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7.1 Mass Transfer From a Fuel Canister by Diffusion 
• Paul L. Chambre 

Consider a cylinder of finite length imbedded in a porous medium. The 

~ylinder matrix contains a diffusing specie such as Si(OH)x or U02 which 

. is set free at the surface of the cylinder at the solubility limit c of s 
this specie in water and then diffuses into the exterior unbounded space~ 

The diffusion coefficient is assumed constant. The governing equation for 

the conservation of mass of the diffusing species outside the cylinder in 

absence of any losses is 

(7.l.la) 

Here Of is the diffusion coefficient of the species in water and Kits 

retardation coefficient. 

The boundary conditions are respectively 

(7.l.lb) 

on the surface of the cylinder and 

2=0 (7.l.lc) 

on an infinite spherical surface enclosing the cylinder. If the concentra

tion at infinity is non-zero, a change in the reference datum of 2 reduces 

that problem to the above formulation. Prior to the time t = 0 the diffusing 

nuclide has zero concentration in the exterior (porous) medium. 

For a cylinder of finite length, the Laplace operator in eq. (7.l.la) 

·has the form 

(7.1.2) 



where r, a, z are cylindrical coordinates. For the exterinr diffusion 

problem which we wish to solve, compact analytical solutions of eqs. (7.1.1) 

and (7.1.2) are not possible because the interior bounding surface is a 

cylinder and the exterior surface is a sphere. This of course does not 

mean that the posed problem does not possess a solution. Indeed one can 

obtain it in numerical form or by analytical approximations. Since we 

wish to retain a compact analytical solution to this problem, a suitable 

approximation is made for the shape of the cylinder. The finite cylinder 

shape is approximated by a slender prolate spheriod which is generated by 

rotating a family of confocal ellipses about their major axis. This 

family generates not only the replacement for the finite cylinder, but 

produces also the outer spherical boundary which is a member of this 

fami ly. 

One might consider also other forms for the approximation. Suppose 

the inner surface of the domain is maintained in the exact form of a 

finite cyl inder and the outer boundary is now acyl inder, but of infinite 

extent. For simpl icity, consider furthermore that a steady state prevails 

so that one deals with the solution of Laplaces equation in the exterior 

field. Subject to the boundary condition (7.1.lb) the solution sought is 

mathematically equivalent to the problem of determining the capicitance 

of a cylinder in an infinite cylindrical box. It is well known that this 

problem does not possess an exact closed form solution although it can 

be readily shown that such a solution exists and is unique and can be 

approximated by various means. With these comments in mind, we reiterate 

that the interior cylinder surface will be approximated by a slender 

prolate spheroid which is described by the prolate spheroidal coordinates 

(a,B,~). Since the reader may not be familiar with this coordinate system, 
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we review and summarize in the following its main characteristics. 

The relationship between prolate spheroidal coordinates (a,S,~) and 

the common rectangular coordinates (x,y,z) are given by 

x = f sinha sins cos~ 

y = f sinha sins sin~ 

z = f cosha cosS 

(7.1.3) 

where f is the focal distance of the prolate spheroid measured from the 

coordinate origin, see Fig. 7.1.1. To exhibit the geometric significance 

3. 

of a, take a to be constant and let I. 

a = f cosha, b = f sinha (7.1.4) 

in eq. (7.1.3). If these three equations are squared and added, there 

resul ts . 

(7.1.5) 

Since a and hence a and b ar~ constants, this represents a prolate spheroid 

in the x,y,z coordinate system (see Fig. (7.1.1 )) ... One observes from 

(7.1.4) that as a becomes small, the prolate spheroid tends to a small diameter 

"cylinder". This "cylinder" has a radius b and a length given by (7,1.5) 

as 2a. In the following, we shall approximate the cylinder by small 

positive values of a. On the other hand,as a. becomes very large, so do 

both a and band (7.1.5) tends to the description of a sphere of large 

radius. The entire a range generates a family of prolate ellipsoids. 

In order to exhibit the geomeiric significance of S, take a to be a 

constant and let 

a = f cosS, 6 = f sin a (7.1.6) 

Again square the equations in (7.1.3) and add so that 
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Ot = const. 

'/1=0 
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(3=11 
/ 

\jJ = const. 

Fig. 7.1.1. Prolate spheroidal coordinates (a,B,~). 
Coordinate surfaces are prolate spheroids 
(a = const), hyperboloids of revolution 
(B = const), and half-planes (~ = const). 
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(7.1.7) 

Hence for B constant and thus a and b constant, this equation represents 

a family of hyperboloids of two sheets with foci at + f as shown in 

Fig. (7.1.1). When B = 0, a = f andb = 0, while when B = TI, a = -f 

and 6 = O. For either of these cases (7.1.7) reduces in the.limit to 

the collapsed hyperboloid, i.e., the positive and negative z axis from f 

to 00 and -f to -00 respectively. When S = f, a = 0,6 = f for which (7.l.7) 

reduces in the limit to z = 0, i.e~, the x-y plane. Finally, as can be 

seen from Fig. (7.1.1), the family of half planes ~ = const~nt with 

o ~ Ij! ~ 2 TI forms the third member of orthogonal coordinate system (l,(3,1j! 

which has the range 

In this coordinate system the square of the element of arc length is 

given with help of (7.1.3) by 

(7.1.8) 

(7.1.9) 

From this one obtains the metric coefficients of this coordinate system 

as 

h = h = f (s i n h 2 a + sin 2 B) 1 / ~. h = f s 1.' n ha sin B a B ..' IjJ 
(7. 1. 10) " 

Now the form of the governing eq. (7.1.la) in this curvilinear orthogonal 

coordinate system is 

ae [1 
K at = Of h h h as IjJ 

+ 

(7.1.11) 

4. 



which reduces with help of (7.1.10) to 

+ _.1_ a 
slnB dB 

~ < ~ < ~. 0 < B ~ ~. 0 < ~ ~ 2n s 

An alternate form of this. equation is useful. Let 

(7.1.12) 

r,; = coshet. II = cosa. ~ =~ (7.1.13) 

then (7.1.11) transforms into 

2 2 
+ Z; -ll 

. 2 2 
(Z; -1)(l-1l ) 

(7.1.14) 

Z;s < Z; < 00, -1 ~ II ~ 1,0 < W ~ 2n 

as one can readily show. In (7.1.12) and (7.1.14) as and Z;s describe 

the cylinder (prolate spheroid) surface. Particular solutions to this 

equation can be constructed by separation of variables. With 

(7.1.15) 

5. 



~ satisfies the Helmholtz equation in prolate spheroidal coordinates 

(7.1.16) 

This equation can be separated again with 

(7.1.17) 

Here the radial function Rmn (k,Z;;) and the angular function Smn (k,W 

satisfy the differential equations 

d [2 d ] ( ·22 2) .. 
dZ;; (z;; -1) dZ;; Rmn (k,Z;;) - Kmn - k z;; + z;;2_

l 
Rmn(k,z;;) = 0 

6. 

2 The separation constants k and Kmn' which are eigenvalues in our problem, would 

be determined by boundary conditions imposed on R nand S n. This method m . m 
of solution is not pursued in the following since the determination of the , 

~ spheriodal eigenfunctions and eigenvalues for the exterior problem are 

mathematically quite involved. We will instead obtain the necessary 

information about the solution by application of Laplace· transform techniques. 

Before proceeding with this, we make the simplication that the concen

tration of the diffusing element on the cyl inder surface is independent of 
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the angle 1jJ and constant over the entire surface so that c(r;,Il,T) obeys, 

see eq. (7.1. 14). 

(7 . 1 .19) 

(7.1. 20) 

(7.1.21) 

C(OO'Il,T) = 0 -1 ~ II ~ 1, T ~O (7.1. 22) 

(7.1.23) 

where 

; T (7.1 .24) 

The initial condition is given by (7.1.20). The boundary conditions on 

the sur"face of the cy1 inder and on the spherical surface at the point at 

infinity are given by (7.1.21) and (7.1.22) respectively. Eq. (7.1.23) describes 

the symmetry of c about the midplane II = 0 of the cylinder. We now develop 

the steady solution as well as the early time and large time (approach to 

the equilibrium) behavior of this solution. 

The Steady State Solution 

For this case the governing equation for c(r;) and its side conditions 

reduce to 

d 
dr; (7.1.25) 

f-



cks) = 1 

c (00) = 0 

(7.1.26) 

(7.1.27) 

If the concentration at infinity is non-zero, a change in the reference 
A .' . .," .. , 

datum (c) reduces that problem to the above formulation ... Here c has no 

~ dependence because the boundary condltions (7.1.21) to (7. 1.23) can be 

met in the indicated way. The solution to this prohlem is elementary 

an dis gi ven by 

where 

is the legendre function of the second kind and zero order. 

~ = coshCL2:l = coth2 ~2 
1',;-1 cosho.-1 

Eq. (7.1.28) yields 

log coth ~ 
c(o.) = ------""--, a. ~ a. < 00 

a. S 

log coth f 
The d iffus ion f1 ux is then given by 

-+ " J = -De Cs grad c 
A 

-De Cs dc = 
ho. do. 

(7.1. 28) 

(7. 1. 29) 

In view of 

(7.1. 30) 

(7.1.31) 

(7.1. 32) 

Here De = EDf is the effective diffusion coefficient of the species in the 

water saturated porous medium, and E is the porosity of the medium. Eq.(7.1.32) 

with the help of (7.1.10), yields the diffusion flux from the surface of the 

prolate spheroid 

. -+ = (De Cs ) 
J s f -----------

. ~sinh2o.s + sin2s) 1/210g (coth ~s) sinh o. s 

1 
(7.1.33) 

8. 



One observes that although the concentratipn is uniformly distributed over 

the surface a = as' the surface flux is a function of position B. The 

flux is largest over the top and ~ottom caps of the cylinder where B is 

close to 0 and n as shown in. Fig. (7.1.1). The expression (7.1.33) is 

typical of the surface f1 ux from an arbitrari ly shaped body tin a diffus i on 

field governed by Laplace's equation, subject to boundary conditions 

of type (7.1.26), (7.1.27). Dimensional analysis shows that 

js = (De 1 csj function of body geometry 

where 1 is some characteristic body dimension, which in the present case 

can be readily identified from (7.l.33). In order to obtain the total 
-+ 

rate of mass transport from the cylinder, one must integrate js over the 

surface S of the prolate spheroid 

(7.1. 34) 

Since dS = hBh~ dBd~ one obtains with (7.1.10) and (7.1.33) the formula for 

the total rate of mass transport from a prolate spheroid 

4rrDeCsf 
m = -----a 

log(coth r) (7. l. 35) 

For a slender prolate spheroid which is to approximate a cylinder of 

length to radius ratio t ~ 10, as « 1. Hence one can approximate 

a 
coth (.2.) '\, L b '\, f a by using (7.1.4) and f '\, h 2 - as - s - 2 

thus, 

L 2 L 
b = '2 as or as = b 

9. 
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With this (7.1.35) yields 

2nD csL . e 
m = -----

log (~) 
(7.1.36) 

an approximation for the total rate ofimass transport from a slender 

cylinder of length L and radius b. 

The principal physical feature of this formula is that m diminishes 

with decreasing radius b (L being held constant) but for a fixed radius 

m increases with L. These formulas and the equation for the fractional 

dissolution rate will be illustrated in section 7.5. 

We consider next the question of the length of time required to 

establish the steady state solution. 

The Transient Solution 

The analysis is conducted in two parts, the early time behavior and 

the large time behavior of the solution to equations (7.1.19-23), since 

the complete solution to these equations is difficult to obtain. The 

large time behavior is of greatest interest since it gives an indication 

of the time span necessary to establish the steady state. We will compute 

only the dominant leading term of the solutions since it will furnish 

the desired information. 

The Large Time Behavior 

The governing equation (7.l.l9) and its side conditions are subjected 

to a Laplace transform with respect to the variable T and a Legendre 

transform with respect to the variable~. C(~,~,T) thereby changes in 

succession into 

c(~tl.l,p) = fO<Je-PT C(~,~,T) dT 
o 

(7.1.37) 



1 
c(r,;,2n,p) = I C(Z;;'lJ,p} P2n (J..I}dJ..l 

o 
(7.1.38) 

where the P2n (lJ) are the Legendre polynomials of even order .. Only even 

members of the set are required on account of the symmetry condition 

(7.1.23). We have shown that for the leading term of the solution~ only 

Po(J..I) = 1 and thusc(Z;;,o,p) are required. The details are omitted. 

