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Abstract 

The reaction pa·th (the minimum energy path in mass-weighted 

cartesian coordinates), and all the coupling functions which fully 

characterize the reaction path Hamiltonian of Miller, Handy, and Adams 

[J. Chem. Phys .• 72, 99 (1980)], have been calculated for the uni-

molecular dissociation of formaldehyde (H2co ·+ H2 + CO) in its ground 

electronic state. The reaction coordinate and the four other in-plane 

vibrational modes are strongly coupled to each other, but the out-of-

plane vibration is coupled directly only to the reaction coordinate. 

Calculations of the type of Waite and Miller [J. Chem. Phys, J..l, 3713 

(1980); J!!., 3910 (1981)] for the state-specific unimo1ecular rate 

constants are carried out for a two-mode model consisting of the 

reaction coordinate and the out ... of-plane vibration, and one observes 

a significant degree of mod~-specificity; i.e., the unimolecular rate 

constant for a given metastable state is not a smooth function of the 

energy of the state. It is suggested that this mode-specificity may 

persist in the conplete six-mode system. 

This manuscript was printed from originals provided by the authors. 
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I. Introduction 

We have recently carried out several theoretical investigations 

concerning mode-specificity in unimolecular reactions. In one set of 

1 
studies two of us have calculated the energies and lifetimes of the 

"eigenmetastable states" for a series of model problems consisting 

of two coupled oscillators, one of which can dissociate. By mode~ 

specific, :or conversely, statistical character in the dynamics we 

mean simply whether or not the unimolecular rate constant (the 

inverse of the lifetime) of a given state is a function only of the 

energy of the state. Not surprising!~we have found that the degree 

of mode-specificity depends very much on the potential energy surface 

that defines the system: other things being equal, the stronger the· 

coupling between the two degrees of freedom the less mode~pecificity 

there is in the state-specific unimolecular rate constants.· 

Independent of the coupling strength, we have also found that if 

the reaction path for the process possesses a geometrical synnnetry, 

lb then this can induce mode-specificity in the rate constants. For the 

unimolecular dissociation of formaldehyde, 

(1.1) 

for example, the reaction path (the minimum energy path in mass-

weighted cartesian coordinates) on the ground state potential energy 

surface is planar 2(cs symmetry), and one of us has recently discussed
3 

how this leads to mode-specificity in this reaction; i.e., even if the 

dynamics is as strongly coupled (and statistical) as it can be, there 

is nevertheless no interaction between A' and A" (the two irreducible 

.. 

.. 
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representations of C ) states and thus a separate rate constant for 
s 

A' and A" states. A statistical (i.e., microcanonical transition 

state theory) calculation3 separately for the A' and the A" rate 

constants showed this symmetry-induced mode-specificity to be substantial 

(a factor of ~ 20 difference between the rate constants at the same 

total energy) in the tunneling region relevant for reaction (1.1). 

The formaldehyde dissociation (1.1)~ w~ich has assumed somewhat 

4 the role of a benchmark both experimentally and theoretically in 

polyatomic reaction dynamics, is also the subject of the present paper. 

As noted above, planar symmetry of the reaction path implies mode~ 

specificity between A' and A" states, but here we wish to investigate 

the degree of mode-specificity within the A 1 and A'' manifolds of 

states themselves, and this requires the kind of detailed state .... specific 

. . 1 
calculation of energies and lifetimes of the type mentioned above. 

Formaldehyde, however, has ~vibrational degrees of freedom, so this 

is not feasible tvithout simplifying assumptions, In this paper we 

consider a model of formaldehyde that consists of only two modes, 

the reaction coordinate and the out.,..of..-.plane bend, Since the out ... of.,. 

