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F. J. Capra 

Lawrence Berkeley Laboratory 
University of Californta 
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ABSTRACT 

Recent developments in S-matrix theory are reviewed, which 

have resulted in a topological bootstrap theory of particles. 

Each component of an S-matrix topological expansion is associ-

ated with a pair of intersecting surfaces: a "classical" s!lrface 

describing space-time aspects of particle interactions, and a 

"quantum" surface carrying the internal quantum numbers. The 

theory implies a definite and restricted set of elementary 

particles, all of which are composite structures built from 

two kinds of topological constituents that are not themselves 

particles. One of the two constituents in identified with 

topological quarks, which appear in 3 colors, 8 flavors, and 

with ~ntegral charges. The lowest level of the topological 

·expansion exhibits a t9pological supersymmetry involving a 

single dimensionless coupling constant that has been identified 

tentatively with the fine-structure constant. 

* This work was supported by the Director, Office of Energy 

Research, office of High Energy and Nuclear Physics, Division 

of High Energy Physics of the U.S. Department of Energy under 

Contract DE-AC03-76SF00098. 

I. INTRODUCTION 

According to the bootstrap hypothesis, proposed by Geoffrey Chew 

in 1959, nature cannot be reduced to fundamental entities, like funda-

mental building blocks of matter, but has to be understood entirely 

through self-consistency. Things exist by virtue of their mutually 

consistent relationships, and all of physics has to follow uniquely 

from the requirement that its components be consistent with one 

another and with themselves. The purpose of this paper is to review 

some recent developments inS-matrix theory, the theoretical foundation 

of bootstrap physics. Over the last few years, Chew and his collabor­

ators have succeeded in formulating a bootstrap theory of particles that 

is extremely promising but is not yet widely known with in the physics 

community. An earlier version of this theory was reviewed in Ref. 1. 

In the early sixties, the bootstrap approach was quite successful, 

but then it became bogged down in the mathematical complexities of 

S-matrix theory. In the bootstrap view, every particle is related to 

every other particle, including itself, which makes the mathematical 

formalism highly nonlinear, and this nonlinearity was impenetrable 

until recently. In the mid-sixties, therefore, the bootstrap approach 

went through a crisis of faith, and the support dwindled to a handful 

of physicists. At the same time, the quark idea, based on the notion 

of fundamental building blocks and formalized mathematically within 

quantum chromodynamics (QCD), 2 gained momentum and its adherents 

presented the·bootstrappers with the challenge to explain the observed 

quark structure. 
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In 1974, topology came to the rescue. The combination of the 

S-matrix framework with combinatorial topology made it possible to 

handle the mathematical nonlinearity and has now resulted in a 

bootstrap theory of particles that can account for the observed 

quark structure without assuming the existence of quarks as physical 

building blocks of particles. Moreover, the new bootstrap theory 

illuminates a number of questions not previously understood. 3 These 

results have generated great enthusiasm among S-matrix theorists 

and are likely to prompt the physics community to re-evaluate its 

attitudes toward the bootstrap approach. 

In the bootstrap theory of particles, there is no continuous 

space-time; there is no equation of motion, and there are no fields. 

Physical reality is described in terms of isolated events that are 

causally connected but are not embedded in continuous space-time. 

Space-time is introduced macroscopically, in terms of the experi-

mental apparatus; there is no implicat-ion of a local space-time continuum. 

This description, together with quantum superposition, forms the basic 

framework of S-matrix theory. The question of why the space-time 

continuum is such a good approximation will eventually have to be 

answered. From the S-matrix point of view, space and time are not 

primary notions but represent approximations. 

The starting point, then, is the assumption that there are discrete 

events, such as radioactive decay or particle collisions. Each such 

event is associated with a probability amplitude and represented by a 

diagram. For example, a typical event would be a scattering process 

where two particles A and B collide and emerge from the collision as 

particles C and D (s-ee Fig. 1). The S matrix is the collection of 
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probability amplitudes for all possible physical events. The ampli-

tudes are analytic functions of particle momenta with certain isolated 

singularities, which correspond to all the possible ways in which 

energy and momentum (plus other information) can be transferred over 

macroscopic distances. The singularities are, in turn, represented 

by diagrams. For example, for a reaction involving six particles the 

singularities of the corresponding amplitude will include the ones 

represented in Fig. 2. One special type of singularity that is of 

particular interest is the type shown in Fig. 2(a), in which·a 

single particle transmits information over the macroscopic distance. 

The singularity represented by this diagram is a pole. 4 

The corner stone of S-matrix theory is the unitarity equation, 5 

Im Tfi 
1 t 
2 I: TfnTni' 

n 
(1.1) 

where Tfi denotes the probability amplitude for an event in which a 

collection i of ingoing particles leads to a collection f of outgoing 

particles. Equation (1.1) can be represented graphically as shown in 

Fig. 3, where we have taken a 2 ~ 2 amplitude as an example. Through 

unitarity, this amplitude is related to an infinite sum over products 

of 2 ~ n amplitudes. These products determine all the singularities 

of the amplitude; in other words, the amplitude is built from its 

singularities. Physically, this means that each particle is a 

composite "bound state" of other particles -- a central feature of the 

hadron bootstrap • 

. The unitarity equation imposes a very restrictive, nonlinear 

condition on S-matrix amplitudes, and the aim of S-matrix theory is 
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to construct mathematical models of the S matrix that satisfy this 

condition. Only the full physical S matrix will satisfy unitarity com-

pletely, but there may be approximations to the physical S matrix, 

which satisfy the unitarity relations to some extent and bear suffi-

cient resemblance to the observed physical phenomena. 

The key discovery, which led to the recent breakthroughs in 

bootstrap physics, was made by Veneziano6 in 1973. Veneziano recog-

nized that the complexity of the interconnections of subatomic processes, 

and thus the complexity of the corresponding graphs, can be given a 

precise mathematical formulation. To do so, graphs are embedded in 

two-dimensional surfaces, whose complexity can be determined with the 

help of topology. 7 The topology of two-dimensional .surfaces is com­

pletely understood by mathematicians and seems to be ideally suited 

for S-matrix theory, as these surfaces allow the formation of connected 

·sums corresponding to matrix multiplication and the contraction of 

surface areas corresponding to the contraction of matrix indices. 

Surfaces can be orientable or nonorientable, and both kinds are used 

in the topological bootstrap theory. 

With the help of topology, unitarity can be systematically 

approached by expanding the physical amplitude Tfi in Eq. (1.1) 

into an infinite series of topological amplitudes, 

Tfi !: TJ.. 
y ~ 

(1.2) 

Each value of the index y in the topological expansion (1.2) is 

associated with a graph embedded in a two-dimensional surface of a 

particular topology. In other words, a physical event is represented 
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as a superposition of event patterns, each of which is associated 

with a precise complexity. Related to this is the notion of entropy, 

which means that, when individual event patterns are tied together, the 

complexity of the combined pattern can never diminish. The concept of 

entropy is used in analogy with thermodynamics where it is also a 

quantity that can never decrease. 

The usefulness of expanding the scattering amplitude into an 

infinite series of terms, represented by graphs of increasing complexity, 

was already appreciated by Feynman in 1947.. Feynman introduced his 

celebrated graphs, whose lines carry energy-momentum, in the context of 

quantum electrodynamics, but they were later recognized, especially by 

Landau, to have more general significance. Energy-momentum carrying 

graphs are also an important part of the new topological formalism. 

However, as defined originally, Feynman graphs are not adequate for 

the topological theory, because they lack a crucial property, that of 

·graph contraction. We shall see below that the contraction property, 

discovered independently.by Harari and Rosner
8 

in 1969 and often 

characterized as "duality", is essential to the topological 

bootstrap. 

The topological approach initiated by Veneziano was developed by 

Chew and Rosenzweig9 into a topological theory of hadrons, which is 

now called "classical DTU", the initials DTU standing for "dual 

topological unitarization". In this theory, each graph representing a 

term in the topological expansion is embedded ~n a two-dimensional, 

oriented, bounded surface, now called the classical surface because 

it carries classical variables -- energy, momentum, spin and electric 
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charge. These are accepted as part of the basic framework of increase. This means that the only place where the system is non-

' S-matrix theory and are not deduced from self-consistency. C1assical linear, i.e. where patterns reproduce themselves, is at the zero-

DTU, as reviewed in Ref. 1, provided an impressive understanding of entropy level, the level of spheres:
0

Higher complexities are built 

meson interactions and, in particular, made it possible to derive the up in successive steps in a linear process. As a consequence, the inter-

quark structure of strong interactions from self-consistency consider- nal quantum numbers of hadrons are determined by zero-entropy self-

ations. consistency. The confinement of the nonlinearity in the hadron boot-

However, classical DTU was still incomplete and deficient in several strap to the spherical, zero-entropy level was the essential breakthough 

ways. It was restricted, essentially, to mesons, ignored spin and did brought about by the use of topology. 

not allow to derive the internal quantum numbers of hadrons from self- The results of the topological boostrap for hadrons are now well-

consistency. These deficiencies have been overcome in the new boot- established. They include an understanding of baryon number, color, 

strap theory with the help of a more elaborate topological formalism. flavor, and broken symmetries. More recently, the topological formalism 

The principal new feature of the topological bootstrap is an additional has been extended to the electroweak interactions, where it has led to 

surface,calledthe quantum surface, describing the internal quantum a natural explanation for the quantization of electric charge and for 

numbers (observable only indirectly, through selection rules), which the observed charges of leptons and Hadrons. The topological theory 

are derived from self-consistency. Quantum surfaces are closed sur- of electroweak interactions involves a quartet of vector bosons 

faces, and for each graph the classical and quantum surfaces intersect 
+ 

(indentified with the photon, thew-, and the z
0

) and a quartet of 

in such a way that their line of intersection coincides with the boundary scalar bosons (associated with the Higgs particles). 

of the classical surface. On the classical surface, particles are The topological bootstrap results in a definite and restricted 

represented by boundary segments, on the quantum surface by surface set of elementary particles. On the quantum surface, these particles 

areas. are represented by areas (orientable for hadrons and nonorientable 

At the lowest level of complexity, called the zero-entropy level, for electroweak particles) that are built from two types of 

the two surfaces are given by a plane (classical surface) ·~nside'a triangles, one of which is identified with topological quarks. 

sphere (quantum surface). The zero-entropy level plays a very special Quarks, however, do not carry momentum and do 

role, because the sphere is the only pattern of complexity that can not play the role of particles, even though they carry color, flavor, 

reproduce itself. By gluing together spheres to form connected sums, and electric charge. Quark confinement emerges as a natural consequence 

representing the right-harld side of the unitarity equation, one may of S-matrix self-consistency. The topological quarks have 3 colors, 

again obtain spheres. At any higher order, th~ complexity will always 8 flavors, and integral charges. The reason why quarks appear to have 

.. 
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fractional charges in QCD is readily understood. 