Applying (7.1.37) to (7.1.19) yields with help of (7.1.20). 

L [(r,;2_1) ac(z;,lJilll+ L [(1-i) ac(z;,u,P)] = p(r,;2_J..I2)c(Z;,1l'P) 
ar,; aZ;. J au 31.1 

(7. 1. 39) 

Then applying (7.1.38) gives with n = 0, 

° 
(7. 1. 40) 

One observes, having first Laplace transformed equations (7.1.19) - (7.1.23), 

that the second (integrated) term in (7.1.40) vanishes by (7.1.23). The 

integral on the right hand side of (7.1.40) has the form 

(7.1.41) 

The last integral can be shown to have no contribution to the leading term, 

so there results for c(r,;,o,p) = c(r,;,p) 

d 
dr,; [ 2 dC] _ (2 1) (Z; -1) dr,; - P Z; - "3 

with the boundary conditions 

(7.1.42) 

(7.1.43) 

11. 
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We propose a solution to (7.1.42) of the form 

-q(z;-z; ) 
c(Z;,q) = </>(z;,q}e s, q = rp (7. 1. 44) 

where </>(Z;,q} is to be determined by substitution into {7.1.42}. There 

results 

~t [(t2
_l) *] = R(~.q) (.7 • 1. 44a) 

where 

(7.1.44b) 

In view of eq. (7.1.43) we take the boundary conditions on </>(~,q) to be 

</>(z;s,q} = ~ 
q 

</>(oo,q) = 0 

(7. 1. 45) 

We now define the Green's function G(Z;,~} for the differential operator 

in (7.1.44a) in order to solve that equation. Let 

G(~s'~) = G(oo,~) = 0 

b 
Then with F(a ,b) = f ~z; (7.1.47) .. 

a (Z;-1) 

we have. 
2 dG (Z; -1) dZ; = A or G(Z;,~) = AF(Z;s'~) , Z;s < Z; < ~. (7.1. 48) 

2 dG 
(Z; -1) ~ = -B or G{Z;,~} =-BF(~,oo) , ~ < Z; < 00 

The continuity of G(Z;,~} and the unit jump disco~tinuity of (~2_1) ~~ 
, 

at ~ = ~. 

12. 



determines 

A = 0-lF(~,oo) , B = 0-lF(~S~~) D = F(~S'oo) (7.1.49) 

so that 

G(s,~) = (7.1.50) 

On evaluating D andF there results 

G(s,fJ = (7.1.51) 

Returning now to the solution of eq. (7.1.44) we consider as our starting 

point Green's theorem 

(7.1 .52) 

One substitutes for the differential operators under the integral sign the 

equations (7.1.44a) and (7.1.46), then one makes use of the integral 

property of the delta function and applies the boundary conditions (re-stated) 

G(oo,~) = ~(oo,~) = 0; G(l;;s'~) = 0, ~(~s,q) = ~ 
q 

(7.1.53) 

13. 
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There results 

2 dG (r,; s ' F,; ) 1 CXl 

$(~,q) = (r,;s -1) dr,; P - J G(r,;,F,;) R ($(r,;),q) dr,; (7.1.54 ) 

1',;s 

But by (7. 1 .48) 

2 dG(l';s'~) 
(~s -1) dl'; . = A (7.1. 55) 

where A is given by (7.1.49).' If one evaluates the integrals, substitutes 

the result into (7.1.54) and interchanges the labels ~ andr,;,there results 

the Fredholm integral equation 

(7.1.56) 

The large time behavior of the solution is determined by the "small p" 

behavior of its transform. For this reason, one usually expands the 

transform of the solution $ in powers of p or q. This amounts to the 

iterative solution of the integral equation in form of a Neuman series. 

For our purpose (7.1.56) shows that the leading term in such a series is 

the first (integrated) term on the right hand side, i.e., 

o Qo (d 1 
$ (r,;,q) = Q (I'; ) q2 

o s 
(7.1.57) 

Higher approximations can be computed by substituting this into (7.1.44b) 

and then evaluating the integral (7.1.56) provided that this is done to 

the correct order of the dismissed ~ terms. In the present, we restrict 

ourselves to the zeroth, i.e., the leading approximation to c(l';,q) which 

is a combination of eqs. (7.1.44) and (7.1.57) 

() -q(z;,-I';s) 
Qo I'; e 

= ~'--T" 
Qo(l';s) ;2 c(l';,q) (7. 1 .58) 

14. 



The Laplace and Legendre inversions produce then the desired approximation 

for the large time solution 

(7. 1. 59) 

As T + 00, the completrentaryerror function tends towards unity so that 

this expression agrees with the steady solution given by Eq.(7.1.28). 

The diffusion flux from the surface of the prolate spheroid is given in 

the ~ coordinate system by 

-t-
J = 

~ = 1;; s 

@22 
where h = f ~ -~ 

7; ~2 -1 

(7.1.60) 

The time span necessary to establish the steady state to 1% requires that 

.. 
1 10-2 Qo (7; s) 

{7. 1. 61) 
{TTT 

= 
Qo (z;;s) 

.. 
Qo (1;;s) 1 & 2 

With (Lib) = 20, Of = 5xlO~5 em K=lOO 
Qo(1;;s) 

~ "4 09 = 33.5 see ' 

and f = 150 em, eq (7.1.24) yields 

t = 10
4 

x 2.25 x ~~4 xl0
2 

= 1.28 x 1011 sec 
steady state 3.14 x 5 x 10 x (33.5)2 . 

= 4000 yrs (7.1.62) 

This is an appreciably long time period and its consequence in establishing 

the steady state in laboratory experiments must be appreciated. For 

increased retardation this titre span increases. 

15. 
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It is within the context of such experiments that the early time 

behavior of the solution is of interest. We turn next to the analysis of 

The Early Time Behavior 

In contrast to the large time behavior which is characterized by 

small values of the Laplace transform parameter p, 'we are now interested 

in the large valued parameter case as p ~ 00. 

The starting point of the analysis is eq. (7.1.42) for c(s,p) 

(7.1.63) 

with the boundary conditions (7.1.43) 

(7.1. 64) 

One of the most useful techniques for obtaining the asymptotic solution 

of (7.1.63) for p ~ 00 is with help of the Liouville approximation. For 

this introduce the new independent variable 

(7.1. 65) 

and the new dependent variable 

(7.1. 66) 

( There results the greatly simplified equation 

(7.1.67) 

16. 



for which 

N(oo,p) = 0 (7. 1. 68) 

Since one treats p + 00, the function g(n) is as usual treated as a 

negligible contribution and its specific form is of no further interest 

in the following except for the fact that it is a continuous and bounded 

function. 

The dominant solution of (7.1.67) which satisfies (7.1.68) is 

_pl/2n 
N(n,p) = Ae (7.1. 69) 

If this is substituted into (7.1.66) and the boundary condition (7.1.64) 

is applied there results 

(~/-iJ ~/-~] r 1/2 -p n 
c(r,;,p) = e 

~2_1 ] ~2 - 1J p (7. 1. 70) 

On inversion there results 

G 2 il [ 2 1] 1/4 
C(r,;,fl,T) = ( 's -1 's - 3" ) 

erfc LT~/2) ~2_1 ] ~2 _ }] 
(7.1.71) 

where n(~) is given by (7.1.65). The early time surface diffusion flux 

can be determined from this equation and it exhibits, analogous to the 

second term in eq. (7.1.60), a T- l / 2 behavior, but with a different 

numerical coefficient. 

17. 



7.2 ~'ass Transfer From a Fuel Canister by Diffusion and Forced Convection 

Paul L. Chambre 

Consider a cylinder of infinite length imbedded 1n a porous medium 

through which water is flowing steadily in accordance with Darcy's law. 

The cylinder matrix contains a diffusing nuclide which is set free at the 

surface of the cylinder at the solubiiity limitof the species in· water and 

then diffuses into the exterior unbounded space. All material properties 

are assumed constant. The flow is taken normal to the axis of the cylinder, 

but inclined flows can also be treated by the analysis given below. The 

governing equation for the conservation of mass of the diffusing species 

from a cylinder of radius ro in the presence of radioactive decay is 

A A A A 

KEE. + u{~,e) ~ + v{r,e} E£ = 0 
at ar r ae f AKc 

A 

ro < r < 00 , 0 ~ e ~ 2n, t > 0 {7.2.1} 

Here 

u(r,e} = -u (1- ;ncose; v(~.e) = u (1 + ;~2 ) sfn8 {7.2.2} 

1. 

are the radial and tangential pore velocity components derived from D'Arcy's 

potential flow in the porous medium with 1I the free stream pore velocity far away 
A 

from the cylinder. r is the radial distance from the center of the 

cylinder and e the angle measured in the tangential flow direction from 

the frontal stagnation point at the cylinder surface. K is the retarda

tion coefficient and Of is the diffusion coefficient of the species in the 

liquid. 

Prior to the time t = 0, the diffusing nuclide has zero concentration 



in the porous medium. At time t = 0 the concentration at the surface of 

the cylinder is changed to a constant value Cs 

(7.2.3) 

and maintained at this surface concentration Cs subsequently. The 

boundary condition far from the cylinder is held at zero concentration 

c (00, a, t) = 0 , 0 ~ e ~ 21T, t 3- 0 (7.2.4) 

It is convenient to introduce non-dimensional variables with 

" 
T = ~~ , r = r ,c ( r , e , T ) 

o ro 

Uro 
Pe = Of ,the Pec1et number (7.2.5) 

KAr 
Oa =~, the Oamkoh1er number for convective mass transport. 

Then the governing equations for c(r,e,T) transform to 

( , __ , ) cose ac + (1 + _1 ) 
r2 ar r2 

sine --
r 

1 < r < 00, 0 ~ e ~ 21T T > 0 (7.2.6) 

c(l,e,T) OaT = e , 0 ~ e ~ 2n, l ~ 0 (7.2.7) 

C(OO,e,T) = 0, 0 ~ e ~ 21T, T ? 0 (7.2.8) 

with the initial condition that c(r,e,O) = O. 

2. 



For typical porous media flows the Peclet number Pe may be large. 
-5 2 Typically, with U=2 m/yr, ro = 0.15 m, and Df = lxlO cm /sec will 

yield a Peclet number of 10. 

This suggests an asymptotic solution, of the equation system for 

large Peclet numbers. In this case the principal resistance to mass 

transfer from the cylinder surface is in a direction normal to the fluid 

layer surrounding the cylinder, i.e., in the r direction. The diffusion 
2 

transport tangential to the surface, i.e., the term ~ a ~, can then be 
r aa 

neglected as will be shown below. To obtain the asymptotic.form of the 

equations, introduce the new independent variable R in place of r 

r = 1 R +- , 
ffe 

(7.2.9) 

then eq. (7.2.6) takes on the form 

(7.2.10) 

This is to be solved for c(R,e,T) subject to, see (7.2.7), (7.2.8) 

DaT = e , 0 ~ 8 ~ 2n, T ? 0 (7.2.11) 

c(OO,e,T) = 0, 0 ~ e ~ 2w, T ~ 0 '(7.2.12) 

with zero initial condition. 

For large Pe numbers the last term in eq. (7.2.10) is neglected. By an 

additional change of the independent variables, one can reduce the time 

dependent diffusion and convection equation (7.2.10) to a simpler time 

dependent diffusion problem without convection. New independent variables 

n(R,e), s(T,e) are introduced which transform C(R,e,T) into c(n,s) 

3. 



i.e., c(n,z;;} = c(R,e,·r) 

These variables are given by 

(7.2.13) 

T-:--.:-t-'-"-"+ } {7 • 2. 1 4 a } 

where f("e) = e-
4
, ~!:l wnh ate) = (1+~ose ) , bee) = (l-c

20se) 

and 

{7.2.14b} 

As the reader can readily verify, these transformations, which are 

deduced by group-theoretical considerations, change eq. {7.2.l0} to a 

very simple equation for c(n,~}, i.e., 

ae _ a2e 
~ - -2 ' n > 0, ~ > 0 

an 
{7.2.15} 

subject to the side conditions 

c{o,z;;) = 1 , ~ ~ ° (7.2.16) 

c(oo,~} = 0, z:; ~ 0 (7.2.l7) 

with the condition that e(n,o) = o. 
The solution to this problem is 

(7.2.18) 

The solution in R,6,T variables is obtained by substituting n(R,6), 

and Z:;(8,T) in {7.2.18}. One obtains after some simplifications that: 

c(R,6,T} = erfc (R /coth 2; + cose) (7.2. 19) 

This solution satisfies (7.2.10) with side condition (7.2.11) 

replaced by unity. To obtain the T dependent boundary condition given 

4. 



