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ABSTRACT

The purposes of this study are to determine when a fracture system behaves
as a porous medium and what the corresponding permeability tensor is. A two-
dimensional fracture system model is developed with density, size, orientation,

and location of fractures in an impermeable matrix as random variables, :Simu-
lated flow tests through the models measure directional permeability, Kg.

Polar coordinate plots of I/VK;, which are ellipses for equivalent anistropic

homogeneous porous‘media, are graphed and best fit ellipses are calculated.
Fracture length and areal density were varied such that fracture freqUency was
held constant. The examples showed the permeability increased with fracture
length. The modeling techniques were applied to data from the Atomic Energy
of Canada Ltd.'s,Uhderground Research Laboratory facility in Manitbba,'Canada
by assuming the fracture pattern at the surface persists at depth. Well test
data were used to estimate the aperture distribution by both correlating and
not correlating the aperture with fracture length. The permeability of models
’with uncorrelated Tength and apertufe were smaller than those for correlated
models. A Monte Carlo type study showed that ahalysis of steady state packer:
tests consistently underestimate the mean aperture. Finally, a three-
dimensional model in which fractures are discs rahdomTy located in space,
interactions between the fractures are line ségments, and the solution of the
steady state flow equations is based on image theory was discussed.
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1
1 INTRODUCTION

‘ Interest in storing nuclear waste in deep underground facilities has
‘ prompted research to analyze the regional ground-water flow systems in dense,
fractured* rocks. At depth, the permeability of these dense rocks may be com-
pletely due to secondary porosity, i.e., fractures (Davis, 1969). Regional
flow analysis through great volumes of fractured rock cannot be handled by
describing each of these discrete flow paths deterministically because the
information describing every fracture in the region is not available. Further,
present computer methods cannot manage such volumes of data. Continuum or
equivalent porous medium analysis could be used if equivalent porous medium
parameters can be assigned to the fractured systems. This research is an.
attempt to determine if such appropriate equivalent porous media permeabi]ity**
values exist and determine their values from statistical information on the
geometry of the discrete fracture system. \ _
Work reported here includes a literature survey, development of a numeri-
~ cal approach to the study of the permeability of random fracture systems, and
application of this approach to several case studies. The literature survey
is in three parts. The first covers previous work that has been done to relate
fracture geometry to equivalent porous media values of permeability. The
second part covers the theory and measurement of homogeneous, anisotropic per-
meability. The third part is a review of fracture geometry statistics as
~observed in the field. The numerical approach includes the adoption of a
statistical fracture geometry model and the development of a computer program
.which generates random models of fracture systems and codes them for finite
element analysis of fluid flow. The fluid flow analysis was used to measure

*For the purposes of this report, the words "fracture", “joint“, and "discon-
tinuity" are used interchangeably.

**The term "permeability" is used in a generic sense throughout this report.
A1l calculations are actually of hydrau]iciconductivity (L/T) which is also
called the coefficient of permeability. Hydraulic condhctivity, K, is equal
to kpg/u where k is the intrinsic permeability with the dimensions of [L2].
See nomenclature for definition of terms.



the permeability of the fracture system. First the permeability of a system

of regular fractures of infinite extent was studied in order to validate the

model. Then the permeability of random systems of finite fractures were studied.
Series of random fracture systems were studied to see the effect on perme-

ability of fracture density, aperture and orientation distribution, and scale

of meaéurement.' Then a regression analysis was developed to determine the

best-fit permeability tensor for the fracture system. This analysis was applied

to a series of cases designed to test how well the permeability of a rock mass

can be predicted from the fracture spacing in a well. . A further analysis used

data from the Atomic Enefgy of Canada Limited's Underground Research Laboratory

in Pinawa, Manitoba to examine the effect of correlation between fracture length

and aperture and the applicability of surface trace data to the analysis of

the fracture sysiem-at depth. Also steady—state packer tests were simulated

- to see if they’can be used to determine the aperture distribution of a fracture

system., Finally the theoretica1.basis'f0r extending the numerical model to

L

three dimensions was discussed.



2 LITERATURE REVIEW

2.1 DETERMINATION OF EQUIVALENT POROUS MEDIA PERMEABILITY
FROM FRACTURE GEOMETRY

Work that has been done to determine the equivalent permeability of frac-
tured rocks from information on fracture geometry (assuming an impermeable
matrix) can be classified into two categories. Most of this work falls into
the first category where fractures are assumed to be of infinite extent (con-
tinuous or extensive fractures). Very little work has been done in the second
category, which takes into account the f1n1te or nonextensive nature of frac-
ture size. :

Study of_the permeabj1ity of-continuous fracture systems is based on the
prfhcip]e that the total permeability of the rock mass can be found by summing
the contributions of each fracture. The principle holds for fractures which-
transect the entire rock mass; i,e.; continuous or "infinite fractures". Also,
the assumption is made that head losses in the fracture intersections are
negligible. The contribution of each individual fracture is determined by
study of isolated fractures under various conditions of flow and stress (Huitt,
1956; Louis, 1969; Sharp;, 1970; Maini, 1971; Iwa1, 1976; Rissler, 1978; Wither-
spoon et al, 1979; Strack, 1980; and others). However; for application to the
study of fracture sysfems, flow in individual fractures is usually assumed to
obey the cubic law for flow between parallel plates: \

b> . | - |
q=-% pg - W - : (2'1)
where V¢ is the component of hydraulic gradient parallel to the fracture and W
is the width of the flow system.

Simple models of fracture networks based on the cubic law have been
reviewed by Wilson (1970), including work by Serafim and del Campo (1965),
Crawford and Collins (1954), Crawford and Landrum (1955), and 01los (1963).
These were either physical models based on electrical or pipe-flow analogs, or-
mathematical models based on orthogonal fractures of equal aperture and spacing.
Irmay (1955) and Childs (1957) also developed similar models.

More sophisticated mathematical studies of extensive fracture systems
were made by Snow (1965, 1969). Snow developed a mathematical expression for
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the permeability tensor of a single infinite fracture of arbitrary orientation
and aperture relative to a fixed coordinate system. The permeability tensor
for a network of fractures is therefore the tensor formed by adding the respec-.
tive components of the permeability tensors for each individual fracture.
Mathematically, the intrinsic permeability tensor of rock with reference to

the i,j coordinates can be written: ' '

3 |
. AN b s o - (9-
Kij = 12 2 5~ (35 - ""y) (2-2)

where the summation is taken over all the fracture sets in the volume of rock,
S'is’the spacing, and n; is the unit vector normal to each fracture. If frac-
tures are all randomly oriented, S becomes equal to the dimension of the eamp1e
perpendicular to the individual fracture. If fractures in a set are parallel
and equally spaced, then S is constant and equal to the spacing for that set.
With this model, Snow was able to examine the effect of random variations
in orientation and aperture of extensive fractures on the permeability of the
rock mass. In the statistical study, the aperture of each fracture in a set
was chosen as the absolute value of a normally distributed parameter. The
orientation of each fracture was chosen with a Fisher distribution. As each
fracture was randomly generated, the total permeability tensor was progres-
sively cumulated. Thus the effect of sample size on total permeability can be
seen.  Snow found that an increase in sample size increases the geometric mean -
permeability. The explanation for this is that as sample size increases the
probability of adding a rare large-aperture fracture increases. Since the
permeability contribution of a fraction is proportional to b3, a single large-
aperture fracture tends to have a very large effect on the total permeability.
For the aperture distributions studied by Snow, most mode] systems had
stable permeabilities at sample sizes of about 200 fractures. A few continued
to increase in permeability for sample sizes larger than 200. The change in
- permeability from small sample sizes (with 20 to 30 fraetures) to large samples
was from 5 to 25 percent.ef the results for an infinite number of fractures.
This implies that a representative sample of the continuously fractured rocks
studied'by Snow usually contains about 200 fractures. The volume of rock con-
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"taining. these 200 fractures depends on the density or spacing of the conductors.
Throughout the remainder of this report, a volume of rock containing a represen-
tative sample of fractures will be called a representative elementary volume,
or REV.

For the purpose of comparison, it is useful to examine the size of an REV
in fractured rock as estimated by other authors. Rats and Chernyashov (1965)
made a rough approximation based on a statistical ana]ysiS‘thaf a homogeneous
porous medium analysis can be used if the dimensions of the rock being studied
are at least ten times larger than the order of magnitude of the rock mass
heterogeneity, i.e., fracture spacing. Maini's (1971) analysis, based on in-
jection test data, claims continuum or homogeneous conditions can be assumed
for rock containing nine or more fractures. -Further estimates have been
reviewed by Roegiers et al (1978). The reliability of such methods of estima-
tion has not been demonstrated. .

The method of determining the equivalent porous medium permeability (EPMP)
proposed by Snow has several limitations, some major and some minor. The
method does not account for fracture roughness and infilling. This deficiency
may be overcome by using an equivalent flow aperture (Iwai, 1976) or a correc-
tion factor as described by Rissler (1978).

A much more important theoretical limitation is that this model assumes
all the fractures transect the entire volume of rock. It-can be seen in the
field that fractures are clearly of finite dimensions. For example, Marine
(1980) performed tracer tests on a permeable fractured zone in metamorphic
rock. The tracer tests demonstrated that the pérmeabi]ity was due to inter-
lacing fractures, not a system of continuous conductors. The fact that frac-
tures are finite means that each fracture can contribute to the permeability
of the rock only insofar as it intersects other conducting fractures. Such
interconnected fractures comprise the effective secondary porosity. In the
extreme, anviso1ated fracture which does not intersect any other fracture
effectively contributes nothing to the permeability of the total rock mass.
Another limitation of Snow’s (1965) approach is that it is difficult to obtain
data on effective or hydraulic aperture distributions. Further discussion of
aperture statistics can be found in Section 2.3.

Three approaches have been taken to overcome the theoretical difficulties
with Snow's method. Parsons (1966) and Caldwell (1971, 1972) used analog



mode1§‘to'study finite fractures. Parson's analysis utilized the approach of
Fatt (1956) who had analyzed the capillary properties of a network of random-
diameter tubes, and Warren and Price (1961) who had studied random three-
dimensional arrays of porous blocks. Rocha and Franciss (1977) proposed a
field method for finding a correction factor to Snow's analysis. Sagar and
Runchal (1982) proposed an analytic extension of Snow's method. .

Parsons studied two-dimensional regular networks of fractures with random
apertures. Both square patterns and triple hexagonal patterns similar to those
of Fatt (1956) were studied. Values from a given distribution of conductances
were randomly assigned in the pattern. In many of the conductance distribu-
tions used, the probability of having a zero conductance element was finite,
which means not all fractures were continuous across the model. After assign-
ing these conductances, boundary conditions were imposed on the model to
simulate guasi-linear flow in either the x, y, or 45 degrees from the x and y
directions. The pressure distribution and flow in each element was calculated
with a relaxation technique. Total flow was found by summing the flow across
a plane perpehdicu]ar to the overall gradient through the system. Overall
permeability per unit height of model was calculated as the ratio of total
flux to gradient. Anisotropy was studied by doubling the random values of
conductance oriented in one direction. From 1 to 23 random models were
generatéd for each of the studied statistical distributions for aperture.  The
mean and standard deviation of the resulting directional permeability were
calculated. - ' _

Parsons did not §tudy the effect of the size of the network on the value
of the calculated permeability. Nor did he find the complete permeability
tensof. He did not find any correlation between the overall permeability and
the element conductance distribution. Parsons did conclude that the larger
the standard deviation of the conductance distribution was, the larger would
be the standard deviation of the overall permeabilities calculated with the
models. Also, he found that the geometric mean of the conductance distribution
is a fair approximation to the permeability of the square network.

A significant result of Parson's (1966) work was that doubling the permea-
bility of all fracture elements in the x-direction increased the permeability
in the y-direction. This effect would not be seen in continuous fractures,



but with discontinuous fractures .the net flow in the y-direction must proceed -
through some fractures oriented in the x-direction. Also, for a similar reason,
permeability in the x-direction is less than doubled. - This is an important
effect in fracture networks that must be kept in mind. |

Caldwell (1971) modeled flow in discontinuous fractures. His method con-
sisted of cutting joint sets from conducting paper and measuring the potential
distribution in the model. He determined a "best fit" permeability tensor by
comparing the measured potential distributions with theoretical solutions for
-+ different values of the permeability tensor. The accuracy of this trial-and-
error method is questionable. The author was aware that the "best fit" tehsor
is not a unique solution. ' _

~ Caldwell also studied models with two orthogonal joint sets. ' One set -~
consisted of continuous, regularly spaced fractures. The second set had joint
lengths that were randomly selected from an exponential distribution and
spacing equal to one-fourth of the spacing of the continuous set. Three such
models were studied where the mean length of the discontinuous fractures were -
one, two, and four times the spacing of the orthogonal joint set. In this
- 1imited analysis, Caldwell found that where the mean joint length was equal to
the joint spacing, less than half the joints were hydraulically active. Where
the mean joint length was at least twice the spacing, Caldwell indicated that
the permeability of the joint model was equal to the permeability of a model
with two continuous joint sets. Caldwell (1971) also extended these results
to nonorthogonal joints. . ‘

Rocha and Franciss (1977) proposed a well test to determine a correction
factor to the theoretical tensor obtained using Snow's method. From the cal-
culated tensor, the equiVa]ent isotropic permeability is calculated as the -
cube root of the product of the three principal permeabilities, 3/?3?5?51
This permeability is used to calculate a steady state flow rate under a given
pressure. Then a well test is performed. The ratio of the f]ow'measured in
the field to the flow calculated from the theoretical tensor gives the correc-
tion factor, p, to be applied to the permeability tenséf: ‘ ‘

pK1 0 | 0 ' (2-3)
ij = 0 | pKZ ‘.0 ‘
0 0 PK

"3



This single correction factor does not allow for any rotation of the principal
axes. The authors also propose a trial-and-error solution for applying a dif-
ferent correction factor to each of two fracture sets separately. This method
would permit rotation but there is no evidence that such tensors are correct
for flow systems other than the radial flow system from which they were derived.

Sagar and Runchal (1982) attempted to extend Snow's (1965, 1969) theory
for permeability of fractured systems to account for finite fracture size.
Some of the assumptions made in their work are physically incorrect. The
authors assumed that flow in any fracture is independent of flow in the other
fractures if disturbances at the fracture intersections are negligible and
flow is laminar. Thus each fracture was assumed to experience a component of
the field gradient which depends only on the orientation of the fracture.
From this the authors concluded that "any fracture which does not appear on
the boundary of the rock element considered is of no interest in the calcula-
tion of the equivalent permeability" (Sagar and Runchal, 1982). These assump-
tions are correct for the extensive fracture systems ané]yzed by Snow. However,
these assumptions are not reasonable for nonextensﬁvé fractures (see Section
7-6).

In summary, very little work has been done to quantify the effect of
finite fracture length in combination with other geometric factors such as
aperture distribution, fracture spacing, and orientation.

2.2 HOMOGENEOUS ANISOTROPIC PERMEABILITY

2.2.1 Anisotropy

One of the purposes of this research is to determine when a fractured
medium behaves as a homogeneous anisotropic porous medium.. The theory and
measurement of homogeneity and anisotropy are reviewed here.

If the permeability of a medium is not the same in all directions, the
medium is said to be anisotropic. Darcy's law was originally postulated for
one-dimensional flow. Since directional properties have no impact on one-
dimensional flow, permeability was represented as a single scalar quantity.
In order to extend Darcy's law to two or three dimensions in the most general



case of an anﬁsofropic medium, Fefrandon (1948) ‘and others proposed.that

permeability be represented by a tensor quantity. fhis proposal is generally -

supported by either heuristic reasoning or associated Taboratory experiments.
Collins {1961) gives heuristic arguments for extending Darcy's law to

three dimensions. In order to show what fracture systems will be compared to,

“it is important at this point to review the argumenfs preSented by Collins.

" Darcy's law is extended in such a way that the flux remains linearly dependent

on the gradient. In one dimension,

In three dimensions for an isotropic medium,

v ‘: -k'gg-EL

i ” axi y i=1,2,3. : N “(2-5)

For three dimensions and an anisotropic medium, in general,
- _Paf, 8¢ 3¢ 3¢ - -
Vi 7T {kn x, * K2, tkise | 1123 (26)

or, using the summation convention

V.:—-eg-k 3¢ i

9¢ =1, 2, 3
i uoij axj j=1,2,3 (2-7)
The nine quantities k11, k12, K13, k21, k22, k23, k31, k32, k33, form a
tensor. The matrix equation for Darcy's law is
7 T 24 ]
Vi 11 K12 ka3 ) e
o _egy. 3¢ (2-8)
2|7 R ka2 Mo ||
, 3¢
Y : k k k _——
3
i 3_d L.31 32 33J Lx3.ﬂ-

The most general form of the permeability matrix is assumed to be symmetric. -
If k1j is symmetric, the matrix can be transformed to a diagonal form by a
physical or mathematial model and rotation of coordinate axes:

k1 0 0 )

- (2-9
kij =10 kz 0
0 0 k
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The coordinate system which diagonalizes this matrix form the principal axes
and the values ki, k2, k3, are called the principal permeabilities. In this
coordinate system, for i # j, kij = 0. ~Therefore, Darcy's law becomes

viT Rk [%r'l_)] ’ (2-10)
where (1) here is exempt from summation. Thus in this form flux is proportional
to gradient in the principal directions and this is the basis for the extension
of the original Darcy's law. For any medium having orthogonal principal axes,
kij will be symmetric and the above form of Darcy's law will be correct. A
medium with orthogonal principal axes has the following properties: (1) a
revérsa1 of gradient results in equa]\but bppdsﬁte flux, and (2) for arbitrary
orthogonal axes x, y, z, flow in the x-direction due to a unit gradient in the
y-direction is equal to flow in the y-direction due to a unit gradient in the
x-direction, etc. That is, kij = kji'

Experimental evidence supports this theory. Anisotropic materials which
were tested did in fact have orthogonal principal axes. However, as Collins
(1961) points out, there is no guarantee that every porous material has a sym-
metric permeability tensor. In fact it is likely that there are materials
which do not have symmetric permeability tensors.. '

| Darcy's law can be derived for idealized cases. For example, a porous
medium can be assumed to consist of an assemblage of elementary flow tubes or
fissures. A good review of these methods is given in Bear (1972). As Bear
points out, the problem with physical models such as flow tube models is that
they attempt to represent an inherently disordered medium by an inherently.
ordered medium. This drawback also means that these models are of less
interest to this research on the permeability of fractured rock. Assumptions
made to produce an ordered physical model cannot easily be compared to the
assumptions made to produce a random model.

The number and variation of models studied (Ferrandon, 1948; Childs, 1957;
Scheidegger,‘1960; Kozeny, 1927; Carman, 1937; Fatt, 1956) does, however, lend
support to the concept of anisotropic permeability as a symmetric tensor for
many media. Elementary flow tube models all presume flow in the tubes follows
Poiseuille's law. Poiseuille's law states that flux g in a tube is lipearly
proportional to the hydrau]ic.gradient along the tube, d¢/dx. The constant
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of proportionality is a function of the diameter of the tube, d, density p,
viscosity u, and the gravitational constant g: '

:4 : . .
- .Td_pgdo | (o-
9= - T28 noax - (1)
Any number of tubes of arbitrary direction and diameter can be added together.
The resulting flow law is always of the form

L 2 |
Vit (2-12)

where kij is the permeability tensor and Vi is the ;pecific*diScharge
(Ferrandon, 1948 and Childs, 1957). Each specific model will produce a differ-
eht relétionship between kjj and the geometric propeftiés of the model.
Scheidegger (1960) used the pore size distribution to arrive at the tube dia-
meter distribution. Kozeny (1927) and Carman (1937) derived an expression for
flow in noncircular, nonlinear tubes. Fatt (1956) modeled networks .of tubes *
in-a similar manner. ' ' ‘ ' '

The fissure models discussed previously are similar to the tube models.
However, flow in the fissures is governed by the cubic law, which is the solu-
tion to the Navier-Stokes_equation for flow between parallel plates. Further
models based on the resistance to flow provided by the soil grains are reviewed
by Bear (1972) and are not discussed here. The net result for all these models
is expressed in Equation 2-12 where total flux is linearly proportional to the
gradient. | _ _ '

~ Another type of derivation of Darcy's law is based on statistical aver-
aging. The geometric properties of the medium are allowed to be random and
assumptions are made about the average or macroscbpic behavior of flow. Some
of the work which leads to a tensor form for permeability will be discussed
here. More extensive reviews of this subject can be found in Scheidegger
(1960) and Bear (1972).

. Day (1974) gives a derivation which leads to Darcy's law for anisotropic .
homogeneous media. The derivation is based on work by Hall (1956) and Hubbert
(1940, 1956). Day extends Hall and Hubbert's work from isotropic to
anisotropic media. - o ' '

[y
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Day, Hall, Hubbert, and also Irmay (1968) and Gray and O'Neill (1976) all
used the same basic plan to derive Darcy's law. These authors start with the
Navier-Stokes equations as applied to the details of flow. Then some form of
averaging is applied under a set of assumptions about the nature of the flow
regimes. The result is an expression relating the average gradient to the
average flux, i.e., Darcy's law.

For saturated flow, Day starts with the following aSsumptions:
(1) nonturbulent flow, (2) negligible inertial forces, .(3) rigid solid phase,
(4) incompressible liquid, (5) viscosity unaffected by the proximity of the
solid phase, and (6) velocity is zero at the solid-liquid interface. _

Starting with the Navier-Stokes equation for creeping incompressible flow
which assumes avi/at is negligible '

azv'
29! _w_° Vi (2-13)
. AR - T 1]
Ix;  Pg 3x§

where v'; is local velocity, ¢' is 1oca1'potentia1, u is viscosity, and p is

density. Differentiating we have:

3

82¢' -.E_ E vi
2 " pg 2 ° -
axi _ axiaxj (2-14)

Continuity for an intompressib]e liquid is given by

av} - - (2-15)
e 0, _
i
so we have the Laplace equation
2, '
3 2 = 0. (2‘16)
axi .

We seek a solution to the Laplace equation which will satisfy the
boundary conditions of the detailed porous medium. Note that if ¢ is a
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solution, then c¢ is also a so]ution if ¢ is a constant. Also if c¢ is the
solution, the velocity will be cv. since from Equation 2-13 |

u a2 u azvi 38’ _ 2 (2-17)
=25 (ev!) = ¢ = ‘=z c = (c¢').
P 8x§ 1 Pg 3x§ CX

Day next defines macroscopic potential as a volume average of the microscopic

¢=%fb¢'dv, | I
v ' (2-18)

or local potential

where V is bulk volume, ¢'. is the local potential, and b = 1 in the liquid
phase and b = 0 in the solid phase. Thus the average gradient is

3¢ i-' 3¢’ |
% 1 f 0 20 ay. (2-19)

1 V 1

The major assumption in the\ana]ysis is that the local and average velocities
are connected by a relationship of the form | ‘

(2-20)

where cjj are functions of position and independent of the local velocity,
vi's Differentiating this equation twice, we have

azv;' azci. : : -
7=V —A - (2-21)
axk _ axk

82v' 820 ‘ ' :
at _w M, ey (2-22)
g PO gk P9 T g2

. | | . . o . ' _
aLz%[bf_‘t’_dV:% /va.—%ldv, (2-23)
v
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9°c.
% _, 1 o
X, Y3V [ T a2 N (2-24)
k
o \ v R
Letting
| A 1 L ) Cy; :
N fb S (2-25)
v k
gives
T )
5;;_ 'vinJ . (2-26)
or
- -1 3¢
and
PP | s
ij = (Ay5) (2-28)

There are several weak points in this derivation. A major weakness has
been pointed out by Narasimhan (1980). Narasimhan points out that volume (or
ensemble) averages only. make physical sense for extensive quantities, such as
mass and energy. However, intensive quantities'suqh as temperature or poten-
tial cannot be simply averaged. This is because potential or‘temperature of
two disconnected subdomains cannot be added to find the total potential or
temperature. Quantities such as potential and temperature must be modified by
capacity functions in order to be averaged. Thus a correct definition of aver-
age potential wou1dlbe | |

1 ] 1)
='v—f bmee ' dV, (2-29)
\ |

where m. is the average specific fluid mass capacity of the medium and mé is
the local value. The average specific mass capacity may also be difficult to
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evaluate because in heterogeneous systems, m¢ is not additive. Only for
steady state prob]ems where the potent1a1 d1str1but1on is 1ndependent of the

capac1ty terms can we have o _
¢:%[b¢'dv._ o -
| ' : (2-30)

v

Day's use of the above form of volume average for ¢ without me implies the |
result is applicable only to steady flow. Day implicitly assumed nearly steady
flow from the beginning by neglecting BV'/at in the Navier-Stokes equation.
Philip's (1957) approach to this prob]em was to accept the fact that

Darcy's law really applies only to steady flow. He then examined the transi-
tion from rest to steady flow for 1ncompress1b1e f1u1ds using the Nav1er Stokes
equat1on 1nc1ud1ng the acce]erat1on term:

3vi -9

\

- 9%

-t T 3xi 2
- J

i (2-31)

Philip fouﬁd'that steady_fTow was established very quickly, within seconds or .
a fraction of a second for most media. Thus Day's assumption that the accel-
eration terms of the Navier-Stokes eduatiqn are negligible may not be too bad.
In other words, as long as the boundary conditions are changing slowly, the
velocity field can be related to the potential field with the form of the
Navier-Stokes equation used by Day. So, at least for homogeneous media, the
simplified form of the volume average may also be approx1mate1y correct.

A further problem in this analysis is the Equation 2-20:

v' :vcijvi'
If Cijs and therefore.permeabi]ity, is to be dnique, the Tlocal velocity diStri4
- bution must be constant or at least a constant multiple of the velocity distri-
bution for which the éomponent§ of'c}j were derived. The cdmponents of ¢4
will change when the soil partic]es move (e.g.? in compaction) or when there
‘are any changes in the distribution or amount of water in the medium (nonsteady
flow). In fact the Cij wi]]lbe unique oh]y for a given.type:of boundary cbnditions
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and steady (or ‘incompressible) flow. That is, the Cﬁj will be invariant oh1y
for kinematically similar, steady flows.

Day has shown that permeability is a tensor for any given kinematic state
of steady or incompressible flow if v% = cijvi; He has not shown that a
unique permeability tensor can be found for a given medium which controls any
laminar steady or unsteady flow state. The permeability tensor will be unique
if | )

oy y 35;
Aij"V[bE'ax v ]
k (2-32)
\
is invariant for any laminar flow conditions. This can only be proven for
specific cases as discussed above when the full details of the flow system are
known. Only in these cases are the components of'cij known throughout the.
flow field under any flow conditions.

Darcy's law cannot be proven for. the general case. The only way to show
that a given random medium has a symmetric permeability tensor is to actually
measure the directional permeability. The theory of directional permeability
measurement is given below.

2.2.2 Measurement of Directfona] Permeability

Directional permeability can be measured under steady flow conditions.
If the correct form of Darcy's law is

Q= kg = Ky (2-33)
then this expression éan be used to examine the theory of directional permea-
bility measurement. Fundamental to directional permeability measurement is
the fact that flow and gradient are not necessarily in the same direction.
Only when flow and gradient coincide with onevbf the principal axes of permea-
bility will flow and gradient be in the same direction. This can be seen from
inspection of the above Darcy equation.

Scheidegger (1954) and Maasland (1957) both give analyses of directional
permeability. Neither stated that there is a difference between measurements
made in the direction of flow and measurements made in the direction of
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gradient. Marcus and Evenson (1961), Marcus (1962), and Bear (1972) all give
the expressions for both permeability in the direction of flow and permeability
in the direction of gradient. They show how the results of directional permea-
bility measurement can be plotted as ellipsoids. A summary of these analyses
is presented here in s1mp11f1ed form. ‘

If a steady flow system is set up where the direction of flux is known,
then permeability in the direction of flux, Kf, can be defined as

q=- Kf‘Jimi ’ . (2"34)
where Jj is the gradient vector, m; is a unit vector in the direction of the

flux, and g is the flux per unit area.. Therefore, Jimj is the component of
the gradient in the direction of the flux (Figure 2-1).

We have
1 Jim1 ‘ ,
Ke v , (2235)
J; can be found from Darcy's law
Vi Mg . o (203)
J. = - v.(K..)"1 = -m, (K, )_1v. | Py
i J i J i (2-37)

Substituting Equation 2-37 into 2-35 gives.