plane mode is the one most weakly coupled to the reaction coordinate 

and also since it is the degree of freedom which leads to the symmetry-

induced mode-specificity bett-reen A' and A11 states, it seems to b.e the 

most likely candidate for displaying mode-specificity in the unimolecular 

rate constants, 

Section II first summarizes the reaction path Hamiltonian5 for 

the complete description of the formaldehyde system (i,e,, all six 

vibrational degrees of freedom for J=O). The functions which couple 
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the various modes to the reaction coordinate and to each other are 

displayed, and one sees explicitly that the five in-plane degrees of 

freedom and indeed strongly coupled. This also suggests that the 

out-of-plane mode is the best prospect for showing mode-specific 

behavior. The state-specific unimolecular rate constants calculated 

for the two-mode model are presented and discussed in Section III, and 

one sees that there is indeed a significant degree of mode-specificity 

present within the A' and A" manifolds themselves. Section IV 

concludes by discussing several aspects of how these energies and 

lifetimes for unimolecular decay on the ground state potential energy 

surface, i.e., electronic state s 0 , are related to the experimental 

measurements 4a,b of collisionless lifetimes of specific rovibrational 

states in the electronically excited state sl. 

• 
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II. The Reaction Path Hamiltonian 

The reaction path Hamiltonian5 for a polyatomic reactive system 

models the potential energy surface as a harmonic valley (in many 

dimensions) about the minimum energy path (in mass~weighted cartesian 

coordinates) from the saddle point (i.e., transition state) on the 

potential energy surface down to products and back to reactants; it 

6 7 is essentially a polyatomic generalization of Hofacker and Ylllrcus' 

natural collision coordinates, 8 If s and p are the reaction coordinate 
s 

(the distance along the reaction path) and its conjugate momentum, and 

(Qk,Pk), k=l, ••. , F-1 the coordinates and momenta for the vibrational 

modes orthogonal to the reaction path (F = 3N-6 = the total number of 

vibrational modes in the system, N =number of atoms), then the 

cl.assical Hamiltonian for the system in.terms of these variables is 

given by Miller, Handy and Adams5 (for total angular momentum J=O) 

as 

f.,..l 

H(ps,s,{Pk,Qk},k=l, •.. ,F-1) = L 
k=l 

F-1 

+ VO(s) + t [ps - L 
k,k'=l 
k#k' 

1 2 1 2 2 
~ p + -2 wk(s) Q 
2 k k 

F-1 

L 
k=l 

(2.1) 

where v0 (s) is the potential energy along the reaction path, {wk(s)} 

the frequencies for the transverse vibrational modes (as a function of 

reaction coordinate), and {Bk,k'(s)}, k,k' = l, ... ,F(k#k'), are the 

elements which couple the vibrational modes to each other and to 
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the reaction coordinate (labeled as mode k=F). These coupling 

elements are given explicity by 

. a!:K (s) . 

Bk,k'(s) = as • ~,(s) (2. 2) 

where ~(s) is the 3N-dimensional eigenvector of the projected 

force constant matrix for mode k at distance s along the reaction 

path. (~F(s) is the normalized gradient vector which, by definition, 

points along the reaction path.) The elements Bk,F(s), k=l, •.• ,F-1, 

depend on how the curvature of the reaction path couples into mode 

k, and the elements Bk k,(s) (k,k') = l,.,,,F.,..l,kl=k', are coriolis-, 
like coupling elements that arise because the transverse eigenvectors 

may spiral about the reaction path. A more detailed discussion of 

the reaction path Hamiltonian, its generalization to non-zero total 

2 5 9 
angular momentum, and its applications are given in previous papers. ' ' 

Earlier work o~ two of us wit~ Yamaguchi and Schaefer
2 

determined 

the reaction path, the frequencies, and the coupling elements which 

characterize the reaction path Hamiltonian for the formaldehyde 

reaction in the close vicinity of the transition state, and we have 

now extended these calculations along the entire reaction path. The 

results given below are all at the double-zeta self-consistent field 

(DZ-SCF) level of approximation. A total of 28 steps were taken along 

the reaction path between H2co (s=O) and H2coi (the transition state), 

•t 
and 10 steps from H2co toward H2 + CO. The force constant matrix was 

evaluated at 30 points along the reaction path by taking finite 

differences of the analytically calculated gradients. Other aspects 

.. 
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2 of the calculations are essentially the same as before. 

