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TWO-PION CORRELATIONS IN HEAVY ION COLLISIONS 

by 

William Allen Zajc 

ABSTRACT 

An application of intensity interferometry to relativistic heavy 

ion collisions is reported. Specifically, the correlation between . 
± two like-charged pions is used to study the reactions Ar+KC1~2n +X 

and Ne+NaF~2n +X. Source sizes are obtained that are consistent 

with a simple geometric interpretation. Lifetimes are less well 

· determined but are indicative of a faster pion production process 

than predicted· by Monte Carlo cascade calculations. There appears to 

be a substantial coherent component of the pion source; although 

measurement is complicated by the presence of final state interac-

tions. 

Additionally, the generation of spectra of uncorrelated events 

is discussed. In particular, the influence of the correlation func-

tion on the background spectrum is analyzed, and a prescription for 

removal of this influence is given. A formulation to describe the 

statistical errors in the background is also presented. 

Finally, drawing from the available literature, a self-contained 

introduction to Bose-Einstein correlations and the Hanbury-Brown--

v 



Twiss effect is provided, with an emphasis on points of contact 

between classical and quantum mechanical descriptions. 
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CHAPTER I 

INTRODUCTION , 

A.. Objectives of Relativistic Heavy Ion Physics 

The systematic study of relativistic heavy ion collisions (RHIC) 

became possible in 1974, with the advent of the Berkeley Bevalac. 

Prior to this, cosmic rays provided the only source· of relativistic 

nuclei, which made experimental control of the energy and mass of the 

projectile impossible. The Bevalac provided experimenters with beams 

up to A= 57, with energies ranging from 50-2100 A•MeV. 

It was expected that a number of unusual phenomena could be 

observed with this new facility. For example, the first three papers 

1 of the High. Energy Heavy Ion Summer Study of 1974 discuss shock 

waves, highly excited nuclear matter, and density 'isomers. It was 

also hoped that one could determine the nuclear equation 'of state, 

thereby obtaining the energy per nucleon W(p,T) for.densities p 

exceeding normal nuclear density and for temperatures T>O. In addi-

tion to the intrinsic interest in W(p,T), knowledge of this quantity 

is essential to theoretical studies of supernovae and neutron stars. 

Further practical benefits were predicted for such fields as cosmic 

rays (of course), atomic physics at high Z, creation of neutron rich 

isotopes, etc. 

In the ensuing years of experimentation and theoretical study, 

many of these practical results have indeed been obtained. However, 

1 



the search for exotic physics has been largely unrewarded. Single-

particle spectra of all reaction products are smoothly varying, with 

the exception of the well-understood Coulomb enhancement of n- yield 

obs.erved near beam velocity by Sullivan et al. 2 Determination of the 

2 

nuclear equation of state has thus far proved impossible, due to fin-

ite particle effects, incomplete equilibration, large single-

scattering components, etc. Furthermore, vastly different assump-

tions regarding the reaction dynamics lead to quite similar final 

states, thus allowing a variety of models to predict single-particle 

cross-sections to within a factor of two. As emphasized in a recent 

3 review by Nagamiya and Gyulassy, the actual physics for single-

particle observables lies in understanding and reducing this· factor 

of two. 

An alternative (and complementary) approach to the refinement of 

existing single-particle measurements is the study of multi-particle 

spectra and correlations. For example, the in-plane/out-of-plane 

two-proton correlation has proven valuable in resolving the various 

4 processes that produce protons in a given phase space region. Other 

forms of two~proton analysis may probe the size and shape of the. 

5 6 mid-rapidity proton source. ' The ultimate limit of multi-particle 

measurements is. the global analysis of all (charged) particles. For 

instance, the authors of Ref. 7 show that the eigenvalues of the 

kinetic flow tensor 

Fij iii ~ 2!~ pi <P> •pj <P> 

are useful parameters to describe the flow patterns of heavy-ion 

- . . ' 
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collisions. (Herem~ and pi{~) are the mass and i-th momentum com

ponent, respectively, of the ~-th particle.) 

A particularly interesting two-particle state is that for two 

3 

like-charged pions. Because two like pions' obey Bose statistics, the 

two-pion relative momentum spectrum provides a sensitive tool for 

exploring the properties of the pion source. This thesis describes a 

series of experiments designed to determine the pion source parame-

ters through the use of intensity interferometry. In the next sec-

tion, we begin by considering the pion production mechanism in RHIC • 

.!!• The Pion Source in RHIC 

Pion production in relativistic heavy ion collisions has been 

extensively studied, both experimentally and theoretically. (See 

Ref. 3 and the papers cited therein.) There are several reasons for 

this attention. First, pions are produced in ·abundance at RHIC ener-

gies ( 0.5-2.1 A•GeV ). For example, at 1.8 A•GeV, nearly 60% of the 

NN total cross section goes into pion production. Secondly, both 

pion production via the dominant (resonant) reaction NN~~ and the 

pion-nucleon interaction nN~nN are well understood at a (nearly) 

fundamental level. FUrthermore, the ~-model, a phenomenological 

prescription for incorporating the effects of higher-order meson 

exchange and chiral invariance, has led to the prediction of novel 

8 states of nuclear matter, and of the pion field (See, e.g., the 

results of Ref. 9 ) Finally, since mn<<~ , and since pions are 

bosons, one is led to consider the possibility of coherent pfon radi

.10 
ation, i.e., the creation of a "classical" pion field through 

I. 



bremmstrahlung of the nucleons. This would be an interesting object 

indeed! Since two-pion interferometry is capable of measuring both 

the space-time extent of pion production and the degree of coherence 

of the pion field, it is a valuable method for clarifying pion pro

duction processes in RHIC. 

c. Organization of this Thesis 

Chapter II contains an explication of intensity interferometry. 

4 

Since this technique is often "explained" by reference to the 

Hanbury-Brown--Twiss effect, and since the HBT effect itself is often 

the subject of considerable confusion, a fairly extensive discussion 

is devoted to the origins of the Bose-Einstein interference and to 

classical explanations of the HBT effect, as well as its application 

to particle physics. Chapter III describes the experimental 

apparatus used to measure our two-pion events, while Chapter IV 

details the analysis of these data. Results are presented in Chapter 

V, with conclusions and directions for future research given in 

Chapter VI. There are several appendices containing detailed 

descriptions of various results, methods, and calculations. 

Unless otherwise noted, natural units are used in this work; 

that is, ir=c=l. 

- .. , .. 
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CHAPTER II 

INTENSITY INTERFEROMETRY 

A •. Introduction 

Intensity interferometry uses the correlations between identical 

particles (usually bosons) to determine properties of the particle 

source and/or emission process. In optics, this technique is often 

referred to as the Hanbury-Brown--Twiss (HBT) effect; in particle 

physics it is known as the Goldhaber~Goldhaber-Lee-Pais (GGLP) 

effect. This chapter is intended to provide a roughly (but not 

rigorously) historical introduction to these methods by emphasizing 

the physical origins of like-particle interference. 

We begin by considering intensity fluctuations since the need 

for Bose-Einstein statistics (it and Fermi-Dirac statistics are the 

ultimate source of all multi-particle interference phenomena) first 

arose from such considerations. Much of the next section is taken 

directly from the excellent article by A. Pais 11 entitled "Einstein 

and the Quantum Theory." 

B. The Origins of Bose-Einstein Statistics 

Note: this section uses units such that~ and c appear explicitly. 

The systematic study of fluctuation phenomena in statistical 

mechanics was pioneered by Einstein. In 1904, he applied his result 

5 
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for the mean-square fluctuation in energy 

(II. 1) 

to the total energy of a blackbody oven at temperature T with volume 

V, 

E(T) = vJp(~,T)d~ = 4cST
4
V (II. 2) 

to obtain 

(II.3) 

(Here ~is the Stefan-Boltzmann constant.) The meaning of this result 

becomes apparent when we use Wien's displacement law he/A = okT 
max 

~ ~ 2.8 , to express f, the relative energy fluctuations, in terms of 

Amax' the most probable wave-length in the blackbody spectrum: 

t = ( {LlE) 
2

) = 60o
3• ~ax 3 ~ .!.. Amax 

3 

(E(T))2 SnS V 2 V 
(II. 4) 

Thus, for small T, it is possible for t to be arbitrarily large. 

This should be contrasted with the case for an ideal (classical) gas 

of N particles, where E(T) = ~kT implies f = 3~ ~ o(i), independent 

of temperature. As one might guess from the presence of Amax in Eq. 

II. 4, the large fluctuations for the blackbody results from the ~ 

nature of the photons. This may not appear suprising until one 

recalls that the usual derivation of the Planck's law requires attri-

buting particle-like properties to the radiation field. This, one of 

the first hints at complementarity, was further elucidated in 1909 by 

Einstein, again by considering the fluctuations of blackbody radia-

tion. This time he restricted the analysis to the fluctuations of 

- . ' . 
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the energy density p<~,T)vd~ within a small sub-volume v and fre

quency interval ~. Here we present a slightly simplified argument by 

examining the mean-square dispersion in photon number for ~ cavity 

mode k. In equilibrium we have 

1 
~ 

exp(kT) - 1 
(II.5) 

where ~ = h~k. One may then readily calculate ( (Llnk) 2), either by 

relating~ to the mean energy of the mode and using eqn 11.1 or by 

explicitly calculating 

for a quantized oscillator. In either case, one obtains 

which is the essential result of this section. 

As we shall see, the two terms on the RHS of Eqn. II.6 reflect 

the particle and wave aspects, respectively, of photon number flue-

tuations. The first term is precisely what one would obtain from a 

distribution of classical particles with mean n obeying Poisson 

. 2) statistics, i.e., { (Lln) = n. 
-2 

The second term, n , is proportional 

to the number density squared and thus is an interference term, as 

12 expected from a wave interpretation. 

While we have derived this result for blackbody radiation, the 

form is a general one. To see how it arises in a different context, 

consider a phototube with efficiency ~ illuminated by a light beam of 



fixed (for now) intensity I. The mean number of counts n in an 

interval T is then n = ~IT. Since we have somehow fixed the inten-

sity, n is constant in time, so the distribution of actual counts m 

detected in time T is given by a Poisson distribution: 

m (n) -n 
P(mln) = e • m! 

In practice, however, one (usually) finds that the intensity I, and 

thus n, are themselves fluctuating quantities. Thus to find the 

8 

total dispersion in the number of counts m, we must also average over 

the distribution of n's. Denoting such double averaging by(( ••• )), 

and using the results for the first two moments of a Poisson distri

bution with fixed n, viz. (m) = n, and (m
2
) = n2 + n, we obtain 

= ( n
2 

+ n ) - ( n )
2 

1- 2 -2] 
!!! n + Ln - n , 

(II. 7) 

where a bar indicates the result of averaging over the distribution 

of n. Rewriting in terms of intensity, this result is 

(II. 8) 

Thus far, the only content of Eqns. 11.7 and 11.8 is mathemati-

cal; they simply reflect the results of performing a double average. 

We now introduce the physics of the argument by exploring the origin 

of the intensity fluctuations. First note that if I(t) is 

.......... 
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produced by the output of one oscillator, 

then, regardless of the variation of the ~(t), the intensity is 

fixed, (I2(t)) = 12 , and we r~cover the counting statistics of a sim-

ple Poisson. This is not an artificial example, e.g., a gain-

stabilized laser is well approximated by such a description. If, 

however, I(t) is formed by the superposition of many sources j 

j=N (~t + i~.(t)) 2 

112 ~0c ~ E
0

e J , 
j=1 

I(t) = (II. 9) 

and if the ~j's are time-varying in a mutually incoherent fashion (as 

in collision broadening, for example), then the relative phases add 

in random walk fashion, there are large fluctuations in intensity 

(over the time scale of the ~.'s variation), and one can easily 
J 

13 ( k ) show that I (t) In this case, we have ~) 2 =; + n2 , 

in accord with Eqn. II.6. Since this limit depends essentially on 

the linear addition of the electric fields, the use of the expression 

'wave noise' for the second term is justified. 

We now return to our chronological development. In 1924, Bose 

showed that eqn. II.5 could be derived through the machinery of con-

ventional statistical mechanics, provided one regarded the photons as 

indistinguishable particles. In the same year, Einstein boldly 

extended Bose's result to the molecular gas, by using the density of 

states approporiate for massive (non-relativistic) particles and 
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requiring particle conservation. He showed in 192514 that these 

modifications did not affect the (particle + wave) form of the flue-

tuations. Therefore, he concluded that this must 

.express indirectly a certain hypothesis on a mutual influence 
of the molecules which for the time being is of a quite mys
terious nature ••• 

One can interpret part of the fluctuations in an analo
gous way by attributing to a gas some kind of radiation in a 
suitable way, and by calculating the interference fluctua
tions. I go into further details because I believe that this 
is more than an analogy. 

Mr. L. de Broglie has shown, in a very remarkable 
thesis, how one can attribute a wave field to a material par
ticle ••• 

Thus, for Einstein, Bose statistics implied wave mechanics, not vice 

versa. 

It is natural to ask "Why did Einstein not discover the HBT 

effect?" (Here HBT effect is defined as the use of photon fluctua-

tions in a light beam to determine the size of the source.) Einstein 

was obviously intimately acquainted with all details of photon flue-

tuation phenomena. In addition, much of his later life was devoted 

to pondering the apparent paradoxes of quantum theory; the interfer-

ence of photons produced from opposite sides of a star is a (less 

subtle) cousin to the Einstein-Podolsky-Rosen paradox. Of course, 

this is the sort of question that will never be definitively 

answered. 15 One response, however, that is certainly consistent with 

all known facts, is that Einstein was indeed aware of the HBT effect 

but regarded it as a trivial consequence of photon statistics. 

- J 
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.£• The Work of Hanbury-Brown--Twiss 

This section describes the application of intensity inter-

ferometry to astronomy, as pioneered by Hanbury-Brown and Twiss. 

Also in this section we present a derivation of the HBT result based 

solely on classical considerations, as well as an argument by Purcell 

that clarifies the role of photon counting in the HBT effect. An 

extensive (and very readable) account of the HBT technique may be 

16 found in The Intensity Interferometer by Hanbury Brown. 

17 In 1949, Hanbury Brown, Jennison, and Das Gupta measured the 

angular size of the radio sources Cygnus A and Cassiopeia A by com-

paring the noise correlations between two separated antennas. Since 

this method was based on firmly established radio frequency tech-

niques (the theory of bandwidth-limited Gaussian noise as detected by 

a square-law detector, see, e.g. 18 Lawson and Uhlenbeck ), their 

result occasioned little controversy. The extension of these methods 

to the optical dema'in, hewever, was quite a different matter. 

The following objections (among others) were raised: 1.) In his 

19 quantum mechanics text Dirac states "Interference between two dif-

ferent photons never occurs."2.) Two laboratory experiments had been 

performed that failed to observe correlations' in the photon count 

t 20 , 21 3 ) 1:' i 1 f i h h i (i h ra e. • ror opt ca requenc es, t e s ot no se .e., t e 

particle-like photon number fluctuations) would far exceed the wave 

noise. In the radio source case, the wave noise is the greater of 

the two, and indeed is solely responsible for the noise correlations. 
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It is instructive to examine these objections point by point. 

The first criticism simply results from quoting out of context. 

Dirac made this statement with reference to double-slit photon dif

fraction experiments, to refute the erroneous interpretation that 

diffraction results from the interference of two photon "waves". In 

fact, the diffraction persists to intensities so low that the chance 

of finding two photons simultaneously in the apparatus is negligi

ble.22 

The second objection would appear to be more substantial, based 

as it is on physical evidence. Here the fault is not a conceptual 

one, rather it is an experimental one. While the data as reported by 

these experiments are correct, it is possible to show (see, e.g. Pur

cell23 ) from the stated values of the resolving time and bandwidth 

(for both experiments), that their sensitivity is such that hundreds 

of years of observation time would be required to see the HBT 

enhancement. 

The third point is a real one, although again it is dispensed 

with through suitable design of the measuring apparatus. It is cer

tainly true that for visible light the shot noise is the dominant 

source of fluctuations. The "trick" lies in the construction of a 

detector that is sensitive only to the wave noise; this is precisely 

what Hanbury Brown and Twiss did. 

Finally, one might attempt to meet all objections of principle 

by the following reasoning (an argument by intimidation): F.irst, the 

existence of noise correlations was-established beyond doubt at radio 

- •' 
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frequencies. To apply the technique to electromagnetic radiation at 

other frequencies (higher or lower) we simply note that, according to 

Bohr, 24 

The typical features of electromagnetic fields do not depend 
on scale, since the two fundamental constants- the velocity 
of light c and the quantum of action h- do not allow any fix
ation of quantities of dimensions of a length or time inter
val. 

(Emphasis added) 

We now turn to a classical analysis of an idealized HBT experi

ment, as given by Hanbury Brown. 16 Consider the situation shown in 

Fig. 1, where two sources Pl and P2 are separated by ~ distance 2R. 

They may be regarded, for instance, as two atoms emitting light on 

opposite limbs of a star, radiating with frequencies~ and mz, and 

with random phases ~ 1 and ~2 , respectively. The light in each arm of 

the detector first passes through a polarizer, so that we may add the 

electric fields algebraically, not vectorially. This is simply for 

mathematical convenience. It next strikes an optical filter such 

that the light that is transmitted satisfies u;, == Wz == w ; the degree 

to which this condition is satisfied determines the spectrum of beat 

frequencies that our system must be capable of measuring. Assume 

that the sum of their signals is detected at both points A and B; 

both detectors are assumed to give an output proportional to the 

local intensity of radiation, i.e., proportional to the square of the 

electric field. (A phototube has this property.) The output of each 

detector is passed through the low-pass filters fi; as we shall see, 



these filters must be designed to pass frequencies in the typical 

range of U] - ~ while rejecting both de and high frequencies ~ ~ 

The photocurrent at A is then given by 

14 

(II. 10) 

where·KA is some constant of proportionality incorporating all 

relevant detector properties. Similarly, 

Writing U]tA1+~ 1= A1, and so on, we may write iA as 

(II. 11) 

2 2 } + E2sin (A2) 

= ¥zKA{ (E~+E~) - E~cos2 (2Al) - E~cos 2 (2A2) - 2E1E2cos(Al+A2) 

+ 2E1E2cos(Al-A2) } 

This result contains five terms. The first is just the averagedc 

current from the two sources in the absence of interference. The 

filter f can easily be designed so that this current is not passed. 

