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ABSTRACT 

The purposes of this study are to determine whe~ a fracture system behaves 
as a porous medium and what the corresponding permeability tensor is. A two­
dimensional fracture system model is developed with density, size, orientation, 
and location of fractures in an impermeable matrix as random variables. Simu­
lated flow tests through the models measure directional permeability, Kg. · ·· 
Polar coordinate plots of 1/~, which are ellipses for equivalent anistropic 

homogeneous porous media, are graphed and best fit ellipses are calculated. 
Fracture length and areal density were varied su~h that fracture frequency was 
held constant. The examples show~d the permeability increased with fracture 
length. The modeling techniques were applied to data from the Atomic Energy 
of Canada Ltd.'s Underground Research Laboratory facility in Manitoba, Canada 
by assuming the fracture pattern at the surface persists at depth. Well test 
data were used to estimate the aperture distribution by both correlating and 
not correlating the aperture with fracture length. The permeability of models 
with uncorrelated length and aperture were smaller than those for correlated 
models. A Monte Carlo type study showed that analysis of steady state packer 
tests consistently underestimate the mean aperture. Finally, a three­
dimensional model in which fractures are discs randomly located in space, 
interactions between the fractures are line segments, and th~ solution of the 
steady state flow equations is based on image theory was discussed. 
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1 INTRODUCTION 

Interest in storing nuclear waste in deep underground facilities has 
prompted research to analyze the regional ground-water flow systems in dense, 
fractured* rocks. At depth, the permeability of these dense rocks may be com­
pletely due to secondary porosity, i.e., fractures (Davis, 1969). Regional 
flow analysis through great volumes of fractured rock cannot be handled by 
describing each of these discrete flow paths deterministically because the 
informatio~ describing every fracture in the region is not available. Further, 
present computer methods cannot manage such volumes of data. Continuum or 
equivalent porous medium analysis could be used if equivalent porous medium 
parameters can be assigned to the fractured systems. This research is an 
attempt to determine if such appropriate equivalent porous media permeability** 
values exist and determine their values from statistical information on the 
geometry of the discrete fracture system. 

Work reported here includes a literature survey, development of a numeri­
cal approach to the study of the permeability of random fracture systems, and 
application of this approach to several case studies. The literature survey 
is in three parts. The first covers previous work that has been done to relate 
fracture geometry to equivalent porous media values of permeability. The 
second part covers the theory and measurement of homogeneous, anisotropic per­
meability. The third part is a review of fracture geometry statistics as 
observed in the field. The numerical approach includes the adoption of a 
statistical fracture geometry model and the development of a computer program 

.which generates random models of fracture systems and codes them for finite 
element analysis of fluid flow. The fluid flo~ analysis was used to measure 

*For the purposes of this report, the words ''fracture", "joint", and "discon­
tinuity" are used interchangeably. 

**The term "permeability" is used in a generic sense throughout this report. 
All calculations are actually of hydraulic conductivity (LIT) which is also 
called the coefficient of permeability. Hydraulic conductivity, K, is equal 
to kpg/~ where k is the i~trinsic permeability with the dimensions of [L2]. 
See nomenclature for definition of terms. 
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the permeability of the fracture system. First the permeability of a system 
) . 

of regular fractures of infinite extent was stud1ed in order to validate the 
model. Then the permeability of random systems of finite fractures were studied. 

S~ries of random fracture systems were studied to see the effect on perme­
ability of fracture density, aperture and orientation distribution, and scale 
of measurement. Then a regression analysis was developed to determine the 
best-fit permeability ten~or for the fracture system. This analysis was applied 
to a series of cases designed to teit how well the permeability of a rock mass 
can be predicted from the fracture spacing in a well. A further analysis used 
data from the Atomic Energy of Canada Limited's Underground Research Laboratory 
in Pinawa, Manitoba to examine the effect of correlation between fracture length 
and aperture and the applicability of surface trace data to the analysis of 
the fracture sy~tem at depth. Also steady-state packer tests were simulated 
to see if they can be used to determine the aperture distribution of a fracture 
~ystem. Finally the theoretical basis for extending the numerical model to 
thre~ dimensions was discussed. 



3 

2 LITERATURE REVIEW 

2.1 DETERMINATION OF EQUIVALENT POROUS MEDIA PERMEABILITY 
FROM FRACTURE GEOMETRY 

:·: 

Work that has been done to determine the equivalent permeability of frac­
tured rocks from information on fracture geometry (assuming an impermeable 
matrix) can be classified into two categories. Most of this work falls into 
the first category where fractures are assumed to be of infinite extent (con­
tinuous or extensive fractures). Very little work has been done in the second 
category, which takes int6 account the finite or nonextensive nature of fr~c­
ture size. 

Study of the permeability of continuous fracture systems is based on the 
principle that the total permeability of the rock mass can be found by summing 
the contributions of each fracture. The principle holds for fractures which· 
transect the entire rock mass; i.e., continuous or ''infinite fractur~su. Also, 
the assumption is made that head losses in the fracture intersections are 
negligible. The contribution of each individual fracture is determined by 
study of isol~ted fractures under various conditions of flow and stress (Huitt, 
1956; Louis, 1969; Sharp~ 1970; Maini, 1971; lwai'~ 1976; Rissler, 1978; Wither­
spoon et al, 1979; Strack, 1980; and others). However~ for application to the 
study of fracture systems, flow in individual fractures is usua1ly ~ssumed to 
obey the cubic law for flow between parall~l pl~tes: 

b3 
q = -V$ pg 

12
lJ W (2-1) 

where 9¢ is the component of hydraulic gradient parallel to the fracture and W 
is the width of the flow system. 

Simple models of fracture networks based on the cubic law have been 
reviewed by Wilson (1970), including work b1 Serafim and del Campo (1965), 
Crawford and Collins (1954), Crawford and Landrum (1955)~ and Ollos (1963). 
These were either physical models based on electrical or pipe-flow analogs, or 
mathematical models based on orthogonal fractures of equal aperture and spacing. 
Irmay (1955) and Childs (1957) also developed similar models. 

More sophisticated mathematical studies of extensive fracture systems 
were made by Snow (1965, 1969). Snow developed a mathematical expression for 
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the permeability tensor of a single infinite fracture of arbitrary orientation 
and aperture relative to a fixed coordinate system. The permeability tensor 
for a network of fractures is therefore the tensor formed by adding the respec­
tive components of the permeability tensors for each individual fracture. 
Mathematically, the intrinsic permeability tensor of rock with reference to 
the i,j coordinates can be written: 

(2-2) 

wher~ the summation is taken over all the fracture sets in the volume of rock, 
S is the spacing, and ni is the unit vector normal to each fracture. If frac­
tures are a11 randomly oriented, S becomes equal to the dimension of the sample 
perpendicular to the individual fractore. If fractures in a set are parallel 
and equally spaced, then S is constant and equal to the spacing for that set. 

With this model, Snow was able to examine the effect of random variations 
in orientation and aperture -of extensive fractures on the permeability of the 
rock mass. · In the statistical study, the aperture of each fracture in a set 
was chosen as the absolute value of a normally distributed parameter. The 
orientation of each fracture was chosen with a Fisher distribution. As each 
fracture was randomly generated, the total permeability tensor was progres­
sively cumulated. Thus the effect of sample size on total permeability can be 
seen. Snow found that an increase in sample size increases the geometric mean 
permeability. The explanation for this is that as sample size increases the 
probability of adding a rare large-aperture fracture increases. Since the 
permeability contribution of a fraction is proportional to b3~ a single large­
aperture fracture tends to have a very large effect on the total permeability. 

For the aperture distributions studied by Snow, most model systems had 
stable permeabilities at sample sizes of about 200 fractures. A fe~ continued 
to increase in permeability for sa~ple sizes larger than 200. The change in 
permeability from small sample sizes (with 20 to 30 fractures) to large samples 
was from 5 to 25 percent of the results for an infinite number of fractures. 
This implies that a representative sample of the continuously fractured rocks 
studied by Snow usually contains about 200 fractures. The volume of rock con-
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'taining these.200 fractures depends on the density or spacing of the conductors. 
Throughout the remainder of this report, a volume of rock containing a represen­
tative sample of fractures will be called a representative elementary volume, 

or REV. 
For the purpose of comparison, it is useful to examine the size of an REV 

in fractured rock as estimated by other authors. Rats and Chernyashov (1965) 
made a rough approximation based on a statistical analysis·that a homogeneous 
porous medium analysis can be used if the dimensions of the rock being studied 
are at least ten times larger than the order of magnitude of the rock mass 
heterogeneity, i.e., fracture spacing. Maini 's (1971) analysis, based on in­
jection test data, claims continuum or homogeneous conditions can be assumed 
for rock cont~ining nine or more fractures. Further estimates have been 
reviewed by Roegiers et al (1978). The reliability of such methods of estima~ 
tion has not been demonstrated. 

The method of determining the equivalent porous medium permeability (EPMP) 
proposed by Snow has several limitations, some major and some minor. The 
method does not account for fracture roughness and infilling. This deficiency 
may be overcome by using an equivalent flow aperture (Iwai, 1976) or a correc­
tion factor as described by Rissler (1978). 

A much more important theoretical limitation is that this model assumes 
all the fractures transect the entire volume of rock. It can be seen in the 
field that fractures are clearly of finite dimensions. For example, Marine 
(1980) performed tracer tests on a permeable fractured zone in metamorphic 
rock. The tracer tests demonstrated that the permeability was due to inter­
lacing fractures, not a system of continuous conductors. The fact that f~ac­
tures are finite means that each fracture can contribute to the permeability 
of the rock only insofar as it intersects other conducting fractures. Such 
.interconnected fractures comprise the effective s.econdary porosity. In the 
extreme, an isolated fracture which does not intersect any other fracture 
effectively contributes nothing to the permeability of the total rock mass. 
Another limitation of Snow's (1965) approach is that it is difficult to obtain 
data on effective or hydraulic aperture distributions. Further discussion of 
aperture statistics can be found in Section 2.3. 

Three approaches have been taken to overcome the theoretical difficulties 
with Snow's method. Parsons (1966) and Caldwell (1971, 1972) used analog 
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models to study finite fractures. Parson's analysis utilized the approach of 
Fatt (1956) who had analyzed the capillary properties of a network of random­
diameter tub~s, and Warren and Price (1961) who had studied random three­
dimensional arrays of porous blocks. Rocha and Franciss (1977) proposed a 
field method for finding a correction factor to Snow's analysis. Sagar and 
Runchal (1982) proposed an analytic extension of Snow's method. 

Parsons studied two~dimensional regular networks of fractures with random 
apertures. Both square patterns and triple hexagonal patterns similar to those 
of Fatt (1956) were studied. Values from a given distribution of conductances 
were randomly agsigned in the pattern. In many of the conductance distribu­
tions used, the probability of having a zero conductance element was finite, 
which means riot all fractures were continuous across the model. After assign­
ing these conductances, boundary conditions were imposed on the model to 
simulate quasi-linear flow in either the x, y, or 45 degrees from the x andy 
directions. The pressure distribution and flow in each element was calculated 
with a relaxation technique. Total flow was found by summing the flow across 
a plane perpendicular to the overall gradient through the system. Over~ll 

permeability per ~nit height of model was calculated as the ratio of total 
flux to gradient. Anisotropy was studied by doubling the random values of 
conductance ·oriented in one direction. From 1 to 23 random models were 
generated for each of the studied statistical distributions for aperture. ·The 
mean and standard deviation of the resulting directional permeability were 
calculated. 

Parsons did not study the effect of the size of the network on the value 
of the calculated permeability. Nor did he find the complete permeability 
tensor. He did not find any correlation between the overall permeability and 
the element conductance distribution. Parsons did conclude that the larger 
the standard deviation of the conductance distribution was, the larger would 
be the standard deviation of the overall permeabilities calculated with the 
models. Also, he found that the geometric mean of the conductance distributi~n 
is a fair approximation to the permeability of the square network. 

A significant result of Parson's (1966) work was that doubling the permea­
bility of all fracture elements in the x-direction increased the permeability 
in the y-direction. This effect would not be seen in continuous fractures, 



7 

but with discontinuous fract~res~the net flow in they-direction must proceed 
through some fractures oriented in the x-direction. Also, for a similar reason, 
permeability in the x-diredion is less than doubled.· This is an important 
effect in fracture networ~s that must be kept in mind. 

Caldwell (1971) modeled flow in discontinuous fractures. His method con­
sisted of cutting joint sets from conducting paper and mea~uring the potential 
distribution in the model. He determined a "best fit" permeabi 1. ity tensor by 
comparing the measured potential distributions with theoretical solutions for 
different values of the permeability tensor. The accuracy of this trial-a~d­
error method is, questionable. The author was aware that the."best fit" tensor 
is not a unique solution. 

Caldwell also studied models with two brthogonal joint sets.· One set 
consisted of continuous, regularly spaced fracture~. The second set had joint 
lengths that were randomly selected from an exponential distribution and 
spacing equal to one-fourth of the spacing of the continuous set. Three such 
models were studied where the mean length of the discontinuous fractures were 
one, two, and four times the spacing of the orthdgonal joint set~ In t~is 

limited analysis, Caldwell found that where the mean joint length was equal to 
the joint spacing, less than half the joints were hydraulically active. Where 
the mean joint length was at least twice the spacing, Caldwell indicated that 
the permeability of the joint model was equal to the permeability of a model 
with two continuous joint sets. Caldwell (1971) also extended these results 
to nonorthogonal joints. 

Rocha and Franciss (1977) proposed a well test to determine a correction 
factor to the theoretical tensor obtained using'Snow's method. From the cal­
culated tensor, the equivalent isotropic permeability is calculated as the 
cube root of the product of the three principal permeabilities, 31K1K2K3. 
This permeability is used to calculate a steady state flow rate under a given 
pressure. Then a well test is performed. The ratio of the flow measured in 
the field to the flow calculated from the theoretical tensor gives the correc­
tion factor, p, to be applied to the permeability tense~: 

K .. = r~K1 lJ 
0 

0 
(2-3) 
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This single correction factor does not allow for any rotation of the principal 
axes. The authors also propose a trial-and-error solution for applying a dif­
ferent correction factor to each of two fracture sets separately. This method 
would permit rotation .but there is no evidence that such tensors are correct 
for flow systems other than the radial flow system from which they were derived. 