Figures 1-5 show the potential profile v
0

(s), the transverse 

frequencies {~(s)}, the curvature coupling elements {Bk,F(s)}, and 

the coriolis coupling element {Bk,k'(s)}; all as a function of the 

reaction coordinate. The barrier height of 117 kcal/mol.e at the 

DZ SCF level (cf. Fig. 1) is rather poor, but it is a simple matter 

to scale the values to obtain more realistic barrier of 92 kcal/mole 

given by more accurate CI calculations.
4

d The frequencies {wk(s)} 

have been calculated previously by Yamashita, Yamabe, and Fukui, 10 

and there is excellent agreement between their values and ours in 

Figure 2. 

It is worthwhile noting a few qualitative features in these 

results. 3 As discussed before, the curvature and coriolis coupling 

elements involving the out-of ... plane mode k=5 are all zero by symmetry; 

this mode is coupled to the reaction coordinate only by virtue of the 

s-dependence of its frequency, w5(s). The in ... plane vibrational modes 

k=1, .•. ,4 are strongly coupled to each other (cf. Figures 4,5) and 

to the reaction coordinate (cf. Figure 3). Analogous to potential 

curves for different electronic states of diatomic molecules, there 

is a "non-crossing rule" for frequencies {~(s)} (the square roots 

of the eigenvalues of the projected force constant matrix5) of the same 

symmetry. (The out-of-plane mode k=5 is of A11 symmetry, so its frequency 

is allowed to (and does) cross frequencies of the in-plane (A') modes.) 

Also analogous to diatomic potential curves, one sees in Figure 2 several 

examples of "avoided crossings" between in-plane (A') modes, e.g., 
0 

that between modes 3 and 4 at s ~ 0.5 lamu A. Corresponding to this 

avoided crossing there is a sharp peak in the coupling element B
3 4 Cs) , 

0 

at s ~ 0.5 lamu A (cf. Figure 4). When dealing with avoided crossings 
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of electronic potential curves it is often useful to switch from an 

adiabatic electronic representation to a "diabatic" electronic 

basis;
11 

this effectively takes the coupling out of the kinetic 

energy and puts it into the potential energy, and in many cases 

this is easier to deal with. An analogous "diabatic" representation 

of the transverse vibrational modes has been defined by one of us 

f h . h H . 1 . 9b h . 1 . . h 1 . or t e react1on pat am1 ton1an; t 1s e 1m1nates t e coup 1ng 

elements Bk,k'(s) from the Hamiltonian, but introduces a non-diagonal 

coupling into the potential energy: the potential energy term 

F-1 

L (2.3a) 

k=l 

in the Hamiltonian of Eq. (2.1) is replaced by 

F-1 

L (2.3b) 

k,k'=l 

The "diabatic" frequencies, i.e., the diagonal elements {Ak k(s)}, 
' 

may now cross, i.e., go through a local Fermi resonance, and their 

coupling is determined by the term Ak,k'(s) QkQk;· We expect that 

many of the useful approximations (e.g., Landau-Zener) for treating 

electronic curve crossing problems tV'ill also be useful in describing 

the dynamics of the reaction path Hamiltonian, but this is a topic 

for future research. .. 
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III. The Two-Mode Model 

Since the out-of-plane mode (k=S in the present labeling) is 

the one most weakly coupled to the reaction coordinate (mode k=6) 

and its coupling to the other in-plane modes k=l-4 vanishes, it is 

the most likely candidate to display mode-specificity. How energy in 

the out-of-plane mode exchanges with that in the r~action coordinate 

is also extremely relevant to the experimental situation, for non-

planarity of the electronically excited state s
1 

means that the 

radiationless transition s
1 

+ s
0 

should produce s
0 

states with a 

significant amount of excitation initially in the out-:-of-plane mode. 

As noted in the Introduction, we have already shown that there is a 

symmetry-induced mode-specificity for this mode, i.e., even (A') 

and odd (A") vibrational states of the out-of-plane modes are uncoupled 

(for J=O), but now we wish to carry out calculations like those of 

Waite and Miller1 to see if there is any significant mode-specificity 

within the A' and the A" manifolds of states themselves. 