The next three terms oscillate at the sum frequencies of the two 

sources and thus are of order ~ a low pass filter will remove them. 

The remaining term is the output current off, denoted f(iA); it has 

_ _, .. 

.. 



a tim,e dependence - u;, - UJ:2 and thus may be regarded as a slowly 

varying beat frequency. A similar expression is obtained for f(iB) 

by letting A~B everywhere. 
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The key insight of Hanbury Brown and Twiss was to form the pro

duct of f(iA) and f(iB) in a correlator C, before performing any 

further data processing. The correlator C produces an output signal 

proportional to the product of the two input currents. Therefore, 

iC = f(iA)•f(iB) (II.l2) 

= KAI<aEiE~[cos(Al-A2) •cos(Bl-B2)] 

= K A KB E~E~{ cos [<Al-A2) + ( Bl-B2)] + cos [(Al_;A2) - ( Bl-B2)]} 

Expanding the arguments of the cosines, 

(Al-A2) ± (Bl-B2) = u;_ (tAl ± tBl) - ~(tA2 ± tB2) (II.l3) 

(' + [< p 1 -p 2) * ( p 1 -p 2) J 

Since the sources 1 and 2 are assumed independent, p1 and p2 are 

mutually random variables, so that an ensemble average over terms 

linearly proportional to them gives no contribution. Therefore, the 

first term in eqn II.lO, which from the results of eqn. II.ll con

tains a cosine of p
1
-p

2
, must vanish over long observation times. On 

the other hand, the second term is independent of the phases! Thus, 
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the time-averaged ic is proportional to only this last term: 

(II. 14) 

Specializing for convenience to the specific geometry illustrated in 

Fig. 1, where A is on a line perpendicular to the line joining Pl and 

P2, and B is slightly displaced parallel to the same line, we find 

for the quantity in square brackets above (the difference of the 

differences in path length) 

[ (tA1-tB1) - (tA2-tB2) J = [ (tA1-tA2) - (tB1-tB2) J (II. 1S) 

- { < a > - [-Jn2
+<d-R) 

2 
- ~2+(d+R)~} 

;: 2Rd 
D 

Therefore, one can write for the final form of ic: 

(II.16) 

That is, the noise in the two channels will be correlated provided 

dAQ ~ 1, where 9 is the angular size of the star. 

this requires d ~ 100 m per msec of arc. 

0 

For A :: 5000 A, 

This argument, while straightforward, may be sufficiently com-

plicated algebraically that the physics is no longer manifest. Qual-

itatively, the HBT effect results as follows: A star consistsof a 



. -. 
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macroscopically large number N of independent radiators, whose elec-

tric fields add linearly. (Eqn II.9 is an example of such a sum.) 

Since the phases ¢i are mutually incoherent, this produces an inten

sity subject to large fluctuations over time. However, these flue-

tuations cannot occur over arbitrarily short times. Rather, there 

exists a time scale given by the inverse bandwidth of the light 

admitted to our system. (This is true since the bandwidthLl~ deter-

mines the range of frequencies that can beat against each other to 

create a time-varying intensity envelope.) Thus if we measure the 

noise at timet, then again at timet +,"t, it is unlikely to have had 

1 
changed very much if ~ < Ll~· Similarly, referring again to Figure 1, 

if B is sufficiently close to A, the noise profile, created by the 

sum over the phase of arrival times tBi for each independent source 

i, will not be drastically different from the corresponding sum con-

ducted at the point A. Only as d becomes significantly greater then 

pt. will the noise at B become different from that at A. 

23 To cemplete this section, a derivation due to Purcell is given 

that makes clear the connection between two-channel correlated noise 

and eqn II.6 of the previous section. We present here a version of 

this argument specialized to detectors of zero resolving time; again 

this is for simplicity only. Consider a light beam of one polariza-

tion with intensity such that a phototube placed in the beam counts n 

photons per unit time. If the light is from a chaotic source (e.g., 

a thermal one), the fluctuations in this rate are given by eqn II.6, 

i.e., ( f../J.n) 2) == ;(1 + n). Split the beam with a half-silvered mirror 
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so that one beam contains an intensity of n 1 , the other contains n
2

, 

with n = n
1 

+ n
2

• The fluctuations in each of the split beams are 

also governed by eqn II.6 However, we could connect our phototube 

outputs for 1 and 2 together (count in the OR mode) and demand that 

we.recover the fluctuations resulting from a total of n photons. 

Mathematically, 

(II. 17) 

but 

Substituting n
1 

( 1 + n
1 

) for n
1 
's mean-square dispersion, and simi

larly for n
2
's, one obtains: 

(II.18) 

Thus, the fluctuation formula for Bose-Einstein statistics leads 

directly to correlated noise counting rates, without the need for the 

intermediary classical wave picture. 

D. Intensity Interferometry in Particle.Physics 

This section develops selected aspects of Bose-Einstein statis-

tics as applied to particle physics. This material is intended to be 

introductory only; most results specific to RHIC are deferred until 

Chapter Five. Here we will show that correlations between identical 
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pions are determined by the properties, in particular, ~he space-time 

extent, of the pion source, thus providing a strong analogy to the 

role of photon correlations in the HBT effect. However, while analo-

gous to the HBT technique, in another sense two-pion correlations are 

complementary, in that the correlations appear in the relative 

energy-momentum of the detection process, rather than in the distri-

25 26 bution in space and time of arrival at the detector positions. ' 

Similarly, while the derivations of the previous section relied upon 

either classical wave interference or (non-classical) particle number 

fluctuations, the approach here will be dominated by quantum mechani-

cal indistinguishability, which in turn implies symmetrization of the 

wave function. Nevertheless, it should be remembered that these are 

all different methods of describing the ~ physical phenomena. 

The first application of intensity interferometry to particle 

physics was made in 1960 by Goldhaber, Goldhaber, Lee, and Pais27 

((!;.G;1.P). They studied the distribution of opening angles between 

pions from the annihilation of 1.05 GeV/c p's on protons in a propane 

bubble chamber. It was found that the mean opening angle for like 

pion pairs was significantly smaller than that for unlike pion pairs. 

GGLP explained this in the framework of the Fermi statistical 

28 model, with the additional requirement of symmetrization between 

like particles. To see how this comes about, consider first the 

expression for the differential cross section d~ to produce N parti-

cles from a reaction with total four-momentum PTOT: 



20 

do- = c p (.Q.) • 
N N l- 3 j-. 

i=N V d pi 4 n ·-6 < 
i=1 ( 2n) 3 2Ei 

i=N 
PTOT - ~ pi ) 

i=l 
(II. 19) 

Here CN is a normalization constant, V is the quantization volume, 

and p. =(E.,~.) is the four-momentum of the i-th particle. The 
~ ~ 1 

product in brackets, along with the delta-function, is simply the 

available N-body phase space. PN(il) represents the probability that 

all N particles are simultaneously in the reaction volume ~, thus 

(II. 20) 

If one assumes the N particles are statistically independent, the 

i=N 
tN = n 

i=1 

In this case, it is apparent that PN(a) = (~V)N. What GGLP showed 

was that the distribution of pion pair opening angles required modi-

fying !N by .symmetrizing the product wave function between like pion 

pairs. After doing so, the phase-space integrals were evaluated via 

Monte-Carlo integration, leading to good agreement with the observed 

opening angle distributions for values of the reaction volume radius 

R between Q.~ and 0.7~, or roughly between .7 and 1.0 fm. (It 
mnc mnc 

28 is interesting to note that in his 1950 paper, Fermi~makes explicit 

note of neglecting like-particle symmetrization requirements. It 

does no disservice to the authors of Ref. 27 to suggest that, had the 

available data warranted such a treatment, Fermi himself may have 

made a GGLP-style analysis of meson correlations.) 

... , .. 
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29-31 Further pp experiments at higher energies found radii simi-

lar to those obtained by GGLP. Bartke et a1. 32 were the first to 

examine the mean opening angle as a function of the relative momentum 

between the pions. Again, they found R = 1 fm, in this case for the 

- + 
reaction np~p4n 3n • The extension to hadron-hadron reactions with 

three and even four identical pions in the final state was performed 

by Boesebeck et a1. 33 

All of the above experiments relied on some variant of a Monte-

Carlo integration over the phase space of the N - 2 "other" particles 

in a N particle event. This procedure becomes increasingly burden-

some as the eM-energy, and hence the event multiplicity, increases. 

One may turn this fault into a virtue by taking the N ~ oo limit, 

i.e., by applying the techniques of statistical mechanics. For exam-

34 ple, Knox showed that the multiplicity distribution of pions in p+p 

reactions at 405 GeV is not Poisson, but is well described by assum-

ing the pions form a partially degenerate boson gas. However, pre-

cisely because the statistical assumption appears valid, more 

detailed dynamical information is difficult to obtain by such 

integral methods. 

Fortunately, Kopylov and Podgoretskii, in an extensive series of 

35-41 articles, · showed that this difficulty may be avoided through use 

of the two-pion correlation function, roughly defined as 
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(II. 21) 

Under appropriate conditions, it can be shown that: 

(II. 22) 

and that c
2 

is proportional to a constant plus the absolute square of 

the Fourier transform of the space-time distribution of pion sources, 

(II.23) 

We may understand this result qualitatively by applying the 

rules of quantum mechanics for indistinguishable events to the exper-

iment illustrated in Fig. 2. 
~ 

Assume that a detector located at x
1 

~ 
measures a pion of momentum p 1 in coincidence with the detection of 

~ ~ 
a pion of momentum p 2 at location x

2
• (The requirement of a coin-

cidence in time is not needed to insure some condition like 

/1E•l::,.t : 11. The resolving time must simply be adequate to assure us 

that the detected pions came from the same nuclear collision, which 

in turn implies that their wave-packets were once very near each 

other.) If the source of the pions has some non-zero space-time 

extent, there are two ways that such a two-pion event may occur: 

~ ~ ~ 
Either a pion with p 1 was emitted at r 1 and a pion with p 2 was 

- ,• 
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emitted at 7'2, £!:. the pion with 1
1 

was emitted at 7
2 

while the pion 

. ~ ~ 
w1th p

2 
was emitted at r

1
• These two alternative histories of the 

system are, in general, indistinguishable. Therefore, we must add 

the amplitudes before squaring the matrix element. Writing 

~ ~ 
pixj = pi•xj - Ei tj, and assuming the pions are described by plane-

wave states, the amplitude for a two-pion event is given by: 

We note in passing that adding the amplitudes for indistinguishable 

processes has led us automatically to write a wave function symmetric 

under the particle interchange r
1 

<--> r
2

, thereby making contact 

with the approach of GGLP. The probability is then proportional to 

lir<"t1,"t2> 12 
== 1 + cos[(p2-p1)(r1-r2>] (II. 25) 

Assuming the pion sources act independently, and are distributed in 

~ 
space and time according to a distribution function f(r,t), the 

result for the two-pion counting rate is found by integrating over 

the distribution of pion production sites ri: 

(II. 26) 

~ 
where p, q, and q

0 
are as given above. 

As an example, assume the distribution of sources is described 

. . ~ -r2 /R2 -t2 /'T!2 
by a Gaussian in space and time, that is, f(r,t) oc e • 
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The correlation function is then given by 

(II. 27) 

Thus, for large momentum and/or energy differences, c
2 

approaches 

1 one. It shows an enhancement for relative momenta q : R and for 

1 i - 1 re ative energ es q0 - ~· It is just when these conditions are 

satisfied that the Heisenberg relations insure· that the alternative 

propagation paths are truly indistinguishable. This provides another 

quantum mechanical interpretation of the classical HBT effect, since 

d9 when (see Eqn. II.16) ~ ~ 1 we can no longer tell which photon came 

from which side of the star. Also note that for any source density 

function that satisfies 

~ ~ 

P2(r1,t1;r2,t2) (II. 28) 

with 

Jp(t, t) d4
r == 1 

,-+ 
we have c2{q==O,q0==0) = 2, in accord with the general rule that the 

probability of finding two identical bosons in the same state is 

twice that for non-identical particles. 42 

Since Kopylov's and Podgoretskii's initial suggestion, correla-

tion function methods have become an accepted if not widespread tool 

43-53 + - 55 of hadron-hadron physics, and recently e e annihilation, 

where a 3-pion correlation function has also been measured. Gen-

erally, the sizes and lifetimes so obtained are consistent with 

R • ~ • 1 fm. (See Ref. 56 for a recent review.) In RHIC, both 

- - l" 
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57 58 59-62 theoretical ' and experimental work indicates that two-pion 

measurements are capable of providing valuable information about the 

pion source. This thesis describes the results of such an experi-

ment.· 

We close this chapter with two observations. First, the results 

of this section should make it clear that intensity interferometry is 

not unique to bosons. Had we considered, in the derivation of Eqn 

II.24, the simultaneous detection of two fermions (in the same spin 

state), the plus sign in the amplitude would have been replaced by a 

minus sign in this and the following equations, leading to an anti-

correlation at small relative momentum. Such an effect has been 

predicted5 ' 63 , 64 and observed6 for two protons emitted in heavy ion 
I 

collisions. In this case, however, the effect of anti-symmetrization 

is outweighed by the final state coulomb and strong interactions 

be·tween the two protons. It should also be apparent that correla-

tions between fermions is limited to the particle regime; there are 

no (macroscopic) ·fermion "waves" since Fermi statistics prevents the 

occupation number of any one mode from ever exceeding two (including 

the spin degeneracy). 

As our second observation, we note that the discussion of the 

~ 
properties of c2(q,q0) is a heuristic one in that many potentially 

complicating factors have been neglected. For instance, the final 

state interactions between the two pions, and between the pions and 

the residual matter of the collision, have been neglected. 58 A more 

fundamental complication is the assumption of statistically indepen-
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dent emission of pions by a distributed source. This is clearly an 

approximation based on the relative scale of the pion wavelength vs. 

the spatial extent of the source that must be examined case by case. 

Finally, the fact that pions are bosons implies that it is (in prin-

ciple) possible to construct states of the field that exhibit classi-

cal properties. For example} if the source of the pion field may be 

treated as c-number, the resulting pion state is a coherent one of 

indefinite particle number. Such a state would show no GGLP effect, 

even though the role of Bose-Einstein statistics has been fully 

incorporated in its construction. (The optical analog of this pion 

state is the field from a gain-stabilized laser, which was shown in 

the Section B of this chapter to exhibit classical, not Bose

Einstein, particle-number fluctuations.) Many authors58 , 65- 70 have 

examined the possibility of coherence and its experimental signature 

in two pion interferometry. Theinterpretation of present evidence, 

however, is complicated by experimental systematics, 48 and by unob-

71 served dynamic effects, it therefore remains inconclusive. 
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CHAPTER III 

EXPERIMENTAL APPARATUS 

The experiments described in this thesis are high-resolution 

studies of pion correlations from the reactions 

1.8 A•GeV 40Ar + KCl ~ 2n± +X and 1.8 A•Gev 20Ne + NaF ~ 2n- +X. 

We elected to measure pion pairs in a relatively small region of 

phase space with high statistics and good (absolute and relative) 

momentum resolution; in this sense our results are complementary to 

streamer-chamber measurem~nts59 • 61 at this energy. In particular, we 

studied pions emitted near 90 degrees in the center-of-mass, since at 

this angle the effects of strong and Coulom:b interactions with the 

spectator nuclear matter are most susceptible to analysis. 72 Such 

pions appear near 40 degrees in the laboratory with momenta peaked 

' i 
about.300 MeV/c. Therefore, they may be momentum analyzed by simple 

magnetic spectrometer syst~ms. This chapter provides a brief 

description of the experimental hardware and on-line' data acquisition 

software. The discussion'of•off-line analysis is presented in 

Chapter IV. 

A. Beam Transport and Monitoring 

All measurements were made at the Berkeley Bevalac. FUlly 

stripped 8.5 A•MeV 20Ne or 40Ar from the SuperHILAC are injected into 

the main ring of the Bevatron, where they are accelerated ·to · 

1.8 A•GeV. At this energy, the repetition rate is 10 pulses per 

27 



minute. Following resonant extraction, the beam is transported to 

our target via a conventional beamline of magnetic dipoles and qua

drupoles. The final quads are located approximately 5 meters 

upstream from the target; typical beam spots are 1 em. x 1 em. 

28 

The targets are chosen to provide an essentially equal-mass sys

tem with respect to the projectile, i.e, a KCl target is used for 

40Ar beams and a NaF target for 2~e beams. The difference between 

the resulting nuclear systems and the exactly symmetrical case is 

expected to be small. In particular, pion source size parameters 

should not be affected since they are determined by geometric, not 

isotopic, properties. A target thickness between 0.5 and 1.0 gm/cm2 

provides a good compromise between the conflicting requirements of 

high event rate and low multiple scattering in the target. 

The beam intensity is monitored by an ionization chamber located 

at the end of the vacuum pipe, approximately one meter from our tar

get. The output current is measured by a Ortec 439 current integra

tor, which converts the ion chamber current to pulses that are read 

by a CAMAC scaler. The ion chamber calibration is obtained from a 

fit to all previous measurements by our group and others, performed 

over a wide variety of energies and intensities. The response is 

linear and in excellent agreement with the calculated calibration. 

FUrther details are presented in Appendix A. Typical intensities 

range from 108 40Ar per spill to nearly 109 20Ne per spill; a spill 

is slightly less than one second. 

. l 
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B. The Spectrometer 

A plan view of the spectrometer is shown in Fig. 3. Pions pro

duced in the target have their incoming trajectories determined by 

the two small MWPCs, are bent by the magnetic field, and then pass 

through the two large MWPCs, thus defining their outgoing traj ec

tories. A lead collimator, 30cm from the beamline and 20cm thick, 

has an opening angle of 10 degrees, centered about 45 degrees with 

respect to the beam axis. Due to the target spot size, the range of 

accepted pion laboratory angles is from 37 degrees to 53 degrees. 