Sagar and Runchal (1982) attempted to extend Snow 1
S (1965, 1969) theory 

for permeability of fractured systems to account for finite- fracture size. 
Some of the assumptions made in their work are physically incorrect. The 
authors assumed that flow in any fracture is independent of flow in the other 
fractures if disturbances at the fracture intersections are negligible and 
flow is laminar. Thus each fracture was assumed to experience a component of 
the field gradient which depends only on the orientation of the fracture. 
From this the authors concluded that 11 any fracture which does not appear on 
the boundary of the rock element considered is of no interest in the calcula­
tion of the equivalent permeability~~ (Sagar and Runchal, 1982). These assump­
tions are correct for the extensive fracture systems analyzed by Snow. However, 

' 
these assumptions are not reasoriable for nonextensive fractures (see Section 
7-6). 

In summary, very little work has been done to quantify the effect of 
finite fracture length in combination with other geometric factors such as 
aperture distribution, fracture spacing, and orientation. 

2.2 HOMOGENEOUS ANISOTROPIC PERMEABILITY 

2.2.1 Anisotropy 

One of the purposes of this research is to determine when a fractured 
medium behaves as a homogeneous anisotropic porous medium. The theory and 
measurement of homogeneity and anisotropy are reviewed here. 

If the permeability of a medium is not the same in all directions, the 
medium is said to be anisotropic. Darcy 1

S law was originally postulated for 
one-dimensional flow. Since directional properties have no impact on one­
dimensional flow, permeability was represented as a single scalar quantity. 
In order to extend Darcy 1 s law to two or three dimensions in the most general 
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case of an anisotropic medium, Ferrandon (1948) ~nd others proposed that 
permeabi 1 Hy be represented by a tensor quantity. This proposal is generally 
supported by either heuristic reasoning or associated laboratory experiments. 

Collins (1961) gives heuristic arguments for extending Darcy's law to 
three dimensions. In order to show what fracture systems will be compared to, 
it is important at this point to review the arguments presented by Collins. 
Darcy's law is extended in such a way that the flux remains linearly dependent 
on the gradient. In one dimension~ 

v = -k £..9. ~ • 
x lJ dx (2-4) 

In three dimensions for an isotropic medium, 

v . = -k £..9. ~ ' 
1 lJ ax. 

1 

i:1,2,3. (2-5) 

For three dimensions and an anisotropic medium, in general, 

- £9.[ ~ ~ a~ J i 1, 2, 3, (2-6) v. - - k.1 a + k.2 a + k.3 a; = 1 lJ 1 x1 . 1 x2 1 x
3 

or, using the summation convention 

_EJlk it_ i = 1., 2, 3 v. = 1 lJ ij ax. j = 1' 2, 3 (2-7) 
J 

The-nine quantities kn, k12· k13,k21· k22· k23· k31· k32· k33, form a 
tensor. The matrix equation for .Darcy's law is 

v1 k11 k12 k13 
a4> 
~ 

v2 £9. 
k21 k22 k23 

a4> (2-8) 
= as lJ 

v3 k31 k32 k33 
a4> 
ax

3 

The most general 'form of the permeability matrix is assumed to be symmetric. 
If ktj is symmetric, the matrix can be transformed to a diagonal fbrm by a 
physical or mathematial model and rotation of coordinate axes: 

(2-9) 
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The coordinate system which diagonalizes this matrix form the principal axes 
and the values k1, k2, k3, are called the principal permeabilities. In this 
coordinate system, for i # j, kij = 0. Therefore, Darcy's law becomes 

v. - - k. . ' - ~ [ aljl J 
1 lJ 1 ax(i) . (2-10) 

where (i) here is exempt from summation. Thus in this form flux is ·proportional 
to gradient in the principal directions and this is the basis for the extension 
of the original Darcy's law. For any medium having orthogonal principal axes, 
kij will be symmetric and the above form of Darcy's law will be correct. A 
medium with orthogonal principal axes has the following properties: (1) a 
reversal of gradient results jn equal but opposite flux, and (2) for arbitrary 
orthogonal axes x, y, z, flow in the x-direction due to a unit gradient in the 
y-direction is equal to flow in the y-direction due to a unit gradient in the 

x-direction, etc. That is, kij = kji' 
Experimental evidence supports this theory. Anisotropic materials which 

were tested did in fact have orthogonal principal axes. However, as Collins 
(1961) points out, there is no guarantee that every porous material has a sym­
metric permeability tensor. In fact it is likely that there are materials 
which do not have symmetric permeability tensors. 

Darcy's law can be derived for idealized cases. For example, ~porous 
medium can be assumed to consist of an assemblage of elementary flow tubes or 
fissures. A good review of these methods is given in Bear (1972). As Bear 
points out, the problem with physical models such as flow tube models is that 
they attempt to represent an inherently disordered medium by an inherently 
ordered medium. This drawback also means that these models are of less 
interest to this research on the permeability of fractured rock. Assumptions 
made to produce an ordered physical model cannot easily be compared to the 
assumptions made to produce a random model. 

The number and variation. of models studied (Ferrandon, 1948; Childs, 1957; 
Scheidegger, 1960; Kozeny, 1927; Carman, 1937; Fatt, 1956) does, however, lend 
support to the concept of anisotropic permeability as a symmetric tensor for 
many media. Elementary flow tube models all presume flow in the tubes follows 
Poiseuille's law. Poiseuille's law states that flux q in a tube is lirearly 

proportional to the hydraulic gradient along the tube, d¢/dx. The constant 
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of proportionality is a function of the diameter of the tube, d, density p, 
viscosity ]..J., and the gravitational constant g: 

'4 
q = - ~ .e.g_ dcj> 

128 J..l ax • ( 2-11) 

Any number of tubes of arbitrary direction and diameter can be added together. 
The resulting flow law is always of the form 

(2-12) 

where k .. is the permeability tensor and V
1
• is the specific discharge 

lJ 
(Ferrandon, 1948 and Childs, 1957). Each specific model will produce a differ-

ent relationship between kij and the geometric properties of th~ model. 
Scheidegger (1960) used the pore size distribution to arrive at the tube dia­
meter distribution. Kozeny (1927) and Carman (1937) derived an expression for 
flow in noncircular, nonlinear tubes. Fatt (1956) modeled networks of tubes 
in a similar manner. 

The fissure models discussed previously are similar to the tube models. 
However, flow in the fissures is governed by the cubic law, which is the solu­
tion to the Navi~r-Stokes_equation for flow b~tween parallel plates. Further 
models based on the resistance to flow provided by the soil grains are reviewed 
by Bear (1972) and are not discussed here. The net result for all these models 
is expressed in Equation 2-12 where total flux is linearly proportional to the 
gradient. 

Another type of derivation of Darcy 1 s law is based on statistical aver­
aging. The geometric properties of the medium are allowed to be random and 
assumptions are made about the average or macroscopic behavior of flow. Some 
of the work which leads to a tensor form for permeability will be discussed 
here. More extensive reviews of this subject can be found in Scheidegger 
(1960) and Bear (1972). 

Day ,(1974) gives a derivation which leads to Darcy's law for anisotropic 
homogeneous media. The derivation is based on work by Hall (1956) and Hubbert 
(1940, 1956). Day extends Hall and Hubbert's work from isotropic to 
anisotropic media. 
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Day, Hall, Hubbert, and also Irmay (1968) and Gray and O'Neill (1976) all 
used the same basic plan to derive Darcy's law. These authors start with the 
Navier-Stokes equations as applied to the details of flow. Then some form of 

averaging is applied under a set of assumptions about the nature of the flow 
regimes. The result is an expression relating the average gradient to the 
average flux, i.e., Darcy's law. 

·For sat~rated flow, Day starts with the following assumptions: 
(1) nonturbulent flow, (2) negligible inertial forces, .(3) rigid solid phase, 
(4) incompressible liquid, (5) viscosity unaffected by the proximity of the 
solid phase, and (6) velocity is zero at the solid-liquid interface. 

Starting with the Navier-Stokes equation for creeping incompressible flow 

which assumes avi/at is negligible 

(2-13) 

where v'i is local velocity, ¢' is local potential, ~is vjscosity, and pis 
density. Differentiating we have: 

a2,, J.l a\i 
-2- = Pg 2 • ax. . ax. ax. 

l. l. J 

Continuity for an incompressible liquid is given by 

so we have the Laplace equation 

av! 
l. 

ax. = o, 
l. 

We seek a solution to the Laplace equation which will satisfy the 

boundary conditions of the detailed porous medium. Note that if ¢ is a 

(2-14) 

(2-15) 

(2-16) 
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solution, then c¢ is also a solution if c is a constant. Also if c¢ is the 

solution, the velocity will be cvi since from Equation 2-13 

a2 
.!!.. - (cv!) 
P ax~ 1 

J 

a2 I 

~ vi a ' a = c - -- = c 2.t.: = - ( c+' ) • pg a 2 ax. ax. 
X. 1 1 
J 

(2-17) 

Day next defines macroscopic potential as a volume average of the microscopic 
or local potential 

«P :: ~ f b«P' dV, 

v (2-18) 

where Vis bulk volume, ¢'i is the local potential, and b = 1 in the liquid 
phase and b.= 0 in the solid phase. Thus the average gradient is 

a, 1 J a,, -a - = -v b -a - dV. x. x. 
1 v 1 

(2-19) 

The major assumption in the analysis is that the local and average velocities 
are connected by a relationship of the form 

v! = c . . v. 
1· '1J J (2-20) 

where Cij are functions of p~sition and independent of the local velocity, 
Vi'. Differentiating this equation twice, we have 

a2 , . a2 v. c .. 
1 1J 

·-2-=v .. 2 .. (2-21) 
axk . J axk 

Substituting this in the Navier-Stokes Equation (2-13) gives 

a2 I 

a,j, I V • 
'I' J.l 1 J.l -------v ax. - pg a 2 - Pg j 

1 xk 

2 ' a c .. 
1J 
2 

axk 

Using the definition of macroscopic potential, Equation (2-22) becomes 

2 . 
a, 1 J ·b a,• dV 1 J b ~g "J 

a c .. 
1J dV, ax.-= v ax. =v a 2 1 1 xk v v 

(2-22) 

(2-23) 
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2 

ac~> 1 J ll a c · -., - = v . -v b - _J_
2 

dV. 
oxi J pg ax . 

A .. 
lJ 

1 --v 

v k 

J 
a2c .. 

ll . lJ 
b p. 2 

9 ax 
v k 

ac~> 
~ = -v .A .. , ox. J lJ 

1 

v. = -(A .. )-1 ~<I> , 
· J lJ ox1 

K .. 
lJ 

. 1 = (A .. )- • 
lJ 

dV, 

(2-24) 

(2-25) 

(2-26) 

(2-27) 

(2-28) 

There are several weak points in this derivation. A major weakness has 
been pointed out by Narasimhan (1980). Narasimhan points out that volume (or 
ensemble) averages only_ make physical sense for extensive quantities, such as 
mass and energy. However, intensive quantities such as temperatur~ or poten­
tial cannot be simply averaged. This is because potential or temperature of 
two disconnected subdomains cannot be added to find the total potential or 
temperature. Quantities such as potential and temperature must be modified by 
capacity functions in order to be averaged. Thus a correct definition of aver­
age potential would be 

"' __ 1 f 
"' - Vm c . 

bm'"'' dV 
c"' ' (2-29) 

v 

where me is the average specific fluid mass capacity of the medium and m~ is 
the local value. The average specific mass capacity may also be difficult to 
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evaluate because in heterogeneous systems, m~ is not additive. Only for 
steady sta~e pro~lems where the potential distribution ii independerit of the 
capacity terms can we have 

+ = ~ J b+' dV. 
v (2-30) 

Day's use of the above form of volume average for¢ without me implies the 
result is applicable only to steady flow. Day implicitly assumed nearly steady 
flow from the beginning by neglecting avi/at in the Navier-Stokes equation. 

Philip's (1957) approach to this problem was to accept the fact that 
Darcy's law really applies only to steady flow. He then examined the transi­
tion from rest to steady flow for incompressible fluids using the Navier-Stokes 
equation including the accel~ration term: 

av .. 
l. ar- = 

2 a · a v. 
- .~ + ~___!.. 

axi P ax~ 
J 

(2-31) 

Philip found that steady flow was established very quickly, within seconds or 
a fraction of a second for most media. Thus Day's assumption that the accel­
eration terms of the Navier-Stokes equation are negligible may not be too bad. 
In other words, as long as the boundary conditions are changing slowly, the 
velocity field can be related to the potential field with the form of the 
Navier-Stokes equation used by Day. So, at least for homogeneous media, the 
simplified form of the volume average may also be approximately correct. 

A further problem in this analysis is the Equation 2-20: 

v' =c .. v .• 
l.J l. . 

If Cij' and therefore permeability, is to be unique, the local velocity distri~ 
bution must.be constant or at least a constant multiple of the velocity distri­
bution ,for which the components of Cij were derived. The components of Cij 
will change when the soil particles move (e.g., in compaction) or when there 
are any changes in the distribution or amount of water in' the medium (nonsteady 

flow). In fact the cij· will be unique only for a given type of boundary conditions 
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and steady (or incompressible} flow. That is, the c .. will be invariant only 
1J 

for kinematically similar, steady flows. 
Day has shown that permeability is a tensor 

of steady or incompressible flow if v~ =c .. v.~ 
1 1 J 1 

for any given kinematic state 
He has not shown that a 

unique permeability tensor can be found for a given medium which controls any 
laminar steady or unsteady flow state. The permeability tensor will be unique 
if 

2 
1 J 

ac .. 
. \J ___2:J_ 

A. . = - -v b - a dV 
1J p xk . (2-32) 

v 
is invariant for any la~inar flow conditions. This can only be proven for 
specific cases as discussed above ·when the full details of the flow system are 
known. Only in these cases are the components of Cij known throughout the 
flow field under any flow conditions. 

Darcy's law cannot be proven for, the general case. The only way to show 
that a given random medium h~s a symmetric permeability tensor is to actually 
measure the directional permeability. The theory of directjonal permeability 
measurement is given below. 

2.2.2 Measurement of Directional Permeability 

Directional permeability can be measured under steady flow conditions. 
If the correct form of Darcy's law is 

q = k .. ~aa = K .. J. ' 
1J xj · 1J J (2-33) 

then this expression can be used to examine the theory of directional permea­
bility measurement. Fundamental to directional permeability measurement is 
the fact that flow and gradient are not necessarily in the same direction. 
Only when flow and gradient coincide with one of the principal axes of permea­
bility will fl0w and gradient be in the same direction. This can be seen from 
inspection of the above Darcy equation. 

Scheidegger (1954) and Maasland (1957) both give analyses of directional 
permeability. Neither stated that there is a difference between measurements 
made in the direction of flow and measurements made in the direction of 
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gradient. Marcus and Evenson (1961), Marcus (1962), and Bear (1972) all give 
the expressions for both permeability in the direction of flow and permeabil~ty 
in the direction of gradient. They show how the results of directional permea­
bility measurement can be plotted as ellipsoids. A summary of these analyses 
is presented here in simplified form. 