Finally, a topological supersymmetry, involving a single dimension-

less coupling constant for all elementary hadrons, has emerged. This 

coupling constant turns out to be closely associated with the 

fine-structure constant. 

To review the formalism and results of the topological bootstrap, 

we have organized our paper as follows. In Sections II and III, we 

review the topological theory of strong interactions. These sections 

are based, principally, on the work of Chew and Poenaru. 11 Section II 

deals with the topology of the classical surface and is based, besides 

12 13 Ref. 11, on parallel work by Stapp. ' It consists of several parts. 

In the first part (Sec. II-A), we present the formalism of classical 

DTU in a form differing slightly from that of Ref. 1, which allows 

further extensions to include spin, parity, and hadrons other than 

mesons. These extensions are reviewed in. the subsequent parts. The 

incorporation of spin and. parity (Sec. ii-B) follows the approach 

proposed by Stapp
12 

but takes into account subsequent modifications 

by Chew and Finkelstein14 which provide a more consistent and more 

economical scheme. The discussion of the topological representation 

of electric charge, which has been elaborated by a group of authors 

but principally by Finkelstein,15 •16 requires several sections in our 

review (II-C, III-D, and V-B). In Section II-C we show how electric 

charge is represented on the classical surface, and to conclude 

Section II we review the extension of classical-surface topology to 

baryons (Sec. II-D). 

")I 
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In Section III, which again consists of several parts, we review the 

topology of the quantum surface. After presenting the basic triangulation 

pattern implied by the zero-entropy bootstrap (Sec. III-A), we discuss 

the resulting set of elementary hadrons, the basic triangles of which 

these are composed, and the identification of one kind of triangles with 

quarks (Sec. III-B). In Section III-C we illustrate the topo]ogy of the 

quantum surface with several examples, and in Section III-D we review 

the topological representation of charge and flavor on the quantum 

surface. In Section III-Ewe discuss the concept of topological color, 

and we conclude Section III with an example of a scattering amplitude 

for which we have drawn the classical and quantum surfaces in such a 

way that all topological features discussed in the preceding sections 

are exhibited (Sec. III-F). 

In Section IV we review the calculations of elementary hadron 

coupling constants in the zero-entropy approximation by Chew, Finkelstein, 

and Levinson,
20 

the notion of topological supersymmetry proposed by 

several authors·, 
21

•22 and the tentative identification of the zero-

entropy coupling constant with the fine-structure constant suggested 

by Chew.
22 

The subsequent Section V gives an outline of the topologcial 

theory of electroweak interactions developed recently by Chew, Finkelstein, 

McMurray, and P1lenaru, lS-l9 with special emphasis on the topological 

representations of electroweak bosons and leptons. 

In Sec. VI we summarize the key results of the topological boot-

strap theory by presenting the quantum areas of the complete set of 

elementary particles, emphasizing once more the striking fact that. all 

particles are composed of two basic topological constituents and reviewing 

the quantum numbers associated with these constituents. This section is 
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based on the work of Chew, Finkelstein, Nicolescu, and Po!!naru23 who 

coined the term "topological grand unification" to describe the remark­

able regularities of the composite particle picture that has emerged 

from the topological bootstrap. To conclude our review, in Section 

VII,we discuss the relationship between the topological bootstrap and 

the orthodox framework of particle physics, especially that of quantum 

chromodynamics. We argue that the bootstrap approach is more funda­

mental and we anticipate that the successful features of QCD will 

eventually be derived from the topological. bootstrap theory. 

12 

II. CLASSICAL SURFACE 

A. Classical DTU 

The topology of classical DTU is that of classical surfaces; 

two-dimensional, oriented, bounded surfaces housing the graphs of 

topological amplitudes. The zero-entropy terms of the topological 

expansion ("planar". terms in the language of classical DTU) are 

represented by single-vertex Feynman graphs characterized by a partic­

ular sequential order of their external lines, each of which carries 

energy-momentum. For example, the topological expansion of the ampli­

tude for the scattering process depicted· in Fig. 1, where we shall 

assume all four particles to be mesons, contains the zero-entropy 

terms shown in Fig. 4. The classical surface for each zero-entropy 

component is a disk and the Feynman graph is embedded in that disk in 

such a way that the end of each line touches the boundary of the surface 

(see Fig. 5). The particles are then associated with segments of the 

boundary dual to the external lines of the graph and separated from 

each other by demarcations called trivial vertices. 

The orientation of the surface, called global orientation and 

depicted by a circular arrow, indicates that the sequential order of 

the particles is understood, by convention, to be "clockwise". All 

statements about orientations in the topological bootstrap theory refer 

to orientations relative to the global surface orientation, and thus 

it does not matter from which side of the surface one looks at the graphs 

embedded in it. 
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In classical DTU, as formulated originally, the Feynman graph was 

a redundant feature of the topology and was therefore not exhibited. 

The diagram shown in Fig. 5, for example, was drawn as a so-called 

ring diagram, as shown in Fig. 6. In the new theory, the Feynman 

graph is exhibited explicitly, because it is no longer redundant in 

the more elaborate topological formalism to be introduced below. 

The boundary of the classical surface inherits the surface 

orientation. By cutting it open at the points where it is touched by 

the Feynamn graph, we obtain the familiar Harari-Rosner (HR) graph 

(see Fig. 7). In other words, the HR graph represents the boundary 

of the classical surface, and hence the global surface orientation 

is also called HR orientation. Equivalently, the HR arcs may be seen 

as a "thickening" of the Feynman graph, which defines the classical 

surface. 

When the topological expansion is inserted into the unitarity 

Eq. (1.1), the right-hand side. of the equation consists of a sum 

over products of topological amplitudes. These products are repre-

sented by connected sums of the corresponding Feynman graphs. To 

form a connected sum of two ordered Feynman graphs, the boundary 

segments corresponding to intermediate particles are identified and 

erased, as shown in Fig. 8, and the orientations of the two surfaces 

are matched, so that the resulting two-vertex graph on the new surface 

has a coherent orientation. The corresponding HR graphs are shown in 

Fig. 9. 

Higher-order terms in the unitarity equation will involve connected 

sums of graphs that can no longer be embedded on planes. For example, 

Fig. 10 shows a connected sum in which the resulting surface has two 
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distinct boundary components. Particles A and B belong to one boundary 

component, C and D to the other. The topology of this surface is that 

of a cylinder or, equivalently, of a sphere with two holes punched out. 24 

An even more complicated connected sum is shown in Fig. 11, where the 

resulting surface is a torus with a single boundary component.
25 

The operation of forming connected sums of classical surfaces has 

the important property that it can never result in a decrease of surface 

complexity, a property referred to as ·"entropy". As a consequence of 

the entropy property, there is a minimal level of complexity -- the 

zero-entropy level at which zero-entropy amplitudes are built, 

through unitarity, from zero-entropy components. 

The complexity of a surface is determined uniquely b~ a set of 

entropy indices. In classical DTU, there are two (non-decreasing) 

entropy indices, g1 and g
2

. The index g
1 

specifies the genus of the 

surface (a topological parameter equal to twice the number of handles), 26 

while g2 is related to the number of its boundary components by the 

formula 

g2 b + gl - 1. (2 .1) 

The zero-entropy level is uniquely characterized by g
1 

= g2 = 0. All 

higher-order hadron terms are built from zero-entropy components, and 

the full topological expansion contains components belonging to all 

possible values of g
1 

and g2 • In any connected sum, L = L 1 # L", the 

entropy index g
1 

satisfies the "strong-entropy" condition 

~ I+ II gl ,_.. gl . gl' (2.2) 
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while g2 satisfies the "weak-entropy" condition 

g2 ;;;. max (gi, g2) • (2.3) 

The fact that every hadron is a bound state of other hadrons, 

which corresponds to the mathematical statement that each amplitude 

is built from its singularities, implies a set of topological con-

traction rules. For mesons, in classical DTU, there are two such 

rules. Two "parallel" internal Feynman arcs may be contracted to a 

single arc (see Fig. 12a), and any internal arc connecting two vertices 

may be shrunk to a point, so that the two vertices become one vertex 

(see Fig. 12b). These contractions do not change the surface complexity, 

and thus no change occurs in the entropy indices. The non-contracted 

and contracted graphs are topological equivalent. Full contraction of 

a Feynman graph will always lead to a single vertex, even though certain 

internal arcs may survive. For example, the graph of Fig. 10 can be 

contracted to the form shown in Fig. 13 in which the two distinct 

boundaries characteristic of the cylinder topology are clearly visible. 

In terms of HR graphs, the contraction rules correspond to the well-

known duality transformations, as illustrated in Fig. 14. The 

explanation of the quark structure of mesons, which allows to describe 

HR arcs as "quark lines", has been one of the main achievements of 

classical DTU.
27 

B. Spin and parity. 

In this section, we shall review the first extension of classical 

DTU the incorporation of spin and parity into the topology of the 

classical surface. To describe spin and parity, a patchwise orientation 

of the classical surface is introduced in such a way that adjacent 
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patches always have opposite orientation. At zero entropy, all 

patch boundaries are given by Feynman arcs and all combinations of 

patch orientations occur symmetrically, but at higher orders, patch 

boundaries not coinciding with Feynman arcs will appear. These patch 

boundaries are called transition arcs and can be associated with 

the concept of "topological gluons". 14 

If the patch orientation agrees with the HR orientation, 

the topology is labeled "ortho", if the two orientations 

disagree, the label "para" is employed. 12 Stapp has shown how the 

ortho-para distinction can be associated unambiguously with a two-

component spin formalism, in which the spin of each meson is carried 

by a pair of spin indices. At zero entropy, this amounts to attaching 

a single 2-valued spin index to each end of every HR arc. Stapp's 

spin formalism applies consistently to the formation of c"onnected 

sums at the zero-entropy level, and it retains its consistency for 

all higher-order terms of the topological expansion. 

The parity operation is associated with the reversal of patch-

orientation, i.e. it turns ortho components into para components and 

vice versa. Since all patch orientations occur symmetrically at zero-

entropy, and since all higher-order hadron terms are built from zero-

entropy components, it follows that parity is a symmetry of the strong 

interactions. Another strong-interaction symmetry is charge conjugation 

(the transformation of aprticles into antiparticles), which corresponds 

to the simultaneous reversal of both patch and HR orientations. These 

symmetries under C and P are maintained for the strong interactions 

when hadrons other than mesons are introduced. 
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The patchwise orientation of the classical surface is such that 

each quark line is attached unambiguously either to an ortho or to a 

para patch, for example as shown in Fig. 15. At zero entropy, then, 

each quark appears in two forms, ortho and para. Accordingly, each 

meson appears four times at the zero-entropy level, but it turns out 

that only "ortho plus para" states with intrinsic negative parity 

survive after a sum over all zero-entropy amplitudes is performed. 

The resulting spin-parity content of mesons is identical to that of 

the ground states in the constituent-quark model. 