Immediately following the lead wall are two trigger counters S1 and 

S2; they provide the START signal for time-of-flight measurements. 

Behind MWPC4 is an two-layer array of counters, first B1 to B10, fol

lowed by A1 to A8. The geometric overlap of Ai with Bj segments the 

active area of MWPC4 into 17 strips A~, k = 1~17. Two-pion events 

are defined by requiring two separate AB combinations in coincidence; 

such a coincidence is also the -STOP for the time-of-flight. FUrther 

details are presented in the "Fast Electronics and Computer" section 

of this chapter. A cylindrical array of tag counters surrounds the 

target to provide event-multiplicity information. We now present a 

more detailed description of the individual components of the spec-

trometer system. 

B.1. The JANUS Magnet 

The magnet used (JANUS) is a standard Bevatron H-magnet with a 

55.9cm x 167.6cm (22" x 66") pole-tip. The gap is shimmed to 21.5cm 

to allow insertion of MWPC2 between the pole-tips. All runs were 
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made with a 9.0 kilogauss field, which corresponds to a current of 

roughly 500 amperes. The field was measured indirectly by monitoring 

the voltage drop across a shunt resistor, and directly via a Hall 

probe located on the bottom pole-tip. The field varied by less than 

.2% from run to run. 

B.2. Scintillation Counters 

The active area of S1 was 27cm x 20.3cm, with a thickness of 5 

mm. S2 measured 32cm x 15.2cm, with a 7mm thickness. Both were 

viewed with XP2020 phototubes equipped with active bases designed for 

high count rate enviroments. Typical counting rates for S1•S2 were a 

few times 105 per second; individual rates, particularly for Sl were 

even higher. 

All AB counters were 5mm thick, with a vertical active height of 

30. Scm. Three different widths- (33cm, 19.1cm, and 9. Scm) were used 

to create the staggered hodoscope array as shown in Fig. 3. These 

counters were equipped with RCA 8S7S two-inch phototubes, mounted in 

the LBL standard base assembly. 

The small tag counters Ti, i = 1~14 measure 47cm x 12cm, are 

3mm thick, and are mounted in a cylindrical array of radius 30cm just 

downstream of the target. Each has an angular width of roughly 22.S 

degrees so that complete azimuthal coverage would require 16 

counters. The two counters in the direction of JANUS are missing, 

since, if present, the pions accepted in the spectrometer would pass 

through their additional mass, greatly decreasing our momentum reso-

- • ;J 
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lution. The T counters use EMI 98438 integral tube and base assem-

blies. Each set of three T counters is covered by one C counter, 

with active area 57cm x46cm and thickness lcm. The C-counters are 

viewed with RCA 8575 phototubes. 50 mil of copper are placed before 

the T-counters, and t" of copper after them, to reduce the background 

from soft x-rays, heavy fragments, etc. 

B·l· Multi-wire Proportional Chambers 

The four MWPCs form the heart of the spectrometer, since they 

provide the spatial information for each pion trajectory. The two 

small chambers MWPCl and MWPC2 are identical; each has an active area 

of 30.2cm x 14.2cm and three planes of sense wires at 

45°, 90°, and 0° with respect to the horizontal. Similarly, the two 

large chambers MWPC3 and MWPC4 are identical; each has an active area 

of 200cm x 25cm with three planes of sense wires at 

+30°, 90°, and -30° with respect to the horizontal. Aside from the 

differing sense-plane angles between the small and large MWPCs, the 

internal details of all four chambers are the same: the sense-planes 

are separated by 1.4cm, the wire separation is 2mm, and each chamber 
. 2 

has an effective mass for multiple scattering of roughly 35 mg/cm • 

All wires are read out with the modular electronics system described 

in Ref. 73. 

£• Fast Electronics 

Fig. 4 illustrates the overall flow of control in defining an 

event. The sequence begins when two pions pass through Sl and S2. 
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The thresholds on these counters are set to correspond to twice 

minimum ionizing pions, thus providing a strong bias towards two-pion 

events. Two signals are taken from 82; the first passes through a 

high-threshold discriminator 82high to enforce the above requirement; 

the second fires a low-level discriminator 82
1 

which defines the 
ow 

timing of the coincidence signal 8 = 81•8210w•82high•(MA8TER GATE). 

This process reduces time slewing from pulse-height variation to a 

minimum. It is important to do so since since 8 determines the tim-

ing of our event. 

Each geometrically allowed AB combination is provided with a 

coincidence circuit. Fig. 4 shows only two of these, Ai·Bj and 

A
1

•Bm· In reality, there are 17 such combinations. A majority logic 

box creates the signal fl = (AB)k• (AB)n' k :f n, i.e., fl means two dif

ferent elements of the AB array have fired, indicatingapair of 

pions has successfully traversed the spectrometer. A single-pion 

trigger is simply set by reducing the majority level requirement to 

one, so that only one AB-combination is required. 

A final requirement for a event is the signal FO a Fast Out from 

the MWPC's. Due,to restrictions in the MWPC electronics, this signal 

is defined as 

where fi is the fast out for the i-th plane. (The planes are num

bered in the order they are traversed, thus plane #1 is the first 

plane in MWPC1 while plane #12 is the last plane in MWPC4.) The 

important point here is that any one of the three planes in MWPC1 
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(and similarly for MWPC2) is sufficient to (help) create a FO. 

Therefore, it is imperative that the inefficiencies of these planes 

be very low to prevent a high trigger rate on useless events. 

The event definition is thus EV = S•ll•Fo. When this condition 

i.s satisfied, A WRITE gate is sent to the MWPC electronics, enabling 

the read-out of struck wires. A signal is also sent to the CAMAC, 

initiating the read-out of all TDC, ADC, and pattern word data for 

that event. Simultaneously, the fast electronics is gated off to 

prevent further triggers until all data has been read. (This enters 

the EV definition through S.) 

The readout of the CAMAC is controlled by a Micro-programmed 

Branch Driver (MBD) operating the Los Alamos data acquisition system 

"Q"• 
74 The MBD writes the event data into a 800 word buffer of a 

PDP-11/45. When this buffer is full (typically it contains 3-5 

events), the Q system writes it to magnetic tape. The maximum 

acquisition rate. is approximately 200 events per spill due to tape-

speed limitations. 



CHAPTER IV 

DATA ANALYSIS 

This chapter contains a step-by-step description of the off-line 

data analysis procedures. The data written to tape by the on-line 

data acquisition system pass through four levels of analysis. The 

first level, performed on the PDP-11 used for data acquisition, 

selects all reasonable candidates for a n-pion event, where n is 

greater than or equal to the trigger requirement for that particular 

run. This process, known as "pruning", writes an output tape which 

is then analyzed on a VAX system by a second level of routines. At 

this stage, all good events are found, momentum analyzed, and written 

to a tertiary file for further processing. This file is then used by 

the third level of programs to create the co.rrelation function, which 

in turn is processed by the fourth level of programs to obtain pion 

source parameters by fitting various distributions to the correlation 

function so derived. 

We. now turn to a more detailed examination of each of these 

steps. Since observation of the Bose-Einstein enhancement depends in 

an essential fashion on the data analysis, the discussion, particu-

larly for the third level, will be quite extensive. Many of the con-
.... • 

elusions presented in the following sections are based on the results 

of a Monte Carlo written to simulate the spectrometer syst~m. The 
\..r 

details of this Monte Carlo code are presented in Appendix c. 

34 
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A. First Pass: Effective Edge Approximation 

Analysis begins by finding all hits in the four MWPC's. Under 

ideal conditions, a charged particle passing through one of our 

MWPC's will fire at least one wire in each of the three sense planes. 

These three wires then form a triangle, localizing the trajectory to 

1-2mm. However, operating conditions, particularly for MWPC1 and 2, 

are far from ideal, in that they are exposed to a flux of charged 

particles of 105-106 s-1• The plane-by-plane efficiency is then sub

stantially less than 100%. This fact, combi'ned with the restriction 

on the Fast Out requirement mentioned in the "Fast Electronics" sec-

tion of Chapter III, implies that many of our otherwise good two-pion 

triggers will have only two of three wires present per hit in a given 

MWPC. It is therefore necessary that all two-wire crossings in the 

MWPC's also be considered as hits, provided that these crosses are 

unambiguously determined, i.e., that they are not the vertices of a 

large triangle. 

Once all hits are found, track selection begins by con~idering 

all possible ingoing rays to the spectrometer, and all outgoing rays 

from the spectrometer. An ingoing ray is defined as a combination of 

any hit in MWPCl with any hit in MWPC2. Similarly, an outgoing ray 

is defined as any hit in MWPC3 combined with any hit in MWPC4. The 

ingoing rays, projected back to the target, are required to originate 

from within lOcm of the nominal beam-spot location. The outgoing 

rays are required to have an exit angle less than the minimal 

entrance angle to the spectrometer, i.e., they must correspond to a 
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potential trajectory for a charged particle bent in the appropriate 

direction. 

Each ingoing ray is then paired with each outgoing ray to deter-

mine if they lie on an allowed trajectory through the magnet. This 

determination is made using a simple geometric requirement in the 

effectiv.e edge approximation, as described· in Appendix B. The effec-

tive edge is calculated via three separate prescriptions. The first 

uses an analytic result 75 for the additional distance beyond the 

pole-tip edge Leff over which the field is considered constant (See 

also Figure 6) : 

Leff = 2~ [ 2 - ln( l!s>] 

tn this: expression s is' a solution to 

s =tan( s- ~h), 

h is the vertical distance between the pole-tip surface and the 

center of one of the coils, and d is the gap. The second method of 

obtaining Leff uses the Monte Carlo to calculate actual trajectories 

using the full field map. For a track of momentum p, traversing a 

pole-tip of width 2L with a central field of B , the effective edge 
0 

is then given by 

2( L + Leff) = 
plsin9 - sin9inl out 

eB 
c 0 

(IV.l) 

where 9in and 9 are the entrance and exit angles, respectively, to. 
out 

the field region. (See Appendix B for further details.) Finally, one 

may define the effective edge as.that point where the field falls to 

- ,. ~· 
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half the central value. For the JANUS magnet, these three methods 

agree to within lmm. 

Once the effective edge has been calculated, Eqn. IV.! may be 

inverted to give the momentum as a function of 8. and 8 • These 
~n out 

angles, of course, are obtained from the MWPC information. Such a 

procedure is accurate to about 1.5%. This number is not the momentum 

resolution; it simply represents the intrinsic accuracy of the effec-

tive edge approximation for ideal trajectories as compared to propa-

gation in the complete field map. In practice, the fact that MWPC2 

lies within the fringing field means that the measured Sin is not 

identical to the asymptotic value; this effect degrades the accuracy 

of .tbe method to roughl,y. 2. 5;. 

Once a candidate trajectory is obtained, and its momentum caicu-

lated, the motion in the vertical plane is checked for consistency 

with the effects of vertical focusing from the fringe field. Specif-

ically, the hits in the first two MWPC's are used to predict the 

vertical location of the hits in the last two MWPC's. This is done 

using simple first-order ray optics; the actual calculation is found 

in Appendix B. A cut is then made on the difference between the 

actual and the calculated vertical position in MWPC3 and MWPC4. 

If the number of surviving candidates is greater than or equal 

to the trigger requirement (i.e., at least one track for a singles 

run, at least two tracks for a two-pion run), the event is written to 

an output tape for further processing. The number of pruned events 

ranges from 5 to 15% of our on-line triggers, depending on MWPC 
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efficiency. The major sources of bad events are inadequate chamber 

information and single-pion events simulating two-pion event signa-

tures in the AB array by creation of delta rays, which then fire an 

adjacent counter. 

B. Second,· Pass: Chebyshe'! Parametrization 

The output of the pruning program is a tape containing one 

record for each event. The event record consists of all the original 

event information, i.e., hit wires, and ADC's and TDC's for all the 

counters. Additionally, the tracking program specifies which wires 

are associated with each good trajectory candidate it finds. The 

purpose of the second stage of analysis is to calculate the momentum 

and· initiaL target position of each track as accurately as possible, 

as well as making further cuts on the da.ta based on initial position 

at the target (=: "tTARG), counter pulse heights, time-of-flights, 

etc. The algorithm chosen to calculate the derived quantities such 

as momentum and target location is based on a Chebyshev parametriza

tion of known (Monte Carlo) trajectories. Since this method is well 

described elsewhere, 76 , 77 only the rudiments of the technique will be 

presented here. 

A·~· Discussion of the Method 

Assume that a Monte Carlo describing a spectrometer has gen

erated a set of N events labeled by p, p = 1 to N, written as 

"tp • [ X~ ,Y~] . Here X is used to denote the independent quantities, 

and Y the dependent quantities. For example, for real events in our 

.. ,• 
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spectrometer, the set of struck wires for a trackdefine 

Y = (Xl'X2, ••• ,x12), and quantities such as ""f and 'tTARG form Y. 
(In the Monte Carlo, of course, this role is reversed.) What we seek 

is some algorithm that, given Y, returns Y, that is, Y = F(X). To 

do so, the dependence of Y upon X observed in th~ Monte Carlo events 

is used to parameterize this dependence for a general X. 

This parametrization is in terms of a set of reduced variables, 

obtained by the following prescription: First choose the origin for 

the Y's at their center-of-gravity, that is, form 

-:;;;a X - (f) ' (IV. 2) 

where the average is over the set of N Monte Carlo events. Then per

form· ·a pri~c·ipal ·component analysis on 'the "t , s to find the most 
.· ~ . 

significant linear combinations of x-basis components. This defines 

~ 
a new basis of event vectors f~ in terms of a real orthogonal matrix 

.&.: 

(IV.3) 

A benefit of the principal component analysis is that the first com-

ponent off is the most significant, i.e., shows the most variation 

over the data set, followed by the second component, and so on. It 

~ is often the case that not all components of x are independent; the.n 

the least significant components of f are fixed. For example, if we 

~ take x as the set of twelve reduced wire numbers for a trajectory 

through our spectrometer (i.e., one hit per sense plane), then there 

~ are at most eight independent components off, since specifying the 
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wire numbers of any two sense planes in a MWPC essentially determines 

the wire number of the third sense plane, to within small corrections 

due to parallax, finite spatial resolution, etc. Thus, components 

9 ~ 12 of r should show no variation over the data set, and Eqn. 

IV.2 insures that they are in fact near zero. The 7's are then 

further transformed to restrict their variation to the interval 

[-1,1], i.e., for each component i, 

pi 
5 

max[ltil] 
(IV. 4) 

The maximum is taken over the set of Monte Carlo events. 

Once theft's are found, an expansion in Chebyshev polynomials 

is used to parametrize the dependence of. theY' s upon the X' s. If 

··~. 

the first m components of p are used in the expansion, we have 

Y(X) = L C(i1,i2, ••• ,im)Ti <p1)Ti <pz>···Ti <pm)'(IV.5) 
i 1, i 2, ••• , im 1 2 m 

where T (t) is a Chebyshev polynomial of order m. Chebyshev polyno
m 

mials are used for the expansion since they minimize the maximum 

deviation of the fit from each data point, rather than some "global" 

quantity such as chi-squared. This is precisely the property we 

desire for parametrizing tracks, i.e., we seek a good approximation 

to theY's for each event. 

~·l· Results of Chebyshev Parametrization 

In practice, a guess for the various Y~'s is first made. The 

Chebyshev parametrization is then made for the difference between the 



~- .. .. 

41 

guess and actual value. For example, a first guess to the momentum 

is given by inverting the effective edge formula Eqn IV.1. Provided 

the guess introduces no pathological biases, this procedure results 

in a much more rapid convergence of the above series. 

The coefficients of the Chebyshev series are determined by con-

sidering 500 Monte Carlo events, distributed preferentially over the 

boundaries of the JANUS spectrometer acceptance. Since the Chebyshev 

parametrization has the mini-max property only over the interval 

[-1,1], the physical acceptance boundaries must be slightly expanded 

in selecting the Monte Carlo events. This insures that the reduced 

variables f~ encountered for real events will always be within the 

applicable range. of the fit._ The fitted quantities are the spherical 

components of the initial momentum vector (in the laboratory system)·. 

~ 
p, and the initial x andy coordinates at the target. (The orienta-

tion of the coordinate system is shown in Fig. 3) An expansion of 

roughly 25.terms suffices to obtain the accuracy given in Table 1 

below: 
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Table 1 

Results from the Chebyshev Parametrization of 
Ideal Monte Carlo Tracks 

Quantity .. ( (MC-fit)) ( (MC-fit) 2) 

~ 
-IP I (MeV/c) -0.01 2.46 

9 (degrees) 6. 43 x10-5 0.060 

'/> (degrees) 3.19 X10-5 
0.040 

init (em.) 1. 60 X10-4 0.253 X 

init 
(em.) 1. 60 X10-3 0.077 y 

The above results are for ideal Monte Carlo tracks, i.e., sto-

chastic effects such as multiple scattering and energy loss have been·. 

turned off. Thus, Table 1 provides an indication of the intrinsic 

accuracy of the Chebysh·ev fit. Inclusion of*multiple- sca·ttering and 

energy loss in the target (here assumed to be 1 gm/cm2 KCl), S1 and 

S2 counters, MWPC's and the air determines the actual resolution 

obtained for the fitted quantities. These are shown in Table 2 

below: 

...... 
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Table 2 

Resolution for Fitted Quantities in Presence of 
Energy Loss and Multiple Scattering 

Quantity ((actual-fit)) ((actual-fit)
2

) 

~ 
I PI (MeV/c) 3.74 3.79 

9 (degrees) 0.042 1. 01 

'/J (degrees) 5.63 X10-3 1.39 

init (em.) -0.053 1.09 X 

init (em.) 0.046 0.893 y 

Note that, due to multiple scattering and energy loss in the 

target arid the S counteis, the moment~m of. a typical .pion is. reduced 
~ . 

ill PLABI 
by not quite 4 MeV/c. Nonetheless, the momentum resolution--~-===-

IPLABI 
~ 

is, as a function of pLAB = IPLABI, everywhere less than 4%, as 

shown in Fig. 9. Also shown in Fig. 9 is the absolute resolution, 

i.e., <Tp a ( (LlpLAB) 
2

) 
11
2. The behavior of <Tp as a function of pLAB 

demonstrates the two sources of error in momentum analysis. At low 

values of pLAB' o-p is dominated by multiple scattering. As pLAB 

increases, the multiple scattering becomes negligible. However, high 

rigidity pions a~e bent less by our spectrometer, so that 2mm spatial 

resolution of the ~C's becomes important in determining the actual 

trajectory. The total contribution of these two competing effects is 

minimized for 250 MeV/c ~ pLAB ~ 450 Mev/c, which is the interval 

where the majority of our pions are found. 
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More relevant to the two-pion analysis is the resolution for 

relative momentum in the CM system. Various measures of this are 

presented in Figs. 10 and 11, as a function of the relative momentum. 