,., 

by (7.2.11) we use Duharnel'~ integral, i.e., 

c(R,e,,) = I' c(o,e,,') 33, [erfc (RJcoth 2(T-~') + case )},. 

o 

(7.2.20) 

Integrating by parts and transforming back to the original variable cone 

obtains 

c(~,Pe,Da,t,e) = exp(- DaJ)t) 
Cs Kro erfc [ (r - 1) J~2e (coth ?KUt + cose)] + 

ro ro 

+ C Da s 

Ut 

l~ 
o 

e- Da' erfc [( ;0 - 1) ~p2e (coth 2T + case) ] d, 

(7.2.21) 

This solution (7.2.21) describes the time dependent concentration field 

in the presence of radioactive decay in a Darcy flow about a cylinder. 

The surface mass flux for a diffusing nuclide is 

~ ae I j(Pe,Da,t,e) = - De" A 

ar r=r o 

=--

ut 
+ Da 1 Kr a e -Da, Vcoth 2, + case d, ] 

o 

(7.2.22) 

where De = £ Of in the effective diffusion coefficient of the diffusing 

nuclide and £ the porosity of the medium. 

The surface mass flux, according to (7.2.22) depends on time and the 

angular position. The angular dependence is removed by averaging the 

surface mass flux over the cylinder perimeter. On the account of symmetry 

we have 

5. 



where 

.... 
J av {Pe,Da,t} = ~ 1 "r (Pe,Do,t,o) do 

o 

= Decs 42pe [exp {_ Da Ut} 
1Tr 0 1T Kr 0 

I {1"} = 1" 
o 

1/2 
{coth 21" + cos8} 

I {~} + Da 
Kro 

d8 

To evaluate I{1") we proceed as follows 

+ cos8 d8 
)

1/2 

= J1T

/

2 

( 2 2 -41" 
1-e 

2 )1/2 
- 2 sin ~ d~ 

o 

J~~o 
o 

{7.2.23} 

(7.2.24) 

1/2 
where m{T) = (1_e-4T ) and E[x] is the complete elliptic integral of the 

second kind. Substituting for I(T) in (7.2.23) one obtains 

Ut 

1Tr o 

Oa Ut 2 Ut 

{ 

exp{- ---)E[m (-)] 
Pe Kr a Kr 0 fr: ----;~(~~ j--- + 

a 

Oa J Kr a -OaT E[m
2 

(T) Jd } 
e m(-r) T 

a 

(7.2.25) 

In absence of radioactive decay (A=Da=O) there results 

6. 
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"! 4Decs ~ 
J (Pe ,0, t) = 'lTe 
av 'lTro (7.2.26) 

For application in section (7.5), we require the steady state, 

average ,surface mass flux in absence of radioactive decay. Hence, (7.2.26) 

yields as t-+<>o, with m(oo) = land E[l] = 1, that 

{7.2.27} 

The mass transfer per unit length of cylinder under steady state condition 

is then gi ven by 

(7.2.28) 

a result well known in heat and mass transfer studies where it is shown 

to be valid for a range of Pe>4 (K2),{L1). 

From (7.2.26) one can estimate the time necessary to establish the 

surface mass flux to 99% of the steady state mass flux. From table of 

complete elliptic integral of the second kind one obtains that the 

criteria is given by 

(7.2.29) 

For a flow of U = 1 m/yr, ro = 0.15 m, and K = 100, t = 18 years,' 

a relatively short time for the establishment of a steady state when 

compared with the case of pure diffusion. Theret = 4000 years was obtained 

(see 7. 1. 62) . 

7. 

The analysis leading to the solution (7.2.21) for the time independent boundary 

condition is readily generalized to a time dependent boundary condition. 

The starting point for this analysis is Eq.{7.2.20). 

replaced by Cs <I>{t), one must change 

If in (7.2.3), Cs is 
D I ,('dKr ) c(o,e,T 1

) in (7.2.20) to e aT cp U Q 



As an illustration consider the radioactive decay of the surface concentra-

tion according to 

A -At 
c ( r 0' a , t) = c s e o<a $. 2n, t~o 

in place of Eq.{7.2.3). Here ~(t) = e-At . Hence, we have 

-AT I Kr o 

= 1 

After substitution of c(o,a,T 1
) into (7.2.20) ·one can perform the 

integration analytically. Transforming back to the c and evaluating 

surface mass flux one obtains 

~ Decs D Ut 
j (Pe,Da,e,t)= --exp(- a )' 

r 0 Kro 

2P 
ne [coth (~~:) + cosa] . 

(7.2.30) 

(7.2.31) 

(7. 2.32) . 

This shows that the surface mass flux no longer reaches a steady state 

but tends toward zero as t ~ 00. 

For a flow parallel to the cylinder axis the mass transfer can be 

approximated as follows. The lateral cylinder surface is unwrapped into 

a flat plate of length L and width 2nro' and subjected to a flow in the 

direction of the plate length. The steady mass transfer from a flat plate 

of width 2nro and length L under longitudinal flow is given by 

(7.2.33) 

while the mass transfer from a cylinder of length L with the flow normal 

to the cylinder axis ;s in view of (7.2.25) 

(7.2.34 ) 

8. 
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Hence 
. 
~norm = ..;..4.;;..,;0 5-.1..;..3---::=-_ 
AlOng (2.257)[2 'If 

(-,=-) 1/2 
2ro 

For a canister, with an aspect ratio 2~ = 13.2 
o 

Mnorm 

Mlong 

~ 1.63 

This indicates that for flow parallel to the cylinder axis, the mass 

transfer is decreased by about 63% compared to that due to the flow normal 

to the cylinder axis because the thickness of the diffusion boundary layer 
, . _. 

is greater for Mlong than for Mnorm. 

Finally we note that the large Peclet number approximation made in 

the analysis prevents one from letting the free stream Darcy velocity U 

become small. If U -+0, in eqo (7.2.1), the convection terms drop out and 

the equation describes then a temporal balance between the effects of 

diffusion and radioactive decay. For a constant surface concentration, 

given byeq. {7.2.3}, the modified eq. {7.2.1} generates then a steady 

state solution as t -+~. Since the e dependence is no longer needed, the 

governing equation is 

a2e + _1 ae 2'" -2 - S c = 0, r > 1 
ar r ar 

where 

(7.2.35) 

with the boundary conditions 

c(l} = Cs ' c(~} = o. (7.2.36 ) 
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The solution is given by 

,. 
c{r) = c KOp3) 

s Ko B 
, r > 1 (7.2.37) 

so that the surface mass flux is 

.. Decs f· K1 {Sl} 
J(ro) = ~ a Ko(B) (7.2.38) 

Here Ko(n), Kl{n) are the modified Bessel functions of zero and first· 

order respectively. 

A detailed numerical evaluation of the mass transfer without radio

active decay, i.e., eq. (7.2.28), as well as the fractional dissol~tion. 

rate are given in section 7.S. The other formulae derived above including 

their dependence ,on radioactive decay will be investigated in the future. 



7.3 Mass Transfer From a Fuel Canister by Diffusion and Free Convection 

Paul L. Chambre 

The problem concerns the mass transfer from a heated vertical cylinder 

which is imbedded in a water saturated porous medium. The temperature of 

the cylinder exceeds that of the surrounding with the result that a free 

convection pattern develops which drives the fluid along the cylinder 

surface. This induced velocity affects the mass transport of a diffusing 

species from the cylinder surface into the surrounding medium. It is 

thought that the effects of free convection might be important during that 

time when the fuel canister generates a sufficiently large amount of decay 

heat to maintain a temperature difference of about 50°C (or more) between 

the canister surface and the surrounding medium. The aim of the analysis 

is to determine the velocity, temperature and concentration fields and to 

develop a formula for the surface mass flux. 

The following assumptions are made: 

a) A steady state description is adopted. 

b) The vertical cylinder surface is replaced by a flat plate surface 

having the same length as the cylinder and a width equal to the cylinder 

circumference. 

c) The pore water is assumed to have temperature independent properties 

except for its dens ity. The water flow obeys Darcy IS 1 aw. The fl uid 

filling the porous medium is assumed to be a single phase. 

d) Boundary layer theory simplifications are assumed valid, see eq. 

( 7 . 3. 14) be 1 ow . 

The governing equations are: 

Conservation of Mass (7.3.1) 

1. 



Conservation of Momentum {Darcy's Law} 

Conservation of Energy 

U = - ~ (Q£ + g) II ax p. 

v = k Q£ 
II ay 

Conservation of Species 
A A 2 

ac + v ~ = e:D 'V c 
u 3x ay f 

Equation of State of Liguid 

p = Poo {l - f3 (T - Too)} 

where 

{7.3.2} 

(7.3.3) 

(7.3.4) 

{7.3.5} 

{7.3.6} 

2 2 
l=_a_+_a- (7.3.7) 

- al ay2 

The coordinate system is shown in Fig. (7.3.1). The velocity components u,v 

point respectively into the x and y direction. In the above equations 

2. 

p,T,p,cp are the pressure, temperature, density and heat capacity of the 

liquid and Poo its density far away from the plate. k is the permeability of 

the porous medium. Ae is the effective thennal conduction of water saturated 

porous medium as measured in the laboratory. II and f3 are dynamic viscosity 

and coefficient of thermal expansion of the liquid in the porous medium 

respectively. Of is the diffusion coefficient of the diffusing species in 

the liquid. 

The boundary conditions for our problem are 

v(x,o) = 0, T{x,o) = Tw; e{x,o) = cs ' for x>o 

u(x,oo) = v(x,oo) = 0; T(x, ) = Too; e(x,oo) = 0, for x>o 

(7.3.8) 

(7.3.9) 

.""*.' 
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Fig. 7.3.1. Co-ordinate system used in the 
free convecti,on model. 
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1(8 L828- 6306 

Fig. 7.3.2. Qualitative shape of f(n), f'(n) and 
c(n) for large Lewis number. 



There will be a "slip" condition for the u cOl1l>onent of the velocity at 

the plate surface which is as yet unknown. Further'more, the temperature 

difference (Tw-Tw) which depends among other parameters on the heat 

release from the cylinder is also determined subsequently. 

Eq. (7.3.1) can be satisfied in the usual way by introducing the 

stream function $(x,y) with 

u(x y} = ~ • v(x y) = - ~ , ay" ax (7.3.10) 

If one differentiates (7.3.2) with respect to y, (7.3.3) with respect to 

x and then algebraically adds the resulting equations, one obtains with 

help of (7.3.6) and (7.3.10), 

( 
k ) aT ___ 2 
- p /3g - - 'V$ 1-1 co ay (7.3.11) 

On the other hand (7.3.4) and (7.3.5), expressed with (7.3.10), give 

(7.3.12) 

(7.3.,13 ) 

One has thus these three governing equations for the determination of 

the unknown function~ $,T and 2. For the purpose of establishing the 

main physical features of the solution, it is convenient to utilize the 

boundary layer simplifications. These imply that the transport of mass, 

energy and concentration in the major flow direction (i.e., u) is small 

compared to that normal to the plate. With 

a2
"1 
~ « 
al 

2", a c 
ay2 

(7.3.14) 
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Equations 7.3.11-13 result in, 

( k· aT _ ~ 
Pco II 69) ay - 2 

ay 

A A 2A 
~ .2f. _ ~ .2f. =£D a c 
ay ax ax ay f ay2 

(} ,3 .. 15} 

(7.3,161 

(7.3.17) 

These equations are subject to the boundary conditions. (see (7.3.8), 

(7.3.9) and (7.3.10») 

(7.3.18) 

aw(x,co) = aw(x,co) = 0 , T(x,co) = T c(x,co) = 0 
ax ay co (7.3.19) 

val id for x>o. 

Equations (7.3.15) and 7.3.16), which are coupled equations for T and l)J, 

are solved first. One determines thereby the temperature induced stream 

function ~(x,y) which describes the free convection flow pattern, With 

knowledge of ljJ, one can then solve for the concentration c(x,y) separately. 