Stapp has also shown how the two-component spin formalism can be 

translated into the more familiar four-component spin notation, in 

which each quark line carries, in addition to its two spin indices, 

a factor (1 + y
5

) if it is ortho and (1 - y
5

) if it is para. Because 

of these factors, which are usually associated with handedness in particle 

physics, the patchwise orientation of the classical surface is said to 

represent the "chirality" of zero-entropy quark lines. 

When connected sums are formed, it may happen that a boundary 

segment attached to an ortho patch is identified with one attached to 

a para patch. In such a case, a transition arc will be created which 

does not coincide with a Feynman arc. In Fig. 16 this has been illust-

rated by redrawing the connected sum shown in Fig. 8 with a certain 

patchwise orientation. The resulting graph exhibits a transition arc 

in the loop, and consistency requirements imply that such loops cannot 

be contracted. Contraction of Feynman graphs is possible only within 

individual patches. The number of points where a transition arc touches 

a Feynman arc constitutes a new entropy index, g3 • Like the entropy 

index g
1

, g
3 

satisfies the strong-entropy condition 
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g3;;;. g3 + g). (2.4) 

C. Electric charge 

In addition to energy, momentum, and spin the classical surface 

carries one more classical variable, that of electric charge. The 

full topological representation of electric charge will become apparent 

only after we have introduced the quantum surface (Sec. III-D) and the 

topological theory of electromagnetism (Sec. V) but, being a classical 

variable, some of its features are reflected in classical-surface 

topology. Electric charge is represented on the classical surface by 

a set of non-intersecting directed lines, called charge arcs, each of 

which connects two different boundary segments (associated with 

different particles) without crossing a Feynman arc. This is illustrated 

in Fig. 17 by adding four charge arcs to Fig. 5. Charge quantization 

and charge conservation are guaranteed by associating a charge arc with 

charge ±1 (zero) when its direction is equal (opposite) to the HR 

orientation. It will be seen that this rule reproduces the known 

charge patterns of hadrons and leptons. 

D. Baryons 

After the initial successes of classical DTU, it soon became 

apparent that the classical-surface topology described in Sees. II-A 

and II-B is inadequate for the representation of baryons, and several 

authors28 suggested independently that multi-sheeted surfaces might 

be appropriate. Over the past years, this suggestion gradually 

evolved into a consistent topology of "feathered" surfaces, a term 

inherited from an image proposed by Stapp, 28 according to which a 

baryon could be pictured as a set of three surfaces arranged like the 
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feathers of an arrow, with each outer edge a quark line and all three 

inner edges placed in close proximity to a single line called the 

junction line. 

In the present topological theory, a feathered classical surface 

is a-two-dimensional, multi-sheeted, bounded surface with a finite 

number of junction lines, along which three sheets of the surface 

meet (see Fig. 18). The reasons for the number three will emerge in 

Sec. III-A from consistency requirements on the quantum surface. It 

is associated with the three colors of baryons, but three-feathered 

surfaces can also accomodate hadrons with more, or with less, than 

three quarks. We shall see below, in Sec. III-E, that higher-order 

topological-expansion components may involve bridges between different 

sheets, which increase the entropy index g1 • 

The boundary of the full, multi-sheeted surface is a closed graph, 

called the belt, consisting of boundary segments (separated by trivial 

vertices) and junction lines. Consistency requirements on the quantum 

surface, discussed in Sec. III-B, will imply the existence of three 

kinds of elementary hadrons: mesons, baryons (together with antibaryons), 

and baryoniums (composed of two quarks and two antiquarks). On the 

classical surface these elementary hadrons are represented by definite 

boundary segments (belt pieces), as shown in Fig. 19. The entire belt 

is made up from such pieces. For example, the belt corresponding to 

Fig. 18 is shown in Fig. 20, where it has been divided into segments 

associated with five hadrons (2 baryons, 2 antibaryons, 1 meson). The 

Feynman graph has also been included. 

Notice that in Fig. 20 the entire Feynman graph lies on one sheet 

of the feathered classical surface. This is a general feature of the 
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hadron topology, valid to all orders in the topological expansion. 

It amounts to picturing baryons as "quark-diquark" structures. At 

zero entropy only one of the baryon's three quarks interacts with mesons, 

the other two playing the role of "spectator quarks'!, but at higher 

orders more quarks than one may interact. We shall see in Sec. III-E 

that such components will involve 'switches" corresponding to color 

exchange between quarks, each color being separately conserved but 

movable from one quark to another •. This quark-color switching will 

be given a smooth topological representation, where the entire Feynman 

graph still resides on a single sheet of the classical surface.
29 

As in classical DTU, the belt can be opened up to obtain the 

corresponding HR graph. To do so, we must take into account a topo-

logical feature that will become apparent when the quantum surface is 

introduced: not all segments of the belt can be identified with 

quark lines (see Sec. III- B). In Fig. 2la those belt segments of 

Fig. 20 that do not correspond to quarks lines have been marked by 

dotted circles. Notice that these circles cut the belt at three 

points, one of them coinciding with the point where it is cut by the 

Feynman arc. Removing the belt segments marked by the circles, we are 

left with the HR graph shown in Fig. 2lb. 

Each sheet of the feathered classical surface exhibits patchwise 

orientation (associated with chirality) and HR orientation. Attaching 

·HR orientations to the sheets also orients the junction lines, and 

overall consistency of orientation requires that all three sheets 

meeting along a junction line must give that junction line the same 

orientation. (See Fig. 20.) 

The patchwise orientation of the feathered surface differs from 

that of the meson case, where only one sheet is present, in that the 
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feathered surface contains patches that are not oriented. 14 These 

are the areas adjacent to junction lines, which have no trivial 

vertices and are not identified with quark lines. This is illustrated 

in Fig. 22 with the principal sheet of the surface shown in Fig. 20 

(i.e. the sheet containing the Feynman graph). 

On the secondary sheets, which do not contain any Feynman arcs, 

oriented and nonoriented patches are separated by lines that occupy 

positions analog~·us to the Feynman arcs but do not carry momentum. 

These lines are not only necessary for consistent patchwise orientation 

but also play a crucial role in the "switches" corresponding to color 

exchange between quarks (see Sec. III-E). Because of their important 

connection with color, we shall call them color arcs. As an example, 

Fig. 23 shows a secondary sheet of the feathered surface pictured in 

Fig. 20, the oriented patch having been chosen arbitrarily as a para 

patch. The color arcs touch the belt at the end points of quark lines, 

i.e. at the points marked in Fig. 2la by the dotted circles. 

The notion of connected sums is readily extended to feathered 

classical surfaces. As in classical DTU, the boundary segments 

corresponding to intermediate particles are identified and erased. 

Coherent HR orientation of the new surface will be ensured if the pairs 

of matched belt segments have opposite HR orientations. An example of 

a connected sum involving two intermediate particles (one baryon and 

one meson) is shown in Fig. 24, where the loop in the Feynman graph 

resulting from the connected sum is eliminated by subsequent contraction. 

The corresponding HR graphs are shown in Fig. 25. 

The properties of the feathered classical surface discussed in 

this section restrict the zero-entropy belt graph to an extremely 

simple form-- a single-strand "necklace with beads" (see Fig. 26). 
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III. QUANTUM SURFACE 

A. triangulation pattern 

The topology of the classical surface (EC) alone is not sufficient 

to derive the internal quantum numbers of hadrons from self-consistency 

requirements. To do so, the topological bootstrap theory features an 

additional surface called the quantum surface (~Q) -- a closed surface 

intersected by ~C in such a way that the line of intersection coincides 

with the belt. Like ~C' ~Q carries a number of topological structures, 

and all points of topological significance along the belt are also 

points of topological significance on ~Q. For strong interactions, ~Q 

is completely covered by polygons, representing particle areas (also 

called particle disks), which cut the belt into the particle pieces 

shown in Fig. 20. Like ~C' ~Q exhibits a global orientation and is 

also patchwise oriented. We shall see that these orientations are 

associated with the particle/antiparticle distinction. 

At zero entropy, ~Q is a shpere, while ~C is the multi-sheeted, 

planar, bounded surface described in the previous section. At each 

order of the topological expansion (1.2), the index y corresponds 

to a surface pair~= (~Q'~C)' and all higher-entropy strong-interaction 

components are built up from zero-entropy surface pairs by connected 

sums in such a way that each connected sum of classical surfaces is 

accompanied by a connected sum of the corresponding quantum surfaces. 

At zero entropy, the complete topology of ~C may be inferred from ~Q' 

while the converse is not true, so that the zero-entropy bootstrap 

can be worked out entirely on the quantum surface. On the other hand 

~C is absolutely necessary at higher orders of the topological expansion, 
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not only as a carrier of classical variables but also for a precise 

definition of entropy, because it turns out that the genus of ~Q may 

decrease in certain connected sums. 

As in classical DTU, the starting point of the zero-entropy 

bootstrap is the distinction between amplitude graphs, picturing the 

whole amplitude, and channel graphs containing only the ingoing or 

outgoing particles.
30 

Accordingly, the quantum sphere is divided into 

an ingoing channel disk and an outgoing channel disk, and this division 

has to be carried out for all communicating channels in such a way that 

the two channel disks uniquely define the amplitude when they are 

joined along their perimeters. This means that all the topologcial 

features of their. perimeters must match in appropriate ways. 

A further key element of the topological hadron bootstrap is a 

system of mutually consistent contraction rules regarding surface areas 

on~, which turn out to constrain the pattern of internal quantum 
~ 

numbers and result in quark confinement. As on the classical surface, 

these contraction rules reflect the fact that every hadron .is a bound 

state of other hadrons. Specifically, every channel disk, representing 

a multi-particle combination, must be uniquely contractible to a 

single-particle disk that is determined completely by its perimeter. 

This implies that any zero-entropy quantum surface must be completely 

contractible to a propagator, represented by a single-particle disk 

plus the corresponding antiparticle disk, which, because of crossing, 31 

corresponds to the "in" and "out" states of the same single-particle 

channel. An extended search over several years has now resulted in 

a specific topological pattern for quantum spheres that is consistent 

with the aforementioned bootstrap requirements and with the zero-entropy 
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classical surface described in Sec. II. It is not known at present 

whether this solution is unique, but no satisfactory alternatives 

have emerged, in spite of many proposed variations. At the same time, 

the adopted pattern is in agreement with a variety of established 

experimental facts and is not known to conflict with any. 

The pattern to be described involves a specific triangulation of 

quantum spheres, i.e. the decomposition of ~Q into specific oriented 

triangular patches. The role of the triangle as a basic topological 

unit is closely connected with the ase of two-dimensional surfaces, 

which, in turn, is related to the use of graphs. Ultimately, it goes 

back to the description of reality in terms of isolated, causally 

connected events -- the starting point of S-matrix theory. The basic 

role of the triangle will also turn out to be connected with "triality", 

the fact that a baryon is built of three quarks or, equivalently, that 

quarks have three colors. 