1 -1
Yf: = mlmJ(KlJ) y (2_38)
or ’ .
- -1 ' 2-39
1= (/R;~mi)(/E;mj)(Kij) . | ( )
Substituting

X.
= 1
m = 7R : \ (2-40)
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Figure 2-1. General Flow Conditions in Anisotropic Media
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into 2-39 implies the components of xj give the coordinates of a ray of length
/Kf plotted (as measured) in the direction of flux, mj. Substituting 2-40
into Equation 2-39 we have: ' '

i %5 Vi ' - (2-41)
which is the equation of an ellipsoid with semiaxes of 1ength /P—, K2, vK3,

where K1, K2, and K3 are the principal permeabilities.
Permeability in the direction of the gradient Kg is defined by

i"i T 7 fg f (2-42)

where q; is the flux per unit area, n, is a unit vector in the direction of
the gradient, vimj is the component of flux in the direction of the gradient
and J is the magnitude of the gradient. Substituting Darcy's law:

9 = - Kjjd5 0 _ | L (2-44)
into-Equation_2-43 gives,
' | K3 , : '
Ky = —dn, » | (2-45)
Kg = KM » . (2-46)
or _ - .1 ='Kij(/R; nj)(/Kg'ni) - (2:47)
Substituting
L - L (2-48)

Equation 2-47 implies that the components of X; give the coordinates of a
ray of 1ength L&K plotted (as measured) in the direction of gradient. This
gives: : :

K. .x.x.
ij7i%g
(2-49)
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which is the equation of an e111pso1d with semiaxes of lengths l//ﬁﬂ' 1/vK,,

and 1//ﬁ_ Recall in Equation 2- -41 for permeability measured in the direction

of flow the semiaxes are /__, /—_, /__. For permeab111ty measured in the direc-

tion of flux the major axis of the,e]]ipsoﬁd is in the direction of maxi-

mum permeabﬁ1ity. For‘permeabiiity measured in the direction of the gradient

the major axis of the ellipsoid is in the direction of minimum permeability.
Schéideggér (1954) reané]yzed'directioha] permeability measurements made

in the direction of the gradient by Johnson and Hughes (1948) Scheidegger

plotted 1//K(a) as a function of o on polar coordinate paper for each set of

data. A best-fit ellipse was calculated. The standard deviation of the labora-

tbry values as compared to the best-fit ellipse was about 10 percent. This

deviation can easily be accounted for by heterogeneities in the samples.

Greenkorn et al (1964) and Morita and Gray (1980) used a method of measuring

conductivity in the direction of flow with a whole core type permeameter.

Results in both cases p]otted as an e111pse This type of laboratory: ana]ys1s

tends to confirm that the behav1or of many porous media can be predicted by .a .

symmetric permeab111ty tensor

' 2;2.3 Homogeneity

Homogeneity has been discussed by Hubbert (1956), Fara and Scheidegger
(1961), Toth (1967), Bear (1972),_and_Ffeeze (1975). Freeze pointed out that
theré‘is really no such thing as-a tfu]y homogeneous medium in geology.
However, in order to have a-tractable analysis of flow, a scale of measurement
(the macroscopic scale) must be found for which the porous medium is seen as
continuous (Hubbert, 1956). On this scale the medium is said to behave as if
it were homogeneous. The sca]e at which such analysis is possible is commonly
illustrated with a diagram such as Figure 2-2. The volume at which the para-
meter of interest (permeability in the case of Figure 2-2) ceases to vary was
defined earlier as the representative elementary volume (REV). With respect
to permeability, the REV of a medium can be sought by measuring the average
permeability of increasing volumes 6f rock until the value does not change
significantly with tHe‘addjﬁion or subtraction of a small volume of rock. An
alternative to this theory was proposed by Fara and Scheidegger (1961) and
Moran (1962). These authors suggested the use of an autocorrelation function
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which could be evaluated along random lines through a given porous medium.
If the medium is homogeneous and isotropic, the autocorrelation function should
be equal for any line, provided the sample is as large as the REV.

There is no guarantee that such an REV exists for every permeable system.
Indeed, Snow's (1969) theoretical and experimental work shows the permeability
of fractured rock may continue to increase with the volume tested. This
implies that within the practita1 1imits of the geologic strata the statisticé]
sample continues to change with the size of the sample. A further problem has
been studied by Freeze (1875), Smith and Freeze (1979a and b), and Smith
(1978). They have concluded that for some problems it may not always be
possible to define equivalent homogeneous properties for inherently heterogene-
ous systems. Using numerical simulation, Smith and Freeze studied arbitrary
flow systems in one- and two-dimensional heterogeneous porous media. Elements
of the model were assigned permeability in a raﬁdomvmanner, “Hydraulic equiva-
lence between the heterogeneous systems and an equivalent homogeneous system
was based on two criteria (Smith and Freeze, 1979b): ' .

1. The mean value of the hydraulic head at any point, as determined
from a stochastic solution that recognizes the spatial heterogene-
ities, must equal the head value at that point, as determined from a
single determinjstic_so]dtﬁon using the effective conductivity of
the medium. '

i_2. The mean value of any integrated flow measurement determined from
the stochast c solution must equal the s1ng1e value provided by the
deterministic run.

Smith and Freeze concluded that in two dimensions these conditions were
met only when very restricted conditions were p]aced on the nature of hetero-
geneity and the flow system operating within- the dpma1n. However, this con-
clusion was based on two somewhat limiting assumptions. First, the geometric
mean permeability was always used as the equivalent permeability. Although
the geometric mean is a good approximation for some flow systems, there:is no
guarantee that it is always the best estimate of equivalent permeability.
Second, the equivalent permeability was only allowed to be isotropic. An
anisotropic value may have met the above criteria. For any given set of
boundary conditions, Smith and Freeze might have been able to find an
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equivalent an1sotrop1c permeab111ty which produced the same average flux as 4
the heterogeneous system. The d1ff1cu1ty in identifying this equivalent
permeability is that the equivalent permeability tensor that works for one set
of boundary conditions will not necessarily predict the correct flux for
another set of boundary conditions. The difficulty arises because, in general,
different boundary conditions induce different gradients in different parts of
the flow field. The permeability "in one part of the field which has a higher-
gradient will have more effect on‘the total flux than the permeability in
another part of the field which has a lower gradient. When the boundary condi-
tions‘change, the emphasis changes. Therefore, a given equivalent permea-
bility tensor will only apply to kinematically sﬁmi]ar flow systems. Recall -
that this is the same d1ff1cu]ty 1dent1f1ed in the derivation of Darcy's law
by Day (1974) _

Maini (1971) points out that the same medium can be considered homogeneous
or héterogeneous, depending on the size of the flow system operating in it. A
small flow system in a given medium can be classed as a heterogeneous problem
while a large flow system in the same medium would behave as if it were in &
homogeneous medium. The physical implications of Maini's remark are ‘important:
the size of the appropriate REV depends on the flow system of interest. The
REV must be large enough to contain a representative statistical sample as’
discussed by Hubbert and others and as shown in Figure 2-2. Howeve}; for a
particular application, the unit volume that can be used in an analysis must
be small enough relative to the flow system being studied so that the gradient
throughout the volume is approximately constant in magnitude and direction.
This concept is familiar to ground-water flow modelers: the smaller the mesh
size is, the more accurate the results are because the head distribution with-
in each element is more nearly linear. |

If the average flow lines through an 1nterna11y heterogeneous volume
~ remé1n Tinear, it may be possible to define a unique equivalent permeability
tensor which will be correct for flow in any direction. ' However, if the
isopotentials and flow lines are curved relative to the dimensions of the
statistically determined REV, then the value of the equivalent permeability of
the REV will depend on the particular kinematics of the flow system. In this
case, no unique permeability tensor can be defined. Further, a prediction of
the behavior of the flow system as a whole would depend on the knowledge of
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the equivalent permeability which itself would depehd on the flow system. So
a unique solution to a flow problem would be very difficult to achieve.

[f, on the other hand, the average gradient is constant within the statis-
tically determined REV, then there may exist a single permeability tensor which
can be used to correctly predict flow in any direction. However, even under
these constraints there is no guarantee that a unique, symmetric permeability
tensor will exist for every medium on a given scale. '
| Given a flow system similar to that studied by Freeze and Smith (1979%a
and b), for example, flow under a dam, the appropriate volume for an element
must be small enough to experience a constant average gradient. To satisfy
the definition of a homogeneous continuum,'however, it must also be at least
large enough to contain a representative sample of the heterogeneities. In
some cases, a statistically defined REV may be too large to have constant aver-
age gradient. In this case, either a smaller REV must be found as the basis
for analysis or a classical continuum analysis will not apply. ' '

Freeze ahd Smith did not consider the size of the REV relative to the
size of their problems when they looked for an equivalent porous medium permea-
bitity. It may be that a 1arger,*statistica]7y defined REV exists on the same
or larger scale as that of the flow problems they studied. However, the boun-
dary conditions imposed on their flow systems systems produced a nonconstant
gradient field. Thus the largest appropriate REV they could have found had to
be small compared to the variation in the magnitude and direction of the
gradient. In fact, the REV in their problems waé, a priori, the size of the
individual blocks that were initially assigned a homogeneous single permea-
bility. Constant gradients must be imposed on models such as those developed
by Freeze and Smith in order to determine if and when a homogeneous equivalent
system exists on a scale larger than that of the individual blocks.

The above review leads to several conclusions central to this investiga-
tion. First, it only makes sense to look fer eqguivalent porous medium behavior
in fractured rock systems using flow systems which would produce linear isopo-
tentials and flow lines in a truly homogeneous, anisotropic medium., Boundary
conditions that will result in such a flow system will be described in Section
3.4. Second, the following criteria must be met in ofder to replace a hetfero-
geneous system of given dimensions with an equivalent homogeneous system for

the purposes of analysis:
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1. There is an insignificant change in the value of the equivalent.
permeability with a small addifion or subtraction to the flow volume
2. A singTe equivalent symmetric permeability tensor exists which pre-
dicts the correct flux when the direction of gradient in an REV is
changed.
Criterion (1) implies that the size of. the sample under consideration is -

a good statistical sample of the heterogeneities. Criterion (2) is based on
the assumption that boundary conditions are applied to the sample which would
produce a constant gradient throughout a truly-homogeneous, anisotropic sample.
The actual gradient within the heterogeneous sample does not have to be exact1y
‘constant for (2) to-be satisfied., The average isopotentials of the heterogene-
ous system will probably be the same as the isopotentials in the equivalent
homogeneous system, if (1) and (2) above are met. However, it is not
necessary to have a constant actual gradient in order to have a tractable por-
ous medium analysis. For example, if a block of material the size of the REV
is removed from a f]ow-system.and'réplaced with a block of equivalent homogene- -
ous material, the overall characteristics of the flow system will not change
significantly if criteria (1) and (2) are met. Each block will have experi-
enced the same boundary conditions and produced the same average fluxes across
the boundaries. Further, each block will contain a relatively linear flow
field. The shape of the isopotentials within the two blocks may .be different
in detail, but this by itself will have no import on the overall deécription
of the flow system. ' - '

2.3 STATISTICS OF FRACTURE GEOMETRY
2.3.1 Introduction -

Under a given set of boundary conditions, the hydraulic behavior of a
fractured rock mass with an impermeable matrix is determined entirely by the
geometry of the fracture system. Real fractures have complex surfaces and
variable apertures, but for the purposes of this study and most other studies
of fracture systems,. the geometric description is simplified. The assumption
js made that individual fractures lie in a single plane and have a constant
- hydraulic aperture.
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Characterﬁzationjof a fracture system is considered complete when each
fracture is described in terms of (1) its hydraulic or effective aperture,
(2) its orientation, (3) its location, (4) its size and, for a three-
dimensional description, (5) its shape. In two dimensions, éize means length.
This survey is organized into three sections corresponding to theSe geometric
propertﬁes. -Size -and location are discussed together. -

2.3.2 Apertures ’ n - : . v ,

"The hydraulic béhavior of fractures has been shown to be a function of
their aperture, b. Witherspoon et al (1979) has reviewed the data on laminar
flow in fractures and concluded that flow in fractures obeys the cubic law:
L= o, | |  (2-50)
where g is f]Qx,‘V¢ is the gradient, C is a constant, .and b is the hydraulic
aperture. ' Characterization of the permeability of a fracture requires deter-
mining the hydraulic aperture. o '

Iwai (1976) was able to define a hydraulic or effective aperture for non-
ideal sample fractures in-the laboratory. Iwai studied flow through rough -
tension fractures in granite, basalt, and marble, under various conditioné of
normal loading and opening. First he showed that for a fixed aperture, flux

was proportional to gradient, i.e., Darcy's law was obeyed. He then tried to

create a zero-aperture fracture by applying 20 MPa across the fractures.
Fractures in this condition continued to conduct water. The effective

parallel-plate aperthe, bo’ which would account for this residual flow, was -
calculated. As load was released, the fractures opened by Ab. The effective .
aperture which accounted for the flow was found to be'bo + Ab.

Significantly, the effective apertures could not have been measured
directly for two reasons. First, the fracture that was subject to maximum
- stress and appeared to be completely closed could still conduct water. Second,
the fractures were rough and the sides had some contact with each other. The
net effect of roughness and"contact~area‘could be ‘measured only hydraulically.
Thus the effective aperture must be measured by performiné hydraulic. tests.
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Unfortunately, it is very difficult to perform hydraulic tests on isolated
fractures in the field. Such attempts may be hampered by inability to isolate
single fractures in the borehole, the effect of intersecting fractures, and
low flow rates required for nonturbulent flow near the wellbore. Limited
attempts have been made to test individual fractures. For example, Gale (1975)
isolated a limited number of horizontal fractures with packers and performed.
injection tests to determine their apertures. His data also show that hydrau-
lic and measured (apparent) apertures are not the same. The apertures measured -
from a borehole periscope log were at least one order of magnitude higher than
the'corresponding hydraulic apertures calculated from injection flow rates.
Gale's data, however, are not extensive enough to make significant analysis of
the fe]ationship between hydraulic and apparent apertures.

Because of the difficulty involved in hydraulically isolating a single
fracture underground, the knowledge of fracture aperture distributions is
limited to apparent apertures that have been observed directly in cores or
well logs. Methods for direct measurement of fracture aperture have been -
refined by Rocha and Franciss (1977) and Bianchi and Snow (1968). Rocha and
Franciss proposed a technique called integral sampling. This method consists
of drilling a small pilot hole and injecting-a grout. Then an overcore is
taken and the grouf filled fractures are measured. Bianchi and Snow used a
fluorescent dye process to reveal the fractures on the surface of a rock
. sample. Apertures are then measured with a caliper. The distribution of
apertures measured by Bianchi and Snow was found to be very close to lognormal.

It may be reasonable to expect the distribution of true hydraulic
apertures to also be distributed lognormally, Snow (1969) assumed this and
was able to estimate the mean and standard deviation of aperture distribution
from normalized pressure test data. He also assumed a Poisson distribution of
fracture spacing. Individual injection tést results were normalized to the
same length of- test zone. Snow then used the frequency of zero discharge
zones to estimate the mean fracture density, X. He then concluded that the:
mean discharge of individual fractures is equal to the mean discharge of all
samples of fractures encountered by the uniform test lengths divided by A.
From the mean discharge, Snow calculated the mean aperture. This analysis
does not differentiate the aperture distributions for individual sets;\all the
fractures are assumed to be perpendicular to the hole.
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A further consideration in understanding the aperture distribution of
fractures is that fractures of greater extent may be likely to have larger
apertures. Thus fracture length and apertures are possibly correlated. This
important tdbic'has not yet been studied. Support for such a correlation
comes from the literature on fracture formation where the width of a crack can
be calculated as a function of its length for various stress states (Sun, 1969;
Secor and Pollard, 1975; Pollard, 1978; Pollard, 1976; Pollard and Muller,
1976; Simonson et al, 1978). Also studies of roughness show that the scale of
roughness is linearly related to fracture length (Sayles and Thomas, 1978).
The possibility of fhe size of the asperities partially determin%ng the
aperture is further evidence for a relationship between length and aperture.
The exact nature of the relationship between length and hydraulic aperture
is not yet fully understood. : B

In conclusion, the best estimate currently available is that apertures
are distributed lognormally.. However,,confirmation of this estimate and the -
relationship of fracture aperture to lateral extent awaits extensive hydraulic
field testing and mapping of isolated individual fractures..

2.3.3 Orientation.

The statistics of fracture orientation are perhaps the best understood of
all the geometric properties of fractures. . There are three reasons for this.
First, it is.-relatively easy to obtain a measure of the orientation of a large
number of fractures. Orientation can be measured in cores or in outcrops with
simple tools. Second, information on fracture orientation has been developed
in the pursuit of several .different types of engineering projects, notéb]y
those concerning structural- stability of rock masses. These-analyses are use-
ful for hydrologic purposes. In contrast, effective fracture apertures are.
harder to measure. Apertures are only of direct interest to hydrologic
problems and are therefore not studied by other disciplines. Third, the mathe-
matics of orientation ana1ysis has been of interest to many fields. Statis-
tical analysis of such data is well developed. -Pincus (1953) gives an exten-
sive table of references from the earth science field alone.

Fracture orientation distributions are usually $tudied by plotting the
poles of each fracture plane on either a stereo net or a Lambert equal-area
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net. Terzaghi (1965) gives a description of these projections.- Data from a
single or several related sites plotted in this manner usually form clusters
or sets. Each set can be identified and analyzed separately. In general, a
parametric-analysis of this type of data consists of determining (1) the form
of the distribution, (2) a parameter representing the central tendency or mean
direction, (3) a measure of the dispersion around this mean, and (4) a measure
of the goodness of fit of the data to the theoretical distribution.

For example, Fisher (1953) gave a simple method for estimating the mean
direction of a collection of poles. The mean direction is simply the direction
of the vector sum of all the unit vector poles. This vector sum is called the

resultant. Fisher assumed the probability density is proportional to ‘ekcos®
where 6 is the angular displacement from the mean and k>0 is a measure of

dispersion. If all N measurements are in the exact same direction, the
resultant R would be of length N. Therefore k is a function of N and R.
Fisher found

N-R’ ' ' - (2-581)

is a good estimate when N-- R < 2. It should be noted that Fisher's distribu-
tion is symmetrical about the mean direction. Snow (1965) applied Fisher's
distribution to the Monte Carlo calculation of the permeability of sets of-
randomly distributed infinite fractures.

Pincus (1953) gives a thoughtful discourse on the methodology of statis-
tical analysis of orientation data. He discusses requirements for sample size
and sdggests the method of sequential sampling.. In this method successive
increments of data are collected "until the total picture changes with the
addition‘of the last increment by an amount less than that required by the
precision of the investigation." If a model distribution is hypothesized,
Pincus suggests use of the chi-square (x2) test for model validity. Pincus
also suggests methods for applying linear, circular, and sphericaj normal dis-
. tribution theory to two- and three-dimensional problems.

Before statistical theory can be applied to orientation data, sample bias
must be removed. Terzaghi (1965) explains the geometric causes of sample bias.
Orientations are usually measured either in core or on an outcrop. Fractures
which are more nearly parallel with the core or outcrop have a lTower proba-
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_bi]ity of being sampled. The number of fractures, Ngp, which would be inter-
sected by a hole (or an outcrop) perpendicular to the joints is given by

N
= = . (2-52)

N90 sina :

where N, is the number of fractures intersected by the same hole (or outcrop)
which makes an angle a with the fractures. This formula can be used to correct
orientation data. However, the reliability of such corrected data decreases

as o becomes small. When a is zero no correction can be made. This problem
can be.overcome by samplﬁng several outcrops or core holes in a variety of
orientations. - _'

Mahtab et al (1972) developed a computerized method for analyzing clusters
of orieqtation data. This program divides the sbhere on which the poles are:
plotted into 100 patches of equal area and obtains the density of poles in
‘each patch. . Clusters are defined as "collections of all pqints in adjacent
patches where each patch possesses a-denéity that exceeds the threshold value".
Mahtab compares the density against a. Poisson distribution to identify-thres-
hold values. Once c1ustefs have been_identifiéd they are compared to Arnold's
hemiSpherical normal distribution with probability density v(¥, k) given by

'k \ kcosy |
v(¥, k) = { ——— ]e -
| <aw(ek - '1)> | | (2733)

where {- is the random variable which assumes values Vi, the angle between the
jth observation and the mean vector, and k is a measure of dispersion. This
distribution is similar to the univariate’norma1 distribution. Mahtab gives .
the estimate of k for k > 6 as |

LS e ~ - (2-54)

Also, the probability P of an observation being within ¢ of the mean is givén
by '

cosy = 1 + 1 log_(1 - P), | (2-55)
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Once the estimate of k -is found, the x?2 goodness-of-fit test is applied.
Mahtab et al applied this method to porphyry copper fracture data. The cluster
analysis showed a major orthogonal joint system. One of the clusters passed
the'x2 test for Arnold's hemispherical normal distribution; the other two did
not. Other distributions, fqr example Fisher's, could have been examined for

" these two sets.

2.3;4 Location and Dimension

The mathematical descriptions of fracture locations and fracture dimen-
sions are interrelated. Therefore, these two topics will be discussed together.
Fracture traces can be observed in outcrops or in excavations. The location
of fractures intersecting a borehole can also be determined. Using trace
length dnd borehole data, we wish to determine the‘]ocdtion_of fractures‘in,_~
space and their shape and dimensions. . _

Robertson (1970) studied fractures exposed in the tunnels of the de. Beers
mine. Trace lengths of fractures were recorded using a category system with ..
four intervals. The distributions obtained were compared to exponentia]edﬁ5°
tributions.. In most cases, the fit was considered good. Robertson experienced
difficulty in the placing of joints in the correct class intervals. ' Where -
traces continued into the walls, roof or floor, the correct trace length could
not be measured. Statistical methods which correct for this censoring were .
not invoked. Robertson also made an effort to estimate fracture shape. The:
author made "bivariate plots of dip trace length against strike trace length".
The authors then assumed that fractures were circular, and concluded that
joint sizes are underestimated by trace lengths according to the relationship

oN.

1

LI

A =

N

A", | (2-56)

where A' is the joint area calculated from the visible trace lengths. Taking
A to be the average area, then the average fracture radius, r, would be

() = /3 - /’W-—/’T-%_-(—) - (2;7_57')

where E(L/2) is one-half the expected value of the trace length,
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Robertson (1970) estimates the volumetric density of jointing, Xy, given
the number of joints, n, intersecting a simple line of length L as

A (2-58)

n
v - L a(cos 8)(cos 6) ?

where a is the average area of the joints and © and & .are the horizontal and
vertical angles between the sample line and the joint set pole. This estimate
is based on the assumption that parallel joints are randomly distributed in
space. The probability of intersecting n joints was assumed to follow the

- binomial law.

Some further information on fracture shape hds come from research on frac-
ture formation. An-example of such work is given by Pollard (1978). Pollard
suggests that thé'form'of_sheet intrusions in sedimentary rock should be
similar to the form of hydraulic fractures since the mechanics of formation
are similar. He finds that vertical dikes tend to be greater in length than
height and horizontal sills tend to be equidimensionai. Inclined intrusions
‘are rare. Thickness-to-length ratios ranged from about 1/100 to 1/1000. Some
intrusions'were.stacked up in groups with small spacings and some were
arranged in echelon patterns. Fractures formed in echelon would have decreased
conductivity at the "steps" in the echelon pattern. An elliptical model .for
fracture shape may be applicable, at least to the extent that fractures in a
rock mass were cCreated by hydraulic fracturing. However this mode | may not
apply to fracture networks produced by tectonic movements. _

Priest and Hudson (1976) and Hudson and Priest (1979) examined the distri-
bution of fracture spacing along a scan line and concluded that spacing values
can be approximated with a negative exponential dﬁsfribdtion

F(x) = ae™%, (2-59)

where f(x) is the frequency of discontinuity spacing, x, and X ¥s the average
number of fractures per meter. An evenly spaced distribution of fractures,

such as in columnar basalt, would result in a normal distribution. Clustered
distributions could occur near lithological boundaries or due to stress effects.
Random spacing, which could occur in homogeneous rock, leads to a negative
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- exponential distribution. Geologically complex rock is Tikely to have a com-
bination of evenly spaced, clustered, and random distributions. Superposition
of these fractures tends to-result in a distribution similar to the negative
exponential because superposition tends to preserve the smaller spacings and -
break up the larger ones. Hudson and Priest (1979) used numerical simulation
to demonstrate the evolution of a negative exponential distribution from super-
position. |

Hudson and Priest also analyzed scanline measurements from several tunnels.
A negative exponential distribution for spacing was found to be a good approxi-
mation. It is interesting to note that at least 200 measurement values were
required to clearly define a negative exponential histogram. The mean-and
standard deviation of the theoretical negative exponential are equal. Priest
and- Hudson's measurements of the mean and standard deviation were within 20
percent of each other. o . ‘

Baecher et al (1977) reviewed the literature on spacing and length distri-
bution. Both spacing and length have been reported to vary both exponehtia]]y
and lognormally. The authors proceeded to analyze joint data from sedimentary
and complex metamorphic rocks. Trace length distributions were compared to .-
exponential, normal, gamma, and lognormal distributions. Lognormal -provided
the best fit to the data. Spacing distributions were measured by extending - -
joints found in outcrops- to infinite planes. Distributions of spacing were
measured for. lines of various orientations on an exposed rock surface.:

Spacings were fit to exponential, negative binomial and lognormal distributions.
Exponential distributions provided the best fit regardless of the orientation
of the sample line. ) ‘ .

Baecher et al (1977) deVe]oped a conceptya1 joint geometry model. Joint
trace lengths are assumed to be lognormally distributed and spacings are
assumed to be exponentially distributed.. The authors infer that joints are..:
discs randomly distributed in space... Joint radii are shown to be lognormally
distributed. Using this model, the authors estimated the expected joint .radii
- from the expected trace length much as Robertson (1970) did. However, unlike
Robertson, Baecher et al lower this estimate to account for the sampling bias
of larger joints appearing disproportionately .in the sample. They give the
expected value of r as:
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E(r) = [2.267(L) + 6.96 Var(L) E2(L)]7", (2-60)

where L is the'trace length, E(L) is the expected value of L, and Var(L) is
the variance. From the spacing distribution data the density of jointing for
a set. of parallel joints was estimated as

N/L

A = :
n (cos B)E(rz) (2-61)

where N is the number of joints intersected on a line of length L which makes
an angle 9 with the joint poles. This estimate is similar to Robertson's
(1970) result. However, as explained above, Baecher's estimate of joiht size
includes a correction for sampling.bias.
' - Baecher and Lanney (1978) further examined bias in trace'length sampling.
They identify three types_of'bias: size bias, truncation bias, and censoring
bias. Size bias occurs because larger joints have a larger probability of
being sampled. Truncation bias occurs because joints smaller than a certain
size are eliminated from the survey. Censoring bias occurs because the full
trace length of some joints is not observable.

Size bias can be accounted for if assumptions are made about the shape
and distribution of joints in space. Baecher assumed joints are circular discs
randomly loéated in space. Then the probability of a joint being intersected
by:an outcrop is proportional to its radius. Baecher shows that the distribu-
tion of trace lengths, L, is given by

f(L{®) = [ Cr————L——— f(ri{e) dr, ‘ (2-62)
l 2rvY4r” - L l : .

L/2

where C is a constant and € is a vector of parameters (not explicitly defined
by the authors). For exponential or lognormal forms for f(r), Baecher and
Lanney show that the expected value of trace length, E(L), is greater than
twice the expected value of the unconditional average. Also, f(L) has
Tognormal form whether f(r) is lognormal or exponential.

- Truncation also leads to systematic overestimation of average joint size
since smaller joints are systematica]]y removed from the sample. This error

is greater for exponential distributions than for normal or lognormal
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distributions. For an exponential distribution of true trace length, Baecher
finds the estimated mean trace length is up to three times larger than the
true mean, depending on the truncation limit. Censoring tends to cause an
underestimation of mean trace length. This bias cannot be easily corrected,
but Baecher and Lanney present some approximate corrections. ‘

Barton (1978) studied an unusual outcrop where all the joints belonged to
a single set perpendicular to the outcrop. The size of the outcrop was such
that there was no apparent censoring, and truncation at the lower limit was at
a well-defined 30 mm. Barton established a numerical model of the joints which
placed parallel circular discs randomly in space. Various distributions of .
radius were assigned to the discs. The numerical model was used to calculate
trace length distributions for a plane intersecting the model perpendicular to
the fractures. Barton found that chords from circles with lognormally distri-
bbuted diameters were distributed in a similar manner to the trace lengths of
the field site. Further, the analysis showed that the standard'deviation of
the trace length distribution is a]ways higher than the standard deviation of
the diameter popu1ation.‘ This can be understood by considering the case where
the discs are all the same size but the traces are not. The model also showed
that size bias becomes more important as the size range of the population
sample increases. v

Slightly different models of fracture systems were presented by Veneziano
(1979) and Conrad and Jacquin (1973) for application to rock mechanics.
Conrad and Jacquin's two-dimensional model separates fractures into two super-
imposed networks. First there is a network of large fractures called major
fractures, which are infinite straight lines. These lines form convex polygons
in the plane. The second is a network of small segments called minor fractures.
These straight line segments extend at most to the perimeter of the po]ygons
defined by the major fractures. The network of major fractures is formed by
Poisson major fractures. The network of major fractures is formed by Poisson
lines of variable density according to direction. The network of minor frac-
tures consists of line segments of random location, length, and orientation.