If a stead~ flow system is set up where the direction of flux is known, 
then permeability in the direction of flux, Kf, can be defined as 

q = - KfJ. m. , 
1 1 

(2-34) 

where Ji is the gradient vector, mi is a unit vector in the direction of the 
flux, and q is the flux per unit area. Therefore, Jimi is the component of 
the gradient in the direction of the flux (Figure 2-1). 
We have 

1 r= 
f 

J.m. 
1 1 ---v 

Ji can be found from Darcy's law: 

v. = - K .. J. 
J 1J 1 

J. = - v.(K .. )-1 
= -m . ( K .. ) - 1 v. 

1 J 1J J 1J 

Substituting Equation 2-37 into 2-35 gives 

1 ( )-1 -K = m.m. K.. , 
f 1 J 1J 

or 

1 = (li<-f m.)(/K,.m.)(K .. )-1 • . 1 T J 1J 

Substituting 

(2="35) 

(2,-36) 

(2-37) 

(2-38) 

(2-39) 

(2-40) 
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Figure 2-1. General Flow Conditions in Anisotropic Media 
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into 2-39 implies the components of Xi give the coordinates of a ray of length 
IRf plotted (as measured) in the direction of flux, m;. Substituti-ng 2-40 
into Equation 2-39 we have: 

1 = x. x. (K .. )-1, 
1 J 1J (2-41) 

which is the equation of an e)lipsoid with semiaxes of length /Kl, /K2, /K3, 
where K1, K2, and K3 are the principal permeabilities. 

Permeability in the direction of the gradie~t Kg is defined by 

q.n. = - K J 
1 1 g (2-42) 

(2-43). 
/ 

where qi is the flux per unit area, ni is a unit vector in the direction of 
the gradient, Vimi is the component of flux in the·direction of the gradient 
and J is the magnitude of the gradient. Substituting Darcy's law: 

into Equation 2-43 gives, 

or 

Substituting 

q. =- K .. J. ' 1 1J J 

K = g 

K .. J. 
1J J 

J ni 

K = K .. n.n. 
g 1J J 1 

, 1- K .. (/K n.)(iK n.) 
1J g J g 1 

(2-44) 

(2-45) 

(2-46) 

(2-48) 
Equation 2-47 implies that the components of x1 give the coordinates of a 
ray of length 1/ii( plotted (as measured) in the direction of gradient. This 

g 
gives: 

1=K .. x.x. 
1J 1 J 

(2-49) 
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which is the equation of an ellipsoid with semiaxes of lengths 111Rl, 1/IR2, 
and 1/IK3· Recall in Equation 2-41 for permeability measured in the direction 
of flow the semiaxes are /Kl• IKZ• IK3· For permeability measured in the direc­
tion of flux the major axis of the ellipsoid is in the direction of maxi-
mum permeability. For permeability measured in the direction of the gradient 
the major axis of the ellipsoid is in the direction of minimum permeability. 

Scheidegger (1954) reanalyzed directional permeability measurements made 
in the direction of the gradient by Johnson and Hughes (1948). Scheidegger 
plotted 1//KT01 as a function of a on polar coordinate paper for each set of 
data. A best-fit ellipse was calculated. The standard deviation of the labora­
tory values as compared to the best-fit ellipse was about 10 percent. This 
deviation can easily be accounted for by heterogeneities in the samples. 
Greenkorn et al (1964) and Morita and Gray (1980) used a method of measuring 
conductivity in the direction of flow with a whole cor~ type permeameter. 
Resul~s in both iases plotted as an ellipse. This type of laboratory analysis 
tends to confirm that the behavior of many porous media can be predicted by a 
symmetric permeability tensor: 

2.2.3 Homogeneity 

Homogeneity has been discussed by Hubbert (1956), Fara and Scheidegger 
(1961), Toth (1967), Bear (1972), _and Freeze (1975). Freeze pointed out that 
there' is really no such thing as a truly homogeneous medium in geology. 
However, in order to have a-tractable analysis of flow, a scale of measurement 
(the macroscopic scale) must be found for which the porous medium is seen as 
continuous (Hubbert, 1956). On this scale the medium is said to behave as if 
it were homogeneous. The scale at which such analysis is possible is commonly 
illustrated with a diagram such as Figure 2-2. The volume at which the para­
meter of interest (permeability in the case of Figure 2-2) ceases to vary was 
defined earlier as the representative elementary volume (REV). With respect 
to permeability, the REV of a medium can be sought by measuring the average 
permeability of increasing volumes of rock until the value does not change 
significantly with the_ addition or subtraction of a small volume of rock. An 
alternative to this theory was proposed by Fara and Scheidegger (1961) and 
Moran (1962). These authors suggested the use of an autocorrelation function 
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which could be evaluated along random lines through a given porous medium. 
If the medium is homogeneous and isotropic, the autocorrelation function should 
be equal for any line, provided the sample is as large as the REV. 

There is no guarantee that such an REV exists for every permeable system. 
Indeed, Snow's (1969) theoretical and experimental work shows the permeability 
of fractured rock may continue to increase with the volume tested. This 
implies that within the practical limits of the geologic strata the statistical 
sample continues to change with the size of the sample. A further problem has 
been studied by Freeze (1975), Smith and Freeze (1979a and b), and Smith. 
(1978). They have concluded that for some problems it may not always be 
possible to define equivalent homogeneous properties for inherently heterogene­
ous systems. Using numerical simulation, Smith and Freeze studied arbitrary 
flow systems in one- and two-dimensional heterogeneou~ por9~s media. Elements 
of the model were assigned permeability in a random manner. Hydraulic equiva­
lence between the heterogeneous systems and an equivalent homogeneous system 
was based on two criteria (Smith and Freeze, 1979b): 

1. The mean value of the hydraulic head at any point, as determined 
from a stochastic solution that recognizes the spatial heterogene­
ities, must equal the head value at that point, as determined from a 
single deterministic solution using the effective conductivity of 
the medium. 

2. The mean value of any integrated flow measurement determined from 
i 

the stochastic solution must equal the single value provided by the 
deterministic run. 

Smith a~d Freeze concluded that in two dimensions these conditions were 
met only when very restricted conditions were placed on the nature of hetero­
geneity and the flow system operating within the domain. However, this con­
clusion was based on two somewhat lfmiting assumptions. First, the geometric 
mean permeability was always used as the equivalent permeability. Although 
the geometric mean is a good approximation for some flow systems, there·is no 
guarantee that it is always the best estimate of equivalent permeability. 
Second, the equivalent permeability was only allowed to be isotropic. An 
anisotropic value may have met the above criteria. For any given set of 
boundary conditions, Smith and Freeze might have been able to find an 
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equivalent anisotropic permeability which produced the same average flux as 
the heterogeneous system. The difficulty in identifying this equivalent 
permeability is that the equivalent permeability tensor that works for one set 
of boundary conditions will not necessarily predict th~ correct flux for 
another set of boundary conditions. The difficulty arises because, in general, 
different boundary conditions induce different gradients in different parts of 
the flow field. The permeability in one part of the field which has a higher­
gradient will have more effect on the total flux than the permeability in 
another part of the field which has a lower gradient. When the boundary condi­
tions change, the emphasis changes. Therefore, a given equivalent permea­
bility tensor will only apply to kinematically similar flow systems. Recall 
that this is the same ~ifficulty identified in the derivation of Darcy's law 
by Day (1974). 

Maini (1971) points out that the same medium can be consider~d homogeneous 
or heterogeneous, depending on the size of the flow system operating in it~ A 
small flow system in a given medium can be classed as a heterogeneous problem 
while a large flow system in the same medium would behave as if it we~e in a 
homogeneous medium. The physical implications of Maini 's remark are ·important: 
the size of the appropriate REV depends on the flow system of interest. The 
REV must be large enough to contain a representative statistical sample as 
discussed by Hubbert and others and as shown in Figure 2-2. However, for a 
particular application, the unit volume that can be used in an analysis must 
be small enough relative to the flow system being studied so that the gradient 
throughout the volume is approximately constant in magnitude and direction. 
This conce~t is familiar to ground-water flow modelers: the smaller the mesh 
size is, the more accurate the results are because the head distribution with­
in each element is more nearly linear. 

If the average flow lines through an internally heterogeneous volume 
remain linear, it may be possible to define a unique equivalent permeability 
tensor which will be correct for flow in any direction. However, if the 
isopotentials and flow lines are curved relative to the dimensions of the 
statistically determined REV, then the value of the equivalent permeability of 
the REV will depend on the particular kinematics ~f the flow system. In this 
case, no unique permeability tensor can be defined. Further, a prediction of 
the behavior of the flow system as a whole would depend on the knowledge of 
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the equivalent permeability which itself would depend on the flow system. So 
a unique solution to a flow problem would be very difficult to achieve. 

If, on the other hand, the average gradient is constant within the statis­
tically determined REV, then there may exist a single permeability tensor which 
can be used to correctly predict flow in any direction. However, even under 
these constraints there is no guarantee that a unique, symmetric permeability 
tensor will exist for every medium on a given scale. 

Given a flow system similar to that studied by Freeze and Smith (1979a 
and b), for example, flow under a dam, the appropriate volume for an element 
must be small enough to experience a constant average gradient. To satisfy 
the definition of a homogeneous continuum, however, it must also be at least 
large enough to contain a representative sample of the heterogeneities. In 
some cases, a statistically defined REV may be too large to have constant aver­
age gradient. In this case, either a small~r REV must be found as the basis 
for analysis or a classical continuum analysis will not apply. 

Freeze and Smith did not consider the size of the REV relative to the 
size of their problems when they looked for an equivalent pDrous medium permea­
bility. It may be that a larger, ·statistically defined REV exists ori the same 
or larger scale as that of the flow problems they studied. Ho~ever, the boun­
dary conditions imposed on their flow systems systems produced a nonconstant 
gradient field. Thus the largest appropriate REV they could have found had to 
be small compared to the variation in the magnitude and direction of the 
gradi~rit. In fact, the REV in their problems was, a priori, the size of the 
individual blotks that were initially assigned a homogeneous single permea- · 
bility. Constant gradients must be imposed on models such as those developed 
by Freeze and Smith in order to determine if and when a homogeneous equivalent 
system exists on a scale larger than that of the individual blocks. 

The above review leads to several conclusions central to this investiga­
tion. First, it only makes sense to look for equivalent porous medium behavior 
in fractured rock systems using flow systems which would produce linear isopo­
tentials and flow lines in a truly homogeneous, anisotropic medium. Boundary 
conditions that will result in such a flow system will be described in Section 
3.4. Second, the following criteria must be met in o~der to replace a hetero­
geneous system of given dimensions with an equivalent homogeneous system for 
the purposes of analysis: 
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1. There is an insignificant change in the value of the equivalent, 
permeability with a small addition or subtraction to the flow.volume 

2. A single equivalent symmetric permeability tensor exists which pre­
dicts the correct flux when the direction of gradient in an REV is 

changed. 
Criterion (1) implies that the size of. the sample under consideration is 

a good statistical sample of the heterogeneities. Criterion (2) is based on 
the assumption that boundary conditions are applied to the sample which would· 
produce a constant gradient throughout a truly-homogeneous, anisotropic sample. 
The actual gradient within the heterogeneou~ sample does not have to be exactly 
constant for (2) to be satisfied. The average isopotentials of the heterogene­
ous system will probably be the same as the isopotentials in the equivalent 
homogeneous system, if (1) and (2) above are met. However, it is not 
necessary to have a constant actual gradient in order to have a tractable por­
ous medium analysis. For example, if a block of material the size of the REV 
is removed from a flow system and replaced with a block of equivalent homogene­
ous material, the overall characteristics of the flow system will not change 
sig~ificantly if criteria (1) and (2) are met. Each block will have experi­
enced the same boundary conditions and produced the same average fluxes ~cross 
the boundaries. Further~ each block will contain a relatively linear flow 
field. The shape of the isopotentials within the two blocks may be different 
in detail, but this by itself will have no i~port on the overall description 
of the flow system. 

2.3 STATISTICS OF FRACTURE GEOMETRY 

2.3.1 Introduction 

Under a given set of boundary ~onditions, the hydra~lic behavior of a 
fractured rock mass with an impermeable matrix is determined entirely by the 
geometry of the fracture system. Real fractures have complex surfaces and 
var~able apertures, but for the purposes of this study and most other studies 
of fracture systems, the geometric des~ription is simplified. The assumption 
1s made that individual fractures lie in a single ~lane and have a constant 
hydraulic aperture. 
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Characterization of a fracture system is considered complete when each 
fracture is described in terms of (1) its hydraulic or effective aperture, 
(2) its orientation, (3) its location, (4) its size and, for a three­
dimensional description, (5) its shape. In two dimensions, size means length. 
This survey is organized into three sections corresponding to these geometric 
properties. Size and location are discussed together.· 

2.3.2 Apertures 

The hydraulic behavior of fractures has been shown to be a function of 
their aperture, b. Witherspoon et al (1979) has reviewed the data on laminar 
flow in fractures and concluded that flow in fractures obeys the cubic law: 

.9:_ - Cb 3 ,. 
Vcp - (2-50) 

where q is fl~x, \7¢ is the gradient, C is a constant, and b is t~e hydraulic 
aperture. ·Characterization of the permeability of a fracture requires deter­
mining the hydraulic aperture. 

Iwai (1976) was able to define a hydraulic or effective aperture for non­
ideal sample fractures in the laboratory. Iwai studied flow through rough · 
tension fractures. in granite, basalt, and marble, under various conditions of 
normal loading and opening.· First he showed that for a fixed aperture, flux 
was proportional to gradient, i.e., Darcy's law was obeyed. He then tried to 
create a zero-aperture fracture by applying 20 MPa across the fractures. 
Fractures in this condition continued to conduct water. The effective 
parallel-plate apertu~e, b

0
, which would account for this ~esidual flow, was· 

calculated. As load was released, the fractures opened by 6b .. ·The effective 
aperture which accounted for the flow was found to be b + 6b . . o 

Significantly, the effective apertures could not have been measured 
directly for two reasons. First, th~ fracture that was subject to maximum 
stress and ~ppe~red to be completely closed could still conduct water. Second, 
the fractures were rough and the sides had some contact with each other. The 
net effect of roughness and contact area could be measured only hydraulically. 
Thus the effective aperture must be measured by performing hydraulic tests. 
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Unfortunately, it is very difficult to perform hydraulic tests on isolated 
fractures in the field. Such attempts may be hampered by inability to isolate 
single fractures in the borehole, the effect of intersecting fractures, and 
low flow rates required for nonturbulent flow near the wellbore. Limited 
attempts have been made to test individual fractures. For example, Gale (1975) 
isolated a limited number of horizontal fractures with packers and performed 
injection tests to determine their apertures. His data also show that hydrau­
lic and measured (apparent) apertures are not the same. The apertures measured 
from a borehole periscope log were at least one order of magnitude higher than 
the corresponding hydraulic apertures calculated from injection flow rates. 
Gale's data, however, are not extensive enough to make significant analysis of 
the relationship between hydraulic and apparent apertures. 

