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ABSTRACT 

Crossed molecular beam measurements of elastic differential cross 

sections (DCS) for the scattering of Ar and Kr by Xe are reported. 

Empirical multiparameter M3SV interatomic potentials for the ArXe and KrXe 

interactions are determined by simultaneously fitting the DCS, viscosities 

and virial coefficients; the results are the most ac~urate potentials yet 

reported for these systems. 
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I. INTRODUCTION 

In connection with work reported in the following paper, 1 in which anis-

otropic empirical intermolecular potentials for the ArSF6 and KrSF6 interac-

tions are determined, we decided to first study the ArXe and KrXe systems, 

the closest spherical analogues to ArSFG and KrSFG• In this paper we report 

the most accurate interatomic potentials yet determined for these systems. 

Several studies of the van der Waals potentials for the ArXe system2- 5 

and the KrXe system ~-6 have been reported in recent years, but none used as 

wide a variety of high quality data as is used herein, and a recent compila

tion7 ranks none of the potentials available for these two systems as better 

than Class II whereas Class I potentials are available for many of the other 

noble gas interactions. 

In Section II of this paper we report new, high-quality crossed molecu-

lar beam measurements of differential cross sections (DCS) for these sys-

tems. Then, in Section III we determine the interatomic potentials by simul-

taneously fitting these DCS data, the accurate viscosity (n) data of Kestin, 

~· !!,8 and the second virial coefficient (B) data of Brewer9 and of Rent

schler and Schramm. 10 

The three properties (DCS, n, and B) used in the fitting are complemen-

tary ones for that purpose. For these pairs of heavy noble gas atoms, the 

measured DCS at the 64 meV (0.0024 a.u.) relative kinetic energy used is most 

sensitive to the attractive potential from rm out to the asymptotic long 

range region, and the rainbow and supernumerary oscillations give detailed 

information about that part of the potential. Although n and B show much 

less structure than the DCS, they have the advantage of being absolute rather 

than relative values. The n are most sensitive5 to the wall of the potential 

from rm inward to a point where the potential is repulsive by about 1000°K 

-. 
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II. EXPERIMENTAL 

Elastic differential cross sections for the scattering of Ar and Kr by 

Xe were obtained by crossing a beam of Ar or Kr with a Xe beam at 90° and 

measuring the scattered intensity of the Ar or Kr as a function of angle in 

the plane defined by the beams, using a rotatable, electron impact ioniza-

tion/quadrupole mass spectrometer detector. The crossed beam apparatus used 

in these experiments, shown schematically in Figure 1, is discussed only 

briefly here as it has been described in detail previously. 11 

The Ar, Kr, and Xe beams are each formed by a supersonic free-jet expan-

sion through an 0.10 mm diameter orifice in a quartz nozzle, with a backing 

pressure of 0.5 to 1.0 atmosphere. Each beam is doubly differentially pumped 

before entering the scattering chamber. A conical skimmer with a 1.0 mm 

diameter throat is positioned -6 mm from the nozzle, between the source and 

buffer chambers. The primary beam, i.e., the beam of detected Ar or Kr par-

ticles, is geometrically defined by a 0. 74 mm wide by 1. 40 mm high slit be-

tween the buffer and scattering chambers, while the secondary beam, Xe, is 

defined by a second skimmer of diameter 1.70 mm, located between the secon-

dary beam buffer chamber and the scattering chamber. Figure 1 shows these 

and other details of the geometry of the apparatus used to measure the elas-

tic differential cross sections. 

A 150 'Rz tuning-fork chopper, located in the secondary beam buffer cham-

ber, modulates the Xe beam. The Ar or Kr atoms which scatter from this modu-

lated Xe beam are synchronously detected by a dual scaler which is locked to 

the tuning-fork chopper frequency. The scattered Ar or Kr signal thus ob-

tained is integrated for ·40 sec at a given angle. After signal integra-

tion at typically 5 angles the detector is moved back to an arbitrarily se-

lected reference angle and the signal here measured. The elastic differen-

.. . 
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tial cross section measurements are then time-normalized with respect to 

variation in the reference signal, to correct for long-term drift in the ex

perimental apparatus. 

