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HODEL3NG STUDIES ON CERRO PRIETO 

Me Jo Lfmann and G. 
Lawrence Berkeley Laboratory, University of California 

Berkeley, California 94720 

ABSTRACT 

.i Numerical siuiulaaUon techniques are employed 
i n  studies of the na tura l  flow of heat and anss 
through the Cerro Priato resetvoir and of the 
e f f e c t s  of exploi ta t ion on the f i e ld ' s  behavior 

is based on the hydrogeologic model of Malfman et 
11. ( t h i s  volume). The numerical code HULKOM is 
used i n  the simulation rtudies. 

- We consider a two4imensional reaervoir model t h a t  

In the simulations of the na tura l  state of 
the Cerro Oriato system, we employ f ive  models 
that d i f f e r  i n  prescribad material properties,  
boundary conditions, or geologic feature-s. For 
each of these models we compute the steady-s+ata 
pressure and temperature d is t r ibu t ions  and wufpata 
them agains t  known preproduction pressures and 
temperatures. A good match between observed and 
calculated temperature and pressure distributions 
was obtained, md a natural hot-water f law ra te ,of  
about loo2 kg/a*m through the geothermal system 
was calculated. 

The wdels arc then used to simulate the be- 
havaor of the f i e l d  under exploi ta t ion during the  
years 1973-1978. acceptable match of tempera- 
tu re  ana pressure changes i n  the producing reset- 
voir was obtained. The resul t ing flw pat terns  
i l l u s t r a t e  the e f f ec t s  of cold water recharge, 
boi l ing zones and hot f lu id  flow froo depth on the 
overall f i e l d  performance. The f l u i d  recharge 
pa t te rns  agree w i t h  some of those postulated i n  
earlier stud%es. 

The Cerro Pr ie to  geothermal field is a con- 
plex geological and hydrological syrtem. 
na tura l  flows through the gaothennal reservoirs 
are control led by layered redimen- uni t s  (rands 
and sha les ) ,  major f a u l t s  zones, boupancy e f f ec t s  
and the regional hydrological pressure gradient. 
A l l  of tnese fac tors  must be considered i n  mdel- 
i n q  the Cerro Prieto reservoirs. 

The 

Y 

t a l  authors have present 
models describing the natural  ( init ial)  conditions 
of the Cerro Prieto f i e ld  and its evolution under 

* production. A model for  the natural  flow pat tern 
i n  the Cerro Prieto system w a s  i n i t i a l l y  suggested 
by Mercado (1976) us iny  geochemical data. Ldter, 
Elders e t  al. (19811 used mineralogic and isotopic  
data  from well Cuttings and cores to develop f low 
pat terns  for the f i e l d  i n  its natural  s ta te .  Both 
models show Similar character is t ics .  The heat 
source €or the hydrothermal system is located to 
the east. A plume of hot water ascends from the 
source, boi l iny as  it r i se s ,  discharging upwards 
and horizontal ly  to  the west forming hot springs 
and tunaroles a t  the surface. 

Both models indicate that cold water recharges 
the system through shallow layera from the east. 
Kowever, nercado (1976) also postulates cold 
enter ing the  f i e l d  ttom the  west. Elders e t  al. 
(1981) using isotope Qta and f i s s ion  track data 
estimated an average velocity of 6 m/yr for  the 
r i s ing  plume of hot fluids.  

The general dyMmics of the a (shallow) reser- 
voir were described by Grant e t  al. (1981) based 
on chemical, production and reservoir engineering 
baa.  - They concluded t h a t  the reservoir  is bounded 
below by low-permeability rocks, and above and a t  
the sides by zones of cooler w a t e r s .  There seem 
t o  be no continuous permeability barriers araund 
or immediately above the reservoir. The dominat- 
ing  cooling process h the na tura l  state is miadag 
Qf hot reservoir f l u i a s  w i t h  colder surrounding 
f luids .  
water by cooler water, and consequently, the reser- 
voir temperatures tend to decline. Lacal t o i l i n g  
occurs near most wells i n  response to pressure 
decreases, b u t  there is no indication that a con- 
tinuous two-phase zone has formed i n  the reservoir. 

Exploitation causes displacement of hot 

Recently, Halfman e t  al. (this volume) have 
developed a hydrogeological w d e l  of the Cerro 
Pr ie to  system based 01 w e l l  log and reservoir 
engineering data. They ident i fy  pemable and les8 
permeable zonea, and postulate the flaw of geother- 
mal f lu ids  In the reaervoir. Thcr f l u i d  flow pat- 
t e rns  i n  a southweotaortheast  sect ion (Figure 1) 
a re  s imi la r  to those suggested by Mercado (1976) 
and E lde r s  e t  al. (1981). Kalfman's model, hw- 
ever, is much more detai led with respect to depths 
and locat ion of the yeothermal aquifers. 

HET?IODOLM;Y 

In the above models, the mss and energy 
t ranspor t  i n  the Cerro Pricto reservoirs have not  
been quantified.  In the present work we employ 
numerical techniques to estimate the natural f lu id  
flaws through the reservoirs using measured M ~ U U C S  
of temperature and pressure a t  d i f f e ren t  depths as 
a nasis for  comparison. we then use the models 
developed for  the natural  s t a t e  of the reservoir  
to  examine phenomena tha t  occur during exploita- 
tion. The e f fec ts  of exploitation on pressure and 
temperature decline,  the r a t e  of recharge of wld 
water, and the e x t e n t  of the two-phase zone i n  the 
reservoir  are consLdered. 

RESERVOIR EODEL 

We have developed a two-dimensional reservoir 
model, based on HalfMn'S hydrogeologic model, for 
the numerical simulation s t u d i e s  (Figure 2). The 
locations of three selected w e l l s  are shown i n  
Fryure 2 for comparison w i t h  the cross-section 
shown i n  Figure 1. The grid blocks used i n  the 



Figure I .  southwest-northeast cross-section of the C e r r o  P r i e t o  field showing schematicaUy the f1w of 
geothermal f lu ids  i n  the s y s t e m  (from Halfman e t  al., this volume). 

wsw M-9 M-IO M-104 E 

I 811 I m I 
I I 8 

Oistonca (m) 
ELQI-LPI 

Figure 1. % dimensional model of tho f ie ld  used i n  this work. 
locatzon of three w e l l s  are shown. 

Grid blocks. g r id  block rtum&ers, a d  
The hatched zones ind ica te  layers  of lower permeability. 

simulations are also shown i n  Figure 2s the  hatched 
zones ind ica t ing  layers  of lower permeability. me 
mesh cons is t s  of 60 ' internal' elements and 25 
boundary elements. The flow region mdeled extends 
from east  to west-southwest a t  a depth of 800-2000 
meters, and w i t h  a thickness of 1 meter. 