Because of the difficulty involved in hydraulically isolating a single 
fracture underground, the knowledge of fracture aperture distributions is 
limited to apparent apertures that have been observed directly in cores or 
well logs. Methods for direct measurement of fracture aperture have been 
refined by Rocha and Franciss (1977) and Bianchi and Snow (1968). Rocha and 
Franciss proposed a technique called integral sampling. This method consists 
of drilling a small pilot hole and injecting a grout. Then an overcore is 
taken and the grout filled fractures are measured. Bianchi and Snow used a 
fluorescent dye process to reveal .the fractures on the surface of a rock 
sample. Apertures are then measured with a caliper. The distribution of 
apertures measured by Bianchi and Snow ~as found to be very close to lognormal. 

It may be reasonable to expect the distribution of true hydraulic 
apertures to also be distributed lognormally, Snow (1969) assumed this and 
was able to estimate the mean and standard deviation of aperture distribution 
from normalized pressure test data. He also assumed a Poisson distribution of 
fracture spacing. Individual injection test results were normalized to the 
same length of test zone. Snow then used the frequency of zero discharge 
zones to estimate the mean fracture density, A, He then concluded that the 
mean discharge of individual fractures is equal to the mean discharge of all 
samples of fractures encountered by the uniform test lengths divide.d by >.. 
From the mean discharge, Snow calculated the mean aperture. This analysis 
does not differentiate the aperture distributions for individual sets; all the 

', 

fractures are assumed to be perpendicular to the hole. 
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A further consideration in understanding the aperture distribution of 
fractures is that. fractures of greater extent may be likely to have larger 
apertures. Thus fracture length and apertures are possibly correlated. This 
important topic has not yet been studied. Support for such a correlation 
comes from the literature on fracture formation where the width of a crack can 
be calculated as a function of its length for various stress states (Sun, 1969; 
Secor and Pollard, 1975; Pollard, 1978; Pollard, 1976; Pollard and Muller, 
1976; Simonson et al, 1978). Also studies of roughness show tha~ the scale of 
roughness is linearly related to fracture length (Sayles and Thomas, 1978). 
The possibility of the size of the asperities ·partially determining the 
aperture is further evidence for a relationship between length and aperture. 
The exact nature of the relationshtp between length and hydraulic aperture 
is not yet fully understood. 

In conclusion; the best estimate currently available is that apertures 
are distributed lognormally. However, confirmation of this estimate and the 
relationship of fract~re aperture to lateral extent awaits extensive hydraulic 
field testing ~nd mapping of isolated individual fractures._ 

2.3.3 . Orientation 

The statistics of fracture orientation are perhaps the best understood of 
all the geometric properties of fractures. There are.three reasons for this. 
First, it is relatively easy to obtain a measure of the orientation of a large 
number of fractures. Orientation can be measured in cores or in outcrops with 
simple tools. Second, information on fracture orientation has been developed 
in the pursuit of several different types of engineering projects, notably 
those concerning structural stability of rock masses. These.analyses are use­
ful for hydrologic purposes. In contrast, effective fracture apertures are 
harder to measure. Apertures are only of direct interest to hydrologic 
problems and are therefore not studied by other disciplines. Third, the mathe­
matics of orientation analysis has been of interest to many fields. Statis­
tical analy~is of such data is well developed. Pincus (1953) giv~s an exten­
sive table of references from the earth science field alone. 

Fracture orientation distr~butions are usually ~tudied by plotting the 
poles of each fracture plane on either a stereo net or a Lambert equal-area 
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net. Terzaghi (1965) gives a description of these projections. Data from a 

single or several related sites plotted in this manner usually form- clusters 
or sets. Each set can be identified and analyzed separately. In general, a 

parametric analysis of this type of data consists of determining (1) the form 
of the distribution, (2) a parameter representing the central tendency or mean 

direction, (3) a measure of the dispersion around this mean, and (4) a measure 

of the goodness of fit of the tiata to the theoretical distribution. 
For example, Fisher (1953) gave a simple method for estimating the me~n 

direction of a collection of poles. The mean direction is simply the direction 

of the vector sum of all the unit vector poles. This vector sum is called the 
resultant. Fisher assumed the probability density is proportional to ~kcose 
where e is the angular displacement from the mean and k>O is a measure of 
dispersion. If all N measurement~ are in the exact same direction, the 
resultant R would be of length N. Therefore k is a function of N and R. 

Fisher found 

N - 1 
k = N - R ' (2-51) 

is a good estimate when N - R < 2. It should be noted that Fisher's distribu­
tion is symmetrical about the mean direction. Snow (1965) applied Fisher's 
distribution to the Monte Carlo calculation of the permeability of sets of 
randomly distributed infinite fractures. 

Pincus (1953) gives a thoughtful discourse on the methodology of statis­
tical analysis of orientation data. He discusses requirements for sample size 
and suggests the method of sequential sampling. In this method successive 
increments of data are collected ''until the total picture changes with the 
addition of the last increment by an amount less than that required by the 
precision of the investigation.~ If a model distribution is hypothesized, 
Pincus suggests use of the chi-square (x2) test for model validity. Pincus 
also suggests methods foi applying linear, circular, and spherica) normal di~­

tribution theory to two- and three-dimensional problems. 
Before statistical theory c~n be applied to orientation data, sample bias 

must be removed. Terzaghi (1965) explains the geometric causes of sample bias. 
Orientations are usually measured either in core or on an outcrop. Fractures 
which are more nearly parallel with the core or outcrop haVe a lower proba-
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bility of being sampled. The number of fractures, Ngo, which would be inter­
sected by a hole (or an outcrop) perpendicular to the joints is given by 

(2-52) 

where Na is the number of fractures intersected by the same hole (or outcrop) 
which makes an angle a with the fractures. This formula can be used to correct 
orientation data. However, the reliability of such corrected data decreases 
as a becomes small. When a is zero no correction can be made. This problem 
can be.overcome by sampling several butcrops or core holes in a variety of 

orientations. 
Mahtab et al (1972) developed a computerized method 'for analyzing .clusters 

of orientation data. This program divides the sphere on which the poles are , 
plotted into 100 patches of equal area and obtains the density of poles in 
ea'ch patch; . Clusters are defined as "collections of all points in adjacent 
patches where each patch possesses a density that exceeds the threshold value". 
Mahtab compares the density against a Poisson distribution to identify·thres­
hold values. Once clusters have been identified they are compared to Arnold's 
hemispherical normal distribution with probability density v(\j!, k) given by 

v(1jl, k) = ( kk ) 8 kcos1jl· 
41T(e - 1) 

(2-53) 

where \j;· is the random variable which assumes values 1)Ji, the angle between the 
ith observation and the mean vector, and k is a measure of dispersion. This 
distribution is similar to the univariate normal distribution. Mahtab gives. 
the estimate of k for k > 6 ai 

(2-54) 

Also, the proba~ility P of an observation being within 1)J of the mean is given 

by 

cos1jl 
1 = 1 + k log

8
(1 - P). (2-55) 
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Once the estimate of k is found, the x2 goodness-of-fit test isapplied. 
Mahtab et al applied this method to porphyry copper fracture data. The cluster 
analysis showed a major orthogonal joint system. One of the clusters passed 
the x2 test for Arnold's hemispherical normal distribution; the other two did 
not. Other distributions, for example Fi~her's, could have been examined for 
these two sets. 

2.3.4 Location and Dimension 

The mathematical descriptions of fracture locations and fracture dimen­
sions are interrelated. Therefore, these two topics will be discussed together. 
Fracture traces can be observed in outcrops or in excavations. The location 
of fractures intersecting a borehole can also be determined. Using trace 
length ~nd borehole data, we wish to determine the loc~tion of fractures i.n. 
space and their shape and dimensions. 

Robertson (1970) studied fractures exposed in the tunnels of the de Beers 
mine. Trace length~ of fractures were recorded using a category system with 
four intervals. The distributions obtained were compared to exponential dis­
tributions. In most cases, the fit was considered-good. Robertson experienced 
difficulty in the placing of joints in the correct class intervals. Where -
traces continued into the walls, roof or floor, the correct trace length could 
not be mea$ured. Statistical methods which correct for this censoring were 
not invoked. Robertson also made an effort to estimate fracture shape. The­

author made ''bivariate plots of dip trace length against strike trace length~. 
The authors then assumed that fractures were circular, and concluded that 
joint sizes are underestimated by trace lengths according to the relationship 

A - .!.§. A' 
- 2 ' 

1T 
(2-56) 

where A' is the joint area calculated from the visible trace lengths. Taking 
A to be the average area, then the average fracture radius, r, would be 

(2-57) 

where E(L/2) is one-half the expected value of the trace length. 
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Robertson (1970) estimates the volumetric density of jointing, ~v, given 
the number of joints, n, intersecting a simple line of length L as 

n 
Av = L a(cos o)(cos 6) ' 

(2-58) 

where a is the average area of the joints and e and 8 are the horizontal and 
vertical angles between the sample line and the joint set pole. This estimate 
is based on the assumption that parallel joints are randomly distributed in 

space. The probability of intersecting n joints was assumed to follow the 
binomial law. 

Some further information on fracture shape has come from research on frac­
ture formation. An-~xample of such work is given by Pollard (1978). Pollard . 
suggests that the form of sheet intrusions in sedimentary rock should be 
similar to the form of hydraulic fractures since the mechanics of formation 
are similar. He finds that vertical dikes tend to be greater in length than 
height and horizontal sills tend to be equidimensional. Inclined intrusions 
are rare. Thickness-to-length ratios ranged from about 1/100 to 1/1000. Some 
intrusions ~ere stacked up in groups with small spacings and some were 
arranged in echelon patterns. Fractures formed in echelon would have decreased 
conductivity at the "steps" in the echelon pattern. An elliptical model ,for 
fracture shape may be applicable, at least to the extent that fractures in a 
rock mass were created by hydraulic fracturing. However this model may not 
apply to fracture networks produced by tectonic movements. 

Pfiest and Hudson (1976) and Hudson and Priest (1979) examined the distri­
bution of· fracture spacing along a scan line and concluded that spacing values 
can be approximated with a negative exponential distrib~tion 

( ) -Ax 
f x = A.e , (2-59) 

where f(x) is the frequency of discontinuity spacing, x, and ~ is the average 
number of fractures per meter. An evenly spaced distribution of fractures, 
such as in columnar basalt, would result in a normal distribution. Clustered 
distributions could occur near lithological boundaries or due to stress effects. 
Random spacing, which could occur in homogeneous rock, leads to a negative 
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exponential distribution. Geologically complex rock is likely to have a com­
bination of evenly spaced, clustered, and random distributions. Superposition 
of these. fractures tends to result in a distribution similar to the negative 
exponential because superposition tends to preserve the smaller spacings and 
break up the larger ones. Hudson and Priest (1979) used numerical simulation 
to demonstrate the evolution of a negative exponential distribution from super­
pas it ion. 

Hudson and Priest also analyzed scanline measurements from several tunnels: 
A negative exponential dist~ibution for spacing was found to be a good approxi­
mation. It is interesting to note that at least 200 measurement values were 
required to clearly define a negative exponential histogram~ The mean·an~ · 
standard deviation of the theoretical negative exponential are equal. Priest 
and· Hudson's measurements of the mean and standard deviation were within 20 
percent of each other. 

Baecher et al (1977) reviewed the literature on spacing and length distri­
bution. Both spacing and length have been reported to vary both exponentially 
and ·lognorma) ly. The authors proceeqed to analyze joint data from sedimentary 
and complex metamorphic rocks. Trace length distributions were compared to . 
exponential, normal, gamma, and lognprmal distributions. Lognormal provided 
the best fit to the data. Spacing di_stributions were measure~ by extending 
joints found in outcrops to infinite pla'nes. Distributions of spaci·ng wer_e 
measured for lines of vario~s orientations on an exposed rock surface.· 
Spacings were fit to exponential, negative binomial and lognormal di·stribution.s. 
Exponential distributions provided the best fit regardless of the orientation 
of the sample line. 

Baecher et al (1977) developed a concept~al joint geometry model. Joint 
trace lengths are assumed to be lognormally distributed and spacings are 
assumed to be exponentially distr.ibuted. The 9-uthors infer that joints are 
discs r-andomly distributed in space. Joint radii are shown. to be lognormally 
distributed. Using this model, the authors estimated the expected joint xadi i 
from the expected trace length much as Robertson (1970) did. However, unlike 
Robertson, Baecher et al. lower this estimate to account for the sampling bia:s 
of larger joints appearing disproportionately .in the sample. They give the 
expected value of r as , 
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[ -1 -3 )]-1 E(r) : 2.2E (L) + 6.96 Var(L) E (L , (2-60) 

where L is the trace length, E(L) is the expected value of L, and Var(L) is 
the variance. From the spacing distribution data the density of jointing for 
a set of parallel joints was estimated a~ 

N/L 
A = 2 ' 

n (cos e )E(r ) (2-61) 

where N is the number of joints intersected on a line of length L which makes 
an angle 9 with the joint poles. This estimate is similar to Robertson's 
(1970) result. However, a~ explained above, Baecher's estimate of joint size 
includes a correction for sampling.bias. 

Baecher and Lanney (1978) further examined bias in trace length sampling. 
They identify three types of bias: size bias, truncation bias, and censoring 
bias. Size bias occurs because larger joints have a larger probability of 
being sampled. Truncation bias occurs because joints smaller than a certain 
size are eliminated from the survey. Censoring bias occur~ because the full 
trace length of some joints is not observable. 

Size bias can be accounted for if assumptions are made about the shape 
and distribution of joints in space. Baecher assumed joints are circular discs 
randomly located in spa~e. Then the piobability of a joint being intersected 
by an outcrop is proportional td its radius. Baecher shows that the distribu­
tion of trace lengths, L, is given by 

110 

rclje) = J 
L/2 

Cr L f(rle) dr, 
2rf4r2 - L Z 

(2-62) 

where C is a constant and 9 is a vector of parameters (not explicitly defined 
by the authors). For exponential or lognormal forms for f(r), Baecher and 
Lanney show that the expected value of trace length, E(L), is greater than 
twice the expected value of the·uncohdi~ional average. Also, f(L) has 
lognormal form whether f(r) is lognormal or exponential. 