The ·elastic scattering signal is measured at each angle typically 3 to 

5 times, in order to improve the signal to noise ratio and also to establish 

the statistical uncertainty in the measurements. The results of the measure

ments are shown in Table I for ArXe and in Table II for KrXe. Note that the 

measurements were made using a nominal laboratory angle which puts the 

primary beam at -0.4°. This has been corrected so that the tables give the 

actual laboratory scattering angle from the center of the primary beam. 
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III. CALCULATIONS 

A. M3SV Potential 

The interatomic potential we use is an M3SV generalization of the 

Morse-spline-van der Waals (MSV) form; as sketched in Fig. 2. In regions 

i • I, II, and III, it is represented by Morse potentials, 

(1) 

These Morse potentials are chosen so that they are continuous and have con-

tinuous first derivatives where they join. Thus, since the boundary of Re-

gions II and III is at rm, the position of the minimum, one has EII • 

EIII • E and rmii • rmiii • rm, and VII and VIII can thus differ 

only in ali and alii• Similarly, the requirements that 

and 

lr 
0 

lr 
0 

yield the restrictions that 

and 

r • mi 

(2) 

(3) 

(4) 

(5) 

(6) 
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so that ar is the only independent parameter in VI• 

The potential V is represented in Region IV as a single cubic Hermite 

spline, 

(7) 

where x =- r/rm is a reduced distance, and in Region V by the asymptotic 

London or van der Waals expansion, 

V • - C - 6 - C r-8 C -lO V 6r 8 - lOr (8) 

Given Vni and Vv, Vrv is completely determined by the requirements of 

continuity of the potential and its slope via 

( 9) 

(10) 

' (11) 

and 

• .( 12) 

Thus, although this M3SV form appears to have 18 parameters, only 10 (e:, 

rm, ar, aii• aiii• x1, x2, and the Cn) are independent, the remain-

ing parameters being determined by the continuity requirements. In practice 

the 3 Cn are assumed known and varied only if the data cannot· be fit other-

wise. Similarly, x1 is usually taken as the inflection point of VIII• 
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and X2 is usually held fixed at some value (-1.5) such that r2 (• rmx2) 

is large enough that the series in Eq. (8) is expected to be adequate but 

(13) 

small enough to prevent the spline in Eq. (7) from oscillating. Furthermore, 

in the initial fitting calculations, we use a • a! • ali • alii (MSV 

potential) and only allow the a's to become unequal (MMSV or M3SV) if it is 

necessary to fit the data. Thus, there are really only three parameters (€, 

rm, and a) that are freely varied, with limited or no variation of the 

others. 

The major virtues of the M3SV and related potentials are: (1) They have 

great flexibility, and (2) the potential can be changed in one region without 

changing it in another. The major vices are: (1) The potential can have 

discontinuous second derivatives at the boundaries between regions, and (2) 

one must "use the tail to wag the dog" in Region IV. That is, as drawn to 

scale for a typical interaction in Fig. 2, Region IV is rather large, and if 

€ and rm are fixed, the potential in that region can only be varied by 

varying the parameters (alii and the Cn) of Regions III and V. This is 

important because it is precisely Region IV which dominates in the rainbow 

scattering of these pairs of large noble gas atoms. The discontinuous second 

derivative problem is closely related. At most boundaries the discontinuity 

in a2v/ar2 is small or zero, but at x1 it can be appreciable, and that is 

worrisome because it gives the potential no genuine point of inflection, and 

it is known12 that the behavior of the potential near the point of inflection 

is very important to rainbow scattering. To try to improve the potential we 

also did some calculations with an MQV potential in which a quintic spline 

assures continuous value, first derivative and second derivative at x1 and X2• 
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However, this turned out to make the transition from Morse to van der Waals 

behavior occur within a short space located in the url.ddle of Region IV with 

a sharp unphysical bend in the potential occurring there, and resulted in 

poorer fits to experiment, so that it was abandoned. Empirical intermolecu-

lar potential forms that remove these problems without losing the advantages 

of MSV-type potentials are needed. 

B. Differential Cross Sections 

The center of mass differential cross sections (CMDCS) were ob

tained from the usual formulas 13 using WKB phase shifts calculated via 10-

llt point Gauss-Mehler quadrature at 700 (900) partial waves for ArXe (KrXe). 

The cross sections were calculated at 211 (220) CM angles at each of 7 CM 

velocities fot ArXe (KrXe) to span the extremes needed in the averaging, and 

then two dimensional spline interpolation was used to generate the CMDCS at 

all velocities and angles needed. This procedure was checked and found to be 

converged with respect to the number of CM velocities and angles used. 

For an idealized experiment, the laboratory signal would be proportional 

(14) 

where (see Figure 3) ~1 and ~2 are the initial laboratory velocity vectors 

of the primary (detected) particle (Ar or Kr) and secondary particle (Xe), 

respectively, and nL • (9,~) is the laboratory solid scattering angle with 

the axes shown in Figures 1 and 3. Icm is the center of mass differential 

cross section or scattered intensity, vr is the magnitude of the CM rela-

tive velocity, u1 is the_velocity of particle 1 in the CM frame and is 
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proportional to vr, vi is the final laboratory velocity and ~ is the angle 

between the final center of mass and laboratory velocities of particle 1. We 

note that Eq. (14) is that appropriate for a particle density (electron 

impact ionization) detector. The signals for other types of detectors have 

' other powers of vl• Given ~1, ~2, and nL, one can easily use kinematics 

and geometry, 15 calculate all the velocities and angles on the rhs of Eq. 