The elements i n  the mesh can be grouped i n t o  
d i f  f e r en t  zones depending upon their ma t e r ia l  
Properties (Figure 3 ) .  The "S1' zone corresponds 
to  the cooler aquifer  overlying the main geothermal 
reservoirs i n  the western region. In  the same 
region, the "C1' zone represents the shaly layer  
above the u reservoir (zone "S2"). The shaly zone 
'C2' separates i n  the western region t h e  a and [r 
reservoirs. the latter represented by the zone 

'S3'. The zone 'C3' is a low-permeability layer 
underlying the i, reservoir. The zone 'Fm repre- 
sen t s  a f a u l t  zone t h a t  is postulated between vells 
M-2S and M-29. 

In  the  eas te rn  region, the  5 4 '  zone repre- 
sen ts  a thick sandy u n i t  overlying the thick shaly 
"C4. zone. Underlying the latter zone there is 
Ma sandy zone 'SS' w h i c h  corresponds to  the 
eas te rn  portion of the c reservoir which extends 
upwards communicating w i t h  the sandy zones 'S2' 
and 'S3'. 

The zone 'CS" represents a region of low- 
permeability assumed to be formed by the precipi- 
t a t ion  of calcite as cooler water comes in contact 
w i t h  hotter rocks. 

2 
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Figure 3. Different zones used i n  the model. 

A?I w i l l  he discussed kly, the nntefial 
propert ies  and geometry of some of these zones 
were changed i n  some cases so as to obtain a 
better match between observed and calculated 
pressures and temperatures.- 

ROQ: PROPERTIES 

For the simulation studies, the single  mst 
important reservoir  parameter is its permeability. 
Analysis of well test data indicate8 that the per- 
meability of the Cerro P r i e t o  renervoirs lies i n  
the range of ten8 to\. feu hundred Pillidardes 
(Schroeder e t  al., 19 8; Rivera e t  a l a e  1978; 
hbril and Vugas, 19 1). 

Values of tr missivity reported by the same 

the other  h d ,  laboratory core analysis  give per- 
meaDiliU>.S’iif tenths or  few miUI&rcies (Abou- 

- 4 a y e d z t  al. , 1979; Schatz, 1981) possibly because 
the%r measurements indicate vertical permeabili t ies 
obtained along the axis of the cores. No measure- 
ments have been made on relative permeabili t ies of 
Ceno Pr ie to  rocks. 

authors vary be ..I een 3.6 and 40 darcy-meters. On 7 

Rodc porosity, compressibility, heat conduc- 
t i v i t y  and heat capaci ty  data are a l so  needed fo r  
simulation studies, although the e f f ec t s  of these 
parameters a re  not as grea t  as those of permea- 
b i l i t y .  

A number of authors have presented data  on 
porosity (Uardnez, 1978; hbou-Sayed e t  a l a e  1979; 
Lyons and van de Ump, 1980; Sehatz, 19811; the 
values reported mry between 4 and 39%. -The por- . 

os i ty  does not only depe e rock WpC, but 
e a l so  changes w i t h  depth. 

Wasurements of deformation properties of 
Cerro Pr ie to  cores were made by Somerton (19781, 
mu-Sayed e t  a l a  (1979) and Schatz (1981). These 
s tudies  indicate  tha t  the rock compressibllty is 
on the order of pa-’. n a r t h e z  (1978) meas- 
ured thermal conduct ivi t ies  of Cerro Prieto rocks 
obtaining values between 0.5 and 4.6 W/m°C for  
sandstonesr and between 1.4 and 3.1 W/m°C for 
shales and silts. No aeasurtmentY have been -de 
on the heat capaci t ies  of these rocks. 

In the present simulation s tudies ,  seven 
d i f f e r e n t  materials were used (Table 1 . These 
materials d i f f e r  mainly i n  permeability, with only 
s l i g h t  var ia t ions  i n  density, thermal conductivity 
and hea t  capacity. The rock porosity urd compres- 
s i b i l i t y  was assumed to  be the same t o r  a l l  mater- 
ials or 201 and 5 x 10-10 pa-1, respectively.  
The in t e r r e l a t ions  betveen the d i f f e ren t  zones i n  
the -del rutd the d i f f e ren t  materials are given i n  
Table 2. One should note t ha t  the permeability of 
most of the materials is assumed anisotropic  be- 
cause of the layered nature of the sediments a t  
Cerro Prieto. All of the eonea shown i n  Figure 3 
cons i s t  of shale and sand sequences in d i f f e ren t  
proportions. The only material which was assumed 
t o  be i so t rop ic  la material 4 which represents the 
f a u l t  zone located between wells H-25 and n-29. - _  

Relative permeabili t ies of the two-phase 
( l iquid and vapor) zones were calculated using the 
Corey curves. In  functional form, these curves 
a r e  represented by the following equations: 

krv ( 
0 

(1) 

(2) 

1 - srl - s 
where Sf - 1 - Sr1 - srv 

A 1 1  of the symbols are defined i n  the nomenclature. 
I n  the present vork we used S r l  = 0.30 and 
s, - 0.0s. 

TEMPERATURE AND PRESSURE MEASUREMENTS 

The temperature d is t r ibu t ion  of the western 
portion of the Cerro Pr ie to  field i n  its natural 
state is given  by h r c a d o  (1976) (Figure 4). 
Recently, Cas t i l l o  e t  al. (1981) presented the 
temperature d is t r ibu t ion  in the eastern portion of 
the f i e l d ;  the reported temperature d is t r ibu t ion  
MY have been affected by the exploi ta t ion of the 
western area. During exploitation, wells a t  Cerro 
P r i c to  have shown a decline in temperature of the 
produeed fluids.  Fausto e t  a l e  (1981) and G r a n t  
e t  rl. (1981) snow, fo r  selected e l l s r  tempera- 
ture  changes w i t h  time based on the Na-K-Ca 90- 
thermometer (Figure SI. 

e t  a1. (1981) present temperature 
data  fo r  the eastern pa r t  of the deeper I reservoir. 
De+afled maps showing the temperature d is t r ibu t ion  
i n  tne western part of this reservoir have not y e t  
been published. 

Pre-exploitation pressures i n  the a reservoir 
(1200 m aepth) a r e  shown i n  Figure  6 (mid-1973 
data) and Figure 7 shows the pressure contours a t  
the same datum i n  1979 (Bermejo e t  al.,  1979). 
The pressure decline i n  the 0 reservoir  w i t h  t h e  
is shown i n  Fiqures 8 and 9 (Bermejo e t  al. , 1979). 
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Table 1. Properties of the materials used i n  the models. 