For th is reason we concentrate fi rs t on the sol uti on of (7.3.15) and 

(7 .3.16). These partial differential equations are reduced to ordinary 

differential equation by the introduction of the similarity variables 

(7.3.20) 

ljJ = ex (Ra) 1/2 (~) 1/2 f(n) 
e L (7.3 .. 21) 
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where 

T-T 
e (n) = =--=00,.T -T w 00 

" c - -

poog k 
Ra = - (-) S (T -T ) l 

Cl 11 woo e 

(7. 3. 22) 

(7.3.23) 

(7.3.24) 

Here l is the length of the plate and Ra the Rayleigh number of the 

liquid saturated porous medium. ~Jith these variables the governing 

equations reduce to 

f" (n) - 8' (n) = 0 (7.3.25) 

e" (n) + } f (n) e' (n) = 0 (7.3.26) 

(7.3.27) 

where 
Cl 

A = ~- = le (7 3 28) ED
f 

.. 

is the lewis number. The boundary conditions transform to 

f(o) = 0 ; 8(0) = 1 ; c(o) = 1 (7.3.29) 

f'(ro) = 0 ; 0(00) = 0 ; c(oo) = 0 (7.3.30 ) 

as can be seen by introducing the new variables into (7.3.18) and (7.3.19). 

A final integral of eq. (7.3.25), which satisfies the boundary 

conditions (7.3.30) for f' and e at n = 00, is given by 

f' (n) = 8(n) (7.3.31) 

5. 
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Since the x component of the free convection velocity is determined by 

(7.3.32) 

one observes that the normalized vertical velocity u(n} and 
. a 

( ~ Ra) 
the temperature distribution a(n} are, according to (7.3.3l), of the same 

form. Thus, the determination of the function f(n} is of central 

importance. To obtain an equation for f(n},eliminate a between equations 

{7.3.25}, (7.3.26) and (7.3.3l), with the result that 

3f d2f L+lf -=0 
dn3 2 dn2 

(7.3.33) 

Exactly the same differential equation arises in the problem of the 

boundary layer flow of a viscous fluid over a flat plate, the famous Blasius 

problem (B2). But in contrast to the boundary conditions f{o) = f'(o) = 0, 

f'(oo) = 1 in that problem, the conditions for the present case read 

(7.3.34) 

The qualitative shape of the solution f(n) of (7.3.33), (7.3.34) and that 

of its derivative f'(n} are shown in Fig. (7.3.2). As already stated, 

the free convection induced vertical velocity component and the temperature 

distribution normal to the plate are both characterized by the shape of 

the f'{n) function. 

Next we determine the mass transfer from the vertical surface. For 

this one requires the normal derivative ~CI· which in turn involves ~cl . 
y y=O n n=O 

But n contains Ra and in this Rayleigh number there occurs the as yet 

unknown temperature difference (Tw-Too ). (Tw-Too) is determined by the heat 

flux through the canister surface and the convective and conductive heat 

6. 



transport into the porous medium. So one must first find (T -T ). w 00 

local heat transfer from the surface of the plate is defined by 

qll = _ >. aTI 
e ay y=O 

which with (7.3.20) and (7.3.22) yields 

q" = _ >. (T -T )3/2 (~ PooS9) 1/2 x -1/2 8 1 (0} 
e w 00 11 cte 

The 

(7.3.35) 

where Ae is the effective thermal conductive of the saturated porous medium. 

The total rate of heat transfer from a plate of length and width W is then 

L 
Q = W f q" (x) dx 

o 

= - W >. (T -T }3/2 (~ e w 00 11 (7.3.36) 

Fig. (7.3.3) shows the variation of spent fuel heat generation with time. 

We now define the magnitude of the average heat flux from the entire plate as 

(7.3.37) 

Hence the desired temperature difference between plate surface and the porous 

media is given 

(T -T ) = w 00 
(7.3.38) 

(Tw-Too) is seen to be a function of the average heat flux issuing from 

the fuel canister and the properties of the porous medium. The assumption 

7. 
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Fig. 7.3.3. Variation of normalized decay heat generation of a 
spent fuel with time Q (0) is the initial decay heat 
generation and is equal to 0.55 Kw. 
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Fig .. 7.3.4. Variation of temperature difference (Tw· .... To) 
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is made that the average heat flux varies so slowly with time so that 

(7.3.38) can be applied to a quasi-steady state. Fig. (7.3.4) shows a 

typical trend for this temperature difference as a function of time for a 

given qll (t) descriptive of a spent fuel. The temperature difference 

drops to 100°C in about 130 years. The calculation is based on the follow

ing parameters values 

A = 2.894 w/m oK (1) 

.k = 2.96 x 10-14 m2 (1) 

p = 5.5 x 10-4 kg/m sec 

Pco = 103 kg/m3 

cp = 4.184 x 103 J/kg oK 

8 = 2.07 x 10-4 

L = 4.7 m 

r = 1. 78 x 10-1 

Q (o) = 5.5 x 102 w 

e I (0) -1 - -
'IT 

m 

(2) 

(2) 

(2 ) 

Before proceeding with the mass transfer analysis we estimate next 

the magnitude of the vertical slip velocity component u for the above 

data. From (7.3.32) and (7.3.34) the free convection velocity component 

along the plate surface is given by 

_ ( <le
Ra 

) u - -L 

_ k 
- P 6g (T - T ) - {7. 3.39} co w 00 11 

For a temperature difference of 1000e one computes u = 0.34 m/yr. This is 

competitive with commonly assumed groundwater flows of 0.1 to 1 mjyr which 

are used in the far-field calculations. Fig. (7.3.4) gives the magnitude 

of the free convection velocity as a function of time. 

The local mass transfer rate from the plate is now computed from the 

solution of (7.3.27) subject to the boundary conditions {7.3.29} and 

8 .. 
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(7.3.30) for c{n). The desired solution is 

c{n) 

n n' ·fa exp (- t.fci f(s )dS) dn' 

= 1 - fo«lexp (_ tIn' f{S)dS) dn' 
o 

(7.3.40) 

so that the surface mass flux is 

7
J 

= ac{y) - Ofe: ay (7.3.41) 
y=O n=O 

where e: is the porosity of the medium. 

In view of (7.3.20) and (7.3.40). 

1 (7.3.42) 
n' (- ~ fa f{S)dS) dn' 

The definite integral 

(7.3.43) 

involves the function f(n)~i.e., the solution of (7.3.3~ and the Lewi~ 

number parameter (7.3.28). 

{7.3.44} 

We shall discuss the complete evaluation of I(A) for arbitrary A values 

at a later time, but develop now the aSYRlltotic form of this lntegralfor 

large values of A which may arise due to small values of the diffusion 

coefficient in porous media. In this case the concentration boundary 

- layer is very thin compared with the thermal layer, as sketched in 
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Fig. (7.3.2). One can then approximate f(n) by the first term of its 

power series expansion, i.e., 

2 f(n) = n + O(n ) 

If one neglects terms of 0(n2), 

A n2 

I (A) 0.. foo e - 4" dn, 
o 

= fx ' for A large 

Thus (7.3.42) yields, 

( ) 
1/2 

j = Df£cs ~~ ~ , for A large 

(7.3.45) 

(7.3.46 ) 

(7.3.47) 

If one expresses Ra by (7.3.24) one has in terms of the physical parameters 

-+ (1 k poog 1 ) 1/2 
J = 0 £c - - - 13 (T - T ) - = f s TI ~ eD

f 
w 00 x ,(7.3.48) 

where the length t is given by 

(
1 k poog 1 ) 1/2 

t = - - - S(T - T ) -
TI ~ £0 W 00 X . 

f 

The average rate of mass transfer per unit length of plate for a plate 

of length L is readily computed from equation (7.3.48). 
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7.4. A Model for leach and Diffusion Rates From Glass Bodies 

Paul l. Chambre'" 

Experimental evidence indicates that when a typical silica base glass 

is brought into contact with water two physical processes occur in the 

dissolution of the glass. One of these is an alkali ion transfer, such 

as for example, Na+, across the glass-water interface which gives rise to 

a gel-like 5i02 transition layer. The second process appears to be the 

corrosion of this layer resulting in the dissolution of the glass matrix. 

A number of theories have been proposed, differing in various detailed 

mechanistic ways, which attempt to explain qualitatively or quantitatively 

various aspects of experimental observations on glass dissolution. In the 

following, we develop a model which is based on only the two, generally 

accepted, experimental pieces of evidence. These are 

i) The movement of the glass interface with a (regression) velocity v, 

which is initiated by 

ii) The diffusion of an alkali ion across the glass-water interface~ 

Three simplifying assumptions will be made. The interface velocity is 

assumed to be constant in time. The support for this assumption is indirect" 

It will be shown in the following analysis that a constant regression 

velocity leads to the often observed experimental result (M4) that the 

fractional release of a particular nuclide f(t) follows the empirical 

formu1 a 

(7.4.1) 

where c1 and c2 are constants. On the other hand there exists also some 

experimental evidence yielding a different time dependence for f(t)(M3). 

This has been interpreted by investigators to be due to a corrosion layer 

which is developing on the glass surface, gradually increasing the resistance 
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of mass transfer from the interface. In the analysis, the case of accretion, 

is also included and the f(t) function deduced. The remaining assumptions 

concern the nature of the diffusion mechanism of the alkali ion. \~e shall 

assume a constant diffusion coefficient for the ion in the bulk glass and 

the gel-like surface transition layer despite the fact that the diffusion 

coefficient is considerably larger·in this layer (H2). Furthermore, we shall 

ignore the effect of the negativ~ surface potential on the ion transfer. 

Such a potential is generated when glass is immersed in water. The effects 

of the latter two assumptions require future study. 

The Ana lys i s 

The analysis applies to a body of planar, cylindrical and spherical 

shape. We take as the governing equation 

E£ = D ~ + !!!. E£ - AC - { 2- -} 
at ar2 r ar 

(7.4.2) 

Here c(r,t) is the concentration of the nuclide, D the diffusion coefficient 

and A the radioactive decay constant if the nuclide is radioactive. 

m describes the geometric character of the diffusion field. For the case 

of the sphere m = 2,~for the cylinder (of infinite length) m = 1 and for 

the slab m = O. r is the position variable within the region of interest, 

t the time and R(t) the position of the movable boundary which will be 

prescribed below. The initial nuclide concentration is given as c(r) so that 

c(r,O) = c(r), o < r < R(O) - a. (7.4.3) 

At the surface of the solid 

C {R (t), t} = 0, t > 0 (7.4.4) 

but if the surface concen tra t ion is instead -cs 'I 0, it is always possible 
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to reduce this to the condition given.by eq.(7.4.4) by taking the reference 

datum for the concentration at cs ' provided A = O. In addition to the 

above conditions, one prescribes in case of the sphere and the cylinder 

that c(O,t) is bounded and in the case of the slab of thi~kness 2R(t) that 

dC (O,t)/dr vanishes for all times. 

The equation for the moving boundary R(t) is based on the simple 

hypothesis that 

R(t) = a - vt, 0 ~ t ~ a/ v (7.4.5) 

where a is the initi~l position and v the surface regression velocity. 

A regressive surface at time TL = a/v the finite sized body has completely 

dissolved. This limits the time span for the solution. If there is 

accretion, we take v negative in the expression for. R(t) and consider 

t ~ O. The equations(7.4.2} to (7.4.5) completely define the model. 

· 3. 

