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THERMODYNAMICS OF SOLID STATE SINTERIUG 

* Carl E. Hoge and Joseph A. Pask 

Inorganic Materials Research Di vison, Lawrence Berkeley Laboratory 
and Department of Materials Science and Engineering, 

College of Engineering; University of California, 
Berkeley, California 94720 

ABSTRACT 

A thermodynamic analYsis of solid state sintering of a single phase 

isotropic material of tiniform particle size indicates that the ratio of 

the solid/solid and solid/vapor interfacial energies (y /y ) is critical; 
ss sv 

in order to realize theoretical density it must be smaller for less 

dense packings of unfired compacts. Another critical requirement is that 

pores must remain on grain boundaries during sintering. Pores on planar 

grain boundaries are effectively pinned. Curved grain boundaries can 

break away from pores when they achieve critical curvatures; this 

feature is essentially independent of y /Y or the corresponding diss sv 

hedral angle in the normal range of values. Non-uniform particle or 

grain size distribution thus must be avoided since they lead to grain 

boundary curvatures. 

*Graduate research assistant and professor of ceramic engineering, 
··. respectively. 

,\ This work was done under the auspices of the United. States Atomic Energy 
Commission • 
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Introduction . 

The basic driving :force :for the sintering o:f a particulate compact 

o:f equilibrium composition is the reduction in :free energy o:f the compact 

which arises through the reduction in the surface (solid/vapor interface) 

area o:f the compact~ Also, in cases where theoretical density is 

desired, pores must be associated with grain boundaries (solid/solid 

interfaces) during the entire sintering process; i.e~' isolated pores 

should not develop. Thermodynamic analyses identi~ the conditions 

under which these objectives can b.e realized. 

Thermodynamics o:f End-Point Densities. 

As the solid/vapor interfacial area decreases, the solid/solid 

interfacial area increases. The change in :free energy o:f the system at 

constant temperature, pressure and mole :fraction can then be expressed 

as 

(1) 

where 

Ysv = solid/vapor inter:faci8.l. energy 

Yss = solid/solid interfacial energy 

dA = differential solid/vapor inter :facial area 
sv 

dA = differential solid/solid interfacial area 
ss 

As long as o(a) remains equal to or less than zero, sintering will con-

tinue. The :first term on the right o:f the equation is always negative 

and the second, positive. Therefore, o(G) will be a :function o:f the 

relative interfacial areas (geometry o:f the system) and interfacial 

energies. 

• I 

c: 
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Three sintering geometries were analyzed for spherical particles of 

uniform size: simple cubic, body-centered cubic, and face-centered cubic 

packing. The particles are assumed to be crystalline, and their inter-

facial energies to be isotropic. The interfacial energies are related 

as: 

Y = 2y cos ~/2 
SS. SV 'I' 

(2) 

where cp is the dihedral angle. 

The analysis for simple cubic packing is as follows. Figure lA 

shows a simple cubic cell with eight particles at the corners of a cube, 

corresponding to one particle with a coordination of six per unit cell. 

Figure lB shows the mass distribution on densification at a contact or 

grain boundary between two spheres. As the cap material is removed, the 

particle centers move together and the radii of the spheres increase, 

keeping the total volume constant. Then, from Fig. lB, for a particle in 

a unit cell with six contacts 

( 3) 

where R is the radius of the sphere ~t any degree o~ densification and h 

is the height of the spherical segment. Setting P as a variable equal 

to h/R (similar to White and Stevenson1 ) 

(4) 
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The original particle radius, R , and R are related by 
0 

4R 3 
R 3 = __ ....;o--. __ 

4-18P 2 + 6P 3 

By substituting, (5) into (4) 

and on differentiating 

(5) 

(6) 

(7) 

Since each solid/solid contact is shared by two spheres, the solid/ 

solid area per unit cell sphere is expressed as 

6(2Rh-h2 ) 

2 
(8) 

where 2Rl~-h
2 

is half the boundary area per contact for a single sphere. 

By substituting (5) into (8) and PR for h 

A ss -= 3( 4 )
2

/ 3( 2P-P2 7 
( 4-18P2 + 6P 3 )

2 3 

and on differentiating, 

{9) 

. : 

• ! 