Permeability 
Rock density Horizontal Vertical Matrix Heat conductivity Rock Heat Capacity 

(kg/cm31 (mdl (md 1 (W/m°C) ( J / k g ° C )  Material 

1 2650 100 1 3 820 

2 2650 10 1 3 820 

3 2550 0.5 0.005 2 9 20 

4 2650 so 50 3 820 

5 2700 0.05 0.005 1.5 920 

6 2650 100 10 3 820 
7 2550 

1 

~ 

1 Taole 2. m t e r i a l  igned to the zones shown i n  
Figure 3. 

Zone Material 

81 6 
82 6 
s3 6 
54 2 
S5 1 
P 4 
c1 7 
c2 7 
c3 5 
c4 3 
cs 3 

SW NE 

Figure 4. ereprodu:tion temperature distribution i n  the Cerro Prieto f i e l d  
along a southwt st-northeast cross-se=tion (adapted from Hercado, 
1976) 

4 
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Y-42 
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Y-2lA 
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Y-I4 

F i g u t e  50 Changes in the Na-X-Ca temperatures i n  some Cerro 
Pritto wells (from Fausto e t  el., 1981 1. 

6 . .  1973 pressures (in bars) i n  the a 
reservoir, at 1200 m depth (adapt 
from Bennejo et al., 1979) 

Fiqure 7. 1979 pressures ( i n  bars1 in the a 
reservoir, at 1200 m depth (adapted 
from Bermejo et al., 1979). . 
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Well M-30 
1200m depth 

- 
- 

as - 
* '  1 1 I I I Isn 1974 m I976 Io?? IQ18 1979 

XnLQ)-LW 

Figure 8. Pressu re  changes ( i n  bars) i n  well M-30 a t  1200 m depth 
(adapted f r o m  Beimajo a t  al., 1979). 

L i m i t e d  data have been published on the pressure 
d is t r ibu t ion  i n  the d reservoir. S h n c h u  and de 
la Peiia (1981) give a partial piezometric map 
for thus reservoir. 

BOUWARY CONDITIONS 

The boundary nodes, nodes B1 to 825 i n  Fig- 
ure 2,  have constant temperatures and pressures. 
All of them are open to heat flow, b u t  only selec- 
ted ones are open to f l u i d  flow. The temperatures 
of the boundary nodes -re varied tn sow degrea 
u n t i l  a reasonable match between observed and 
calculated temperature data w a s  obtained. The 
best match w a s  obtained when the values given in 
Table 3 were used. 

Figure 9. Pressure changes ( i n  bars) i n  the a 
reservoir from 1973 t o  1979 (a t  1200 m 
depth) and postulated direct ion of f lu id  
recharge (adapted from Bemejo e t  al . ,  
1979. 

Durlng the simulations of the system under 
natural conditions (pre-production), only the 
boundary elements B 1 #  B4, B5# 816 and 825 were 
assumed open to f l u i d  flow. The pressure in these 
nodes w a s  calculated based on the  average f l u i d  
densi ty  of the overlying fluids and the depth to 
t h e  midpoint of the boundary node. The values 
used are given in Table 3. The pressure i n  ele- 
ment B25 was adjusted during the simulations u n t i l  
a reasonable match with observed pressure and 
temperature data was obtained. 

Table  3. C o n s t a n t  temperature and pressure a t  
boundary nodes. 

Node Temperature (OC) Pressure ( M P ~ )  

81 2 20 8.300 
B2 and 83 150 ( 1 )  
84 150 11.523 (2)  
!a5 150 12.445 ( 2 )  
Bb to Bll  1 so ( 1 1  
81 2 50 ( 1 )  
B13 230 ( 1 )  
81 4 300 ( 1 )  
B1 S 360 ( 1 )  

B17 75 (1) 
ni 8 100 ( 1 )  
Bl9 125 ( 1 )  
820 150 (1) 
82 1 2s 3 ( 1 )  
BZZ 300 ( 1 )  
B23 315 ( 1 )  
82 4 340 ( 1 )  
n2 5 355 4 3) 

( 1  1 These nodes were assumed to be closed t o  f l u i d  
flow while modelling the natural  s a t e  consid- 
e r ing  that they were i n  pressure equilibrium 
w i t h  the in te rna l  part of the system. 
When f l u i d  production was simulated, it was 
assumed t h a t  the pressures i n  these boundary 
nodes were equal to the i n i t i a l  pressures of 
the neighboring i n t e r n a l  nodes. 

(2)  In case 1, tnesc pressures were changed to 
11.278 HPa (noae 84) ana 12.180 tea (node 85). 

( 3 )  The pressure i n  node E125 w a s  adjusted to allow 
the inflow OS about kg/s'm of 355.C water. 

B16 50 8.815 
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Later, while modeling the f i e l d  under produc- 
t ion,  a11 lateral boundary nodes (E1 to $10, and 
816 to  B25) were assumed to have constant pres- 
sura9 and be open to f l u i d  flow. 
assigned to  the nodes were equal to those corrcs- 
ponding to the natural  state. 

COMPUTER MODEL 

Tne pressures 

X n  U l i s  study, the three-dimensional, m u l t i -  
phase, multi-component SiJntlator HULMM was used. 
MUWW was developed by IC. Pruess a t  Lawrence 
Berkeley Laaoratory fo r  modeling the f low of 
water/steam mixtures ana heat i n  porous or  frac- 
tured rock masses. The thermophydcal propert ies  
of water are accurately representea ~y the steam 
table equations given by the Internat ional  Formu- 
l a t i o n  Colmaittee (1967). MULKOM is an advanced 
version of the qeothermal reservoir  simulator 
SHAFT79 (Pruess and Schroeder, 1980), which ha8 
been extensively validated wth analyt ical ly '  and 
numerically (-Stanford Udvers i ty ,  1980). 

HODEL STUDZES 
. '  

ploy numerical meth- 
ods to study mass and heat  flow through the Cerro 
P r i e t o  system in its natura l  state and the e f f e c t s  
of  exploi ta t ion on the pressures, temperatures 
and boi l ing in the system. By employing a tw-- 
dimensional model, we make the important aasump- 
t i o n  t h a t  the mass md eneryy fluxes in the  third 
dimension are negligiole. In  the case of natural 
flows, we believe that t h i s  approximation i s  quite 
reasonable, as the model i s  oriented i n  the  direc- 
t i o n  of the primary f l o w  components, inferred from 
Halffman e t  al's w e l l  log s tudies  (this volume). 
However, in studies of the behavior of tne f i e l d  
under exploi ta t ion,  the tvo-dimensiokil assumption 
becomes much more critical. 
w i l l  invar iably lead to three-dimensional f l  
patterns.  Therettore, the studies  of the reservoir 
benavior during exploi ta t ion can only yield quali-  
tatxve resul ts .  