The solution for the different geometric configurations (fig. 7.4.la) is 

carried out below. It turns out that the solutions for the sphere, cylinder 

and slab are very similar. The case of the sphere is treated in detail, 

then the changes which need to be made in case of the slab are indicated 

and the final solution is given. These results are exact and are valid 

for any range of the parameters entering the problem. The cylinder is 

analyzed by an approximation method which is valid for the large values 

of the parameter (va/D) usually encountered in practice. By forming the 

product of the solutions for slabs of different or identical widths one 

obtains at once the solution to the case of a parallelopiped or cube, 

respectively. Similarly multiplication of the slab and (infinite) 

cyl inder sol utions yields the sol ution for acyl inder of finite length 

(fig. 7.4.lb). These results are consequences of some well known theorems 

and are valid for a time span in which the smallest initial dimension of 

the body has been reduced to naught by the leaching process. 
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The Sphere 

let 

c(r,t) = exp (At}rcsp(r,t) 

then eqs. (7.4.2) to (7.4.5) reduce with m =2to· 

~~ = 0 l~, O.~ r < a - vt, 0 < t < a/I v I 
ar 

c(r,O) = rc(r) ~ g(r}, 0, r , a, 

c(a - vt,t) = 0 0" ~ ~ a/iVI 

and on account of the boundedness condition on c (O,t), 

c(O,t) = 0, 0 < t < a/Iv) 

Now the Kel vin function, 

1 exp ( r
2

) 
2 (nOt )1/2 - 40t ' 

(7.4.6) 

(7.4.7) 

(7.4.8) 

(7.4.9) 

(7.4.10) 

is a particular solution to ~q. (7.4.7). By the super-position principle 

and the method of images one can construct a more general solution to 

eq. (7.4.7) which satisfies conditions (7.4.8) and (7.4.10) as a detailed 

verification shows. 

This solution has the form, 

c(r,t) = 2(nOt)1/2 
1 

00 

{ fa g ( s) S ( r , t ; s) ds + f h ( s ) S ( r , t ; s ) d s } , 
o a 

(7.4.11) 

o ~ r ~ a - vt, 0 ~ t ~ a/ivi 
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where the source function 

[ 2] _ (r-s) 
S(r,t;s) - exp - 4Dt 

. 2 

[ 
(r+s) ] - exp - 4Dt (7.4.12) 

In eq. (7.4.11), g(s) is the initial concentration distribution and h(s) 

is an as yet unknown source density function which is determined by imposing 

the last remaining condition on the moving boundary, i.e., eq.{7 .4.9), 

fa g(s)S(a-vt,t;s) ds + lh(s)s(a-vt,t;s) ds = o. 
o . a . 

(7.4.l3) 

Now the functions g(s) and h(s) are partly at our disposal. Since ,g(s) 

is prescribed only for 0 < S < a, we ~~alytically continue it in the 

following manner 

0, lsi> a 
g(s) = (7.4.14) 

-g(-s), lsi < a • 

Similarly h(s), which must be determined according to the solution (7.4.11) 

and the condition (7.4.13) in the span a < s < 00 , is chosen in the remaining 

part of the range as 

h (s), s > a 

h (s) = 0, 

arbitrary, 
lsi < a 
s < -a. (7.4.15) 

With this choice.one can now combine both integrals in eq. (7.4.13) by 

elementary transformations resulting in integrals with the same integration 

1 i mi ts, i. e. , 

.t;,OO{h{s+a) exp (- ~s) - his-a) -gis-a)} .exp (- ~~t )dS = O. (7.4.16) 

5. 

.. 

• 



The satisfaction of this condition requires that h(s) must obey the 

ordinary difference equation, 

h(s+a) exp (-vs/O) -h(s-a) = g(s-a). (7.4.17) 

The solution to this equation ca,n be constructed in successive s spans of 

width 2a, utilizing the properties of the initial distribution g(s) and 

the continuation properties of h(s) with the result 

h(s) = g(s-2na) exp [nv(s~na)/o], 

(2n-1)a < S < (2n + l)a, n = 1,2, ... (7.4.18) 

Having found the unknown source distribution h(s), c(r,t) given by 

eq. (7.4.11) can be shown to satisfy all the conditions of the problem. 

There results, on returning to the original variables, after some minor 

simp 1 i fi ca t ions 

csp(r,t) = exp(-At) { rasc(s)exp _ [(r_s)2] ds+ 
2r( nOt) 1 /2 • -a '""4Dt 

00 

+}: fasc(s) exp Ev(s+na)/D] S (r,t;s +2na) d$}a 
n=l -a 

o ~ r ~ a-vt, 0 ~ t ~ allv1, (7.4~19) 

For bounded c(s), the series can be shown to converge for the indicated 

t range, i.e., for all times for which sphere material remains. It should 

be noted that, in view of eqs. (7.4.8) and (7.4.14), the initial distribu-

tion c(s) must be an even function about s = O. 

A case of practical interest is the one where the initial concentration 

is uniform throughout the sphere, i.e., c(r) = Co for 0 ~ r ~ a. The 

6. 



integration in eq. (7.4.19) then yields the following explicit result for 

the concentration in the interior of the sphere, 

where 

00 

- ~ Uerfc 821 + erfc 811) exp (-nso1) -
n=l 

2 1/2 (. f . f ) ( )} - T ler c .822 - ler c 812 exp -nS02 ' 

e· . lJ 

E· , 

and T = Dt/a2; 13 = va/D, the interface Pec1et number. 

(7.4.20) 

(7.4.21) 

(7.4.22) 

erfc (z) and imerfc (z) denote, respectively, the complementary error 

function and the m repeated integral error function which are tabulated in(4). 

7. 
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For S = 0, this reduces to 

a

2 

{ 
-A- T 00 

=e 0 1-!.! 
r n=o 

- erfc (2n+1) + r/aJ} 
. 2Tl/2 

[
erfc (2n+1)-r/a 

2Tl/2 

(7.4.22a) 

The spatial distribution of the nuclide concentration given by eq. (7.4.20) 

is shown in fig. (7.4.2) for a specific value of the dimensionless time 

(T = 0.01) and for different values of the dimensionless regression 

parameter S. One observes as S increases that the regression of the inter

face steepens the concentration gradient compared to a stationary interface 

(S = 0). Fig. (7.4.2) also shows the effects of accretion. In contrast to 

the previous case the concentration profile is S-shaped and the surface 

mass flux shows a marked decrease which indicates a resistance to mass 

transfer. 

A quantity of primary interest to the experimentalist is the fractional 

release of the radionuc1ide due to the combined effects of diffusion and 

interface movement. This may be obtained by integrating the concentration 

at any time t over the volume of the sphere, dividing the result by the 

initial amount of diffusant present and subtracting this quotient from 

unity. Thus for the case of an initially uniform concentration, 

f(T) = 1 - Q(T)/Qo' 

(l-ST)a 
where Q(T) = .( 4rrr2Csp (r/a,T) dr, 

4 3 Q = - rra c 
030 

(7.4.23) 

(7.4.24) 
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f(T) has been evaluated numerically with help of eq. (7.4.20) for A = O. 

Fig.{7.4.3} shows the numerical results of the evaluation of eq. (7.4.23) for a 

number of regression Pec1et numbers B and for a limited range of 0 < T < 2xlO- 3. 

One observes that the fractional release is initially a linear function of 

Tl/2 and then it becomes quadratic in Tl/2. This is exactly the behavior 

observed in many laboratory leaching experiments as already stated in 

eq. (7.4.1). More extensive numerical evidence will be given in Section 

(7.6). To pressage this result, we will show here that eq. (7.4.23) is 

closely approximated by 

( 
Dt ) 1/2 3 (vt) + f ( t) = 6 na 2 + 2" a 0 ~ t ~ t ~ 0.4 T L 

for both regression (v>o) and accretion (v<o). 

The Slab 

(7.4.25) 

The system of eqs. (7.4.7) to (7.4.9) describes the diffusion process 

in a slab of half width (a-vt), with an initial concentration distribution 

g(r) = c(r), in absence of radioactive decay. If the solid is exposed to 

regression over both faces, with the center of the slab located at r = 0, 

the boundary condition is replaced by the symmetry condition 

= 0, o ~ t ~ a/ivi (7.4.26) 

In order to satisfy this relation, one chooses as the source function 

S(r,t;s) = exp [
_ (r_s}2J + exp [_ (r+s}2 ] 

4Dt 4Dt' (7.4.27) 

instead of eq. (7.4.12). The analysis proceeds then along the same lines as 

9. 



for the sphere. However, the function g(s) must now be defined as follows: 

0, lsi> a 

g(s) = (7.4.28) 

g(-s), lsi < a. 

The final result is 

c (r,t) = exp(-At) ~ac(s) exp 
sL 2(nDt) 1/2 -a [

_ (r_s)2 ] ds 
4Dt 

00 a 
+ 1: (_1)n J c(s) exp Gv(s+na)/D]. S(r,t;s + 2na} ds} 

n=l -a 
(7.4.29) 

a ~ Irl ~ (a-vt), a ~ t ~ a/lvl 

For a bounded even function c(s) this result can be shown to converge to 

the solution of our problem. Again if the initial concentration is 

uniform throughout the slab one obtains with the shorthand notations 

introduced in eqs. (7.4.21) and (7.4.22) the following result 

00 

+ ~ (_1)n Uerf 621 - erf 812 ) exp (-nfh)l) + 
n=l 

(7.4.30) 

10. 



0.2r-------~------._,_----_r------~ 

8-800 

-... --.. ., 
lit 

.; 
fO.1 

i 
.2 -u 
o .:: 

°0~------~-------71--------~----~2 

T - ol/02 (1l103) 

X8l.128·llMl 

Fig. 7.4.3. Variation of fractional release from sphere 
(radius = a) with dimensionless time T for 
different dimensionless regression speed. 

0.1 ,---------.---------r-------.-------_ 
8-aoo 

E -.. ., 
lit 
0 
~ 0.5 ., ... 
~ 
0 -u 
0 ... 

&&. 

°0~------~------~1--------~------~2 

T -ot/02 (1l1O!) 

X8L828-1:S12 

Fig. 7.4.4. Variation of fractional release from slab 
(initial width 2a) with dimensionless time 
T for different dimensionless glass-water 
interface regression speed S. 

J, .. 



For a = 0, this reduces to 

s L a = exp -~ a T 1 - I C {!.,T} (2 ){ co 

Co n=O [ 
(2n+1) - !. (2n+1) +!:.] I 

(_1)n erfc 1/2 a + erfc 1/2 a 
2T 2T 

, (7.4.30a) 

The total fractional release is given by eq.(7.4.23) with 

(l-aT)a ' 
Q(.r) = 2 1 CsL (r/a,T) dr 

o 

Qo = 2aco• 

Performing the integration one obtains 

+ exp [na(n+1)]. 

where 

For a=o this reduces to 

f(T) = 2T 1/2r 1 + 2 l: (_1)n ierfc T~J lfIT n=l lIe.. 

(7.4.31) 

(7.4.32) 

(7.4.34 ) 
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A numerical evaluation for A = 0 is shown in Fig. 7.4.4 for some ranges 

in sand T. 

In section (7.6) we will give numerical evidence that eq. (7.4.32) 

can be closely approximated by 

(7.4.35) 

The conclusions for the slab are thus quite comparable to those obtained 

for a sphere. 

The Cyl inder 

In the case of the cylinder one can proceed in the same manner as 

above. Instead of the source function eq. (7.4.12) one utilizes the 

fundamental solution. 

2 2 '\I S(r,t;s) = {s/(2Dt)} exp r: (r +s )/(4Dt)J' 10 {rs/(2Dt)} (7.4.36) 

where Io(z) is the modified Bessel function of the first kind, zero 

order. However, this cas~ leads to a rather complicated integral equation 

for the unknown source density h(s) and for this reason the following 

approximate solution is recommended. 

For large values of the parameter S = va/D (about 200 or more) the 

interface regresses at such a rapid rate compared to temporal changes in 

the diffusion pattern that the latter is affected primarily in a very 

thin boundary layer of thickness 0 close to the surface as thecalcula-

tions show, see Fig. 2. Hence, in order to describe the rate of the 

diffusion of the ion through the interface, it is important to take 

12. 
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account of the steep concentration gradient close to the boundary. For 

this reason one introduces the transformation 

c(r,t) = eXP(At)r1/ 2 cCy(r,t) {7.4.37} 

into eq.(7.4.2), where now m;l. There results 

(7.4.38) 

Now close to the boundary where the diffusion effects are most prominent 

the two terms on the right hand side are of entirely different order of 

magnitudes, a2c/ar2 = 0(1/02) and c/4r2 = 0(1/r2). Since 0 is very 

small compared to r, the second term is dropped in favor of the first 

and there result the eqs. (7.4.6) to (7.4.10) with the initial distri

bution g(r) = r1/2 c(r). Hence the approximate solution to the cylinder 

problem can be obtained by simply replacing the term sc(s) by sl/2c(s) 

on the right hand side of eq. (7.4.19). It is worthwhile to point 

out that if one merely drops the term (l/r)ac/ar in eq. (7.4.1) in 
2- 2 . favor of a c/ar , one obtalns a less accurate approximation to the 

solution than the one given above. 