I: 
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Substituting (JD) and (7} into (1) 

and setting o(G t) = 0 · · . sys 

yss = -2(-2-5P2 + 4P + 3P 3
) 

y sv (2 + 3P2 -2P) 

,, ,,,. 
""' 

(10) 

(11) 

(12) 

A similar procedure was used for the other packing arrangements. 

The results for the body-centered cubic packing of particles (with a 

coordination number of eight) was found to be 

yss = -2(-l-3P2 + 2P 3 + 2P) 
Ysv (1 + 2P 3-P) 

{13) 

and for face-centered cubic packing (with a coordination number of twelve), 

Yss -2(-l-4P2 + 3P 3 + 2P) - = ....;;;......__,;;~----------__._ 
Ysv (1 + 3P2-P) 

(14) 
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Equations (12), (13), and (14) determine the ratio of y /y a5 a 
ss sv 

function of densification for ·which o(G t) = 0. sys 

"' The fractional starting void volume for simple. cubic packing of 

spheres. is 0.48; for body-centered cubic, 0.32; and for face-centered 

cubic, 0.26. As densification or sintering proceeds h/R, or P, increases. 

Then, by ·equating the ·void volume with the material ·removed from the 

spherical caps as a fUnction of P, densification was :found to be com-

plete at P = 0.347, P = 0.205, and P = 0.110, respectively, for the three 

types of packings. 

Figure 2 is a plot o:f h/R, or P, versus y /y :for (12), (13), and 
SS SV 

(14); the plots lie on the same straight line. Critical ratios of 

y /y :for which complete densification can be obtained are determined 
SS SV 

by the above critical values o:f P. Therefore, as sh6wn in the figure, . 

:for simple cubic packing the critical value for y /y · is 1.31; :for . ss sv 

body-centered cubic, 1.58; and :for face-centered cubic, 1.78. Since this 

ratio is directly related to the dihedral angle as shown in (2), the · 

corresponding critical values :for 4> are 98°, 74°, and53°, respectively. 

For a particular packing arrangement, any ratio of.y /y less, or 
·· . SS SV 

any value of 4> greater, than the critical value can lead to complete or 

theoretical densi:fication. In real systems where packing is not uniform 

the critical values will probably l;)e determined by the coordination 

number of the particles in the less dense regions. 

Starting with (1) and using (3), (8) and the critical ratio of 

y
55

/ysv for simple cubic packing, a plot of the net integral normalized 

free energy change vs h/R can be made as shown in Fig. 3. The graph 

also shows the integral free energy changes due to the solid/vapor and 

I: 
' 
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solid/solid area changes. It can be seen that 6G decreases as h/R, or 

P, increases and reaches a minimum at the critical value of P of 0.347 

where o(G } is zero. Higher values of P are unrealistic since the s .. 

system is already dense at this point. Similar analyses were obtained 

for compacts with body-centered cubic and face-centered cubic packings. 

The dihedral angle under equilibrium conditions is important in that 

it reveals the y /y ratio for a given system. In many cases of solid ss sv 

state sintering ct> is greater than 120° due to the fact that y is less 
ss 

than Ysv· The present analysis indicates that theoretical density should 

be achieved in these cases. Lack of complete densification then must be 

due to other factors such as movement of grain boundaries past pores 

leaving them isolated, entrapment of gases, or poor processing resulting 

in extreme non-uniformity of packing and/or aggregation. 

On the other hand, a system that does not densif'y and whose dihedral 

angle is less than 98°, which is the critical angle· f'or simple cubic 

packing, can realize densification in two ways. !be density of the 

unfired compact can be increased assuming that the ~eking is uniform 

throughout the compact; this procedure would lower the critical angle 

for complete densification. Secondly, the dihedral angle may be altered 

by the addition of impurities that segregate at interfaces thus altering 

Y and y resulting in a reduced y· /y ratio. 
SS SV SS SV . 