Massive exploi 

MOOELING OB THE NATURAL STATE 

W e  assume that the field is under steady- 
state conditions i n  its natural state. W e  thus 
neglect  the wry slow temporal chanqes in the 
tnermal or t l u i d  flow regime t h a t  have been sug- 
gested by some mineralogic studies (Elders et  al., 
1981). The i n i t i a l  thermodynamic conditions in 
the models used f o r  the natural-state computations 
were assumed to depend only on depth. The temper- 
a ture  and pressure increased l inear ly  w i t h  depth, 
watn single-phase l iqu id  conditions everywhere. 
Steady-state conditions were generally reached 
a f t e r  10-100 thousand years of simulation. 

Five models simulating the natural  mass and 
heat  flows in the Cerro P r i e t o  geothermal system 
are considered. In a general  sense, a11 of the 
models a r e  qui te  similar,  but the s l i g h t  d i f fe r -  
ences gave important ins ight  i n t o  h o w  the anterial 
properties,  the boundary conditions and c e r t a i n  
geologic features  a f f e c t  the steady-state mass and 
heat  flows in the system. 
the general  physical  processes t h a t  the mdels 
exhioLt and then discuss resu l t s  froa simulations 
using individual  lnodels. 

W e  w i l l  f i r n t  explain 

The basic model considered represents the 
geologic formations between 800 and 2000 m depth, 
as shown schematically i n  Figure 2. A t  the top of 
the wdel (800-1000 m depth), there  is a shallow 
cooler aquifer  which extends all across the s y s t e m  
(zones S1 and S4, Figure 3) and which is assumed 
to  be overlain by M impermeable layer a t  800 m 
depth. Cold (50*C) water is recharging this q u i -  
f e r  troa the east (through node 816, Fiqure 2). 
Xot (about 240*C) w a t e r  is flowing i n t o  this aqui- 
fer from depth through the f a u l t  zone (zone F) 
located between wells M-25 and M-29 (node 8 ) .  
This s h a l l o w  q u i f c r  discharges f l u i d s  to the west 
(through node B1)  feeding the surface manifests- 
t iona tha t  are observed in t h a t  area. It i s  
assumed t h a t  the western part of the aquifer  is 
more permcable than the eastern part. 

In  the western part ,  a permeable shaly layer  
(zone C1) separates  the s h a l l o w  cooler aquifer 
from t h e  a reservoir (1200-1400 m depth). As 
mentioned earlier, this shaly layer  is cut  by the 
f a u l t  between n-25 and M-29 (zone F) which allows 
the upward movement of hot fluids.  

B e l o w  this shaly layer  the u reservoir (zone 
S2) i s  recharged from the  east  w i t h  hot  waters 
w h i d r  ascend through the vertical gap e d s t i n g  
beoreen the  shaly layers  east ot w e l l  M-10 (Fig- 
ure  1). Cooler waters (t50OC) recharge the a 
reservoir from the west. Under natural conditions 
both hot  and cola w a t e r  move towards the f a u l t  
tone, and then upwards along the f a u l t  zone. 

In tha western region the Q reservoir  is 
separated from the deeper 6 reservoir  (zone S3) by 
a continuous but  leaky shaly layer  (zone C2). We 
assume t h a t  the f a u l t  zone has &en sealed by 
mineral deposit ion bet&en 1400 and 1600 m depth, 
ao that it does not allow rapid transport of hot  
water to  the reservoir. I n  the western part of 
the system w e  assume t h a t  this reservoir  is i n  
hydraulic equilibrium w i t h  colder (lSO*C) w a t e r s .  

A low-permability, lw-conductivity layer  
(zone C3) is assumed to underlie the 6 reservoir. 
Because of the l o w e r  temperature prevail ing in 
boundary nodes B13 and B14'(Table 3 ) ,  there is a 
decrease of temperature wi th  depth, as observed in 
the western region &low the 0 reservoir. 

In the eastern region below the cold shallow 
aquifer  discussed earlier, there is a thick shaly, 
low-permeability u n i t  (zone C4) w h i c h  acts as a 
confining layer  to the underlying D reservoir  
(zone SS). The depth t o  the b reservoir increases 
towards the east where it is recharged w i t h  355.C 
l i q u i d  water (through node 825). This f lu id  is 
believed to  & heated a t  depth by a swarm of 
intruded dikes (W. Elders, 1982, personal communi- 
cat ion ). 

The vertical gap between the shaly units 
(€igure 1, east  of w e l l  H-10) could allw f l u i d  
flow between the shallow cold aquifer  and t h e  
geothermal reservoirs. I f  the vertical permea- 
b i l i t y  of the sandy materials in this gap is high, 
the cold water moves downward because of its 
higher aensi ty  and qradually cools the geothermal 
resource . 
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The vertical permeability of the sandy 
materials i n  th is  gap is probably not very l a rge  
because the hot water as it rises through the gap, 
tends t o  prec ip i ta te  minerals as it b d l s  (PLders 
e t  al., 1981). 

W e  consider t h a t  the f l u i d  flow between the 
shallow aquifer  (zones Sl and 5 4 )  and t h e  geother- 
mal system below was restricted by the existence 
of a low-permeability zone (tone C 5 ,  node 16) 
created by the self-sealing of the sediments as 
the  cold recharge water is heated (Elders et al., 
1981 ) 
MOOEL 1 

The materials assigned to the various ZOMS 
of Moue1 1 are those given i n  Table 2. The boun- 
dary conditions used are described i n  Table 3. 

Figures 10 and 1 1  5hov the steady-state 
tcmperatura distr+ution and f l u i d  flaw pat tern 
i n  the system. 
lower permeabili+y tones and the dotted regions 
the  areas where t o i k n g  occurs. Some of the re- 

The hatched regions represent the 

ned i n  this model are summarized i n  

The temperature of the a reservoir  (nedes 21 
and 27 i n  Figure 2) var ies  between 291 and 299OC. 
Tho pressure a t  1250 rn depth (node 21) is  11.52 
ma. A t  1200 m it would be about 11.11 ma, which 
compares well with the 1973 pressures shown I n  
Figure 6. 

The temperatures i n  nodes 45 and 51, repre- 
sent ing the D reservoir in the western part, are 
330 and 329OC, respectively. 
SI (1750 m depth) is  15.93 MPa. This value is 
s l i g h t l y  higher than the pressure reported by Prlan 
(1981) for w e l l  E-1 (15.30 m a l .  Xowevt?r, +he 
pressure i n  W e l l  E-1 was measured i n  January 1981 
about two years after f l u i d  extract ion started i n  
tne P aqui fer  i n  the southwestern and eastern 

The pressure in node 

parts of the field. . 
Boiling is restricted to  the eastern part of 

the f i e l d ,  i n  the u p f l w  region and yt of the 6 
aquifer. The flow patterns shown i n  Figure 1 1  indi-  
cate a s igni f icant  cold w a t e r  recharge from the 
w e s t  and an even larger  upward f l o w  through the 
f a u l t  zone near M-29. The ascending w a t e r  evenfu- 
a l l y  discharges a t  the upper-left  corner of the 
model. 

wsw MODEL 1 E 

b 
W 
0 

DISTANCE (m) 
XIILltO-1118 

Figure 10. Model 1 - Natural state. Steady-state temperature dis t r ibut ion;  contcur interval :  2OOC. 
Hatched areas represent layers of lower permeability# dotted areas, two-phase zones. 