The Poisson Tines are constructed as follows: a base line is drawn per-
pendicular to the direction of each set of major fractures. A certain number
of Poisson points are generated on this base line. Poisson lines are drawn
through these points perpendicular to the base line. This is similar to the
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method employed by Lippmann (1973) in his study of heterogeneous porous media.
The Boolean diagram of minor fractures is constructed such that the center,
orientation, and length of the fractures are random. Then the fractures are
truncated where they intersect a major fracture. Using statistics obtained
from an observed network of fractures, Conrad and Jacquin simulated a random
network. The model was used to calculate geometric parameters of the blocks
such as area perimeter and height. Most of these geometric comparisons between
the observed network and simulated model were favorable. The authors suggest
the model could be improved by truncating the major fractures and extending

the model to three dimensions. )

Veneziano's (1979) model is similar to that of Conrad and Jacquin (1973).
However, Veneziano defines only one type of network. The fracture network is
constructed using two processes. The primary process includes-a random network
of anisotropic Poisson lines in two dimensions or planes in three dimensions.
The secondary process partitions each 1ine orvplane into two random,séts: one
set'for intact rock and the other for open fractures. In two dimensions, each
line is partitioned into segments by a Poisson point process. In three dimen-
sions, the plane is partitioned with a random polygonal tesselation induced by
a homogeneous Poisson network of lines in the plane. The probability that
each line segment or polygon is an open fracture is allowed to vary with the
orientation of the line or plane. A homogeneous, anisotropic network of joints
results. By taking limiting cases of the parameters, this model becomes essen-
tially the same as the model proposed by Baecher et al (1977) except that
Baecher used circular fractures, and Veneziano's are polygonal. Veneziano's
model has the advantage of easily simulating systems with more than one frac-
ture in a given plane or generating fractures with variable apertures.
Veneziano used this model to predict rock failure in slope stability problems.

In summary, the best current estimates based on field data for the geo-
metry of fracture location and length result in elliptical fractures located
réndom1y in space. This is essentially the model of Baechef et al (1977).
(Note that circles are subsets of ellipses.) Thus the spacing between frac-
tures is likely to be distributed in a negative exponential manner. Fracture
radii, if fractures are taken as circular, are distributed either 1ognormé1]y
or in a negative exponential manner.  Correlations between fracture length and
hydraulic aperture are not available. Correlations of length and density with
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orientation are available since fractures are commonly divided into sets for
analysis. For certain rocks, however, some variatioh of the more complex
models of Conrad and Jacquin (1973) and Veneziano (1979) may be more applicable
than Baecher's model. So far, the above models of fracture geometry have been
used to analyze slope stability but not to predict hydraulic behavior of a

rock mass. |

2.4 CONCLUSIONS FROM THE LITERATURE SURVEY

The permeability of fractured rocks where the fractures transect the
entire rock mass is well understood (Snow, 1965). The permeability -of systems
of nonextensive fractures is not well understood. There can be no generalized
analytic formulation which can account for the random interconnections between
nonextensive fractures. Some modeling work on nonextensive fracture systems-
has -been done but this work has not yet examined the circumstances under which
it is reasonable to represent fractured systems with an equivalent por6USWV
medium permeability.. v

" In -order to examine this prob1em, it is necessary to understand the nature
of porous medium permeability. In general, porous media are anisotropic.’
Although the anisotropic permeability tensor is usually assumed to be symmetric,
this assumption may not always be valid. The only way to find out if a .given
medium has a symmetric permeability tensor is to measure the directional per-
meabi]ﬁty. For a symmetric tensor, permeability measured in the direction of
the gradient or the flux can be plotted such that it forms an ellipse. In the
case of the permeability measured in the direction of the gradient, 1//K—T_7
plotted in polar coordinates versus a, the direction of measurement, is an
ellipse. The values of the components of Kjj can then be determined from the
plot of the ellipse. _

If a volume of fractured rock can be represented by an equivalent volume
of homogeneous anisotropic material, then the calculation of regional ground-
water flow will be tractable. Also, in order to perform the analysis, an
appropriate REV must be found. An appropriate REV is the volume that is (1)
large enough to contain a representative sample of the heterogeneities and (2)
small enough re]atiVe to the flow problem of interest to experience a constant
average gradient. Thus it is possible that the appropriate REV may either be
very small or nonexistent for a particular flow system in a particular medium.
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A block of fractured rock can be tested to see if it behaves as an equiva-
lent homogeneous porous medium. Boundary conditions which would induce a con-
stant gradient.throughout an anisotropic homogeneous medium are imposed on the
rock. Flux is measured and permeability calculated. This process is repeated
in many directions and the results plotted on polar coordinate paper as
described above. If an ellipse is obtained, the permeability of the rock is a
symmetric tensor. Then the rock must be tested to see if the addition or sub-
traction of a small volume to thé sample of rock significantly changes the
value of the tensor. If a volume of rock tested as described above has a
symmetric permeability tensor which is constant with small volume changes,
then that vo]ume‘may be replaced by an equivalent porous medium in the analysis
of flow problems which are large cbmpared to the volume tested.

The literature on fracture geometry was reviewed to find realistic frac-

ture systems to test for porous medium behavior. Based on the information
| available, a realistic two-dimensional fracture system model has the fracture
~centers randomly located in the plane. Fractures are generally elliptical in
three dimensions, so they are 11ne'$egmenfs in two dimensions. Their orienta-
tions by sets are distributed normally, trace lengths are distributed either
exponentially or lognormally, and apertures are distributed lognormally.
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3 DESCRIPTION OF THE NUMERICAL ANALYSIS
3.1 INTRODUCTION

In order to determine when a fracture network can be treated like a porous
medium, a numerical approach has been taken in this work. A numerical program
was developed to generate sample fracture systems and measure their directional
permeability. The program was then used to study examples of extensive and
nonextensive fracture systems and determine how well their behavior approxi-
mates that of a porous medium,

A two-dimensional mesh generator produces random realizations of a popula-
tion of fractures. Input to the generator includes specification of the dis-
tributions that describe the fracture population. The mesh generator can
randomly choose fractures for the sample according to these distributions. A
finite-element analysis can then be used to calculate Qg, the component of
flow through the pattern in the direction of the gradient. Using Darcy's law,
the hydraulic conductivity in the direction of the grad1ent4 Kg, of the samp]e
fracture pattern is calculated by

Q
Ky = V%K : o (3-1)
where A is the gross area perpendicular to flow. This program can be used to
study the effect of sample size on conductivity measurement. First a 1arge.‘
fracture pattern is generated. A small piece of this sample can be nUmerTcale
removed and subjected to the numerical conductivity test described above (Equa-
tion 3-1).. Succeedingly larger pieces can be tested and the results cémpared.

The program can also be used to study the variation in conductivity
between different realizations of a statistically described fracture system.
This Monte Carlo type of analysis can also be used to analyze statistical data
collected in the field. An expected value and standard deviation of equivaTent
" porous media conductivity are obtained in this way.

3.2 MESH GENERATION

Fracture patterns are produced according to the best currently available
- description of real fracture systems. Sets of fractures are assumed to be
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independent and individual fractures are randomly located in space. Length
distributions are assumed to be lognormal or exponential. Apertures are
assumed to be lognormally distributed. Orientation is normally distributed.

The pefmeabi1ity test that is applied to the fracture model is independent
of the way the fracture pattern is generated. A fracture model, such as that
proposed by Veneziéno (1979), could also have been used and the remaining
analysis of permeability would still have been valid.

A particular sample fracture pattern is randomly generated in a rectan-
gular or square area (generation region) of a specified dimension. A general
description of this process follows. Each set of fractures is generated inde-
pendently. Then the individual sets are superimposed (Figure 3-1). The loca-
tion of each fracture in a set is found by assuming the center of the frac-
tures are randomly distributed (Poisson distribution) within the generation
region (Figure 3-la). For each set, a density (number of fractures per unit
area) must be supplied to determine the total number of fracture centers to be
generated. , | . ,

The orientation of each fracture in a set is determined next (Figure 3-la).
Orientation of fractures in a set has been assumed to be normally distributed.
Therefore the mean and variance for orientation must be supplied for each set.
At this point, the equation of the line on which the fracture lies is
identified.

The length of each fracture is chosen next (Figure 3-1c). Fracture length
within a set is assumed to be distributed lognormally or exponentially.. If
the length is distributed lognormally the mean and variance must be supplied.
In the case of the exponential distribufion, the parameter X, is equal to 1/%
where & is the expected value of the fracture length. The value of % must be
supplied for each set. Fracture centers have been constrained to lie within
the generation region. However, when lengths are assigned, part of the frac-
ture may be outside the boundaries. These fractures are truncated at the
boundaries of the generation region. '

Finally, apertures are assigned to each fracture (Figure 3-1d). This can
be done in two ways. The simplest way is to assume that apertures are log-
normally distributed within a set. For this approach a mean and variance for
aperture must be supplied for each set. A second way is to assume that
apertures are correlated with fracture length according to some model. A
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simple model has been incorporated into this mesh generation procedure. This
model assumes that the mean fracture aperture associated with a particular
fracture length is proportional to the log of fracture length to some power:

b(L) = log CP1/n. (3-2)

The actual value of b assigned to a particular fracture is found by allowing
b(2) to be the mean value of a normal distribution. To use this method, two
parameters to describe the relationship between b(2) and 2 and a third
parameter, the standard deviation of the normal distribution of b around b(2),
must be supplied. Use of this option and definition of the input parameters
is described in Chapter 7 and Appendix A.

When all the sets have been generated, a flow region is selected. The
- fractures which lie in the flow region are identified and the coordinates of
each intersection are calculated. A more detailed explanation of the mathema-
tics is given in Section 3-7.

3.3 STATISTICAL CONSIDERATIONS

‘This model is designed to study variation in conductivity for fracture
systems that are hdmogeneous.in a statistical sense. That is, the geometric v
characteristics of aperture, length, orientation, and location of the fractures
in the system are assumed to be distributed in the same manner throughout the
rock. Fractures in the field may or may not be homogeneous within discernible
boundaries. Conclusions drawn from this study will apply only to regions of
rock which are statistically homogeneous.

| 3.4 MEASUREMENT OF CONDUCTIVITY

As previously discussed, conductivity of a homogeneous medium can be
defined either in the direction of flow or in the direction of the gradient.
In a heterogeneous medium such as fractured rock, conductivity must be measured
in the direction of the gradient. The average gradient can be constant in
magnitude and direction throughout a heterogeneous region in steady flow if
the region behaves 1ike a homogeneous porous medium. The direction of f]ow,



43

however, is contro]]ed by the direction of the fractures. Since the direction
of the gradient can be controlled, measuring permeability in the direction of
the gradient is much easier than measuring in the direction of flow.

The boundary conditions necessary to produce a constant gradient in a
rectangular anisotropic flow region are illustrated in Figure 3-2. They
consist of two constant-head boundaries (¢2 and ¢4) and two boundaries with
the same linear variation in head from ¢2 = 1.0 to ¢4 = 0. Conductivity is
measured in the direction perpendicu]af to Sides 2 and 4. |

The linearly varying boundary conditions in Sides 1 and 3 are necessary
because, in general, the medium in the flow region is anisotropic. Without
these boundaries, the lines of constant head would be distorted near Sides 2
and 4 as shown in Figure 3-3. When_the isopotentials are distorted, only part
of the flow region can experience a constant gradient. In an arbitrary
heterogeneous system of unknown anisotropy. it is impossible to determine what
part of the system is experiencing a constant gradient and what part is not.
Therefore when no flow boundaries are used, it is not always possib]e to
measure only that part of the flux which is due to a known constant gradient.

The boundary conditions used in Figure 3-2 fnsure that the whole fracture
system is equally stressed by the hydraulic gradient. Under these boundary
conditions, whgther or not a constant gradient actually exists in the flow
region depends only on how well the fractyre system is interconnected. If the
system is well connected, it will behave Tike a porous medium and have a con-
stant gradient. See Chapter 10 for a discussion of the limitations associated
with the use of these boundary conditions. ’

Applying Darcy's law to an LxL flow region under the boundary conditions
of Figure 3-2 we have |

S TR 1

L 7 “xx QX" xy.3y~’

q

Y.k % 3-3
L - ny ax * Kyy dy ? ( )

where Qx and Qy are the totaT'f]uxes per unit thickness in the x and y
directions, respectively, and L is the dimension of the square flow region.

For the boundary conditions shown in Figure 3-2, 3¢/3y is zero. KXx can
be calculated: ' - _
i Q i Q
xx ~ (&, = 0,00 " 4, - ¢,° S (3-4)
L

K
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For ¢2 = 1 and ¢4 = 0, and consistent units, Kyx is numerically equal to Qx.
Since Qy is also known, Kyy can be calculated:
K = Qy = Qy .
L

For ¢ = 1 and ¢4 = 0, as above, ny = Qy.
3.5 ROTATION OF‘THE FLOW REGION

Conductivity in a fracture pattern can be measured in any direction
chosen. Figure 3-4a shows a sample fracture pattern called a generation
region. An arbitrarily oriented rectangular section of the region (called a
flow region) can be chosen for analysis as shown in Figure 3-4b. Boundary
conditions are applied to the boundaries of this flow region and conductivity
is measured in the dﬁrection of the orientation of the flow region. This
direction is specified by a, the angle between Side 1 and the x-axis.

In general, the fracture pattern forms an anisotropic medium. For homo-
‘geneous anisotropic media the directional conductivity, 1//K;x(a) where a is
the angle of rotation, is an ellipse when plotted in polar coordinates.
However, for heterogeneous fractured media, 1/vKyx(a) may not plot as a smooth
ellipse. In fact, the shape of a polar plot of measured values of 1/VKyy(a)
for a given area of rock may be quite erratic. This plot can establish
whether or not the given area can be approximated as a homogeneous porous
medium. If 1//Kyx(a) does not plot at least approximately as an ellipse, then
no sinQ]e symmetric conductivity tensor can be written to describe the
behavior of the medium on the scale of measurement. If there is no
conductivity tensor, then flow through the medium cannot be analyzed by
existing continuum techniques.

If 1/VK x(a) does not plot approximately as an ellipse, behavior of the
block of rock in situ cannot be predicted by application of the boundary
conditions of Figure 3-2. This is because these boundary conditions are
unlikely to apply in situ if 1/vKyx(a) does not plot as an ellipse. A
technique for predicting the behavior of such systems is discussed in
Chapter 10. ,

‘If the flow region is to be rotated, it cannot be as large as the
generation region. If the generation region is a L x L square, the largest
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square flow region which can be rotated within the generation region is L/v2 x
L/¥Z. Each flow region of a different orientation will contain different parts
of the fracture pattern. In Figure 3-5, for example, the corners of flow
region B are not included in A. Likewise, the corners of A are not included

in B. A and B are, therefore, not exactly the same sample. This limitation

of geometry is assumed to be negligibte jf the fracture geometry statistics of
each flow region are nearly equal.

3.6 FRACTURE FLOW PROGRAM

Flow through the fracture system is calculated using LINEL, a finite-
element program developed by Wj]soh (1970) for fracture flow. Fractures are
represented as line elements with flux related to aperture by the cubic law.
The rock matrix is assumed to be impermeable. Only the steady state flow rate
is calculated. | '

This 1ine element program solves.a series of equations, one equation for
_each fracturé intersection or endpoint (i.e., node). The equation for each
node is simply a mass balance equation, f]ow into the node equals flow out of
the node. For N nodes, there are N equations and N unknowns. The N unknowns
are either the head or the flux at each node. If these N equations are writ-
ten in matrix form, the matrix of coefficients is symmetric and banded. The
original version of LINEL does not exploit this symmetry in its solution
téchnique. ' , '

The size of fracture problem that can be studied using the original
version of LINEL is limited by the size of the coefficient matrix. This size
1imitation has been the major obstacle to studying statistically representative
systems. To reduce this problem the solution scheme of LINEL was replaced by
a solution scheme which requifés storage of only one half of the band width of
the symmetric coefficient matrix.

The results of this effort were somewhat disappointing. The increase in
the allowable problem size has been less than an order of magnitude. However
the program waé then rewritten to run on the VAX-11 machine. Very large
problems requiring millions of bytes of storage can easily be run.
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3.7 MATHEMATICAL DESCRIPTION OF RANDOM GENERATION

The following describes the mathematics of generating a random network of
fractures.

3.7.1 Poisson Distribution

Fracture centers for a given set are assumed to be randomly distributed
in space by a Poisson distribution. A random sample of fracture centers for a
given generation region is obtained by simply taking pairs of random numbers
between zero and one. The number of significant figures in these random
numbers is set by the user. These pairs become the coordinates of the center
points when multiplied by the length and width of the generation region,
respectively. One only needs to know fhe density of points or alternatively
how many points to generate in the given area. The original generation region
has the density specified by the user. The smaller flow region, however, may
have a slightly different density. Also, as the flow region is rotated, the
density of the different flow region samples may not be exactly the same.

3.7.2 Normal Distribution

In two dimensions, the orientation of fractures in a given set is speci-
fied by the angle the fracture makes with the x axis. For a given set, these
angles are assumed to be distributed normally. Because the angle 6 is effec-
tively the same as the angle 6 + 2nm, n =1, 2, 3, ..., the distribution
resulting from the simulation is not exactly the same as the model distribu-
tion. This difference is ignored at this point.

A normally distributed variable x, with mean u and variance o2 can be
simulated as follows. By the Central Limit Theorem, sums of random numbers
are approximately normally distributed. Hammersly and Hanscomb (1964) show
that the sum of 25 random numbers is a good approximation of a normally distri-
buted variate. Let

N
S, = z R, (3-6)
n=1 :
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where Ry is a uniformly distributed random number between 0 and 1, E(R,) =
~1/2, and Var(Rp) = 1/12. Now the expected value of S, is

le
——
g
~J
S

E(S,) = N[ERR_ )] =
and its varijance is
N .
Var(Sn) = E[S - E(S )] =97 - (3-8)
Let

_n n :
5o = /Var gn * (3-9)

Now S¥ is normally distributed with E(S§) = O and Var(SE) = 1. Substituting
Equations 3-7 and 3-8 into 3-9 gives

s* - . | (3-10)

25 :
R 1~ 12.5 .
<n:1 > (3-1.1.) -

If x = 05: + u, then x is normally distributed with E(x) =-u and n Var(x) =

5. So we have : 25 '
< zz R >.- 12.5
n
g

n=1

For N = 25, Equat1on 3-9 becomes

- (3-12)

3.7.3 Lognormal

Apertures and fracture lengths within a set can be distributed lognormally.
We have shown how to generate normally distributed values of x with mean u
and variance of 02. The probabi]ityvdénsﬁty of x is

| 2 |
F(x) = gy oXP [%_21)_] (3-13)
. o
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Let x = &n y. Now f(y) is lognofmally distributed with probability density
given by Benjamin and Cornell (1970) as follows:

2
1 1(4 -
f(Y) = m exp{- '2‘<—n——();—'—‘]i> }, b4 P 0, (3-—14)
Let E(y) = o and Var(y) = 82, Then by integration,
2
E(y) = o = e /2, (3-15)
2 2 | : .
Vaf(y) - BZ - (ea _. 1)3(0 +2u). (3 16)
Solving for u and 02, we have
2
' 1 B
g =lna - =80 = +1
2T Gz (3-17)
. 2 . ‘_
o2 = ln[(g> o+ ’I] . (3-18)
a - .

Given values of a and BZ, we ca]cu]a?g u and 02. Then u and 02 are used to

find normally distributed values of x as previously described. Values of y
are found as y = exp x.

3.7.4 Exponential

Fracture length is sometimes assumed to be distributed exponentially
within a set. The exponential density and distribution functions are given,
respectively, as

. ' -AX
A€ x>0 i
f = ST
1 - e-kx x >0 . -
F(x) = { . . <o | (3-20)

where E(x) = 1/X. So X .is equal to the inverse of the mean length.

Simulation of f(x) can be accomplished as follows. Let y be distributed
uniformly on (0, 1). Then the probability density g(y) and distribution
function G(y) are‘ ; ' :
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{ 1 0<x <1
gly) = 3 : N
: » 0 - elsewhere; - - (3-21)
~and
0 x<0 -
G(Y) = X 0< x € 1 (3-22)
: 1 x> 1.

Let x =‘-(1/x)[zn(1 - y)]. Then the probability density of x for A>0 can
be shown to be exponential (Hoel et al, 1971), since

P(-A"V In(1 = Y) < y)

F(x) = P(X € x)

. (3-23)
- =AX ~
=P(Yy<1-e"")
=1 - e—xx
(e for y > O . (3-24)
Fr(x) = f(y) =« :
’ 0 for y < 0.

Since 1 - y'ﬁs distributed the same way as vy, exponentially distributed values
of x may be obtained simply by letting x = (1/X)(1n y) where y is a random
number between 0 and 1.

3.8 CALCULATION AND PLOTTING OF AVERAGE ISOPOTENTIALS

The constant head boundaries shown in Figure 3-2 should in fact produce a
constant average gradient in a fractured sample which behaves like an equiva=
lent porous medium. The program PCTOUR has been developed to locate and p]ot
these average isopotentials.

The program LINEL calculates the head at each fracture intersection or
endpoint (i.e. at each node). Given the value of the 1sopotent1a1 of
interest, PCTOUR checks the endpoints of each fracture segment (element) to
see if the head at one endpo1nt is below the isopotential value and the other
is above the value. If this is the case, PCTOUR does a linear interpolation
to find the point on the fracture where the isopotential crosses the fracture
segment. For each isopotential all the points where the particular value of
head is found are plotted. The x- and y-axes are defined such that the x-axis
is in the direction of the gradient and the y-axis is perpendicular to the
gradient. PCTOUR goes on to calculate the everage x-coordinate of the points
found as described above and plots a line parallel to the y-axis through this
point. The standard deviation of the points from the line is also calculated.
For the usual head difference of 1.0 cm across the flow region, the 0.75 cm,
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0.5 cm, and the 0.25 cm average isopotentials are usually plotted. For a
homogenéous anﬁsotropié medium, these isopotentials should be equally spaced.
The more nearly homogeneous the system is, the smaller the Standard deviation
should be, but this is not a netessary condition for a medium to have an equi-
valent porous medium permeability.

3.9 VERIFICATION OF THE CONDUCTIVITY MEASUREMENT

Fracture systems of known theoretical.conductivity were tested to verify
the numerical method of permeability measurement. The condhctivity of fracture
systems with infinitely long fractures is known from the theory developed by
Snow (1965) and others. Because of the physical basis of this fracture model,
we could only examine finite pieces of such fracture systems. The infinite
fractures are seen in a finite model as fractures which transect the entire
model. Fracture systems with two sets of parallel, evenly spaced, equal
aperture fractures were tested to avoid problems of represéntativeness as much
as possible. Effort was concentrated on fracture sets of equal apertures 305
apart in order to study an anisotropic case. The results of these tests are
presented here. _

Figure 3-6 is the generatioh region used to obtain all the subsequent -
flow regions given in Figure 3-7 and discussed below. The spacing of the
fractures in these meshes is 10 cm.  The apertures are all 0.1 cm. Arrows on
the figure show the direction of the gradient and the direction of the conduc-
tivity measurement. Due to the symmetry of this example conductivity measure-
ments were only made for angles of rotation every 15° from a = 0° to a = 105°.
Values of 1//Kyx(a) were plotted on polar coordinate paper ‘and compared with
the theoretical ellipse (Figure 3—8).

In aT], agreement between theoretical and numerical results is good. The
differences in values can be attributed to the finite nature of the numer1ca1
model. Conductivity in the model is calculated with the equation

q, (@)

(a) ._v__ , (3'25)

where the dimensions of the flow region are LxL. To be exactly equal to the
‘theoretical results, L would have to be an even multiple of the component of
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spacing of the fractures perpendicular to the gradient for every direction of
measurement. This can only occur for all sets and all rotations in the limit
as L approaches infinity. Since L is arbitrary; the larger the sample or the
closer the spacing, the smaller the deviation should be. In order to check
this trend, fractures with different spacing were tested. Results are pre-
sented in Table 3-1. Note that the conductivity of a set of fractures with
spacing of 5 is twice that of spacing of 10. In order to compare results, K/2
has been given for spacing of 5. Results for a spacing of 5 are on the |
average slightly better than for a spacing of 10 as expected.

Table 3-1. Comparison of Theoretical and Numerical Results for
"Infinite" Fractures (Hydraulic Conductivities in cm/s)

Angle of Spacing = 10 cm - Spacing = 5 cm
Rotation Theoretical Numerical Numerical
a K11 K12 Kl K12 K11/2 K12/2
0 - 1.4301 0.3539 1.43788 0.377431 1.4306 0.377463
15 1.5250 0.0 1.68397 ~0 1.57875 ~0
30 1.4301 0.3539 1.43788 0.377433 - 1.4306 0.377461
45 1.170 - 0.6129 1.22724 0.595736 1.21316 0.59576
60 0.817 0.7077 0.784133 0.704374 0.83137 0.73165
75 0.46335 0.6129 0.441600 0.610839 0.480139 0.59676
90 0.204 -~ 0.3539 0.217907 0.326920 0.217951 0.354179
105 0.109 0.0 0.112750 -0 0.112774 ~0

3.10 EXAMPLES OF RANDOM FRACTURE SYSTEMS

In order to check the various functions of the numerical model, a random
example was chosen for conductivity tesiing. Table 3-2 gives the statistics
used to generate the fractures. The generation region was 110 x 110 cm.

Three different random realizations were generated (Figures 3-9a, 3-10a,
3-1la). Flow regions 75 x 75 m at rotation angle 0° were examined in each of
these realizations (Figures 3-8b, 3-10b, 3-11b). The three flow regions
had characteristics given in Table 3-3. In comparing the flow regions with
their respective generation regions, note that fractures in the generation
region which do not intersect any-other fractures have been eliminated from
the flow region.
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Table 3-2. Input Parameters for the Random Exampie

Parameters Set 1 Set 2

Density " (Number of Fractures) 49 100
Orientatfon ' Normal distribution

u, o2 (deg). 30, 5 60, 10
Length Lognormal distribution o v

u, o2 (cm) _ 40, 10 30, 7.5
Aperture Lognormal distribution

u, o2 (cm) o 0.001, 0.005 0.005, 0.0001

Table 3-3. Characteristics of the F]ow.Regions

Number of . '
Number of : Fracture “Number of Number of
Network Fractures Intersections Nodes Elements
1 81 ' 123 285 o327
2 86 .- 110 o 282 306
-3

90 138 319 368

Boundary conditions were applied to these three flow regions such that
conductivity in the x-direction was measured. That is, Sides 1 and 3 were
~given a linearly vafying head.distribution, Side 2 had a constant head of 1,
"and Side 4 had a constant head of 0 (see Figure 3-2). Table 3-4 gives the
total fluxes through each side for each flow region. A positive sign indicates
flow into the region and a negative sign indicates flow out of the region.

Examination of Table 3-4 leads to several observations. First, there is
a great deal of variation between the three realizations of the same statis-
tical fracture population. As shown in Table 3-3, the number of fractures in
each flow region varies. Thus some of the:variation in flow rate is due to
nonergotic sampling. Recall that under the boundary conditions used, for an
ideal porous medium the flux in the x-direction (Side 2 to Side 4) is



60

a_Generation Region

100},
75}
50} //

25t

0
b Flow Region
100¢ 7 SIDE 3
75} %
N <
w w
[a]
sof £ &
25t /
* ’ SIDE 1
o — 1 e I PPN VPPN |

0 20 40 60 80 100
XBL 829-2420

Figure 3-9. Generation and Flow Regions for Network 1



61

a Generation Region

77

75
5o}

25

o~ 20 a0

100
b Flow Region
oot - E
SIDE 3
75F
~l/, <
. wl/ s
950t & @
25F % '
- '/ //27/,‘
SIDEV1
- o R R N X . " . N
0O 20 40 60 80 100

XBL 829 - 2421

‘Figure 3-10. Generation and Flow Regions for Network 2



62

a Generation Region

7
.

\

.

- 75¢
50

25

% 20"

b Flow Region -

1001

o

SIDE 2
SIDE 4

. 50}

25t

SIDE 1

0 "20 ""a0 ""e0 80 100
XBL 829-2425

Figure 3-11. Generation and Flow Regions for Network 3



63

numerically equal to the conductivity. Table 3-4 shows that the flux into
Side 2 does not equal the flux out of Side 4. The sum of the fluxes through
all sides, however, is zero as expected. These samples are clearly not be-
having 1ike porous media, since in anisotropic porous media under the chosen
- boundary conditions the f]ux on opposite sides would be equal.

Table 3-4. Total Fluxes (cm3/s) for the Three RandomuRealizations

2 Fluxes 2 Fluxes 2 Fluxes 3 Fluxes
Network - Side 1 . Side 2 Side 3 : Side 4
1 3.13402E-19 4.41796E-7 -4.41384E-7 -4.11388E-10
2 -3.3926 E-10 2.00821E-5 -2.00809E-5 . -8.67380E-10
3 - 5.42390E-10 1.01927E-4 -1.01927E-4 - -8.97845E-11

These Samp]e fracture systems do not act like porous media. A more
nearly continuum-type result coujd possibly be achieved in two ways.

The relative density of the same fractures éou]d be increased or a larger
sample with the same statistics could be examined. o ., _

In order to check the functions of the nUmerica]-model, Netwprk 3 (Figure
3-11) was chosen for further analysis of directional conductivity and the
effect of sample size on permeability measurement. F]dw régions.75.x 75 m at
rotation angles, a, every 15° from 0° to 180° were tested (Figure 3-12). The
results are given in Table 3-5, o .