These results will be further discussed in the next chapter. 

B.3. Final Event Selection. 

Several cuts are applied to each track found by the pruning pro-

gram. First, the trajectory is projected to the AB-counter plane, 

and the expected AB-combination is predicted. The actual combination 

that was hit is required to agree with this prediction to within *1 

combination (to allow for finite spatial resolution, multiple 

scattering, measurement errors,etc.). The ADC for the A and B 

counters,.and the TDC for the combination inust be consistent with the 

signature of a pion in these counters. This eliminates protons (a 

+ problem only for n runs) and out-of-time pions (a problem only at 

the highest beam intensities). For the surviving tracks, a Chebyshev 

~ 
fit is then made to the initial momentum p and the initial position 

~ 
at the target x TARG" Additionally, the information in the first 

three MWPC's is used to predict the location of the hit for this tra-

jectory in MWPC4. Further cuts are then made as follows: 

~ 
The initial production point xTARG must be within the limits of 

the beam spot on the target. A typical x and y distribution of 

~ 
xTARG is shown in Fig. 12. The distribution is roughly Gaussian, 

and consistent with the observed beam spot location and size for 

that run. Thus, the mean value of xTARG reflects the fact that the 

beam was known to be· approximately 2-3cm nearer JANUS than the 

- . ~ 
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nominal beam-line axis. As an example, the cuts ·used for the distri-

butions of Fig. 12 were -1.2cm ~ xTARG ~ 6.8cm and 

-3.0cm ~ yTARG S 3.0cm. Next, based on the fit to the initial angle 

of the pion, a cut is made to eliminate all pions that would have 

passed through the lead collimator. Finally, the predicted value of 

the MWPC4 hit is compared to the actual value, and a cut is made on 

this quantity. 

The above cuts are applied independently to each track in an 

event. In addition, two cuts are made on the relative orientation of 

the two-pion events. The first such cut requires that the tracks be 

separated by some distance R in all four MWPC's. This cut insures 
sep 

that the cross-finding procedure described in Section A of this 

chapter has not somehow created a second track from the wires of a 

single particle event. Variation of R thus provides some indica-
sep 

tion of the frequency of fake track generation. Normally, R is 
sep 

set to 1.5cm. A second cut is made on the separation at the target 

-+ -+ -+ of the two tracks, i.e., on x e xTARG - xTARG • Presumably, the 
sep 1 2 

distribution of '£ will be narrower for two pions created in the 
sep 

same nuclear collision than for two pions created in separate colli-

sions at different points in the target. We may test this hypothesis 

by forming the "t distribution for real two-pion events, and comsep 

paring it to the distribution generated by taking 7TARG and 'tTARG 
1 2 

from different events. The effect is particularly dramatic for the 

y-projection of this distribution, shown in Fig. 13 •. While not as 

striking as the y-projection, the x-projection is also narrower for 
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real events as compared to random events (a FWHM of 5.2cm as compared 

to 6.3cm). 

The events that pass all cuts are written to a disk file for 

further processing. This forms our data base of good two-pion events 

from which pion source parameters are extracted through a correlation 

analysis. 

c. Third Pass: Generation of the Correlation Function 

At this stage of the analysis, we have a file of correlated, 

momentum-analyzed, two-pion events. In this pass, the set of two-

pion events is used to construct the correlation function (defined in 

Chapter II). Since there is a variety of prescriptions for this con-

struction~ and ~ince there are some subtleties involved, we begin 

this section with a more detailed. examination of the correlation 

function. 

In general, a normalized two-particle correlation function is 

defined as 

(IV. 6) 

( n (n -1)) . n n 
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~ ~ 
where A~ 0 for large values of lp 1 - p 21. In this expression, the 

number densities are defined as 

d3
n 1 d

3
cT --=-·--

dp3 cT dp3 

The presence of the factors involving the pion multiplicities insures 

that the numerator and denominator have the same normalization. They 

result from the definition of the one-particle inclusive and two-

·particle inclusive distribution normalizations, i.e., 

and 

In principle, one could construct the correlation function by 

directly measuring the two-particle inclusive, one-particle 

inclusive, and total cross sections, then computing the .ratio defined 

in Eqn. IV.6. In practice this is never done, for a variety of rea-

sons. First, there is the purely practical matter of obtaining suf-

ficient statistics in six-dimensional phase space. Second, it is 

known that, if the pions are well described by plane waves, then 

,.-+~ ~ ~2 
A(p l'p 2> = A(q0 ,q)= lp<q0 ,q) I , where p is the Fourier transform of 

the source density 
~ 

and q0 and q are defined in Eqn. II.22. (We will 

use these symbols, 
~ 

along with q • lql, for the remainder of this 

thesis.) Finally, there are systematic uncertainties in a simultane-

ous determination of three different types of cross section. In 
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fact, the mere requirement of one pion versus two pions leads to a 

substantial trigger bias. The nature of this bias is discussed in 

detail in Appendix D, where it is analyzed in terms of impact parame-

ter selection. The results of that analysis indicate that a one-pion 

trigger for the JANUS spectrometer skews the mean impact parameter 

only slightly from.that of an inelastic trigger, whereas·the two-pion 

requirement (for Ar + KCl) is equivalent to the Streamer Chamber cen-

78 tral collision trigger o- = 180 mb., or b ~ 2fm. Thus, even in the 

limit of an infinite amount of data, a blind application of Eqn. IV.6 

would lead to an improper averaging over different event classes. 

Therefore, instead of direct application of Eqn. IV.6, we seek a 

method for describing all features of a relative momentum spectrum 

for a given reaction, except the Bose..:.Einstein correlations. The 

~ 
resulting distribution B(q

0
,q), called the background distribution, 

would then give the correlation function when compared to the actual 

~ 
spectrum,A(q0 ,q): 

~ 
A(qo,q> 

~ 
B(qo,q> 

There is a varie.ty of prescriptions for generating B, each with 

(IV. 7) 

application in various regimes. Before describing the method we 

chose to use in this work, it is illustrative to examine alternative 

procedures. 

The most direct approach to calculating B requires the presence 

of a complete dynamical model for the system being studied. 

is then explicitly calculated by removing the like-particle 
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symmetrization from the model. Not surprisingly, the only model 

amenable to calculation is the statistical model (see, e.g., the 

results of Ref. 32 ). The obvious difficulty with this method is 

the model-dependence. ~ 
The features in a c2(q

0
,q) so obtained meas-

~ 
ure the deviation of A(q0 ,q) from the model used for the phase space 

population; only in the limit of a perfect model, i.e., a complete 

theory, does the resulting c
2 

accurately reflect the Bose-Einstein 

enhancement. 

The remaining techniques for determining B all attempt to use 

the data directly to obtain the expected phase space distribution for 

like-particle pairs in the absence of Bose-Einstein correlations. 

+-For instance, n n pairs presumably reflect the same kinematic con-

straints as n n pairs, but do not obey a symmetrization requirement. 

Unfortunately, the production mechanism and final state interactions 

+-of n n pairs are dominated by a series of resonances ( ~' p, ~··· ) 

not present in the like-pion channel. Nonetheless, provided the con-

tribution from these resonances may be removed 

'45 48 47-55 unambiguously, ' ' this approach is often very useful (see, 

however, Ref. 54). Implicit in the use of this background is equal, 

or at least well understood, detection efficiencies for n+'s and 

n-'s. This is certainly not the case for the JANUS spectrometer, 

which is not capable of simultaneous measurement of opposite charged 

pions. +-Furthermore, the utility of n n background generation for 

heavy ion physics is questionable. First, present-day energies are 

+ such that n -p separation is difficult over much of phase space. 



Secondly, the Coulomb effects of the residual nuclear charge are 

+ opposite for n and n , leading to observable differences in their 

momentum spectra. 

Yet another technique for generating B from the data uses fake 

two pion events created by mixing individual pion tracks from dif-

50 

ferent events • Since the Bose...;Einst-ein int-erference does not extend 

from event to event, this approach should produce a background spec-

trum containing the actual single-particle detection efficiencies as 

well as the relevant phase space factors. This is the method that we 

chose for the analysis of our data. 

While intuitively appealing, the use of pions from different 

events mar be complicated by sevE!ral possible_ effects. First is 

energy-momentum conservation, 'or rather t lack of it 0 Th_is is inde~d . . . . - . . . 

a valid objection for some high energy physics experiments, where the 

small number of produced particles, leading particle effects, jet 

phenomena, etc. can lead to strong kinematic constraints. In some 

cases, it is possible to circumvent this problem by creating a spec-

trum of "random" pions by the exchange of momentum components of dif

ferent pions from the~ event. 40 , 54 For heavy ion physics, this is 

not expected to be a serious problem, in that the energy contained by 

the pions is a small fraction of the total available energy. To see 

this, consider the collision of two nuclei of mass A in the CM sys-

tem, where each nucleus has energy Yc~·MN· Assuming isospin sym

metric matter, this ratio is 

.-
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3<n > 
n 

2A 
(IV.8) 

For central 1.8A•GeV Ar + KCl collisions, <n > = 6, and <E > = 2m , 
- n n n 

leading to f = 17%. Thus, it is unlikely that any combination of two 

pions in a given detector will make significant inroads on this large 

reservoir of energy. Similar considerations apply, of course, to 

momentum. 

The nature of the statistical errors for background events 

represents a second effect in different-event mixing with subtle 

consequences. If we begin with N pion momentum vectors, we can gen

erate from them .IJ2N(N-l) = lf2N2 pairs of background events. Say n 

of these pairs fall into a given bin in q
0
-q space. Naively, we 

might as~ume the error on. ti to be g;1ven b}T ""n = ~. However, one is · · 

always susp.icious of getting something for nothing, which is just 

what our background mixing has done. That is, the background mixing 

has resulted in, for large N, a tremendous increase in the number of 

background pairs, while starting from what may be a quite limited 

statistical base. A more careful analysis shows that the actual 

error is given by (J' = 2n3/ 4• This effect has important consequences 
n 

for our data analysis, which are discussed, along with a derivation 

3/4 of the n rule, in Appendix E. 

The third problem with different-event mixing arises when the 

~-+ correlation factor A(p
1

,p
2

) shows little variation over the detector 

acceptance region. To see this, consider the extreme limit of a very 

narrow-band spectrometer, where all accepted pairs have small rela-
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tive momentum compared to the correlation function, i.e, 

l"t1 -12 1 ~ i for all accepted pairs. Then any mixed pair will 

inevitably be made of pions associated with another close partner in 

the real event. This leads to a "dilution" of the enhancement, in 

that the background B also contains the effects of the correlation 

factor/\. 

To see this math~matically, consider for convenience a discrete 

model for a two-pion correlation experiment. Let ~i denote the spec-

~ ~ 
trometer acceptance for events with momentum pi' i.e., Qi = Q(pi). 

(This analysis 

assumes that c
2 

is a. function of the two individual momenta. This is 

fo~ mathematical siniplicity only •. The use of q and q
0 

simply intro

duces some additional sums and projection operators, while obscuring 

the physical origin of the effect.) The real one pion counting rate 

is then given by 

while, assuming ~ij = ~i~j' the two-pion rate is given by 

PR
2
(ij) = n w •n w •C vi i vj j ij 

Clearly, 

(IV. 9) 

(IV. 10) 

This is just the discrete form of Eqn IV.6. Now consider the results 

of generating a background spectrum by mixing individual pion pairs 
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from different two-pion events •.. The number of fake pions with momen-

tum i is given by summing over all unobserved "second" pions, thus 

(IV.ll) 

The correlation function from mixing different events is then given 

by 

cdiff == 
ij 

P~(ij) 

P~( ij) 

where the fake two-pion distribution is given by 

• [~~i~~f>mWmCiml rj~~1jnwnCjn] 
Writing Cim = 1 + /\im, we obtain 

~1) w ·~1) w 
m m n n m n 

with 

m 

(IV.l2) 

(IV.l3) 

(IV.l4) 

(IV.l5) 

~ 
Here N is the actual number of events measured with momentum p • 

m m 

The numerator of Eqn. IV.l2 is an arbitrary normalization constant 

whose magnitude depends on the number of pairs used to mix our back-

.-d. iff ground. Thus, Glj will be proportional to Cij only if the 



variation of 6
1 

and 6j is negligible over the spectrometer accep

tance. Such is not the case for the JANUS spectrometer, where the 

influence of the correlations on the background spectra is substan-

54 

tial. Monte Carlo studies for the JANUS spectrometer indicate that, 

assuming an,. initial correlation function with "typical" source param-

diff-
eters, the c2 generated by different-event mixing_ is essentially 

flat. The reason for this surprising result is that the 6
1
's in 

Eqn.and have a momentum variation similar to c
1
j's. 

Fortunately, Eqn. IV.12 also contains the solution to these dif-

ficulties. If we had a priori knowledge of the 6
1
's, then we could 

remove their influenc-e by weighting each· fake event by the factor 

- == 1 
gij - [1+S

1
J • [1+6.1 

J 

In practice, of course, the 6
1
's are dependent on just what we're 

attempting to measure, i.e., the source parameters contained in/\. 

Therefore, a recursive approach is required: First some initial guess 

for the source radius and lifetime is made. The 6
1 

for each event 

~ 
with momentum pi is then determined by evaluating the sum given in 

the second line-. of Eqn. IV. 15. The correlation function is then cal-

culated by weighting each of the background events with the g
1
j's 

given above. A fit is then made to the correlation function to 

extract the new source parameters (as described in the next section), 

which are then used to close the loop by re-evaluating the 6
1
's. 

Assuming a good guess is initially made, this process is rapidly con-

vergent, requiring 2-4 iterations to obtain values of the source 

·parameters stable with respect to further iteration. The values so 

" .. 
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obtained are independent of the starting values, as verified by both 

actual data and by Monte carlo simulation • 

We close this section with a theoretical remark. The alert 

reader will have noted that , even in the limit of 100% detection 

efficiency over all 4n, the 6
1
's do not vanish. This effect may be 

traced back to the second line of Eqn. IV.6, which is derived on the 

assumption of independent pion emission by the source. (Recall the 

passage from Eqn. II.25 to Eqn. II.26.) The validity of this assump-

tion is measured by the size of the 6
1
's. One may show, either by 

direct calculation using some parametrization of the Cij's and uui's, 

or by the argument contained in Appendix A of Ref. 58, that these 

correction terms are the order of ~- :::: 
<}. >3 . 

. " . 
R3 , 

where <}. > is the aver-
. . " 

age pion wavelength, and R is the source size. (The similarity of 

this result to Eqn. II.4 is not coincidental.) It is further shown in 

Ref. 58 that ~ ~ ! ~ 5% for heavy ion collisions of atomic number A. 

D •. Fourth Pass: Fitting the Correlation Function 

The correlation functions calculated via the prescription of the 

previous section are fit to a function of the form 

c2 (q0 ,q) = N[ 1 + A•/\(q0 ,q)J , (IV. 16) 

where/\ is the squared Fourier transform of the assumed source dis-

tribution• Our canonical parametrization is a Gaussian one, viz., 

= e 
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The normalization constant N is of no physical significance, since it 

merely normalizes the total number of fake events over the acceptance 

to the total number or real events. The parameter A is a phenomeno-

48 logical device introduced by Deutschmann et al. to measure the 

"strength" of the interference effect. While for a fully chaotic 

source we must have A = 1, the presence of dynamical correlations, 

exotic processes, final-state interactions, background contamination, 

etc. can all lead to deviations of A from one. Thus, it is advanta-

geous in the fitting procedure to leave A as a free parameter to 

reflect the presence of such effects. 

The method used to fit the data deserves further examination, in 

that there does appear to be some confusion in the literature. It is 

extremely dangerous t.o use a le~st-squS:res analysis to fit the corre-

lation function, i.e., to minimize the quantity F, where 

F& • 

(Here K is the assumed form for the correlation function.) The prob-

lem with this approach results from those bins where c
2 

is determined 

by the ratio of two small numbers. In this case, the real event 

number A(q0 ,q) and the background number B(q0,q) are both Poisson

distributed variates, not Gaussian, and their ratio is certainly not 

a Gaussian-distributed variable. 79 This has two consequences. First, 

standard error-propagation formulas for ~(C2 ) no longer apply. 

Second, chi-squared minimization, which assumes a Gaussian distribu-

tion of errors, is no longer a valid fitting procedure. 

.· :· 
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The solution to these difficulties lies in the Principle of Max-

imum Likelihood (PML). In this approach, we calculate the probabil-

ity that Aij real events are obtained in the ij-th bin, given that 

the background .for that bin is Bij and the correlation function is 

Cij. That is, we seek P(Aij I Aij=cij • Bij). This is clearly a Poisson 

distribution;. thus 

Ai. 
(A ) J. -Aij 

P(AijiAiJ.) = ii • e • 
Aij" 

(IV.17) 

The PML formulation simultaneously solves both problems discussed in 

the previous paragraph: The ratio between A and B is not taken, and 

the Poisson statistics of A are explicitly included. Note, however, 

that this. method assumes that . B has negligible error relative to A •. 

