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ABSTRACT 

In large N QCD, deconfinement by color screening is 

suppressed. The adjoint string tension is twice the funda-

mental string tension. Consequences for models of confinement 

are discussed, and a simple model of a confining large N·master 

field is given. 
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Consider an adjoint quark anti-quark pair in finite N QCD. If 

there is a (double) string between the quarks (confined state), it is 

expected that ·it is energetically favorable for the string to break 

(vacuum polarization), resulting in a state of free screened quark 

plus free screened antiquark. 1 In strong coupling Euclidean lattice 

gauge theory, the situation corresponds to Figs. (la, b). A fixed time 

slice of the "sandwich" (Fig. la) is the bound state of the two quarks 

(connected by a double string). A fixed time slice of the "tube" 

(Fig. lb) is the screerled state (each quark free and wrapped in glue). 

The statement is that the sandwich contributes an area piece to the 

Wilson loop, while the tube contributes a perimeter piece. When the 

loop is large the sandwich is small and we see a perimeter law. This 

is color screening. 

Our point in this report is that screening is suppressed in the 

large N limit. Computation of the diagrams in the figure gives 

-2cr~[C] 
<TrAU[C) >-N2{e + N-2e-4oFP[C]}, (1) 

where TrA is the trace in the adjoint representation, and oF is the 

string tension for the fundamental quark. The first term is from the 

sandwich, the second from the tube. In the extreme large N limit, the 

tube is suppressed (color screening is suppressed), and we see an area 

law for the adjoint loop. In fact, comparing the terms in (1), we get 

an estimate for the screening length (at which the string will snap) 

1 
2 2 

L ,.,e.nN) 
2crF 

(2) 
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A general argument for large N suppression of color screening 

deconfinement is available. Since (F = fundamental) 

TrAU[C] 
{ 

+ TrFU[C]TrFU [C], (U(N)) 

= TrFU[C]TrFU+[C] - 1, (SU(N)) 

it follows immediately from large N factorization that 

<TrAU[C] >=I <TrFU[C] > 12
• 

N 

(3) 

(4) 

If oF(A) is the string tension in the fundamental (adjoint) 

representation, Eq. (4) says that 

aA = 2aF' 
N 

(5) 

thus verifying our scenario above in generality. The relations (1) 

and (2) are also generic. Further, it is known that the topology 

of the leading contribution to the fundamental loop is planar, and 

order N. Equation (4) then states that the leading contribution to 

the adjoint loop has the topology of a sphere (with the adjoint loop 

at the equator), and order N2• Note that the sandwich (Fig. la) is a 

sphere, while the tube (Fig. lb) is a torus, and hence down in N. 

In an extreme ·targe N universe, we have seen that transitions: 

bound + scr~ened are suppressed. By the same token, the number of 

free screened adjoint quarks is absolutely conserved (they cannot be 

produced or annihilated). In such a universe, created with no free 

screened adjoint quarks, none can arise, and it is fair to say all 

adjoint quarks are confin~ 
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Our observations make it clear that conjectured confinement 

mechanisms havingto do with the center of the group (ZN fluxons, 2 

spaghetti vacuum3) cannot survive at large N. Assume (fundamental) 

confinement is describable at all N in terms of a sum over fluxon 

configurations alone. Since the fluxons have no effect on the adjoint 

loop, the hypothesis is inconsistent with large N factorization, Eq. 

(4). A further set of ad hoc configurations X might be assumed to 

confine the adjoint quarks at large N, but X must be mysteriously 

correlated with the fluxons to produce (5). We find this unnaturr.al. 

It is simpler to believe that the center of the group plays no role 

in large N confinement. The center of the group therefore stands to 

confinement roughly as instantons stand to the U(l) problems. It 

would be preferable to find a unified (all N) confinement mechanism. 

From a different direction, Lovelace has recently drawn similar 
.4 

conclusions about monopoles. 

Indeed the very idea of a group of configurations being necessary 

for large N confinement is presumably in contradiction with factorization. 

The standard lore is that; as N increases, some set Y of important 

configurations .gradually shrinks to a single configuration, the master 

.. 5 
field. We have argued here that the master field will confine 

adjoint quarks if it confines fundamental quarks. We now mention a 

simple toy master field that confines correctly and incorporates 

asymptotic freedom. 

In Ref. [6], we have found an exact matrix equation (the 

quenched Langevin equation) for the QCD master field. In our approach, 

the master field is a translationally covariant function of SN uniform 

.. -* * * random (quenched) momenta p (p , p5· ) and a 4-vector N x N 
]Ja a 

ot""~ 
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hermitean Gaussian random noise matr1x n*ab 
~ 

To zeroth order, REFERENCES 

the master field is 

A*ab(x) 
)J 

-* -* .. i(pa- pb)•x *ab 
""'e nil 

. * * * * 2 -1 
·[ 1 (p5a- Psb) + (Pa- pb) ] 

+ gauge terms (6) 

* The prescription· for the toy master field is to replace (p a 
* 2 

pb) 

11 * 1: 2 * *· 2 2 
12~. (pa- pb) ~n[l + (pa- pb) IIJ ] in Eq. (6). This gives rise to 

a two point function which· corresponds to Richardson's potential. 7 

+ 

The infra-red k-4 behaviour of the two point function is consistent with 

a truncated· set of' Schwinger-Dyson equations. 8 
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FIGURE CAPTIONS 

Figure 1. Strong-coupling lattice diagrams responsible for (a) area 

law; and (b) perimeter law falloffs of the Wilson loop C 

in the adJoint representation. 
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