The fact that inflow does not equa] outf]ow on oppos1te s1des leads to a
problem in def1n1ng conductivity. If conduct1v1ty is arbitrarily def1ned as
numerica]]y equal to the inflow into Side 2, no information lost. Side 4 for

= 0° becomes Side 2 for a 180°,'et¢ Using this convention, symmetry in
the permeab111ty plot 1mp11es that inflow does equal outflow on oppos1te
sides. ‘ '

Figure 3-13 shows the values of 1//K(a) for. Network 3 plotted on polar
coordinate paper where K(a) is defined in terms of flux across Side 2. The
results clearly do not p]bt as an ellipse; nor are they symmetric. For
certain angles of rotation (e.g., 75°, 90°) the value of 1//K{a) becomes very
large and goes off the scale of the graph. For these angles K(a) is very
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Figure 3-12. Flow Regions from Network 3 Rotated from 0°
to 180
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Table 3-5. Resulting Fluxes (cm3/s)‘for the Random Case

Angle of 2 Fluxes S Fluxes 3 Fluxes 3 Fluxes
Rotation Side 1 Side 2 Side 3 Side 4
0 5.42390E-10 1.0927 E-10 -1.01927E-04 -8.97845E-11
15 1,22374E-04 4.74181E-06 -4.74124E-06 -1.22375E-04
30 1.02261E-05 1.59838E-05 -1.59731E-06 -1.02271E-05
45 -1.15375E-12 4,39136E-06 -4.38238E-06 -8.97228E-09
60 -7.40427E-11 1.56620E-04 -1.56612E-04 -8.02968E-09
75 -1.08876E-10 6.93567E-10 . 7.46410E-09 -8.04880E-09
90 -9.88001E-11 6.83398E-10 1.71904E-04 -1.71905E-04
105 ' -1.17851E-04 1.17851E-04 4.17830E-06 -4.17789E-06
120 -5,76379E-06 5.76347E-06 9.17211E-07 -9.16885E-07
135 7.36028E-09 4.25565E-13 1.39285E-06 -1.40021E-06
- 150. - N 1.39114E-09  2.65264E-11 8.45053E-06 -8.45195E-06
165 - 2.29966E-09 6.02192E-11 = -3.04834E-10 -2.05505E-04
180 - 1.01927E-04 8.97845E-11 -5.42392E-10 -1.01927E-04

small because there is essentia11y~no hydraulic connection between Sides 2 and
any other side. This cannot be completely confirmed visually from the plots
of these flow regwons because aperture has not been included in the f1gures
A]though isopotentials have not been plotted for these samples, it is fairly
certain they will not be linear. ' '

If we defwne‘ny as numerically equal to the flow into or out of Side 3,.
then Kyy is the flow into or out of Side'l when the flow mesh is rotated 90°.
ny should equal ny if K1j_1s symmetric. ‘Examination of Table 3-5 confirms

again that no symmetry is present.
The tests described above show clearly that the sample chosen did not
~ have an equivalent porous medium symmetric conductivity tensor. As further
proof of the nonhomogeneous nature of the sample, flow regions of different
sizes were extracted and tested. All the flow regions were at 0° rotation.
Flow regions from 25 cm x 25 cm to 75 cm x 75‘cm were tested (Figure 3-14).
Results are given in Table 3-6. Conductivity varies by orders of magnitude
from sample to sample, again indicating marked departure from continuum
behavior. |
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Table 3-6. Resulting F]uxes'(cm3/s) for Flow Regions of Different Sizes
Size of 4 ,
Flow Region 3 Fluxes 2 Fluxes 2 Fluxes 3 Fluxes
(cm) Side 1 Side 2 - Side 3 Side 4
25 x 25 2.23427E-05 4.84085E-17 -2.23421E-05 -5.74141E-10
45 x 45 6.10129E-04 3.10717E-06 -3.10003E-06 -6.10136E-04
50 x 50 -3.04850E-09 2.18729E-06 -2.18409E-06 -1.53793E-10
60 x 60 4.58843E-04 2.70645E-08 -2.29660E-08 -4.58841E-04
75 x 75 5.42390E-10 1.01927E-04 -1.01927E-04 -8.97845E-11
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4 FRACTURE GEOMETRY STUDIES _ [

A series of pre1iminary numerical experiments were run to illustrate some
of the key effects of fracture geometry on fracture system permeability. These
experiments show trends in behavior. They mainly serve the purpose of confirm-
-ing behavior that is intuitively expected. Increase in fracture density
increases permeability. Permeability decreases with increase in the spread of
the aperture distribution or decrease in the spread of the orientation distri-
bution. The behavior of the fracture system is different depending on the
scale of measurement. These experiments are detailed be]ow. :

4.1 EFFECT OF FRACTURE DENSITY

In:order to see how the density of fractures affects the hydraulic behav-
jor, the following three examples were analyzed. All three examples consist
of two fractures sets with the uniform characteristics given in Table 4-1.
Fracture centers were randomly located.

Table 4-1. Fracture System Characteristics for the Density Study

Uniform “Uniform Uniform Number of

Orientation Length (cm) Aperture (cm) Fractures
SET 1 30° 10 " 0.001 80
SET 2 60° 20 ~0.002 40

Figures 4-1, A, B and C show the three fracture meshes studied. The
difference between A, B and C is that the same fractures have been squeezed
into succesively smaller areas with successively greater fracture densities.
Figure 4-1A is 40 x 40 cm, 4-1B is 30 x 30 cm and 4-1C is 25 x 25 cm. Thus
the number. of fracture intersections and, therefore, the number of hydrau-
lically active fractures increases as the fracture density increases. Figures
4-1D, E and F show the correSponding permeability "ellipses" for fracture
systems 4-1A, B and C, respectively. The rotated flow regions used to measure
permeability in each case were as large as possible.
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Figure 4-1. Fracture Systems of Increasing Density
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Comparing the plots from left to right in order of increasing density, a
sﬁgnifﬁcant improvement in the ellipticity of the plots is evident. The illus-
tration shown in Figure 4-1D is irregular and nonsymmetric. The value of 1/vK
goes to infinity for several directions of measurement. Where the plot goes
to infinity the perméabi]ity in that direction is zero. This happens for a
~given direction of measurement when no conducting fractures intersect Side 2
since the flow into Side 2 is always used to define permeability. For '
Figure 4-1D this occurred when Side 2 was roughly parallel to fracture set 2.
It should be noted that the choice of a slight]y’larger or smaller flow region
may have eliminated this condition. For Figure 4-1E, the fracture density
increased to the point where Side 2 always intersects some conducting fractures.
Thus no zero permeability directions were found. The ellipse is fairly regular
but not symmetric,‘especia11y in the direction of minimum principal permea-
bility. Figure 4-1F is slightly improved in this regard. The size of the
ellipses decrééses from left to right as expected, since denser fracture _
systems are more permeable. The direction of minimum and maximum permeabi]fty
is roughly the same in all three plots. _

Figures 4-1G, H and I show average isopotentials for flow regions at 15°
of rotation. For other rotations, the pjots_aré similar. The locations on
the fractures where heads are 0.75, 0.50 and 0.25 are plotted. For a con-
tinuum, the ﬁsopdtentiaTs should be equally spaced and all the points should
lie on the lines. For Figure 4-1G, very few points are p1otted beéause”few g
fractures actually conducted water. The spacing of the average isopotentials
improves from G to I. The scatter of the plotted points also decreases in’
this direction. ' o » ’

In summary, the hydraulic behavior of the fracture systems becomes more
like that of a homogeneous, anisotropic material as fracture density increases.
This is an expected result. However the trend in hydraulic behavior was aug-
mented by the desigh of the experiment. The same fractures were'squeezed into
1ncreasing1y sma]]er areaé to increase the density. As a result, in the more
dense examples many more fractures transect the flow region. More conductivity
is achieved for this reason alone., In later examples, the size of the flow
region is scaled to a constant multiple of the fracture length to eliminate
this effect.
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— 4.2 EFFECT OF APERTURE AND ORIENTATION DISTRIBUTION

The effect of distributing aperture or orientation is illustrated in
Figure 4-2. The fractures shown in Figure 4-2 are exactly the same as the
fractures in Figure 4-1B. Consequently, 4-2E and H are the same as 4-1E and
H, respectively. Figure 4-2A is the same as 4-2B except that aperture has
been distributed lognormally. Figure 4-2A looks exactly like Figure 4-28B
because aperture is not shown on the plot. Figure 4-2C is the same as 4-2B
except that orientation has been distributed normally. All other parameters
are uniform. The permeability plot is the most skewed for the case where
aperture was allowed to vary (Figure 4-2D). In this case not all the conduc-
tors are of equal strength. For some directions of measurement, notably at a
= 135°, the hydraulic connections to Side 2 were evidently through fractures
with lower than average aperture. At o = 30°, higher than average aperture
fractures were intersected by Side 2. The flux through a fracture is propor-
tional to-b3. Therefore, the measured flux through Side 2, which is used to
define the permeability, is greatly affected by the size of the fractures
intersected by Side 2. Fracture meshes 4-2A and 4-2B have the same number of
fracture intersections, but because there is a great variation in the conduc-
tivity of the individual fractures of 4-2A the results shown in Figure 4-2D
are more irregular than the results in Figure 4-2E.

Varying the orientation of the fractures improves the hydraulic behavior.
In this case, the number of fracture intersections increases because fractures
of the same set are no longer parallel and now can intersect. The degree of
fracture interconnection is thus increased and the permeability plot becomes
more - symmetric and regular. :

~ The isopotential plots in Figures 4-2G, H and I show slightly improved
spacing and decrease in scatter from left to right. In general, fracture
systems with distributed orientations behave more 1ike homogeneous porous
media than do systems with uniform orientations. Fracture systems with dis-
tributed apertures behave less like homogeneous media than uniform aperture
systems, ‘
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Figure 4-2. Fracture Systems with Variation of Aperture
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4.3 SCALE EFFECT

The effect of fracture length on the permeability of a fracture system is
very sensitive to the scale of measurement. At a scale of measurement smaller
than the length of the fractures, the system may act like a system of infinite
fractures relative to the chosen boundaries. At this small scale, the hydrau-
lic behavior may become 1ike that of a homogeneous, anisotropic medium.
However, as the scale of measurement increases, the fractures no longer
transect the entire measurement volume. The hydrau]ié behavior of the system
may become less regular. In fhﬁs case, only one criterion for equivalent por-
ous medium behavior is met by the small scale volume; the permeability plots
as an ellipse, but the results are still sensitive to volume change.

In order to illustrate the scale effect, a system of fractures wés chosen
which consisted of two perpendicular sets of fractures all with the same aper-
ture and length. The orientation distribution about the mean for each set was
the same. The fracture system generated is shown in Figurés 4-3A and 4-4A.
Theoretica11y, two orthogonal sets with eqdal characteristics should have a
circular permeability plot. Random variations from the circle can only be due
to ﬁnsuffﬁcient density of fractures or insufficient sample size.

Figures 4-3B - L show flow regions of increasing size for which permea-
"bility measurements were made. The flow regions at 0° rotation are shown for
illustration. Flow regions at every 15° rotation were used for analysis.

. ngures 4-48 through 4-4L show the corresponding permeability e]]wpses for the
correspondwng flow regions in Figure 4-3.

“For Figures 4-4B, C and D, the results are erratic. Only a few fractures
are included in each sample. In 4-4B, only the vertical set is represented
and in C and D there is only one fracture from the horizontal set. The type
of fractures included in the sample is a random function of the location of
the flow region. If the flow region had been taken in the upper right-hand
éorner, the result might have been the opposite with a greater preponderance
of horizontal fractures. Although in these three figures most of the fractureé
transect the flow region, for certain values of the rotation angle, no frac-
tures intersect Side 2. The permeability in this direction, therefore, is
zero and 1//R;'1s infinite. |
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In Figures 4-3E and 4-4E, enough fractures have been included to prov1de
flow through Side 2 for any rotation. In 4-4F, the 1arger 15 x 15 cm mesh has
produced a fairly regular symmetric e1]1pse Figure 4-3F shows that for this
flow region size many of the fractures transect the ent1re flow region. |
However the ellipse in Figure 4-3F is not circular, as expected. Figures 4 -4G
through 4-4L show how the form of the permeability ellipse is éhanged as the
flow region is further increased in size. As more fractures are gradually
added to the sample, the effect of each fracture is to deform the ellipse in
some way.’ , v ' | A '

Although Figure 4-4F shows a seem1ng]y regular ellipse, this is m1s]ead1ng
because’ Figure 4-3F ‘does not include a representative sample of the fracture .
population. Figure 4-3L is the largest sample size which could be studied by ”
these programs on the CDC 7600. It is a better sample and Figure 4-4L does
have a more circular shape. However, Figure 4-4L still shows some perturba-
tions in hydraulic behavior. The permeability plots may improve somewhat with
a further increase in sample size. This can be seen by noticing that there is
still a large proportion of truncated fractures in the 64 x 64 cm mesh of
Figure 4-4L. To obtain a good statistical sample of fracture length in the
flow region, the flow region should be large compared to the fracture length.
In this way a relatively small number of fractures are truncated. Samples"
larger than 64 x 64 cm would be necessary for determining if the perturbations
in the permeability plot are a function of the sample sizé or inherent in the
fracture population.

4.4 CONCLUSIONS

This chapter presents some simple examples which illustrate how various
fracture geometry parameteré affect bulk permeability. All of the results
conform to intuition. Increasing the standard deviation of aperture creates a
more heterogeneous medium which behaves less 1like a homogeneous porous medium.
Increasing the standard deviation of orientation creates more connections
between fractures and thus increases the permeability and makes the behavior
more like that of a porous medium. The results of permeability measurements
are determined by the extent of the fractures relative to the scale of measure-
ment. Measurements made on scales very small relative to the fracture extent
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are very erratic. Porous media behavior is unlikely on such a small scale.
When the scale of measurement approaches the same scale as the fracture extent,
porous media behavior may be observed, but it may be an artifact of the measure-
ment~technique. This is because the boundaries of the model truncate many of
the fractures at both ends. A1l of these fractures therefore become conduc-
tors. In situ all these fractures would not be as well connected to the
boundaries. Thus measurements on a scale which is the same as or smaller than
fracture extent may be misleading. ' |

The understanding of fracture system behavior illustrated in this chapter
was used to design the experiments presented in Chapters 6 and 7. For these

studies the programs FMG and LINEL were revised to run on the VAX/11l. As such
much larger problems could be handled.
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5 REGRESSION ANALYSIS TO DETERMINE THE PERMEABILITY TENSOR
5.1 - INTRODUCTION

In the previous chapter, directional pefmeabi]ity'measurements were simply
plotted and the resemblance of these plots to ellipses was noted in a qualita-
tive way. Appropriate gquantification of the“best-fit’e11ipse and a measure of
the goodness of fit of the data to the best-fit ellipse would be very useful
for comparing the behavior of‘differént fracture systems. This chapter gives
a regression technique for calculating the components of the best-fit permea-
bility tensor and the error associated with using the best-fit tensor as
opposed to the actual measured values of directional permeability.

‘Directional permeability measurements of random fracture systems are made
as previously described. From the measured values of directional permeability,
Kg(a), we wish to determine the three components of the permeability tensor;-:--

Kij, which-best fit these measurements. We also wish to determine the.princi-
pal values (eigenva]ues),and principal axes (eigenvectors) of the permeability
tensor. Further, we wish to find a quantitative measure of the d1fference o
between the measured values, Kg( ), and the best-fit values. , :

Recall that for an ideal anisotropic homogeneous porous medium d1rect1ona]
permeability, K_, measured in the direction of the gradient a, is defined by,_.‘
~the following- equation:

9;n; = Kgds (5-1)

where nj is a.unit vector in the direction of the gradient, J is the magnitude.
of the gradient, and gi is the specific flux. -Solving Darcy's law for gi and
substituting this into Equation 5-1 gives

Ki533n5 = Kgds . : - (5-2)

and since Jj/J-= nj we -have

g ij1)
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or

K :-K11cosza + 2K,,cos a sin a + K sihza, , (5-4)

g 22

where nq and n, are direction cosines and ny = cosa, n, = sin a.
If 1//__ is plotted in the direction a (the direction of the gradient),
then ny = cos a = x/__ and- ‘n, = sina = y/_; Equation 5-4 becomes

) 2, ' 2, |
Kg = K“x.Kg + 2 K12xyKg + Ko,y Kg , . (5-5)
1=K, x% + 2K xy + K -y2 (5-6)
1=Ky 12 22Y
1 = K, .x.X. where x. :{X}. - (5-7)

15747 SRR T B

Equat1on 5-7 is the quadrat1c form of the permeab1]1ty e]]1pse equat1on

" 1f each measurement of K ( ) can be cons1dered an 1ndependent measurement
of the value of K1J, then methods of statistics can be used to estimate the
parameters Kij, Ki2 and Kop. The statistical technique can be used on measure-
ments of Kg(a) from different, equally incremented directions on one fracture
pattern or the combined measurements from any number of fracture pattern
‘realizations. ‘

5.2 DISTRIBUTION OF Kg(a)

In a random fracture pattern, the measured values oerg(a) will not all
plot on a single, unique ellipse (Figures 5-1). In order to use all of the
individual measurements to derive a single, most representative set of para-
meters for the permeability tensor, we must assume that each measurement is
independent and similarly distributed. Figure 5-1 shows an eXamp]evof a set
of measurements, Kg(a), and a possible ellipse with parameters Kll’ Klé and

K22 Fach measurement can be assumed to be distributed about a different mean

which is a point on the ellipse determined by a. Therefore, the value of the

mean for each measurement depends on a. Thus, each Kg(a) is cpnsidered to be
distributed with the same form but each has a different or shifted mean. The

variance of each Kg(a)'is assumed to be identical. In this way, all the meas-
urements are considered as one population.
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It would be very useful to be able to define a likely distribution func-
tion for Kg(a), but this is not easily done. The normal distribution does not
match the data because Kg(a) can never be less than zero. A lognormal is not
proper because the probability of Kg(a) =0 is finite, not zero. Exponential,
Gamma and Beta distributions also are not suitable. A normal distribution
truncated at K (a) = 0 is a likely choice. Unfortunately, assumption of this
d1str1but1on 1eads to a contradiction with the basic assumption that all the
measurements are members of the same distribution. At each angle a, the mean
value of. the distribution is different. However, since all the distributions
are truncated at“zéro, the difference between the mean value and the truncation
1imit is different for each Va]ue'of a. This means that each measurement must
be a member of a different, truncated normal distribution ahd not'just a
shifted one as ‘required in the origina1 ésSumptions._ Since a simple, likely,
distribution form for Kg(a) which conforms to the basic assumptions cannot be
identified, a least squares regression technique must be used to derive esti-
mates of the parameters;Kll, K12 and K22.

5.3 REGRESSION TECHNIQUES

Tw0jfegfessﬁon technfques are discussed here. They are based on a tech-
nique, discussed by Scheidegger (1954),'whﬁch will also be briefly described.
The most direct approach to finding’thé best-fit ellipse is to find the ellipse
which minimizes the sum Ry, where T

N ' | 2
1
§</K(a—7 /KlJ 11) ’ (5-8)
N | | \2
— 1 1 -
Ry = > - _ : , (579)

7 . . 2
! /Kg(an) /K,“cos a + 2K12cosansman + Kzzsm o,

where N is the number of measurements made, either on one fracture pattern or

all measurements on all realizations of the fracture pattern. The difference .

between 1/(¢kgiah5) and 1/(“Kijninj5 in each case is the actual distance on

the permeability ellipse plot between the plotted measurement and the ellipse
(Figures 5-1). Note that this distance is not the perpendicular distance, but
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rather the distance along the ray inclined at the angle a®. To minimize R we
solve for K11, K12 and Kpp in the following equations: |

N
2{ [(K (a -1/2- (Kijninj)_1/2](K n.n.) /zcosza = 0, (5-10)

ijij n
n=1

aR - v ‘ .
I -1/2 -1/2 -3/2 . i
= :i 4[?Kg(an)) - (Kijninj) ](Kijninj) cosqns}nan =0, (5°11)
n=1

1 Z z[(x (a_ N2 (kg nyn,) 1/2](K1Jn1nJ) 3/2sm e = 0. (5-12)
‘n=1 '

These nonlinear equations are difficult to solve. An iterative method would
have to be employed.
The second regression technique is to minimize the function'RII:

- i [Kgta) = (kg ynyn)] % (5-13)
n=1

In this case we are not directly regressing to the best-fit ellipse. We are
finding the parameters K11, Ki2, and K which best fit the data expressed by
Kg(an) in Equation 5-5. Figure 5-2 illustrates the type of three parameter
curve which is fitted to the data. This curve is less easily visualized than
the ellipse is but it is much simpler mathematically. There is no reason to
expect the two techniques to give the same answer, but there is also no obvious
physical reason to expect one technique to give a better answer than the other.
As such, the second technique is pursued here.

A similar technique was used by Sche1ddeger (1954). Scheiddeger minimized
the function
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Measured values of Kg(a)

3 parameter curve: K=Kj;n;n;
x_.
X x / X !}_Kg(a)-Kijn;ni

o

x x [}
xI i ) i
X
1 1 | 1 ] i A | | | i
O 30 60 90 120 150 i80 210 240 270 300 330 360
‘ ] a° . .

XBLSIT-3317

Figure 5-2. Example of a Set of Directional
Permeability Measurements
Plotted in Cartesian
Coordinates
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N

1 -1 A
R = D [khean™ - k) Mmem,

m=1

(5-14)

Although not stated by Scheiddeger, this regression techniques applies to meas-

urements of permeability Kf(a) made in the direction of flow. Thus, mi. is a

unit vector in the direction of flow. To see this recall that permeability in

the direction of flow is defined by
J.m,
i'i

U
= b
Kf q

where q is the specific flux and J; is the gradient.
Substituting Darcy's law we have

R U
£ 1 1] q

1 =1

K. ~ (Kij) m.my

(5-15)

(5-16)

(5-17)

So Equation 5-14 is effectively the same as Equation 5-13, except that in Equa-

tion 5-14, Kij becomes the inverse of the permeability tensor.

5.4 SOLUTION OF THE REGRESSION EQUATIONS

The solution of the regression equations is exactly the same as the solu-

tion given by Scheidegger (1954) and is repeated here only for completeness.

The equations are

aRII N '
—==0 = ZS -Z[k (a ) - K..n.n,
aK g n ijii
1
»n=1
Ry, N _
-a—K— =0 = Z —4[Kg(an) - Kijnini] COSan81nan ’
12
n=1
‘ N
3R '
11 _ _ : . 2
3@ =0 - Z —Z[Kg(an) - Kljnlnl] S1in Gn.

3
1
N

COSs a
n

(5-18)

(5-19)

(5-20)
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Rearranging, expanding Kijninj, and putting in matrix form we have

e

3

3

1"

3

—

N

M=

-

Mz

—

N
a -
cos an 2cos”a_sina
n=1
N
3 . zg .
cos a_sina 2 sin“a_cos a
n n
n=1
"N
2 . 2 25 .
cos a_sin‘a 2 sin”a_cosa
n n ,
n=1
N
K (a )cos“a
D Kol
n=1
N

N .
i} 2
25 Kg(an)51n a
_n=1

25 Kg(gn)cqsan31nqn

n=1

N

.2 2
sin"a_cos a
n n

-—

n=

N
z sin a cosa_

N .
Zsm a

3
-

3
Y

o
K11

12

22

(5-21)
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Now, if for each fracture mesh, measurements are made at equal angle intervals.

from 0 to 2m,
the equation becomes:

N N
Z cosaa ' 0
n
n=1 : n=
‘ , N
. 2 2
0 Z 2 sm ancos a.
n=1
N : : N
zz 2 . 2
cos“a_sin"a 0
n n
n=1 ' n=

zg K (o) cosza
g n n
n=1 o .

N .

25 Kg(an) cos a sin an

n=1

N

. 2
zz Kg(an) sin“a_
=1

Solving for K11, K12, and K22 gives

.2
EEKg(an)31n a
n=1 n=1

2
ESCOS o sin a

-—

sinza cosza
n n

Sihaa
n

ELK (a )cos “n

"
12

22

zzsin4

1~

N
zsm a. cos a

:i cos a,

5 Sina
g “n

all sums with only odd powers of sine and cosine drop out and

C(5-22)

(5-23)



88
N

z K (o ) cos a_sin a z Zsinza ~cosza |
g n n~o %n n n’ (5-24)

n=1

2
K (an)cos o

N =

A g
n=
K22 = N
:i sinza cosza
n n
n=1

N N~ . N '
25 (a )31n a 25 cos a sin G ESK (0 )cos 0 2581n Gh

n=1 n=1

N N
zsm a cos Zg + Zcos a

Z sin G
n n
n=1 n=1 ) n=1 >
N

S et
n

N
25 a cos’ 2q
n

(5-25)

5.5 PRINCIPAL PERMEABILITIES AND DIRECTIONS

Knowing the values of K11, K12, and Kpp the values and directions of the
principal permeabi]ities'Kl-énd Ko can be calculated with standard techniques
of linear algebra. The techniqueé are given here only for Comp]eteness. The
informed reader may wish to skip to Section 5-6. In Edelen and Kydoniefs (1972)

KijEj = AEi ’ . (5-26)

where Ei is a unit vector in a principal direction, or eigenvector, for Kij'
The transformation KijEj gives a vector in the same direction as Ej, but of
magnitude X where &5; is the Kronecker delta. Thus,



(K.. - A8, .)Ei = 0. (5-27)

Here the components of Ej and X are unknowns. This equation can have a solution

only if ,
Kgp.m A Ki2. - 0
s H
K12 K22 - ‘ (5-28)
or
A2 (K, + Kyp)h + KooK -Kk2 =0 | (5-29)
11 1M°22 -~ M2 7
So the principal permeabilities are
— 3
P L I - /gy + K7 = 4K K, - K o (5730)
1M ¢ 2 + . — 2 4
v 2 s
T //2K11 + Kzz) - 4(Ky 1Ky - Ki)) (5-31)
K2=A2= 2 - ] 2 .,o R .,

The principal directions, Elj and E2j, are found by solving thé‘équatiéns
| (5-32)

K., = A8, )ET,
( 5 j

ij 171 g,

and
K.. = A.6..)E2. = ’ ) :
( ij 2 lJ) 2J o, | (5-33)

for the components of the Elj and E2j.
Let E. =.[x]‘. Now for each A we have
J ‘

y
Kin =21 Ky [ x o (5-34)
= 0.
Kq2 Koz =25 | LY
Using row reduction we obtain
p— . . ’ — p— 1
K » K
12 M2 :
1 - 1 5 5-35
K11 Ai K11 - Ai_ ( )
| Kfz
0 Ky -X) -x——x 0 0
L M L | "
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because (Kll-ki)(Kzz—xi) - K122 = 0 due to theAchoice of A (Equation 5-29). So

we can choose x = 1,

A - K. K
i~ "1 M2 }
y = z S . (5-36)
12 i 22

The Ei can be expressed as the unit vectors

. 1 (A - Ky9) /Ky
i~ Xy - X171\ 2 ’ X, -KH Z ! (5-37)
' 1+ | ——— 1+ | ——
/// K /// K
/ < 12 > < 12 >
1 Oy = Ky /Ky (5-38)

E2

i Xy - A1\ 2 %, - Kaq \2
1 + — R 1+ —K
| \ 12 ' 12

If X1 = X2, the ellipse is circular and any two perpehdicd]ar vectors can be

eigenvectors. In this case we can choose
El3 = (0,1) (5-39)
E25 = (1,0). , ,

5.6 MEAN SQUARE ERROR

The mean square error, MSE, is simb]y given by

MSE 11

2 ) . . 2
25 [kg(an) - <K11cos a + 2K1zcos a sin a_ + K2231n an)] (5-40)
n=1 )

1]
b JY

In order to use the MSE to compare the data from different fracture samples
the MSE must be normalized as follows. |
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NMSE = (5-41)

172 | | | | .

'
x
x

i

N 2
_ 1 * 2 . . 2 )
N KK, ‘i [Kg(a) - <K11cos én + 2Ky,cos a sin a + K, sin‘a_ ] .

n=1

As NMSE approaches zero, the fracture systems behave more like anisotropic
homogeneous porous media. '



92

6 LENGTH-DENSITY STUDY
6.1 BACKGROUND

With the exception of the rare underground test facility, most of what is
known about fracture geometry in the underground is derived from boreholes.

It is relatively easy and straightforward to determine the number of open frac-
‘tures which intersect a borehole and estimate their orientation. On the other
hand it is relatively difficult to get a good estimate of volumetric fracture
density, fracture lengths and fracture apertures from hydraulic tests. The
aim of this study was to see the effect on permeability of these fracture geo-
‘metry parameters that cannot easily be determined from boreholes. In parti-
cular this study looks at the effect of varying fracture length and density.
The effect of varying aperture has been discussed in Chapter05 and is
discussed in greater detail in Chapter 7.

It is not necessary to look at all possible combinations of fracture
length and density. As discussed in Chapter 2, the probabalistic relationship
between the number of fractures per unit length of sample line, AL, the areal
density, XA (or volumetric density XV in three dimensions), and the mean

length, 2 or mean area in three dimensions), of the fractures is

xL = xAz cos9. : (6-1)

for each set of fractures, where © is angle between the borehole and the mean
fracture pole (Robertson, 1970; Baecher et al, 1977). This equation states
the probability of a fracture intersecting a unit length of borehole increases
as the volumetric density increases and also as the fractures become longer.

From examination of core or TV log, the mean length or the volumetric
density of the fractures cannot be determined absolutely. However, A| and ©
can be readily determined. Rearranging Equation 6-1 with knowns on one ‘side
and unknowns on the other, we have

)\L/COSO = )‘Ai = LD. (6-2)
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This means that for each set of fractures we may not be able to determine Ap:
, and & directly, but we can determine the product of AA and 2. The product of
% and AA will be called LD, or the length-density parameter.