To triangulate the quantum sphere appropriately, one divides it 

first into two triangular patches of opposite orientations, as shown 

in Fig. 27a. Then, any of the edges is replaced by a pattern called 

"lunar insertion pattern", or briefly "lune", which has been drawn in 

Fig. 28 in three equivalent ways. The lunar insertion pattern consists 

of two triangles of opposite orientations with one trivial vertex 

(i.e. a vertex at which two edges meet), which has been drawn as a 

small circle in Fig. 28a. The result of replacing one of the edges in 

Fig. 27a by a lune is shown in Fig. 27b. The process of inserting 

lunes can be continued indefinitely and results in a triangulation 

characterized by the feature that all triangles occur in "mated" pairs 

of opposite orientations. A pair of mates is uniquely identifiable by 
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the fact that the two triangles share all three vertices. Thus, the 

entire quantum sphere is covered with triangles of alternating 

orientations. 

The triaqgulation of ~ in terms of mated pairs of triangles 

assures that the contraction rules are satisfied, because the creation 

of a mated pair of triangles by insertion of a lune is just the 

opposite of a contraction. In other words, the operation of contraction 

consists in removing pairs of mated triangles. 

Trivial vertices are always shared by a pair of mated triangles 

irr position to be contracted, and since any fully contracted particle 

disk cannot contain both members of a mated pair, it follows that all 

trivial vertices lie on the perimeters of particle disks, so that the 

two members of a mated pair always belong to different particle areas. 

In fact, the trivial vertices on the quanttim surface uniquely define 

the particle areas and will be seen to correspond to the trivial vertices 

on the classical surface that divide the belt into particle pieces. 

B. Basic triangles, quarks, elementary hadrons; 

Once the basic triangulation pattern has been established, one 

can proceed to identify the possible particle areas on the quantum 

surface. This yields the surprising result that only three kinds of 

had·ron disks are consistent with the contraction requirements. None 

of them can be contracted any further and, if combined into multi-hadron 

channel disks, these will uniquely contract back to one of the three 

basic forms. Thus, the zero-entropy bootstrap results in a definite 

and restricted set of elementary hadrons. Although each of these 

elementary particles is equivalent to a bound state of other elementary 

particles and none of their properties is fundamental, all of them 
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being determined by S-matrix consistency requirements, Chew's 

original idea of a "nu·clear democracy"32 (in which the proton and 

the deuteron, for example, would have equal status) is invalidated 

by the topological bootstrap. 

The polygons representing the three types of elementary hadrons 

mesons, baryons (together with antibaryons), and baryoniums --are 

pictured in Fig. 29. Their belt segments (dotted lines) can readily 

be identified with those pictured in Fig. 19. Note that the belt 

crosses particle boundaries always at a trivial vertex, each trivial 

vertex on ~Q coinciding with a trivial vertex on ~c· The cross (x) 

on the belt segment of each hadron marks the point where the Feynman 

arc rep·resenting that hadron on the class-ical surface touches the 

belt. ·.Because Feynman arcs carry energy-momentum they are also 

called momentum lines. We shall see that the precise location of 

the momentum line within each hadron polygon has several important 

implications. 

It is apparent from Fig. 29 that all hadron disks are composed 

of two basic triangles, which are pictured in Fig. 30. Each of the 

two triangles encloses a segment of the belt, and because of the 

different shapes of the two belt segments we shall call the triangles 

"!-triangle" and "Y-triangle". !-triangles intersect a single sheet 

of the classical surface, while Y-triangles intersect three sheets. 

The extension of the topological bootstrap theory to electroweak 

interactions in Sec. V will show that also the leptons and electroweak 

bosons are represented by topological structures composed of the 

same two triangles. Thus, the topological bootstrap yields the 

remarkable result that all particles can be represented as composites 
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of two basic topological constituents. 

It is amusing to note that the picutre of matter emerging from 

the topological bootstrap theory has a strong Platonic flavor. The 

elementary particles in Plato's Timaeus are represented by regular 

solids that consist of two kinds of basic triangles. "When the 

greater bodies are broken up", wrote Plato, "many small bodies will 

spring up out of them and take their own proper figures; or, again, 

when many small bodies are dissolved into their triangles, if they 

become one, they will form one large mass of another kind". 

In the hadron polygons, the I-triangles are also called 

"peripheral" triangles, because they contribute two edges to the 

particle perimeter, and the Y-triangles, which do not contribute 

any edges to the particle perimeter, are called "core" triangles. 

However, we shall see that this tecrlliinology loses its meaning in the 

topological structures representing the vector and scalar bosons·. 

Comparing the elementary hadron polygons in Fig. 29 with orthodox 

quark models, one is immediately led to associate the !-triangles 

with quarks. Indeed, their full topological features, to be discussed 

below, justify the name "topological quarks" for !-triangles. However, 

it must be remembered that topological quarks are not particles. A 

single triangle cannot be identified with a particle, because a channel 

disk composed of two such particles could not be contracted to a 

single particle, contraction being defined as the removal of a pair 

of triangles. Thus, the contraction rules explain quark confinement. 

Another way of realizing that quarks cannot be particles is to note 

from Fig. 29 that they do not carry momentum. The I-triangles either 

share their momentum line with another triangle or do not carry any 
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momentum line at all. Hence, they cannot represent particles. 

The identification of I-triangles with quarks makes it clear that 

only those sections of the belt that are cut by I-triangles can be 

called quark lines. The belt sections cut by Y-triangles do not 

correspond to quark lines. These are the sections marked by dotted 

circles in Fig. 2la. 

All triangles are oriented "clockwise" or "counterclockwise", 

i.e. they carry an orientation equal or opposite to the global surface 

orientation. These two orientations are associated with the distinction 

between particles and antiparticles, so that I-traingles with clockwise 

orientation represent quarks, those with counterclockwise orientation 

antiquarks. Because of crossing, 31 the distinction between particles 

and antiparticles is related to the distinction between "in" and "out" 

states, ingoing particles being equivalent to outgoing antiparticles. 

We shall adopt the convention that clockwise !-triangles represent 

outgoing quarks or ingoing antiquarks, while counterclockwise triangles 

represent outgoing antiquarks or ingoing quarks. 

Stapp's spin formalism, described in Sec. II-B, effectively 

associates a 2-valued spin index with each end of a quark line. Since 

quark lines are attached to !-triangles, the Stapp formalism is 

equivalent to attaching one 2-valued spin index to each I-triangle. 33 

Thus mesons, baryons, ·and baryoniums carry 2, 3, and 4 spin indices, 

respectively. 

The existence of baryonium, composed of two quarks and two anti-

quarks, as an elementary hadron is a prediction of the topological 

bootstrap that has not yet been verified. Section IV will show that 

baryonium particles are expected to have an extremely short lifetime, 

and thus it is not surprising that they have so far eluded observation. 
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Hadron states composed of more than four quarks are not allowed in the 

topological bootstrap. The reason is connected with the asymmetry 

between the three belt components in theY-triangles, which is intro-

duced by the position of the momentum line and could not be maintained 

in hadrons represented by more than two Y-triangles, since each particle 

has just one momentum line. We shall see in Sec. III-E that this 

asymmetry is related to color asymmetry and is crucial to the consistent 

formation of connected sums in the unitarity products of amplitudes. 

Thus, the restriction of elementary hadrons to the pattern shown in 

Fig. 29 emerges as a direct consequence of unitarity and S-matrix 

self-consistency. 

Y-triangles have no counterpart in orthodox quark models. In the 

topological theory they are the source of baryon number, which is 

defined as the number of counter-clockwise Y-triangles minus that of 

clockwise Y-triangles. Since all triangles on the quantum sphere occur 

in mated pairs of opposite orientations, baryon number is automatically 

conserved. There is a three-to-one ratio between peripheral triangles 

and core triangles, representing the "triality" relation between quark 

number and baryon number. Defining N
1 

as the number of clockwise 

!-triangles minus counterclockwise !-triangles, with the corresponding 

definition of ~ for Y-triangles, these relations take the form 

1 
B = - NY = 3 N1 , (3.1) 

which can be combined to 

B 
1 
4 (NI - NY) • (3 .2) 

•. 
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We shall see that relation (3.2) is valid for all particles, while 

(3.1) holds only for hadrons. 

C. Quantum-sphere· topologies and connected sums 

Any strong-interaction quantum surface is. completely covered by 

a combination of the three elementary hadron polygons, with every 

triangle being cut by the belt, so that every piece of ~Q is in contact 

with ~c· To illustrate this topology with a few simple examples we 

have redrawn the elementary hadron polygons in the topologically 

equivalent fashion s.hown in Fig. 31, which makes it somewhat easier 

to represent fully covered quantum spheres. Note that all trivial 

vertices in Fig. 31 have been drawn as small circles and all particle 

perimeters as heavy lines. Furthermore, we have adopted the notation 

of shading all triangles with counter-clockwise orientation, while 

unshaded triangles are unde,rstood to have clockwise orientation. 

Our first examples of fully triangulated quantum spheres are the 

three elementary hadron propagators shown in Fig. 32. In each of these 

examples, one particle disk plus the corresponding antiparticle disk 

cover the entire sphere. The corresponding HR graphs are also exhibited 

in Fig. 32, and the basic lunar insertion patterns, as depicted in 

Fig. 28a are clearly visible. 

The following four examples (Fig., 33-36) show quantum spheres 

representing scattering amplitudes together with the corresponding 

HR graphs. Figure 33 pictures a four-meson interaction, and Fig. 34 

shows a reaction involving a baryon-antibaryon pair and two mesons. 

Notice that.both mesons in Fig. 34 interact with the same quark and 

thus share their nontrivial vertices with the same peripheral 

triangles. Figure 35 pictures the quantum sphere corresponding to 
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Figure 20, and to conclude our examples we have drawn, in Fig. 36, the 

triangulation for an amplitude involving one baryonium, one baryon-

antibaryon pair, and one meson. In all these examples it is apparent 

that the trivial vertices (drawn as small circles) provide a unique 

delineation of the particle perimeters (heavy lines). Notice also 

that the particle boundaries always separate mated pairs of peripheral 

triangles, each mated pair representing a lunar insertion pattern, and 

that all vertices (trivial and nontrivial) lie on these boundaries. 

Figures 32-36 exhibit another topological feature, the significance 

of which remains somewhat mysterious at present. Each particle disk 

has one special edge that carries the momentum line (marked by x in 

Fig. 29), and at zero entropy all those special edges on the quantum 

surface share the same two vertices. Thus, two special points are 

defined on the quantum sphere, which are appropriately called the 

"north pole" and the "south pole". 

The zero-entropy level has the unique property that connected 

sums of two quantum surfaces result in a new quantum surface of the 

same complexity. Thus, the zero-entropy bootstrap is confined to the 

level of quantum spheres. To form a conneced sum of two quantum 

spheres>. the disks representing the intermediate particles are glued 

together in such a way that their orientations mismatch, and then the 

two joined disks are erased. The result is a new quantum sphere with 

unique and coherent topological features. This operation assures that 

the connected sum of the two quantum spheres, ~Q # ~Q' is accompanied 

by the connected sum of the corresponding classical surfaces, ~c # ~c , 
as discussed in Sec. II-A. 