To make these calculations feasible we consider a system that 

consists of only the reaction coordinate and the out-of-plane mode 

itself. The reaction path Hamiltonian for this two-mode system is 

H(p ,s,P,Q) 
s 

1 2 1 2 1 2 2 
2 Ps + 2 P + VO(s) + 2 w(s) Q (3.1) 

where the subscript "5" has been dropped from P and Q. The functions 

v
0

(s) and w(s) are also approximated by the following polynomials, 

(3. 2a) 
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w(s) (3. 2b) 

n=O 

and Figures 6 and 7 show the comparison of the ab initio results for 

v
0

(s) (scaled to a barrier height of 92 kcal) and w(s) and these 

polynomial approximations. The constants {a } and {b } of 
n n 

Eq. (3.2) are given in Table I. 

The calculation of the energies and lifetimes of the metastable 

states for this system using the complex scaling method proceeds 
... 

1 
as before. One scales the dissociative coordinate s 

ia 
-+ se , and 

the scaled quantum mechanical Hamiltonian operator is 

H = -a 
h 

2 
-2ia 

2 e 

(3.3) 

The complex-symmetric matrix of H (using a harmonic oscillator basis a 

for both degrees of freedom) was diagonalized to obtain complex 

eigenvalues E - i f /2; the energy of the state is E and its 
n n n 

unimolecular decay rater /h. 
n 

1 2 2 
The two-dimensional potential surface v

0
(s) + 2 w(s) Q is not 

only invariant to Q-+ -Q (the planar symmetry) but also to s + -s. 

(A consequence of this latter symmetry is the two equivalent transition 

states at s > 0 and s < 0; the decay rate f/h is the total decay rate 

for s-+ +oo or s-+ -oo.) The complete symmetry of the potential surface 

is thus c2v, with irreducible representations A1 , B1 , A2 , and B2 , 
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which are even-even, even-odd, odd-even, and odd-odd on the operations 

(Q ~ -Q) and (s ~ -s), respectively. The matrix of Ha is thus block 

diagonal, and the diagonalization can be carried out separately for 

each irreducible representation. 

Figure 8 shows the results obtained, the unimolecular decay 

rates of the v~rious metastable states as a function of their energy. 

Due to precision limiations as \vell as basis set size, values stable 

with respect to variation of a and to basis set could be obtained only 

for energies above "' 70 kcal/mole, but fortunately this is the region 

of interest experimentally. The A
1 

and B
1 

states are shown in Figure 

8 by solid squares and circles, respectively, and the Az and B2 states 

by the open squares and circles. Thus the solid points represent, 

even states in the out-of-planes mode (i.e., with respect to Q ~ -Q) 

and the open points odd states; i.e., for the C symmetry that is 
s 

maintained along the reaction path, A
1 

and B
1 

are A', A2 and B2 are 

A". 

The results in Figure 8 show the symmetry-induced mode specificity 

discussed earlier---i.e., for a given energy the open points (A" states) 

fall on the average below the solid points (A' states)--but even 

more striking is that there is substantial mode specificity even 

within the A' and A" manifolds of states. For a given total energy 

the unimolecular rate constant ranges over about two orders of magnitude. 

By examining the wavefunctions obtained from the matrix diagonalization 

one can see that the mode-specificity results from a lack of complete 

mixing of the out-of-plane states; i.e., for a given total energy the 

fastest decaying states correspond to the lowest quantum number of the 

out-of-plane mode, and the states decaying more slowly to the highest 
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quantum number of the out-of-plane mode. As expected, one observes 

no mode-specificity associated with the even or odd symmetry of the 

reaction coordinate mode, i.e., between A states and B states. 

It is also of interest to note how this degree of mode-specificity 

in the state-specific unimolecular decay rates correlates with the 

quasiperiodic or chaotic nature of the classical trajectories of 

the system. Using the same two-dimensional potential energy surface, 

12 
Poincare surfaces of section were generated in the usual manner. 

Chaotic trajectories were observed over the entire energy region shown 

in Figures 8, i.e. , for all energies greater than 'V 7 5 kc·al/mole. 