In any case, the pores must remain associated with grain boundaries 

throughout the entire densification process until they are gone. 
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Thermodynamics of Grain Growth 

It has long been realized that if the pores stey at the grain 

•" . 
boundaries during sintering, they have a much better· chance of being 

annihalated than if they are trapped as isolated spherical pores at large 

diffusion distances from grain boundaries. 2 ' 3•4 The fact that isolated 

pores lead to densities less than theoretical while pores which remain 

at grain boundaries lead to theoretical density is well known. It has 

been argued that in order to achieve theoretical dens! ty, the grain 

boundaries must be prohibited from. sweeping out past pores thus leaving 

them isolated. Therefore, in numerous sintering studies, additives are 

introduced to compacts for the stated purpose of pinning grain boundaries. 

In some cases, the additive acts as a sparingly soluble second phase 

which segregates at grain boundaries; the analysis is then modified from 

that being discussed in this report. 

A. Lenticular Pore at a Planar· Grain Boundary 

It is of interest to examine the thermodynamics of a planar grain 

boundary breaking awa;y from· a lenticular shaped pore. The geometry to 

be examined in detail is shown in Fig. 4; the isolated pore becomes 

spheric.al as the_ grain boundary moves awa;y. This process increases the 

free ene.rgy of the system because solid/solid interfacial area is created 

but also reduces the free energy because solid/va~r interfacial area is 

·reduced due to the pore shape change. Therefore, the net free energy 

·of the system will be a function of the relative interfacial areas and 

energies. The analysis proceeds as follows. 

From Fig. 4, half the dihearal angle is given by 
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(15) 

where r is the radius of the lenticular pore. From (2) and by setting 

y /2y equal to A, we get 
SS SV 

Algebraic manipulation leads to 

h = r(l-A)l/2 
(l+A)l/2 

Referring to Fig. 4, the change in free energy of the system is 

where 

and 

Therefore, 

~G syst 

= Ail y + AII y 
ss ss sv sv' 

= AI y + AI y 
SS 55 5V SV 

~G . = y (All 
5yst 55 55 

(16) 

(17a) 

(l'Tb) 

(18) 

(19a) 
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t:..G · = y· M + y M syst · ss ss sv sv (19b) 

If we consider th~ overall area of the grain boundary to be fixed and 

circular, then 

; AII = 7T(i-r) 2-7Tr2 
ss 

and 

AII = 'IT( R.-r) 2 
ss 

where R. is the radius of the planar grain boundary. Thus 

M = 7T(R.-r) 2-7T(i-r) 2 + 7Tr2 
ss 

M = 7Tr2 
ss 

The solid-vapor area of the lenticUlar pore is given by 

If we sUbstitute 

AI = 2(27TRh). 
sv 

R = 

obtained from geometry (Fig. 4) into (23), then 

(20) 

(21) 

(22a) 

(22b) 

(23) 

I! 
I 

i 
.l 

' 

i' 

·': 
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AI = 2(21ThHr2 + h2) 
(24a) sv 2h 

: 

AI = 1T2(r2 + h2) (24b) sv 

When the grain boundary moves, the volume or the resulting pore remains 

constant. The volume or the lenticular pore is 

(25) 

and the voiume o£ the spherical pore is 

~I = 41Ts
3 

sv 3 
(26) 

where q is the radius of the spherical pore.· Equating (25) and (26) 

results in 

(27} 

Substituting this value ror q2 into 

(28) 

gives the value of the resulting spherical pore in terms of r and h 
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(29a) 

(29b) 

Then, combining (24b) and (29b) 

(30) 
I: 

. Substituting ( 22b) and ( 30) into ( 19b) , we get 

Further substitution of (17) into (3lb) gives 

(32a) 



' \ lJ 7 

-13-

6
Gsyst = r2 +. r2l 41/3.[(H)

112 
(4+2A)]

213 
_ ll 

.1T y ss y sv l+A l+A l+A 

Then, substituting 2Ay for y we get ' sv ss 

6G 
syst = 

1Tr2 
2Ay + 

SV 
l

l/3 [( 1-A) l/
2 

(4+2A)]
2

/
3 

_ ...!L_l 
YSV 

4 l+A l+A l+A 

6Gsyst = 2A + 41/3 [ (1=.!) 1/2 ( 4+2A \,]2/3 4 
2 l+A · l+A - W nr y • . 