Truncation also leads to systematic overestimation of average joint size 
since smaller joints are systematically removed from the sample. This error 
is greater for exponential distributions than for normal or lognormal 



35 

distributions. For an exponential distribution of true trace length, Baecher 
finds the estimated mean trace length is up to three' times larger than the 
true mean, depending on the truncation limit. Censoring tends to cause an 
underestimation of mean trace length. This bias cannot be easily corrected, 
but Baecher and Lanney present some approximate corrections. 

Barton (1978) studied an unusual outcrop where all the joints belonged to 
a single set perpendicular to the outcrop. The size of the outcrop was such 
that there was no apparent censoring, and truncation at the lower limit was at 
a well-defined 30 mm. Barton established a numerical model of the joints which 
placed parallel circular discs randomly in space. Various distributions of 
radius were assigned to the discs. The numerical model was used to calculate 
trace length distributions for a plane intersecting the model perpendicular to 
the fractures. Barton found that chords from circles with lognormally distri­
buted diameters were distributed in a similar manner to the trac~ lengths of 
the field site. Further, the analysis showed that the standard deviation of 
the trace length distribution is always higher than the standard deviation'of 
the diameter population. This can be understood by considering the case where 
the discs are all the same size but the traces are not. The model also showed 
that size bias becomes more important as the size range of the population 
sample increases. 

Slightly different models of fr.acture systems were presented by Veneziano 
(1979) and Conrad and Jacquin (1973) for application to rock mechanics. 
Conrad and Jacquin's two-dimensional model separates fractures into two super­
imposed networks. First there is a network of large fractures called major 
fractures, which are infinite straight lines. These lines form convex polygons 
in the plane. The second is a network of small segments called minor fractures. 
These straight line segments extend at most to the perimeter of the polygons 
defined by the major fractures. The network of major fractures is formed by 
Poisson major fracture~. The network of major fractures is formed by Poisson 
lines of variable density according to direction. The network of minor frac­
tures consists of line segments of random location, length, and orientation. 

The Poisson lines are constructed as follows: a base line is drawn per­
pendicular to the direction of each set of major fractures. A certain number 
of Poisson points are generated on this base line. Poisson lines are drawn 
through these points perpendicular to the base line. This is similar to the 
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method employed by Lippmann (1973) in his study of heterogeneous porous media. 
The Boolean diagram of minor fractures is constructed such that the center, 
orientation, and length of the fractures are random. Then the fractures are 
truncated where they intersect a major fracture. Using statistics obtained 
from an observed network of fractures, Conrad and Jacquin simulated a random 
network. The model was used to calculate geometric parameters of the blocks 
such as area perimeter and height. Most of these geometric comparisons between 
the observed network and simulated model were favorable. The authors suggest 
the model could be improved by truncating the major fractures and extending 
the model to three dimens1ons. 

Veneziano's (1979) model is similar to that of Conrad and Jacquin (1973). 
However, Veneziano defines only one type of network. The fracture network is 

constructed using two proc~sses. The primary process includes a random network 
of anisotropic Poisson lines in two dimensions or planes in three dimensions. 
The secondary process partitions each line or plane into two random sets: one 
set for intact rock and the other for open fractures. In two dimensions, each 
line is partitioned into segments by a Poisson point proce~s. In three dimen­
sions, the plane is part~tioned with a random polygonal tesselation induced by 
a homogeneous Poisson network of lines in the plane. The probability that 
each line segment or polygon is an open fracture is allowed to vary with the 
orientation of the line or plane. A homogeneous, anisotropic network of joints 
results. By taking limiting cases of the parameters, this model becomes essen­
tially the same as the model proposed by Baecher et al (1977) except that 
Baecher used circular fractures, and Veneziano's are polygonal. Veneziano's 
model has the advantage of easily simulating systems with more than one frac­
ture in a given plane or gene~ating fracture~ with variable apertures. 
Veneziano used this model to predict rock failure in slope stability problems. 

In summary, the best current estimates based on field data for the geo­
metry of fracture location and length result in elliptical fractures located 
randomly in space. This is essentially the model of Baecher et al (1977). 
(Note that circles are subsets of ellipses.) Thus the spacing between frac­
tures is likely to be distributed in a negative exponential manner. Fracture 
radii, if fract~res are taken as circular, are distributed either lognormally 
or in a negative exponential manner. Correlations between fracture length and 
hydraulic aperture are not available. Correlations of length and density with 



37 

orientation are available since fractures are commonly d1vided into sets for 
analysis. For certain rocks, however, some variation of the more complex 
models of Conrad and Jacquin (1973) and Veneziano (1979) may be more applicable 
than Baecher's model. Sa far, the above models of fracture geometry have been 
used to analyze slope stability but not to predict hydraulic behavior of a 
rock mass. 

2.4 CONCLUSIONS FROM THE LITERATURE SURVEY 

The permeability of fractured rocks where the fractures transect the 
entire rock mass is well understood (Snow, 1965). The permeability of systems 
of nonextensive fractures is not well understood. There can be no generalized· 
analytic formulation which can account for the random interconnections between 
nonextensive fractures. Some modeling work on nonextensive fracture systems· 
has been done but this work has not yet examin~d the circumstances under which 
it is reasonab 1 e to represent fractured systems with an equi va l,ent porous·, .. 
medium permeability. 

In order to examine this problem, it is necessary to understand the·nature 
of porous medium permeabil~ty. In general, porous media are anisotropic. 
Although the anisotropic permeability tensor is usually assumed to be symmetric, 
this assumption may not always be valid. The only way to find out if a .given 
medium has a symmetric permeability tensor is to measure the directional per­
meability. For a symmetric tensor, permeability measured in the direction of 
the gradient or the flux can be plotted such that it forms an ellipse. In the 
case of the permeability measured in the direction of the gradient, 1/~ 

g 
plotted in polar coordinates versus a, the direction of measurement, is an 
ellipse. The values of the components of Kij can then be determined from the 
plot of the ellipse. 

If a volume of fractured rock can be represented by an equivalent volume 
of homogeneous anisotropic material, then the calculation of regional ground­
water flow will be tractable. Also, in order to perform the analysis, an 
appropriate REV must be found. An appropriate REV is the volume that is (1) 
large enough to contain a representative sample of the heterogeneities and (2) 

small enough relative to the flow problem of interest to experience a constant 
average gradient. Thus it is possible that the appropriate REV may either be 
very small or nonexistent for a particular flow system in a particular medium. 
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A block of fractured rock can be tested to see if it behaves as an equiva­
lent homogeneous porous medium. Boundary conditions which would induce a con­
stant gradient throughout an anisotropic homogeneous medium are imposed on the 
rock. Flux is measured and permeability calculated. This process is repeated 
in many directions and the _results plotted on polar coordinate paper as 
described aboye. If an ellipse is qbtained, the permeability of the rock is a 
symmetric tensor. Then the rock must be tested to see if the addition or sub­
traction of a small volume to the sample of rock significantly changes the 
value of the tensor. If a volume of rock tested as described above has a 
symmetric permeability tensor which is constant with small volume changes, 
then that volume may be replaced by an equivalent porous medium in the analysis 
of flow problems which are large compared to the volume tested. 

The literature on fracture geometry w~s reviewed to find realistic frac­
ture systems to test for porous medium behavior. Based on the information 
available, a realistic two-di~ensional· fracture system model has the fracture 
centers randomly located in the plane. Fractures are generally elliptical in 
three dimensions, so they are line· segments in two dimensions. Their orienta­
tions by sets are distributed normally, trace lengths are distributed either 
exponentially or lognormally, and apertures are distributed lognormally. 
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3 DESCRIPTION OF THE NUMERICAL ANALYSIS 

3.1 INTRODUCTION 

In order to determine when a fracture network can be treated like a porous 
medium, a numerical approach has been taken in this work. A numerical program 
was developed to generate sample fracture systems and measure their directional 
permeability. The program was then used to study examples of extensive and 
nonextensive fracture systems and determine how well their behavior approxi­
mates that of a porous medium. 

A two-dimensional mesh generator produces random realizations of a popula­
tion of fractures. Input to the generator includes specification of- the dis­
tributions that describe the fracture population. The mesh generator can 
randomly choose fractures for the sample according to these distributions. A 
finite-element analysis can then be used to calculate Cg, the component of 
flow through the pattern in the direction of the gradient. Using Darcy's laW~ 

the hydraulic conductivity in the direction of the gradient. Kg, of the sample 
fracture pattern is calculated by 

(3-1) 

where A is the gross area perpendicular to flow. This program can be u~ed to 
study the effect of sample size on conductivity measurement. First a large 

- -

fracture pattern is generated. A small piece of this sample can be numeritally 
removed and subjected to the numerical conductivity test described above (Equa­
tion 3-1). Succeedingly larger pieces can be tested and the results compared. 

The program can also be used to study the variation in conductivity 
between different realizations of a statistically described fracture system. 
This Monte Carlo type of analy~is can also be used to analyze statistical data 
collected in the field. An expected value and standard d~viatidn of equivalent 
porous media conductivity are obtained 1~ this way. 

3.2 MESH GENERATION 

Fracture patterns are ~reduced according to the best currently available 
description of real fracture systems. Sets of fractures are assumed to be 
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independent and individual fractures are randomly located in space. Length 
distributions are assumed to be lognormal or exponential. Apertures are 
assumed to be lognormally distributed. Orientation is normally distributed. 

The permeability test that is applied to the fracture model is independent 
of the way the fracture pattern is generated. A fracture model, such as that 
proposed by Veneziano (1979), could also have been used and the remaining 
analysis of permeability would still have been valid. 

A particular sample fracture pattern is randomly generated in a rectan­
gular or square area (generation region) of a specified dimension. A general 
description of this process follows. Each set of fractures is generated inde­
pendently. Then the individual sets are superimposed (Figure 3-1). The loca­
tion of each fracture in a set is found by assuming the center of the frac­
tures are randomly distributed (Poisson distribution) within the generation 
region (Figure 3-1a). For each set, a density (number of fractures per unit 
area) must be supplied to determine the total number of fracture centers to be 
generated. 

The orientation of each fracture in a set is determined next (Figure 3-1a). 
Orientation of fractures in a set has been assumed to be normally distributed. 
Therefore the mean and variance for orientation must be supplied for each set. 
At this point, the equation of the line on which the fracture lies is 
identified. 

The length of each fracture is chosen next (Figure 3-1c). Fracture length 
within a set is assumed to be distributed lognormally or exponentially. If 
the length is distributed lognormally the mean and variance must be supplied. 
In the case of the exponential distribution, the parameter A, is equal to 1/i 
where i is the expected value of the fracture length. The value of i must be 
supplied for each set. Fracture centers have been constrained to lie within 
the generation region. However, when lengths are assigned, part of the frac­
ture may be outside the boundaries. These fractures are truncated at the 
boundaries of the generation region. 

Finally, apertures are assigned to each fracture (Figure 3-1d). This can 
be done in two ways. The simplest way is to assume that apertures are log­
normally distributed within a set. For this approach a mean and variance for 
aperture must be supplied for each set. A second way is to assume that 
apertures are correlated with fracture length according to some model. A 
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simple model has been incorporated into this mesh generation procedure. This 
model assumes that the mean fracture aperture. associated with a particular 
fracture length is proportional to the log of fracture length to some power: 

- 1/n b(i) = log CP • (3-2) 

The actual value of b assigned to a particular fracture is found by allowing 
5(~) to be the mean value of a normal distribution. To use this method, two 
parameters to describe the relationship between 6(~) and ~ and a third 
parameter, the standard deviation of the normal distribution of b around 5(~), 
must be supplied~ Use of this option and definition of the input parameters 
is described in Chapter 7 and Appendix A. 

When all the sets have been generated, a flow region is selected. The 
fractures which lie in the flow region are identified and the coordinates of 
each intersection are calculated. A more detailed explanation df the mathema­
tics is given in Section 3-7. 

3~3 STATISTICAL CONSIDERATIONS 

This model is designed to study variation in conductivity for fracture 
systems that are homogeneous in a statistical sense. That is, the geometric 
characteristics of aperture, length, orientation, and location of the fractures 
in the system are assumed to be distr1buted in the same manner throughout the 
rock. Fractures in the field may or may not be homogeneous within discernible 
boundaries. Conclusions drawn from this study will apply only to regions of 
rock which are statistically homogeneous. 

3.4 MEASUREMENT OF CONDUCTIVITY 

As previously discussed, conductivity of a homogeneous medium can be 
defined either in the direction of flow or in the direction of the gradient. 
In a heterogeneous medium such as fractured rock, ~onductivity must be measured 
in the direction of the gradient. The average gradient can be constant in 
magnitude and direction throughout a heterogeneous region in steady flow if 
the region behaves like a homogeneous porous medium. The direction of flow, 
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however, is controlled by the direction of the fractures. Since the direction 
of the gradient can be controlled, measuring permeability in the direction of 
the gradient is much easier than measuring in the direction of flow. 

The boundary conditions necessary to produce a constant gradient in a 
rectangular anisotropic flow region are illustrated in Figure 3-2. They 
consist of two constant-head boundaries (¢2 and ¢4) and two boundaries with 
the same linear variation in head from ¢2 = 1.0 to ¢4 = 0. Conductivity is 
measured in the direction perpendicular to Sides 2 and 4. 

The linearly varying boundary conditions in Sides 1 and 3 are necessary 

because, in general, the medium in the flow region is anisotropic. Without 
these boundaries, the lines of constant head would be distorted near Sides 2 
and 4 as shown in Figure 3-3. When the isopotentials are distorted, only part 
of the flow region can experience a constant gradient~ In an arbitrary 
heterogeneous system of unknown anisotropy. it is impossible to determine what 
part of the system is experiencing a constant gradient and what part is not. 
Therefore when no flow boundaries are used, it is not always possible to 
measure only that part of the flux which is due to a known ~onstant gradient. 

The boundary conditions used in Figure 3-2 insure that the whole fracture 
system is equally stressed by the hydraulic gradient. Under these boundary 
conditions, wh~ther or not a constant gradient actually exists in the flow 
region depends only on how well the fract~re system is interconnected. If the 
system is well connected, it will behave like a porous medium and have a con­
stant gradient. See Chapter 10 for a discussion of the limitations associated 
with the use of these boundary conditions. 