A fit is obtained by maximizing the total probability t, 

(IV.18) 

In practice, one minimizes F, the negative log of t, 

F- -ln(f) (IV. 19) 

The minimization a very general and 

powerful program well-suited to multi-parameter minimization and 

error ·analysis. 

There are two reasons for minimizing the negative log of t, 

rather than -f itself. First, since P(AijiAij) < 1 always, the pro-
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duct for t will become very small as the number of ij-bins becomes 

large. Thus, to prevent machine round-off errors, and to "slow down" 

the variation of t, we perform the usual trick of dealing with the 

logarithm of f. The second reason is a more fundamental one: in the 

limit of large Aij 's, the distribution of Aij about Aij becomes Gaus

sian, and minimization of -ln{t) becomes equivalent to a conventional 

least-squares minimization. This is most easily seen by simply writ-

ing 

lim P(AjA) 

A~oo 

in Eqn. IV.18, then taking the logarithm as in Eqn. IV.19. In the 

following, we invert this procedure, i.e., the large A limit of the 

second line of Eq·n.· IV. 19 is explicitly evaluated. By doing so we 

will derive a goodnes.s-of-fit parameter that is the analog of chi-

squared for distributions containing small numbers of events. 

Using Stirling's approximation, we have for a given term of the 

sum for -ln{t) (dropping temporarily the ij-subscripts) 

A - AlnA + ln(A!) ::. A - AlnA + [AlnA - A .f. 1/2 ln( 2nA)J 

• (A - A) - Aln[ ! ] + 1fzln(2nA) 

(IV. 20) 

== (A - A) ~ [ J 
2 ] 

- -
A-A A-A 

-A A _1/z A + ••• + 1f2ln(2nA) 

.. 
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- 2 
: (A ;_A) + 1/2 ln(2nA) • 

Our sum is thus 

F = b 
J 

(IV. 21) 

= 1/2 (chi-squared) + (constant) 

This leads us to suggest that the appropriate generalization of chi-

squared for Poisson distributed variables is the quantity 

2 =z ) 
. (X). PM~ .~ 2F :f::J ln(2nAij), , (IV. 22) 

since in the limit of large Aij's it reduces to the conventional 

chi-squared. (Here F is -ln(!) as defined in Eqn. IV.l9.) The 

2 (empirically observed) properties of (X) PML will be discussed in the 

next chapter. 



CHAPTER V 

RESULTS 

In this chapter the methods of Chapter IV are applied to an 

analysis of the two-p~on events. However, before doing so, we exam-

ine the single-particle spectra from both our one and two-pion 

triggers. By comparison to the results of other authors, we obtain 

information regarding the detection efficiency of our spectrometer, 

as well as testing our Monte Carlo calculations of the spectrometer 

acceptance as a function of momentum~ At this point we remind the 

reader that all measurements repot;:ted are for a beam energy of 

1.8 A•GeV. Two systems were stud:ied: 40Ar + KCl and 20Ne + NaF. For 

- + the mass 40 system both 2n and 2n data were taken; for the mass 20 

systemonly 2n- pairs were measured. 

A. Single Particle Spectra 

Since the correlation function as calculated by the prescription 

of Eqn IV.7 is independent of the absolute normalization, measurement 

of ~he actual magnitude of various cross"sections is not required to 

generate c2(q0 ,q). This fact, combined with the restricted time 

available for experimental observation, argued against performing an 

extensive series of efficiency measurements for each component of our 

detection system. However, since the ion chamber output was 

recorded, and its calibration known, we may invert the usual pro-

cedure to obtain our overall detection efficiency. Furthermore, 

60 
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since (with one important exception to be noted below) our pion 

detection efficiency is expected to be independent of momentum, we 

may extract the shapes of invariant momentum spectra as a valuable 

check on our understanding of the spectrometer's acceptance. 

In Figures 17 through 20 the invariant cross sections for one 

and two pion triggers are presented. These data are presented in 

terms of a cross section multiplied by an unknown efficiency factor 

~i' where i = 1(2) for one(two)-pion trigger requirements. The two

pion results are presented in terms of the invariant momentum distri-

bution for one of the pions, with the "second" pion anywhere in the 

JANUS spectrometer acceptance. The spectrum is then also incremented 

for the momentum corresponding to the "second" pion, thus, it is 

incremented twice for each two-pion event. In all cases, the spectra 

show the characteristic exponential decay characteristic of pion pro-

d 
82 . uction in RHIC. There are two notable deviations from this 

exponential behavior. The first occurs for ECM ~ 500 MeV and is par

+ ticularly prominent for the n spectra. This is obviously an 

unremoved proton contamination. The logarithmic invariant cross sec-

tion plot dramatizes the contribution of these events. To show this, 

in Fig. 18-20 we also present the corresponding plot of dn/dpLAB• 

For example, in Fig. 18, the arrow at ECM = 500 MeV corresponds to 

the arrow at pLAB :;; 700 MeV/c. The proton contamination is barely 

discernible in the laboratory spectrum; its contribution to the total 

cross section is well under 1%. 
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The second deviation from the exponential slope is present only 

in the one-pion trigger data (Fig. 17) for ECM ~ 220 MeV. This is 

the momentum-dependent efficiency alluded to above. Specifically, 

the thresholds of the S1 and S2 trigger counters were set for the 

passage of two.minimum-ionizing particles. Therefore, these counters 

became efficien·t for the detection of one pion only for 

T~B ~ 35 MeV, where·:! 2: 2(:!]min" The enhancement is observed for 

precisely those values of ECM corresponding to the above condition in 

the laboratory. 

To eliminate the influence of these two effects, fits were made 

to exportential distributions in the region 240 MeV < E < 540 MeV. em 

The results are presented below in Table 3. 

Table 3 

d36" . -E /E 
Results of Fits to E-= Ae CM o 

dp3 

System Trigger A 2 E ~·dO"/d.a. 
(mb/sr-Gev ) (Me<V> (mb/sr) 

Ar+KCl 1n - 42.5 77±1 20.9 X103 

Ar+KCl 1n+ 24.9 8o±3 10.8 X1Q3 
' 

-Ar+KCl 2n .183 73±2 113 

Ar+KCl 2n+ .117 77±2 58.3 

Ne+NaF 1n - 79±1 3.38 X103 7.43 

-Ne+NaF 2n .083 81±1 35.0 
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. -

While there is some variation over the various data sets, the 

exponential slopes E are all consistent with 77 MeV, in reasonable 
0 . 

agreement with the value of 80 MeV derived from streamer chamber 

83 + measurements by the GSI group. For the Ar+KCl system, E for n 's 
0 
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is greater than for the corresponding n- trigger, in accord with sim-

ple models describing the effect of the Coulomb interaction between 

84 the nucleons and pions. The value of E for the Ne+NaF system is 
0 

slightly greater than that for the analogous Ar+KCl trigger condi-

tion. 

Also given in Table 3 are the integrated effective cross sec-

tions, i.e., 

dO' 
~ •-iii 

id!l. ' z 
m" ==-
E 

0 

where K
1

(z) is a modified Bessel function. The cross section is 

given in terms of an efficiency ~ i times ~ for pions at 9CM ::: 90°. 

To determine the ~i's, we use the extrapolation of Nagamiya et a1. 82 

of their 2.1 A•GeV Ne+NaF data to 1.8 A•GeV, thereby obtaining 

(d~l ~ 85 mb/sr. For the Ar+KCl data, we use the data of Ref. 78, 
d!l.J Ne 

which gives a total pion production cross section of 4.4b. Allowing 

85 2 
for the observed angular distribution of 1 + cos 9CM' this gives, 

for 9 = 90° [d~l .::: 263 mb/sr. We note that the value so 
CM ' d.£ijAr 

obtained is consistent with an A5/ 3 scaling law between the Ne and Ar 

systems, although the overall accuracy of these arguments is probably 

insufficient to exclude an A2 behavior. + The ratio of n to n yield 

for the AR+KCl system is taken as 1.46, the value obtained in Ref. 82 
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for this system at a beam energy of 800 A•MeV. While use of this 

ratio at 1.8 A•GeV has no strong theoretical basis, in light of the 

approximate equality of the corresponding slope parameters (66 MeV 

vs. 77 MeV) and the very rough nature of our efficiency calculations, 

we feel that the assumption is adequate. 

To model the detection efficiencies, we assume that there are 

three types: ~S' which accounts for the threshold bias in the S 

counters for singles runs; ~0 , which is the efficiency for obtaining 

a pion after S has fired, thus. it reflects the performance of .the 

MWPC's, the probability of track recognition, and the likelihood of 

passing the various cuts applied to a trajectory; and finally ~p' 

which accounts for any additional inefficiencies for finding a pair 

of pions in a two pion event. dO' 
Writing for convenience d.Q. ~ <T, we 

can express our measured cross sections O'i in terms of the actual 

cross sections O'i as 

0'1n = ~ ·~ "0' s D 1n 

and 

0'2n = ~P·~o·~o·o-2n • 

We assume that the true two pion cross section o-2" can be described 

in terms of the mean number of pion pairs 1f2 <n (n -1)>, the JANUS 
n n 

acceptance AJAN' and the mean value of the correlation function in 

JANUS <C
2
>, as 

0'2n 
o-ln =· <n (n -1)>•<C >•A ·--

n n 2 JAN <n > n 
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The last term in the above product merely represents the geometric 

probability of a pion-producing reaction. There is no factor of 

one-half on the RHS of this equation due to the definition of the 

two-pion cross sections given above. 

For any given system, there are three unknown ~'s and only two 

known quantities, c-1n and c-2". However, we may estimate ~S from the 

low ECM behavior of the invariant cross section, where the S counters 

become efficient for single particles. Thus, for the Ar runs, we 

obtain ~S = 70%, and for the Ne runs ~S = 40%. (These runs were 

separated in time by 7 months, and the operating voltages and thres-

holds for the counters were not necessarily the same.) For all data 

sets we then obtain ~D = 20%. This value, while low, is attributed 

to the large number of elements in our detection system, along with 

unfavorable operating conditions for the small MWPC's. A perfect 

one-pion trajectory in our spectrometer must fire three counters and 

12 planes of MWPC read-out. While the cross-finding ability of the 

tracking program reduces the requirement on MWPC performance, it is 

clear that any major inefficiencies in more than one read-out plane 

quickly becomes a major problem. The high intensities required for 

8 9 sufficient event rate ( 10 -10 incident ions/second) produce a high 

background of heavily ionizing particles.in the small MWPC's, a con-

dition known to lead to substantial impairments in detection effi-

ciency for minimum ionizing tracks. 

Finally, the values of ~p obtained are best left expressed in 

terms of the pion multiplicity. This is done to make explicit the 
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statistical assumptions of this model for the detection process. For 

the Ar n-and n+ two-pion runs we obtain 

7<n > 
:: n 

<n (n -1)> n n 
and 

8. S<n > + n 
~p(Zn ) :: <n (n -1)> 

n n 

With <n > :: 4, and <n ( n -1) > :: 6 2 , quite reasonable numbers are. n n n 

obtained for the pair detection efficiencies. (Here we have used the 

known multiplicity biases for the one and two-pion trigger require-

ments obtained in Appendix D.) Such is not the case for the Ne data, 

where we obtain 

lO<n > 
:: n 

<n (n -1)> n n 

Thus, for any reasonable.values for the pion multiplicities involved, 

a detection efficiency of greater than 100% is obtained. This could 

indicate some change in detector p_erformance between the one and 

two-pion data taking (the one-pion data are the results of only one 

run), or could indicate a breakdown of this model for efficiencies in 

the presence of large trigger-dependent multiplicity biases (see 

Appendix D). 

1!.•1• Orientation 

At this point we remind the reader of the variables used in our 

correlation analysis. The relevant quantities are the magnitude of 

~ ~ 
relative momentum q • lp 1 - p 2 l, and relative energy q

0 
= IE2 - E11· 

The correlation function is fit assuming 
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(V. 1) 

which corresponds to a source density of the form 

p(r,t) - (V. 2) 

We defer until later the interpretation of R, "t:, and A• 

In Fig. 21 profiles of an ideal correlation function are shown, 

taking account of the JANUS spectrometer acceptance. The contours 

are separated by 10 MeV, and R and "t: are given typical nuclear dimen-

sions. It is apparent that only a narrow slice of the total (rela-

tive) phase space is measured. However, Fig. 21 is somewhat mislead-

ing in that only half of the q -q plane is kinematically accessible. 
0 

To see this, consider the relative four-momentum 

2 2 2 
t a (p 2 - p1) = q

0 
- q • This quantity is of course invariant, so 

we may evaluate it in any frame. Calculating it in the two-pion 

center-of-mass frame, where p 1( 2) '" [ JQ2
+m;, tQ ]. we find 

2 
t = -4Q • 

2 2 2 2 
Thus, q = q + 4Q > q for all non-zero Q. This implies 

0 0 

that only the region to the right of the line q = q in Fig. 21 is 
0 

allowed. 

Nonetheless, the fact remains that q = q for most of our two 
0 

pion events. This presents a problem regarding visual presentation 

of the correlation function. Clearly, it makes no sense to define a 

slice of constant q or q , then present (say) c
2

( q,q =constant). 
0 0 

For our acceptance, this produces only a few points, as is readily 

seen from Fig. 21. Instead, we define the spectrometer-dependent 



projections 

and 

~ A(q ,q) 
0 

lii -:2:----:-----:
~ B(qo,q) 
q 

Here A(q ,q) is the actual number of events with q and q , and 
0 0 
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(V. 3) 

(V. 4) 

B(q ,q) is the corresponding background. We emphasize that these are 
0 

not true correlation functions; it is only a curious fact of the 

JANUS acceptance that the resemblance is a close one. For instance, 

if the kinematically allowed region in the q -q plane were completely 
0 

occupied out to some large value of q ~nd q
0

, (c2(q)) would appear 

much more sharply peaked than the actual correlation function, while 

(c
2

(q
0
)) would be flat. On the other hand, for our spectrometer, 

these projected c
2
's provide some notion of the actual variation of 

the data, along with an indication of the accuracy of the resulting 

fits. 

B.2. Results of The Fitting Procedure The data of momentum-

analyzed two-pion events that have passed all cuts consists of 

approximately 6700 2n- pairs and 5500 2n+ pairs from the Ar+KCl sys-

tem, along with a subset from our Ne+NaF data-base consisting of 

~10,000 2n pairs. In each case, the background spectrum was calcu-

lated using every possible combination of pions from different 

events, in accord with the requirements discussed in Appendix E. The 

.•. 
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,,, results of fits to Eqn. V.l are presented on the next page in Table 

4 • . -. .., 

~~ . 
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TABLE 4 

System Fit A R c"'t (X2)/NDF chi-sguared 

conditions (fm) (fm) NDF 

No Gamow 0.4()±0.05 o.o+1.1 
-o.o 

4.58+0. 4 
-1.0 101.4/105 57e2/80 

Gam ow o. 63±. 04 2.88+0. 5 3.29+1• 4 176.7/147 98.2/89 
corrected -0.9 -1.6 

Gam ow 
3.54+0· 6 Ar+KCl corrected, 0.64±.04 • 2.70 176.8/148 98.2/90 -0.4 - R fixed 2n 

Gam ow .. 

3.53+• 37 corrected, 0.64±.04 ;;; 1.91 178·0~149 98.6/90 
T fiXed -.35 

Gamow and 
2.77+· 6 3.44+1• 1 Coulomb 0.63±.,04 211.2/158 80.3/96 

corrected -.9 -1.5 

No Gamow 0.48±.07 2.26±1.4 4.12+1• 2 
-2.0 98.7/105 52.4/81 

Gam ow 
4.2o+• 4 1.54+2• 4 corrected o. 73±.07 - 160.&/147 67.1/88 -.6 -1.54 

Gam ow 
4.10+0. 9 Ar+KCl corrected, 0.69±.09 !I!! 2.70 161.7/148 67.1/88 

2n+ R fixed -1.8 

Gam ow 
corrected, 0.72±.06 4.10%.54 iiiil 1.91 160.4/148 67.2/89 

T fixed 
Gamow and 

1.76+2.10 Coulomb 0.73±.07 4.1o±o.4 180.5/145 78.5/83 
corrected -1.76 

No Gamow 0.46±.09 o.o+3.1 
-o.o 2.98±1.0 122.6/105 76.5/82 

Gam ow 
1.83+· 8 2.96+• 90 corrected 0.59±.08 219.3/148 125.7/91 -1.6 -1.0 

Ne+NaF - Gam ow 
2. 72+. 25 2n corrected, 0.59±.06 - 2.14 219.5/149 126.1/92 

R fixed -.31 

Gam ow 
corrected, 0.60*.06 2.80*.30 - 1.52 220.9/149 126.6/92 

T fixed 
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We begin our discussion of the data in Table 4 by directing the 

reader's attention to the first entry for each system, labeled "No 

Gamow". These are the results from fits to correlation functions 

with no additional assumptions regarding the final-state interactions 

of the pions (to be clarified below). The corresponding projected 

C 's are shown in Figures 22-24. For all three systems, the values 
2 

of A are significantly less than one, on the order of 0.4-0.5. Even 

more striking are the values of the radius R. In two cases (the two 

2n data sets) the fitted values for R are zero, perhaps leading one 

to question the validity of our entire model for the two-pion corre-

lation function. 

Before taking such a drastic measure, we note that one known 

in.teraetion be,tween two like pions has been neglected to this point. 

That is the relative Coulomb repulsion between the two pions, which 

leads to a suppression of events with small relative momentum. In 

conventional quantum mechanics (see also Appendix F), this effect is 

well understood in terms of the Gamow factor, 

G ( 1)) = ~-=2~n ..... ll_ 
e2nl) - 1 

2 _me 
, 1) - 1tq (V.5) 

which gives the ratio of the probability density at the origin to the 

asymptotic value for two-like charged particles of relative momentum 

q and mass m. Weighting the background events to account for this 

suppression (note that G(l)) must also be included in the Si back

ground correction factors described in Section C of Chapter IV), we 

obtain the results labeled "Gamow corrected" in Table 4. These data 
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are also presented in Figures 25-27. At this point we simply note 

that the parameters obtained from these fits are more in accord with 

our intuitive expectations based on known nuclear dimensions. How-

ever, before further discussion of these results, we pause to deal 

with potential objections to the use of the Gamow correction. 