(14) and, with the spline interpolation discussed above, easily generate S 

from Icm• 

However, for a real experiment, the exact calculation of the observed 

signal requires an 11-fold integral 16 to averageS over the appropriate prob-

ability distributions for ~1, ~2, the three dimensions of the scattering 

center (see Fig. 1), and two angles describing the finite detector. An 11-

fold numerical quadrature would be very expensive and slow. It can be per-

formed by Monte Carlo methods, but even Monte Carlo evaluation gets expensive 

when one takes enough points to make the statistical error small and obtain 

high precision. In the present case, the properties of the molecular beam 

machine allow us to reduce the 'problem to a 4-fold integral which can be 

rapidly evaluated by direct quadrature. 

'Because (see Fig. 1) the beams are narrow and well collimated, we ne-

glect any nonperpendicularity of the beams and the size of the scattering 

center in the x direction (due to the inplane width of the secondary beam), 

and we note that the position of a particle in the scattering center and its 

initial velocity direction (divergence) are correlated by the motion of the 

particles along streamlines. Also, the last slit shown in Figure 1 deter-

mines the solid angle subtended by the detector; the entrance slit is wide 

enough that the defining slit has an unobstructed view of the entire scatter-

ing center at all angles, so that no complicated detector acceptance function 

is needed. With these observations and approximations, we can approximate 

the 11-fold integral by the following 4-fold integral, 
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Here F and G are normalized effective detector functions obtained by convo-

luting the initial position and direction of primary particles in the scat-

tering center with the acceptance angle of the detector defining slit. Here 

'IT x • 2 - 0 is an out-of-plane angle, where 0 is the polar angle in the coordi-

nate system of Figures 1 and 3, and sin 0 • cos x ~ 1 in the Jacobian. G(x) 

is a trapezoid centered on zero with parameters given by Figure 4 and Table 

III. Symmetry of scattering about the plane allows us to actually take only 

positive x in evaluating (15). F is a trapezoid centered about the experi

mental scattering angle t 0 • In principle 17 its parameters should depend on 

t 0 ; however, the angular resolution is most important at small angles, so 

that the values in Table III are those appropriate for small angles. We note 

that without increasing the dimensionality of the quadrature one could 

account for all the dimensions of the scattering 'center leaving only 2 of the 

11 dimensions (the nonperpendicularity or the divergence of the secondary 

beam) unaccounted for by using more complicated convolutions and t 0 

dependent effective detector functions; 17 however, that is unnecessary here. 

The averaging that most affects the resolution is that over the magni

tudes of the velo~ities of the beams. The distributions, normalized to unity 

when integrated over velocity, are those appropriate to nozzle beams, 

(16) 

The most probable velocities, widths, and parameters of this distribution for 

each of the beams are given in Table III. They correspond to a most probable 

·,.,1 
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relative velocity of 6.34 x 10~ em/sec (4.91 x 10~ em/sec) and a most proba-

ble relative kinetic energy of 740°K or 63.8 meV (742°K or 63.9 meV) for ArXe 

(KrXe). 

The ~ and x angular averages were performed using 16 and 4-point Gauss-

Legendre quadrature, respectively, and the v1 and v2 averages used 5-point 

Gauss-Hermite quadrature. The resulting averaged signal is normalized to 

correspond to A2/sr units, and the relative experimental signal is scaled to 

the absolute calculated signal. The scaling factor is chosen to minimize the 

error discussed later. 

C. Mixture Viscosities 

The procedure used for calculating the viscosities, n, of the Ar-Xe 

and Kr-Xe mixtures has been detailed elsewhere. 18 ' 19 Briefly, the Q(n) cross 

sections 18 were calculated at 17 relative energies between 8/kB • 50 and 

18000°K on a logarithmic spacing, 19 using quantum phase shifts at the partial 

waves at low energies where three turning point problems could occur and 

WKB phase shifts elsewhere. The maximum partial wave needed varied with 

energy and was found to be adequately given by 1max • 50+10k (60+12k) for 

ArXe (KrXe), where k is the wavenumber in atomic units. The collision inte

grals n(n,s) were then obtained using 6-point Lagrange interpolation and 

8-point Gauss-Laguerre quadrature. The nmix were then obtained 18 from the 

formulas of Monchick, Yun and Mason20 and compared with the accurate experi

mental results of Kestin, Khalifa and Wakeham. 8 

D. Interaction Second Virial Coefficients 

The interaction second virial coefficients, Blz(T), were calculated 

classically using the usual formula. 21 Integration over r small enough that 

exp(-V/kT) < 10-6 and over r large enough to be in Region V and have jv/kTI < 

0.005 (allowing expansion of the exponential) was performed analytically. 
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That over moderate r was done with two Gauss-Legendre quadratures, a 10-point 

quadrature for r < rm and a 32-point quadrature over r > rm• The calcu

lated Blz(T) are compared with the experimental results of Brewer9 and Rent

schler and Schramm10 as described in the following subsection. 