Applying Darcy's law to an Lxl flow region under the boundary conditions 
of Figure 3-2 we have 

Qx 
K ~+ K a4» r-= XX ax xy ay' 

~= K ~+ K ~ 
L yx ax yy ay ' 

(3-3) 

where Ox and Oy are the total fluxes per unit thickness in the x and y 

directions, respectively, and L is the dimension of the square flow region. 
For the boundary conditions shown in Figure 3-2, a~/ay is zero. K can 

'+' XX 

be calculated: 

K 
XX 

-Qx Qx 

= <<Pz- <P4)L = <Pz- q,4· 
L 

(3-4) 
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For ¢2 = 1 and ¢4 = 0, and consistent units, Kxx 
Since Oy is also known, Kxy can be calculated: 

is numerically equal to Ox· 

Qy Qy 
K - - -,--..L.---,--
xy- C$z- $4)L- 'z- $4. (3-5) 

L 

For ¢2 = 1 and ¢4 = 0, as above, Kxy = Oy· 

3.5 ROTATION OF THE FLOW REGION 

Conductivity in a fracture pattern c~n be measured in any direction 
chosen. Figure 3-4a shows a sample fracture pattern called a generation 
region. An arbitrarily oriented rectangular section of the region (called a 
flow region) can be chosen for analysis as shown in Figure 3-4b. Boundary 
conditions are applied to the boundaries of this flow region and conductivity 
is measured in the direction of the orientation of the flow region. This 
direction is specified by a, the angle between Side 1 and the x-axis. 

In general, the fracture pattern forms an anisotropic medium. For homo­
geneous a~isotropic media the directional conductivity, 1/IKxx(a) where a is 
the angle of rotation, is an ellipse when plotted in polar coordinates. 
However, for heterogeneous fractured media, 1/IKxx(a) may not plot as a smooth 
ellipse. In fact, the shape of a polar plot of measured values of 1/IKxx(a) 
for a given area of rock may be quite erratic. This plot can establish 
whether or not the given area can be approximated as a homogeneous porous 
medium. If 1/IKxx(a) does not plot at least approximately as an ellipse, then 
no single symmetric conductivity tensor can be written to describe the 
behavior of the medium on the scale of measurement. If there is 'no 
conductivity tensor, then flow through the medium cannot be analyzed by 
existing continuum techniques. 

If 1/IKxx(a) does not plot approximately as an ellipse, behavior of the 
block of rock in situ cannot be predicted by application of the boundary 
conditions of Figure 3-2. This is because these boundary conditions are 
unlikely to apply in situ if 1/IKxx(a) does not plot as an ellipse. A 
technique for predicting the behavior of such systems is discussed in 
Chapter 10. 

-If the flow region is to be rotated, it cannot be as large as the 
generation region. If the generation region is a L x L square, the largest 
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square flow region which can be rotated within the generation region is L/12 x 
L/~. Each flow region of a different orientation will contain different parts 
of the fracture pattern. In Figu~ 3-5, for example, the corners of flow 
region Bare not included in A. Likewise, the corners of A are not included 
in B. A and Bare, therefore, not exactly the same sample. This limitation 
of geometry is assumed to be negligib~f the fracture geometry statistics of 
each flow region are nearly equal. 

3.6 FRACTURE FLOW PROGRAM 

Flow through the fracture system is calculated using LINEL, a finite­
element program developed by Wilson (1970) for fracture flow. Fractures are 
represented as line elements with flux related to aperture by the cubic law. 
The rock matrix is assumed to be impermeable. Only the steady state flow rate 
is calculated. 

This line element program solves a series of equations, one equation for 
each fracture intersection or endpoint {i.e., node). Th~ equation for each 
node is simply a mass balance equation, flow into the node equals flow out of 
the node. For N nodes, there are N equations and N unknowns. The ~ unknowns 
are either the head or the flux at each node. If these N equations are writ­
ten in matrix form, the matrix of coefficients is symmetric and banded. The 
original version of LINEL does not exploit this symmetry in its solution 
technique. 

The size of fracture problem that can be studied using the orig~nal 
version of LINEL is limited by the size of the coefficient matrix. This size 
limitation has been the major obstacle to studying statistically representative 
systems. To reduce this problem the solution scheme of LINEL was replaced by 
a solution scheme which requires storage of only one half of the band width of 
the symmetric coefficient matrix. 

The results of this effort were somewhat disappointing. The increase in 
the allowable problem size has been less than an order of magnitude. However 
the program was then rewritten to run on the VAX-11 machine. Very large 
problems requiring millions of bytes of storage can easily be run. 
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3.7 MATHEMATICAL DESCRIPTION OF RANDOM GENERATION 

The following describes the mathematics of generating a random network of 
fractures. 

3.7.1 Poisson Distribution 

Fracture centers for a given set are assumed to be randomly distributed 
in space by a Poisson distribution. A random sample of fracture centers for a 
given generation region is obtained by simply taking pairs of random numbers 
between zero and one. The number of significant figures in these random 
numbers i~ set by the user. These pairs become the coordinates of the center 
points when multiplied by the length and width of the generation region, 
respectively. One only needs to know the density of points or alternatively 
how many points to generate in the given area. The original generation region 
has the density specified by the user. The smaller flow region, however, may 
have a slightly different density. Also, as the flow region is rotated, the 
density of the different flow region samples may not be exactly the same. 

3.7.2 Normal Distribution 

In two dimensions, the orientation of fractures in a given set is speci­
fied by the angle the fracture makes with the x axis. For a given set, these 
angles are assumed to be distributed normally. Because the angle e is effec­
tively the same as the angle e + 2nn, n = 1, 2, 3, ... , the distribution 
resulting from the simulation is not exactly the same as the model distribu­
tion. This difference is ignored at this point. 

A normally distributed variable x, with mean ~and variance o2 can be 
simulated as follows. By the Central Limit Theorem, sums of random numbers 
are approximately normally distributed. Hammersly and Hanscomb (1964) show 
that the sum of 25 random numbers is a good approximation of a normally distri­
buted variate. Let 

(3-6) 
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where Rn is a uniformly distributed random number between 0 and 1, E(Rn) = 
1/2, and Var(Rn) = 1/12. Now the expected value of Sn is 

and its variance is 

Let 

2 N 
Var(5 ) = E[5 - E(5 )] = --12 • n n n 

* 5 = n 

5 - E(5 ) 
n n 
I Var sn 

Now SA is normally distributed with E(S~) = 0 and Var(SA) = 1. 
Equations 3-7 and 3-8 into 3-9 gives 

For N = 25, Equation 3-9 becomes 

s - !i * n 2 
5n =~· 

· ITI 

s* = (!, Rn)-
n ~~~ 

12.5 

'• 

( 3-7) 

(3-8) 

(3-9) 

Substituting 

(3-10) 

( 3-11) 