* 
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X I L o I - 1 ~  

Fiyure 11. Model 1 - :idturd1 state. Steady-state mass flow pattern. Length of arrows is scaled w i t h  
respect t o  the la rges t  flow r a t e  ( i n  kg/s*m2). 



Taole 4. Natural  S t a t e  - Sunmary of ResultJ 

Models 
1 2 3 4 5 

AQUIFER 0 

N o d e  21 Temperature (*C) 291.0 297.3 
Pressure (ma) 11-52 1 1  A 2  

Uode 27 Temperature ( * C )  298.6 302.5 
Pressure (ma) 12.24 12.24 

Fluid Velocity (m/yr) s Leween Nodes 21-12 0.4 0.7 
Between N o d e s  21-28 1.4 3.5 

AQUfkTR o . N o d e  45 Temperature (*C) 329.9 29 3.0 
Pressure (ma) 15.28 16.83 

Node 51 Temperature (*C) 328.8 285.4 
Pressure (ma) 15.Y3 17.57 

Node 55 Temperature (*C) 351.7 352.8 

Steam Saturat ion 0 0 

BOUNDARIES 

Node bo Inf lux of 355.C water (kg/s) 
N o d e  19 Inf lux of 1 5 0 . ~  witer (kg/o) 

pressure ( m a )  17.Ob 18.61 

1.01 X lO-2 1,03 x 
1-65 x 10-3 .4.49 x 10-3 

Node 25 Inf lux of 1SO.C water (kg/s .e8 x 10-3 7.57 10-3 

N o a e  b Influx of 50.C water. (kg/s 

N o d e  1 Outflow of hot  water (kg/s) 2.28 

Noae 1 Temperature (.C) 21 3.3 214.7 

267.3 
1 1  e48 

279.9 
12.24 

0.3 
0.5 

325.9 

323.7 

349.9 

14.53 

15.19 

16.52 

0.14 

1.02 x 10-2 

4.75 x 10-3 

8.07 x 10-3 

1.24 x 10-3 

2.43 x 
21 6.6 

297.0 
1 1  033 

307.8 
12.04 

0.3 
1.5 

332.2 
15.06 

331.3 
15.70 

351.4 
16.8t 

0 

1.02 x 16-? 

8.84 x 

5.42 x 

1.79 x 10-2 

1.41 % loo3 

226.3 

288.9 
1 1  052 

299.1 
12.2s 

0.5 
1.6 

329.2 

328.3 

351 -6  

0 

15-77 

15.92 

17.05 

1.02 x 10-2 

3.55 x 10-3 

7.78 x 10-3 

1.33 x 10-3 

2.28 x 10-2 
213.7 

I n  the western part of the d rese gher -&Ian it was in node1 1 (297% i n  node 21 
hot  water en ters  from the east, part of Ghich 
leaks upwards through the confining layer, while . 
some mves w e s t w a r d  where it cools i n  a not very 
w e l l d e f i n e d  convection cell. I n  the reservoir show t h a t  boiUng is restricted to the upper part 
east  of the f a u l t  zone, the major component of of tha upflow channel. The pat tern of f l u i d  mve- 
f l o w  is to the west, a small amount of colder men+ i a  similar to that of Hodel 1 except that 
water flows to  the east i n  the lower part of 
reservoir. 80th waters mix and flaw upwards 
through the fault .  

nd 302.C i n  node 27). 

Xn this model, the steady-state conditions 

ter enters the western part of the 

WDOt 3 

f a u l t  zone netween w e l l  M-25 and M-29 is open i n  
nodes 32 and 38, allowing a direct connection be- 
fween the a and 0 reservoirs i n  the western t q i o n  

In  Figure  1 1  and other later figures, the 
length of the arrows is scaled w i t h  respect to the 
largest flow rate. Consequently, i n  regions where 
the flow is mall, no arrows are present. The rates 
o f  f l u i d  recharge and discharge, and the veloci 
i n  tne reservoir  are given i n  Table 4. 

HOOP, 2 

Model 3 d i f f e r s  from Model 1 only in t h a t  t h e  

f ield (Figures 13 and 14). 

This gap in the  shaly zone C2 makes the 
steady-state temperatures and pressures i n  the u 
reservoir considerably rawer than i n  MO&U 1 and 

that i n  the latter, the permeability of t u f t  is Similar  to that f o r  Models 1 and 2, b u t  
layer  (zone C21 i s  lowered by using m a t  the  pressure is considerably lower or 15.19 m a  in 
instead of material 7. The lower vertical perora node 51; this value is l o w e r  than the one measured 
b i l i t y  s ign i f icant ly  reduces the leakage of hot in well E-1 i n  ear ly  lye1 (15.30 mal. 
waters through tha t  layer, thus decreasing the 
flow of h o t  water i n t o  the western region of the 6 
reservoir.  u reservoir  and the l o w  pressures i n  the western 
temperature and subsequent increase of PreSSUre i n  p a r t  of the 0 reservoir are not consis tent  w i t h  
the  0 reservoir) 2 8 S C  and 17.57 hQa i n  node 51 the measured data, tnis model is considered inade- 
(see Table 4 and Figure 12).  On the other hand, quae f o r  describing the natural  state of the Cerro 
the temperature i n  the a reservoir is s l i g h t l y  

t The only difference between Models 2 (see Table 4).  I n  the 6 reservoir, the tempera- 

Since the low temperature and pressure in the 
This r e s u l t s  i n  a large reduction of 

Pr ie to  system. 
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Figure 12. 

Faguru 13. 
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wsw MODEL2 E 

DISTANCE (m) 
XBLQO-111s 

Model 2 - Natural state. Steady-state temperature distribution; contour interval: 20.C. 

- 

WSW MODEL3 E 

DISTANCE (m) 
X8L WS - 1?17 

nodel 3 - Natural state. Steady-state temperature distribution; Contour interval: 2OOC. 

. . . . . . , 

Figure 14. Model 3 - Natural state .  Steady-state mass flow pattern. 
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MODEL 4 

In Model 4, the pressures i n  boundary nodes 
84 and 85 were decreased to 11.278 and 12.180 ma, 
respectively.  ALL other conditions In t h i s  model 
a r e  the same as those of Model 1. 