By an energy of 92 kcal/mole essentially 100% of the trajectories were 

chaotic. In spite of this, though, we see that the state-specific 

unimolecular rate constants show a significant degree of mode-

specificity, so it appears that chaotic classical trajectories do 

not necessarily rule out the possibility of such mode-specificity. 

Finally, there is the very pertinent question of how the results 

for this two-mode model relate to "real': formaldehyde with its six 

degrees of freedom. As seen in Figures 3-5, the coupling elements 

which couple the four in-plane modes k=l-4 to each other and to the 

reaction coordinate (k=F=6) are large and strongly varying functions 

of s, suggesting that these five in-plane degrees of freedom may behave 

statistically among themselves. As noted in Section II, the out-of-

plane mode (k=S) is coupled directly only to the reaction coordinate, 

so the question is: does the strong coupling of modes k=l-4 to mode 

' 
6 destroy the less-than-complete statisitcal behavior seen in Figure 8 

between modes 5 and 6? To get some indiation of the answer we have 

carried out preliminary calculations for a three-mode system--the 

' 
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third mode being strongly coupled to the reaction coordinate (k=6) 

but with no direct coupling to the out-of-plane mode (k=S)--and the 

rate constants for this system display roughly the same degree of 

mode-specificity as that in Figure 8. The indication, therefore, is 

... that the mode-specific behavior of the out-of-plane bend may persist 

iri real formaldehyde (at least for J=O). 
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IV. Concluding Remarks 

We conclude with some remarks on how the state-specific 

unimolecular decay rates of s
0 

(the ground electronic state) are 

related to the experimentally observed4a,b decay rates of individual 

states of s
1 

(the first excited singlet electronic state). The 

. . . h 1 . f d" . 1 . . 13 s1tuat1on 1s t e usua p1cture o a ra 1at1on ess trans1t1on: 

The initial state in sl is prepared by optical excitation from so, 

and then s
1 

decays either by spontaneous emission of a photon (i.e., 

fluorescence) or by making a radiationless transition to a state s 0 

that can dissociate. Observation of the fluorescence from s
1 

determines 

the time-dependent population of the initially excited state of s
1

, 

P(t). Standard theory gives this as
13 

P(t) 

where 

(4.la) 

= (2ni)-l j( dE e~iEt/h<Oj(E-H)-ljO> 
c 

(4.lb) 

Here IO> is the initially excited state of s
1

, H is the complete 

Hamiltonian involving s
1

, s
0

, and their coupling, and the contour 

C runs from +oo + iE to ~ + iE, and encloses the lower half complex 

E plane. 

?. 
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If {Ek,rk} are the energies and widths of the states of s
0
--

the quantities that we have been calculating in Sections II and III--

and Vk the non-adiabatic coupling elements of state lo> of s
1 

to 

state k of s
0

, then one can readily show that 

<O!CE-H)-1 !o> (4. 2) 

where EO is the energy of state jO> of s
1 

and r
0

/h its radiative 

decay rate. The most rigorous theoretical calculation would thus 

take energies and lifetimes of ~O' {Ek,rk}, computed by our method, 

for example, and the non-adiabatic coupling elements Vk as computed, 

'14 
for example, by van Dijk, ~ al., and then use Eqs. (4.1) and (4.2) 

to determine P(t). 

In the perturbative limit Eq. (4.2) is approximated by13 

I 
k 

v 2 
k 

ro 
E -i Ek + 0 2-

and it is not hard to show that Eq. (4.1) then gives 

P(t) 'V 

where 

h/T ro + I 
k 

-t/T 
e 

2 
vk crk-ro> 

2 rk 
(Ek-EO) + (-2 

ro 2 
- ---) 

2 

]-1 
rk 

i 
2 

( 4. 3) 

(4.4a) 

(4.4b) 
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Th · · h b d b W · h d M 4a · 1s express1on as . een use y e1s aar an oore to 1nterpret 

their measurements of the electric field dependence of lifetimes of 

sl states. 