If X 
2 

* = 05 + ~. then x is normally distributed with E(x) = ~and n Var(x) = 
n 

0 • So we have 
12.5 

X : C1 

~~~ 
+ lJ. (3-12) 

3.7.3 Lognormal 

Apertures and fracture lengths within a set can be distributed lognormally. 
We have shown how to generate normally distributed values of x with mean ~ 

and variance of 0
2• The probability density of x is 

f(x) = o(~•) exp[ -(x2/)2] ( 3-13) 
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= ~n y. Now f(y) is lognormally distributed with 
by Benjamin and Cornell (1970) as follows: 

1 { 1 ( R.n y - J.J ) 
2

} f( y) = yo ffn exp - 2 . a ' 

Let E(y) = a: and Var(y) = s2. Then by integration, 

E(y) = a 
j.J o

2 
/2 = e e , 

2 o2 ( 2 2 ) 
Var(y) = e = (e - 1)e 

0 
+ J.J 

Solving for~ and o2, we have 

J.J = lna - ~ R.n 

a
2 = ln[m2 

+ 1] 

probability density 

y ) o, (3-14) 

(3-15) 

(3-16) 

(3-17) 

(3-18) 

Given values of a: and s2, 
find normally distributed 
are found as y = exp x. 

we calculate ~ and o2• Then ~ and o2 are used to 
) 

values of x as previously described. Values of y 

3.7.4 Exponential 

Fracture length is sometimes assumed to be distributed exponentially 
within a set. The exponential density and distribution functions are given, 
respectively, as 

{ . "Ax X ) 0 
f(x) 

).e 

0 X ( 0 (3-19) 

c" e 

-AX X ) 0 

F(x) = 
X ( 0 (3-20) 

where E(x) = 1/A. So A is equal to the inverse of the mean length. 
Simulation of f(x) can be accomplished as follows. Let y be distributed 

uniformly on (0, 1). Then the probability density g(y) and distribution 
function G(y) are 
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g( y) = f 1 . 
) 0 -

G(y) = n 
0 ( X ( 1 

elsewhere, 

X ( 0 
0 ( X ( 1 
X ) 1. 

Let x = -(1/\)[tn(l - y)]. 
be shown to be exponential 

Then the probability density of x 
(Hoel et al, 1971), since 

F(x) = P(X c; x) = P(-A-1 ln(1 - Y) c; y) 

= ~(Y c; 1 - e-AX} 

= { 
Aoe-xy 

F' (x) = f(y) 
for y > 0 

for y c; 0. 

(3~22) 

for \>0 can 

(3-23) 

(3-24) 

Since 1.- y ~s distributed the same way as y, exponentially distributed values 
of x may be obtained simply by letting x = (~/A)(ln y) where y is a random 
number between 0 and 1. 

3.8 CALCULATION AND PLOTTING OF AVERAGE ISOPOTENTIALS 

The constant head boundaries shown in Figure 3-2 should in fact produce a 
constant average gradient in a fractured sample which behaves like an equiva­

lent porous medium. The program, PCTOUR has been developed to locate and plot 
these average isopotentials. 

ihe program LINEL calc~lates the head at each fracture infersection or 
endpoint (i.e. at each node). Given the value of the isopotential of 
interest, PCTOUR checks the endpoints of each fracture segment (element) to 
see if the head at one endpoint is below the isopotential value and the other 
is above the value. If this is the case, PCTOUR does a linear interpolation 
to find the point on the fracture where the isopotential crosses the fracture 
segment. For each isopotential all the points where the particular value of 
head is found are plotted. The x- and y-axes are defined such that the x-axis 
is in the direction of the gradient and the y-axis is perpendicular to the 
gradient. PCTOUR goes on to calculate the average x-coordinate of the points 
found as described above and plots a line parallel to they-axis through this 
point. The standard deviation of the points from the line is also calculated. 
For the usual head difference of 1.0 em across the flow region, the 0.75 em, 
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0.5 em, and the 0.25 em average isopotentials are usually plotted. For a 
homogeneous anisotropic medium, these isopotentials should be equally spaced. 
The more nearly homogeneous the system is, the smaller the standard deviation 
should be, but this is not a necessary condition for a medium to have an equi­
valent porous medium permeability. 

3.9 VERIFICATION OF THE CONDUCTIVITY MEASUREMENT 

Fracture systems of known theoretical.conductivity were tested to verify 
the numerical method of permeability measurement. The conductivity of fracture 
systems with infinitely long fractures is known from the theory developed by 
Snow (1965) and others. Because of the physical basis of this fr&cture model, 
we could only examine finite pieces of such fracture systems. The infinite 
fractures are seen in a finite model as fractures which transect the entire 
model. Fracture systems with two sets of parallel, evenly spaced, equal 
aperture fractures were tested to avoid problems of representativeness as much 
as possible. Effort was concentrated on fracture sets of equal apertures joo 

apart in order to study an anisotropic case. The results of these tests are 
presented here. 

Figure 3-6 is the generation region used to obtain all the subsequent 
flow regions given in Figure 3-7 and discussed below. The spacing of the 
fractures in these meshes is 10 em. The apertures are all 0.1 em. Arrows on 
the figure show the direction of the gradient and the direction of the conduc­
tivity measurement. Due to the symmetry of this example conductivity measure­
ments were only m~de for angles of rotation every 15° from a= 0° to a = 105~. 
Values of 1/IKxx(a) were plotted on polar coordinate paper and compared with 
the theoretical ellipse (Figure 3-8). 

In all, agreement between theoretical and numerical results is good. The 
differences in values can be attributed to the finite nature of the numerical 
model. Conductivity in the model is calculated with the equation 

q (a) 
Kxx(a) = V~L , (3-25) 

where the dimensions of the flow region are Lxl. To be exactly equal to the 
theoretical result~, L would have to be an even multiple of the component of' 
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spacing of the fractures perpendicular to the gradient for every direction of 
measurement. This can only occur for all sets and all rotations in the limit 
as L approaches infinity. Since L is arbitrary, the larger the sample or the 
closer the spacing, the smaller the deviation should be. In order to check 
this trend, fractures with different spacing were tested. Results are pre­
sented in Table 3-1. Note that the conductivity of a set of fractures with 
spacing of 5 is twice that of spacing of 10. In order to compare results, K/2 
has been given for spacing of 5. Results for a spacing of 5 are on the 
average slightly better than for a spacing of 10 as expected. 

Angle of 
Rotation 

a: 

0 
15 
30 
45 
60 
75 
90 

105 

Table 3-1. Comparison of Theoretical and Numerical Results for 
"Infinite" Fractures (Hydraulic Conductivities in cm/s) 

Spacing = 10 em Spacing ,;, 5 em 
Theoretical Numerical Numerical 

Kn K12 Kn K12 Kn/2 K1212 

1. 4301 0.3539 1.43788 0.377431 1.4306 0.377463 
1.5250 0.0 1.68397 -o 1.57875 -o 
1. 4301 0.3539 1. 43788 0.377433 1.430f. 0.377461 
1.170 0.6129 1. 22724 0.595736 1.21316 0.59576 
0.817 0. 7077 0.784133 0.704374 0.83137 0.73165 
0.46335 0.6129 0.441600 0.610839 0. 480139 0.59676 
0.204 0.3539 0.217907 0.326920 0.217951 0.354179 
0.109 0.0 0.112750 -o 0.112774 -o 

3.10 EXAMPLES OF RANDOM FRACTURE SYSTEMS 

In order to check the various functions of the numerical model, a random 
example was chosen for conductivity testing. Table 3-2 gives the statistics 
used to generate the fractures. The generation region was 110 x 110 em. 

Three different random realizations were generated (Figures 3-9a, 3-10a, 
3-11a). Flow regi~ns 75 x 75 mat rotation angle 0° were examined in each of 
these realizations (Figures 3-9b, 3-10b, 3-llb). The three flow regions 
had characteristics given in Table 3-3. In comparing the flow regions with 
their respective generation regions, note that fractures in the generation 
region which do not intersect any-other fractures have been eliminated from 
the flow region. 
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Table 3-2. Input Para~eters for the Random Example 

Parameters Set 1 Set 2 

Density (Number of Fractures) 49 100 

Orientation Normal distribution 
~' a2 (deg) 30, 5 60, 10 

Length Lognormal distribution 
~' a2 (em) 40, 10 30, 7.5 

Aperture Lognormal distribution 
~' a2 (em) · 0.001, 0.005 0.005, 0.0001 

Table 3-3. Characteristics of the Flow Regions 

Number of . 
Number of Fracture Number of Number of 

Network Fractures Intersections Nodes Elements 

1 81 123 285 327 
2 86 \ 110 282 306 
3 90 139 319 368 

Boundary conditions were applied to these three flow regions such that 
conductivity in the x-direction was measured. That is, Sides 1 and 3 were 
given a linearly varying head distribution, Side 2 had a constant head of 1, 

·and Side 4 had a constant head of 0 (see Figure 3-2). Table 3-4 gives the 
total fluxes through each side. for each flow region. A p·ositive sign indicates 
flow into the region and a negative sign indicates flow out of the region. 

Examination of Table 3-4 leads to several observations. First, there is 
a great deal of variation between the three realizations of the same statis­
tical fracture population. As shown in Table 3~3, the number of fractures in 
each flow region varies. Thus some of the variation in flow rate is due to 
nonergotic sampling. Recall that under the boundary conditions used, for an 
ideal porous medium .the flux in the x-direction (Side 2 to Side 4) is 
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Figure 3-9. Generation and Flow Regions for Network 1 
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Figure 3-11. Generation and Flow Regions for Network 3 
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numerically equal to the conductivity. Table 3-4 shows that the flux into 
Side 2 does not equal the flux out of Side 4. The sum of the fluxes through 
all sides, however, is zero as expected. These samples are clearly not be­
having like porous media, since in anisotropic porous media under the chosen 

'boundary conditions the flux on opposite sides would be equal. 

Table 3-4. Total Fluxes (cm3/s) for the Three Random Realizations 

2: Fluxes 2: Fluxes 2: Fluxes ~ Fluxes 
Network Side 1 Side 2 Side 3 Side 4 

1 3.13402£-19 4.41796£-7 -4.41384£-7 -4 .11388E -10 
2 -3.3926 E-10 2.00821£-5 -2.00809£-5 -8. 67380E -10 
3 5.42390£-10 1.01927£-4 -1.01927£-4 -8.97845£-11 

These sample fracture systems do not act like porous media. A more 
nearly continuum-type result could possibly be achieved in two ways. 
The relative density of the same fractures could be increased or a larger 
sample with the same statistics could be examined. 

In order to check the functions of the numerical model, Network 3 (Figure 
3-11) was chosen for further analysis of directional conductivity and the 
effect of sample size on permeability measurement. Flow r~gions 75 x 75 mat 
rotation angles, a, every 15° from 0° to 180° were tested (Figure 3-12). The 
results are given in Table 3~5. 

The fact that inflow does not equal outflow on opposite sides leads to a 
problem in defining conductivity. If conductivity is arbitrarily defined as 
numerically equal to the inflow into Side 2, no information lost. Side 4 for 
a= 0° becomes Side 2 for a= 180°, .etc. Using this convention, symmetry in 
the permeability plot implies that inflow does equal outflow on opposite 
sides. 

Figure 3-13 shows the values of 11/KTOl for. Network 3 plotted on polar 
coordinate paper where K(a) is defined in terms of flux across Side 2. The 
results clearly do not plot as an ellipse; nor are they symmetric. For 
certain angles of rotation (e.g., 75°, 90°) the value of 1//KTOl becomes very 
large and goes off the scale of the graph. For these angles K(a) is very 
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Figure 3-13. Values of l;IK[<i) Plotted on Polar Coordinate 
Paper for Network 3 



I 

66 

Table 3-5. Resulting Fl~xes (cm3/s) for the Random Case 

Angle of 2: Fluxes 2: Fluxes 2: Fluxes 2: Fluxes 
Rotation Side 1 Side 2 Side 3 Side 4 

0 5.42390E-10 1.0927 E-10 -1. 01927E -04 -8. 97845E -11 
15 1.22374E-04 4.74181E-06 -4.74124E-06 -1.22375E-04 
30 1. 02261E -05 1.59838E-05 -1. 59731E -06 -1. 02271E -05 
45 -1.15375E-12 4.39136E-06 -4.38238E-06 -8.97228E-09 
60 -7 .40427E-11 1.56620E-04 '"1.56612E-04 -8.02968E-09 
75 -1.08876E-10 6.93567E-10 7.46410E-09 -8.04880E-09 
90 -9. 88001E -11 6.83398E-10 1. 71904E -04 -1. 71905E -04 

105 -1.17851E-04 1.17851E-04 4 .17830E -06 -4 .17789E -06 
120 -5. 76379E-06 5.76347E-06 9.17211E-07 -9.16885E-07 
135 7.36028E-09 4.25565E-13 1. 39285E -06 -1. 40021E -06 
150. 1. 39114E -09 2.65264E-11 8.45053E-06 -8.45195E-06 

. 165 2.29966E-09 6.02192E-11 -3.04834E-10 -2.05505E-04 
180 1. 01927E -04 8.97845E-11 -5.42392E-10 -1. 01927E -04 

small because there is essentially no hydraulic connection between Sides 2 and 
any other side .. This cannot be completely confirmed visually from the plots 

' . 
cf these flow regions because aperture has not been included in the figures. 
Although isopotentials have not been plotted for these samples, it is fairly 
certain they will not be linear. 

If we define Kyx as numerically equal to the flow into or out of Side 3,. 
then Kxy is the flow into or. out of Side 1 when the flow mesh is rotated 90°. 
K should equal K if K .. is symmetric. Examination of Table 3-5 confirms xy yx 1 J 
again that no symmetry is present. 

The tests described above show clearly that the sample chosen did not 
have an equivalent porous medium symmetric conductivity tensor. As further 
proof of the nonhomogeneous nature of the sample, flow regions of different 
sizes were extracted and tested. All the flow regions were at 0° rotation. 
Flow regions from 25 em x 25 em to 75 em x 75 em were tested (Figure 3-14). 
Results are given in Table 3-6. Conductivity varies by orders of magnitude 
from sample to sample, again indicating marked departure from continuum 

behavior. 
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Figure 3-14. Flow Regions of Increasing Size from Network 3 
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Table 3-6. Resulting Fluxes (cm3/s) for Flow Regions of Different Sizes 

Size of 
Flow Region 2: Fluxes 2: Fluxes 2: Fluxes 2: Fluxes 

(em) Side 1 Side 2 Side 3 Side 4 

25 X 25 2.23427E-05 4.84085E-17 -2.23421E-05 -5.74141E-10 
45 X 45 6.10129E-04 3.10717E-06 -3.10003E-06 -6.10136E-04 
50 X 50 -3.04850E-09 2.18729E-06 -2.18409E-06 -1.53793E-10 
60 X 60 4. 58843,E -04 2.70645E-08 -2.29660E-08 -4.58841E-04 
75 X 75 5.42390E-lll 1.01927E-04 -1.01927E-04 -8.97845E-11 
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4 FRACTURE GEOMETRY STUDIES 

A series of preliminary numerical experiments were run to illustrate some 
of the key effects of fracture geometry on fracture system permeability. These 
experiments show trends in behavior. They mainly serve the purpose of confirm­
ing behavior that is intuitively expected. Increase in. fracture density 
increases p~rmeability. Permeabi1ity decreases with increase in the spread of 
the aperture distribution or decrease in the spread of the orientation distri­
bution. The behavior of the fracture system is different depending on the 
scale of measurement. These experiments are detailed below. 

4.1 EFFECT OF FRACTURE DENSITY 

In order to see how the density of fractures affects the hydraulic behav­
ior, the following three examples were analyzed. All three examples consist 
of two fractures sets with the uniform characteristics given in Table 4-1. 
Fracture centers were randomly located. 

SET 1 

SET 2 

Table 4-1. Fracture System Characteristics for the Density Study 

Uniform 
Orientation 

Uniform 
Length (em) 

10 

20 

Uniform 
Aperture (em) 

0.001 

0.002 

Number of 
Fractures 

60 

40 

Figures 4-1, A, B and C show the three fracture meshes studied. The 
difference between A, B and C is that the same fractures have been squeezed 
into succesively smaller areas with successively greater fracture densities. 
Figure 4-1A is 40 x 40 em, 4-18 is 30 x 30 em and 4-1C is 25 x 25 em. Thus 
the number of fracture intersections and, therefore, the number of hydrau­
lically active ~ractures increases as the fracture density increases. Figures 
4-10, E and F show the corresponding permeability 11 ellipses 11 for fracture 
systems 4-1A, B and C, respectively. The rotated flow regions used to measure 
permeability in each case were as large as possible. 
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Comparing the plots from left to right in order of increasing density, a 
significant improvement in the ellipticity of the plots is evident. The illus­
tration shown in Figure 4-10 is irregular and nonsymmetric .. The value of 1/11< 
goes to infinity for several directions of measurement. Where the plot goes 
to infinity the permeability in that direction is zero. This happens for a 
given direction of measurement when no conducting fractures intersect Side 2 
since the flow into Side 2 is always used to define permeability. For 
Figure 4-10 this occurred when Side 2 was roughly parallel to fracture set 2. 
It should be noted that the choice of a slightly larger or smaller flow region 
may have eliminated this condition. For Figure 4-1E, the fracture density 
increased to the point wh~re Side 2 always intersects some conducting fractures. 
Thus no zero permeability directions were found. The ellipse is fairly regular 
but not symmetric, especially in the direction of minimum principal permea­
bility. Figure 4-1F is slightly improved in this regard. The size of the 
ellipses decreases from left to right as expected, since denser fracture 
systems are more permeable. The direction of minimum and maximum permeability 
is roughly the same in all three plots. 

Figures 4-1G, H and I show average isopotentials for flow regiohs at 15° 
of rotation. For other rotations, the plots ar~ si~ilar. The locations 6n 
the fractures where· heads are 0.75, 0.50 and 0.25 are plotted. For a con­
tinuum, the isopotentials should be equally spaced and all the points should 
lie on the lines. For Figure 4-1G~ very few points are plotted because few 
fractures actually conducted water. The spacing of the average isopotentials 
improves from G to I. The scatter of the plotted points also decreases in 
this direction. 

In summary, the hydraulic beha~ioi of the fracture systems becomes more 
like that of a homogeneous, anisotropic material as fracture density increases. 
This is an expected result. However the trend in hydraulic behavior was aug­
mented by the design of the experiment. The same fractures were squeezed into 
increasingly smaller areas to increase the density. As a result, in the more 
dense examples many more fractures transect the flow region. More conductivity 
is achieved for this reason al6ne~ In later examples, the size of the flow 
region is scaled to a constant multiple of the fracture length to eliminate 
this effect. 
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4.2 EFFECT OF APERTURE AND ORIENTATION DISTRIBUTION 

The effect of distributing aperture or orientation is illustrated in 
Figure 4-2. The fractures shown in Figure 4~2 are exactly the same as the 