E. !!~~!!.1~-~!,1~_!!~~~.:~~!!.1~!~~ 

To get a potential that will fit all three properties within exper-

imental error it is necessary to fit the properties simultaneously. For 

example, if we fit the DCS alone, it is easy to find a potential which fits 

every oscillation in the DCS beautifully, but such a potential gives values 

of B and 1'1 that are far outside experimental error bounds, and that potential 

cannot be simply adjusted to correct B and 1'1 without destroying the DCS fit. 

Fits to two properties still do not fit the third. For example, one poten-

tial which fit the ArXe DCS and B gave an n which is too large by.more than 

three times the experimental error. Fitting the three experiments simul-

taneously was much more of a challenge than fitting any two. To do so 

without trying to compare "apples and oranges," we proceeded as follows: A 

set of parameters was assumed and the three properties calculated at the 

experimental points. Then, the dimensionless mean square deviation oj 2 

from the jth experiment was calculated from 

(17) 

where Pji and Pji are, respectively, the calculated and experimental val

ues of property j at point (angle or temperature)!, and tlji is the experi

mental uncertainty of property j at point i. We note that with this defini

tion, oj 2 and oj are less (greater) than unity if the average deviation 
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of the calculated property from experiment is less (greater) than the 

experimental uncertainty. Then, an overall dimensionless root mean square 

deviation was obtained from 

(18) 

and the calculations were iterated to minimize this overall 6. 

To prevent improper weighting of one experiment relative to the others 

it is important that the uncertainties ~ji be as realistic as possible and 

contain an estimate of the maximum systematic error limits as well as statls-

tical errors. Assessing these uncertainties necessitated a number of discus-

sions (see acknowledgments) with appropriate experimentalists. For the un

certainties ~B we used ±2 cm3/mole for the Brewer9 data and ±6 cm3/mole for 

the Rentschler and Schramm10 data for both systems. For the n data8 for both 

systems we used 0.4% for most of the points and 0.7% for the points at the 

lowest two temperatures as they appear to deviate by that amount from any 

smooth curve that can be drawn through the data. For the DCS data we began 

by using the 95% confidence limits, ~i • 2ai, where the ai are the 

standard deviations in Tables I and II. However, these ~i tend to weight 

too heavily the small angle DCS, there the signal is very large and the rela-

tive size of a very small. At very small angles, however, systematic errors, 

due to tails in the angular spread of the beams, any small nonlinearities in 

the detector, and any failure of Eq. ( 15) to describe the resolution of the 

machi~e exactly, are the largest. To account for such possible systematic 

errors we replaced a1 by a geometric mean of ai and 5% of the signal. 
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Each complete iteration required less than 1 minute on a CDC 7600, so 

the.calculation was readily repeated to convergence, using a brute force 

approach with manual- adjustment of parameters to find the set which minimized 

o. s·everal starting potentials were tried, and the calculations always 

converged to the same potential. Convergence could probably have been 

~ speeded by using a nonlinear least squares program to minimize o, but this 

would need to be done carefully as the experimental properties depend on the 

potential parameters in_a way which strongly correlates the parameters; that 

is, a given change in properties caused by changing one parameter can often 

be almost completely offset by changing another parameter. Alternatively, 

one could calculate the gradients or sensitivities22 of each of the 

properties with respect to all the parameters and follow the path of steepest 

descents of 6 to find the best fit. This approach would require considerable 

computer storage for the systems in the following paper1 and has not yet been 

implemented. However, we did calculate approximate sensitivities and found 

them very helpful in guiding the changes to be made in the parameters as the 

calculations proceeded. 
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IV. RESULTS AND DISCUSSION 

The parameters of the resulting ArXe and 'KrXe potentials are listed in 

Table IV. All are in Rartree atomic units except the xi which are dimen-

sionless, and the actual values ~ are given in the table, so that one can 

reproduce the potentials without roundoff errors. In this connection we have 

not tabulated the dependent parameters such as the Si discussed in the 

text; to avoid small discontinuities they should be determined from the inde-

pendent parameters and the equations in the text. 