-32-

This procedut:e is illustrated in Fig. 37 with the connected sum 

pictured in Fig. 25 in terms of HR graphs. The quantum spheres 

corresponding to the two intitial graphs are shown·in Figs.37a,b where 

the particle disks have been labeled according to Fig. 25. To carry 

out the connected sum of these two quantum spheres, the spheres have 

to be plugged by gluing together the disks representing particles E 

and F. To illustrate this operation, which is somewhat awkward on a 

plane sheet of paper, we shall proceed in two steps. First, we erase 

the two particle areas E and F in both triangulations, as shown in 

Figs. 37c,d. The remaining patterns, together, represent the triangu-

lation of the new quantum sphere, which is obtained by fitting Fig. 37d 

into Fig. 37c. The result, shown in Fig. 37e, corresponds to the 

connected sum shown in Fig. 25 after contraction of the meson loop. 

In addition to the "single-plugged" connected sums discussed 

above, the products of topological amplitudes in the unitarity equation 

{1.1) will also involve "multi-plugged" connected sums resulting in 

quantum surfaces of higher complexity. 34 

D. Electric charge and flavor 

The topological theory described so far in this review features 

several surface orientations. The surfaces ~Q and ~C are both globally 

oriented and patchwise oriented. On ~Q' the patchwise orientation is 

associated with the particle/antiparticle distinction, on ~C with 

chirality. The global orientation of ~C' also called Harari-Rosner 

orientation, is coupled to the patchwise orientation of ~Q through HR 

arcs, or "quark lines". These are the sections of the belt cut by 

!-triangles. They are directed arcs connecting mated pairs of I-

triangles, the direct.ions being chosen, by convention,. in such a way 
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that each quark line runs from a counterclockwise triangle (antiquark) 

toward a .clockwise triangle (quark). 

There are two additional kinds of orientations that can be 

exhibited on the two surfaces, and both of them are associated with 

quantum numbers --one with electric charge, the·other with flavor. 

Because the triangles on ~Q constitute part of the boundary of ~C' 

This we may associate a direction into or out of ~C with each triangle. 

direction will turn out to control electric charge (see Sec. V-B) and 

is therefore called the charge direction. It is identified with the 

direction of the· charge arcs introduced in Sec. II-C. Each charge 

arc touches the quantum surface at the center of a.triangle and, in 

strong interactions, always connects a pair of mated triangles. 

The charge arcs connecting !-triangles can be directed either 

way, but the direction of theY-charge arcs, which run along the 

junction lines, must be fixed because of the requirement that all 

topological features representing variable particle properties 

must reside on the perimeter of the corresponding quantum areas 

(see Sec. III-A). The direction of theY-charge arcs may be fixed 

arbitrarily, either equal or opposite that of the adjacent junction 

lines. Whichever way it is chosen, it will turn out to correspond to 

charged Y-triangles. It has been chosen, by convention, to coincide 

with the direction of the adjacent junction lines, and thus with the 

global orientation of ~C' as illustrated in Fig. 38 with the principal 

sheet of the topology of Fig. 36. 
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In Fig. 39 we have completed the topology of Fig. 38 by drawing the 

full featherered surface and by exhibiting all charge arcs. Note that 

Y-charge arcs touch the junction lines at their end points and that !­

charge arcs begin and end next to a trivial vertex. The directions of the 

Y-charge arcs are fixed by the global orientation of ~C' but the !-charge 

arcs can be directed either way (arrows on !-charge arcs have been 

omitted in Fig. 39 for the sake of clarity). The topological repre­

sentation of electromagnetism in Sec. V-B will make it apparent that 

the charges of !-triangles (quarks) can be identified by comparing 

their orientations with the directions of their charge arcs. The 

·results are shown in Fig. 40, where "in" and "out" stand for charge 

dicrections into and out of ~C' respectively. Since each charge arc 

is accompanied by a HR arc running from a counterclockwise triangle 

to a clockwise triangle, Fig. 40 can be summarized by saying that an 

!-triangle (quark) will be charged if the charge direction agrees with 

the HR direction and neutral if the two directions are opposite. In 

this scheme, quarks have integral charges, but the apparent fractional 

charges in orthodox quark models are readily understood when the 

Y-triangles are taken into account. 
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The direction of the Y-charge arcs is fixed and equal to the HR 

direction, which means that Y-triangles are always charged. The 

Y-triangle in a baryon has counterclockwise orientation and hence 

charge -1, while the Y-triangle in an antibaryon has charge +1. 

Defining Nc as the number of charged clockwise triangles minus charged 

counterclockwise triangles, with corresponding definitions of Nic' N
10 

and NY for charged I-triangles, neutral I-triangles, and Y-triangles, 

respectively, the total electric charge of a hadron disk can be written. 

Q:: N c Nic + NY. (3.3) 

In strong interactions, Nrc and NY are separately conserved, but these 

conservation laws do not extend to electroweak interactions. However, 

Nc turns out to be conserved in all interactions; thus charge 

conservation is guaranteed. Because of (3.1), the r~lation (3.3) can 

also be written 

Q N - B 
Ic 

2/3 Nrc - 1/3 N10 , (3.4) 

which makes it evident that quarks appear to have charges 2/3 and 

- 1/3 if the Y-triangles are ignored, as they are in orthodox quark 

models. By including charged Y-triangles the topological theory 

produces the observed hadron charges with integrally charged quarks. 

Flavor is represented onfue quantum surface by giving directions 

to the edges making up the perimeters of particle disks. These edges 
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all belong to I-triangles represneting quarks, and each I-triangle 

can accomodate four "edge flavors", as shown in Fig. 41. Notice that 

the third edge in each triangle (the one cut by the belt) is not 

oriented because it does not lie on the particle-disk perimeter. This 

means theY-triangles do not carry flavor. Since each peripheral 

triangle on ~Q is placed against its mate, the edge flavors automatically 

match, and such flavor matching has to occur also in all connected sums. 

For each value of edge flavor the quark may be either charged or 

neutral, and hence the theory predicts a total number of 8 quark flavors, 

appearing in 4 charge doublets with charges (1, 0). The edge flavors, 

usually called "generations", will be separately conserved on any 

strong-interaction quantum surface and, because of charge conservation, 

the quark flavors will be conserved as well. The identification of 

the different topological flavors with the observed quark flavors35 

u, d, s, c, etc. -- remains to be worked out. 

E. Topological color 

A baryon disk may appear on the quantum surface as any one of 6 

distinct permutations of three I-triangles around one Y-triangle, each 

I-triangle (quark) carrying definite values of flavor and spin. Since 

the specific permutation is important in the formation of connected 

sums, one is led to labeling the three positions of the quarks in ~ 

baryon. This results in the concept of topological color, with each 

quark carrying one of 3 distinct colors. The position of the momentum 

line singles out one of the three I-triangles, which, by convention, 

is given color #1. Colors #2 and #3 are then assigned in clockwise 

order, following the orientation of the quark triangles, as ·shown in 

Fig. 42a. 
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Topological color may; also be introduced on the classical surface 

by assigning a distinct color to each.of the three sheets making up a 

baryon, and the three quark lines may be labeled. as shown in Fig. 42b, 

where the momentum line has been drawn as a heavy line, According to 

the convention adopted in Fig. 42a, the single quark lying on the 

principal sheet of ~C carries color Ill, while the "diquark" (see 

Sect. II-D). carries colors 112 and 113. Mesons carry only color Ill, 

baryoniums only colors 112 and 1/3. Heney, baryonium does not couple 

to mesons at zero entropy, although baryonium-meson transitions will 

be present at higher orders. These higher-order topologies involve 

the color switches described below. 

Topological color is a physically inaccessible degree of freedom, 

since one has to sum over all color permutations in the topological 

expansion when constructing. physical amplitudes. This means that, 

when connected sums are formed, any' color permutation representing 

a hadron must be joinable ("pluggable") to any other permutation 

representing the same hadron. . Plugs between different permutations, 

involving color exchanges between quarks, are called "switches". 

Although colors move from one quark to the other in these switches, 

each topological color is separately conserved. ~ 

The precise rules for quark-color switching have been given by 
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Finkelstein. In a baryon-baryon plug, the two Y-triangles are 

plugged first so as to match the ends of the momentum arcs, and then 

the quark triangles are plugged so as to match flavors. In doing so, 

two kinds of switches, corresponding to "even" and "odd" quark 

permutations, may occur. These two ·cases are illustrated in Fig. 43 

with "in" and "out" baryon disks containing quarks with flavors u, d, 
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and s. In Fig.43a, the two baryon disks differ by an "even" (cyclic) 

permutation of their quarks, and thus the connected sum will result 

in a cyclic color permutation. In Fig. 43b, the two baryon disks 

differ by an "odd" quark permutation, corresponding to an interchange 

of colors 112 and 113. Such an odd permutation may also arise in 

baryonium. 

All switch plugs are unique and may be presented as combinations 

of the two cases illustrated in Fig. 43. Any odd-permutation switch 

increases g1 (the genus of the classical surface) by one unit, while 

any even-permutation switch increases g1 by two units. These increases 

in classical-surface complexity arise because switch plugs create 

bridges between sheets that start out with distinct colors at zero 

entropy. In order to keep track of color as it moves from one quark 

to another, Finkelstein introduced color arcs (originally called 

"momentum-copy arcs") as a new topological feature of the secondary 

sheets of ~C' as shown in Fig. 23. Color arcs are always associated 

with diquarks and carry the colors 1/2 and 1/3. 

F. Summary of topological features in strong interactions 

To conclude our presentation of strong-interaction topology we 

have drawn, in Fig. 44, the classical and quantum srufaces representing 

a four-point amplitude in such a way that all the topological features 

discussed in the preceding sections (except edge flavor) are exhibited. 

The corresponding HR graph is shown in Fig. 45. We have chosen an 

amplitude describing the scattering process p + TI + n + TI
0 and have 

attached the particle labels to the momentum arcs ·in Fig. 44a and to 

the particle disks in Fig. 44b. Note that ingoing particles have 

been labeled as outgoing antiparticles, according to the convention 
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adopted in Sec. III-D. 

As in Figs. 32-36, triangles with counterclockwise orientation 

have been shaded in Fig. 44b. Edge flavors have not been included 

because their association with the observed flavor generations has not 

yet been established. In our example, the quark lines are identified 

simply ~y their electric charges, the d quark being neutral and the 

u quark carrying charge +1. The patchwise orientation in Fig. 44a has 

been assigned arbitrarily with the understanding that amplitudes with 

all possible patch orientations have to be summed in order to obtain 

the correct spin dependence of the physical amplitude. Finally, we 

notice from Fig. 44b that all points where the belt crosses a line in 

the triangulation of ~Q are points of topological significance -­

trivial vertices, momentum arcs, or color arcs. 
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IV. ZERO-ENTROPY BOOTSTRAP, TOPOLOGICAL SUPERSYMMETRY, 

AND THE FINE-STRUCTURE CONSTANT 

In the topological theory of hadrons the nonlinear bootstrap 

problem is confined to the lowest level of complexity, the zero-

entropy level. The spin formalism developed by Stapp (see Sec. II-B) 

implies that spin dependence at zero entropy factors away completely 

from momentum dependence. Since flavor and color dependencies also 

factor away at this level, the bootstrap problem is vastly simplified, 

being reduced to the calculation of planar discontinuities of spinless, 

flavorless connected parts. 

