N.GE. 40) GO TO 100
A=N=PX
AREL=N*BITH*(N*FX-((I))
ARE2=N*3ITH*(N*PX+X(I))

ZI1=EXP(=-4REL)
c2=EXP(-0RE2)
X (1)=(2.*AR+Z) /SQ
XK{2)={2,%AR~Y)/SQ
XX (31=(2.*AR+Y)/SQ
XX (&)=(2, *AR=2Z) /SQ

0) 88 II=1,4
ERTUITI Y= RECIXX (I1))
ERIFC(IIN=450419*2X2 («XX(II)*XX(II))

SUNL==EICERC VLY $ERT(2Y) /51

SU42= E2*¥(ZRCI3IV4E2(L) ) /ST
SIJH3==-SQ*EL1*(ERIFC(LI=-ERIFC(2))/SI
SJMG= SQTEZ*(ERIFC(3)=-ERIFC(&))/SI

*XX(II)®eRC(ID)



[ Y]
e

36

77

+5

55

3040

100
500
5000
5000

S=SUML #SUM2 +SUMI +S JML

C(N#L)=C(N) ¢S
IF(C(N+1).EQa0.) 32 TO 35

EPS=S/C(FeL) :
IF(ABS(EFS) o LEsABS(ZIN#L)) /1,506 ) 53 TO 35
CINTINUE
I7(I.GE.2L) 50 TO 717
CIN#1)=(ROS+CEFF*ABSIC(N+1)))/RO
CltL)=C(1)*CEFF/RO
ARITE (B+36)X(ID*ALABSICINEL)) oNy2 (N*1)=2(1)
FORMAT (7, *POSITION (CM) =*,F1044412¢,*CONCEINTRATION=%,F1044 46X,

- :1'-1""‘|1215(|‘SU M(N) =* ,F 12,6)

GJ) TO 540
JIRIV==C(N+L)/H/M

HRITE(6o45)M*H ,DERIVs =RO1*DERIVN

FOP.HAT ‘/g ‘H lCH):‘Hi’EiS.T .6!.‘DEQIVJ&TIVE=‘-IPE 15. 7!5XQ.HASS FLUX
1(GR/CM2 DAY)=*41PE15.746X,12)

T)TJ==RCL*DERIV +V*RO3%*8564L0OC,
WRITE(B.55) TOTJ
FORMAT(//,* TOTAL 42S5 LOSS RATEZ (5/2M2 JAY)=*,1PEL5,. 7)
SOIR(M+1)=SDIR(M)*IZRTV

SONTINUZ

=3 .
DIRAV=SDIR(I+1)/3,
FLIJXAV==ROL1*DIRAYV
FLIXT=12.56637*FLUXAV*A*A*PX*PX

WrRITZ(B+3I00)0IRAVFLUXAVFLUXT
FORMAT (7, *AVERAGE JIRe=¥*yiPEL1S47+6¢+*AVERIGE FLUX(G®/CM2 DAY) =+,
11PI15.7+EXy*MASS LOSS(5R/DAY)=*,1PI15,7)

T=T*10.,
SONTINUZ
SONTINUZ
SONTINUZ
35TO0P

ZND

72,3
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AUTHOR SHAW J, ZAVDSHY
DATE S:tP. 1381
THIS PRCGRAM CALCULATES THE FRACTICNAL RELEASE CF A DIFFUSING
SFECIES FROM SFHEREs, THE INPUT PARAMETERS ARE
A= RABIUS CM
RO= DENSXITY OF DIFFUSANT G/CM3
ROS= COMCENTRATION ON THE SURFACE G/CM3
D= DIFFUSION COEFFICIENT (CM2/SEC)
BETHA=V*A/D = DIMENSIONLESS REGRESION SPEED
R R R R R R PR Y N E R R Y TR I T TR Y VU PO g P gvgv g g g e g gy
DIMENSICM X (999),C(S899),YP (%99),YPP (3939),YZ(999) ,W(939,3),ANS(S)
DIMENSIGM ERC(10),XX(10),ERIFC(10)
DIMENSICN DDU{10),BETHV(10)
A=17.8
RO=4672
k0S=0. o
CEFF=RO-RDS
00(1)=84€1*(10.%*(=13))
DD(2)=3.53*(10.**(-11))
NDI=1
NBI=9
BETHV(1)=0.
BETHV(2)=5,
BETEV(3)=10,
BETHV(4)=50.
BETKV{51=800.
BETEV(B)=16G0,
BETHVI(7)=-5,
BETHV(38)=-1C.