The exact analysis of the cylinder is planned for the future. 
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7.5. External Mass loss Rate and leach Time for a Glass Cylinder 

7.5.1. Introduction 

Two mathematical models for the rate of mass transport from a waste 

cylinder surrounded by groundwater in an infinite porous medium have been 

developed in sections (7.1) and (7.2). In the first model, the cylinder is 

approximated by a prolate spheroid and the rate of mass transfer of a 

species dissolved from the waste solid is assumed to be governed by the 

rate of molecular diffusion of the dissolved species into stagnant ground-

water. This theory is illustrated by analyzing the steady-state mass 

transfer rate from the cylinder with the dissolved species having a 

constant concentration on the cylinder surface. The maximum value of this 

surface concentration is the solubility of the dissolved species in ground-

water, and this saturation concentration at the surface is assumed in the 

illustration. 

In the second model, the mass transfer of the dissolved species from 

the waste surface is due to both molecular diffusion and forced convection 

by the groundwater moving in D'Arcy's flow in the surrounding porous medium. 

Again, the theory is applied to the steady-state mass transfer with a 

constant saturation concentration of the diffusing specie on the cylinder 

surface. The waste cylinder is idealized as a cylinder of infinite length, 

and the groundwater is assumed to flow perpendicular to the cylinder axis. 

This allows one to obtain the rate of mass transfer from a unit length of 

the cylinder. Numerical calculations are made for a cylinder with the 

same radius as that of a cylindrical waste form with end effects accounted 

for. 

Calculations are made for the rate of dissolution of silica, in 

amorphous form, from a borosilicate glass cylinder, and for the rate of 



dissolution of low-solubility radioelements in the borosilicate glass, 

using the two models described above. 

In Section 7.5.2, the steady-state mass transfer rate, mass transfer 

rate per unit length, and average surface mass flux of a species from a 

prolate spheroid and slender cylinder which is defined as a cylinder with 

a ratio of height to radius of 10 or greater are given. In Section 7.5.3, 

the leach times of the prolate spheroid and slender cylinder are derived, 

subject to the assumptions that the waste form consists ot a single species 

and that the ratio of height to radius of the cylindrical waste-form is 

constant during the leaching process. In Section 7.5.4, the governing 

equations for obtaining the dimensions of the prolate spheroid approximating 

a cylindrical waste form are given. In Section 7.5.5 we present the 

dimensions of the cylindrical waste-form, calculated dimensions of the 

equivalent prolate spheroid, diffusivity of a species in a water-saturated 

porous medium, solubility of amorphous silica in water, and borosilicate 

glass density. In Section 7.5.6, a comparison between the dissolution rate 

and the leach time of different waste forms consisting only of amorphous 

silica are made. These sections deal primarily with the mass transport by 

molecular diffusion. 

In Section 7.5.7, the steady-state mass transfer rate by molecular 

diffusion and convection are given. The mass transfer rate for a finite 

cylinder is derived subject to the assumption that the surface mass flux 

from the ends of the cylinder has the same value as the surface mass flux 

of the infinitely long cylinder. In Section 7.5.8 the leach time for the 

cylinder is derived. Section 7.5.9 contains data used for numerical 

evaluation of mass loss rate and leach time. In Section 7.5.10 a compari-

son is made between surface mass flux for diffusion and for the diffusion-

convection model. 
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In Section 7.5.11, the diffusion and diffusion-convection models are 

applied to a silica-base glass cylinder containing low-solubility radio

elements. Section 7.5.12 is the conclusion of the above analyses. 

7.5.2. Dissolution Rate Due to Molecular Diffusion 

At steady state the mass transfer rate per unit area (surface mass 

.~ flux) is nonuniform for the prolate spheroid and depends on the position 

on the surface. The mass flux has a maximum at the poles and a minimum at 

the equatorial plane (see Fig. 7.1.1 in Section 7.1). The total rate of 

dissolution mps of a given species of effective surface concentration Ns is 

obtained by integration of the surface mass flux over the surface area of 

the prolate spheroid, and is given by (see Section 7.1) 

where: 
. 

4ne: Df Ns f 

a. 
log[coth(y)] 

(7.5.1) 

mps = the total mass loss rate of the prolate spheroid, g/sec 

Df = molecular diffusivity of diffusing specie in water, cm2/sec 

e: = porosity 

Ns = c - c = effective surface concentration, g/~m3 s 00 

Cs = solubility limit in groundwater, g/cm3 

c = concentration in groundwater far from waste surface, g/cm3 
00 

a. = surface shape factor of the prolate spheroid defined in s 

Section 7.1 by Eq.(7.1.4) 

f = focal distance of the prolate spheroid, em 

For a slender cylinder, i.e~, L ~ lOr, Eq.(7.5.1) simplifies to 

2ne: Df Ns L 

log(!:.) 
r 

(7.5.2) 
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where: 

msc = dissolution rate for a slender cylinder, g/sec 

L = cylinder length, cm 

r = cylinder radius, cm 

From Eq.(7.5.l) the dissolution rate per unit length and the average 

dissolution rate per unit surface area of the prolate spheroid are given 

by Eqs.(7.5.3) and (7.5.4), respectively 

(7.5.3) 

(7.p.4) 
-1 as 

b(b+ ~ sin e)log[coth(1')] 

where: 
.$1, 
mps = mass loss rate per unit length of the prolate spheroid, 

g/cm sec 

jps = average surface mass flux of the prolate spheroid, g/cm2 sec 

e = f/a 

a = semi-major axis of the prolate spheroid, em 

b = semi-minor axis of the prolate spheroid, em 

7.5.3. Leach Time Derivation 

The leach time T is defined as the time interval between the beginning 

of dissolution and the completion of dissolution of the waste form. Assum-

ing here a waste form consisting of a single species, the time-dependent 

waste form volume V(t) is given by 

d • 
dt (pV(t)) = - m(t) (7.5.5) 

4. 
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where: 

p = waste form density, g/cm3 

V(t) = waste form volume at time t, cm3 

m(t) = mass-loss rate at time t, g/sec given by Eqs.(7.5.1) and (7.5.2). 

The initial condition is V(O) = Va' where V is the initial volume of the . 0 

waste form. 

Here we assume that at any time t the dissolution rate can be approx;-

mated by the steady-state solutions, Eqs.(7.5.l} and (7.5.2), so that 

Eq.(7.5.5} can be solved for V(t}. From definition of the leach time T 

we have that 

V(T} = 0 

and leach time is obtained by solving Eq.(7.5.6} for T. 

We have for the slender cylinder 

and from (7.5.2) 

2m: Df Ns L(t) 

msc = 109[;~~~] 

with the initial condition (I.C.) that 

r(O) = ro initial radius, cm 

L(O) = Lo initial height, cm 

;. Substituting Eqs.(7.5.7) and (7.5.8) into (7.5.5) yields 

d 2 2n£ Df Ns L(t) 
dt [p n r (t) L(t)] = - £I1l 

109[rrtT] 

(7.5.6) 

(7.5.7) 

(7.5.8) 

(7.5.9) 
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with I.e. 

r(0) = ro 

L(O) = Lo 

To solve Eq. (7.5.9), it is necessary to have another relation between L(t) 

and r(t). We assume that the ratio of height to radius remains constant 

during the leaching process, i.e., 

L(t) = L r..lil 
oro· 

(7.5.H» 

Substituting Eq.(7.5.l0) into Eq.(7.5. 9) and solving for r(t) results in 

1/2 
(7.5.11) 

From the definition of leach time we have from (7.5.6-7) that r(Tsc ) = 0, 

so that 

(7.5.12) 

where: 

Tsc = leach time for the slender cylinder, sec 

In deriving the leach time of the prolate spheroid it is assumed that 

the ratio of the minor axis to the major axis is constant during the leach

ing process, resulting in the following equation (see Appendix A for details): 

= p bo
2 

cosh(Cts)log [coth(f)] 

2 e: Of Ns 
(7.5.13) 

6~ . 
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where: 

Tps = leach time for the prolate spheroid, sec 

bo = initial semi-minor axis of the prolate spheroid, cm 

7.5.4. Approximating a Cylinder by a Prolate Spheroid 

We assume that the prolate spheroid has the same volume and surface 

area as the cylindrical waste form. Thus, equating their volumes, 

1T 2 2 4 3 a b = 1T r L (7.5.14) 

and equating their surface areas 

a -1 2 1T b(b+e sin e) = 2 1T r(r+L) (7.5.15) 

Solution of Eqs.(7.5.14) and (7.5.15) for a and b defines the desired 

prolate spheroid. As is seen from the above equations, a closed-form 

mathematical solution for a or b cannot be obtained, so a numerical analysis 

;s required. 

7.5.5. Parameters of the Problem 

The following table shows the physical characteristics of the waste form 

used in the numerical calculations: 

Table 7.5.1. Physical characteristics of waste forms (Rl) 

Commercial Defense 
high level high level 

Canister dimensions waste waste 

Inner diameter, cm 30.S 59.1 
2 a/ 2 a/ 

Length, cm 2.4xlO - 2.4xlO -

Surface area, cm2 2.446xl04 5.00Sxl04 

Volume, cm3 1. 7Sxl 06 6.S8xl06 

Ratio L/r lS.7 8.1 

~ Assumed that 80% of waste canister is filled with waste glass. 
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The dimensions of the commercial high level waste form are used in numerical 

evaluation of the slender cylinder mass loss rate and leach time, listed in 

Table 7.5.4. 

Table 7.5.2 is obtained by approximating the waste forms by a prolate 

spheroid using Eqs.(7.5.14) and (7.5.15), with the aid of a (computer) 

program described in Appendix C. 

Table 7.5.2. Physical dimensions of prolate spheroid approximating 

cylindrical waste forms. 

Waste Forms a, cm b, cm c, cm e as 

Defense high-
level waste 158 31. 5 155 0.980 0.202 

Commercial high-
level waste 145 16.9 144 0.993 0.117 

The molecular diffusion coefficient of most nuclides in water-saturated 

porous media is usually lower than that in the unconfined water. The 

. -5 2 () diffusivity of most species in water is between 1 to 5xlO cm /sec W2 . 

The molecular diffusion coefficient of silicon dioxide and other species 

-5 2 in water is taken to be 1xlO cm /sec. 

Table 7.5.3 shows the solubility of two forms of silicon dioxide, i.e., 

a quartz and amorphous silica, in water at a pressure of 0.1013 MPa. pH of 7.0, 

and at different temperatures. The solubility of silicon dioxide as a 

function of pressure and temperature is given (Wl) in Appendix B. 

Table 7.5.3. Solubility limit of silicon dioxide in water 
Je'!!Perature. °C 
25°C 100°C 

Alpha quartz. g/cm3 4x10:6 5x10-5 
3 -4 -4 Amorphous silica. g/cm 1.2xlO 4.1xlO 

-4 3 3 A surface concentration of 1.2x10 g/cm and a density of 2.8 g/cm are 

chosen for a pure amorphous silica cylinder. This density corresponds to that 

of typical borosilicate glass (T1 ),(M3). 
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7.5.6. Numerical Results for Dissolution Rate and Leach Time for a Pure 

Amorphous Silica Cylinder 

Table 7.5.4 shows the calculated dissolution rates and leach times, 

using Eqs.{7.5.1), (7.5.2), (7.5.12), and (7.5.13) with the aid of a computer 

program (Appendix C). A porosity of 0.01 and the solubility of amorphous 

... silica from Table 7.5.3 were used. The concentration of silicon dioxide in 

the groundwater far from the waste form is assumed zero. 

," 

Table 7.5.4. Mass loss rate and leach time for a pure amorphous silica in 

stagnant water at 25° C and porosity of 0.01. 

Mass loss rate, g/da~ Leach timez ~r 

Slender cylinder 5.6xlO -4 3.54x106 

Commercial high 
6.6xlO-4 3.03xl06 level waste 

Defense high -4 6 level waste 8.8xlO 8.58xlO 

All three waste forms yield similar results. There is reasonable 

agreement of mass loss rate and leach time between a prolate spheroid 

approximating the commercial high level waste form and the slender cylinder. 

Thus, Eqs.(7.5.2) and (7.5.12), derived for the mass loss rate and leach 

time of the slender cylinder respectively, can be used. 