SV 

A· plot . of the net integral normalized free energy change vs cos 

(32b) 

(33a) 

(33b) 

.~/2, which is equal to A in (33b), is shown in Fig. 5. The graph also 

shows the integral free energy changes due to the solid/solid and solid/ 

vapor area changes. Since solid/solid area is alW9¥S created by movement 

of the grain boundary, this factor always makes a positive contribution 

to the free energy of the system. On the other hand, the solid/vapor 

area is. always reduced and makes a negative contribution; the small 

contribution at small values of cos ~/2 is a reflection of the small 

area change because the lenticular pores, with a large dihedral angle, 

are almost spherical. The net free energy change for the system, however, 

is alway~ positive throughout the entire range of dihedral angles from 

180° to 0° (cos ~/2 = 0 to 1.0). 
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An effort has not been made here to analyze cases of elongated 

pores on two or three grain junctions and pores at four grain junctions. 

Observations have been reported, however, that three grain junctions do 

not break away from pores. 5' 6 Also, it can be deduced by inspection that 

the breaking away of the grain boundaries from the pore would be energetic-

ally even less favorable because the increase of the solid/solid area 

relative to the decrease in the solid/vapor area would be much larger. 

From an energetic viewpoint it would be expected that the geometry would 

change progressively by grain boundary motions to the configuration 

treated here. 

This thermodynamic analysis indicates that the presence of a 

lenticular pore with any dihedral angle on a planar grain boundary will 

alweys pin the grain boundary or the pore will move wi. th the boundary. 

Thus, for grain boundary movement away from a pore to occur, there must 

be another negative contribution to the free energy of the system. 

B. Lenticular Pore at a Curved Grain Boundary 

The. geometry to be examined in detail is shown in Fig. 6 which 

represents a circular sector of width m, arc length L, and angle in terms 

of ~. 'l'hen, for a pore-free sector of boundary Lf' = p f ~, the area is\ 

L~ or pf~m and the free energy is G = pf~yss· 
in pf with a constant ~ leads to 

dG = 1fmy dpf ss 

A differential change 

I 
I 
I 

( 34) 

If dpf is positive, so is dG and vice versa. Therefore, a grain boundary 

will always have a tendency to move toward its center of curvature with a 

. : 

- .. 
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constant curvature of ~ because the incremental free energy change is 

then negative. Likewise, a movement toward the center of curvature will 

~tend to occur even with a constant chord length if the curvature is 

decreased in movement because the length of the boundary will then 

decrease. 

The next step is to analyze the free energy changes when a boundary 

with a pore (Li) moves to position Lf leaving the pore behind with the 

geometry of Fig. 6. The sum of the free energy changes due to the 

creation of the grain boundary and the change in the shape of the pore 

is positive for all dihedral angles as has been shown in the previous 

section. There is, however, an additional effect due to the reduction 

in grain boundary area as the boundary moves toward its center which is 

always negative. For grain growth or boundary movement to occur, the 

latter term must have a large enough negative value to make the net free 

energy change for the system negative. A detailed analysis for movement 

with constant curvature and within a given sector follows. 

The initial area of the grain boundary, making m equal to 2r and 

neglecting the slight curvature of the boundary through the pore region, 

is 

( 35) 

and the final solid/solid interfacial area after movement, where q is 

equal to the radius of the resulting spherical pore with volume equal to 

). the original lenticular pore, is 
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(36) 

The change in area is 

• 
AA = 2r~p. - 2r~q- p.~2r + nr2 · 

ss ~ ~ . (37a) 

(3Tb) 

Substituting ( 17a) into (27) and solving, we get· . 

• 

r \ (1-A) 1/2 ( 4m) 11/3 {38) q = 41/3 l+A 1-A · 

'' 

Then substituting ( 38) into (37b) resUlts in 

' . . 1/3 

AA - 2 [ r w-A ( 2 ( 4+2A) I] (39a) ss - nr - 2~r 41/3 l+A I+A J . 

AA = 2l· _ _?L \( H r'2 ( 4+2A )11,3 1 (39b) ss r 1T 
4
1/3 l+A l+A 

The change in solid/vapor interfacial area obtained from the planar 

grain boundary by substituting (17) into (30) is 

AA = [ 41/31 ( 1-A) 1/2 ( 4+2A)I2/3 - -...!L] 1Tr2 
SV l+A I l+A l+A . 