In the ArXe potential Xl is the inflection point of VIII and Xl and x2 

were not varied. In the KrXe potential x2 was not varied. The van der Waals 

Ca and C1o coefficients are the mean (upper bound) values of Tang, ~!!· 23 

for ArXe (KrXe) and were not varied to any extent. However, the CG coeffi-

cients (Table IV) required to fit the data are significantly larger than the 

values of 129±5 (184±9) recommended in Ref. 23. When this was first ob-

served, it was thought that the larger C6's were being required due to the 

potential form used and were compensating for some defect in the shape of the 

potential in the spline region. However, after completing this work, we 

24 23 learned that there is evidence that the Tang,~~· values of C6 for Xe 

systems are too small, and the most recent determination25 of the ArXe C6 

gave value (140.3±1.2) almost as large as that required here. 

The uncertainties shown in Table IV are the changes in each parameter 

that will raise the overall deviation o by 0.02. Any change of a single 

parameter by more than the uncertainty shown will result in a significantly 

worse fit to one or more of the three properties used here. However, if one 

were to fit additional data simultaneously with these properties, changes of 

these parameters by several times the uncertainty shown are probably possible 

if several parameters are changed in largely compensating ways. In particu-

lar, the uncertainty in a1 is large because none of the data available is 

sensitive to the repulsive wall of the potential at energies above about 1000 K. 
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The dimensionless rms deviations 51 of each property and the overall 

rms deviation o are shown in Table V. One sees there that the fits are very 

good, well within the experimental uncertainties of all three properties. 

The laboratory differential cross sections from the present experiments 

and the calculated laboratory cross sections, after transformation and aver-

aging, are compared in Figures 5 and 6. The full experimental uncertainty ~ 

used in the fitting is also shown for a few representative points. The fits 

are very good. For ArXe the calculated result is well within experimental 

error everywhere except in the vicinity of the primary rainbow minimum. For 

KrXe the error is noticeable throughout the region of the primary rainbow 

maximum and minimum. These errors could easily be removed but not without a 

deterioration of the fit to the other properties. This primary rainbow re-

gion of the DCS is very sensitive to the detailed shape of the potential in 

the spline region, and, in our opinion, these errors are due to some small 

but fundamental weakness of the MSV potential form. To correct them while 

keeping the DCS accurate at all smaller angles and also keeping a good fit to 

n and B will require a nontrivial improvement in the form of the potential. 

Mixture viscosities in micropoise (1 Poise • 1g cm-1 sec-1 ) for the mix

tures of Kestin et. al8 that are most sensitive to the unlike interactions of 

present interest are plotted versus temperature in Figures 7 and 8. The ex-

perimental uncertainties are just slightly larger than the heavy points 

shown, and one sees that the fit is excellent. 

The calculated interaction second virial coefficients are compared with 

the experimental values9 •10 in Figures 9 and 10. Again, the fit is ex-

cellent. 

To see how well these potentials can predict a property not included in 

the fitting procedure, we have calculated the diffusion coefficients, and 
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these are compared with experiment26- 29 in Figures 11 and i2. The agreement 

is very good, as expected, because viscosity data were used in determining 

the potentials, and diffusion is sensitive to the same features of the poten

tial as viscosity. Although the calculated points for KrXe at the highest 

temperatures lie outside the published error estimates of Ref. 29, we do not 

think any adjustment of the potential is warranted because the effect is al

ready visible by 800°K where our calculated results agree with the accurate 

viscosity data of Ref. 8 and also with the D of Ref. 28. Not shown on the 

plot is the accurate ArXe 0 of Arora, Robjohns and Dunlop30 of 0.1140 cm2/sec 

at 300°K, believed accurate to within 0.2%. Our calculated value, 

0.1144 cm2 /sec, is only 0.3% high, but the calculated D and 11 are both 

slightly larger than experiment at this temperature, so that, if one wished, 

he could make a slight improvement to the ArXe potential by requiring that, 

in addition to the properties already used, this D measurement also be fit. 

For the use of the reader, the calculated collision integrals 18 o(n,s) 

for the two systems are reproduced in Tables VI and VII. 