Figure 6-1 illustrates this principle. In both 6-1A and 6-1B, a borehole
of length L penetrates a system of fractures. The fractures in A are twice as
long as those in B, but there are half as many fractures per unit area in A as
there are in B. Both boreholes intersect approximate]y-IZ fractures. From
the borehole wall, we see no difference in the two systems,'but as will be
shown below, there is a great deal of difference in the hydrologic behavior of
the two systems. '

6.2 PARAMETERSVUSED IN THE LENGTH-DENSITY STUDY

The parameters common to the whole length densify study are given in
Table 6-1. Table 6-2 gives the parameters used in the first series which was
designed to study the effect of increasing length while keéping the product of
length and density constant. The units used in all these studies are length
in'centimeters and hydraulic conductivity in cm/s.v

In all of the length-density. studies presented in Chapter 6, the length-
density parameter LD, is 0.288/cm. This means a borehole through such a rock
would intersect roughly 288 fractures in 10 m. Howéver; these model results
could easily be scaled to represent a fractured rock having an LD of say
0.288/m or about 3 fractures everyvlo meters of borehole. The relative magni-
tude of the results is important in this study, not the absolute magnitudé.
Also, Targer values of 'LD will produce systems of higher.permeability; lower
values will produce lower permeabi]ity{ Since LD can be measured, different

values of LD were not tried in these simulations. |

' Orthogonal fracture sets were used_becausevif the sémple size is suffi-
ciently large, the.theoretical shapevof the permeability ellipse for orthogonal
fractures of constant length and aperture is a circle. Thus the degree of
anisbtfopy‘was-not an unknown. Apertures were held constant and orientations
were varied with a 20° standard_deviatioh., This arrangement brovided the best
opportunity of finding porous medium behavior in fracture meshes that were
small enough to be solved within the size 1imitation of the computer. Fracture
lengths were kept constant only for the sake of simplicity.
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~ A
Akl = COSL g - ameasurable borehole parometer

A .
Boreholes of length L

N\ yr - F
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< A\
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w=diVaroy

[
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N 12| 12
Number of intersecting fractures »
L .
Borehole length 42) 42
A =N/L 29| .29
L | | 16| 8
Mean fracture length

_ _number of fractures
\a unit area 018 .036
ML cos 8 (6:=0) 29|.29

, XBL829-2419

Figure 6-1. Example of Two Boreholes of Equal Length Where (A)
Penetrates a System of Fractures Whose Mean
Fracture Length is Twice that of (B)
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Table 6-1. Parameters Common to the Whole Length-Density Study

Orientation LD (cm~1) Aperture (cm)
Mean Standard Deviation _ Mean Standard Deviation
Set 1 04 204 0.288 0.001 0

Set 2 904 204 0.288 0.001 0

Table 6-2. Input Parameters Used in the First Series of
Length-Density Studies

Fracture Length 2 Flow Region Number of Fractures
(Set 1 and Set 2) Dimensions L x L Per Set Per Unit
Name (cm) - (cm) L/2 - Area X, (cm=2)
LD2 2 : 12.5 x 12.5 6.25 0.1440
LD8 8 50 x 50 6.25 0.0360
LD10 10 62.5 x 62.5 6.25 0.0288
LD12 12 75 x 75 6.25 - 0.0240
LD14 : 14 87.5 x 87.5 6.25 . 0.0206
LD16 16 100 x 100 6.25 0.0180
LD20 20 125 x 125 6.25 0.1440
LD24 - © 24 150 x 150 6.25 0.0120

In the first series, three pafémeters were varied in a systematic mannér.
These were the flow region size, the fracture length, and the fracture density,
Ap.  The length and width of the flow region, L, was kept equal to 6.25 times
the fracture length to insure that an equal proportion of fractures would be
truncated in the flow mesh of each case. Also, from previous experience the
factor of 6.25 was expected to yield flow regions whefe the mean fracture
ﬂength was reasonably close to the value used in input. That is, on]y'a small
proportion of the fractures were truncated by the flow region. Figure 6-2.
shows mean fracture length for each rotation of all the flow regions divided
by input length plotted as a function of input length. The mean fracture
length was always about 85 percent of the input value. Thus each of the frac-
ture systems was an appfoximate]y equa11y good statistiéa] sample.
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Figure 6-2. Normalized Mean Fracture Length, % in the
Flow Region Versus Input Fracture Length,
% for Mesh Size, L = 6.25%
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The fracture density and input length were calculated nsing the equation:

LD = %, = 0.288. (6-2)

So as 2 became larger, L became larger and XA became smaller.
6.3 RESULTS OF THE FIRST SERIES OF LENGTH DENSITY STUDIES

The flow regions and permeability plots are shown in Figures 6-3 through
6-10. In each figure, the top left shows the 0° rotation flow region with a1l
the fractures as they were generated. The top right shows the reduced version
of the fracture system for the 0° rotation. The feduced version was used to
calculate permeability. In the reduced version, all the dead ends on the
fractures and all single isolated fractures are eliminated. 'Isolated patches
of fractures persist because there is no simple algorithm for removing them,
The flux through the reduced version is the same as the flux through the
unreduced version, but the reduced version is smaller and less expensive to
solve. It is easy to see flow paths and degree of connection between
fractures on the plot of the reduced fracture system '

"In each figure, only the 0° rotation is shown as an example, but for each
mode], a total of six differently oriented flow regions were def1ned. For
each flow region, each of the four sides were sequentially used as the inflow
side. Thus permeability was measured every 15° for 24 rotations in all.

When the flow regions are reduced for analysis, a fracture which connects
two sides in one flow region may be isolated and nonconducting in a
differently orientated flow region. In Figure 6-3 for instance, the 0°
rotation had no conducting fractures. However, it can be seen from the
permeabﬁlity plots that conducting fractures intersecting the inflow side of
~ the mesh for rotations of a = 15°, 30°, 75°, 105°, 120°, 225°, 315° and 345°.
These conductive fractures cannot be observed in the reduced flow mesh at 0°
rotation shown in the figure, but could be seen if all six rotations of the
flow region were shown.

The bottom left of Figures 6-3 through 6-10 shows the permeability
ellipse. The dashed lines connect the values of 1//K_ calculated by the
model. The area enclosed by the dashed lines is shaded. The solid-Tine
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ellipse is the ellipse which best fits the data as calculated by the methods
explained in Chapter 5. The XX and YY axes are the 1st and 2nd principal per-
meability axes, respectively. The bottom right of each figure shows a
Cartesian plot of Kg versus a. The best fit values of Kg are shown by a solid
curving line. The ellipse plot provides a simple visualization of how well
the permeabi]ityvcan be represented by a symmetric tensor. ‘The closer the
shaded area is to.the ellipse the better the représentation. Since the
Cartesian plot is linear in Kg, it is better for'easy\viéua1ization of the
magnitude of the permeability and the scatter of the measurements.

The:fracturé_meshes'are not plotted to the.samé scale. The scale is
varied suchvthat each plot is the same size on the paper. The flow region
size, L, is.a constant multiple of 6.25 times the fracture length, 2. Thus,
the fractures in all the plots also appear to be the same length. Moving from
Figure 6-3 to 6-10 the actual fracture 1éngth, %, and the region size, L, are
increasing and the areal density, XA’ is decreasing. The net result is that
the number of fractures in each mesh is increasing as 2 increases. Thus there
is an apparent increase in density which is proportional to £:

Number of fractures _ 2

in the flow region ~ AAL
6-4
= 0288 (4.250)" (6=4)
= 11.254.

If‘a11 the meshes in Figures 6-3 through 6-10 were drawn to the same scale, it
could be seen that there are actually more fractures per unit area in 6-3 than
6?4; etc., and that the fractures in 6-3 are shorter than those in 6-4, etc.

Drawing all the meshes to the same size is useful because the "apparent
density" has a strong influence on the hydrologic behavior of the fracture
system. The longer the fracture, the higher the "apparent density", the higher
the permeability, and the lower the NMSE. Figure 6-11 is a plot of the values
of K1, Ko and NMSE versus fracture length. For the values of % studied,
permeability increases and NMSE declines with increase in fracture length.

It appears that the plot of K versus 2 levels off at the higher values of
2. This should occur because as 2 becomes larger the density becomes smaller.
The effect of increasing length may be partially canceled by decreasing density.
In this series the 1imit as % goes to zero can be examined but the limit as 2
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goes to infinity is difficult to examine. This is because the number of
fractures per set in each mesh is equal to 11.25%. Thus the number of nodes
and elements increases rapidly with the fracture length, 2. Therefore systems
with even moderately large values of £ cannot be processed in the computer.

In fact, the case where 2 = 24 was the largest problem which could be run.

The apparent leveling off.in the K versus & curve could not be confirmed.

Figure 6-12 is a plot of ellipticity, K2/Ky versus fracture length.
E]Tipticity for a good statistical sample of orthogonal fracture sets is
theoretically unity. For all cases studied the value is less than unity.
Perhaps the statistical sample is too small. With a larger sample, one would
expect ellipticity closer to 1.0. However, since the sample is statistically
isotropic, the low ellipticity values are caused in some degree by the flip-
flop of the Ky and Ky axes, which have no preferred direction. Since Kj is
always taken as the larger value, random fluctuations are not averaged.out.

Figures 6-3 through 6-10 and Figure 6-11 could be used to separate frac-
ture systéms which behave 1ike porous media from those that do not. The
closer NMSE is fo iero, the more the fracture system is 1ike a porous medium,
From a perusal of the.figUres one might conclude that a value of NMSE greater
than 1.0 means the medjum would be very poorly represented by a porous medium,
PermeabiTity plots for such systems are irregular, nonsymmetric, and not
necessarily even closed figures. A fair]},smooth permeabi]ity‘e11ipse seems
to be produced for these sysfems.when the NMSE is less than about 0.0%
(Figures 6-8, 6-9, 6-10). Above 0.05 there is a gradual transition from a
relatively smooth symmetric figure toncomp1ete1y irregular and nonsymmetric
figure. Another transition occurs at values of NMSE above 0.3. Above this
point, for some directions, Kg is zero and the permeability plots are not
closed figures. Below this transition the plots are closed figures. For
these systems, a cutoff point for use of a porous medium analysis could easily
be put anywhere in the NMSE range of 0.05 to 0.3 debending on the degree of
" acceptable error in the solution. ‘

Dashed ]ines\are drawn on Figure 6-11 from NMSE values of 0.05 and 0.3 on
the vertical axis to the NMSE curve and then down to the corresponding values
of & which are approximately & = 15 and 2g='9.5, fespective]y. Thus for LD =
0.288, orthogonal fractdre'sets with 20° of standard deviation in orientation,
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constant apertures, and lengths, the fracture systems can be categorized in
terms of their lengths. Fracture systems with lengths greater than 15 can be
well represented by a porous medium. Those with lengths less than about 9.5
cannot be well represented by a porous medium. Between 9.5 and 15 is a transi-
tion area where acceptability of the porous medium approach will depend on the
accuracy required in the solution.

 Caution should be used in setting up such a categorization. The NMSE
calculated in this way is a measufe of how well the permeabﬁ]ity of a given
fracture system is represented by a symmetric tensor. It is not directly a
measure of the error involved in using a tensor for such a fracfure system.
This is because the more unlike a porous medium the fracture system is the
more unrealistic the linear boundary conditions are. A modification of the
method for measuring NMSE which makes the boundary conditions more realistic
will be discussed in Chapter 10. Unless this modified method is used,
categories like those determined above will be somewhat arbitrary.

Another poiﬁt of caution is that these categories are based on a single
realization for each fracture system. The validity of making conclusions based
on a single realization was examined in a limited Monte Carlo type analysis
which is explained in Section 6.4. -

- Finally, it may be that the value of'NMSE will be smaller for flow regions
1argerfthanatho$e tested; especially for cases where fracture length is less
than 15. This possibility is examined in Section 6.5.

6.4 THE MONTE CARLO STUDY

A Monte Carlo type analysis was used to test the soundness of the obser-
vations made in Section 6.3, which were based on single realizations of each
fracture system. The models for fracture lengths of 10 and 20 were chosen
because 10 has a poor fit to an ellipse and 20 has a good fit. Only these two
cases were run because the cost of doing this type of analysis is quite high.

In each case, the same statistical input was used to generate a series of
random realizations of the fracture system. After each run the results were
concatenated with the previous runs and a current best fit permeability tensor
and NMSE were calculated. When the current values of Ki, Kp, and NMSE ceased
to change noticeably, the study was terminated. Figures 6-13 and 6-14 show



111

T T T T T T T T

e

KyorKpx107
Looad
1

NMSE

~
(o]
10-OQ—08)- 000y

S

(o}
o
TSN — G- S — e — o —P—

10 1112 1314 15 16 17 1B 19 2021 22 23 24 25
Number of runs

(-] I

XBL 8210-2572

Figure?6~13;:'Resu1£s of "the ‘Monte Carlo Analysis of Length-
: Density Relationships for the Case of g = 10



112

3 T J T T l T T T
oK
(|D .K;
Q 2t .
>
N!
X
} - L 0 L= O On
i ; ]
X
o 1 -l 1 L 1 1 L 1
3 Y T T Y T T T T
2r .

NMSE

T

910r92
O O S
KR ETRT

o
o
T

t

o
e e
97—~

T

—an 1 1 1 |V| 11
90I 2 3 4 5 6 7 8 9 10

Number of runs
XBL 8210-25T¢

Figure 6-14. Results of the Monte Carlo Ana1ysis of Length-
. Density Relationships for the Case of & = 20



113

plots of the NMSE, K, Ko, and the principal directions, ©1 and ©2, versus the
number of runs averaged in for & = 10 and & = 20, respectively. For & = 10, a
total Qf'25 realizations were genéfated; for % = 20, 10 realizations were
generated. Results of each individual run are plotted on the ordinate to,
illustrate the range of the data.

In the case of & = 10, the values of K] and K2 never completely converge
to the same value. This fact goes hand in hand with the fact that the NMSE is
fairly high and the direction of the principal axes is completely random. The
high'yalue of NMSE means the connections between fractures are infrequently
Tocated.. Theféfore,‘ih each run, there is usually some difference between K3
and Ko. Since there is no preferred orientation for the‘principAI axes, the
direction of K1 and K (i.e., ©1 and ©2) changes randomly in each run. Since
Ky is always:choseh to be the higher of the -two principal permeabilities, the
difference between K1 and K does not get averaged out as it would in a sample
exhibiting Strong anisotropy. With strong anisotropy, Ki and Kg;wou1d always
be roughly in the same direction. Sometimes Kj would be a little higher than
the average, sometimes it would be Tower, but eventually the differences would
average out. In the isotropic case, Ki is determined by which value of
principal permeability is higher, not by orientation. Sb the differences
between K1 and Ky are preserved.

Figure 6-15 shows the permeability plots for the final concatenation of
all the realizations for both the £ = 10 and the & = 20 cases. In both cases,
the ellipses are nearly circles as expected. The £ = 20 results are closer to
a circle than the & = 10 results. The scatter of points is greater in the & =
10 case and the permeability is higher in the 2 = 20 case.

The mean plus-or minus one standard deviation of all permeability
measurements and NMSE from this Monte Cario study are plotted as bars on
Figure 6-11. The standard deviation is larger for 2 = 10 than for 2 = 20 for
both permeability and NMSE. The standard deviation for NMSE for 2 = 20 is so
small it shows up only as a line on Figure 6-11. These bars reinforce the
general observations made in Section 6.3. _

The Monte Carlo results provide the opportunity to make further
observations. For a series of realizations of a fracture system, when the
NMSE is higher, the standard deviation of permeabi]ity'wi11 also be higher.
This trend has implications for regional stochastic modeling. The higher the
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~ NMSE of the blocks chosen as REV's in the model, the greater the standard
deviation that must be used to assign permeability to the blocks. This in
turn will increase the standard deviation of the outcomes (Freeze 1975).

Thus, the higher the NMSE, the lower the reliability of the model results.

6.5 STUDY ON THE EFFECT OF FLOW REGION SIZE

In a second series of cases, the meshs for fracture lengths 10, 12, 14
and 16 were increased in order to see if the NMSE would- decrease and if the
permeability would change. The input parameters for this study are given in
Table 6-3. In each case, the A flow mesh is the same as presented in
Sections 6.2 and 6.3 for cases where L/% = 6.25. The B mesh is larger than
the A mesh, and the C mesh is larger than the B mesh.

Table 6-3. Input Parameters Used in Second Series of
Length Density Studies

i

Fracture Length £ Flow Region: Number of Fractures
Flow Mesh (Set 1 and Set 2) Dimensions Per Unit Area AA
Name (cm) L xL (cmx cm) L/% (em=2)

LDi0O A 10 62.5 x 62.5 6.25 0.288

B 10 90 x 90 9.00 0.288

C 10 125 x 125 , 12.50 0.288
LDI2 A 12 75 x 75 6.25 0.024

B 12 : 108 x 108 ‘9.00 . 0.024

C 12 150 x 150-  ° 12,50 - 0.024
LD14 A 14 - 87.5x 87.5. " 6.25 0.0206

B 14 126 x 126 ° - 9,00 0.0206
LD16 A 16 100 x 100 6.25 0.0180

B 16 » 175 «x 0.90 0

175 10. 10180

Figures 6-16 through 6-19 show the permeab1]1ty plots for fracture lengths of
10, 12, 14 and 16, respect1ve1yv On each plot the mesh size, L, is the
smallest for the results shown in the top frame and is larger for each
succeeding frame. Figure 6-20 is a p]ot of NMSE versus mesh size for each
fracture 1ength studied.
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In the case of & = 10, increasing the flow mesh size does not consist-
ently decrease the NMSE., Figure 6-16 shows that for L/2 = 9.0 the ellipse is
more regular than for L/% = 6.25. However for L/& = 12.5, the é]]ipse is the,
least regular of the three. In fact, the values of NMSE produced by all three
of these runs are within the mean plus or minus one standard deviation of NMSE
found in the Monte Carlo analysis of the & = 10 case in Section 6.4. Thus,
for the case of £ = 10, iﬁcfeasing'the mesh size may have 1ittle effect on
the NMSE. For & = 12, & = 14, and & = 16 (Figures 6-17, 18, and 19, respec-
tively), there is a slight decrease in NMSE with increase in mesh size. The
most significant decrease is for & = 16 which had the lowest NMSE to begin
with. . . _ -

~ In the case of LD10B and LD168B, mesh sizes were increased such that the
number of fractures in the flow region was the same as in the LD20 case
described in Secton 6.3. By increasing the mesh size in this way the NMSE of
LD16B became approximately equal to the NMSE of that of LD20. The NMSE of
LDIOB was less than that of LD10A but(stiT] greater than LD20. ,Furthermbre,
as discussed above, the NMSE increased again in LD10C, so LD10OC had a value of
NMSE greater than the value of ‘NMSE for LD10A, LD10B, and LD20. Increasing
the mesh size of LD10 such that it included the same or a larger number of
fractures as were in LD20 did not result in lowering the NMSE to the same level
as LD20.

The question of whether or not large enough samples were examined can
~ also be addressed by looking at the change in permeability with scale of meas-
urement. If permeability is relatively constant with scale increase, then the
mesh may already be a good statistical sample and further increase in sample
size will not change the conclusions. v

The average of K1 and Ko for the first and second series versus fracture
length % -are shown on Figure 6-21.. Figure 6-22 shows all the principal per-

meabilities for both series versus mesh size, L. The bars on Figure 6-22 are
" the results of the Monte Carlo study discussed in Section 6.4. There is no
substantial change in observations from Figure 6-21 versus Figure 6-11. On
Figure 6-22, for all fracture lengths except £ = 12, K1 and Kp are converging
to the same value with increase in mesh size. Some permeabilities increase-
with mesh size, some decrease. In general, increase in mesh size seems to
produce random fluctuations in behavior which do not qualitatively change the
~ observations made in Section 6.3.
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For the case of 2 = 10, the Monte Carlo analysis demonstrated that the
statistics used to generate this system yield permeabilities with a stable
mean but a high standard deviation compared to those for the case of 2 = 20.
This-section demonstrated that for & = 10, the observed values of NMSE were
not decreased by enlarging the scale of measurement. But, the values of K
measured on larger scales are not within 2 standard deviations of the values
measured on a smaller scale in the Monte Carlo analysis of LD10. Short of
doing another expensive Monte Carlo analysis on a larger scale, there is no
way to ensure that a larger scale of measurement would not give a different
mean value of K than that previously measured. The only evidence available
that LD10 was a large enough statistical sample is that the change in magnitude
of K with increase in mesh size is not a clear trend: the pefmeabi]ity of
LD10B was greater than the permeability of LD10A and the permeability of LD10C
was less than LD10A (Figure 6-22). |

If further increases in the scale of measurement for LD10 will not even-
tually decrease the NMSE, then this fracture system apparently has an inherent
range in NMSE that cannot necessarily be decreased by looking at larger sam-
ples. Certainly NMSE cannot be decreased for LD2 (Fﬁgure 6-3) by considering
a lafger sample, In LD2 the fractures are poorly connected no matter what
the scale. This concept contradicts the common assumption that all fracture
systems behave as a porous medium on some scale. Séme fracture systems appar-
ently do not behave in situ like a porous medium on any scale.

6.6 REPRESENTATIVE ELEMENTARY VOLUME STUDY

“The case of LD20 is a sample that does behave 1ike a porous medium. In
order to see how this behavior develops with increase in scé1e, the representa-
tive elementary volume (REV) study was performed. In this study, 14 different
flow region sizes within the generation region were each rotated every 15° to
give 24 different measurements of directional permeability. The flow regions
at 0° rotation are all shown superimposed on Figure 6-23. Figures 6-24
through 6-37 show the flow region and the reduced flow region at 0° rotation,
the é11ipse, and the permeability plots for. each of the flow mesh sizes.
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Figure 6-38 shows plots of normalized mean fracture length in the flow
region, NMSE, and K1 and Ky versus flow mesh area. The NMSE values are less
than 0.05 for all flow regions greater than 400 cm2.  Thus large samples are
not necessary for symmetric permeability tensors. At this scale of observa-
tion, however, permeability is still oscillating. Mesh sizes greater than
about 1,000 cmé ére needed to avoid rapid oscillation of K with mesh size.
Beyond mesh sizes of about 1,000 cm?, the value of K1 .and K2 slowly decline.
K1 and Ko converge to the same value when the area is 15,625 cm?. Normalized
mean fracture length, 2/20, has achieved most of its increase by about 9,000
cm2 The value 2/20 in an infinite sample is 1.0, but in finite samples some
fractures are always truncated, so 2/20 is always less than 1.0. Thus in this
case, representative values of NMSE and permeability are observed in samples
which are much smaller than a good statistical sample.

The question of what size mesh should be used for this particular fracture
system in a regional ground-water model can be addressed using Figure 6-38.
Any block size greater than 1,000 cm? would probably be acceptable since the
NMSE is fairly stable .in this range. However, block sizes greater than 5,000
cm2 would provide a better estimate of permeability. B1ock sizes as large as
possible are preferable 'in a regional model because they are less expensive to
ana]yze Constraints of the problem region must a]so be taken into account.
Gradients in thé region must be linear on the scale of the: b1ock sizes in order
to have an accurate numerical solution. Thus F1gure 6-38 provides information
on 'the minimum acceptable block size, but the reg1ona1 prob]em provides the
constraint of the max imum acceptable block size.

6.7 7CchLu310Ns‘

The . study described in th1s chapter was designed to see if permeability
cou]d be determined from the fracture frequency in a borehole without knowing
the actual Tength distribution and actual fracture density. Ffor small values
of fracture tength, the fratthre-]ength must be known in order to predict the
permeability. For fracture systems where all boreholes intersect the same
number of fréctures per unit length, those with shorter fracture lTengths and
higher density will have lower permeability than those with longer fracture
lengths and lower density. Furthermore, fracture systems with shorter
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fractures behaved less like porous media than fracture systems with longer
lengths. The measured values of permeability and NMSE were much more strongly
linked to fracture length than to sample size. Thus if a fracture system does
not behave like a porous medium on one scale, increasing the scale of observa-
tion may do little to improve the behavior. Intuitive prediction of these
results would not have been easy.

For 1drge values of fracture length, the ‘increase in permeability with
increase in fracture length may become negligible. For fractures longer than
a certain minimum, it would not be necessary to exactly specify the length and
fracture density. Specification of the fracture frequency as measured in a
borehole afong‘with the aperture and orientation distributions would be suffi-
cient. However, this trend could not be confirmed because of the size limita-
tions of the computer. ' |

The numerical study that was performed was based on an isotropic system
of fractures with constant apertures. However the general trend in behavior
exhibited by these isotropic systems should also be observed in anisotropic
systems and in ;ystems)with distributed apertures.
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7 USE OF FIELD DATA FROM THE UNDERGROUND RESEARCH LABORATORY
7.1 INTRODUCTION -

The Lac du Bonnet granitic batholith in the Canadian Province of Manitoba
is the site of investigations for the CanédiantNuc]ear Fuel Waste Management
Program. As part of this program, Atomic Energy of Canada Limited (AECL) is
conducting hydrologic research at the Underground Research Laboratory (URL)
site in-the Lac du Bonnet batholith.

Th1s chapter describes two studies in which hydrogeo]og1c data from this
site were used in the existing two-dimensional model of permeab111ty The
analysis serves as an example of the app11cat1on of field data to the model
and what can be learned about the site from even limited amounts of data.

Types of field data wh1ch cou]d be used to further th1s ana]ys1s are discussed
in Append1x A, ' o

' In the f1rst study, the effect of a correlation between: 1ength and aper-
‘ture was examined.. Models were created in which length and aperture are both
correlated and uncorrelated.- When length and aperture are corretated, the
longer fractures tend to have the 1arger'épertures, The study shows that the
hydraulic behavior of correlated systems is significantly diffefent from the
behavior of uncorrelated systems. .This study serves to demonstrate the impor-
tance of understanding the relationship between length and aperture.

A second study evaluates the use of steady state well tests to determine
the true mean aperture of the fracture system. Field data, including well
test data were used to create a fracture model. Then well tests were
simulated in the model. The simulated well tests are analyzed to see if the
input data on fracture aperture can be retrieved. The study shows that steady
state well tests are inadequate for determining the aperture distribution.

‘At the time of this investigatioh, five boreholes, URL-1 through URL-5,
had been drilled and tested at the URL site (Figure 7-1). Fracture traces on
the extensive surface exposures had been mapped. Data from these sources
indicate that approximately the upper 200-300 m of rock are fractured. The
rock below this zone, as examined by these boreholes, is relatively unfrac-
tured except for one or two small fracture zones on the order of 10 m thick.
Data from the upper fractured zone and the surface are the focus of attention
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for this analysis. Specifically, potential sources of data for analysis of
the upper fractured zone are:

(1) URL170m~- 120 m (4) URL 4 Om-90m

(2) URL245m-155m ~ (5) WKRL590m-110m
(3) URL 350 m - 155 m - (6) Surface Trace Data

A1l fracture data were assumed to be samples from the éame overall population.
Spatial. correlation was assumed to be lacking. Where the input parameters
could not be determined from maps, well tests, or logs, a range'of/va1ues was
used. |

7.2 TWO-DIMENSIONAL ANALYSIS OF A THREE-DIMENSIONAL FRACTURE‘SYSTEM

Analysis of a real three-dﬁmensiona] fracture system with a two-
dimensional model has drawbacks. The primary.drawback is that ‘fractures which
do not intersect in the plane of analysis méy intersect somewhere outside the
plane of ahalysis as shown ‘in Figure 7-2. Also, fractures parallel or
subparallel to the plane of analysis are not represented in the -analysis. For
both these reasons, a two-dimensional analysis tends to underestimate
permeability in the plane of analysis. ‘Furthermore, there is no good way at
this time to correct for this error. In a sense a two-dimensional analysis is
a bounding stUdy. .However,_fdr,the~bhfposes of waste storage, this bounding
study is not a conservative analysis.

The two-dimensional analysis is useful for examjnﬁng the reTationship
between fracture geometry and the hydraulic behavioF_of the system. A
fracture system which behaves 1ike an equivalent porous medium in two
dimensions will probably behave like an equivalent porous medium in three
dimensions.-

The permeability in a horizontal plane of the upper fractured zone at URL
was analyzed because’ information: about trace 1ength and orientation distribu-
tion could be eas1]y obtained from excellent trace maps of surface exposures.
However, it is difficult to obtain a consistent data set for analysis of the
horizontal plane. All the hydraulic data are from wells which have prefer-
entially sampled horizontal fractures. Samples of fractures taken from traces
in the horizontal plane are biased towards vertical fractures. Furthermore,
most of the information on fracture patterns comes from the surface. Since
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stress conditions at depth are quite different from those at the surface, the
fracture pattern is also likely to be different. This study proceeds
initially on the assumption that the aperture distribution of near vertical
fractures is the same as that at the surface. This assumption was then
evaluated in examining the results. ' |

7.3 INPUT PARAMETERS USED IN THE STUDY

Input for the model was obtained in two steps. First, density, orienta-
tion, and length input statistics were derived from the surface trace data.
That is, the fracture pattern was determined completely from the surface data.
Second, apértures were assigned to the fractures in the pattern.