- BETHV (9)==-20,

H=.00001
03 6305 MD=i,NOI
D=DD (ND)
D0 5000 N3=14N81I
BETH=BETHV (NB)
V=BETh*C/A
T-‘-ni
T=T*8EL(( +*365.25
WRITEU(E,2)A,W,D,BETH
FORMATILFL+* RADIUS (CM)=*3F12.6y6Xs *V(CM/SEC)=*,1PC15.,7,6¥,
1%C (CMXCM/SEC) =*,1PE15,7 46Xy *BETHAS(VXA/D)=*,1PE15.7)
WRITE (6413)RO
FORMAT(/4* DENSITY (GR/CM3)=*,.PEi5,.7)
IF(V,EQele) GO TO 7

TLY=A/7V/56u004/385,25
TTRANS=D/V/V
WRITE(Be3)TLY,TTRANS/86400./362,25
FORMAT (/,*LEACH TIME (YR)Z(A/V)=*,1PE1547,6Xy *TRANSITICN TIMES(YR)Z
1{D/V2)= *,1PE15.7)
CONT INUE

BEGINNING OF TIMZ GO LCOP o MULTIPLIER=1C

TJK=25

00 100 K=0,IJK
IF(V.EQ.Q0«) GO TO 17
IF(T.GE.ABS(A/V)) GC TOD 500



17
01

10

150

101
200

[ NeNe]

a8

T2
GO TO 301
IJK=9
CONT INUE
TA=D*T/4/A

SQ=2.*SQART(TA)

PX=1.=-BETH*TA ;

IF(PXesLlEs 4001/A ) GO 78 500
0X=PX/7100.

WRITE(B41C1T/864004/ 365425 PX*A,0X*A
FORMAT(//y *====——== TIFC(YR)=*41PE10.2+6Xs® R(T) (CM)I=*,F12.04yEX,
1* DRI(CM)=*,F12.5)

BEGINNING OF NOCAL LGCO°.
NNN=9932
DO 50 I=1,4NNN
IF(I .GE. NNN) GO TC 101
IF{I.GE.S2) GO TO 152
X{I)=(I-1)*DX
X{(1)=.001/A

GO TOo 2040
X(I)=X191)+PX*(I-31)1/3000.
GO TO 230

X(I)=PXx-H/A
Z=1.-X(I)

Y=ie¢X(I)
SI=2.*X(I)
XX (1)=2/5Q
XX (2)=Y/5Q

D0 40 II=1,2

ERC (IIV=ERFC(XX(II))

ERIFCIIIN =564 2GR EXP(=XX{IZI*XX(II)) =-XX(IIDV®ERCIII)
C(1)=1,=-(ERC(1)=ERC(Z) #+SQ*(ERIFC(1)=ERIFC(2)))/SI

BEGINNING OF SUMMATICH CF INFINITE SERIES. MAX. CF 43 TERMS.

CO 20 N=1+40

IF(NeGE. 40) GO TC 100
AR=N¥FX
AREL=N*BETH*(N*PX-X(I))
AREZ2=N*3ETH* (N*CEX X {I))

£1=EXP (-ARE1)
E2=EXP(-RRE2)
XX(1)=(Z2.*AR+Z)/3Q
XX(2)=(2.*AR-Y)/SQ
XX (3)=(2.%AR+Y) /S
XX(4)=(2.,*AR=7)/35Q

00 388 IlI=1.4
ERC(IIN=ERFC{(XX(II))
ERIFCIII) =5641 S22 XP{-XX(II)I*XX(II)) =XX(II)*ERC(II)

SUM1=«EI*(ERC(1)+ERCI(2)) /ST
SUM2= E2*(ERC(II+ERC(4)) /SI
SUM3==SG*EL*(ERIFC(1)=-ERIFC(2))/SI
SUML= SC*E2* (ERIFC(3)=-ERIFC(4)) /ST

!



20

50

300

100
500
5000
6000

S=SUM1#SUM2+SUMI+SUME
CIN+#1)=C(N) ¢S
IF(CIN*1).EQ.0.) GO TO 35

EPS=S/C(he1)
IF(ABS(EPS)«LE.A3S(CIN+1))/1.E4 ) GC TO 35
CONTINUE

YZUI)=3+4*X(I)*X (I)*ABS(CIN+1))

CONTINUE
YPN==YZ (NNN)/H
YPN=YPN*PX*PX
Al= =,5
AN==45

NNN=NNN-21
N=NNN
YPi=0.

B1=3*((YZ(2)=YZ(1M)7{X(2)=X(1))=YPLIZ7 (X (2)V=X (1))
BN==3¥((YZNY=YZIN=1))ZIX INY=XIN=1)}=YPN)Z(X(N)-XIN=1))
CALL SFLIFTUXsYZoYPoYPPyNNNyWyIERRyGyAL, 8L, AN,BN)

NUP=1

XLO0=X (1)
XUP=X (NNN)
CALL SFLIQUXsY7+YFeYPPyNNNXLO,XUP,NUP, ANS,IERR2)

FRAC=1.~-RKOS*{1.-V*T/A)**3 ., /R0 -CEFF*A3S{(ANS(1))/RO
- WRITE(€,300)IERR,IERR2,FRAC
FORMAT (/7 +® TE=%,12+6X,*IE2=41246X,* FRACe=*,1PEL5,7)
T=T*10. '
CONTINUE
CONTINLE
CONT INUE
STOP
END

7473
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