Another limit in which Eqs. (4.1) and (4.2) can be evaluated 

explicitly is if the state IO> interacts significantly with only one 

state in s
0

. One thus approximates Eq. (4.2) by the following 

r v 2 

].. 0 k -1 ::: [E-Eo + 2 - __ .:..:._--=r 1 

E-~ + 
. k 
1-2-

(4.Sa) 

The contour integral in Eq. (4.lb) can then be evaluated (there are 

now two poles) and one obtains 

s ( t) 

where 

R 

-HE0+Ek) t/2h -cr k +r 0 )t/411 
e e [cos(Rt) 

- i 

r o ; r k 
E -E - i - + ... 

( - 0"-..:.;k_--:::-..::...2 ---2;;:..__) sin ( R t) ] 
2R 

In P(t) this leads to hi-exponential decay with two lifetimes T+ 

and T , 

h/T+ 

with an oscillatory structure (i.e., quantum beats) of frequency 

(4.Sb) 

(4.6a) 
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w If [/a2+b2' + a]l/2 (4.6b) 

where 

Re (R2) 
EO -Ek 2 v 2 rk-ro 2 

a = ( 2 ) + ( 4 ) k 

Im(R2) 
E -~ r -r 

b = ( 0 )( k 0) 
2 2 

Equation ( 4. 6a), ·for example, shows that 

(4. 7) 

so that if the radiative rate (fo/h) is known, then rk' the width 

of the s
0 

level, can be determined. If the two-state approximation 

(i.e., Eq. (4.Sa)) is valid, then determination of the two exponential 

decay constants and the beat frequency would allow one to use Eq. 

(4.Sb) with Eq. (4.1) to determine the three unknown parameters 

~· fk' and Vk' assuming that EO and r 0 are known. 

To address the question of mode-specificity in s
0 

experimentally, 

however, it would clearly be desirable to excite an individual state 

k of s
0 

directly and observe its unimolecular decay rate~fk/h, 

without having to go through sl with non-adiabatic transitions to 

h . s h b . 15 1 per aps many states 1n 0 . T e recent report y Re1sner ~ ~· 

of selective vibrational excitation in s 0 by stimulated emission 

pumping may offer a way of doing this. 
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Table I. Coefficients(a) for Polynomial Fits to v
0

(s) and w(s). 

n 

0 

2 

4 

6 

8 

10 

a 
n 

(b) 

93.87755 

-23.94835 

b (c) 
n 

1191 

-511.755 

-343.317 

520.867 

-159.227 

14.186 

0 a 
Cf. Eq. (3.2). Units for s are lamu A. 

bUnits for v
0

(s) are kcal/rnole. 

cUnits for w(s) are crn-1 . 
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Figure Captions 

1. Potential energy along the reaction path for reaction (1.1), 

H2co + H2 + CO, on the ground state potential energy surface. 

2. Frequencies for the vibrational modes (labeled by k=l-5) 

orthogonal to the reaction path, as a function of the reaction 

coordinates, for reaction (1.1). s=O corresponds to H
2
co, 

and the verticle dashed line indicates the location of the 

transition state. 

3. Curvature coupling elements which couple vibrational mode k to 

the reaction coordinate (mode k=F); the curves are labeled by k. 

See Eqs. (2.1) and (2.2) for their definition and the way these 

coupling elements (and those shown in Figures 4, 5) enter into the 

reaction path Hamiltonian. 

4. Coriolis-like coupling elements which couple vibrational modes 

k and k'; the curves are labeled by (k,k 1 ). 

5. Same as Figure 4. 

6. Comparison of the ab initio potential along the reaction path 

(solid curve), scaled to a barrier height of 92 kcal/mole, to the 

polynomial fit (dashed curve), given by Eq. (3. 2a) and Table I. 

7. Comparison of the ab initio frequency along the reaction path 

(solid curve) for the out-of-plane mode (k=5) to the polynomial 

fit (dashed curve) given by Eq. (3.2b) and Table I. 

8. State-specific unimolecular decay rates for the two~mode model 

of reaction (1.1); see Section III. Each point corresponds to a 

complex eigenvalue E - if /2· the energy of the metastable state 
n n ' 

is E and its unimolecular decay rate k = f /h. The solid 
n n n 
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squares and circles are states of A
1 

and B
1 

symmetry, 

respectively, and open squares and circles are A2 and 

B2 states. 
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