The reduction of pressure i n  these bundary 
nodes not  only decreases the inf lux of the cooler 
(150W) w a t e r  in to  the 0 reservoir,  but a l so  re- 
duces pressures Vbtoughout the system (Table 4). 
The tempra ture  in the Q reservoir  d o e s  to 297% 
i n  node 21, axid 308% i n  node 27 (Figure 15). 
The pressure i n  node 21 is now 11.33 UP., ard a t  
1200 m depth it w u l d  be about 10.95 ma, a value 
S I I d k t  to those shorn i n  Figure 6. 
and temperatures In the L1 reservoir  are s l lgh t ly  
lower tnan those i n  nodel 1. This Increases some- 
what the e x t e n t  of the boillng zone In the eastern 
regions of the 3 reservoir. 

The presaures 

c 
€ 
I 
t- a 
W a 

cc 

UODEL 5 

In  model 5, the material  of node 16 (zone C5) 
is changed to Material 2; everything else is the 
same as i n  Hodcl 1. 

The higher penneabill ty of the  CS tone, espe- 
c i a l l y  the vertical permeability, causes grea te r  
flows from the shallow cooler aquifer  Into the 
geothermal system. As expected, more colder water 
leaks i n t o  the upper zone of the ascending hot  
water plume resu l t ing  in a s ign l f i can t  cooling of 
node 22, from 292'C i n  Model 1 to 254% i n  Model S. 
The rest of the system is only s l i g h t l y  affected 
(Table 4; Figures 16 and 17). 

In  addi t ional  simulations, the permeability 
of node 16, vas Increased even fur ther ,  thus e l i m -  
ina t ing  the self-sealing zone on top of the r i s ing  
hot  water plume, but the results showed even 
greater  cooling of the Q reservoir. 

wsw MODEL4 E 

KO0 

1600 

1000 2000 2000 

DISTANCE (m) 
x e L 1 8 -  1118 

Figure 15. nodel 4 - 1aatur.l state. Steady-state temperature d is t r lbu t iont  contour interval2 20.c. 
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Figure ib.  nodel 5 - Natural s ta te .  Steady-state temperature dis t r ibut ion;  contour interval :  2O.c. 

11 



DISCUSSION OF 

wsw MODEL 5 E '  

I . . . . . . . . . . . . . . . . . .  . . . . . .  
. . . . . . . . . . . . . . .  

'xmLm- i i i i  

Figure 17. ~ o d e l  S - Natura]. state. Steady-state mass flow patterns. 

MDDEtS OF M E  NATURhL STATE 

In- reviewing the resu l t s  from d i f f e r e n t  
models tes ted  (only a few are reported here), we 
feel  t h a t  Models 1, 4 and 5 are those which best 
reproduce the ini t ia l  d is t r ibu t ion  of temperatures 
and pressures  in the field.  Model 1 and 5 give 
s o m e w h a t  higher pressures and lower temperatuns 
in the system than Model 4 (Table 41, mainly be- 
cause of Larger influx of colder water i n t o  the a 
reservoir. 

Model 5 gives re la t ive ly  low temperatures in 
the  upper eas te rn  part of the u reservoir ( i n  the 
region near M-10) which agree w e l l  w i t h  values re- 
ported by Mercado (1976) (see Figure 4). 

Model 4 gives s a n e w h a t  higher temperatures in 
the western region of the a reservoir  in compar- 
ison with other  models. These agree rere closely 
t o  the temperatures given by Mercado (Fiqure 4) 
and also best reproduce the temperature reversal 
observed i n  that region. In  addition, Model 4. 
gives pressures i n  the o reservoir that are almost 
i d e n t i c a l  to those reported by Bermejo e t  al. 
(1979) (Figure 6). 

All f ive  models give average f l u i d  ve loc i t i e s  
i n  the a reservoir (Table 4) which are of the same 
Order of magnitude as the one computed by Elders 
e t  al. (19811 f o r  the hot  plume ( 6  m/yr). 

Furthermore, Mercado (1968) estimated the 
volume of the natura l  flows of the surface mani- 
f e s t a t ions  to k 5 x 106 m3/yr along a 10 km long 
zone. 
t h i s  outflow is about 1.6 kg x 10-2 kg/s*m. This 
value compares reasonably well w i t h  the calculated 
na tura l  flow rates through the Cerro P r i e to  system. 
For example, the inflow of hot  f lu ids  i n t o  the I 
reservoir  trom the e a s t  (node 601 i s  about 
1 X kg/s'm, and the average outflow through 
node 1 is about 2 x 10-2 icg/s*m for the f ive  models 
(Table 4). 

Assuming a f lu id  densi ty  of 1000 kg/m3, 

12 

We conducted a br ie f  study to examine the 
effects of the relative permeability c u ~ e s  used 
on the steady-s+ate temperature and pressure as- 
tribution i n  the Cerro P r i e to  system. 
linear relative permeability curves and canpared 
+he r e su l t a  to those obtained using the Corey 
curves. me r e s u l t s  showed 110 significant differ- 
ences. primarily because of the small extant of 
the  -0-phase zone. 

We used 

Summarizing, the following conclusions can be 
made x 
1 . Halfman e t  al. *s hydrogeological rede l  is 

reasonable and cons is ten t  with mass and heat  
flows i n  the Cerro Pr ie to  reservoir; 

2. The average na tura l  rate of h o t  water 
recharye i n t o  the eastern part of the C e r r o  
P r i e to  system is approximately 
meter of width (measured i n  a north-south 
di rec t ion  1 i 

kg/s per 

3. The f a u l t  zone between w e l l s  M-25 and M-29 
permits flow of f lu ids  between the a reser- 
vo i r  and the shallow colder aquifer, but  n o t  
between the Q and P reservoirs; 

4. The hot  water plume boils as it ascends 
through the gap ex is t ing  betveen the shaly 
layers  ; 

5. There exis t s  a lower permeability zone a t  the 
top of the  ve r t i ca l  gap between the shaly 
layers  which inh ib i t s ,  or reduces, the influx 
of shallow cooler waters i n t o  the geothermal 
system from above. 

srsmm UNDER EXPLOITATION 

In the second part ot the simulation studies, 
the models developed fo r  the na tura l  state were 
used to  simulate the behavior of the Cerro Pr ie to  
system during exploitation. The purpose was to 
select the model which best reproduces the pres- 
sure  and temperature changes i n  the cc reservoir. 



During exploi ta t ion we ext rac t  half of the 
f l u i d  mass from node 21 and the other half from 
node 27 (see Figure 21: both nodes represent the 
main part or! the a reservoir. me f l u i d  produc- 
tion r a t e s  b t . the  Cerro P r i e t o  field between 
Harch 1973 and the end of 1979 are given in  Table 5. 
I n i t i a l l y ,  these r a t e s  were divided by 1500 m ( the 
approximate width of the production =ea i n  the 
western region) t o  take i n t o  consideration the W e  
dimensional M t W C  O f  the moaels. This msulted i n  
pressure drawdowns i n  the a reservoir  (node 21) 
which were about twice as Large as those reported 
by Bermejo e t  a1. (1979). This discrepancy i s  
caused mainly by the two-dimensional nature of 
the  model, i.e. lack of recharye from the third . dimension. 