First there is the question of resolution. The characteristic 

range of the Gamow suppression is for those relative velocities 

1 
A - --- To see structure on this scale requires very good rela-
~"rel - 137" 

tive momentum resolution. However, there is a subtlety to this 

requirement, in that p 
1 

is the relative velocity in the center-of
re 

mass frame of the two pions, not the nucleon-nucleon center-of-mass. 

An extension of the arguments presented in Section B.1 of this 

chapter shows that the invariant form fo.r p 
1 

is 
re 

J 4m; - t. 

-t ' 
(V.6) 

2 
- q • h - 2 w ere t ""'"q 

0 
Thus, the large Gamow correction extends along 

the diagonal of the (q
0
-q) plane, not just for those events satisfy

m 
i - " ng q - 137" At any rate, we have made Monte Carlo studies which 

show that our resolution is indeed capable of observing the Gamow 

suppression, and. that no systematic biases are introduced by correct-

ing for the same. 

A second objection lies in the precise space-time picture used 

to describe the pion source. If the pions are emitted by an extended 

source in space and time, the Gamow suppression must be reduced, in 

that the pion wave-packets never fully overlap. In Appendix F it is 

". 
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shown that this is a small effect for RHIC, on the order of a 2-3% 

correction to G(~) as calculated ~ia Eqn. v.s. 

The final source of error in performing the Gamow correction 

arises not from the correction itself, but from its interaction with 

a known two-particle track-finding bias in our analysis programs. 
' 

Since the tracking program considers two-wire crosses as well as 

three-wire triangles as valid wire chamber hits, it is possible that 

it will accept a cross formed from the vertical wire of the second 

hit and the horizontal wire (recall that this plane of wires extends 

completely across the face of the small MWPC's) from the first hi.t. 

This of course always acts to reduce the relative momentum between 

~ 
the two pions, by eliminating the vertical component of q. For-

tunately, the JANUS acceptance in the vertical direction is quite 

limited, so that this is a small effect relative to our resolution 

except for those pairs with q :: Q. Resolving the relative momentum 
0 

into components transverse and parallel to the average momentum of 

the two pions, we have for this change 

fuL = 
q 

Even in the worse case, where all of qt is in the vertical direction, 

the change in q is small for all except the first two bins of q , 
0 

since <q > is small for our acceptance. In reality, those events 
t 

~qt 
with large -- are rare, so that average error in ~q is negligible 

qt 

for all but the first q bin. 
0 
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Nonetheless, this poses a problem for the Gamow correction on 

the lowest bin in q , in that the the value of q used in the G(~) is 
0 

underestimated, precisely where the Gamow function is most rapidly 

varying. This leads to a dramatic over-correction on the first bin 

of ( c2(q)) for the Ar+KCl data, e.g., ( c
2

(q=5 MeV/c)) = 3.3 for the 

2n data. + The effect is smaller but still present for the 2n 

events. It is instructive to note that corresponding (c
2

(q
0
)) 's are 

quite well behaved, in that the first few bins in q have been 

included by this projection. Further note that the over-correction 

is missing from the Ne+NaF data, due to improved wire chamber effi-

ciency, and thus imp.roved track identification, for that running 

period. 

To eliminate the bias due to this effect, the first bin has been 

excluded from all fits reported here. Exclusion of additional low q 
0 

bins does not substantially affect the extracted fit parameters, in 

accord with our understanding of the origin of this tracking bias. 

~·d· Discussion of Source Sizes 

At this point the reader is. referred to Appendix G, where the 

basic tools necessary for Gaussian parametrization of sources are 

presented. In particular, it is shown that 1.) A radius R defined 

for a Gaussian source as in Eqn. v.2 is equivalent to a source with 

uniform density of radius R = 1. 52R, 2.) A schematic model for pion 
u 
R production predicts~~ , where~ andY are the velocity 

~ em em 2~cmycm 
and Lorentz gamma factor for the incident ions in the nucleon-nucleon 

'• 

-. 

- .. 
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center-of-mass, and 3.) More realistic Monte Carlo cascade calcula-

tions give values of ~ 2-3 times larger than the above prediction. 

' 1/3 
Assuming R = 1.2A fm, and using the value of~ calculated from the 

u 

model mentioned in Point 2 above, we would have 

R : 2. 70fm , ~ ~ 1.91fm/c for Ar; (V. 7) 

= 2.14fm , > 1.52fm/c for Ne 

Examining the entries in Table 4 labeled "Gamow corrected", we 

find values of R and ~ more or less consistent with the above 

geometric results. (The least consistent value is the R value for the 

+. 4 Ar+KCl,_which is 4.2o_. 6fm.) However, in some cases, particularly the 

lifetimes, this consistency is obtained at least as much through the 

large errors as through the fitted values. The nature of these 

errors is shown graphically in Figures 29-31, which give the 68% and 

95% confidence levels for the determination of R vs. "t. It is 

apparent that our maximum sensitivity is to some combination such as 

2 2 -1 ~ 
R + ~ ; the orthogonal combination (the variable p = tan (R) ) is 

only weakly determined. This is a direct result of our narrow accep-

tance in q versus q illustrated in Figure'21. 
0 

By fixing either R or ~ to some assumed value the errors in the 

extraction of the conjugate parameter are significantly reduced. For 

instance, the entries in Table 4 labeled "R fixed" have the radius 

fixed to the geometric values given above. We note that both the PML 

2 
quality of fit indicator (X )PML' defined in the last section of 

Lbapter IV, and the traditional chi-squared show no significant vari-
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ation when R or~ are so restricted, verifying the qualitative infor-

mation provided by the likelihood contours. (The chi-squared entries 

of Table 4 are calculated by a restricted sum over only those bins 

86 with at least 5 real events, in accord with the usual prescription 

for the validity of this statistic.) 

In general, the Ne+NaF size parameters are smaller than the 

corresponding ones for the Ar+KCl system. The ratio of sizes is 

roughly consistent with the expected A113 scaling. A good estimate 

of the magnitude and significance of this effect may be obtained by 

comparing Fig. 31 to Fig. 29. The lifetimes for the 2n- data are 

R intermediate between the minimum value of --~~--. 

\fz~cmycm 
and the Monte 

Carlo predic.tion of 5.55 fm/c (for Ar+KCl). The value of~ for the 

+ 2n data is smaller than one would expect from geometric considera-

tions, although the errors on this quantity are large: 

~ == 1. 54+2• 4 fm/c. 
-1.54 

Finally, we briefly discuss the external Coulomb corrections. 

Until now we have neglected the interaction of the pions with the 

nuclear charge. of the pion source. This is clearly an approximation, 

albeit a good one for relative momentum. While the existence of 

strong Coulomb effects in single-particle momentum spectra may be 

2 quite striking, to first order both pions receive the same momentum 

impulse from the Coulomb interaction with the nuclear charge (partie-

ularly for q: 0). Thus, the change in relative momentum should be 

quite small. Nonetheless, in an attempt to increase the consistency 

between our 2n- and 2n+ results, we have corrected each individual 

'• 

- • 0 
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pion momentum vector for the momentum shift produced by the residual 

nuclear charge. We do this using the formalism of Ref. 84 to calcu-

late ··the change in the p-th component of four-momentum 6p as a func-
p 

tion of the final momentum pf: 

L(pfui) 2 - m~R;ff 
(V.8) 

In this expression Zi is the charge of the i-th nuclear fragment, 

which is assumed to be moving with 

which we are calculating 6p • The 
fl 

four-velocity ui in the 

f 
notation (p ui) denotes 

frame in 

the four-

product between pf and ui. The effective radius Reff is the recipro

cal of the mean inverse radius of the source. i.e., 

R iii (l)-1 
eff r 

This may be evaluated for our Gaussian source density to obtain 

R = ~ R. 
eff 2 

We assume the nuclear charges consists of three fragments, a 

fraction f of the initial charge 2Z at rest in the center-of-mass, 

and two fragments lf2 (1-f) Z moving with the target and projectile 

velocities. Guided by the considerations of Appendix D, we choose 

f = 0.80. Calculating the correlation function with momenta 

corrected according to this prescription produces the results in 

Table 4 labeled "Gamow and Coulomb corrected". The changes in the 

radii and lifetimes are small, ( ~ 0.2fm ), especially with respect 

to the statistical errors on these quantities. This confirms our 

intuitive arguments that the so-called external Coulomb correction 
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has a small effect on relative momentum determinations. In the 

interest of completeness, we note that this is at best a crude method 

for handling the very complicated three-body final state interaction 

problem between the two pions and the nuclear charges. The reader is 

referred to Ref. 84 for further details. 

We close this section by examining the data of other authors for 

this energy. No direct comparison is available, in that the results 

reported elsewhere in the literature are streamer chamber measure-

menta for the reactions Ar+Bai 2~ 2n-+X and Ar+Pb3o4~ 2n-+X. The 

authors of Ref. 59 find R = 3. 05 ± l.lfm for the Bai
2 

target, and 

R = 3. 3 ± • 9fm for the Pb
3
0 

4 
target, both fits being performed with 

eta 1.5fm. Allowing~ to vary for the Pb target, they find 

R = 3.98 ± • 78fm and e't: = Q.6~~:;fm. In Ref.61 , the multiplicity 

dependence of R for the Ar+Pb 3o4~ 2n-+X system is studied, again 

with e't: = 1.5fm. For N = 2-4 they obtain R = 3.12% l.lfm, while 
" 

for N = §-8 R = 4. @0 ± • 72fm. These numbers are quite compatible 
" 

with ours for the Ar+KCl system, especially when it is recalled that 

<n > : 6 for the JANUS two-pion trigger. This reinforces our view, 

" 
as expressed in Appendix D, that the mean pion multiplicity is pro-

portional to the number of participants in a reaction. 

~·~· Implications for Coherence 

A number of authors have suggested that value of A may be 

58 67 related to the degree of coherence of the pion source. ' For exam-

ple, in both of the references cited, the result 
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[ 
ncoh ]

2 

ncoh + nch 
>.= 1 - (V.9) 

is derived, which expresses >. in terms of the number of coherent and 

chaotic pion emitters n h and co nch' respectively. Taking >. = 0.64, 

n 
coh 3 we obtain--== 2• This is a surprisingly large result, but not 

nch 

inconsistent with some >. values as measured in hadron-hadron reac-

tiona. 

The determination of the coherent component is complicated by 

several systematic effects. First, and perhaps most obvious, is the 

interaction between >. and the Gamow correction. These are clearly 

closely coupled, so that any small error in performing the Gamow 

n 
correction may lead to a large change in.the value obtained for coh. 

nch 

A second, more devious effect, results from the role played by >. in 

the background correction sums given in Eqn. IV.15. The errors in A 

feed back into the process, which tends to increase the error on >. to 

roughly twice the statistical values given in Table 4. Finally, we 

71 should mention that recent work by Gyulassy shows that averaging 

over unobserved dynamical variables can lead to large deviations of >. 

from 1, even in the absence of a coherent component to the pion 

source. Therefore, we feel that any strong statement concerning the 

significance of our value for A would be unwarranted. 



CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH 

In this chapter we briefly summarize the important points of 

this thesis, then discuss future directions for the use of intensity 

interferometry in RHIC. 

We have demonstrated in this work that the Bose-Einstein corre

lation between identical pions leads to an an enhancement for such 

pairs at low relative· momentum. A simple model for the production 

process, i.e., independent particle emission over some region distri

buted in space and time, allows us to interpret this enhancement in 

terms of the source size. The sizes so obtained are consistent with 

normal nuclear dimensions.. This is already an interesting result, in 

that it indicates that the pions we see are created more or less at 

normal nuclear density, not some very compressed phase. The measured 

lifetimes are intermediate between the minimum values allowed (in a 

geometric model consistent with the extracted sizes) and the predic

tions of a Monte Carlo cascade code. 

These results are complicated by the existence of several 

effects. First, the influence of the correlation on the background 

spectrum is large, and must be included. Second, there are subtle 

aspects to the fluctuations in the background spectrum, with impor

tant consequences for data analysis. Thirdly, the two-pion mutual 

Coulomb interaction requires that a Gamow correction must be made to 

80 
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the low relative momentum events. Finally, the data may indicate the 

presence of a substantial degree of coherence for the pion source, 

thereby obscuring direct geometric interpretation of the source size. 

Nonetheless, we feel that there is reason for cautious optimism 

regarding future experiments. A spectrometer configuration with 

greatly increased acceptance is currently being planned. This will 

open a much larger region of relative momentum phase space, with two 

important consequences. First, as the phase space increases, the 

correction to the background spectrum due to the correlation function 

decreases. This fact means tha~ analysis will be more straightfor-

ward, leading to greater reliability for our estimates of the source 

parameters, and in particular, the degree of coherence. Secondly, an 

increase. in the relative momentum phase space decouples q from q • 
0 

In addition to decoupling the radius from the lifetime in the fitting 

procedure, this may allow separate extraction of transverse and long-

itudinal dimensions of the source, thereby providing further tests of 

the geometric picture of the collision process as determined by Monte 

Carlo calculations. Such comparisons can only increase our under-

standing of this developing field. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear 

Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 



APPENDIX A 

IONIZATION CHAMBER CALIBRATION 

The ionization chamber mentioned in Chapter III has been used by 

our group and others for several years. In that time, the calibra-

tion constants for a wide variety of incident beams and energies have 

been obtained. (See the labeled points on Fig. 5.) The usual pro-

cedure for calibrating the ion chamber consists of comparing the 

current measured at low beam intensities to the number of counts 

registered by scintillators counting the beam-particles passing. 

through the chamber. Dark current corrections were sometimes made, 

although they were found to have virtually no effect on the calibra-

tion obtained. The end result of such a procedure is a number giving 

the charge collected per incident ion. Fig. 5 shows that the ion 

chamber response is well described by 

(dE/dx)i 
R = on 
fit 3 x lo16ions/coul 

-2 where (dE/dx) is the dE/dx of the beam particle (in Mev/gm em ) 
ion 

in Argon. 

One may also calculate the theoretical ion chamber response, 

knowing that the chamber uses a 80% Ar - 20% co
2 

gas mixture at 800mm 

Hg, with an active area between the collection plates LIC = 3.18cm. 

To an excellent degree of approximation, one may consider the chamber 

to contain pure Ar. Using the ionization constant of 26 eV/ion pair 

87 for Ar, and writing pAr for the density of the Ar gas, we obtain 
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R = --------~2~6~e~V~/~1~o~n~p~a~ir~--~----
-19 pAr·L1c·1.6 x 10 coul/ion pair 

= l.Ol•Rfit' 

in complete agreement with the experimentally derived value • 

83 



APPENDIX B 

TRACKING METHODS 

.!.• Track Recognition 

Track recog~ition is performed using a simple geometric model 

for orbits in the magnetic field. The relevant geometry is given in 

in Fig. 6, which is a schematic illustration of the JANUS spectrome-

ter configuration. An incoming ray, defined by AB, intersects the 

beginning of the. effective field region at the point XIN" Similarly, 

the outgoing ray CD intersects the end of the effective field at the 

point XOUT" Since the effective field is constant by definition, the 

trajectory in the field region is a segment of a circle. Therefore, 

the perpendiculars to AB at ~N and to CD at x0UT both lie along 

radii of this circle, and their intersection point 0 is the center of 

the circle. This of course means that RIN = 11tiN - 't1 and 

ROUT = 11tOUT - 't1 are the same length. 