Before concluding this section let us consider the sources of error in 

the present potentials and ways in which they may be improved. First, al

though the M3SV potentials are flexible, some dependence on the form of the 

potential is still undoubtedly present, and more realistic forms would im

prove the potential. Second, although we have tried to check the convergence 

of all numerical procedures carefully, there may still be small errors due to 

roundoff, etc., and our use of WKB phase shifts can introduce small errors, 

usually only a few tenths of a percent at most, in the calculated cross sec

tions. In addition, the velocity and angular spreads of real molecular beams 

are never really quite as simple as the models used; however, because (see 

Figs. 5 and 6) our a priori calculated resolution of the rainbow oscillations 



-19-

of the differential cross section agrees well with experiment--the calculated 

resolution is slightly poorer (better) for ArXe (KrXe) than the experimental 

resolution--we expect that improvements in the modeling of the beam machine 

will have only very small effects. Calculation of quantum corrections 31 to 

the classical virial coefficients used herein would increase B slightly at 

the lowest temperatures considered and perhaps require C6 to be a bit larger 

even than we obtained here. And of course· if any of the exp'erimental' data 

used in the fitting are really in error by more than the error limits used, 

the resulting potentials will be correspondingly in error. Also, since the 

repulsive walls of the present potentials may be very inaccurate at energies 

above about 1000 K (0.003 a.u.), if new data sensitive to the higher energy 

part of the potential were to become available, it could be used to improve 

these potentials. 

At present, we are aware of two recent experiments that provide data ac

curate enough to be used to improve these potentials. One is the diffusion 

coefficient datum30 already mentioned. The other experiment is the recent 

measurement of the integral cross section by van den Biesen, !!• ~-~ These 

latter data were not included in the present calculations because we only be

came aware of them as this work was nearing completion, only plots without 

tables are given in the paper.s, and because similar data is not available on 

the systems1 ArSF6 and KrSF6 for which this work is a prototype. Because the 

€ • 5.93 x 10-4 (7.32 x 10-4 ) and rm • 7.67 (7.90) a.u. obtained for ArXe 

(KrXe) by van den Biesen, .!:.• ~~, are almost the same as those obtained 

here, we expect any change required in these potentials due to inclusion of 

the integral cross section data to be very small. However, that data, like 

the DCS, is sensitive to the attractive part of the potential, and it would 

be an interesting test of the spline portion of these potentials to see how 

well they reproduce those results. 
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V. CONCLUSION 

In this paper we have reported high quality differential scattering 

cross sections for the ArXe and KrXe systems. Using these data and 

complementary viscosity and virial coefficient data, we have determined 

interatomic potentials that simultaneously fit all three properties within 

experimental error. The resulting potentials were tested against diffusion 

data and found to predict it very well. These are the first Class I 

multiproperty potentials to be determined for these two systems. 
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Table I. Experimental LAB scattering angle t 0 , signal 5, and standard devlat lon o for ArXe. 

t 5. 0 t 5 0 
0 0 

3.4 7.295- 0.054 15.9 0.326 0.006 
3.65 6.355 0.095 16.4 0.343 0.006 
3.9 5.447 0.086 16.9 0.352 0.003 
4.15 4.633 0.050 17.4 0.356 0.003 
4.4 3.948 0.041 17~9 0. 351 0.003 
4.65 3.262 0.073 16.4 0.340 0.001 
4.9 2.650 0.;069. 18.9 0.324 0.002 
5.15 2.167 0.020 19.4 0.307 0.003 
5.4 1.640 0.011 19.9 0.264 0.004 
5.65 1.552 0.020 20.4 0.262 0.003 
5.9 1.331 0.049 20.9 0.241 0.002 
6.15 1.169 0.036 21.4 0.219 0.002 I 

N 

6.4 1.115 0.032 21.9 0.196 0.001 w 
I 

6.9 1.071 0.044 22.4 0.178 0.001 
7.4 1.077 0.041 23.4 0.142 0.001 
7.9 1.063 0.026 24.4 0.113 0.001 
6.4 1.062 0.036 25.4 0.090 0.001 
6.9 1.000 0.010 26.4 0.075 0.001 
9.4 0.901 0.010 27.4 0.061 0.001 
9.9 0.769 0.009 28.4 0.054 0.001 

10.4 0.631 0.016 29.4 0.047 0.001 
10.9 0.495 0.014 30.4 0.043 0.001 
11.4 0.393 0.015 32.4 0.037 0.001 
11.9 0.308 0.007 34.4 0.033 0.001 
12.4 0.255 0.003 36.4 0.031 0.001 
12.9 0.226 0.003 38.4 0.030 0.001 
13.4 0.224 0.004 40.4 0.026 0.001 
13~9 0.233 0.006 42.4 0.027 0.001 
14.4 0.252 0.007 44.4 0.027 0.001 
14.9 0.262 0.007 46.4 0.026 0.002 
15.4 0.307 0.010 46.4 0.026 0.001 

50.4 0.024 0.001 



Table II. Experimental LAB scdtterlng angle t 0 , signal S, and standard deviation o 
for KrXe • 

• s 0 • s 0 
0 0 

3.40 11.366 0.049 16.9 0.457 0.012 
3.65 9.711 0.074 17.4 0.495 0.007 
3.90 8.716 0.098 17.9 0.532 0.004 
4.15 7.859 0.049 18.4 0.559 0.004 
4.40 7.302 0.040 18.9 0.587 0.005 
4.65. 6.792 0.056 19.4 0.594 0.006 
4.90 6.120 0.081 19.9 0.593 0.007 
5.15 5.400 0.059 20.4 0.580 0.005 
5.40 4.613 0.030 20.9 0.559 0.004 
5.65 4.043 0.020 21.4 0.525 0.005 
5.90 3.435 0.021 21.9 0.486 0.004 I 

N 
6.15 3.025 0.036 22.4 0.460 0.004 .p. 