Several r a t e  reductions were t es ted  using 
model 5 and it waa found t h a t  dividing the t o t a l  
r a t e s  (UT) by 3000 o r  4000 m gave some r e l a t ive  
agreement with the observed prcssura changes (see 
Tigum 18). The case for 3000 m gam a somewhat 
larger total pressure decline than  w h a t  is ob- 
served, but the ahape of the curve a t  later times 
f i t s  the obaenwd a r v e  reasonably w e l l .  For the 
4000 II case, the total drawdown is rimihr to the  
onserve0 one, but  the general  shape of the pres- 
sure  decl ine does not agree as well .  

On the other hand, * by studying the tempera- 
tu re  changes i n  node 21 using d i f f e ren t  flow rates 
(Figure 191, it is c lear  that the 4000 m and 
6000 m cases give 'too slow a temperature decline. 
The Na-K-Ca geothermoateter indicates  t h a t  between 
1973 and 1978 the t tmperatun in the a reservoir  
has dropped by up to  30.C (Figure 3). &n average 
drop of 20.C over thi8 period is a reasonable 
value (A. Truesdell, 1982, personal coamunication). 

Based on tne pressure and temperature response 
of rlodel 5, w e  decided to use the 3000 m Width in 
a l l  fur ther  simulations (i .e.  Q = * / l o 0 0  la). 

Table 6 summarizes the temperature and pres- 
s u r e  decl ines  t n a t  were computed in  the a reservoir  
(nodes 21 and 27). 

-3 I 1 I 1 

MODEL5 I 

Figure 20 shows the -?zmperature versus time 
i n  node 21 .for the f ive  models. A l l  the m d e l s  
show a temperature decline,  as observed in the 

ture  decline. 
' f i e l d ,  nowever, node1 3 shuws too slow a tempera- 

- * 

Table 5. Cerro P r i  

Figure 18. bIodel 5 - Exploitation. P r t s s u r e  
changes i n  node 21  under different 
production rates. 

2 9 a h  I 

4 ~~ 

Dates Production Rates (kg/s) 

3/73-12/73 4 59 

1974 590 . _ _  , I973 1974 I975 1976 1977 1978 
1975 603 
1976 69 5 

1/78-6/78 671 ' 

7/78- 12/ 78 761 
1979 1210 

1977 751 : 

IIL-IJU 

Figure 1Y. Model 5 - Exploitation. Temperature 
changes in node 21 under d i f fe ren t  
production rates.  
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Figure 20. Temperature of node 21 versus t i m e  for 
the f i v e  models studied under exploit- 
a t i on  (Q = (&/3000 m). 

Table 6. Change of Temperature ana Pressure in 
Nodes 21 and 27 (a reservoir)  bemeen March 1973 
and Dccenrber 1978. 

N o d e  21 N o d e  27 
T P T P 

( *C) (ma) (*C) (ma) 

Moael 1 -20.9 -2.78 -23.5 -2.76 

Model 2 -21 a 8  -2.97 -29.1 -2.95 

Moael 3 -12.0 -2.29 - 8.6 -2.27 

Hodel 4 -16.6 -2. CO -21.4 -2.57 

Mod1 5 -20 4 -2.71 -23.5 -2.69 

The reason fo r  the temperature decl ine i n  the 
a reservoir  is obvious when m e  compares the 
energy intlow i n t o  the production nodes (nodes 21 
and 27) t o  the energy produced (Figure 21). The 
f l u i d  flow i n t o  the production nodes is dominated 
by inflow of cooler waters from the  west. The low 
energy content  of this recharge r e su l t s  i n  a ne t  
eneryy lo s s  i n  the production nodes of about 
0.5 x 105 J/s.mz consequently, the temperature 
declrnes. 
ure  21 are aue to the variable production rate 
(Table 5). 

The bumps i n  the curves shown i n  Frg- 

The shape of the pressure chanye versus t i m e  
curves are similar fo r  a l l  f ive  moaels (Figure 22). 
The bumps i n  tne curves are m e  to changes i n  pro- 
duction race, as given i n  Table 5. Some models 
seem t o  react less abruptly to these changes (e.g., 
Models 1 and 4) possibly because of somewhat higher 
ove ra l l  compressiuility of the u reservoir. 

The shape of these curves shows tha t  soon 
a f t e r  a change i n  the production rate occurs, the 
pressure tends to stabilize, thus re f lec t ing  the 
permeable nature of the system. 

MODEL I 
NODES Lland 27 

1 
I 
I 
I 

Is73 1914 m m lOrr1918' 
OL-Y 

Figure 21. &del 1. Energy extracted and re- 
charged to  the production region 
(nodes 21 and 27). 

It in of interest to uamine the cause of the 
pressure decl lncs  i n  the a reservoir. In most 
cases, reservoir pressure reduction is attributed 
t o  densi ty  changes due to l i m i t e d  recharge. yw- 
ever, as shown in  Figure 23, results f o r  Model 1 
show that the recharge rate is general ly  higher 
than the extract ion rate auring the simulation. 
Thus, the pressure reduction is primarily caused 
by f lu id  contraction because of the temperature 
decline. 

I / *  
l¶73 1974 Isn 1976 1977 1978 

Figure 22. Pressure chanyes i n  node 21 for the 
f ive  models studied under exploi ta t ion 
( y  = yT/3000 m ) .  
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I973 1974 I973 I976 19TI 1918 
IL-Oa 

Figure 23. nodel 1. Mass extracted and recharged 
t o  the production region (nodes 21 
and 27). 

-. 

In  all cases, the in i t ia l  pressure drop is 
much larger than that of Bernrejo e t  a1. (1979). 
This  could be explained by the two-dimensional 
nature of the model which docs not allow for re- 
charge from a l l  direct ions,  and does not fake i n t o  
account the presence of C02 i n  the reservoir  
f luids .  The latter fac tor  enhances boi l ing in the 
reservoir  by lowering the w i l i n g  temperature of 
the water. Assuming a 0.5% (by mass) of C02 i n  
the Cerro Orieto f lu ids ,  and using Kenry's l a w ,  
the yartLa1 pressure of C02 a t  300.C is esumatcd 
as 0.55 ma. 

voir caused by the presence of cO1 would s ign i f i -  
can t ly  increase the compressibility of the system 
and consequently slow down the pressure reduction. 
Therefore, I t  is pssible tha t  the qomputed i n i -  
ti81 pressure decline is too large because the 
e f fec t s  of noncondensable gases were neglected. 

temperature changes and mss flow pat terns  a t  the 
end of  1978 fo r  Models 1, 3 ,  and 5. Simulation of 

A more extensive two-phase zone i n  the reser- 

Figures 24 to 32 show the 2ressure changes, 

WSW 

production a f t e r  1978 was not carried out  &e to  a 
lack of data on the pressure history of the a res- 
ervoi r  and because a t  that t i m e  new wells, located 
i n  the southwestern and eastern part of the f i e ld ,  
were put  on l ine.  Consequently, we f e e l  that only 
a model t h a t  considers the three dimenaional M- 
t u re  of the geology and of the flow pa t te rn  is 
appropriate fo r  simulating the behavior of the 
reservoi r  after 1978. 
dimensional model of the f i e l d  is one of our fu- 
tu re  obj ectives . 