In other words, the zero-entropy amplitudes depend only on.the 

particle momenta, associated with Feynman graphs, and are independent 

of the quark lines. For example, the three amplitudes represented 

in Fig. 46 are described by a single momentum function (M-function) 

independent of the quark spins and flavors. This effectively places 

bosons. and fermions into a single supermultiplet and is therefore 

. . 21 22 called topolog1cal supersymmetry. ' 

At zero entropy, then, all elementary mesons, baryons, and 

baryoniums share a single mass m
0 

and couple to each other through a 

single, dimensionless coupling constant g
0

• Any physical coupling 

constant is determined, in the zero-entropy approximation, by 

counting how many different zero-entropy topologies are associated 

with that particular vertex, and then multiplying, with appropriate 

Clebsch-Gordan coefficients, by g
0

• Assuming that coupling-constant 

corrections from higher-order terms of the topological expansion 

will be small even though mass shifts will be large, which remains 
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to be confirmed, Chew, Finkelstein and Levison 20 have calculated 

elementary three-hadron coupling constants in the zero-entropy 

approximation and have found SU(6)w ratios to emerge. Moreover, 

their -calculations predict enormous baryonium coupling constants 

and corresponding large widths, which explains the experimental 

failure to find narrow baryonium states. 

The value of the most accurately measured hadronic coupling 

constant, (g~/4n) ~ 14.3, implies that g
0 

must be a small number, 

20 close to the fine-structure constant. The surprising smallness of 

g
0 

is a consequence of quark multiplicities within closed _hadron 

loops. At zero entropy, any closed loop ~ay carry either one or two 

quark lines, and each quark appears in 32 varieties (2 spins, 

2 chiralities, and 8 flavors). This results in an effective multi-

plicity 

f (- 32) + (- 32) 2 32 X 31 ~ 103 (4.1) 

for each closed hadron loop (a minus sign being required for each 

closed fermion loop, as in standard Feynman theo!y), which leads to a 

"renormalized" coupling constant 

gR fl/2go. (4 .2) 

The quark multiplicities also imply that, when all spins and flavors 

are counted, there are 256 elementary mesons, 816 elementary baryons, 

and 18496 elementary baryoniums. 
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The exact value of g
0 

is expected to emerge from the solution of 

the zero-entropy bootstrap equations which, although greatly simplified 

by the factorization of spin, flavor, and color, are still nonlinear 

and have not yet been solved. The approximate calculations of Chew 

et al., 20 indicate that g ~ e to within 6%. This result has led Chew
22 

0 

to conjecture that S-matrix unitarity will require g
0 

= e. Although 

thisconjecturehad to be modified in view of the discovery of the 

"naked cylinder" topology (see Sec. V-A), there remains the exciting 

possibility of calculating the value of the fine-structure constant 

from the zero-entropy hadron bootstrap. 
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V. ELECTROWEAK INTERACTIONS 

The extension of the topological bootstrap theory to electroweak 

interactions is relatively new and on much less firm a basis than the 

theory of hadrons reviewed in the previous sections. Whereas the 

hadron theory is a true bootstrap theory, derived from S-matrix 

self-consistency, the topological features representing electroweak 

particles and their interactions have been motivated by certain attr-

active features of Lagrangian field theory and, so far, are supported 

only in part by consistency considerations •. Nevertheless, it is 

expected that electroweak interactions, too, will be "bootstrapped" 

eventually, so that their raison d'etre and all their characteristics 

zero photon mass, left-handed currents, the value of the fine-structure 

constant, etc. -- will be understood from S-matrix self-consistency. 

This expectation is encouraged by the observation that almost all the 

ingredients generated by the hadron bootstrap can be adapted to describe 

19 electroweak topologies motivated by Lagrangian field theory. 

In view of the fact that the topological theory of electroweak 

interactions is still in a state of flux and does not yet rest on a 

bootstrap basis, we shall limit ourselves, in the following sections, 

to describing its broad outlines without discussing the full set of 

known consistency requirements. 

A. Electroweak bosons 

The topological bootstrap theory explains most of the essential 

features of hadrons and strong interactions as necessary consequences 

of S-matrix self-consistency. In view of this success of the bootstrap 

approach, the question naturally arises: why should there be anything 
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in nature beyond strong interactions? In other words, does the existence 

of electroweak bosons, leptons, and of electroweak interactions also 

follow from the requirement of a self-consistent S matrix? This question 

has not yet been answered for leptons, but the electroweak bosons and 

their interactions are indeed generated by the topological bootstrap. 

The topological object representing electroweak particles appears 

at a level of complexity close to zero entropy. As described in Sees. 

II-A and II-B, each topology y in the topological expansion (1.2) is 

characterized by three entropy indices: g
1 

(the genus of ~c), g2 

(counting the number of boundary components), and g
3 

(counting the 

number of "topological gluons"). Poles in the S-matrix amplitudes, 

corresponding to elementary particles, are generated by nonlinear 

discontinuity formulas represented graphically by connected sums in 

which patterns of complexity reproduce themselves (see Sec. I). 

While classical DTU was being developed, the. thinking about self­

reproducing patterns of complexity and their associated S-matrix 

poles was rather fuzzy, but after spin had been incorporated into the 

topological theory, which led to the entropy index g
3

, it became clear 

that there are exactly two levels that.can reproduce themselves. One 

is the level characterized by g1 = g2 = g3 = 0, representing the zero­

entropy topologies that generate all elementary hadrons. The other. 

level is called the "naked cylinder;', C , and is characterized by 
0 

g1 = g3 = 0, g2 = 1. 18 Even though one of its entropy indices is 

non-zero, the C
0 

topology reproduces itself because g2 satisfies only 

the weak entropy condition (2.3). All higher-order topologies will 

satisfy linear equations that do not generate any new poles. In 

particular, the cylinder topology of classical DTU9 is obtained from 
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C
0 

by taking an infinite sum over g
3

, i.e. by "dressing" the "naked" 

cylinder with topological gluons. 

Carefui investigation of the C pole has shown that it has 
0 

vacuum quantum numbers, Jp = 0+, and that it is a totally symmetric 

singlet in all topological degrees of freedom, coupling equally to 

all hadrons.
18 

Such a state cannot be identified with any of the 

elementary hadrons and has to be given a new repre'sent:'-tion on the 

quantum sphere. A natural choice for representing C
0 

on ~Q is a closed 

surface, which has no perimeter and couples to the rest of ~Q with 

vacuum quantum numbers. The first choice for such a closed surface 

15 was a sphere composed of two triangles, but this was later found 

to lead to inconsistencies. The correct representation of C
0

, which 

emerged eventually from the large number of consistency conditions 

that this new topology must satisfy, 23 is depicted in Fig. 47. It 

consists of two !-triangles of opposite orientations whose edges 

a-a and b-b have to be "glued together", i.e. mathematically identified, 

in such a way that the arrows match. The topology of this structure 

is that of a Klein bottle. It is a globally nonorientable surface 

that cannot be constructed in )-dimensional space but nevertheless 

has well-defined topological properties. It is a closed surface, 

and yet has no "inside" but is one-sided; like a MObius band. In 

fact, the Klein bottle can be represented by two Mtlbius bands glued 

together along their edges. 

When all the spin and charge orientations of the !-triangles 

are taken into account, Fig. 47 is seen to represent a quartet of 

vector bosons plus a quartet of scalar bosons; both decomposable into 

an isosinglet plus an isotriplet. Several models have predicted a 
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mass lower than the zero-entropy hadron mass and a coupling constant 

approximately equal tog for the C state.
18 

Since the zero-entropy 
0 0 

bootstrap suggests g ~ e, 22 and since zero mass for the C ground 
0 0 

state is a possibility compatible with model estimates, it is natural 

to identify the two quartets with the electroweak vector and scalar 

bosons. This places the topological theory strikingly close to the 

starting point of the standard Weinberg-Salam.theory of electroweak 

interactions. 37 A mechanism analogous to the Higgs mechanism is 

expected to emerge at higher levels·of the topological expansion, 

leading by the usual route to the massless photon, 3 massive vector 

+ 0 
bosons (w-, Z ), and one residual scalar boson. The latter particle, 

known as the Higgs boson, may be regarded as the physical representative 

of the naked-cylinder ground state. 

B. Minimal electroweak vertices 

On the classical surface, the photon is associated with a cylinder 

topology, i.e. a sphere with two holes. This is illustrated in Fig. 48 

with a two-meson-photon vertex, where the photon Feynman arc has been 

drawn as a wavy line. The corresponding quantum surface has two 

separate components and can be pictured as two concentric closed 

surfaces, the outer one being a sphere and the inner a Klein bottle. 

Accordingly, the outer boundary component in Fig. 48 belongs entirely 

to the hadron pair, while the inner belongs to the photon. 

The topology of Fig. 48 is similar to that of the meson cylinder 

shown in Fig. 13, but there is an important difference. Strong­

interaction cylinders always contain a closed Feynman loop which 

separates the two boundary components. Because of the absence of 

this loop in Fig. 48, the HR arcs are not sufficient to define a 
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thickened Feynman graph, which is necessary for the topological 

representation of chirality (see Sec. II-B). They have to be 

supplemented by appropriatefy oriented charge arcs when photons· 

are present in order to assure an unambiguous global surface 

orientation. Figure 49(a) shows the topology of Fig. 48, supplemented 

:by charge arcs, and Fig. 49(b) shows the corresponding thickened 

Feynman graph. 

The charge arcs exhibited in Fig. 49(a;) are of two kinds. Those 

into which the photon boundary is "inserted" must be directed in such 

a way that their orientation agrees with the HR orientation, while 

the other two charge arcs may have either direction. In other words, 

a photon can be coupled to a charge arc if and only if its orientation 

is the same as the HR orientation, and hence it is justified to 

associate this charge-arc direction with electric charge. Charge 

arcs coupling to photons are called "active", those connecting mated 

triangles are called "passive". 