7.5.7. Dissolution Rate Due to Molecular Diffusion and Groundwater Motion 

The mass loss rate per unit length of an infinite cylinder with ground

water flow normal to its axis is given by (see Section 7.2) 

m! = jL D £ Ns (Pe)1/2 , valid for Pe > 4 
00 liT f 

where: 

m: = mass loss rate per unit length of cylinder, g/cm sec 

Pe = Ur/Df , Peclet number 

U = groundwater pore velocity, em/sec 

(7.5.16) 
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. From Eq.(7.5.1), the mass loss rate per unit surface area of the cylinder is 

obtained 

Pe > 4 (7.5.17) 

where: 
'R, m 

jc = 2;r = mass loss per unit surface area of the cylinder, g/cm2 sec 

From this, one obtains the dissolution rate for a cylinder of length L, 

subject to the assumption that the mass flux from the ends of the cylinder 

has the same value as the surface mass flux from the cylindrical surface. 

The result is 

m = JL DENs (r+L) (Pe)l/2 , Pe > 4 
- c ITi f 

(7.5.18) 

where mc = dissolution rate from cylinder, g/sec 

7.5.8. Leach Time for a Cylinder, Diffusion and Convection 

As a result of dissolution, the radius decreases with time as does the 

Peclet number. The leach time T is defined as the time interval from the 

beginning of the steady-state dissolution of an infinitely long cylinder 

until the cylinder has completely dissolved. For simplicity it is assumed 

that Eq.(7.5.16) is also valid for Peclet numbers less than four. The 

following expression for the leach time is obtained (see Appendix A for 

derivation). 
3/2 2 

IT pro 

where: 

Ur 
P 

_ 0 
, eo = -O

f 
(7.5.19) 

Tc = leach time for the cylinder located in flowing groundwater, sec 

ro = initial radius of the cylinder, em 
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7.5.9. Parameters of the Problem 

Groundwater pore veloc,ities of 10, 5, and 1 m/yr are assumed. The rCidius 

of the cylinder is 15.2 cm,which is the same as that of a commercial high 

level waste glass cylinder. The cylinder consists of silicon dioxide. The 

surface concentration of silicon dioxide is 1.2xlO-4 g/cm3 and the concentration 

> 
of silicon dioxide in the groundwater far from the cylinder is> assumed to be 

zero. The diffusivity of Si02 in groundwater is taken to be lxlO-5 cm2/sec. 

The porosity of the medium is 0.01. 

.' 

7.5.10. Numerical Results for Surface Mass Flux 

In Table 7.5.5 are presented the calculated average surface mass fluxes 

for diffusion and convection in flowing groundwater (Eq. 7.5.17) and for 

diffusion in stagnant groundwater (Eq. 7.5.4), using the computer program 

described in Appendix C. A porosity of 0.01 is chosen. 

Table 7.5.6 Average surface mass flux of silicon dioxide g/cm2 day for 
the diffusion and diffusion-convection models, porosity = 0.01, 

-4 3 -5 2 . Ns = 1.2xlO g/cm, Of = lxlO cm /sec, r = 15.2 cm, and 
L = 2.4 m. 

Groundwater pore velocity, m/yr 

10 5 1 O~ 

Surface mass flux, g/cm2 day 3.5xlO-7 2.5xlO-7 1.lxlO-7 2.7xlO-8 

~Mo1ecu1ar diffusion model, Eq.(7.5.4} 

For the pure amorphous silica cylinder (f = 15.2 cm) emplaced in a medium with 

. poros ity of 0.01 and groundwater pore velocity of 10 m/yr, from Eq. (7.5. 19), we 

obtain Tc = 2.3xl05 yr. The proper value may be less, if an accurate solution 

for Pe< 4 were available. Such an analysis is presently being completed. 

For example, from Eq.(A.29}, we find that after 1.7xl05 years the cylinder 

radius has decreased from the initial value of 15.2 cm to 1.2 cm when the 

Peclet number becomes four. 

11. 



7.5.11. Solubility Limited Dissolution of Silica and Low~Solubility Radio

elements in a Silica-Base Glass Cylinder 

In the previous sections two mathematical models of dissolution from a 

cylinder with only one diffusing component were considered. In this section, 

a silica-base glass cylinder containing additional low solubility components, 

such as various radioelements, is considered. 

The time-dependent fractional dissolution rate of component jis defined 

as 

where: 

(7.5.20) 

f. (t) = fractional dissolution of component j at time t, l/sec 
J 

mj (t) = dissolution rate of component j at time t given by 

Eq.(7;5.1) for molecular diffusion and Eq.(7.5.l8) for the 

molecular diffusion-convection models, g/sec 

M. (t) = V. (t) nj (t) = mass of j at time t in glass, 9 J J 

v. (t) = volume of undissolved waste at time t, cm3 
J 

n. (t) = dens ity of j in undi 5501 ved solid waste at time t, g/cm3 
J 

Substituting the mj (t) given by Eqs.(7.5.1) and (7.5.18) into (7.5.20) yields 

b2 1 09[coth(O,2s )J 

. . 1/2 
8£ D/ (PeJ ) (l+f) 

7[3/2 r2 

~ molecular diffusion 

, molecular diffusion~convectiQn 

Pej :: U~ > 4 
J -Df 

(7',5:21) 
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where: 

Ns,j = difference between the concentration of j in the groundwater 

on the waste surface and concentration of j in groundwater far 

from waste surface, g/cm3 

. Ofj = diffusion coefficient of specie j in groundwater, cm2/sec 

T = leach time given by Eq.(7.5.l3) and Eq.(7.5.l9), sec 

In the above equation it is assumed that the ratio of the major axis to the 

minor axis of the prolate spheroid. is constant during the leaching process. 

In Eq.(7.5.2l) rand b are functions of time, with functional forms given 

·by Eqs.(A.29) and (A.10), respectively. 

To apply Eq.(7.5.2l), it is assumed that the rate of bulk dissolution 

of the solid waste is controlled by dissolution of the silica matrix, i.e., 

the preferential release of a waste-component by diffusion in solid is 

neglected. As the silica matrix dissolves, all the components in the silica 

matrix are released congruently from the solid but are not necessarily 

dissolved. If the solubility of an individual waste component is so low that 

its fractional dissolution rate is less than that of the waste matrix, then 

precipitates of the low-solubility component will form. It is assumed that 

the precipitates remain on the waste surface and slowly dissolve at a rate 

given by the rate of mass transfer of the low-solubility species into the 

surrounding liquid, with the concentration of the low-solubility species in 

: the liquid adjacent to the waste surface given by the solubility of that 

species in groundwater. The possibility of forming colloids or other non

dissolved suspended particulates within the groundwater is neglected. 

These assumptions can be written as 

fj(t) = Min (fsilica (t),fj (t)) j = 1,2, .• ,N 

where: 

Min (X,V) = minimum value of X or Y 

(7.5.22) 
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For numerical demonstration we consider a borosilicate waste glass with 

r = 15.2 cm and L = 2.40 m emplaced in a porous medium with a porosity of 

0.01 and groundwater pore velocity of 1 m/yr. The concentration of each of 

the components in the groundwater far from waste cylinder is assumed zero. 

The molecular diffusion coefficient in groundwater is assumed to be lxlO-5 

cm2/sec for ail the diffusing components. The initial inventories and solu

bilities of constituents in groundwater and the corresponding calculated 

fractional release rates are given in Table 7.5.7. Table 7.5.8 shows the 

calculated fractional release rate of the constituents from the above waste 

glass in absence of groundwater flow. For this case the prolate spheroid 

has the same volume and surface area as the waste cylinder. 

Table 7.5.8 also shows the experimental results of fractional release 

rate for some radionuclides(M1). The experimental results are adjusted for 

the surface area of the waste cylinder on the assumption that the release 

rate is proportional to surface area exposed. Comparison between these 

calculated values indicate that in the repository conditions dissolution of 

the low-solubility radionuc1ides is controlled by the concentration boundary 

layer and not by the kinetics inside the glass matrix. 

7.5.12. Conclusion 

Two solubility-limited dissolution models were developed in Sections 7.1 

and 7.2. The models permit one to calculate the steady-state dissolution 

rate of a diffusing species from a cylinder which is embedded in a water 

saturated porous medium. In one model the mass loss is due to molecular 

diffusion only, while in the other it is governed by molecular diffusion 

and groundwater convection. 

The models are applied to an amorphous silica cylinder embedded in a 

medium with porosity of 0.01. The cylinder radius of 15.2 cm and height 

of 2.4 m are used, which are dimensions of a commercial high level waste 
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glass cylinder. For the diffusion model an average surface mass flux of 

2.7xlO-8 g/cm2 day and leach time of 3xl06 yr are calculated. 

The models are applied to a borosilicate high level waste glass. The 

fractional release rates of some low-solubility components are calculated. 

The numerical results indicate that if the solubility of these constituents is 

low enough, and their initial inventories high enough, they will not initially 

dissolve congruently with the waste matrix. Comparison of fractional release 

rates due to diffusion and those due to diffusion-convection indicates that 

the groundwater pore velocity of 1 m/yr causes a four fold increase in 

dissolution rate. This indicates a narrow range for dissolution rates 

obtained by the two models. 

Comparison between calculated fractional release rate and experimental 

values indicates that for low-solubility glass components the dissolution 

rate may be controlled by concentration boundary layer, porosity of the medium, 

and groundwater po~e velocity and not by kinetics inside the glass matrix 

or solid-liquid interactions. Therefore, interior cracks of the waste solid, 

devitrification, and other mechanisms that could increase the rate of solid-

liquid interaction would not be expected to affect the solubility-limited 

dissolution rate, unless they have some affect on the solubilities. If the 

solubility is sufficiently large, then the kinetics of interaction between 

the solid waste and water may be dominant. 
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Table 7.5.7 Calculated fractional release rates for borosilicate glass 
waste in flowing groundwater. 

Waste cylinder: r = 0.152 m, L = 2.40 m, fission-product and actinide oxides 

from 460 kg of uranium fuel. Groundwater pore velocity of 

1 m/yr. 

Initial species 
concentration Fractional 
in the waste, Sol ubil ity, Disiolution rate, 

Constituent g/cm3 gLcm3 ~r-

Si02 1.6 ~ 1.2x10 -4 Y 3.4xlO-6 

Tc 1. 92x1 0-3 bl 3x10-9 !Y 7x10-8 

U 1.22xlO:2 Q/ 2xlO-9 dl 8xlO-9 

Np 1 .92 xl 0 -3 Q/ 2.4xlO-ll !y 5.7x10-1O 

Pu 1.15xlO-4 Q/ lxlO-9 !y 4xlO-7 

Am 3.56xlO-4 Q/ 1.8x10-12 !y 2.3xlO-1O 

~ Reference (M2). 

pi Assumed 0.5% U and Pu and all fission products and actinides (Bl). 

fl For amorphous Si02 (Sl). 

QJ Reference (K1), 
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Table 7.5.8 Calculated fractional dissolution rates for borosilicate glass 
waste in stagnant groundwater. 

Waste cylinder: r = 0.152 m~ l = 2.40 m, fission-product and actinide 

oxides from 460 kg of uranium fuel. 

Initial specie 
concentration 

Constituent 
in the w~ste, 
. g/cm 

Si02 1.6 W 

Tc 1.92xl0-3 £I 

U 1.22xlO-2 c/ 

Np 1.92xlO-3 £1 

Pu 1. 15xlO-4 £I 

Am 3.56x10-4 £I 

~ Reference (Ml) . 

.!v' Reference (r~2). 

So 1 ubi 1 ity, 
. g/cm3 

1.2xlO -4 ~ 

3.0xl0-9 y 

2.0xl0-9 y 

2.4xlO-ll y 

1.0x10-9 y 

1.8xlO-12 y 

Fractional dissolution rate, yr-1 

Calculated Observed~ 

8.7xlO-7 

1. 8xlO-8 

1. 9xlO-9 

1.5xlO-10 

1.0xlO-7 

5.8xlO-ll 

1.6xlO-3 

1.5x10-6 

6.6xlO-4 

2.6xl0-S 

2.7xlO-6 

sJ Assumed 0.5% U ~nd Pu and all the fission products and actinides (B1). 

Q! For amorphous Si02. 