_ For the first study, the same realization of this fracture pattern was
used for each calculation of'permeability. However, for each different calcu-
lation the fracture pattern was given a different assignment of apertures.
Seven different statistical models for aperture were used. In five of these
models, the correlated models, A, Bl, B2, B3, and C, an aperture was assigned
to each fracture such that the longer fractures tended to be assigned the
larger apertures; In two other uncorrelated models, D and E, apertures were
assigned randomly without regard to the fracture length. All seven, corre-
lated and uncorrelatqd models, have the exact same fracture pattern. That is,
each has fractures of the same length and orientation which are located in the
same place. However, in each model the aperfures'are distributed differently.

An analysis of the effect of packer spécings was also made. For this
study, many realizations of the fracture pattern were used; each with the same
distribution of apertures determined by the Bl model. In each of these models
the statistical distributions are the same, but each is a different random
" ‘realization. The packer spacing study is a Monte Carlo type study.

7.3.1 Fracture Pattern

The fracture pattern input data was obtained from a fracture trace map
provided by AECL. A 3,100 m2 triangular area of the map was chosen for study
becasue of the good exposure in this area (Figure 7-3). Two sets of fractures
were jdentified. Set 1 strikes approximately N27°E and Set 2 strikes N115°E.
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A 200 m sample line was drawn on the map for each.set. The samp]e lines were
approximately perpendicular to ‘the mean strikes of the fracture sets. The
lengths and orientations of the fractures intersecting the sample lines were
recorded. The statistics of this sample are summarized in Table 7-1. ~

Table 7-1. Underground Research Laboratory Fracture Statistics

Orientation ' Length . ' DenSity»

: .. Standard _ Number of fractures
Mean Standard Mean Deviation Range per unit ]ength
Set (Strike) Deviation (m) (m) (m) o (m-1)
1 N27°E 2.74 24.72 26.9 5.0-100.0 0.100
2 N115°E 2.34 25.0 26.9 2.0-112.0 0.135

For data input the mean and standard deviations for length were rounded;v-
off to two digits. The fracture density for each set was calculated using the
length-density relationship described in Chapter 6. - Recall that if .the sample.
line is perpendicular to the strike of the fracture, the number of fractures
per unit sample length equals the product of mean fracture length and number
of fractures per unit area:

A =T, (7-2)
: ' M = Ag/z (7-3)
For Set 1, .
A - 0:001 cﬁ‘1‘; 4.0 x 10~ /em? - i
AT T 2500 cm - Y X cm : o (7-4)
and for Set 2,
L - 0.00135 cn”' (7-5)

_ _ -7 2
A-m-sol&)(‘lo /cm.



150

The input data for density, orientation, and length are summarized in Table
7-2. Orientation in the model is measured counterclockwise from the x-axis
(East).. The fracture mesh pattern generated using the data in this table is
shown in Figure 7-4. | o

Table 7-2. Input Data

Areal Density (cm™2) K .Orientation, SD Length, SC (cm)
Set 1° 4 x 1077 ~ 63°, 2.7° 2500, 2200
Set 2 - 5.4 x 1077 155°, 2.3° 2500, 2700

7.3.2 Apertures

The available borehole well test data were analyzed in order to obtain an
estimate vathe-aperture distribution. In the zones of interest, data from 12 ‘
packer tests in the URL boreholes were available. For these test zones, the
equivalent aperture of & single fracture, by, which would account for the
measured permeability in the test zone was calculated. Then the number of
open fractures, N, intersecting the zone was counted using the T.V. log of the
borehole. Assuming all N fractures were of equal aperture, the value of that
aperture, ba, which would account for the permeability was calculated.

Table 7-3 gives the results of these calculations.

A simple correlation model for length and aperture was developed based on
this data. In Figure 7-5, various plots of the log of fracture length, 2,
versus aperture, b, illustrate the models used. Four points as summarized in
Table 7-4 are labeled 1, 2, 3, and 4. Point 1 is the mean length and the approxi-
mate mean aperture; Point 2 is the maximum recorded length and the maximum
expected aperture; Point 3 is the minimum recorded length and the minimum recorded
aperture; Point 4 is the mean plus two standard deviations of length and the
mean plus two standard deviations of aperture. The points do not lie on a
straight line. The lines on the graph show the model relationships between
% and b that were chosen for the A, B, and C models.
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A1l the models were chosen such that they passed through Point 3. This
was done to insure that any fractures with generated lengths less than those
observed in the field sample would have a minimum aperture and therefore a
small effect on the flow. These trial correlation models are fairly simple;
only one straight line segment on the semilog plot (Figure 7-5) is used to
govern the choice of aperture for fractures with ]ehgths greater than 100 cm,
Model A was chosen as a probable maximum. Model B was chosen to give some
weight to Points 1, 2, 3, and 4. Model C was chosen to give weight only to
Points.1 and 3. Model C was chosen to achieve a good match with the average

apefture statistics as givén'at the bottom of Table 7-3.

Table 7-3. AbertUre Data

N ' Equivalent  Aperture # of Frac-

# of K " Single tures per
S Open  Conduc- Fracture N Fractures Unit Length

o -~ Zone- ‘Frac- tivit ~ byx* b, ** in the_ Zone
Hole. . (m) -~ tures cm/s” (%m)\ (cm) (m~1)
URL-1 . 73.9-91.1 3 1,5x1077 3.16x1073  2.19x10-3  0.1744
URL-1 ° 108.6-115.6 12 4.0x1076 - 7.00x10"3 3.06x1073 1.714
URL-2 * 45,0-55.2 7 5.0x1076 - 8.55x10"3  4.47x10°3 1.457
URL-2- . - 60.0-70.2 3 1.5x10°6  5.72x1073 3.97x10"3  2.941
URL-2 . 86.0-96.2 3 -5.25x1077  4.0x10"3  2.80x1073 2.941
URL-2. ~ 105.0-115.2 . 1 - 2.0x107® 6:29x10"3 6.29x1073 0.0984
URL-2 .. - 120.0-130.2. -4 - 2.0x1076 1,36x1072  '8.55x10"3  0.3921
URL-2 - 130.0-140.2 - 2 6.0x10"7 4.22x1073 ~ 3.35x10"3  0.1961
URL-2 148.0-158.2 0.. 2.0x10°7 -~ - - 0.0
URL-3 '61.0-64.5 2 1.0x1078 7.54x10"4 " 5,98x1074 1.75
URL-3 116.0-120.5 4% 2,0x1077  2.23x1073  1.40x10°3 0.8
URL-4 . -2.36-62.84 9%  not avail. - - 0.319
URL-5  79.35-94.11 0*  2.6x1078 - - 0.0
URL-5  94.11-108.87 - 31: -~ -9.0x10™5 2.53x1072  8.06x10"3 2.1

*Estimated from fracture frequency graphs, T.V. log not available.

o /KL 124
T3 N pg

L = zone length

N = number of fractures assumed to be conducting
51 = 7.35x10_3 cm BA = 5,54x10°3 cm
S = 6.89x10° cn SD = 2.67x10™ cm
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Table 7-4. Description of Length and Aperture Coordinates
Used to Plot Points 1,2,3, and 4 on Figure 7-5

Values of length

" Description of length, Description of aperture = and aperture
Point L T - (2, b) (cm)
1 Approximate mean value Approximate average of (2,500, 0.006)
? of length from b1 and bp from
Table 7=1 Table 7-3
2.~ Order of magnitude of The maximum expected (10,000, 0.65)
~~ the.-maximum observed aperture based on
value of length in - Table 7-3
the triangle on
Figure 7-3
3 Order of magnitude of = . Order of magnitude of (100, 0.0005)
.. the minimum observed - the minimum observed.
value of.length in . wvalue of aperture on
the triangle on Table 7-3
Figure 7-3 ' '
4 The mean value of length The mean value of : (7,500, 0.02)
? (from 1 above) plus aperture (from 1 above) - '
approximately 2 standard plus approximately 2
‘deviations from standard deviations from

Table 7-3 from Table 7-3

. These correlation models were used to pick a value of aperture for each
fractukerin-the'existing fracture pattern. First the length, 2, of each frac-
ture was used to find the value ofVB(z)von Figure 7-5. If aperture and
Tength were perfect1y'conr91ated (i.e., a one-to-one correlation), then 5(2)
would be the -aperture assigned to a fracture of length. However, in this study,
b(%) was considered to be the mean .value of aperture for all fractures of
length 2. The value of aperture actually assigned to the fracture was assumed
to be a member of a normal distribution with mean, 5(2), and standard devia-
tion, SDb(%). specified in the input. Thus, if the values of aperture assigned
to each fracture were plotted on Figure 7-5, they would be scattered around
the sloped portion of the 1ine. The amount of scatter is determined by the
magnitude of SDb(&). The total dispersion of the values of aperture is deter-
mined both by SDb(2) and by the randomness inherent in 2.
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Model B was run with three different standard deviations as Bl, B2, and
B3. Ia Bl, SD(b(%)) (the standard deviation of b(i)faround b(z)), was 0.001;
in B2, it was 0.01; in B3, it was 0.04. | | o

Zero aperture fractures create a problem in the numerical analysis and
‘negative aperture fractures do not make sense phys1ca11y Therefore a minimum
aperture, in this case 0.0001 cm, was assigned to any fracture with a 1ength
less than 100 cm, which is the minimum length recorded in the f1e1d data. Th1s
aperture was also assigned to any fracture for which the corre]ation mode]
gave a negative aperture. S

In simulations D and E, length and aperture were uncorrelated. Mbde]:D
used va]ues of mean aperture and standard deviation the same as those measured
in the generation region of Model Bl. Model E used a slightly sma]]er .mean
aperture and a much larger standard deviation than Model D. A summary of the 
aperture assignments used in each model is given in Table 7-5. a

For each model the permeability was calculated in 24‘directionsi159.aparf.
The superimposed flow regions for the permeability calculations are shown in
Figure 7-6. The flow region size was 250 x 250 m. These dimensions are 10
times the mean fracture length, which is large enough to insure a gobdfsfatis*
tical sample. A1l of the models used the same fracture pattern, but-aperfdres
were assigned differently in each model. The flow regions were simplified for
the purpose of economy by eliminating the isolated ahd-deadénd:fractUres which
do not conduct. These reduced flow meshes are shown in Figure 7-7. Each of .
the six reduced flow regions shown represent four different d1rect1ons of
measurement: 6, 6 + 90, 6 + 180°, and 6 + 270°. '

7.4 RESULTS OF THE PERMEABILITY STUDY

The results of the permeabi]ity‘ca1cu1ationsyaré shown in Figurés 7-8;
through 7-11. The left-hand side of each frame is a permeability ellipse é
plot. The dashed 1ine connects the values of 1//K§'ca1cuia¢ed by the model.
The smooth ellipse drawn with a solid line is the best fit ellipse. ' The right-
hand side of the figure shows the values of calculated permeability plotted |
against rotation angle in Cartesian coordinates. The smooth solid-1ine curve
on this plot is the best fit "ellipse." The polar -plot provides a good
visua1f2ation of the hydraulic behavior, but the Cartesian plot provides a



Table 7-5. Input and Output Aperture Statistics for the Underground Research Léboratory Models

Coefficient of

Input Aperture .

Ubserved Aperture

002

. 004 .7‘

Length and ST "~ Correlation in Statistics in the

Model Aperture Input Correlation Parameters Generation . Statistics Generation Reqgion
Set Correlation '~ Y-Intercept Slope SDb(&) Region b SDb b SDb
A Yes , : _ N »

1 -.06 .03 01 - L5461 - - .0388 .0135

2 - =06 .03 01 .6340 - - L0369 .0153
B1 Yes | o .

1 : -.036 .019  .001 .8283 - - .0262 .00596

2 _ -.036 .019° .001 .8215 - - .0255 .00738
B2 Yes : : :

1 : : -.036 019 .01 .3886 - - - .0269 .0115

2 o -.036 019 .01 5011 - - .0253 .0123
B3 Yes _ ‘ o .

1 ' -.036 ".019 .04 .084 - - .0343 .0337

2 -.036 019 .04 .1656 .0312 .0318
C ‘ Yes - _

1 : -0 .005 .001 6937 - - .00643 .00182

2 -.01 - .005 - .001 .7392 .00616 .00217
D No | ‘

1. - - - - .026 .0065 .027 .007

2 - - - - .026  .0065 .026 .006°

-E No
1 - - - - .02 .04 .024 .050
2 - - - - .019 .029

961
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better visualization of the magnitude of permeability and the degree of scatter.
The values of the principal permeabilities, the principal directions, and the
normalized mean square error (NMSE) for each case are given in Table 7-6.

Table 7-6. Permeability Results for the Underground Research
Laboratory Data

Principal Permeabilities (cm/s) Principal Directions

Model K1 K2 01 9, © NMSE
A 7.61 x 10-4 4,26 x 1074 -9.5 -80.5 0.044
B1 2.09 x 1071 1.32 x 1074 - -9.5 -80.5 0.041
B2 2.40 x 1074 1.31 x 1074 -8.3 81.6 0.051
B3 8.25 x 1074 2.05 x 1074 -4,7 85.3 1.727
C 3.38'x 1076 . 1.98 x 1076 - -10.0 - 80.1 0.041
D 8.17 x 1075 5,13 x 1075 -6.8 83.2 0.046
E 3.55 x 1079 2.51 x 1073 -24.6 65.4 1.317

Model A rephesents a probab]é maximum aperture model based on Figure
7-5 and thus had the largest permeability of all the models. ' The permea-
bility of this model was on the order of 10-4 cm/s whereas the permeabil- -
ities measured in URL-1 through URL-5 are generally on the order of 1076
or 1077 ch/s. This difference may or may not be a discrepaney. ‘Permea-
bility may simply be increasing with scale of measurement. The borehole
measurements were on the scale of 10 m. The permeability models were on
the scale of 250 m. However, none of the individual borehole measurements
were as high as 104 tm/s.  The difference between the model results and
the boreho]e measurements is strong evidence that either the aperture
mode] 1s wrong or the fracture pattern from the surface does not apply at
depth or both. ‘

The overall Tinear density, AL, of open fractures as recorded in the
borehole T.V. logs for the zones of interest is about 0.65 fractures per
meter. This number is ]arger than the values ‘measured at the surface as
given in the 1ast column of Table 7-1. Therefore, the linear density at
depth is probably larger than at the surface. All else being equal, a’]arger'
density at depth than at the surface would imply a 1argeh permeability at
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depth than predicted by‘the model using surface data. Yet the permédbi]ity at
depth is evidently lower than predicted by Model A. This is more evidence
that the'apertures in Model A are too large or the fractures may be much
shorter at depth than those at the surface.

The observed va]ues.of mean aperture and standard deviation of aperture
in Model A are not the same as calculated from the borehole test data. The
field mean aperature and standard deviation are lower than the model. Note
that the overall mean aperture and standard deviation of the aperture are not
assigned directly in the correlation model. = These statistics can only be cal-
culated after the model is generated. Reproducing specific aperture statistics
can oh]y be done by trial and error. ' . _ :

The aperture model used in A may very 1ikely be wrong because it results
in apértures which are too high. -This discrepancy would also account for the
permeéability of the model being too high. Since the aperture statistics of
Model A did not match the aperture statistics measured in the field, the Bl,
B2, B3 and C ﬁode1s were tried to see if the permeability of the models could
be significantly lowered. The B models were all set to give more weight to
Points 1, 2, and 4 on Fighre-7-5. These models still result in a mean aperture
higher than that observed in the field (Table 7-5). Some decrease in permea-
bility from Model A to the B models was observed. However the permeability of
the B models is still significantly larger than the packer test results.

From-Model Bl to B3, the only significant change in the fracture mesh is
an increase in the standard deviation of the overall aperture distribution.
This increase has two net effects. The first is the permeability increases
slightly and the second is the normalized mean square error (NMSE) increases
substantially. The net increase in permeability can be explained because the
flux carried by the fracture is proportional to aperture cubed. When the stan-
dard deviation is increased, a fracture of initial aperture, b, is likely to
have its aperture increased or decreased by an amount, say 4. However,
in this case the resulting net increase in flux is greater than the net
- decrease. This can be seen by calculating (b - A)3 and (b + 8)3.

3 2 3

+ 30% - A (7-6)

(b - 0)3 = b3 - 30b

3 3 2 3

(b + 2)3 = b3 - 30b% + 30% + 83 | (7-7)
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The magnitude of increase -in b3 is

(b + 8)3 - b3 = 38b% + 30% - A3 e (7-8)

The magnitude of decrease in b3 s

3 3 3

b> - (b - 8)° = a3 + 3002 -30%. S (7-9)

The magnitude of the increase is greater than the magnitude of the de-
crease by 602b. Therefore the permeability of individual fractures increases
systematically. However, with a higher standard deviation of aperture'the
connections between fractures in the pattern are more heterogeneous, ‘and there-
fore the NMSE increases. This increase in heterogeneity itself also causes
random decrease and increase in the permeability.- When length and aperture
are correlated the net result of both the systematic and random effects of
increasing standard deviation seems to-be an increase in permeability.

Model C was designed to find an aperture-length model which would achieve
permeabilities on the order of 1076 cm/s with the same fracture pattern used
in the A and B models. Mean apertures in this mode! were decreased by a factor
of about 1/4 from the Bl models. The permeability of C was decreased by a
factor of about 1/62, which is -approximately equal to (1/4)3. Model C best-
represents the field statistics. The permeability of Model C was therefore on
the same order of magnitude as the field test results. N ‘

Permeabilities of models with Uncor?elated‘]ength and aperture are smaller
than those of correlated models. Model D was designed to determine the hagni;
tude of decrease in permeability caused by having length and aperture uncor-
related. Model D has approximately the same overall aperture statistics as
Model B1. ' ' - |

Model D has a slightly higher NMSE and a significantly lower permeability
than B1l. 'In Bl, the correlated model, large apertures are not "wasted" on
short fractures which do net as often connect to other fractures. Therefore
the correlated Model Bl has a higher permeability than the uncorrelated Model D.
Correlation did not seem to produce a large effect on the NMSE.

A comparison can be made between B3 and E. The correlated Model B3 has a
lower standard deviation of aperture than the uncorrelated Model E. In this
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case, however the correlated model has a higher NMSE. This disparity is
apparently due to a random long, highér aperture fracture which connects the
inflow side at 0° rotation to an adjacent side rather than the opposite side.
This creates the anomalously high permeability at 0° and the anomalously low
value at 180°. It may be that correlation between 1eng{h and aperture may be
responsible for creating a "super conductor" which increases the value of NMSE.
In both the correlated and uncorrelated models, an increase in the standard
deviation of aperture wncreases the NMSE . .

A1l else being constant, an increase in the standard deviation of aperture
increases the NMSE. If length and aperture are correlated, an increase in
standard deviation of aperture will probably increase the.pérmeabi]ity. A1l
else being constant, uncorrelated models have lower permeability than do corre-
lated models. All else being constant, increasing the mean aperture by a fac-
tor of m increases tHe permeability by a factor of about m3. Correlation
between length and aperture may éxp]ain the occdrrence of "super conductors."”

7.5 THE MONTE CARLO PACKER SPACING STUDY

‘_A study was conducted tvobserve the influence of packer spaéﬁng on the
ability to predict the true mean aperture of the fracture system. First a 350
x 350 m fracture mesh generation region was created using the fracture statis-
tics of Model Bl. Then, a series of flow regions were defined in the genera-
tion region. All the flow regions were at 0° rotation and the sizes varied as
follows: 1 x1m 2x2m 5x5m 10 x 10 m, 20 x 20 m, 50 x 50 m, 80 x 80 m,
150 x 150 m. In the first set of runs, the sizes ranged from 1 x 1 m to 50
x 50 m. Then another set of runs was made to see the results in regions larger
than 50 x 50 m. In this second set of_funs flow regions ranged in size from 1
x 1 mto 250 x 250 m. In each set of runs, 20 different generation regions
‘and the associated flow regions were created as different realizations of the
same statistics. Figure 7112 shows one of these realizations from the second
set of runs. Figure 7-13 shows the flow regions of different sizes for this
realization. Figufé 7-14 shows the reduced flow regions.

In each of the flow regions, permeability was calculated in thg
x-direction. In fact, two values of permeability were calculated for. each
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flow region, one based on flow into,the region in the x-direction and one based
on flow out of the region in the x-direction. Therefore 40 values of Ky, were
" calculated for each set of runs and each size of flow region. These values of.
Kxx were assumed to represent the results .of ‘permeability tests in a well bore
when the packer spacing is equal to the flow region dimensions. The values of
Kyx were used to calculate fracture apertures in the same way that the field
data in Section 7.5 was analyzed. That is, a single equivalent aperture, b1’~
was calculated as ' ‘

3 ‘KxxL

ot Ve - U

where L is the zone length or f]ow'regibn dimension. Then the number of frac-
tures, N wh1ch actua11y intersected the side in question was counted An
average equivalent. aperture bA, was calculated as

K L. : .
by = 3/7‘1_9% . | S (7-11)
The actual -apertures b of the N fractures which intersected the zones as they
existed in the model were also recorded. Then for each set of 20 runs, the
average values of by, by, and b were calculated: 51, BA’ and b. The mean
aperture of all the fractures in all ofethe 40 generation regions was approxi-
mate]y constant at 0.026 cm. ' '

Figure 7- 15 shows b, bl’ and bA plotted versus zone length, L. The true
mean aperture for all of the generation region is shown as a horizontal line.
The object of doﬁng the packer tests is to determine this value of mean aper-
ture. | _

For all zone lengths the mean of the actual fracture apertures intersect-
ing the well zone is larger than the true mean aperture of- fractures in the
whole region as Figure 7-15 shows. Because length and aperturé are correlated,
the fractures with larger aperture are also longer and thus more 1ikely to
intersect the well_zone. If length and aperture were uncorrelated, the average
actual aperture would be expected to converge to the average aperture for the
whole region. | . 1

The values of b1 and bA are less than the mean aperture of the generat1on
regions for all the zone lengths tested. The value of bA is stable for all
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zone lengths. A slight decline in BA with zone length can be expla{ned by
the slow decline in average permeability of all the samples with flow mesh size
as shown in Figure 7-16. This effect also explains why the increase in 51

does not become a linear function of the packer spacing.

Within the 1imits of the size of the fractured zone at URL, neither 51
nor bp are likely to provide good estimates of the mean aperture. The magni-
tudes of by and by are lower than the mean aperture because of two factors.
First, the ca]tuTation of by or bp assumes the fractures are perpendicular to
the well when in fact they are not neceésari]y perpendicular. The error
involved is proportional to the cube root of cos © where © is the angle between
the fracture and the plane perpendicular to the we]].A '

The second error in calculating by and bp results from assuming that the
fractures are all perfectly connected and conducting. A good example of this
error can be seen in FigUres 7-12, 7-13 and 7-14 for the 2,000 x 2,000 cm (20
x 20 m) flow region. Figure 7-12 is one realization from the packer spacing
study, and Figure 7-13 shows the flow regions which were analyzed. As can be
seen in Figure 7-13, the right-hand side (the outflow side) of this mesh inter-
sécts twb-fractures. But, as can be seen in the 2,000 x 2,000 cm reduced flow
mesh of Figure 7-14, both of these fractures have been eliminated from the
flow calculation because they do not connect with any other fractures or any
other boundary. Thus in this extreme example, the well intersects two iso-
lated fractures but zero permeability is measured. So zero apertures would be
calculated for the two fractures if they were assumed to be "connected." In
fact, they are not connected and have nonzero apertures.

In less extreme cases, the Targer aperture fractures that intersect the
well are connected, but only through smaller aperture fractures. When a large
aperture fracture feeds into a smaller one, the flux carried by the larger
aperture fracture is reduced. Therefore, the measured permeability is reduced
and the calculated equivalent aperture is smaller than the real aperture. In
the opposite case, when a small aperture fracture is connected through larger
aperture fractures, the flux is not significantly increased.

This effect can be illustrated by considering the example of two fractures
in series. Figure 7-17 shows two such fractures, A and B, under an overall
field gradient, Jr. The equivalent overall permeability in the x-direction,
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K, of the two fractures can be found by equating the flux. through A to the
flux through:B. That.is, C . . : o

Q=03:=0 S (7-12)
0, -0, 5 (¢ = ¢,)

3 pg 1 M7 3 pg "M 27 _ _

ba 125 EC R i v 0 03

where ¢1 is the head at the left-hand face of the rock element, ¢g is the head
at the right-hand face and dy .is the head at the intersection. Solving for.
the head ¢) at the intersection, '

¢“', stz¢;,+‘LAb§¢0 . PR o (7-14):
T bt lghy S
The field gradienthf is T
- : 0q =99 i
I L+ - (7-15).

The equivalent K for this rock element in the directidn‘ofvthe\fie]d_grégighﬁh_l
is S o o -
K= 35 - b?sz Ehie

f b

(7-16)

W W x>

+ L

3
B°

A

The single equivalent aperture, b, for this system is found by eguating

Q=K3h = b3,%%; Jee | | (7-17)

So we. have: _ {
b o Y_Kn
© Y pg/12u '
(7-18)

— 33
(Ly + Lgdbbl

3, .3
Labg + Lghy

3

or

(LA-+'LB)/LB

B L. [/bo\3 ] - (7-19)
A B
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If bB is much greater than bA, and LA and LB'aré both approximately equal
to each other, then bB/_bA >> 1 and '

2
bab : -
B 3 3
(b,/b,)
. ‘ B""A (7-20)
bxb, 2% 1.26b
baby, YZx 1.26b,. (7-21)

Sé'if bA is smaller than bB, the'equjVa]ent aperture, b, is approximately
equal to'bA.

Heterogeneous connections between fractures usually result in the measured
aperture being less than the actual apertufe. In this case, although the aver-
age of the actual apertures of fractures intersected by the well zone is higher
than the true mean aperture this does not cbmpensate for the lack of perfect
connection. In the case where length and aperture are not correlated, the
average of the actual aperture of fractures intersected by the well will be
closer to the true mean aperture of the system. However as a result, in the
uncorrelated'case the estimate of aperture obtained in steady-state well tests
may be even worse than the correlated case.

7.6 CONCLUSIONS AND RECOMMENDATIONS

In these model studies thé aperture distributions were varied in three
different ways. The mean and standard deviation of aperture were varied and
aperture was assigned to the fractures such that it was correlated or uncorre-
lated to fracture length. These three variants influence both the magnitude
of the permeability and the NMSE. The magnitude of the permeability is most
affected by the magnitude of the mean aperture. An m-fold increase in mean
aperture results in an m3 increase in permeability. Thus even a less than an
order of magnitude change in mean aperture can result in several orders of
magnitude of change in permeability. The next strongest influence on the mag-
nitude of the permeability is correlation between length and aperture. Corre-
lated systems may have permeabilities about an order of magnitude higher than
similar uncorrelated systems. Finally the standard deviation of the aperture
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distribution influences the magnitude of the permeability. An increase in the
standard deviation of aperture when fracture apertures are correlated to frac-
ture lengths results in an increase in permeabi]ity. If they are nof‘corre—
lated, then an increase in the’standard,deviation may increase or decrease the
permeability. Thus, in order of importance the magnitude of the permeability
is affected by the mean aperture, the correlation between 1ength and aperture -
and the standard deviation of aperture. | '

The value of NMSE is most significantly influenced by a change in the
standard deviation of the aperture distribution. An order of magn1tude_change
in standard deviation can result in a change in NMSE of two orders of magnitude.
Corelation between length and aperture has some influence on the NMSE. If
]ehgth;and aperture are correlated, long, high éperture fractures may be formed
which serve to increase the NMSE. The value of the mean aperture effectively
has no influence on the NMSE Thus, in order of importance the magnitude of
the NMSE is affected by the standard deviation of ‘the aperture d1str1but1on,
and the correlation between length and aperture.

Based on Model C of this study, the best estimate of the NMSE of URL rock
is very roughly 0.04., A value of 0.04 means the permeab111ty”e]11pse is proba-
bly fairly regular. This estimate would be decreased by adding a third dimen-
sion to the analysis. However, it would be increased by shortening the frac-
ture lengths or by restricting the sample size to the width of the upper frac-
ture zone. Since we have no estimate of the length of fractures or depth this
estimate of NMSE must be treated with extreme caution.

For these statistical systems, NMSE values as high as 1.7 still produce
permeability plots that are closed figures. Thus approximation of the URL
rock as a porous medium may be acceptable. However, due to the combination of
adding a third dimension, shortening the fractures, and decreasing the sample
size, the net change in the NMSE may be an increase. If such increase in NMSE
produces a permeability plot which is not closed, approximation as a porous
medium will be poor. | _

Steady-state packer tests are likely to give estimates of the mean aper-
tures that are lower than the true mean. In estimating the mean aperture, the
packer spacing is not very important as long as bp is used to estimate the
mean aperture instead of bj and enough tests are run. The relationship between
the true mean aperture and bA has not been established, but it will clearly be
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a complex function of fracture densities, orientations, lengths, and the
correlation between length and aperture.