The amplitude pictured in Fig. 49 is an example of a class of 

amplitudes called "minimal electroweak vertices",17 describing the 

interaction of an electroweak vector or scalar boson with a pair of 

elementary particles. The coupling constant associated with these 

amplitudes is expected to be identified with e, the elementary electric 

charge. If the two particles are leptons and the electroweak boson is 

a photon, the minimal electroweak vertex represents the basic Feynman 

vertex of quantum electr-odynamics. A minimal. vertex cannot be built 

·rrom other components in the topological expansion through connected 

sums; it is the basic unit of electroweak interactions from which all 

higher~order electroweak topologies are built. Thts means that -the 

contraction rules characteristic of strong-interaction topologies 
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(see Sec. II-A) do not hold for electroweak topologies, so that 

intermediate electroweak particles never disappear from the topology. As 

a consequence, all graphs manifesting electroweak topologies may 

immediately be associated with Feynman amplitude graphs, and a 

precise correspondence between the non-hadronic components of the 

topological expansion and standard quantum electrodynamics is expected 

16 to emerge. 

C. Leptons 

The striking new feature exhibited by the topology of electroweak 

bosons is the nonorientable quantum surface. This new element also 

appears in the topological representation of leptons, so that global 

orientability of ~Q emerges as a special property of strong inter­

actions. The quantum area for leptons, which resulted from a long 

process of trial and error,19 is depicted in Fig. 50. It consists 

of an !-triangle and a Y-triangle whose edges· c-c have to be identified 

so that the arrows match (see Fig. SO(a)). The resulting topological 

object is a Mtlbius band, as shown in Fig. SO(b), where identification 

of the edges d-d in the sense of the arrows is understood. The 

lepton Mobius band contains two vertices. One of them (labeled 1) 

results from the contraction of the 3 vertices of the Y-triangle in 

the process of identifying the edges c-c, the other (labeled 2) is 

the trivial vertex of the !-triangle. The two edges of the !-triangle 

adjacent to the trivial vertex make up the edge of the M6bius band, 

while the third edge, which carries the end of the momentum line ("x"), 

appears on its surface as a closed loop. 

The identification of edges in the quantum areas of electroweak 

particles restricts the degrees of freedom available to these particles, 
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and it is this effect that makes electroweak interactions weak. In 

other words, strong interactions are strong because the perimeters 

of hadron disks can carry many quantum numbers. At this stage, then, 

the topological bootstrap theory offers a qualitative understanding 

of relative interaction strength as a function of complexity, the 

nonorientable surfaces of electroweak particles exhibiting higher 

complexity thanfue orientable disks of strongly interacting particles. 

All lepton quantum nUmbers are carried by the !-triangle, which 

may be charged or neutral, while the Y triangle is always neutral. 

The peripheral !-triangle plays a role very similar to that of the 

!-triangles in baryon disks. In fact, from the topological point 

of view, we are justified in saying that leptons, like baryons, con­

sist of quarks (!-triangles) plus Y-triangles. However, there are 

several important differences between the lepton and baryon topologies. 

The !-triangle in the lepton quantum area is oriented counterclockW±sec 

following the conventional definition of leptons as carrying negative 

charge, while quarks carry positive charge. Consistency considerations 

require the Y-triangle to be oriented counterclockwise as well, so 

that the quantum area of a lepton is built from two triangles of the 

same orientation. 
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VI. TOPOLOGICAL GRAND UNIFICATION 

Perhaps the most remarkable and aesthetically beautiful result 

of the topological bootstrap theory is the fact that all elementary 

particles are represented as composites of two basic topological 

constituents, the !-triangle and the Y-triangle. These constituents 

do not carry energy-momentum and cannot be interpreted as particles, 

but they do carry charge, spin, and flavor, and their orientation 

distinguishes triangles from "antitriangles". As far as quantum 

numbers are' concerned, therefore, all particles are composed of 

I- and Y-constituents. 

The constituent picture of the complete set of elementary 

particles is shown in Fig. 51. The shapes of the hadron disks 

(II, IIIY, or IIyYII) derive from the hadron bootstrap; the quantum 

area of the electroweak bosons (II) is suggested by consistency 

requirements and model estimates, and the lepton quantum area (IY) 

has been obtained partly through comparison with Lagrangian field 

theory. Given the topologies of leptons and electroweak bosons, it 

:is natural to expect that a rl Klein bottle will also represent an 

elementary particle. This topology has been included in Fig. 51, 

although it is not at present required by S-matrix self-consistency. 

The corresponding particle, labeled "H boson" would be a neutral 

scalar and may be related to the Higgs boson. Which of the neutral 

scalars (II or TI) can actually be identified with the.Higgs particle 

is not clear at this stage~ 

In spite of the different derivations of the composite particle 

representations, the resulting picture exhibits a strikingly simple 

unified pattern, which has appropriately been named "Topological 



-51-

Grand Unification" (TGU).
23 

The entire set of elementary particles 

falls into two broad groups -- hadrons and electroweak particles. 

The former are represented by orientable disks, the latter by non-

orientable surfaces. All particle quantum areas can be seen as 

consisting of two pieces, sewn together along the single special 

edge that carries the end of the momentum line (marked by x in Fig. 

51). The two triangles adjacent to this special edge are of the same 

kinds for the three types of hadrons and the three types of electro­

weak particles. Thus TGU implies a precise parallelism between 

baryons and leptons, mesons and electroweak bosons, and between 

baryoniums and H bosons. 

The picture of elementary particles emerging from TGU alters 

the usual relationship between quarks and particles. In the orthodox 

theory, quarks and leptons are on the same footing, representing 

two types of basic structureless building blocks. In the topological 

theory, the I- andY-constituents are the basic building blocks 

but neither of them is a physical particle, and all elementary 

particles are composite structures. Topological quarks may be 

identified with the peripheral 1-triangles.:appearing in hadrons and 

leptons. In vector bosons, !-triangles are M6bius bands, while 

Y-triangles are uniformly disks in hadrons and Mobius bands. in 

electroweak particles. The precise definition of universal 

constituents, together with the proper evaluation of higher-order 

terms in the topological expansion is expected to yield a rich array 

of phenomenological predictions. 
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We shall now review the quantum numbers carried by the I- and 

Y-constituents. As described in Sec. III-D, each triangle is a charge 

doublet, being touched by a charge arc at its center and carrying charge 

±1 or 0 according to the relative orientation of charge arc and triangle. 

For Y-triangles, this orientation must be fixed in such a way that hadron 

Y-triangles are charged, while electroweak Y-triangels are neutral. 

Electric charge is conserved on any quantum surface because the total 

number of triangles equals the total number of antitriangles. 

Baryon number, B, and lepton number, L, are given by the relations23 

B 1/4 (N1 - NY) (6.1) 

L - 1/4 (N1 + 3Ny), (6.2) 

where N1 is the number of I triangles minus I-antitriangles, and NY the 

number of Y-triangles minus Y-antitriangles. It follows from (6.1) and 

(6.2) that N·, the total number of triangles minus antitriangles, which 

is always conserved, is given by 

N 2 (B- L). (6.3) 

The quantities N1 and NY, and thus B and L, are individually conserved 

for those components of the topological expansion where every triangle 

is mated to a triangle of opposite orientation, in the sense discussed 

in Sec. III-A. This rule is broken by a mechanism proposed by Chew and 

Po~naru19 for a possible accomodation of lepton-baryon mixing, which 

involves the mating of triangles of the same orientation. 
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Flavor is carried by a~l peripheral !-triangles (quarks) and is 

defined as the combination of electric charge.with a generation index, 

represented by the orientation of two triangle edges (see Sec. III-D). 

Y-triangles and non-peripheral !-triangles (in electroweak bosons) are 

always flavorless. 

The spin content of hadrons resides in their !-triangles, which 

inherit a 2-valu~d spin inde~, corresponding to spin 1/2, from 

the HR arcs (see ·sec. III-B). A recently developed 

topology of electroweak currents17 implies that !-triangles in 

electroweak.particles, too, are associated with spin 1/2, while all 

Y-triangles are spinless. 

The quantum numbers associated with the I- and Y-constituents are 

summarized in Fig. 52, where S, Q, B, and L denote spin, charge, baryon 

number, and lepton number, respectively, and Yst(Yew) denote 

Y-constituents in strongly interacting (electroweak) particles. All 

these quantum. numbers, together with edge flavor and energy-momentum 

(carried by the Feynman graph in Lc), represent degrees of freedom 

that are accessible to experiment, either directly or indirectly. In 

addition, the topological theory also features inaccessible degrees of 

freedom, expressed in terms of entropy indices~ which measure complexity. 

In the topological expam;ion (1.2) the sum runs over all inaccessible 

degrees of freedom. They include the cyclical ordering of Feynman arcs 

.(affecting the entropy indices gl and g2)., the patch orientation of rc 

(determining chirality and the entropy index g
3
), and topological color 

(affecting classical-surface complexity, and,thus g
1

, through quark­

color switches). 
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The notion of inaccessible degrees of freedom and the associated 

notion of complexity are crucial to the topological bootstrap theory, 

and it is this aspect of the theory that "orthodox" physicists find 

most difficult to appreciate. However, as Chew has pointed out, 3 one 

should remember that quantum mechanics, too, depends crucially on a 

mathematical feature that is inaccessible to experiment -- the phase 

of the complex vector w in Hilbert space. Thus the inaccessible topo-

logical features of the bootstrap theory of particles may be seen as 

an extension of the complex numbers of quantum mechanics to a bro~der 

domain of mathematical structures. 
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VII. RELATION TO ORTHODOX PARTICLE PHYSICS physics. A high degree of complexity, of course, can end up averaging 

out in such a way that it produces effective simplicity. This effect 

Most physicists today are still unaware of the recent developments makes classical physics possible. 

in S-matrix theory and believe that the bootstrap idea, although Electromagnetism seems to play a crucial role in the relation 

philosophically attractive, could not be cast into a proper scientific between the quantum world of isolated events and the classical world 

theory of subatomic particles. The purpose of this review has been to of continuous space-time. 3 Electromagnetic events have the unique 

dispel this belief by showing that a comprehensive bootstrap theory of characteristic that they may involve an arbitrary number of emissions 

particles is now being developed. The topological bootstrap can account and absorptions of soft photons. Successions of such "gentle" events 

for a wide variety of established experimental facts, is not known to will build up the continuous trajectories associated with classical 

conflict with any, and has illuminated a number of questions not objects. From the topological point of view, any photon event, no 

previously understood. However, it is formulated within a framework matter how soft, is noncontractible and will increase the overall 

that is quite uncommon and, perhaps, uncomfortable for most particle complexity. Hence large numbers of soft photons, characteristic of 

physicists who are accustomed to dealing with continuous space-time, classical reality, will be associated with high topological complexity. 

local fields, and Lagrangians exhibiting continuous symmetries. The Like classical physics, quantum mechanics was formulated within 

topological bootstrap theory contains none of these features. To con- a continuous space-time in spite of its emphasis on discrete.phenomena, 

elude this review, it will therefore be useful to discuss the relation- and Chew believes that this contrast lies at the root of the celebrated 

ship between the topological theory and the orthodox framework. paradoxes surrounding quantum mechanics. 3 Quantum field theory, from 

According to Chew, 3 continuous space-time, as we perceive it this point of view, seems to represent a semi-classical domain. Fields 
-~ 

through our senses, together with the classical objects embedded in it, can be defined only near the classical region, at high complexity, 

are approximations that acquire validity through event patterns of high because only there cari local space-time be given a meaning. Thus 

complexity, not unlike the continuous thermodynamic notion of temperature. quantum field theory appears as a perturbative correction to the 

The properties of continuous space-time are expected to emerge, eventu- classical limit. 

ally, from the topological expansion, and with them an understanding of When S-matrix theory and quantum chromodynamics are put in this 

gravitation as an aspect of space-time. Gravitons are not expected to perspective, they seem to be complementary approaches that do not 

appear in such a framework. The present state of the topological theory, overlap for the time being. The topological bootstrap works well in 

dealing with zero entropy and a few levels of low complexity, is very the domain of small transverse momentum, where it can be used to derive 

far removed from the high-complexity level of gravitation and classical the quark structure of hadrons and their quantum numbers, while QCD 
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works well only at large transverse momentum where, for reasons not 

well understood, particles behave somewhat like classical objects. 