(40) 

II 
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The free energy change of the system, substituting y 2A for y , sv ss 

then becomes 

b.G = y ( 2A · b.A + M ) syst sv ss sv (41} 

· On substituting ( 39b) and ( 40) into ( 41) and solving, we obtain 

6G 
syst = 

1Tr2y . 
SV I _ 2p l( l-A ·) 1/2 ( 4+2A) 11/3 J 2A l 

4
1/31T l+A l+A 

•+ 1/3 [ (1-A) l/
2 

( 4+2A) 1
2

/
3 

4 4 l+A l+A - l+A 
(42} 

This equation gives the normalized free energy change as a function 

of angle of curvature ( 'i'} for various dihedral angles (represented by A}. 

Solutions for dihedral angles from 168.4° to 106° are plotted in Fig. 7 

and for angles from 73.6° to 16.2° in Fig. 8. The integrated free 

energy curves are positive for low angles of curvature 'i', and become 

negative as the angle of curvature increases due to the continuing 

reduction of the grain boundary length as the curvature becomes larger. 

Inspection of the graphs indicates that for dihedral angles (¢) above 

about 73° boundary movement can occur at boundary curvatures above about 

0.62 radians or about 36°. With the decrease of dihedral angles below 

. 73° boundary movement can occur at decreasing values of curvature; with 

¢at_ 16°, grain growth can occur at curvatures above about 26°. 



-18-

Another informative relationship is indicated in Fig. 9 which is a 

plot of~ versus half the dihedral angle ~/2. The locus of points which. 

fall below the curve yield positive values of thef'ree energy for pore 

isolation, !:J.G t• Whereas, points lying above the curve yield negative sys . 

!:J.G's. Inspection of the graph reveals that the critical angle of 

curvature is relatively independent of the dihedral angle for large 

values of ~/2. While at ~/2 less than about 36° ~· the value of ~ critical 

decreases sharply as ~/2 decreases. This result indicates that control 

of the curvature of the grain boundary is the critical factor in pre-

venting pore isolation and that the introduction of additives to a system 

cau5ing the y /y ratio to be reduced beyond the critical value has 
SS SV 

little effect on pinning grain boundaries. 

C. Effect of a Mixture of Particle Sizes 

A planar cross-section of a model microstructure of an isotropic 

material with uniform grain size would show hexagonal grains with three 

grain junctions of 120° and straight line boundaries; the system would 

then be in metastable equilibrium since there would be no driving force 

for boundary movement. A variation in grain size would result in grain 

boundary curvatures because the three grain junctions will always attempt 

to maintain equilibrium angles of 120°. Grains with less than six sides 

would have their boundaries curve outward since the polygon angles with 

straight sides would be less than 120° while grains with more than six 

sides would have boundaries curving inward since the polygon angles 

would be greater than 120°. Thus, thermodynamically there would be an 

additional driving force for a grain with less than six sides to shrink 

and with more than six sides to grow since the grain boundaries would 

J' 

' . 

I 

i 
I. 
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have a tendency to move toward their centers of curvature as described 

E!.bove. 

With grains of two sizes the length and number of grain boundaries 

relative to the large grain will be dependent on the size of the small 

grain. The curvature between the triple points in all cases according 

to geometry would be spherical and the angle of curvature '¥ would be 

60°; therefore, the boundaries would not be pinned by pores. The 

greater the length of the grain boundary, however, particularly on an 

. atomistic scale, 'the greater will be the probability that the inter-

mediate portion of the boundary will acquire a smaller angle of curvature 

because of the driving force to flatten out the boundary. If the cur

vature decreases below about 36° the pore can then pin the grain 

boundary. It thus appears that from a thermodynamic viewpoint a start-

ing powder with a single particle size or the smallest particle size 

. range possible is desirable for sintering; the actual size of the 

particles becomes important only from a kinetic viewpoint. 