6.40 2.699 0.028 23.4 0.372 0.004 
I 

6.90 2.459 0.013 24.4 0.303 0.006 
7.40 2.366 0.021 25.4 0.245 0.005 
7.90 2.263 0.012 26.4 0.200 0.003 
8.40 1.978 0.006 27.4 0.167 0.006 
8.90 1.651 0.011 28.4 0.148 0.005 
9.40 1. 303 0.025 29.4 0.133 0.009 

;. 

1.080 0.017 0.005 9.90 30.4 0.114 
10.4 0.971 0.004 32.4 0.099 0.003 
10.9 0.949 0.004 34.4 0.089 0.006 
11.4 0.989 0.014 36.4 0.087 0.005 
11.9 1.018 0.013 38.4 0.081 0.003 
12.4 1.000 0.010 40.4 0.075 0.003 
12.9 0.946 0.011 42.4 0.077 0.008 
13.4 0.854 0.004 44.4 0.071 0.005 
13.9 o. 737 0.003 46.4 0.068 0.003 
14.4 0.626 0.004 48.4 0.069 0.003 
14.9 0.534 0.006 50.4 0.067 0.003 
15.4 0.466 0.010 52.4 0.068 0.003 
15.9 0.440 0.005 54.4 0.064 0.003 
16.4 0.441 0.005 56.4 0.061 0.003 

. ( 
! 
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Table III. Parameters used in describing the resolution of the 
molecular.beam machine used in the DCS measurements. See the text 
for details. 

Parameters Ar 

A t(inplane) 0.63° 

Bt (inplane) 0.55° 

A (out of plane) 1. 03° 
X 

B (out of plane) 0.63° 
X 

5.55x104 v b(cm/sec) pro 
FWH.'i (%v b) 13.8 pro 

; (em/sec) 5.51xl04 

t:.v 0.46xl0 It 

Beam 

Kr 

0.63° 

0.55° 

1.03° 

0.63° 

3.83xl04 

13.0 

3.81xl04 

0.30xl04 

Xe 

3.07xl0 4 

12.0 

3.05xl04 

0.22xl0 4 
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Table IV. Potential parameters in Hartree atomic units. 

Parameter ArXe KrXe 

E (5.98±.02)x10-4 (7 .33± .02)xlo- 4 

r 7.63±.01 7.92±.01 m 
a I 1.03±.09 0.81±. 09 

ali 0.884±.009 0.810±.007 

alii 0.820±.008 o. 772±.008 ''-< 

X • 1 r1/rm infl. pt. 1.16±.02 

X • 
2 r2/rm 1.45 1.40 

c6 147±3. 210.±8. 

c8 3170. 5787. 

c1o 93400. 179500. 



, .. ~ 

-27-

Table V. Comparison of calculated and experimental properties. Dimension
less rms deviations of virial coefficients (B), viscosities (n), and differ
ential cross sections (DCS), and the overall dimensionless rms deviation. 
See the text for details. 

Deviation ArXe KrXe 

oB 0.26 0.48 

0 
n 

0.56 0.63 

0DCS 0.54 0.84 

0 0.47 0.67 

{''' 



Table VI. ArXe collision integrals n(n,s) in unf.ts of cm3/sec. 

T(K) Sl(l,1) Sl(l t 2) Sl(l,3) Sl(2,1) 

150 .51534-10 .13054-09 .46390-09 .44739-10 

200 .52126-10 .13330-09 .48236-09 .45408-10 

300 .54551-10 .14292-09 .52838-09 .46506-10 

400 .56700-10 .15252-09 .57234-09 .47824-10 

500 .59136-10 .16177-09 .61236-09 .49110-10 

600 .61824-10 .17071-09 .64926-09 .50414-10 

700 .64398-10 .17896-09 .68278-09 .51847-10 

800 .66917-10 .18678-09 • 71394-09 .53453-10 

900 .69326-10 .19408-09 .74285-09 .55052-10 

1000 .71586-10 .20090-09 .76976-09 .56619-10 

1100 .73750-10 .20737-09 .79507-09 .58176-10 

1200 .75833-10 .21352-09 .81900-09 .59722-10 

,,. 