Because of the lack of overlap between the two theories it is 

difficult, at present, to arrange an experimental confrontation. 11 

However, we do believe that the bootstrap approach is more fundamental 

than QCD in the same sense that quantum mechanics is more fundamental 

than classical mechanics. Thus it is anticipated that the physical 

content of perturbative QCD will eventually be derived, together 

with local space-time, in the high-complexity limit of the topological 

bootstrap theory. 
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FIGURE CAPTIONS 

1. Diagram picturing a scattering process involving four particles. 

2. Examples of singularities for a reaction involving six particles. 

3. Graphic representation of the unitarity equation for a 2 ~ 2 

amplitude. 

4. Zero-entropy components of the amplitude shown in Fig. 1. 

5. Classical surface for a zero-entropy component. 

6. The ring diagram of classical DTU corresponding to Fig. 5. 

7. Correspondence between oriented classical surface and HR graph. 

8. Connected sum of two ordered Feynman graphs embedded in classical 

surfaces. 

9. Connected sum of the HR graphs corresponding to Fig. 8. 

10. Connected sum resulting in cylinder topology. 

11. Connected sum resulting in torus topology. 

12. (a) Contraction of two internal Feynman arcs to a single arc. 

(b) Contraction of two vertices to a single vertex. 

13. Cylinder topology obtained by contraction of the graph shown in 

Fig. 10. 

14. Duality transformations corresponding to the contractions 

shown in Fig. 12. 

15. Example of a patchwise-oriented classical surface. 

16. Connected sum of two patchwise-oriented classical surfaces, 

resulting in a transition arc. 

17. Classical surface exhibiting charge arcs. 

18. Feathered classical surface with two junction lines. 

19. Boundary segments representing elementary hadrons. 
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20. Belt for an amplitude involving 5 hadrons, corresponding to the 

classical surface shown in Fig. 18. 

21. (a) Belt of Fig. 20 with segments that do not correspond to quark 

lines marked by dotted circles. 

(b) HR graph corresponding to Fig. 20. 

22. Principal sheet of the classical surface shown in Fig. 20. 

23. Color arcs on;a secondary sheet of the classical surf ace shown in Fig. 20. 

24. Connected sum involving baryons as intermediate.particles. 

25. Connected sum of the HR graphs corresponding to Fig. 24. 

26. "Necklace" graph representing zero-entropy belt. 

27. Division of a classical surface into 4 patches by lunar 

insertion. 

28. Lunar insertion pattern shown in 3 equivalent forms. 

29. Polygons representing the three types of elementary hadrons. 

30. The two basic triangles. · 

31. Equivalent forms of the elementary hadron polygons shown in 

Fig. 29. 

32. Triangulated quantum spheres for the three elementary hadron 

propagators. 

33. HR graph and triangulated quantum sphere for a 4-meson amplitude. 

34. HR graph and triangulated quantum sphere for an amplitude 

involving a baryon-antibaryon pair and two mesons. 

35. HR graph and triangulated quantum sphere corresponding to Fig. 20. 

36. HR graph and triangulated quantum sphere for an amplitude 

involving one baryonium, one baryon-antibaryon pair, and one 

meson. 
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37. Connected sum of the quantum spheres corresponding to Fig. 25.; 

(a), (b) quantum spheres corresponding to the initial HR graphs; 

(c), (d) initial quantum spheres with intermediate particle disks 

erased; 

(e) quantum sphere resulting from the connected sum. 

38. Principal classical surface for the amplitude of Fig. 36 

withY-charge arcs exhibited. 

39. Full feathered classical surface for the amplitude of Fig. 36 

with all charge arcs exhibited. 

40. Correspondence between orientations of !-triangles, directions 

of charge arcs, and quark charges. 

41. The four edge flavors. 

42. The three topological colors. 

43. (a) Baryon plug with even quark permutation. 

(b) Baryon plug with odd quark permutation. 

44. Classical and quantum surfaces representing a 4-poin~ amplitude 

with all topological features (except edge flavor) exhibited. 

45. HR graph corresponding to Fig. 44. 

46. Feynman graphs for a zero-entropy 3-point amplitude with three 

different sets of quark lines. 

47. Klein bottle representing electroweak bosons. 

48. Classical surface for two~meson-photon vertex. 

49. (a) Topology of Fig, 48 supplemented by charge arcs. 

(b) Thickened Feynman graph corresponding to Fig. 49a. 

SO. TIE lepton Mobius band. 

51. Quantum areas for the complete set of elementary _particles. 

52. Quantum numbers of I- and Y-constituents. 



I 
Lt'\ 
-.!) 

I 

(a} 

A~C 

8~0 
Fig. 1 

( b} ( c} 

~ Fig.2 

(d) 

I m :::0:::: = I :::t::E 3X: 
n n 

Fig.3 

A. CA DB C 8 D 

X + X +X+ X +---
8 D 8 CAD A C 

Fig.4 

--- Feyman graph 
----11-- Surface boundary 

with trivial vertex Fig.5 

AOC 
B D 

Fig.6 

XBLB29- 4092 



I 

"' "' I 

--

-:~: Fig.7 

-- Fig.B 

Fig.9 

Fig.IO 

Fig.ll 

.. 

XBL829-4093 



.. 

I 
r-.. 
\0 
I 

)C>( ---.. >--< >--< - X Fig. 12 
(a) . (b) 

Fig.l3 

Fig.l4 

Fig.l5 

E 

XBL829- 4094 



I 
co 
\0 

I 

Meson 

c 

D 

---- Feyman ore 
---- HR ore 
------Charge arc 

·-·-·Junction 
I ine 

y >--< 
Baryon Baryonium 

Fig.l6 

Fig.l7 

Fig. IS 

Fig.l9 

XBL829-4095 



I 

"' \.0 
I 

' 

.., Belt 
--~-·Junction line 

---- Feynmon ore 
Fig.20 

I 

8 

Fig.21 

' " -- A 

(a)- (b) 

XBL829- 4096 



I 
0 
r--. 

I 

----------

----- Feynman arc 
---·-Junction line 

----- Color arc 

Fig.23 

---HR arc (belt) 
---Matched belt segments 

Fig. 24 

Fig. 25 

Fig. 26 

XBL829 -4097 



·& 

----Belt 
x Momentum 

line 

(a) 

(a) 

Meson 

----Belt 

~ 
~ 

Meson 

I§ 
(b) 

@ 
(b) 

Baryon 

Baryon 

f_ig.27 

@ Fig.28 

(c) 

Fig.29 

Boryonium 

Fig.30 

Fig.31 

Baryonium 
XBL829- 4098 



---, ' 
/ ' 

~) 
\ I ' / 

........ __ , 

Meson 
propagator 

Baryon 
propagator 

Baryonium 
propagator 

....... - ..... 
/ '\ 

/ \ 
I \ 

~'""'""'...... \ 
I 
I 
I 
I 
I 
I 

\ / 
\ I ' / 

__ , 

Fig. 32 

Fig.33 

XBL829- 4099 



-- "' " I 

' ,--., 
I' '\ I I \ I I ) I 

.. 

\ 

n 
I 
I 
I Fig.34 I 
I 
I ~ I 

I 
-/ 

,-"' / \ .-L, \ ' I' \ 
\ I 1 

I I 
I 
I 

~ I 
I 

I "' 
I Fig. 35 

r--. 

~ I 

I 

I 
I 
I --.... I 

/ ' I / \ I I 
I / 
I ,_ .... " I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

\ / Fig. 36 ' "" --
XBL829-4100 



I 
-<t 
r--
1 

(a) 

(c) 

(e) 

(b) 

Flg.37 

(d) 

XBL829-4101 



I 
lJ') 

r---
1 

Orientation of 
I- triangle 

Clockwise 
Clockwise 

Counterclockwise 
Counterclockwise 

Direction of 
chorge ore 

Out 
In 

Out 
In 

--- Feynman arc 
--- HR arc 
·-·-·Junction line 
····JI:oo·--Charge arc 

Fig.39 

Chorge of quo rk 
or ontiquork 

+I 
0 Fig.40 
0 

-I 

XBL829·4102 

Fig.38 



I 
..0 
r--
1 

3 

3 

f = 1 

11 in" baryon 

2 

2 2 

Turn 
over 

2 2 

Turn 
over 

Fig.41 

3 4 

------~--- 2 Fig.42 ------3 
(b) 

3 

{a) 

Fig. 43 

3 

(b) 

110ut" baryon 

XBL829-4105 



"· 

-77-

Ic 
Momentum arc 

-------Color arc ... · 

···----------
·--~---

(a) 

Belt 
Charge arc 
Junction line 
Trivial vertex 

Fig.44 

,..,.---"' ..... 
..... -~- ', 

/ ..... 

1
/ -' \ p '\ \ 

I ~- \ 

\ /ll\ \:!>.. : 

Io 
X 

c 

• 

\ I 
' / ......... / ---

(b) 
XBL829-4104 

.. '--;,- .. 



I 
U) 

" I 

p n 

Fig.45 

'JT+ ..,.o 

A A )JJ ~ 
Feynman line 

. · ---Quark line Fig.46 

~ ~ ~ 

---Meson Feynman arc 
~Photon Feynman arc 
---HR arc 

Fig. 47 

Fig.48 

XBL829 -4105 

•· l. 



a 
J 

Fig.49 

(a) (b) 

2 
2 
I 

ld 
I 

dl --~----- Fig. 50 
I 

0\ 
r--
I I 1 

(a) (b) 

Meson Baryonium Baryon Fig. 51 

/~\ 
'" I 
I 

Ele ctroweak H boson Lepton 
• boson 

.. 
XBL829 -4106 ... 



I 
0 
OJ 

I 

I 

Yst 

Yew 

s Q 

1/2 + 1,0 

0 +I 

0 0 

• . 

8 L 

1/4 -1/4 

-1/4 -3/4 Fig. 52 

-1/4 -3/4 

XBL829- 4107 



• 

1' 

0 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



;.:.;- ?:},. .·• -·:-

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

.... , -~ 

.... ~ -. ... 