Conclusions 

The thermodynamic analysis of solid state sintering indicates that 

a decrease in the y /y ratio and an increase in the density of the ss sv 

unfired compact favor densification. An increase in density of the 

compact results in a greater coordination number for the particles 

which allows complete densification to be achieved at a higher y /y ' ss sv 

ratio. This ratio must be less than 1.78 for face-centered cubic packing 

of uniform spherical particles, 1.59 fer body-centered cubic, and 1.31 

for simple cubic; correspondingly the dihedral angle has to be larger 
. . I 

I 
than 53°, 74°, and 98°, respectively. Therefore, any additives that 
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would tend to reduce y . relative to y would enhance sintering or make 
SS . SV . · 

sintering possible if the y /y ratio for a given material is above 
SS SV 

the critical value. 

A pore on a planar grain boundary effectively pins the boundary for 

all values of the y /y ratio and thus the dihedral angle. A curved 
ss sv 

grain boundary, however, can move away from a pore if the curvature is 

above the critical value. ·As the dihedral angle increases above about 

73°, aithough the magnitude of the driving force decreases movement in 

all cases will occur toward the center of curvature at curvatures 'above 

about 36°; as the dihedral angle decreases from 73° to about 16°, the 

critical curvature value decreases to about 26°. Grain boundaries with 

lesser curvature tend to be pinned by pores. Additives which reduce the 

y /y ratio beyond that necessary for dense sintering, therefore, have 
· SS SV 

essentially no effect on the pinning of a grain boundary by a pore. 

It thus is evident that the most critical factor in the pinning of 

grain boundaries by pores is the degree of curvature of the boundaries 

and not the magnitude of the dihedral angle. Factors that lead to 

curvature should be controlled. A uniform packing of spheres of a given 

size should density to a microstructure with uniform grain size with 

planar grain boundaries. Compacts with a range of particle sizes, how-

ever, will tend to form curved grain boundaries. If this curvature is 

above about 35°, the boundaries will be able to move away .from pores. 

Narrow particle size ranges will tend to form grain boundaries with 

smaller curvatures. 

Another factor that has not been discussed or analyzed is the effect 

of anisotropy of interfacial energies. Irregular movement of grain 

II 
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boundaries and different angles at three_ grain junctions due to aniso-

tropy could lead to boundary curvatures that would allow them to break 

awa:y from pores. Additives in this case could be beneficial if their 

effect would be to reduce any existing anisotropy. 

All of the discussions have been based on a uniform and homogeneous 

distribution of particles. Poor processing that would introduce varying 

packing densities or introduce agglomerates of higher or lower density 

than the matrix would result in a range of grain sizes in the early 

stages of sintering as well as introduce other factors that would inter

fere with realizing theoretical density in the entire compact. An 

additive in this case would have a beneficial effect if· it played some 

role in reducing agglomeration or increasing .uniformity of particle dis-

tribution during the preparation of the compacts. 

The presence of a liquid phase at sintering temperatures introduces 

a degree _of complexity in that y , y , y n and y n. now play a role in 
SS SV SN NV 

the densification process. A thermodynamic analysis of such systems is 

being undertaken and will be presented elsewhere. 
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Figure Captions 

Fig. 1. (a) Idealized model of uniform sized spherical particles in 

simple cubic packing; (b) Two sphere densification model. 

Fig~ 2. Critical surface energy ratios for densification to theoretical 

density in solid phase sintering at different packing densities. 

Fig. 3. Integral normalized free energy change at the critical surface 

energy ratio for simple cubic packing. 

Fig. 4. Lenticular pore at. a planar grain boundary before and after 

the grain boundary sweeps past. 

Fig. 5. Integral normalized free energy change versus dihedral angle 

for isolation of a lenticular pore at a planar grain boundary. 

Fig. 6. A lenticular pore at a curved grain boundary with a constant 

angle of curvature. 

Fig. 7. Normalized integral free energy change for isolation of a 

lenticular pore at a curved grain boundary versus angle of 

curvature , at high dihedral angles • 

Fig. 8. Normalized integral free energy change for isolation of a 

lenticular pore at a curved grain boundary versus angle of 

curvature, at low dihedral angles. 

Fig. 9. Critical angle of curvature for pore isolation versus dihedral 

angle. 
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r-----------------LEGALNOTICE--------------------

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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