Sl(2,2) 

.11495-09 

.11561-09 

.11875-09 

.12415-09 

.12990-09 

.13571-09 

.14138-09 

.14704-09 

.15242-09 

.15756-09 

.16252-09 

.16732-09 

'· r 

Sl(2,3) 

.40387-09 

.40894-09 

.42897-09 

.45607-09 

.48341-09 

.51002-09 

.53495-09 

.55883-09 

.58128-09 

.60241-09 
I 

.62250-09 N 
00 
I 

.64168-09 
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Table VII. KrXe colllslon lntegrdls o<n,s) ln units of cm3 /sec. 

-
T(K) 0(1,1) 0(1,2) 0(1,3) 0(2,1) 0(2,2) 0(2,3) 

-
150 .46798-10 .11829-09 .41'•94-09 .40337-10 .10446-09 .36854-09 

200 .46766-10 .11868-09 .42300-09 ·'•1436-10 .1059'•-09 .37160-09 

300 .48386-10 .12404-09 .45103-09 .41439-10 .10610-09 .37930-09 

400 .49677-10 .13039-09 .48167-09 .42748-10 .10939-09 .39598-09 

500 .51120-10 .13670-09 .51037-09 .43790-10 .11330-09 .41'•87-09 

600 .52770-10 .14295-09 .53726-09 .44554-10 .11722-09 .43400-09 

700 .54451-10 .14882-09 .56176-09 .45438-10 .12116-09 .45225-09 

800 .56203-10 .15451-09 .58470-09 .46471-10 .12523-09 .47008-09 

900 .57912-10 .15983-09 .60596-09 .47487-10 .12910-09 .48690-09 

1000 .59526-10 .16481-09 .62569-09 .48537-10 .13286-009 .50280-09 
I 

1100 .61094-10 .16954-09 .64420-09 .49622-10 .13654-09 .51799-09 N 
\0 
I 

1200 .62624-10 .17406-09 .66170-09 .5072'•-10 .14013-09 • 53253-09 

---- ·----- - ~ 
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FIGURE CAPTIONS 

1. Schematic showing the geometry of the molecular beam machine used in the 

DCS measurements. The primary beam collimating slit is 0.029" wide (in-

plane) and 0.055" high (out of plane). The secondary beam collimating 

slit is a 0.067" diameter skimmer. All detector openings are 0.121" 

square. The geometric full width dimensions of the scattering center 

are (x,y,z) • (0.098", 0.039", 0.073"). The skimmers are -o.03" in 

diameter and -o.25'' from the nozzles. 

2. Typical M3SV potential with regions to scale. Regions I, It, and III 

are the Morse potential regions; IV is the spline region, and V is the 

long range van der Waals region. 

3. Newton diagram showing relations between center of mass and laboratory 

quantities. ' ~l and ~2 are initial lab velocities; ~1 is the final 

lab velocity of the primary (detected) particle. v and v are the 
, em r 

center of mass and relative velocities. ~1 and ~1 are the initial and 

final velocities of the primary particle in the c.m. frame. e and em 

t are the center of mass and lab scattering angles, respectively, and · 

~ is the angle beteeen the final em and lab velocities of the primary 

particle. The possible divergences of ~l and ~2 from the axes are ex

agerated for clarity. 

4. Trapezoid parameters used for effective detector height and width. The 

full width at half maximum is 2A, and each sloping region (penumbra) is 

of length 2B. 
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5. ArXe laborat,ory differential scattering versus laboratory scattering 

angle in degrees. The solid line is the calculated result, the points 

are from the present experiment. Uncertainties of a few representative 

points are shown. The arbitrary units here are chosen to correspond 

to square Angstroms per steradian. 

6. KrXe laboratory differential scattering. The notation is the same as 

Figure 5. 

7. ArXe mixture viscosity in micropoise (1 Poise • 1g cm-1 sec- 1) versus 

temperature in Kelvin for a mixture sensitive to the ArXe interaction. 

The solid line is calculated; the heavy points are from the experiments 

of Ref. 8. The experimental uncertainty is slightly larger than the 

size of the heavy points. 

8. KrXe mixture viscosity versus temperature. The notation is that of 

Fig. 7. 

9. ArXe interaction second virial coefficients in cm3/mole versus tempera

ture in Kelvin. The solid line is calculated; the experimental points 

are from Refs. 9 and 10. 

10. KrXe interaction second virial coefficients. The notation is that of 

Figure 9. 

11. ArXe diffusion coefficien~s in cm2/sec versus absolute temperature. The 

solid line is calculated; the experimental points are from Refs. 26-28. 
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12. KrXe diffusion coefficients in cm2/sec versus absolute temperature. The 

solid line is calculated: the experimental points are from Refs. 27-29. 
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