The trackingprogram calculates RiN and ROUT for each pair of 

ingoing rays, then examines the ratio 

ROUT - RIN 
6r = 1 · · · · 

12 (ROUT + RIN) 

Monte Carlo results indicate that 6r is a sharply peaked quantity for 

real tracks, with an rms width of 3%. The tracking program makes the 

loose requirement that 16rl ~ 10%, which selects real tracks from the 

uniform distribution in 6r created by random association of unrelated 

84 
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incoming and outgoing rays • 

2. Momentum Determination for Planar Orbits 

Consider a particle of momentum p and charge e traversing a mag-

netic field. Assume the motion is confined to the x-y plane, i.e., 

it= (O,O,B (x,y) ) and ; = 0. The trajectory in space is then . z 

described by some function y = y(x), as shown in Fig. 7. The Lorentz 

force law tells us that the inverse local curvature is proportional 

to the value of B at that point, i.e, z 

1 
eB (x,y) 

~~~ = --~z ____ _ 
R(x,y) cp 

Using the standard result for geometric curvature, we have 

_e_B_z __ <_x_,y_> .... == I y" I 
cp 

[1+y'2]3/2, 

where y' = dy/dx, etc. If y'' > 0 everywhere, we may integrate this 

expression immediately, thus 

x2 

.JLJ B (x ,y)dx pc z 
1 

y' 'dx 

y'(x1) 
= ---------==-----

~ 1 + y'(xl)2 

Taking account of the signed quantities, this may be written as 
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x2 1 Bz(x,y)dx 

p = ~-~--_:1 ____________ ~ 
c lsin9IN- sin90UTI • 

This is a general expression for any planar orbit. If the field 

region is essentially contained between x 1 and x 2 , and if the effec- ' .. 

tive edge approximation is valid, we may write for the integral 

x2 

1 Bz(x,y)dx = Bo•xeff ' 

1 

where B is the central value of the field. Alternatively, we may 
0 

use this expression to d.efine the effective edge for a set of traj ec-

tories, thereby obtaining Eqn. 1 of Chapter IV, with 

l• Vertical Focusing 

The motion in the vertical plane of the spectrometer (i.e., per-

pendicular to the pole tips) is well described by first-order 

geometrical optics. In this approximation, the effect of non-normal 

entry to a magnetic field on the vertical motion is equivalent to 

R that of a thin lens of focal length f = tanS' where R is the radius 

of curvature in the bend plane, and Q is defined as in Fig. 7. 

To describe the focusing forces quantitatively, consider the 

schematic cross-section of the JANUS spectrometer system shown in 

Fig. 8. Defining the usual vertical motion vector 
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T= [:.]. 

where z' = dz/dx, the effect of a thin lens of focal length f is 

given by the transfer matrix 

P "' .[~ OJ 2.1 
f 

Similarly, the matrix for a drift-space of length L is given by 

D = [~ ~] 
Thus, given the vector Y

2 
at MWPC2, the vector at MWPC4 is given by 

Z = D •F •D •F •D ·~ 
4 4 out B in 2 2 

Written out explicitly, 

Monte carlo studies indicate that the value of z4 predicted by this 

algorithm has an rms distribution of approximately 2cm about the 

actual z
4 

value. Roughly 75% of this deviation comes from multiple

scattering in the target, counters, chambers and air; the remainder 

is attributable to the intrinsic accuracy of this approach. 



APPENDIX C 

Monte Carlo Methods 

This appendix describes some of the assumptions and features of 

a Monte Carlo program:written to simulate.the performance of the 

JANUS spectrometer system. This program was used to study the momen

tum acceptance and resolution of the system, as well as to provide 

ideal trajectories used in the Chebyshev parametrization. 

1· The Field Map 

The magnetic f.ield of the JANUS spectrometer was measured using 

a conventional apparatus provided by the LBL Magnetic Measurements 

Group. This device measures the field components by digitizing the 

voltage induced on three orthogonal search coils as they are moved 

through the field region. The measurements were made on a grid of 

l.0032in, l.OOin, and l.OOin in the x,y, and z directions, respec

tively. (The coordinate system is that of Fig. 3) Because the physi

cal travel of the mapper was limited to 30 inches in the z-direction; 

it was necessary to map the JANUS volume in three separate passes, 

requiring a mechanical realignment and magnetic recalibration of the 

apparatus. The digitized voltages are written to magnetic tape by a 

PDP-8 computer. 

These tapes are analyzed off-line to provide files of magnetic 

field data. Before using this data as a field map in a Monte Carlo, 

every effort must be.made to remove systematic errors from the 

88 
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measurement process. For instance, we know that (to within the 

alignment errors of the coils and pole tips) the B component must be 
z 

anti-symmetric about the midplane of JANUS. In particular, we must 

have B (x,y=O,z) = 0. If, due to some normalization error, this is z 

not the case for the field map data, net drifts in the y-direction 

will be produced by the Monte carlo program in tracking particles 

through the field, even if the initial conditions are y = y = o. An 

artificial motion such as this can produce pathological problems in 

perfo.rming the Chebyshev parametrizations. Additional sources of 

systematic error result from the relative normalization of the three 

separate map regions, the precise alignment of the search coils, etc. 

To circumvent these problems, each component was processed as 

follows: Obviously .bad points and normalization errors were removed, 

so that the field profiles were continuous across the three map 

regions. Next, the field was explicitly symmetrized across the three 

orthogonal planes passing through the center of the JANUS magnet. 

For example, B is required to be symmetric in x and z, and anti
x 

symmetric in y. Since it each component of the field satisfies 

2 \7 Bi = 0, a iterative Laplacian smoothing algorithm was used to cal-

89 culate the interior regions of the field. This algorithm is based 

on the observation that the discrete version of Laplace's equation 

gives the value of the field at any point according to the weighted 

average of the neighboring points, thus 



B(i,j ,k) = 2 i . 2~ ~[B(i+l,j ,k) + B(i-l,j ,k)] 
-+-+-a 
a2 b2. c2 

+ b;(B(i,j+l,k) + B(i,j-l,k)) 

+ c;(B(i,j,k+l) + B(i,j,k-l)] } 
Here a,b, and c are the iattice spacings in the x,y, and z direc-

tions, and B is any (rectangular) component of the field. The 

appropriate boundary conditions require specifying the field on the 

boundary of the mapped region, then using the above expression to 

propagate the boundary values to the interior region. This process 

is iterated until the desired degree of stability against further 

90 

computation is reached.. The properties of Laplace's equation assure 

us that the method is indeed convergent, and that the effect of meas-

urement errors is maximal on the boundary. Thus, any interior point 

is better determined by this smoothing process than by actually mak-

ing a measurement of the field at that point. 

The smoothed field is stored on disk for use by the Monte Carlo 

program. When the field value is requested at some point "t, linear 

~ interpolation across the lattice cell containing x is used to obtain 

the field. Theonly exception to the rule is when the lattice cell 

borders a plane of (positive) symmetry for that component. In this 

case, of course, the local variation must be quadratic. Since the 

physical size of the mapper does not allow us to come closer than 

l.Sin from the -pole-tips, some trajectories pass outside the region 

of the map. The B-field for IYI > 3in is obtained by using linear 
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extrapolation based on Maxwell's equations, i.e., 

~B ~B 
__Jf_ X 
.~ = Ty"" 

~B 
__Jf_ = 
~y 

- ~-~Bx + ~Bz J 
[~x ~z 

Thus, the computation of derivatives that would require points out-

side the lattice is replaced by derivatives of otherfield components 

on the face of the lattice. 

l• Tracking Methods 

The motion of charged particles through the magnetic field is 

governed by the Lorentz force law 

~ d~ where ~ is the proper time and p = m~. Introducing the differen~ 

~ 
tial arc-length of the trajectory, ds • I dx I , we can convert the 

Lorentz law to a form containing only spatial quantities: 

~ Here we have written I pI ""' p, which we know to be a conserved quan-

tity in the absence of electric fields. 

However, a straightforward first-order integration of the above 

form does not lead to momentum conservation. Consider the new momen-

~ 
tum p' obtained by first-order integration over a step size 6s: 
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Then 

One can easily show that, in describing a circle of radius R in a 

constant field, this produces an error of order 

6(p2) _ 
2 

6s 
2 "'R ' 

p 

which would be on the order of a few percent for 6s = lcm and typical 

JANUS pions. 

This error clearly results 

~ 
terms in our expansion for p'. 

from ignoring second-order and higher 
~ 

~ dx e 
Defining u = ds and f = pc (note 

~ ~ ~ ~ 
that p = pu), we can write a second-order expansion for both x and u 

as 

+ ••• < c.l) 

~ 

it( s+6s) = it( s) + :~6s + 

In this notation, the Lorentz This may be 

~ used to expand the second derivative in the equation for u(s+6s): 

'" 
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(C.2) 

Our final form for the equations of motion is then 

(C.3) 

~ ~ 
u(s+~s) Q u(s) + '(it x "t J~s 

+ lJze{ ( "ttx <"tt'\7\t] + e[ ( "ttxit} x7Jf·2 

One may show that step-by-step integration of this system around a 

circle of radius R leads to a relative error in squared momentum of 

order 2n(~sj 3, a substantial improvement over first-order integra

tion. Typical step sizes of lcm then lead to negligible tracking 

-+ ~ 
errors in propagating x and p through the field. 

1· Energy ~ and Multiple Scattering 

The Monte Carlo calculates the energy loss and multiple scatter-

ing in the target, the air, and all detectors. The detectors are 

assumed sufficiently thick so that the effect of interactions within 

them are well described by an integrated distribution (as opposed to 

a probability distribution for different types of interactions that 

create the cumulative distribution) • Thus, the energy loss distribu-

87 tion is assumed to be given by Landau theory, i.e., 

+ •· •• 
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(C.4) 

Here, A is a reduced energy loss variable, 

/1E - AE 
A= P 

Bx 

x is the thickness;,. B'.is a constant for a given material, /1E is the 
. p 

most probable energy· loss, and /1E is the actual energy loss. In the 

limit of very large x, most /1E values lead to .A < 1, and it easy to 

show that Eqn. C.4 becomes a Gaussian centered on[1E. This condi
p 

tion is seldom met in practice, thus necessitating use of the com-

plete theory. This leads to a broader distribution in energy loss, 

with a characteristic high energy loss tail· For the sake of com-

pleteness, we give the detailed forms of the parameters used: The 

most probable energy loss for a projectile of charge Zi and velonc 

city p, incident on a material of atomic number Z, atomic mass A, and 

density p, is given by 

where 

B Z K 
= AP~2 

- ~ 2 + 0.37} 

2nN zi
2 

e
4 

K = A nc = O.l54MeV/gm cm-2 
2 me 

(c. 5) 

The ionization potential I is well-approximated by I= 16•(z)
0• 9 ev. 

Multiple scattering is included through a Gaussian approxima

tion90 to the actual Moliere distribution. Thus, the probability of 
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scattering into a solid-angle element da· in traversing a thickness L 

of material is given by 

(C.6) 

'· where ~ is the radiation length of the material and 

20 MeV/c fL[· 1 [ Ll ] 9o • pp ·zincj;" 1 + 910g10 ~ 

This approximation is good to 10% or better. The effects of nuclear 

single scattering, either through the strong or the Coulomb interac-

tion, are neglected. In magnitude, these effects are the order of 

1-2%. They are further reduced in the data analysis through the 

imposition of cuts such as the 11 6r-cut 11 and target traceback 

requirements. 

i• ~Decay 

The Monte Carlo allows us to estimate what percentage of our 

pions are actually muons coming from the decay n- ~ p + ~ , and 
p 

what the effect of these muons are on our momentum resolution. 

Approximately 10% of the pions accepted after all cuts are in actual-

ity muons. However, those cuts, in particular the 6r-cut, are such 

that only those muons are accepted which come from a decay on the 

exit side of the spectrometer, and which have a direction essentially 

in that of the original pion. Thus, the momentum resolution is not 

substantially degraded. All resolutions quoted in Chapter IV and 

presented in Figures 9-11 include the effects of these decay muons. 



APPENDIX D 

MEAN MULTIPLICITY DISTRIBUTIONS 

In this appendix we show that our two-pion trigger requirement 

is equivalent to a central collision trigger. We do so by first 

establishing ·the correlation between pion multiplicities and total 

charge multiplicities, then show that our requirement of two pions in 

the JANUS spectrometer biases the event selection strongly towards 

those events containing a high pion multiplicity, and thus a high 

total charge multiplicity. The total charge multiplicity is then 

converted to a mean impact parameter via a geometrical model for the 

collision process. 

As shown in Figure 14, the results of Ref. 78 demonstrate that 

<M >, the mean negative pion multiplicity, is linearly proportional 

" 
to Q, the total number of participant protons. (Incidentally, this 

result, for 1.8 A•GeV 40Ar + KCl, indicates that pion reabsorption is 

not a significant effect for this reaction.) Due to the hundreds of 

contributing partial waves, geometric concepts for total cross

sections are expected to apply in this energy regime. 3 We may there-

fore interpret the total proton multiplicity in terms of impact 

parameter by using an analytic result due to Swiatecki (as presented 

in Ref. 91 ) for the number of participant protons Q in a collision 

at impact parameter b between two equal-mass ions of charge Z: 

96 
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Q(b) a 2Z(l - pJ
2

[ 1 +[~- !H (D.l) 

where~= b/b, and b is the maximum impact parameter, i.e., m m 

b = ZR. Here the normalization is such that Q(b=0)=2Z. 
m 

In light of the very rough nature of these arguments, and in the 

interests of simplicity, we propose to further approximate Eqn. 0.1 

as 

Q(b) a (1- P> 2 ( 1 + 1.12~)· 

= (1 - p)•(1 - ~2 ) 

= ( 1 - ~) for ~ << 1. (D. 2) 

This approximation is good to (at worst) 20% for ~ < o. 5. Since we 

will be largely concerned with central collisions, this linear form 

for Q(b) will be adequate for our purposes. 

To estimate the mean pion multiplicity for our trigger, we use 

-the data of the UCR streamer chamber group. 92 This data consists of 

approximately 3000 1.8 A•GeV 40Ar + KCl events taken in the inelastic 

trigger mode, which corresponds to roughly 85% of the total reaction 

cross section. All negative tracks in each event have been scanned 

and momentum-analyzed. We may therefore selectively examine those 

events that satisfy a one or two pion trigger in the JANUS spectrome-

ter. From those events we may also obtain the total negative pion 

multiplicity, and thereby determine the mean multiplicity for the two 

triggers. The JANUS trigger requirement is defined as all pions 

satisfying 35° ~ 9 ~ 55° and 200 MeV/c ~ p ~ 1000 MeV/c, where both 
" " 
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quantities are measured in the lab. 

The results of such an analysis are shown in Figure 15, along 

with fits to a Poisson distribution. Figure 15a shows that the pion 

multiplicity distribution associated with the one-pion trigger for 

JANUS. The distribution is approximately Poisson, with a mean of 

4.30: 0.05. This already represents a bias away from peripheral 

collisions, in that the unbiased pion multiplicity for this reaction 

is only slightly greater than 3. The results for a two-pion trigger 

"in" JANUS is are shown in Figure 15bo This is actually the multi-

plicity for all events with two pions satisfying the above trigger 

cuts, regardless of the azimuthal angle between the two pions. 

Therefore, the· conclusions drawn from Figure 15b depend on the 

assumption of statistical independence of the pion momentum spectrum 

as a function of azimuthal angle between the pions. While this 

independence is not strictly the case, (fortunately, for the author 

of this thesis), the net effect on trigger bias considerations should 

be small. At any rate, the mean pion multiplicity for the JANUS 

two-pion trigger is 6.14: 0.18. 

Now that our pion multiplicity bias is established, we may use 

Eqn. D. 2 in conjunction with Fig. 14 to relate the mean pion multi-

plicity as a function of Q, <M (Q)>, to Q(b). In our approximation, 
" 

the relation is linear, thus 

<M"(Q)> = n (1 - ~) max 
(D. 3) 

with n = 7.2 for this data. We have taken the liberty of placing max 

the impact parameter scale so derived on the upper horizontal axis of 
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Fig. 14. This allows us to translate a given pion multiplicity 

directly into impact parameter. For example, for the two-pion 

trigger, <M > 

" 
b 1 

= 6.14 implies Q = 29, which gives~= 4 • 
m 

Assuming 

bm = 2r
0

A113 , we get, with r
0 

= 1.2fm, <b> = 1.2fm. Similarly, a 

one-pion trigger gives <b> = 3.3fm, while an unbiased trigger would 

give <b> = ~m = S.Sfm. 

As a consistency check on Eqn D.3, we note that it gives a 
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definite prediction for <n >, the average pion multiplicity over all 

" 
impact parameters: 

<n > = 
" 

jd
2
b <Mn(b)> 

Jd
2
b 

== n max 

[ 
<b>] = n •. 1 - ---max b 

m 

1 =-n 3 max 

(D. 4) 

This gives <n > : 2.4, as opposed to the observed value of 3. How
" 

ever, given the schematic features of this model, we feel that this 

is an acceptable degree of consistency, particularly in light of the 

experimental difficulties in obtaining bias-free multiplicity distri-

butions. (The trigger requirement is usually such that the most 

peripheral collisions are missed). 
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Lest one regard these conclusions as completely model dependent, 

we present an alternative approach. The GSI streamer chamber central 

collision trigger corresponds to a reaction cross section of approxi-

93 2 mately 180mb. Assuming a-= nb , this is equivalent to a maximum 

impact parameter of 2.4fm. The observed pion multiplicity distribu-

tion for this trigger is Poisson, with <n > = 5. 81. The~ impact 
n 

parameter is 2/3 this value, or 1.6fm. Thus, a mean pion multipli-

city of roughly 6 is indeed consistent with a mean impact parameter 

of about l.Sfm, as determined by actual cross section measurements. 
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APPENDIX E 

BACKGROUND FLUCTUATIONS 

In this appendix, we address the question of statistical errors 

in the background spectrum generated by the mixing of pions from dif-

ferent events. What we wish to determine is "Given n background 

events in some bin, what is the expected error o- ? " In the following 
n 

we show that: 1.) A simple model for background generation shows that 

cr : n3/ 4 , not ~; 2.) The fluctuations in the actual background n 
3/4 events support then model; and 3.) This has non-trivial conse-

quences for the generation and analysis of correlation functions. 

1· .! Model for Background Errors 

To understand the origin o·f the n3/ 4 rule, consider the follow

ing thought experiment: 94 Assume we wish to calculate the area of the 

region ~ in Fig. 16 using a Monte Carlo technique. For simplicity, 

we assume ~ is rectangular, with sides of length 1 and. 1 , contained 
X y 

within a square region of linear extent L. The most straightforward 

integration method consists of picking M random points in the large 

square region. The expected number in ~ is of course then given by 

1 1 
...!....I. fluctuations about this value of order o- : \j; . This m~ = 2 , with 

L m 

is precisely in accord with our usual notions of the statistical 

behavior of large numbers. 

101 
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Now suppose we try to circumvent the requirement of generating M 

random points in the plane by instead picking only N random numbers 

ri , i 

~ 
via x ij 

= 1-+N, then generating lf2 N(N-1) "random" points in the plane 