Research and data collection in several areas would be very useful at
URL. The correlation between length and aperture should be examined. Ffield
data collected at depth using transient methods (Doe et al, 1982) that provide
data on local hydraulic aperture and fracture extent would help to determine
whether and how length and aperture are correlated. Complementary theoretical
work from a rock mechanics standpoint on the relationship between length and
aperture would help ‘to guide these field efforts. More numerical analyses
aimed at uncovering the relationship between BA, b, and the true mean aperture
under various correlation conditions would greatly help to interpret steady-
state packer tests at URL. Research on. the relationship of radial flow permea-
bility test results to the behavior of fractured rock under quasi-linear
regional flow would also allow for better interpretation of well tests. The
development of a three-dimensional fracture model as described in Chapter 8
would greatly reduce uncertainty in understanding the hydraulic behavior of
the fractured rock at URL. Finally, some error will likely be associated with
application of classical tensorial analysis to flux in the upper fracture
zone. Work should be done to quantify this error, possibly by using the
methods presented in Chapter 10.°
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8 EXTENSION OF THE MODEL TO THREE DIMENSIONS
8.1 INTRODUCTION

A two-dimensional model of a system of'finite fractures is useful for
examining qua]jtative relationships between fracture geometry and permeability.
However, two-dimensional models will never be able to completely describe three-
dimensional behavior. The reason for this is that fractures which are not
connected in the plane of a two-dimensional analysis may be connected.in some
other part of the rock mass. Permeability will always be underestimated -and
hydrau]ic behavior will always appear to be less 1ike porous media. in a two
dimensional analysis than in a three-dimensional analysis. Thus, a three-
dimensional model would greatly increase the reliability of the results when
field data are ana]yzed using a fracture model.

In reality fractures are irregular, finite discontinuities in the rock. -
In two dimensions we made ‘the idealization that the fractures could be modeled
by straighf Tine segments. Likewise, we will assume fractures-are planar seg-
ments in three dimensions. We now have to make a further assumption about the

shape of the planar segments. . '

' " As described in Chapter 2, there is support in the literature for
elliptically shaped fractures. However, the simplest and most pragmatic
' apbroach is to assume-fracturés are circular. Circles of course are a subset
of ellipses. The identification of intersections between circular fractures
is much more straightfcrward than that for e]Tiptica] fractures. The calcula-
tion of flow in a fracture between intersections is simplified. Also if
circular fractures are assumed, the lateral dimensions of the fracture can be
specified with only one parameter, the radius. For ellipses, three parameters
are needed: the dimensions of the major and minor. axes and the orientation of
the éxes. The assumption of a circle is pragmatic because the availability of
statisticallyVSignificant field data on the length versus width of fractures
and the drientation_of fhe major axes of the ellipse in the fracture plane is
unlikely. Therefore fractures will be represented as circles. _

~ The radii of these discs can be considered to vary Tognormally, just as
the length of fractures in the two-dimensional mode] varied. Baecher and Larney
(1978) have shown that lognormally distributed radii give rise to lognormally
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distributed trace lengths. Since lognormally distributed trace lengths are
observed in the field the assumption of lognormally distributed radii is
reasonab1eﬁ Fracture centers are located randomly. Fracture orientations and
apertures are distributed by sets in a manner similar to the construction of
the two-dimensional model except that orientations can vary in two directions.
Distributions such as Arno]dé"spherica] normal distribution (Mahtab et al,
1972) or Bingham's distribution (Mahtab, 1982) can be used to generate the
orientations. Also, discrete field data could be used to specify the orienta-
tions directly. .

The comp1ete'three—dﬁmensiona] model consists of randomly located discs
with distributed orientations, apertures, and radii (Figure 8-1)  These discs
intersect to form the flow system. The form of the intersections is a line
segmént, whereas in the two-dimensional model the intersections are points.
Thus the 1ine segments will become the "nodes" of the three-dimensional model.
Steady flow takes place in any given disc-shaped fracture from one node to
another. |

The fracture system can be generated in a spherical generation region and
the flow region will be a cube that lies éntire]y within the generation region
(Figure 8-2). Boundary conditions for the overall model will be similar to
those of the two-dimensional model. Boundaries will be the faces of the cubic
flow region rather than the edges of the square flow region in the two-
dimensional model. As an example consider'Figure 8-1. Suppose Side 1 is the
inflow face and Side I1I is the outflow face. Then Side I will be assigned a
head of unity. Any fracture intefsecting Side I will have a node with
prescribed unit head. Thus the intersection of fracture 3 with Side I will
have a prescribed head of one. Likewise, Side III will be assignéd a head of
zero, and the intersection of fracture 5 with Side III will be a node with
prescribed head of zero. On Sides II, IV, V, and VI the head will have a
fixed, linear distribution. A plot of the head distribution over these
boundaries would look 1like a wedge: the head would be unity along the edge
where each of these sides intersects Side I and zero along the edge where each
of these sides intersects Side III. The head in between these two lines can
be found by linear interpolation. Fractures such as 2 and 4 intersect the
distributed head boundaries. The treatment of these nodes will be discussed
below.
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As in the two-dimensional model, permeabi]ify in the direction of gradient
can be measured. The direction of gradient can be changed by mathematically
defining different cubic regions of simulated rock oriented in different direc-
tions but centered at the same point. In the two-dimensional model the flow
region was rotatedvin equal intervals from 0° to 180° to obtain the entire
permeability ellipse. In three dimensions, the rotations‘must be over a half-
sphere in order to define the permeability ellipsoid.

8.2 SOLUTION OF THE FLOW EQUATION

As in the two-dimensional model, a general analytical solution cannot be
found for flow in large, random, three-dimensional fracture systems. On the
other hand, in three dimensions, a,pure]y;numericé] solution scheme such as
used in the two-dimensional problem would reguire discretization of each frac-
ture plane. While this is theoretically possible, this approach has two prac-
tical problems. The first is that the total number of unknowns would be equal
to the number of fractures times the average number of elements in each
fracture. Thus there would be severe limitations on the size of problem which
could be analyzed. Secondly, the intersections between fractures are randomly
located in the fracture disc. Thus the development of a numerical mesh genera-
tor which could successfully discretize every fracture would be difficult.

The solution technique proposed here is an approximate mixed numerical and
analytical method. Flow in each fracture plane is handled analytically. The
flux through the system is then calculated using a numerical solution based on
mass balance in the system. v . | o

The analytical solution in each fracture plane is based on the assumption
that each fracture intersection acts like a source or sink with constant
strength per unit line length (Figure 8-3). The fracture itself acts like a
permeable disc with impermeable boundaries. Solution of the Laplace equation
for this case allows calculation of the head distribution along each fracture
intersection (node) in terms of the total flux entéring or']eaving each of the
nodes in the fracture disc (Figure 8-3C). When this is done in each fracture
disc, two different head distributions will have been found for each node, one
for each fracture which forms the intersection.
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It is impossible to force these two head distributions to be identical
under the assumption that the intersections are of constant strength per unit
line length. In reality, the nodes will not have constant strength per unit
line length and the head distribution along the node must be the same as
measured in either fracture. The actual distribution of strength along the
intersections can only be found by using the completely numerical scheme
described above, but such a procedure is impractical. In this mixed numerical/
analytical scheme, the total flux into or out of an intersection is assumed to
be approximately equal to the flux predicted with a source of constant
strength per unit length. Furthermore, we require only the average head along
the fracture intersection to be the same in each of the fractures which form
the intersection. Therefore, for each intersection, the two unknowns are the
value of average head and the total flux through the intersection.

Solution of the Laplace equation in each fracture disc allows us to write
a set of equations for the average head at each of the intersections in terms
of the total flux into or out of each of the ‘intersections. The particular.
form of these expressions will be determined by the particular geometry of - -
intersections present in ‘that fracture. When inverted this set of equations
produces an equation for the total flux into or out of each intersection in.
terms of the éverage head at each of the nodes. A global mass ba]anceAequa-
tion can then be written by equating the flux.into a node from one of its
associated fractures to the flux out of the intersection into the other frac-.
ture. Just as in the two-dimensional case, there will be one equation for
each node. Solution of these equations gives the average head at each inter-
section. Knowing the average heads, the flux through each intersection can be
calculated using the analytical solutions for each fracture. The flux through
the boundary nodes of each boundary can then be cumulated to find the total
flux through the boundary. ' |

8.2.1 Flow in a Fracture Disc

Flow can only take place in a fracture if it is intersected by at least -
two other fractures. If a fracture is intersected by only one other fracture,
then it is a dead end which does not conduct fluid. If a fracture is inter-
sected by two other fractures, then one of the intersections acts as a line
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source and the other acts as a line sink. If the fracture is interested by
more than two other fractures then at least one of the intersections acts like
a source and at least one acts like a sink. v

The solution of the problem of flow in the fracture discs uses image
sources and sinks to account for the impermeable boundaries. In fact, the
simplicity of the image system for a souce or sink within a circle is a major-
advantége of aséumﬁng fractures are circular. The solution for an arbitrary
number of line sources and sinks within a disc with impermeable boundaries is
derived from the solution for a point source within a circular flow region.
Consider a circular disc which contains a point source of strength +m at B as
shown 1in FigUre 8-4. For steady State conditions, Milne-Thomson (1968, p. 222)
gives an image system which accounts for the impermeable boundary at r = a.

If the source is located in the circle at r = g, then there is an image source
of strength +m at r = a2/g;and an image sink of strength -m at r = 0. Since
the source and the images all lie on the same radial line, the head at any
point in the fracture can be found by cumu]attng the head contributions of the
source and the two images.. '

Recall at least two fracture intersections in a fracture disc are
necessary to have flow in the disc, and at least one of the intersections must
act like a source and at least one must act 1ike a sink.  Furthermore, in
order that the total flow into the'frectuhe-equals‘the'total flow Jut of the
fracture, the total strehgth of all sources must be equal and opposite to the
total strength of all sinks. Therefore ‘the total strength of a]] requwred
images at r = 0 will always be zero -

~ Now we allow point sources to be distributed along an arbitrary line seg-
ment in the circle such that the strength per unit ]ihe'1ength is constant.
First we must find the locus of the distributed images.” Then we must find the
expression for the total head at any point in the circle due to thé-sources
along the intersection and along the image. _

A nonradial line segment source will have an arc-shaped image constructed
as shown in Figure 8-5. A radial source will have a radial segment image.

The equations for the Tocus of the arc and radial images can be derived as
follows. The equation of the line on which the segment lies can be given as
Ax = By = C. Changing to radial coordinates, let x = r'cos6 and y = r siné.’
Then the equation is Ar cosg + Br sing = ¢, or ) o '
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Figure 8-4. Image System for a Point
Source in a Circle
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Figure 8-5. Construction of the Nodal Images
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Ar cos¢ + Br sine = C, or | | o -

"= K cos6 +8B sind ° C ' - (8-1)

If the line segment is radial, C = 0, so

[¢p]
]

an"H(-A/B), o (8-2)

is the equat1on of the 1mage segment The endpo1nts of the 1mage segment are
given by r = a /gl and r = @ /g2; where a is the radius of the fracture and 9
and 95 are the d1stances from the endpo1nts of the 1ntersect1on to the center
of the fracture. ‘
If C#0, the equation of the 1mage arc, R, is

2 2

S R=2 =% (Acose+B sing). S (873)

Ol

Returning to Cartesian coordinates, let

_X X__
COSS-R-W',

and |
" sing % y .
- sing =g = s
' X yo
So we have
2.2 25,2 6 o
aA a B :
.<"-‘,‘z—') * '<Y_-7c—> T;'(A +B> (8-4)

Equation 8-4 is the equation of a circle centered at
2C 2 ) =

a2t /a% 82
T

and which always passes through the origin.

with radius
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Now it remains to evaluate the potential distribution in the circle due
to both the sources distributed on the intersection itself and the sources
distributed on the image arc or radial segment. In the following, ¢kN will be
the potent1a1 due to the sources distributed along the intersection i on frac-
ture k; ¢ i1 will be the potential due to the sources distributed a]ong the
image. The potential due to the presence of intersection i is ¢ = ¢1N ¢$I'
The total potential due to all the intersections in the circle w111 be given
by @k, and the average potential on the intersection will be 5§ .

First, consider a nonradial intersection (Figure 8-6). A local arbitrary
X, Y coordinate system is established for each fracture disc. A1l the equations
for potential distribution must be referred to X, Y coordinates before they
are added. Coordinates convenient for calculation are the x', y' coordinates
shown on Figure 8-6. These coordinates are centered at one endpoint of the
intersection. The y'-axis lies on the intersection. Point O is the center of
the fracture. Point P is an arbitrary point in the plane.

- The fundamental solution of the Laplace equation for a point source in an
infinite plane is |
q,:Kh:—'?:—giLn T, (8-5)
where m = Q is the strength of the source, r is the distance from the source,
K is the permeability (K = bZpg/12u), and h is the hydraulic head. Milne-
Thomson (1968) shows that the potential due ‘to sources distributed over a line
segment of length £ on the y'-axis is given by

p 2 v
kK _  k i 1 2 ' 2

(8-6)
0

where mg = Qi/% is the strength per unit line length and Qi is the total
strength of the line source. The subscript i refers to intersection i. This
integral has been evaluated in Selby (1965, p. 334, No. 380):

Q. '
¢§N = - 3%2 {(E - yOmlxt A Gy - %]

. ' .
- 28+ 2|x"| tan” ! <€ i
P 0.

(8-7)
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Fighre 8-6. A Fracture Intersection in a Fracture Disc
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Changing to x, y-coordinates (see Figure 8-6)

(8-8)
y=y"'-¢C
So Equation 8-7 becomes
k Qi 2 2
A (JL-yvrC)m((x-B) +(y -C- 1) (8-9)
- 2% + ZIx - B\tan-:1 (}_—_Y_:_C> B '(-y * C)Rn<(x - 2
i Ix - B ,

>+ (y - C)2>+ le - Bltan-’I Tg—%é—d} ’

- where B and C are defined on Figure 8-6. This expression must now be written
in X, Y coordinates which involves the rotation:

x = X cos6 - Y sing;

(8-10)
y = X sin6 + Y.cosé.
After this substitution we have an expression of the form
ok k | ‘ |
N = QifiN(X,Y). . : : (8-11)

Now consider the image arc as shown in Figure 8-7. The total strength of
‘the sources on the image.arc is Qi because the total strength of the sources
on the intersection is Qj. However, the strength per unit arc length on the
" image is not constant as it is on the intersection. For any infinitesimal
'piece of the intersection, df, the total strength is

Q; .
me dE = o= dé. (8-12)

The total strength on the corresponding infinitesimal piece of image arc, ds,
is also (Qi/l)di. However along the arc this strength is distributed over
the length ds. Thus, the strength per unit 1ine length along the image arc,
m1 is

Q.
e L (8-13)

]

[

my
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Figure 8-7. Construction for Calculating the Distribution of Strength Along an Image Arc
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The integral for the head distribution at any point in the plane due to
~ sources on S distributed according to my can be written. Figure 8 shows the

coordinate systems used to evaluate this integral:

S
-q, 2
k k . i dg
%1 = KNi1 = 7 ~/~ ds T dss
3

(8-14)

where 18 is the distance from a point S on the arc to any point P in the

plane. :
In order to avoid evaluating d&/dS, we wish to find rp in terms of & and

integrate from £, to £,. On S we have

2 _
[ |_a 1
Xg = R cos6' = 3g COs6’ , (8-15)
a2
y; = R sing' = 55 sing'
So rp is given by
rg = (x' - R cose')2,+ (y" - R sine')? (8-16)

where (x', y') is any point in the plane. Expanding and collecting terms:

2

rg = x' %+ 2 4 R% - 2R(x'cos8’ + y'sine'). (8-17)
Now referring to Figure 8-8:
-1
cos6' = cos2a (8-18)
= 1 - 2sin®a
:1_2<_2_§_2_2>,
£- + B
and ing' = si
sing' = sin2a (8-19)

2sin @ cos @

2&B
E;2+B2
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So
r2 = x'2 4 y'z +R% 4+ R [- X'+ 2 €” - 2y'EB
P (2 , Bz) (8-20)
Expanding and collecting terms in the numerator gives:
2 Pay? e REeooe)e? - (Ry'BIE S (P aytt s RZ _ 2Rx')B2
P | 52 + B2 ‘ e
. ' 7 - (8-21)
Now ¢§I can be written in terms of £. Substituting 8-21 into 8-14 gives
q g2_ _ 5
kK o_ ook i , 2 22 )
¢il = K hiI = TR ] [ Q) d& - j n(E° + B%) d& ) ; (8-22)
€1 g1
where A
Q= YEZ + BE + o3
Y = (X'.Z_ +'y'2 +.R2 + 2Rx'); | (8-23)

B = -(4Ry'B);

T = (x"'2 + y'z.ff Rz; .'.-"ZRx~' )”BZ. {
These integrals can be evaluated using the same formula used to evaluate 8-6,
Selby (1965, p.” 334, No. 380): ' '

-0, L
—A[(E +%)h Q-2 4 ACY-than-"( 2vt + 6 )
[

4ant Y Jooy - 82
&
- (e wn(e? + 8%) - 26 + 2[Bltan" l-g‘)] ,
- 51
i (8% - zm)< o, . (8-24)
Kk :
qail.:KhiI = \ or

-q. : ‘
1 8 /a2 -1 2YE + B
ey [(5 + ﬁ) i Q- 284 YB -YQUY tanh m
EZ
. (5 n(E? 4 82) - 26 + zlaltan‘1‘él)] ,
. e,

if (Bz-fm) > 0.
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To move to x, vy coordinates allow

>
n

"= x - R=x- (a2/2B) (8-25)
y'i=y. o

The value of 4ay - 82

can be pos1t1ve or negative depending on the k
values of x and y for point P where ¢ il is to be evaluated. 'Finally

Equation 8-24 must be written 1n‘X, Y coordinates by using the transformation
given in Equation 8-10. After this substitution we have

k kk.- L , .
o1 = Khip = 44fi (6 ). : (8-26)

If the 1ntersect1on 15 rad1a1, a different form must be used for @kN and
¢§I’ Figure 8-9 shows the geometry for this case. For_@&N we have-

C

-Q.

ko _ o koo i 1 , 2 , 2

¢iN'Khi'N'mf 7 nf(x' - €)% + y' 7] dE. (8-27)
' B

This integral is evaluated by the same formula és 8-6 and 8-24.

A , | A)C-B
@_?N ﬂ {(g - X )[zn'z-‘e(x' - g)~2 + y'?;l -.2g + 2|y'|tan (‘C’ = X )}0 . (8-28)

Changing to x, y‘cdordihates

x'" = x -8B
' (8-29)
y =Yy
The equation becomes |

k -4 2 o 2 S 2

q)lN = m (C - X + B) 2n[y + '(X —B) - Z(X +B)C + C ]

o - | (8-30)

- 2C + 2Jy| tan™’ (C—I‘;‘—l‘—l” [(—x +28) tnly? +(x -28)7]

- 28 + 2|y[tan”] (ZI‘?]X)] }
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Figure 8-9. A. Radial Intersection. B. Radial Image
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The image for this case is also a radial .line segment. .First the ..
strength per unit length, my must be evaluated. Referring to Figure 8-9B:
n oo m 98 |
I = "¢ dn s - (8-31)

The distance from a point on the image to any point P(x', y') is

R I A T
Now we have - v <az .EE)
q B °C
ok k, - i de w2 w2 .
,¢i1 =K 'hiI = Z;rﬁ“:jgy -/i - | Eﬁ'zn[(n:- t )T+ ] dns3 (8 33)

but

and to change x; y-coordinates:

2
x":-g——-x
(8-35)
y' = -y ,
So 8-33 becomes ;
C i
v -Q. 2 2
k _  k o i ; a~ 2 -
Expanding the term in square brackets we have
' 2 \2
2
[(-e5)" 7]
- X2 _ Zazx + aga" . y2
PR )t
) o - : : 5 ‘ (8-37)
: (x“+ y2)£2’+ 2((x2 + yz)B - azx)g + (x2 + yZ)B2 - Zasz + 5
2 2 '

L E° + 26B + B
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Equation 8-36 can now be written:

C C

o1 = —Hc—i—BT [ in Q& —[ ln(ﬁz + 28B + BZ) €/ , (8-38)
B B ‘
where |
Q =za + BE + Yiz,

a = (XZ.,"' yz) B2 - 2a% x B + a4,
B = 2((x2 +’y2) B - azx),
Y = X2 + yz.

Since 82 -4a8 can be positive or negative depending on the values of x
and y, two forms of the solution are needed as in Equation 8-24. The two forms
are given in Equation 8-39., Furthermore, if the radial intersection passes
through the center of the fracture there will be two image segments, one on
each side of the fracture. In this case B is zero and two values of C, C1 and
Co, are defined, one positive and one negative. ¢4 then becomes the sum of
the two versions of Equation 8-39, one using.Cl,and the other using C2.

-a, .
i B

T {[(5»,2—»%9_25
+ Y4ya - 82 tan-‘I ZY—E*'———E—ZI

v 4ya - B

: c
_[<5'+B>zn(éz+zas+az) - 25]} ,

B

if(SZ—AWH <o, (8-39)

= K'h, :A’ or

m;‘_f.mmh%)m

2 -1 2yE + B
- 28 + YB“~ 4ay tanh ]
Y ;B - 4uy

. [(5 . B> (e o+ 28€ + 82) - zﬁ]}c ,

B

if (82 - aav) > 0.
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Finally the rotation of coordinates expressed by Equat1on 8-10 is applied.
to ngure 8-39 and the result 1s of the form
bin=08 f iN (X’Y){

K Kk (8-40)
Qi fil (X,Y).

8.2.1 The Global Mass Balance Equations

The'potentia] in fracture k due to any intersectien and ité images is
k k k

Note that a third}potential term, ¢j0, associated with intersection i could
also have been defined. This termkwou1d be the potentiaT due to an image of
strength -Q; at the center of the fracture. However, as previously exp1a1ned
the total strength of all such images at the center is zero, so no head is
contributed from the sum of the images at the center.

Now the total potential in fracture k is

I I '
Fxn = Y ek s Z CNEXINE o (8_’42)
- iz1 : i=1 . .
where I are the numbers of the intersections in the fracture disc, k. Equation
8-42 becomes | I |
X, Y) = }E: Q,FEX,Y), |
e | (8-43)

where

The F§ represent shape functions for the total head distribution over i the
entire fracture due to the presence of the ith intersection. Now the average
potential at each intersection, i, of fracture k is
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_ I
=k _ 1 f ko S k (8-44
®; = g /q> (X,Y)d2, -1— f Z Q,F (X, Vde; )
1 () 1 . . ) :

i i 37 |
ko 1
@, (X,Y) = <QJ T / (X, Y)d£> 2 Q. 5: 5

: 1

i= 9.

k .
where STJi is the shape function for the average head on intersection i in
fracture k due to the intersection j also on fracture k. That is,
kK 1 :
F. = F. dR. . ' : '
J1 li J 1 (8"45)

L.
1

The value of STSi may be difficult to obtain analytically, but it can be
easily approximated by evaluating Fj at a discrete number of points on each
intersection.

Changing to indicial notation,. where summation over repeated. subscript
indices is implied, we have

(8-46)

where i, j take on'I values and the I are the numbers of the intersections on
fracture k. By inverting Equation 8-42 we have

ek -1k kK _
G e s By e (8-47)
where [37 ] 1ok, Equation 8-43 is the analytical solution for the

Jl
average head on the ith intersection of fracture k.

Now assume all-the fracture intersections in the whole system have been
numbered sequentially, 1 to N. In Equation 8-43, i and j assume the intersec-
tion numbers which lie on fracture k. Thus for instance if intersection 3,7,
and 9 lie on fracture k = 4, we have |

_h=h | b=4 4t
Uy = Gagdy + Ggpdy + Gygdy 5
454 44 =4
Q-:G¢’+G‘I’+G‘I’;
7 = B3%3 + 697% + Gyg% (8-48)
bgh . bTh L bl
) Py s
Qy = GggPy + G97 7* G9 99 °
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Note that the order.of the indices onﬂGij is importgntiv Gij may not be
symmetric. ‘

Equation 8-47 can be wrﬁtten twice for each intersection, once for each
fracture k associated with intersection'i. If fractures Ky and ko make up
intersection j, then Qj for k1 equals -ijfor k2:
1=% 7 Ky

1

G.. &. + G.°

I 1y Ji :

where the 11 are the numbers of the 1ntersect1ons on fracture k1 and the 12

‘are the numbers of the intersections on fracture k2 ¥

8.2.2 Construction of the Mafrix Equations

To explain the formation of the matrinequations, an example fracture
system has been chosen (Figure 8-10). In this fracture system both.thé_frac-
tures and the intersections have been numbered. The intersection numbérs'are
circled. Table 8-1 describes each intersection. Remember that any -intersec-
tion between two fractures or a fracture and a side is referred to as a node.

Assume that the shape factors,'-GEJ have been caitu]ated for eath inter-
section i, with reference to every other 1ntersect1on j, in fracture k. The
matrix equations will then be formed by wr1t1ng Equat1on 8-49 for each Lnter-

section. Equation 8-49 is written in terms of the average potential, @i.

In order to solve for the average head, h. at each intersection, i, we write:

&5 i | (8-50)
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Figure 8-10. Example Three-Dimensional Fracture System
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Table 8-1. Description of Intersections for Figure.8-10.

"This node is an intersection between:

Node No. Node Description Fracture Numbers Side Number
1 Boundary 3 - I
2 Internal 3 1 -
3 Internal 1 2 -
4 Boundary 2 - VI
5. Internal 1 4 -
6 ] Boundary 4 - v
7 Internal/Boundary* 4 5 )
8 Boundary 5 - v
9 Boundary 5 - I11

*Node 7 is an internal node which interseéts Side V at one point. =

Note that if permeability, Kk, is different in the two fractures forming the
intersection then the potential '&ﬁ will have a different value in each of
* the two fractures. However, the head, hi is the same as measured in either
fracture.

~ Now the following equations can be written for flux thfough each

intersection:
qQ, = G$1K3h1 + szk3h2,
Q, = GyyKh, + GJ K7, ;
qQ, - G;2K1h2 ;'p;3K1E3 + G;5K1HS;
0y = G§3K2h3 + G%aKZha,
Q = 63Ky + 61 .K'hy + B3k 'hg;
Q, =-G§4K2h4 + G23K2h3,
Q = G;ék1h2 + G;3Ki53 + 6253165;



Qs = Gook'hg
Qg = Ggskéhs
a5 = Ggskahs
4 = 676K g
Qg = G Kh,
O = G;7’(5“7

By equating the flux into and out of
known values of head on the boundary

206

(8-51)

each intersection and identifying the
nodes with H we have _ ‘ .

‘Intersegfion” nguatioﬁ
1 hy = H,
2 0= 63 KH, + ¢;2k3h2'+vcgék1h2 + G;3K1h3 + Gk 'hg
3 0= G%B ?h3 + G§4K2H44+ 63K, + 635K 'hy + 635K hg
4 h, = H,
5 0= G;2K1h? +G;$K1h3 + Gagk'ng + Gaokhg + 6 KM, (8752)
. é§7K“(h§ + H5)/2
6 he = H,
7 0= G§5K4h5'+ 63 K, + G?BKSHB + BIgKH
+ 63k nE Hs)/é + 337K5§h§+ HS)/2
8 hg = Hg
9 hy = Hg
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Note that the special case of node 7 has been treated by allowing the
average head, h7, to be equal to the average of the head at the point on the
boundary, H?, and the head at the opposite endpoint of the intersection, h;.
In this case we solve for h7 and then calculate h7

Now rearranging these equations and putting them in matrix form we have:

'_ . ) r -
1 h1—} H1 —|
GHK? GLK' - GisK' . h -G3K3H
+GLK' 23 x| / ‘ 2 21K7H,
.\ 2 K2 ) ' .
o () e hs ~GEKH
) 1 . . ‘hy ‘ ‘ He
1K1 1K (3515K1 1 4K4 h = ‘_G4K4 -1 4K4 e
Gs2 GsaKs +GAKS . 2 Gt 5 sei"He - 7 GsTK™Hy
1 he k He .
it ( HeS > N G'Hy - 1 GHKH
s +3 G ’ -Gigk*Hg - GgK*Hy - 3 GHK®H?
1 hg He
111h '
L : | JU L i _

XBL 834-1774
that is, Aijhi = bj.

In general most of the elements of the bj vector will be zero. However,
in this simple example each fracture is either connected to a boundary
directly or connected to another fracture which is directly connected to a
boundary. As a result all the elements in bj are non-zero. For each fracture
that does not intersect a boundary or another fracture which intersects the
boundary, the value of bj will be zero.

The matr1x‘1s sparse, banded and nonsymmetric. When the matrix equation
is solved, the values of hj can be substituted into Equation 8-47 to determine
the fluxes through each node. The fluxes through,the‘nodes on each boundary
can then be added to find the total flux through each boundary."
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8.3 REQUIRED OUTPUT FROM THE FRACTURE MESH GENERATOR

In order to fill the A1j matrix and mod1fy the bJ vector for the connec-
tions to the boundary, the fracture mesh generator must provide the following
tables: ‘a fracture list, a:node list, and a fracture plane geometry 1ist.
These are given below in Tables 8-2, 8-3, and 8-4.