~ Reference {Kl}. 
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7.5.13 Nomenclature 

a 

b 

Coo 

e 

Lo 

L(t) 

m(t) 

Ihj (t) 

mps 
. L 
mp 

Semi-major axis of the prolate spheroid cm 

Semi-minor axis of the prolat~ spheroid cm 

Initial semi-minor axis of the prolate spheroid cm 

Solubility limit in groundwater g/cm3 

Concentration in groundwater far away from waste surface g/cm3 

Molecular diffusivity in water cm2/sec 
2 . 

Molecular diffusivity of component j in water cm /sec 

Eccentricity of prolate spheroid 

Focal distance of the prolate spheroid 

Fractional dissolution rate of component j at time t sec- l 

Average surface ~ass flux of infinitely long cylinder in flowing 
groundwater g/cm sec 

Average surface mass flux of the prolate spheroid g/cm2 sec 

Cylinder height cm 

Initial cylinder height cm 

Cylinder height at time t after dissolution begins cm 

Dissolution rate at time t g/sec 

Dissolution rate bf component j at time t g/sec 

Total dissolution rate of the prolate spheroid g/sec 

Dissolution rate per unit length of the prolate spheroid g/tm sec 

Dissolution rate for a slender cylinder g/sec 

Dissolution rate from a cylinder in flowing groundwater 

Dissolution rate per unit length of infinitely long cylinder in 
flowing groundwater g/cm sec 

Mass of j at time t in the waste glass g 

Density of j in undissolved waste at time t g/cm3 

Difference between concentration in the liquid adjacent to waste 
surface and concentration in the 9roundwater far away from waste 
surface g/cm3 



N . 
s ,J 

r 

r( t) 

T 

Difference between concentration of component j in liquid adjacent 
to the waste surface an~ concentration in the groundwater far away 
from waste surface g/cm 

Cylinder radius cm 

Cylinder radius at time t after dissolution begins cm 

Initial cylinder radius cm 

Leach time (sec) 

Leach time for prolate spheroid sec 

Leach time for slender cylinder sec 

Leach time for the infinitely long cylinder in flowing groundwater sec 

Groundwater pore velocity cm/sec 

Vj(t) Volume of undissolved waste at time t cm3 

Pe = Ur Pec1et number - D
f 

Uro 
Peo -- D

f 

Greek 1 etters 

p = waste form density g/cm3 

E = porosity 

as - COSh-1(~) Surface shape factor of prolate spheroid 
Defined by Eq.(7.1.4) 
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7.6 Calculations of Dissolution of a Glass Matrix by Internal Molecular 

Diffusion and Surface Regression 

P. L. Chambre and S. J. Zavoshy 

1. Introduction 

In this paper we consider the dissolution of a glass matrix containing 

sodium oxide. It is experimentally observed that sodium molecular diffusion 

and ion-exchange at the glass-water interface depletes the glass matrix of 

sodium ion. Further, the glass matrix is dissolved by water. This matrix 

dissolution is viewed as regression of dissolved glass-water interface. 

The fractional release of sodium from the glass has a form of 

cl t l / 2+c2t, where cl and c2 are two constants (Hl,M3). A dissolution model 

that yields a fractional release which is initially parabolic (proportional 

to tl/2), and then becomes linear function of time (proportional to t), 

is developed in section 7.4. 

A mathematical dissolution model is developed based upon these two 

observed phenomena, i.e., internal molecular diffusion and glass surface 

,regression. It is assumed that the loss of the diffusing ion from the 

interior of the glass due to molecular diffusion will lessen the integrity 

of the glass matrix. Furthermore, it is assumed that 'the glass-water 

interface has a constant velocity during the dissolution process. The 

regression speed is pOSitive for the case of a regressive glass-water 

interface, zero for stationary interface, and negative for the progressive 

interface. The concentration inside the glass and fractional release of 

the diffusant from the glass are obtained for a sphere and slab of finite 

width. 

For numerical evaluation a ternary sodium-borosilicate glass is con

sidered. Sodium is the diffusing nuclide. The concentration of sodium 
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at the glass-water interface is chosen to be zero. The radius and half 

width of the slab are equal to the radius of a spent fuel canister. A 

-13 -11 range of regression speeds from -9.7xlO to 3.9x10 cm/sec is chosen. 

The normalized concentration, surface mass flux, and fractional release 

of sodium are evaluated. 

2. Governing equations for the normalized concentration, surface mass 

flux, and fractional release. 

Case 1. Finite slab 

The following equation defines the normalized concentration of the 

diffusing specie in the slab of width 2a 

C~L (x,t) =Ns + NO 2sL (x,t) . 

where: 

(7.6.1) 

c~L (x,t) = normalized concentration of diffusinq specie in the slab 

A 

csL (x,t) = normalized concentration of the st~ble diffusing specie in 

the slab with zero concentration on the boundary 

(see Eq. (7.4.30) in section 7.4 with :\=0) 

NS = Cs 
Co 

NO = (co ) / - Cs Co 

Cs = surface concentration of the diffusing specie, g/cm3 

Co = initial bulk density of diffusing specie in the glass. g/cm3 

x = position from center of slab, cm 

t = time, sec 

The fractional release is obtained by the following equation: 

s 0 (l-~T 
fsL(t) = 1 - N (l-vt/a) - N }~ csL (y,t) d y 

o 

(7.6.2) 
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3. 

where: 

fsL{t) = fractional release of diffusing specie at time t from the finite slab 

13 = va/D 

a = initial half width of finite slab, cm 

D = molecular diffusion coefficient of diffusing specie in the glass 

matrix, cm2/sec 

l = Dt/a2 

v = regression speed, cm/sec 

An asymptotic form for fsL{t) is obtained which is 

(7.6.3) 

The surface mass flux is given by 

(7.6.4) 

where jsL is the surface mass loss of diffusing specie from the finite slab, 

g/cm2 sec. 

Case 2. Sphere. 

The normalized concentration of the diffusing specie in the sphere is given by 

c~p (r,t) =Ns + NO 2sp (r,t) 

where: 

(7.6.5) 

c~p (r,t) = normalized concentration of the diffusing specie in the sphere 

csp (r,t) = normalized concentration of stable diffusing specie in the. sphere 

with zero concentration at the boundary 

(see Eq. (7.4.20) in section 7.4 with A=O) 

r = radial position from center of sphere, cm 



From Eq. (7.6.5) we obtain the surface mass flux, i.e., 

. _ acsp I J sp - -0 (co- cs ) ar + v Cs 
R-vt 

(7.6.6) 

where jsp is the surface mass loss of diffusi.ng specie from sphere, g/cri sec 

The fractional release is obtained· by 

where: 

1-8T 

(1-vt/R)3- 3 NO f c (y,t) y2dy . sp 
o 

(7.6.7) 

fsp(t) = the fractional release of diffusing specie from sphere at time t 

B = vR/O 

R = initial radius of sphere, cm 

An asymptotic form of fsp(t) for early period of dissolution is 

(7.6.8) 

and as the total dissolution time is approached the following asymptotic 

relation is obtained 

(7.6.9) 

This is due to time dependency of surface area of the sphere. 

3. Parameters of the problem 

The values of a and R were chosen to be 17.8 cm, equal to the radius 

of a spent fuel canister. The glass density is taken to be 2.8 g/cm3. 

Table 7.6.1 gives the value of molecular diffusion coefficient of sodium in 

a ternary sodium-borosilicate glass at 100° and 200 0 e. Table 7.6.1 was 

obtained by applying the following equation (Fl) 

O(T) = 0oExp(- Q/RT) (7.6.10) 
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where: 

O(T) = sodium diffusion coefficient at temperature T, cm2/sec 

° = frequency factor, cm2/s o 
Q = activation energy, Kca1/mo1e 

R = gas constant = 1.99x10-3 Kca1/mo1e oK 

T = temperature in degrees Kelvin, oK 

Table 7.6.1. Na self-diffusion in ternary Na20-B203~Si02 glasses (F1) 

Na20/B203 mo1e% 2 a/ 0o(cm /s)- Q(Kca1/mo1e)~ 

31.3/6.25 5.01x10-6 11.5 

30.9/9.10 6.31x10-6 11.7 

28.6114.3 3.98x10-5 13.1 

32.3/3.22 5.01xlO -4 13.4 

31.7/4.76 1. 2lx10 -4 13.0 

~ For temperature range of 100° to 250 0 e. 

!v' At lOOoe. 

c;J At 2000e. 

2 b/ 
0lOO(cm /s)- 2 )c/ 0200( cm /s ----.. _-_. __ ._-
9.36xlO-13 2.84x10-11 

9.00x10-13 2.52x10-11 

8.61x10-13 3. 59x1 0-11 

7.24x10-12 3.29x10-10 

3.00x10-12 1.22x10-1O 

For numerical evaluation a ternary sodium-borosilicate glass at 1000e 

with the composition 28.6 Na20/14.3 B203 mole % was considered. From 
-13 2 Table 7.6.1 we obtain 0=0100 = 8.61xlO cm Is. The surface concentration is 

taken to be zero. 

Values of S = -20, -10, -5, 0, 5, 10, 50, and 800 were chosen. Value 
-6 of S = 800 corresponds to v = 3.3xlO cm/day. 

4. Numerical results and discussion 

The numerical results are obtained with the aid of four computer 
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programs (see Appendix A for the program details). The cut off time for 

calculations is the leach time TL. This is defined as 

T L = I L/v I ,v., a 

where: 

TL = leach time, sec 

L = initial characteristic length of the problem, cm 

(half width of the finite slab or sphere radius). 

(7.6.11) 

The value of TL corresponds to total d.issolution of the glass matrix if 

v > 0, and doubling of L if v < O. The surface mass flux was obtained by 

. numerical differentiation of Eqs.(7.6.4) an.d {7.6.6}. 

Figs. 7.6.1 - 7.6.7 show the normalized 

concentration vs. half width of the finite slab, for ~ = 0, 5, la, 800, -5, 

-10, and -20 respectively. For v > 0, increase in v, (B) will result in 

steepening of the concentration profile at the glass-water interface. 

This effect can be best seen in Fig.7.6.4,where a = 800. Also, the absolute 

value of the concentration gradient at the interface is increased as v 

increases. For negative values of v, the normalized concentration profile 

becomes S-shaped, see Fig. 7.6.5. 

Fig.7.6.8 shows the variation of the normalized surface mass flux of 

the finite slab with time (T = Dt/a) for different values of a, (v). At 

the early period of glass dissolution the normalized surface mass flux is 

proportional to t- l / 2 and is independent of the regression velocity. This 

indicates the diffusion-controlled mass loss. For a = 800, after approxi

mately 100 years, a constant surface mass flux of 2.4xlO-6g sodium/cm2 day 

is obtained. 

Fig.7.6.9shows the variation of the fractional release with time for 
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different values of v. Fractional release has a behavior of the form 

1/2 ( c1t + c2t, where c1 and c2 are two constants, see Eq. 7.6.6) for 

values ofc1 and c2. 

Figs. 7.6.10 - 7.6.13 apply to the sphere and show the 

normalized concentration vs. radius of sphere for S = 0, 10, -5, Bnd -10 

respectively. Comparison with Figs. 7.6.1.3,5 and 6 indicates that sodium 

depletion is faster for the sphere than for the slab. The plot obtained 

for 8 = 800 is identical to Fig. 7.6.7. thus it is not reproduced •. 

Fig. 7.6.14 shows the variation of the normalized surface mass flux of 

the sphere with time (T) for different values of S, (v). As leach time 

is approached there is a drop in surface mass flux due to depletion of 

sodium inside the sphere. 

Fractional release for the sphere case is obtained by way of numer-

ieal integration of the normalized concentration. Fig. 7.6.15 shows the 

variation of fractional release with time (T) for different values of 

B, (v). 

5. Conclusion 

A glass dissolution model based upon two observed phenomena, i.e., 

internal molecular diffusion and glass surface regression, is developed. 

An asymptotic equation is obtained for fractional dissolution of diffusant 

from the glass. The asymptotic equation has a form of c1t l / 2 + c2t where 

cl and c2 are a function of molecular diffusion coefficient and regression 

speed. The experimental results of fractional dissolution of component 

'i' is of the form Cl tl/2+ C2t, where Cl and C2 are two constants which 

depend on the diffusing component. Values of C, and C2 are obtained 

from glass dissolution· experiment. By fittin9 Eq. (7.6.3) or (7.6.8) to the 

1. 



experimentally observed f(t) we can obtain the internal molecular 

diffusion coefficient of component Iii and the glass-water regression 

speed. This is presently under study. 
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