= ( r.L, r.L ) .. It would appear that for only N:: \12M ran-
1. J 

dom numbers, we could obtain the same statistical accuracy in deter-

mining ~ as by generating all M random points. Certainly this 

approach will produce the correct mean value for ~: The mean number 

1 
of random numbers along the x-axis will be nx = ~, similarly 

1 

ny = ~· The mean number of points in ~ is then n:O. = n n , and thus 
X y 

n.a. 2 
the average value obtained for ~ is .a. = --=eL = 1 1 • However, being 

N2 X y 

properly suspicious of getting something for nothing, we now use 

standard error pr.opagation methods to calculate how accurately this 

method determines .a.. Assuming f.or now that nx and ny are statisti

cally independent, and that their individual errors go· as \10, we have 

2 
=·n n 

y X 
+ 2. 

n n 
X y 

= (n n ) • [n + n ] 
Y X X y 

~ 

= n.a.[< lx + ly) ~ J --

(E. 1) 

Specializing to the case where 1 = 1 , we immediately obtain from 
X y 

the above <T{n.a.) = \ff·n~/4 • Thus, the errors due to this method are 

' - . 
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much larger than those from the usual Monte Carlo estimate of area • 

It should come as no surprise that to get the same relative accuracy 

2 as from M truly random points requires N : M • 

In the above derivation, we have assumed that .Q. is located far 

from the diagonal line given by x=y. If this is,not the case, as in 

the case of ~, in Fig. 16, we cannot regard nx and ny as statisti

cally independent, and the above result becomes q(n~) = 2n~/4 • It is 

easy to show that in d dimensions, the fluctuations 

number in a sub-volume V, are given by q(nV) = dn~, 

2. Numerical Studies 

in nv, the mean 

1 
with p a 1 - 2d. 

While the der.ivation of the previous section is quite straight-

forward, it is by no means clear that it applies directly to 

different-event mixing in the analysis of two-pion correlation data. 

There certainly are suggestive similarities: The N random numbers 

correspond to N pion momenta, the region .Q. then is analogous to a 

~ ~· 
given bin in p 1-p 2 , etc. However, a typical correlation analysis 

projects the difference of 3-dimensional momentum vectors into some 

complicated sub-space of relative momentum and energy. We now show 

that it is at least plausible that the background fluctuations are 

consistent with an n3/ 4 rule. 

We investigate the background errors using the variable rl, 
where 



104 

(E. 2) 

and the sum over i and j represents a summation over the q and q 
0 

bins of the relative momentum spectrum. Here Bij is the number of 

background events in that bin, and Aij is some other distribution 

that should be identical to Bij in the limit of infinite statistics. 

We assert without proof that, provided the a's are properly chosen, 

1.) The mean value of r2 is ~' and 2.) ~ should be distributed as a 

chi-squared distribution fo~ ~ degrees of freedom, where ~ is the 

number of bins in our sum over i and j. To support these assumptions 

we note that a.) The expectation value of r2 is nD' since if A and B 

are independent quantities with the same mean value, 

( 2) 2 2 2 (Aij - Bij) = cT (Aij) +a' (Bij); and b.) r is indeed distributed 

as chi-squared for ~ if A and B are from Gaussian distributions with 

the same mean and dispersion for a given bin. 

As our known distribution, we take the real events for 

1<t1 > 150 MeV/c, where we have every expectation of no correlation. 

(The advantage of this choice is that the eTA's are known.) We test 

this against a scaled background distribution over the same interval. 

By varying the func~~ional form of <TB(B), we can find what form for ""s 

produces ~ : nD. As our functional form for a'B we take the general 

1 1--
d-dimensional result, i.e., <TB = d•B 2d For two different data 

1 
sets we find p = 0.75*.02 and p = 0.77*.02, where p ~ 1- 2d. The 

errors are assigned by invoking Assumption #2 detailed above, then 

varying d until the change in r2 corresponds to a 68% confidence 
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level for a chi-squared variate of nD degrees of freedom • 

It would thus appear that statistical errors of the background 

3/4 support the n result from the first section. We note that the 

value of p derived above depends only on Assumption #1. Assumption 

#2 is required to assign errors to the value of p so obtained, but 

its validity does not affect the value of P• 

1· Implications for Correlation Analyses 

In this section we show that the n3/ 4 form of the background 

errors has non-trivial consequences for the analysis of two-pion 

data. More specifically, we obtain two simple rules governing the 

number of events required in the generation of background spectra via 

mixing momenta from different events. 

Suppose we wish to create a background spectrum with negligible 

fluctuations relative to those in the corresponding bin for the real 

events. We assume that the background is being created from the same 

data set as the real events. Let the number of real events be N, and 

let f denote the fraction of these events .that fall into some bin i, 

i.e., ni = fN. Say we take some fraction of real events M = gN to 

2 
generate a background containing a total of 1-•N(N-1) combinations. 

The expected number in the i-th bin is then m-: ~ • 
2 

2 2 
1- • N • Here 

c2 is the value of the correlation function for this bin. The corre

n lation function is of course proportional to -, with errors proporm 

tiona! to 
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(E. 3) 

We desire a background such that the error on c
2 

is determined almost 

entirely by the real events. This implies that 

Substituting the above values form and n, and assuming ~ = 2n314 , 
m 

we obtain the condition 

.!.. (2Cf < < .!. 
g \1--z- 4 (E.4) 

This result is independent of the original number of events N, but it 

does depend on both the fraction g used in the background generation 

and f, the bin size. The requirement that g should be as large as 

possible certainly is in accord with our intuition. The surprising 

result is the bin-size dependence. Setting g = 1, the above condi-

tion becomes 

(E.S) 

This inequality is satisfied for most, but not all, of the bins used 

in our correlation analysis. Since the Principle of Maximum Likeli-

hood fitting procedure requires that the background fluctuations be 

negligible compared to the those of the real events, one might object 

to inclusion of these bins in the fit. However, by explicitly minim

izing a quantity that includes the background errors (the r2 defined 

in the previous section), we have shown that in all cases the fitted 

parameters are substantially the same as those obtained by PML 
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methods. 

To summarize the results of this section, it has been shown that 

1.) The bin sizes in this form of correlation analysis must be kept 

as small as possible (keeping in mind the requirements of resolution 

and reasonable statistics per bin) and 2.) Point 1 usually means that 

all, rather than some subset, of the real events must be used to 

create the background spectrum. 



APPENDIX F 

GAMOW COULOMB CORRECTIONS 

In this appendix we discuss in further detail the Gamow correc-

tion for the two-pion relative Coulomb interaction. In particular, 

we are interested in the effects of emission by a pion source distri-

buted in space and time over typical nuclear dimensions. We begin by 

briefly reviewing the usual derivation of the Gamow factor. The 

. 95 
approach is that of Davydov, although the notation has been some-

what altered. We use units such that ~ appears explicitly. 

The Schrodinger equation for the relative motion .of two like-

charged particles in their mutual Coulomb field is 

2 2 
-~fG2+k (t> + : +k <7> ( F.1) 

where 

and 

~ In the above, the expressions for p and k have been specialized to 

the case m1=m2=mn· We note in passing that the relativistically 

correct equation for the relative motion of two pions is the Klein-

Gordon equation. However, as we shall see, the Gamow correction is 

important only for relative velocities vrel :: 1 ~ 7 , so that the non-

108 
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relativistic approximation is expected to be valid. Also neglected 

here is the symmetrization requirement on the two-pion wave function. 

This may be imposed at a later stage of the calculation with no loss 

of information. 

The solution to Eqn. F.l corresponding to initial motion along 

the z-axis is most easily obtained in parabolic coordinates defined 

by (u,v) = (r-z,r+z). Writing 

one may show that ~ must solve the equation 

u~'' + (1-iku) p' - ij.k9S = 0 ( F.2) 

2 
with 1J = !~. The solution to the above equation is given by the 

confluent hypergeometric function F, thus SJ'(u) = CF(-iij.,l,iku), where 

C is a normalization constant. 

The Gamow factor G , defined as the ratio of the density at the 
0 

origin to the asymptotic density, 

(F. 3) 

may then be calculated using the known asymptotic properties of the 

confluent hypergeometric function. It is thus straightforward to 

show that 

G 
0 

This is the usual Gamow factor. 

(F. 4) 
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The above derivation suggests that the effect of a distributed 

source may be incorporated by smearing the density at the origin over 

the source size, that is, 

~ 2 f ~2~~ I i' k ( r '"'0) I ~ I+ k ( r ) I p ( r ) d r ( F.S) 

~ 
where p(r) gives. the distribution of re·lative separations between 

the two pions. The above equation has been derived more rigorously 

5 ~ by Koonin, along with an explicit form for p(r) that includes the 

effects of temporal separation between the two pions. Taking Gaus-

sians for the space and time distributions for the individual pion 

~ 
emission points (ti,ri), 

and 

he obtains 

= (2n) 3~2sa! exp[ ~![ r 2 
- ~J 2J] 

Here the frame is assumed such that the individual pion sources are 

at rest, V,.. Ct2 + 12)/2mn' and s
2 

• V~2 + R~. The normalization 

I
~~ is such that p(r)dr = 1. 

Before proceeding with explicit evaluation of the integral in 

Eqn F.S, we must now incorporate the symmetrization requirement into 

.. 
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the relative motion wave function ~· Using the small u expansion for 

F(-it},1,iku), we have for the unsymmetrized rp 

~(u) ~ c(1 + (-it})(iku) + 2~(-in)(-2in + 1)(iku) 2 + ••• ) 

Since u a r-z, the symmetrization is accomplished via z ~ -z, so the 

symmetrized form with the same value as u~O is given by 

... ( in. 2 2. 2 ) ~ s ( u) C 1 + kt}u + ~ ( r +z ) + ••• 

so that 

(F. 7) 

The modified Gamow factor G d is then given by . mo 

J-+ ~ 2 
Gmod = drp(r)l~s(u)l ( F.8) 

~ G
0
Jdtp(i) ( 1 + 2kl)r + O(kJ)r) 2 + ••• ) 

~ G 
0 

( 1 + 2kt}< r> + ••• ] 

(This result has been obtained by a somewhat different argument by 

the authors of Ref. 84 ) 

This form is in accord with our intuitive expectations. The 

suppression for low relative momentum due to the Gamow function is 

reduced due to the spatial extent of the source. Before evaluating 

the integral for <r>, we may estimate the size of the correction to 

G : 
0 

2 
2ki)<r> = 2k T <r> 

1tk 
(F. 9) 



m <r> 
_,.;.;~-c- ~ 1/2% per fermi of <r> 

Therefore, we anticipate that so long as ~ - R , this correction 
0 

will be small for nuclear dimensions. Explicit evaluation of <r> 

~ 
using p(r) gives 

<r> = ! Ro[ R: + 2~og[: = ~l] 
Substitution of realistic nuclear parameters shows that <r> is not 

drastically different from R or "t, leading to the conclusion that 
0 

the effect of the distributed source in indeed small for RHIC. 
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APPENDIX G 

THE INTERPRETATION OF GAUSSIAN SOURCE PARAMETERS 

In this appendix, we relate the use of Gaussian source density 
' 

distributions to more conventional descriptions of nuclear density 

profiles. We also explore the relation between the R and "t parame-

ters, and examine the time-development of pions in Monte Carlo cas-

cade calculations. 

1. Gaussian Spatial Distributions 

The normalized Gaussian source distribution used in this 

analysis is given by 

(G.1) 

We wish to find the value of R such that this distribution best 

describes a uniform distribution of radius R • Equating the first 
u 

moments of these two distributions, we obtain 

R =~R -~ 8 u - 1.50 

Similarly, equating second moments, the result is 

R=j2R -~ \[5 u - 1.58 

More generally, in Ref. 27 it is shown that for R = R /1.52, the 
u 

squared Fourier transform of the Gaussian distribution differs from 

the corresponding transform of the uniform distribution everywhere by 

less than 2%. Since the squared Fourier transform is the actual 
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observable of interest in a· correlation analysis, the use of the 

Gaussian parametrization is quite adequate. FUrthermore, we note 

that while nuclear matter in its ground state is to first order 

described by a uniform distribution, a Gaussian ensemble of produc-

tions sites may indeed be a better approximation of the pion source 

in a heavy ion collision. 

2. The Time Dependence of the Pion Source 

In this section we motivate the use of a Gaussian to describe 

the temporal distribution of pion sources based on a heuristic model 

for the collision process. Consider the collision of two equal-mass 

nuclei in the center-of-mass frame. Assume that each nucleus is 

described in this frame by a Lorentz-contracted Gaussian spatial dis-

tribution, moving with velocities :p • Thus, 
em 

G
-2 2 2 2] 2 

_,_ - X + y + Y ( z ± ~ t) /R ,......., em em 
f±(r) = e 

~ 
The pion production rate at some point r is then given by 

~ 
dn (r) 

" dt 

If we ignore the velocity dependence of cr-v and pion reabsorption, 

the total pion production rate is given by 

dnn _ Jd~ (~) (~) _ dt r p_ r p+ r e ]
(G. 2) 

spatial integral • 

We have therefore obtained the not too surprising result that the 

collision of two Gaussian spatial distributions gives a collision 

-t2/"t.2 R 
Gaussian in time, p(t) - e , with "t = -___;;""---

\12~cmycm 
rate that is In 
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reality, this should be viewed as a lower limit for "t, as we have 

ignored effects such as reabsorpt~on and deceleration of the collid-

i-

ing nuclei, which will tend to increase "t. 

3. Comparison to Monte Carlo Calculations 

96 The cascade code of Cugnon et al. provides a quantitative pic-

ture for the space-time evolution of a heavy ion collision. Their 

40 40 . 
results for the collision of Ca + Ca ions are presented in Fig. 

28. Two curves are shown, the solid one giving the production of 

free pions plus delta resonances, while the dotted curve gives the 

just the number of free pions as a function of time. Maximum overlap 

occurs fort: 5.1 fm/c. The circular and triangle points are the 

results of integrating 

dN = N e -t2 /'t.2 
dt 0 

for appropriately chosen values of 't.. Thus, e.g., for the Nn + N~ 

curve we have fort> 5.1 fm/c 

N(t) = lf2N
00

[ 1 + erf(t-~· 1] J 
with "t = 2.31 fm/c. A similar expression is obtained for the free 

pion production curve, with "t = 5.55 fm/c. 

These expressions fit the observed time dependences quite well, 

particularly for the total production rate (the closed circles). The 

value of "t required, 2.31 fm/c, is reasonably close to that predicted 

by the method of the previous section, which gives "t ~ 1.91fm/c. The 

code predicts a much slower production rate of free pions than one 
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would expect from the simple overlap of the nuclear densities. This 

is due to the reabsorption, energy dependent production cross sec

tions and finite delta lifetimes. Nonetheless, the time development 

corresponds roughly to that predicted by a Gaussian model. 

We c.lose by noting that the initial spatial distribution of 

nucleons~iri this cascade code.is assumed to be a spherical, not Gaus

sian region. However, the results of Fig. 28 are obtained by averag

ing over a number of "runs", with one run per collision. Presumably 

the approach to a Gaussian temporal development of the cascade is a 

consequence of the Central Limit theorem. 

-.... 
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FIGURE CAPTIONS 

(1) Schematic diagram of a stellar interferometer using. the 

Hanbury-Brown--Twiss technique. Two points P1 and P2 on a star 

of radius R are assumed to emit ~haotic 'light. The light is 

detected at points A and B with the apparatus shown. 

(2) ~ ~ ~· 
Alternate paths for the detection of pions with p 1 at x 

1 
and p 

2 
~ 

at x 2• The pions are assumed .to originate from an extended 

~ ~ 
source encompassing r 1 and r

2
• 

(3) Plan view of the JANUS spectrometer system. 

(4) Block diagram of the fast electronics used in conjunction with 

the JANUS spectrometer. 

(5) Ion chamber calibrat.ions for a variety of projectiles and beam 

energies. 

(6) Schematic plan view of the JANUS spectrometer, along with the 

geometric method used in track recognition. 

(7) Definition of angles used in determining momentum via the effec-

tive prescription. 

(8) Vertical trajectories through the JANUS spectrometer, illustrat-

ing the effect of focusing by fringe fields. 

(9) Momentum resolution for pions as a function of the laboratory 

momentum. 
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(10) Resolution for relative momentum and energy in the center-of-

mass, as a function of the same quantities, again in the 

center-of-mass. 

(11) a.) Fractional relative momentum resolution as a function of 

relative momentum and b.) Resolution for invariant relative 

momentum (used in the Gamow correction) as a function of rela-

tive momentum in the center-of-mass. 

(12) Distribution in y and x of accepted events at the target as 

determined by traceback. Horizontal scale is in centimeters. 

(13) Histogram of mean separation in y between two pion pairs at the 

target for real events and random (mixed) events, as determined 

by target traceback. Horizontal scale is in centimeters. 

(14) Relation between total charge multiplicity Q and mean pion mul-

tiplicity <M {Q)>, as given in Ref~ 78. Also shownis 
" 

schematic impact parameter scale. 

(15) Pion multiplicity distributions from Ref. 92 for 1•8 A•GeV 

Ar+KCl events, for the JANUS 1 and 2 pion trigger requirements. 

(16) Schematic illustration of area calculations by Monte Carlo tech-

niques·similar to two-pion background event generation. See 

Appendix E for further details. 

(17) Invariant cross sections for 1n- events as a function of 

center-of-mass (total) energy. The cross sections are scaled by 

an efficiency factor ~ 1 • The errors are statistical only. 
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(18) Invariant cross section for 2n- events from Ar+KCl collisions as 

a function of total energy in the center-of-mass. The cross 

I 
section is scaled by an efficiency factor ~2 • The errors are 

statistical only. Also shown is the corresponding _laboratory 

momentum spectrum. This is the raw spectrum of events observed 

in JANUS, thus it has not been corrected for the acceptance. 

The arrow at E = 500 MeV transforms to the arrow at em 

plab = 700 MeV/c. 

(19) As in Fig. 18, for Ne+NaF collisions. 

(20) As in Fig. 18, for Ar+KC1~2n+ +X. 

(21) Profiles of a theoretical c2(q
0

,q) with typical nuclear dimen

sions evaluated over the JANUS acceptance for relative momentum. 

The region on the left-hand-side of the ridge is kinematically 

forbidden. 

(22) Projected correlation functions in q and q for -Ar+KC1~2n +X, 
0 

with no Gamow correction applied. 

(23) As in Fig. 22, for + 2n events. 

-(24) As in Fig. 22, for Ne+NaF~2n +X. 

-(25) Projected correlation functions in q and q for Ar+KC1~2n +X, 
0 

with the Gamow correction applied. 

(26) As in Fig. 25, for + 2n events. 

(27) As in Fig. 25, for Ne+NaF~2n- +X. 
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(28) Monte Carlo calculations from Ref. 96 for production rates for 

pions and deltas for 1.8 A•GeV 40ca + 40ea collisions. Points 

are predictions assuming a Gaussian source in time. See Appendix 

G for further details. 

(29) Confidence contours for fits to 

-q~2/2 - q2~2/2 
c2 (q

0
,q) = 1 + Ae 0 for the reaction 

Ar+KC1~2n- +X. The inner contour represents the 68% likelihood 

contour; the outer band is the 95% likelihood contour. 

+ (30) As in Fig. 29, for 2n events. 

(31) As in Fig. 29, for Ne+NaF~2n- +X. 
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