Table 8-2. Fracture List

Fracture Number Aperture ~ Radius Number of Intersecting Fractures
] (<] (-]
(<] o
© © 3 ]

Table 8-3. Node or Intersection List

Boundary Code Number of Global
0-Internal | Fractures . Coordinates of
Intersection - 1-Const. ¢ ~ Forming the - the End Points
or : (-1-const.q) _ Side‘Code ~ Intersection of Intersection
Node Number ~ 2-Int'l/bdry 1 =6 L0 ey (hyez)
i -] ' (4]
2 ’ °
3 © (]
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Table 8-4. Fracture Geometry List

- Definition of Local End Points of IJ

Fracture Intersecting Coordinates in the - Intersection in
Number .. =~ Fractures Fracture in Column 1 Locg] Coordinates
1 J 4 ’ (Xl’ yl) '(XZ’ .Y2)
I K -] (-2 ]
I L ] (] -]
I M K (-] [+
J I -] [+ [+
J Q (-] (-] 0.
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9 SUMMARY

This investigation defined criteria for determining when the permeability
of a two-dimensional discontinuous fracture system can be represented by a
symmetric permeability tensor. Tests to establish these criteria compafe_the
average hydraulic behavior of the fractured medium to that of an ideal homo-
geneous anistropic porous medium. That is, when the directional permeability,
K , of the fracture systems is measured, 1/vK_ should plot as an ellipse in a
polar plot for those systems where flux through the system can be predicted
with a symmetric permeability tensor, This ellipse provides a means to calcu-
late the values of the permeability tensor.

The Titerature on fracture statistics was reviewed to develop a stochastic
model of fracture geometry. The size, orientation, and location of fractures
in an impermeable matrix were selected as the controlling random variables.
These variables served as the basis for random generation of discontinuous
fracture systems. Selected portions of these fracture systems called flow
regions were then analyzed by finite-element methods to calculate flux through
the fracture system. Using Darcy's law, directional permeability was then
calculated by dividing the flux through the flow region by the gradient and
the cross-sectional area. |

To determine directional permeability without ambiguity, it was necessary
to impose boundary conditions that would produce a constant gradient in the
flow region of systems that were ideally homogeneous and anisotropic (see
Figure 3-2). The behavior predicted by using these boundary conditions will
be the actual behavior of the rock volume in the field only if the rock volume
does in fact behave as an ideal, homogeneous and anisotropic medium. The
boundafy conditions were rotated for selected regions of the fracture networks
to obtain directional permeabilities in different directions. Flow is induced
across the flow region, but flux may also occur into or out of the sides of
the region since none of the boundaries are impermeable. Thus the inflow on a
given side may not equal outflow on the opposite side. The convention adopted
in this ﬁnvesfigation was that the inflow into the region of interest in the
direction of interest would be used in the calculation of permeability. Thus,
permeability for the 6-direction may be different than for the 180 +
o-direction. In an ideal anisotropic porous medium, inflow equals outflow on
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opposite sides. Thus, permeab1]1ty in the ©-direction equals permeab111ty in
the © + 180°-direction.

Use of this model demonstrated that fracture systems behave more 1ike
porous media when (1) the fracture density is increased, (2) apertures are
constant rather than distributed, (3) orientations are distributed rather con-
stant, and (4) larger sample sizes are tested. | ' -

A regression technique was developed to quantitatively interpret the
directional permeability data by determining a best-fit permeability tensor.
The differences between the values of directional permeabi]ity calculated using
the tensor and the measured values is considered the "error." The mean square
error can then be calculated and normalized by dividing by the product of the
principle permeabilities. This normalized mean square error (NMSE) approaches
zero as the behavior of the fracture system approaches that of an an1sotrop1c,
'homogeneous porous medium,

A series of parameter studies were performed to examine the effect of
fracture length and density on fracture system permeab111ty. For a given set
of fractures in a given rock matrix,‘the number of fractures intersected by a
unit Tength of borehole perpendicular to the set provides a characteristic
parameter, AL. In two dimensions, AL is the product of areal density of the
fractures, A A and mean fracture length, L. In three dimensions, A L is the
product of the volumetric density, Xv, and the mean fracture area.

The linear density, AL, can be measured in a borehole but 2 and Ap are
very difficult to measure. To investigate the importance of these parameters,
fracture systems were analyzed where XL was held constant and 2 and XA varied
such that AAE = AL. The ratio of mesh size to fracture length was also kept
constant to ensure the statistical samples were similar. For very short frac-
ture lengths and high areal densities, the permeability values were relatively
Tow and the value of NMSE was very high because there were very few connections
between fractures. As E_increased and XA decreased, the permeability
increased. For higher values of & the rate of increase in permeability
appeared to decline. This trend was expected but could not be confirmed due
to the inability to analyze larger problems with the computer.

The value of NMSE could be used to categorize fracture systems based on
the criteria of an acceptable error level. For instance, the fracture systems
used in this study with values of NMSE below 0.05 could be considered to be
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well represented by a porous medium. For a sysiem with values of NMSE above
about 0.3, representaticn as a porous medium could be considered marginal.
With values above 1.0, representation could be considered poor. The same
categorization system will not apply to all fracture systems.

Because this length-density analysis was based on a single realization
for each statistically different case, a Monte Carlo-type analysis seemed
necessary to provide substantiation for the results. The Monte Carlo study
was 1imited due to the costs of computer time required. However the results
tended to confirm the general observations based on the single realizations.
Furthermore they showed that for a series of realizations of a given fracture
system, when the NMSE is higher, the standard deviation of permeability wil]
also be higher. Thus the reliability of regional ground-water models based on
the equivalent porous medium concept will be subject to more uncertainty when
their NMSE values are higher.

Another series of fracture systems was studied to determine if an increase
in the mesh size would reduce the NMSE. . In general, the NMSE slightly decreased
with increase in mesh size. However, for a particular instance where the NMSE
was high to begin with,_increésing the mesh size produced an apparently random
decrease and then increase in NMSE. This case suggests that certain fracture
systems with values of 2 below a critica]i]eve] will not behave like a porous
medium on any scale.

‘An REV study was performed to observe the development of equ1va1ent porous
med1um behavior as the scale of,measurement increases. In this study, the
oscillation ahd'gradua1‘]eve1ing off of permeability and NMSE was plotted as a
function of the area of the flow region. These plots can be used to determine
a lower limit for the scale of thevREV for use in a continuum ground-water
model. , _ v»

The modeling techn1ques were app11ed to data from the Underground Research
Laboratory (URL) facility of Atomic Energy. of Canada Ltd. in Manitoba, Canada.
Good surface exposures were u<ed to develop a model of the fracture pattern.
This fracture pattern was assumed to persist at depth.  Well test data were
used to estimate aperture distribution models for the model. Seven different
aperture models were used to assign apertures to the same fracture pattern
model. "‘In the first five mode]s aperture was correlated with fracture 1ength
such that long fractures tended to be assigned larger apertures and shorter
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fractures were assigned smaller apertures. In the 1ast two mode]s length ‘and
aperture were independent.

The permeabilities of ‘models with uncorrelated 1ength and aperture were
smaller than those for correlated models with the same overall fracture
statistics. The NMSE of certain correlated models may become high due to the
production of very long, high- aperture 'superconductors. " ‘Increasing the stan-
dard deviation of the apertures increases the value of NMSE. For correlated
models 1ncreas1ng the standard deviation of the apertures increases the permea-
bility. Increasing the mean aperture in the model by a factor of m 1ncreases
‘the permeability by about m3 as expected. '

For all ‘the models tested, the permeab1]1ty p]ots were closed f1gures,
even when the NMSE was as high as 1.7. However the permeab1]1ty of the model
which best reproduced the field data for apertures well represented the permea-
bility measured ip'the well tests. However, the fracture pattern at'depth may
not be as well connected as that at the surface. A less well- connected frac-
ture pattern implies a lower permeability and also a higher NMSE. However,
the NMSE would probably be decreased by adding a third dimension to the"
analysis. The permeability plot may or may not produce a closed f1gure if the
change in NMSE is a net increase. o

Another Monte Carlo study was performed using the URL data to investigate
the effect of well test packer spacing on the ability to predict the true aper-
ture distribution. A total of 40 different realizations of the URL fracture
system were produced using a correlated aperture-length model. In each of
these, flow regions with sizes, L x L from 1 x 1 m to 250 x 250 m were isolated.
Flow through all of these regions was calculated. These fluxes were used to
determine the mean aperture, 51 of the single equivalent fracture which would
account for the flux, and the mean aperture, bA, of N equivalent fractures
where N was the number of fractures which intersected the "test zone." For
each flow region the .apertures of the fractures which actually intersected the
test zone were recorded and the mean b was calculated.

The results showed that the fractures which actually intersected the test
zone had a mean aperture, b, that is higher than the true mean aperture.

Since length and aperture were correlated, longer fractures with higher aper-
~tures were more likely to intersected by the test zone. The value of 51

and bA are both less than b and also less than the true mean aperture. This
is because the fractures are not perfectly connected and not perpendicular to
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the borehole as was assumed in the calculation of 51 and BA' The value of 51
increased with L as expected, but bA very quickly became stable. The value of
bA was approximately 1/5 the true mean for all the packer spacings tested.

~ This factor would have been even smaller if length and aperture were
uncorrelated. ’ )

Finally, the extension of the fracture model to three dimensions was
discussed. A model was described where fractures are discs randomly located
in space. The intersections between the fracture discs are line segments.
Flow in each fracture occurs between the line segment intersections. These
line segments are assumed to be at constant head. An approach to an
analytical solution for the flow in a fracture disc between all the line
segment intersections was described using the method of images and the
principle of superposition. An approximate solution was given which
analytically calculates the flux between Tine segments. as a function of the
geometry of the fracture disc and the average head at each intersection line
segment. Then global mass balance equations were developed to solve for the
head at each intersection. Fluxes through each intersection can then be back-
calculated. This development provides a basis for extending the two-
dimensional method of analyzing networks of discontinuous fractures to three
dimensions.
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10 CONCLUSIONS AND RECOMMENDATIONS
10.1 USE OF THIS TECHNIQUE

'It is obvious that an analytical expression cannot be written for the |
overall permeability of a network of randomly located, discontinuous fractures.
Therefore, in this work a numerical approach has been adopted. In this
approach a statistical description of fracture network geometry is used to
produce random realizations of fracture systems. By measuring the permeability
of these network realizations one can investigate the important parameters of
fracture flow in a systematic manner.  There afe, however, certain trade-offs:
(1) many realizations must be made in order to obtain the mean and standard
deviation of the permeability of the statistically described fracture system,
and (2) there is no quantitative way to predict the permeability of fractufe
systems which have not been measured. Prediction of hydraulic behaviorn with
these techniques is cumbersome. ' .

Use of this model, howeVer, does provide insight into the behavior of
fracture systems that was heretofore unavailable.. The techniqués can be used
to study the conditions under which an equivalent porous media permeability -
can be used to represent the behavior of a fractured rock. The effect on the
hydraulic behavior of each of the geometric fracture system parameters can be
examined. Field data on fracture geometry can be used in the model. The
model can then be used to determine the most important needs for further data
collection. In all applications to field situations, the limitations inherent
in a two-dimensional model of three-dimensional reality must be remembered. A
two—dimensiona]'ana1ysis‘does not include all the connections between fractures
that exist in a three-dimensional fracture system.

A three-dimensional model is necessary for prediction of in-situ behavior
but it is not sufficient. In order to have a predictive tool, means must be
found to provide the geometric data for the model and to verify the results.
Well tests used to determine these parameters are difficult to interpret. It
may be that one of the best uses of this model will be an interactive process
of (1) using well tests to obtain mode]Iparameters, (2) creating.a fracture
network model, (3) numericé11y reproducing the well tests in the model, (4)
adjusting the interpretation of the well test data and collecting more data,
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and (5) adjusting the fracture model, etc. If the basic assumptions are cor-
rect, this iterative process should converge to a prediction of hydraulic
behavior of the rock mass.

10.2 MODELING TECHNIQUES

The major limitation in the numerical analysis of systems of random frac-
tures is problem size. Over the period in which this research was conducted
two major steps were taken to increase the maximum size of the problem which
could be solved. The first was to recode the programs to run on the Vax-11
computer which has virtual memory and thus increase the allowable number of
unknowns. The second was to eliminate the dead-ends and isolated fractures
from the flow analysis and.thus decrease the number of unknowns.that had to be
solved.- This streamlining could be augmented in-several other ways. The
numbering system of the nodes could be changed to decrease the band width.
More efficient solvers could be incorporated. Finally, the fracture system
could be further reduced to a hydraulic equivalent for flux calculations
through an algdrithm combining fractures in series or fractures in parallel
into hydraulic equivalent fractures.

- Such an algorithm would first identify nodes which connect only two frac-
ture elements. For such nodes, the two fracture elements could be combined
into one equivalent. Then each fracture element could be compared to every.
other element to see if it is connected to the same two nodes. If so, these
two fracture elements would be combined. The process could be repeated until
no further changes could be made. Once the mesh was simplified, it would no
longer be easy to determine the average isopotentials, as explained in Chapter
3. Also the details of the velocity distribution would be lost. However, the
advantage would be that much more could be learned about permeability.

The boundary conditions used in this work are only useful for determining
the best-fit permeability tensor and the NMSE when the system does behave as a
porous medium, i.e., if NMSE is small. If the system does not behave as a
porous medium on the scale of interest, then the boundéry conditions are
unrealistic. This is because the actual head distribution on the boundaries
will be more variable with a higher value of NMSE. B

A technique for predicting the behavior of fracture systems which do not
have porous medium equiva1ents/cou1d be developed based on the current methods
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that have been discussed. The primary change in the analysis would be the
addition of a study region within the flow redion. The boundary conditions
would be applied to the flow region and the flow region would be rotated as
before. However, the flux into and out of the smaller study region within the
flow region would be used to develop the permeability analysis.

The relative difference in size between the flow region and the study
region may depend on how far'theffractureasy;tem deviates from porous medium
behavior. For higher values of the NMSE, the distance between the study region
and the flow region may have to be larger. For a system‘with NMSE close to
zero, the flow region and study region can be the same size.. The appropriate -
ratio between the dimensions of the flow region and the study region might
also be determined by steadily increas%ng the ratio from unity until there is
no change in the resulting permeability. Alternatively, the appropriate ratio
might be determined by a field situation where the real boundaries would be
known. “At the least, the ratio should probably be large enough'such that no
fracture in the study region intersects the boundaries of the flow region. -

. The implications of using a study region 'in the computer analysis may be
difficult .to surmount in some cases. Flow through the entire flow region must
still be calculated. Therefore it may be difficult to analyze large study" -
regions, especially for high values of NMSE. Furthermore, the mesh simplifica-
tion techniques discussed above could not be applied ‘in a straightforward
manner.. ‘Care would have to be taken to ensure that flux through the boundaries
of the study region remains unchanged for the simplified mesh. This could:® '~
probably be accomplished by tagging each fracture which intersects the study -
region boundaries and exempting these from the simplification procedure.

" The permeability plot from a study region analysis could be used to pre-
dict the hydraulic behavior in situ of fractured rocks which do not behave as
porous media. Two approaches could be used. One is to assume a mean and
deviation of behavior that can be expressed by a permeability ellipse and a
function of the NMSE. The second method would be appropriate if some pattern
- of nonsymmetry persistently recurred in most or all realizations of the frac-
ture system. It might then be possible to quantify this pattern in a probabil-
istic manner such that the.response of the rock volume to a specified gradient
 could be calculated. - In both methods, Darcy's law would be used as it is in.
other stochastic modeling methods. However, in the first method the
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permeability wdu]d be a symmetric tensor with associated error. In the second,
the quantification of the permeabi]ity plot pattern would replace the tensor.

The use of NMSE, especia11y when measured with a study region as described
above, is probably valid as a quantification of error. The derivation of the
term should be kepf in mind during application to a stochastic ground-water
modei, The NMSE is the sum of the squared difference between the measured and
best-fit values ovag, all divided'by the prqduct of the principa] permea-
bilities. The lowest value the measured Kg can have is zero but there is no
maximum value.. Thus, there is a limit to the contribution to NMSE made by
values of measured Kg less than the bést-fit.ya1ues. Thére is’no Timit to the
contribution made by values of measured Kg greater than the best-fit values.

10.3 PARAMETER STUDIES

The parameter studies examined the effect on permeabi]itonf aspects of
fracture geometry that are poorly understood. The motivation behind the
length-density study was to determine the extent permeability could be quanti-
fied by measuring fracture frequency in a borehole, given the orientation and
aperture distfibution. Such a relationship would be very useful since fracture
1ehgth and_density are difficult to measure and fracture frequency in a bore-
hole is easy to measure.

Fracture frequency is proportiona] to both the density and the mean length
of fractures. If the length or the density of the fractures increases, the
permeability should increase. Therefore, for some range in values when the
product of length and density is cbnstant, the net effect on permeability might
be small. Unfortunately, such a range of values could not be identified in
the study. Access to a larger computer is needed to extend this part of the
investigation. - )

The results do indicate that, at_1east_for shorter fréctures, the mean _
value of permeability is roughly proportional to fracture length. Also the
shorter the fracture length is the higher the NMSE tends to be. In fact, for
the range of fracture lengths studied, although a porous medium equivalent is
a good approximation for the systems with longer fracture lengths, it is not a
‘'good approximation for the systems with shorter fracture lengths. Given a
measurément of the fracture frequency in a borehole, some knowledge of fracture
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length is critical to. determ1n1ng the permeab111ty and in deciding whether to
use an equ1va1ent porous-medium approach in ground-water ana]ys1s

If the programs used in this analysis were streamlined as described in
‘Sect1on 10.2, fracture systems with longer ]engths could be analyzed. for
given values'of borehole fracture freqguency, aperture distribution and orienta-
tion distribution, it‘may then be possible to determine‘whether or not there
is a critical value of fracture 1ength' For mean values of fracture']éngth"
less than the cr1t1ca1 Tength, permeab1]1ty and NMSE are strongly dependent on
fracture length. For mean values of fracture length greater than the cr1t1ca]
value, permeab111ty and NMSE are only weakly dependent on fracture 1ength ’
This 1nformat1on would be useful to s1te exp]orat1on programs where efforts
could be concentrated on determ1n1ng whether the mean fracture Tength’ was
larger or smaller than the critical value. |

In the REV study, the model was used to show how representat1ve behav1or '
develops as scale increases. Such an ana]ys1s of field data would be usefu]
in selecting an appropriate sca]e for e]ements in a reg1ona1 ground water f]ow
model. This analysis also g1ves a very good indication of how large 1arge- o
scale permeab111ty tests should be in such situations. S o

~ The URL data study has shown the 1mportance of poss1b1e corre]at1ons be-'
tWeen Tength and aperture If Tength and aperture are correlated, permeab111ty
is h1gher than if they are not. Also the correlation between length and aper-
ture can poss1b1y prov1de a method for pred1ct1ng the existence of "super con-
ductors” or "big cracks so commonly encountered in wells and underground excac
vations. The actual re]ationshiptbetween length and aperture should be | .
“pursued. A study of the mechanics of crack formation might provide a useful
model for the relationship between length and aperture. Field data usingv '
transientttechniques which indicate both the size of the'aperture and extent
of an isolated fracture are large]y unava11ab]e but would be of great use.

The packer spacing study of the URL data demonstrated that steady state
analyses of well tests underest1mate the true mean aperturevof the fractures.
New research should be done to determine the relationship between the true
mean aperture and well test results. These results also point out the need
for transient well test analysis. Such transient analysis will give & good
estimate of the apertures of the fractures which intersect the wells. If
length and aperture are correlated thever both the mean aperture and the mean
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Tengths will be overestimated since the longer fractures with larger apertures
are more }ikely to intersect the well. With a known correlation between length
and aperture, the model studies can be used to detérmine the mean length and
aperture of fractures intersecting a line sample. These values can be compared
to the mean length and aperture of the fracture sample as a whole. In this
manner model studies can be used to develop correction factors for steady state
well test analyses. : ' S
In all the parameter studies, values of NMSE below about 0.05 appeared to
have very regular, symmetric permeability plots. However, there is no distinct
upper value of NMSE above which the permeability plots are irregular open
figures where 1//K is infinite in some-directions.” In the length density
study, values of NMSE greater than 0.2 produced permeability plots that were
not closed. In the URL study, values of NMSE as high as 1.7 were observed,
but for all cases the permeability was never zero in any direction. This dis-
parity is due in part to three factors. First, the boundary conditicns are-
not realistic for high values of NMSE, so NMSE is only a valid measurement
when it has a low value (e.g., below 0.05). Secondly, whether or not the per-
meability is zero in a given direction depends only on the fracture pattern,
not on the aperture distribution. The NMSE, however, depends on both pattern
and aperture distribution: Thus, the values of NMSE based on the URL fracture
data are higher because the apertures are distributed rather than constant as
they were in the length density study. Finally, NMSE is based on the
difference between the best fit and measured values of Kg» not 1//?5.
Therefore, anomalously large measured values of Kg can contribute to a large
value of NMSE. However, in the polar plot, the value of 1//?5 for these
directions can, at most, plot near the origin and do not cause the ellipse to
become an open figure. Care must be taken in comparing the values of NMSE
from different statistical systems when the values of NMSE are high. Even
when evaluating with a study regioh as discussed above, a higher value of NMSE
does not give a quantitative measure of the shape of the permeability plot.
The NMSE is only a measure of relative error and as such is really more impor-
tant than the shape of the polar plot.
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10.4 THE THREE-DIMENSIONAL MODEL.

The three-dimensional model shows great promise for understanding the
permeability of real fracture systems. A major problem with this model will
be verification. Because of the nature of the circular fractures, there is no
1imiting case which reduces to a two-dimensional problem. It may be -that
verification can only be accomplished with a laboratory study. As an alter-
native, it may be possible to partially validate this approximate model with
numerical techniques. One good technique may be to divide each intersection
into n parts which are then treated as n independent intersections. Dividing
each intersection into increments allows a more accurate representation of the
head distribution along the intersection. An optimal value of n may be identi-
fied in this process. Another possibility is to write a completely numerical
solution that discretizes each fracture. This model could then be compared to
the mixed analytical/numerical model in a limited number of small cases.

The two-dimensional parameter studies that have been presented here should
be repeated with the three-dimensional model in order to observe the behavior
of three-dimensional systems and also evaluate the error associated with using
a two-dimensional analysis as opposed to a three-dimensional analysis. Also
the possibility of including mechanical transport in the three-dimensional
model should be pursued. Once the solution for flow is known, the head distri-
bution throughout the fractures is known. Thus, it may be possible to identify
and trace flow tubes through the system.

Three- or two-dimensional models to predict permeability should be used
with caution. Determining the Hydrau]ic aperture distribution from borehole
investigations is very difficult. Yet this parameter is extremely important
in the calculation of permeability since the bulk permeability is proportional
to the aperture cubed. In some cases, the model may be better used to deter-
mine the relative error associated with using a porous medium model for the
fracture system. In these cases the skewedness of the aperture distribution
is more important than its magnitude. In fact, this use of the model is quite
important because the NMSE or its equivalent is not easily measured in the
field whereas the magnitude of the permeability can be measured. If one
desires to use this model to predict the magnitude of permeability throughout
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a site, then the techniques used in collecting small-scale data must be
validated. Largé-sca]e permeability measurements performed at the same loca-
tion where small-scale data is collected for use in the model can serve to
validate the technique. Such large-scale measurements and their relation to

the synthesis of data on small-scale fracture geometry data have been discussed
by Long et al (1980).
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APPENDIX A

FIELD DATA WHICH CAN BE USED TO DETERMINE
THE INPUT PARAMETERS FOR THE MODEL

A.1 FRACTURE LENGTH

~Some information about fracture length can be obtained from measurements
made in the borehole. Such information may be extracted from well test results
on fractures isolated by packers if transient methods are used (Doe,"et>é1,
1982). At URL and other sites, trace length data are available at the surface
and in'eXCavatﬁons. This is currently the primary'source of data on fracture
1eng£h{ 'For each fracture set, measuring the mean and standard deviation of
the observable trace lengths is useful. The data can be collected as shown “in
Table A-1. The minimum trace length included in the sample indicates where
~ the Tehgth distribution is effectively truncated. A plot such as shown in
Figure A-1 is useful for determining the distribution parameters. |

If apparent apertures (i.e., apertures as measured with a caliper) can be

measured at the same time as trace length, it may be possible to gain informa-
tion on the relationship between TengtH‘énd aperture. .This possibility is |
explained.be1ow under the section on aperture.

A.2 ARFAL DENSITY

If the horizontal p]ane'is chosen for analysis, areal dehsity can be
estimated from the trace observations at the surface. ‘Areal density is defined
~ as ‘the nufiber of open fractures per unit area per” set and should be fairly
easy to obtain. Fractures too small to be included in the trace length data
should also be excluded from the density data. The data may also be recorded
as shown on Table A-1. The éamp1é~area'sh0u]d be as large as feasible. Also,
the surfaéé'dété,provﬂdes direct information on both length and orientation.

For any plane a length-density ana1ysﬁs'éénibe performed as described in.
Chapter 6. Data can be obtained from boreholes in or near the plane of
analysis. In this case, the number of open or partly open fractures of each
set intersecting the borehole zones under consideration and the angle between
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the mean pole for each set and the borehole must be known. These values can
be obtained from a borehole television survey.

If borehole sufveys are used to determine the number of fractures per
unit length, the boreholes should preferably be drilled perpendicular to each
set. But if only one survey can be run, a direction halfway between the strike
of the two most prominant sets would be best. The data needed are shown in
Table A-2. Data can be recorded as in Table A-1.

Table A-1. Sample Data Form for Area Surveyé

SAMPLE No. AREA OF SAMPLE:
Set 1 Méan Orientation: Std. Dev. of Orientation:
Fracture Number Trace Length Numbér of Visible Apparent Apérture

end points (0, 1 or 2)

o600 o | -

(<] © o
(<] © (-]
-] -] ]
[+] (<] (<]
Set 2 Mean Orientation: Std. Dev. of Orientatioﬁi
Fracture Number Trace Length Number of Visible Apparent Aperture

end points (0, 1 or 2)

o 0 o0 o
o 0o 0 o
o 0o o0 o
o 0 0 ©O
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Table A-2. Sample Data Form for Line Survey

SURVEY NO.: LENGTH OF SURVEY LINE: - - ORIENTATION OF
- : SURVEY LINE:
No. of Fractures ' Mean Trace Length Standard
From Set Inter- Standard  for Fractures of Deviation
secting the Mean Strike Deviation Set 1 Intersect- of Trace
Set Line Sample of Set Strike ing the Sample Length
1
2

A.3 ORIENTATION

The orientation distribution obtained from the surface trace data will be
of primary interest to the study of the horizontal plane. The open fractures
should be divided into sets. The mean and standard deviation of orientation
(i.e., strike) for each set should be calculated. A plot for each set such as
shown in Figure A-2 would be useful to determine the form of the orientation
distribution. Dip angle is'ignored for the analysis of the horizontal plane.

For application to another plane of analysis similar data could be obtained
from a borehole T.V. survey. But, in this case the mean and dispersion of
the fracture pole directions for each set should be calculated. Stereographic
projections of these data would be useful.
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A.4 APERTURE

Apefture is a very diffiéu]tlparameterlfo‘estﬁmate._ The only way to
obtain effective'hydrau1ic apertures may be to measure them in a well in which
each fracture is packed Off*séparate]y. Very little, if any, of this type of
data is available onjany site.” Well tests performed on short zones containing
several fractures may be available. From these data one can make an educated
guess about the apérturé distribution by assuming the 1afgest fracture in each
zZone was resbonsib]e for all or most of the permeability, oﬁ by assuming all
the fractures conducfed equally. The usefulness of these assumptions are
examined in Section 7.4. ; " | 2

Furthermore, fracture length, £, cén-initiaTWy be assumed to be related

to hydraulic aperture, b, for example by:
1/n b =1log CP - . (A-1)

where C is a constant and n 3;1. The physics of fracture formation and
measurements of fracture roughness as described in Chapter 2 suggest a
correlation between length and aper@ure.‘ The hydrologic importance of this
relationship is that the permeability should be higher if length and aperture
are correlated than if they are not. If length qnd aperture are correlated,
the long conductors which tend to be connected will also tend to be the strong
conductors. The short fractures which tend to be unconnected will also tend
to be weak conductors.

The best way to determine a correlation model for length and aperture
might be to perform transient constant head tests on isolated fractures in the
borehole. The early time data (i.e., the first minute) from such tests give
an estimate of the hydraulic aperture of the fracture intersecting the well.
Later time data can give information about the size of the fracture (Doe et
al, 1982). '

As an alternative, a correlation model might be obtained using surface
trace data. The mean apparent aperture can be estimated by a caliper measure-
ment. If fracture trace lengths and mean apparent apertures are recorded as
suggested in Table A-1, it may be possible to deduce'a_corre]atﬁon model from
a regression analysis of the data, perhaps as shown in Figure A-3. Linéar and
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- exponential models could also be tried. Data should be plotted by sets for
bpen.ffactures only. The model might then be adjusted usihg the'resu1ts of
permeability tests on isolated single fractures in the boreholes. From the
measured permeability, the values of effective apperture, b, can be calculated.
The mean value .of effective aperture should then be compared to the mean aper-
ture as measured by T.V. log. The ratio of mean hydraulic aperture to mean
observed aperture can then be used to move the regression line up or down.
The aperture-length correlation model proposed in Equation A-1 is only
a guess. However, so far no work has been done on the relationship between
length and aperture which would help to derive a model. Since a correlation
between length and aperture is very important to the hydraulics of fracture
networks, this simple model was tried in Chapter 7.
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