The development of a thrca- 

Figures 24 t o  32 i l l u s t r a t e  the Importance ai! 
the western boundary and the f a u l t  located between 
wells M-25 and M-29 i n  the recharge of the produced 
a reservoir.  For example, i n  Model 5 a t  the end 
of 197aS 86% of the recharge into nodes 21 and 27 
(representing the a reservoir  under exploi ta t ion)  
comes Srom the west and the fau l t ,  5% f ran  +he 
e a s t  and the verttal gap between the shaly units, 
6% from the underlying layer,  and the remaining 21 
from t n e  overlying layer. 

The presence of the two-phase zone i n  the ver- 
t i c a l  gap which connects the u and Lc reservoirs, 
the associated mobility decrease due to relative 
p e m a b i u t y  e f fec ts ,  and the l o w  v e r t i c a l  permea- 
b i l i t y ,  l i m i t  tlae mass recharge to the a reservoir  
from deepar parts of the system. 

Some a u p o r s  (Berme j o  e t  al., 1979 and S i n c h a  
and de la Pena, 1981) have suggested that there is 
s ign i f i can t  recharge to the 
e a s t  (cog. see Figure 9). The r e su l t s  of our model- 
ing  studies indicate  that a very small f rac t ion  of 
the =charge comes from t h a t  direction. Our work, 
i n  agreement w i t h  t h a t  of other authors (e.g., 
Fausto e t  al. , 1981 I Grant e t  al. , 1981) indicates 
tha t  most of the recharge to the a reservoir  comes 
from the west and from shallower zones. 

reservoir  from the 

Because of the high permeability of the sys- 
tem, the extent  of the two-phase xones increases 
only s l i gh t ly ,  or not a t  al l ,  in our simulations 
during exploitation. Furthermore, no boi l ing 
occurs i n  the production nodes located i n  the a 
reservoir.  
e t  al. (1981) t h a t  boil ing occurs only near the 
wells and t h a t  no extensive two-phase tone has 

This agrees with the findings of Grant 

eveloped i n  the reservoir during exploitation. 

OOEL 1 E 

DISTANCE ( m) XIL OiD -1 8 2 0  

Figure 24. Nodel 1 - Exploitation. 
(0.5 wa1. 

Pressure changes between 1973 and 1978; contour interval :  5 bars 
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Figure 25. ~ o d e i  1 - Yrploitation. nmperatura changes b e m e n  1973 and 1978; ccntour interval: 5.C. 

Figure 20. Model 1 - Exploitation. Mass f low pattern a t  the end of 1978. The two  dots indicate where 
Ura fluias are extracted from the system. 
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Figure 27. nodel 3 - Exploitation. Pressure changes between 1973 and 1978; contour interval: 5 bars 
(0.5 ma). 
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Figure 28. Model 3 - Exploi+ation. Temperature Changer betorren 1973 and 1978; contour interval: 

MODEL 3 E 

IELS i l i a  

Figure I Y .  Model  plploitation. Mass flaw pattern a t  the end of 19713. 
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Figure 30. flodel 5 - Exploitation. Pressure changes between 1973 and 1978; contour interval: 5 bars 
(0 .5 ma). 
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Figure 31. Model S - Exploitation. Temperature changes between 1973 and 1978; contour interval :  5OC. 

Piyure  32. m-1 S - Exploitation. 

CONUUSIONS 

The resu l t s  of the studies on the natura l  
state of the Cerro Prieto f i e ld  and the studies of 
the reservoir  behavior under exploi ta t ion ind ica te  
that Models 1 ,  4 and 5 best match measured values. 
All of these models agree w e l l  w i t h  observed data, 
so that a t  the present t i m e  one cannot decis ively 
s ing le  ou t  any one rodel as the Dest. However, 
the physical difxrrences between the three models 
are small. 

The r e su l t s  indicate that the f i e l d  i n  its 
na tura l  state is recharged from t h e  east w i t h  hot 
water (about kg/s’m) a s  w e l l  as with colder 
waters from s h a l l o w e r  aquifers, especial ly  from 
the west. The hot  waters flow upwards through a 
ver taca l  gap i n  the shaly layers  (east of w e l l  
M-to) and move i n t o  the western a and d reservoirs. 
Some boi l ing  occurs as the h o t  waters ascend. 

“he a reservoir i s  fed from t h e  east by h o t  
waters and from the west by cooler waters. As 
these waters move towards the f a u l t  zone located 
between w e l l s  M-25 and 61-29, they tend to nux and 
then f low upwards through the f a u l t  zone to a 
shallow aquifer. This shallow aquif e? discharyes 
t o  the w e s t  and the water eventually feeds the 
surface aianifcstations a t  the western region of 
the f ie ld .  

Hineral deposition or self-seal ing of Me 
porous sediments could exdlain the  d u m a 1  inf lux 

IoLm-w 

uass flow pa t te rn  a t  the end of 1978. 

0 I 

or cold water under natural conditions i n t o  the 
geothermal reservoirs from the shallov aquifer 
overlying the system. The results show that the 
f a u l t  between w e l l s  n-25 ana 61-29 does not  permit 
much f l u i d  flow O e t v t y , : c m  the a and 6 reservoirs ,  
nu t  does connect the 0 reservoir w i t h  the shallow 
aquifer  . 

Our studies of the reservoir response to ex- 
p lo i t a t ion  show that most of the f l u i a  recharge to 
the U. reservoir comes from the w e s t  and from shal- 
low l ayers  above the f a u l t  zone. Recharge from 
the east seems to be d n o r  due to  the presence of 
a two-phase zone in the vertical gap b e t w e e n  the 
shaly layers. Because of the larye f l u i d  recharge, 
no extensive two-phase zone develops in  the 
reset vox r. 

T 

. 
NOMENCLATURE 

n = aeserwir thickness ( m )  
k = Absolute permeability ( m d )  
krl = Relative permeability of l iqu id  phase 
k,, = Relative permeability of vapor phase 
P = Pressure (Pa)  
9 = Plow r a t e  (kq/s*m) 

S = Vapor sa tura t ion  
Srl = Residual (immobile) l iqu id  sa tura t ion  
srv = Residual (immobile) vapor saturat ion 
4 = ?orosi ty  

- Total flow (kg/s) 
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