fractures in Figure 4-18. Consequently, 4-2E and H are the same as 4-1E and 
Hi respectively. Figure 4-2A is the same as 4-28 except that aperture has 
been dist~ibuted lognormally. Figure 4~2A looks exactly like Figure 4-28 
because aperture is not shown on the plot. Figure 4-2C is the same as 4-28 
except that orientation has -been distributed normally. All other parameters­
are uniform. The permeability plot is the most skewed for the case where 
aperture was allowed to vary (Ftgure 4-20). In this case not all the conduc­
tors are of equal strength. For some directions of measurement, notably at a 

= 135°, the hydraulic connections to Side 2 were evidently through fractures 
with lower than average aperture. At a= 30°, higher than average aperture 
fractures were intersected by Side 2. The flux through a fracture is propor­
tional to b3. Therefore, the measured flux through Side 2, which is used to 
define the permeability, is greatly affected by the siz·e of the fractures 
int~rsected by Side 2. Fracture meshes. 4-2A and 4-28 have the same number of 
fracture inter~ections, but because there is a great variation in the conduc­
tivity of the i~dividual fractures of 4-2A the results shown in Figure 4-20 -
are more irregular than the re~ults in Figure 4-2E. 

Varying the orientation of the fractures improves the hydraulic behavior. 
In this case, the number of fracture intersections increases because fractures, 
of the same set are no longer parallel and now can intersect. The degree of 
fracture interconnection is thus increased and the permeability plot becomes 
more symmetric and regular. 

The isopotential plots in Figures 4-2G, Hand I show slightly improved 
spacing and decrease in scatter from left to right. In general, fracture 
systems with distributed orientations behave more like homogeneous porous 
media than do systems with uniform orientations. Fracture systems with dis­
tributed apertures behave less like homogeneous media than uniform aperture 

systems. 
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4.3 SCALE EFFECT 

The effect of fracture length on the permeability of a fracture system is 
very sensitive to the scale of measurement. At a scale of measurement smaller 
than the length of the fractures, the system may act like a system of infinite 
fractures relative to the chosen boundaries. At this small scale, the hydrau­
lic behavior may become like that of a homogeneous, anisotropic medium. 
However, as the scale of measurement increases, the fractures no longer 
transect the entire measurement volume. The hydraulic behavior of the system 

' may become less regular. In this case, only one criterion for equivalent por-
ous medium behavior is met by the small scale volume; the permeability plots 
as an ellipse, but the results are still sensitive to volume change. 

In.order to illustrate the scale effect, a system of fractures ~as chosen 
which consisted of two perpendicular sets of fractures all with the same aper­
ture an~ length. The orientation distribution about the mean for each set was 
the same. The fracture system generated is shown in Figures 4-3A and 4-4A. 
Theoretically, two orthogonal sets with equal characteristics should have a 
circular permeability plot. Random variations from the circle can only be due 
to insufficient density of fractures or insufficient sample size. 

Figures 4-38 - L show flow regions of increasing size for which permea-
. bility measurements were .made. 'The flow regions at 0° rotation are shown for 

illustration. Flow regions at every 15° rotation were used for analysis. 
Figures 4-48 through 4-4L show the corresponding permeability ellipses for the 
corresponding flow regions in Figure 4-3. 

For Figures 4-48, C and D, the results are erratic. Only a few fractures 
are included in each sampl~. In 4~48, only the vertical set is represented 
and in C and D there is only one fracture from the horizontal set. The type 
of fractures included in the sample is a random function of the location of 
the flow region. If the flow region had been taken in the upper right-hand 
corner, the result might have been the opposite with a greater preponderance 
of horizontal fractures. Although in these three figures most of the fractures 
transect the flow region, for certain values of the rotation angle, no frac­
tures intersect Side 2. The permeability in this direction, therefore, is 

zero and 1/~ is infinite. 
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In Figures 4-3E and 4-4E, enough fractures have been included to provide 
flow through Side .2 for- any rotation. In 4-4F, the larger 15 x 15 em mesh has 
produced a fairly regular symmetric ellipse. Figure 4-3F shows that for this 
flow region size many of the fractures transect the entire flow region. 
However the ellipse in Figure 4-3F is not circular, as expected. Figures 4-4G 
through 4-4L show how the form of the permeability ellipse is changed as the 
flow region is further incr.eased in size. As more fractures are gradually 
added to the sample, the effect of e~ch fracture is to deform the ellipse in 
some way. 

Although Figure 4-4F shows a seemingly regular ellipse, this is misleading 
because Figure 4-3F does not include a representative sample of the fracture 
population. Figure 4-3L is the largest sample size which could be studied by 
these programs on the CDC 7600. It is a better sample and Figure 4-4L does 
have a more circular shape. However, Figure 4-4L still shows some perturba~ 
tions in hydraulic behavior. The permeability plots may improve somewhat with 
a further increase in sample size. This can be seen by noticing that there is 
still a large proportion of truncated fractures in the 64 x 64 em mesh of 
Figure 4-4L. To obtain a good statistical sample of fracture length in the 
flow region, the flow region should be large compared to the fracture length. 
In this way a relatively small number of fractures are truncated. Samples 
larger than 64 x 64 em would be necessary for determining if the perturbations 
in the permeability plot are a function of the sample size or inherent in the 
fracture population. 

4. 4 CONCLUSIONS 

This chapter presents some simple examples which illustrate how various 
fracture geometry parameters affect bulk permeability. All of the results 
conform to intuition. Increasing the standard deviation of aperture creates a 
more heterogeneous medium which behaves less like a homogeneous porous medium. 
Increasing the standard deviation of orientation creates more connections 
between fractures and thus increases the permeability and makes the behavior 
more like that of a porous medium. The results of permeability measurements 
are determined by the extent of the fractures relative to the scale of measure­
ment. Measurements made on scales very small relative to the fracture extent 
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are very erratic. Porous media behavior is unlikely on such a small scale. 
When the scale of measurement approaches the sam~ scale as the fracture extent, 
porous media behavior may be observed, but it may be an artifact of the measure­
ment technique. This is because the boundaries of the model truncate many of 
the fractures at both ends. All of these fractures therefore become conduc­
tors. In situ all these fractures would not be as well connected to the 
boundaries. Thus measurements on a seale which is the same as or smaller than 
fracture extent may be misleading. 

The understanding of fracture system behavior illustrated in this chapter 
was used to design the experiments presented in Chapters 6 and 7. For these 
studies the programs FMG and LINEL were revised to run on the VAX/11. As such 
much larger problems could be handled. 
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5 REGRESSION ANALYSIS TO DETERMINE THE PERMEABILITY TENSOR 

5.1 INTRODUCTION 

In the previous chapter, directional permeability measurements were simply 
plotted and the resemblanc~ of these plots to ellipses was noted in a qualita­
tive way. Appropriate quantification of the best-fit ellipse and a measure o"f · 
the goodness of fit of the data to the best-fit ellipse would be very useful 
for comparing t~e behavior of different fracture systems. This chapter gives 
a regression technique for calculating the components of the best-fit permea­
bility tensor and the error associated with using the best-fit tensor as 
opposed to the actual measured values of directional permeability. 

Directional per~eability measurements of random fracture systems are made 
as previously described. From the measured values of directional permeability, 
Kg(a), we wish to determine the three components of the permeability tensot; .. 
Kij• which best fit these measurements. We also wish to determine. the:.princi­
pal values (eigenvalues) and principal axes (eigenvectors) of the permeability 
tensor. Further, we wish to find a quantitative measure of the diff,erence 
between the measured values, Kg(a),· and the best-fit values. 

Recall that for an ideal anisotropic homogeneous porous medium ~irectional. 

permeability, Kg, measured in the direction of the gradient a, is defined by: 
the followin~ equation: 

q.n. = K J, 
1 1 g (5-1) 

where ni is a unit vector in the direction of the gradient,· J is the magnitude. 
of the gradient, and q; is the specific flux~ Solving Darcy's law for qi and 
substituting this into Equation 5-l gives 

K .. J.n. = K J, 
1J J 1 g 

(5-2) 

and since Jj/J - nj we have 

K = K .. n .n., 
g 1J 1 J (5-3) 
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or 

(5-4) 

where n1 and n2 are direction cosines and n1 = cos a, n2 = sin a. 

If 1/~ is plotted in the direction a (the direction of the gradient), 
then n1 =cos a= x~ and·n2 = si,~ a= y~. Equation 5-4 becomes 

1:K .. x.x. 
lJ 1 J where xi = {;} • 

Equation 5~7 is the quadratic form of the permeability ellipse equation. 

(5-5) 

(5-6) 

(5-7) 

If each measurement of Kg( a) can be considered an independent measurement 

of the value of Kij• then methods of statistics can be used to estimate the 
parameters·Kll• K12 and Kzz. The statistical technique can be used on measure­
ments of Kg(a) from different, equally incremented directions on one fracture 
pattern or the combined measure~ents from any number of fracture pattern 
realizations. 

5.2 DISTRIBUTION OF Kg(a) 

In a random fracture pattern, the measured values of Kg(a) will not all 
plot on a single, unique ellipse (Figures 5-l). In order to use all of the 
individual measurements to derive a single, most representative set of para­
meters for the permeability tensor, we must assume that each mea~urement is 
independent and similarly distributed. Figure 5-l shows an example of a set 
of measurements, K

9
(a), and a possible ellipse with parameters K11 , K12 and 

K22 • Each measurement can be assumed to be distributed about a different mean 

which is a point on the ellipse determined by a. Therefore, the value of the 
mean for each measurement depends on a. Thus, each Kg(a) is considered to be 
distributed with the same form but each has a different or shifted mean. The 
variance of each Kg(a) is assumed to be identical. In this way, all the meas­
urements are considered as one population. 
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It would be very useful to be able to define a likely distribution func­
tion for Kg(a), but this is not easily done. The normal distribution does not 
match the data because Kg(a) can never be less than zero. A lognormal is not 
proper because the probability of Kg(a) = 0 is finite, not zero. Exponential, 
Gamma and Beta distributions also are not suitabl~. A normal distribution 
truncated at K

9
(a) = 0 is a likely choice. Unfortunately, assumption of this 

distributi~n leads to a contradiction with the basic assumption that all the 
measurements are members of the same distribution. At each angle a, the mean 
value of the distribution is different~ However, since all the distributions 
are truncated a~ zero, the difference between the mean value and the truncation 
limit is different for each value of a. This means that each measurement must 
be a member of a different, truncated normal distribution and not just a 
shifted one as req~ired in th~ original assumptions. Since a simple, likely, 

distribution form for K (a) which ~onforms to the basic assumptions cannot be 
g 

identified, a least squares regression techn)que must be used to derive esti-
mates of the parameters K11 , K12 and K22 • 

5.3 REGRESSION TECHNIQUES 

Two regression techniques are discussed here. They are based on a tech­
nique, discussed by Schei~egger (1954), which will also be briefly described. 
The most direct appfoach to firiding th~ best-fit ellipse is to find the ellipse 
which minimizes the sum RI, where 

RI = f (I K Ccxn) 
n=1 g 

2 

- 1 K. ~n. n. ) ' 
1J 1 1 

(5-8) 

where N is the number of measurements made, either on one fracture pattern or 
all measurements on all realizations of the fracture pattern. The difference 
between 1/(lk9 (a~J) and 1/(/Kijninj) in each case is the actual distance on 
the permeability ellipse plot between the plotted measurement and the ellipse 
(Figures 5-1). Note that this distance is not the perpendicular distance, but 
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rather the distance along the ray inclined at the angle a 0
• To minimizeR we 

solve for K11, K12 and K22 in the follbwing equations: 

N 

L 2[(Kg(an))-1/2_ -1/2] -3/2 2 (K .. n.n.) (K .. n.n.) cos a 
1J 1 J 1J 1 J n 

= o, 
n=1 

N 

.5__ = '\.~ 4r(Kg(an))-1/2_ 
aK

12 
L L ) -1/2]< )-3/2 . (K .. n.n. K .. n.n. cosa sina = 0, 

1J 1 J 1J 1 J n · n 
n=1 

K .. n.n. K .. n.n. sin a = 0. ( ) -1/2]< )-3/2 2 
1J 1 J 1J 1 J n 

(5-10) 

( 5-11) 

(5-12) 

These nonlinear equations are difficult to solve. An iterative method would 
have to be employed. 

The second regression technique is to minimize the function R11 : 

~ [ ]2 R
11 

= '\. .... K (a)- (K .. n.n.) • L g n 1J 1 1 (5-13) 
n=1 

In this case we are not directly regressing to the best-fit ellipse. We are 
finding the parameters K11, K12, and K22 which best fit the data expressed by 
Kg(an) in Equation 5-5. Figure 5-2 illustrates the type of three parameter 
curve which is fitted to the data. This curve is less easily visualized than 
the ellipse is but it is much simpler mathematically. There is no reason to 
expect the two techniques to give the same answer, but there is also no obvious 
physical reason to expect one technique to give a better answer than the other. 
As such, the second technique is pursued here. 

A similar technique was used by Scheiddeger (1954). Scheiddeger minimized 
the function 
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Figure 5-2. Example of a Set of Directional 
Permeability Measurements 
Plotted in Cartesian 
Coordinates 
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N 

L [ 1 -1 -1 ·]2 R = ( K f( a ) ) - ( K .. ) m. m . • 
m= 1 m 1J 1 J 

(5-14) 

Although not stated by Scheiddeger, this regression techniques applies to meas­
urements of permeability Kf(a) made in the direction of flow. Thus, mi ~s a 
unit vector in the direction of flow. To see this recall that permeability in 
the direction of flow is defined by 

1 Jimi 
r=--, 

f q (5-15) 
where q is the specific flux and Ji is the gradient. 

Substituting Darcy's law we have 

1 1 
m.q. 

( - 2...:J.. -K = q. K .. ) 
f 1 1J q (5-16) 

1 -1 
-K = (K .. ) m.m .• 

f 1J J 1 ( 5-17) 

So Equation 5-14 is effectively the same as Equation 5-13, except that in Equa­
tion 5-14, Kij becomes the inverse of the permeability tensor. 

5.4 SOLUTION OF THE REGRESSION EQUATIONS 

The solution of the regression equations is exactly the same as the solu­
tion given by Scheidegger (1954) and is repe~ted here only for completeness. 
The equations are 

N 

'-2[K (a ) L -9 n 
'n=1 

N 

0 = L -4[K
9

(an) 

n=1 

N 

= L -2[K9(an) 

n=1 

- K .. n.n.J cos
2
a 

1J 1 1 n (5-18) 
\ 

- K .. n.n.J cosa sina , 
1J 1 1 n n 

(5-19) 

- K .. n.n.J sin
2
a 

1J 1 1 n 
(5-20) 



Rearranging, expanding Kijninj, and putting in matrix form we have 

N 

2 3 . 
cos a s1na n n 

n=1 

N 

2 2 . 2 
cos a s1n a 

n n 
n=1 

N 

2 
n=1 

N 

2 
n=1 

N 

2 
n=1 

N 

\.""' 2cos3 a sina L n n 
n=1 

. 2 2 
s1n a cos a 

n n 

. 3 
s1n a cosa 

n n 

2 
K (a )cos a 

g n n 

K (a )cosa sina g · n n n 

.. ) 2 
K (a sin a 

g n n 

N 

L . 2 2 
s1n a cos a n n 

n=1 

N 

sin a cosa '2 3 n n 
n=1 

(5-21) 

") 
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Now, if for each fracture mesh, measurements are made at equal angle intervals. 
from 0 to 2n, all sums with only odd powers of sine and cosine drop out and 
the equation becomes: 

N 

0 L . 2 2 Sl.n a cos a 
n n 

n=1 

N 

0 2: 2 
. 2 2 0 s1n a cos an n =· 

n=1 

N N 

2: 2 2 0 2: . 4 cos a sin a s1n a n n n 
n=1 n=1 

N 

2: K (a ) 2 cos a 
g n n 

n=1 

N 

2: K (a ) cos a sin a 
g n n n 

. (5-22) 

n=1 

N 

2: K (a ) 2 sin a 
g n n 

n=1 

Solving for Kll• K12• and K22 gives 
\ 

( 

N . X N. .) ( N ) . 2 . 2 2 .... . . 2 . ~ K (a )sin a "'\'cos a sin a - \.""' K (a )cos a 
~ g n n ~ n n ~ g n n 

(5-23) 



K22 = 

N 

I 
n=1 

N 

2 
n=1 

N 

~ K (a ) L g n 
n=1 

2 K (a )cos a 
g n n 

. 2 2 
s1n a cos a 

n n 

( ~K (a )sin2a L g n n 
n=1 

N 

I 4 cos a 
n 

n=1 
N 

I sin 
2 2 a cos a 

n n 
n=1 
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/

N 
. . 2 - 2 

cos a s1n a '"' 2s1n a cos a , n , n L n n 
n=1 

5.5 PRINCIPAL PERMEABILITIES AND DIRECTIONS 

(5-24) 

(5-25) 

Knowing the values of Kll• K12• and K22 the values and directions of the 
principal permeabilities K1 and K2 can be calculated with standard techniques 
of linear algebra. The techniques are given here only for completeness. The 
informed reader may wish to skip to Section 5-6. In Edelen a~d Kydoniefs (1972) 

K .. E.= AE. 
1J J 1 (5-26) 

where E
1
• is a unit vector in a principal direction, or eigenvector, forK ... 

lJ 
The transformation KijEj gives a vector in the same direction as Ej, but of 
magnitude A where Oij is the Kronecker delta. Thus, 
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(K .. - AO .. )E. = 0. 
lJ lJ .J 

(5-27) 

Here the components of Ej and ~ are unknowns. This equation can have a solution 
on 1 y if 

K11 - A K12 
= o, 

K12 K22 - A 

or 

So the principal permeabilities are 

/<K11 
2 - K2 ) 

Kl = A1 
K11 + K22 + K22) - 4(K11K22 12 

= 2 + 2 

·I (K11 
2 2 

K2 = A2 = 
K11 + K22 + K22) - 4(K11K22 - K12) 

2 2 

The principal directions, Elj and E2j, are found by solving the equations 

(K .. -A
1
o .. )E1. = O, 

lJ lJ J 

and 

( 5-28) 

( 5-29) 

(5-30) 

(5-31) 

( 5-32) 

(K .. - A
2
o .. )E2. = O, 

lJ lJ J . ' ( 5-33) 
for the components of the Elj and E2j. 

Let Ej = [;] • Now for each A we have 

[::: - A i K2:1: .J [:] = 0. 
( 5-34) 

Using row reduction we obtain 

K12 
1 1 ( 5-35) 

= 

0 0 0 
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we can choose X= 1, 

y = 

The E. can be expressed as the unit vectors 
1 

E1 . = 
1 

E2. 
1 

1 

eigenvectors. In this case we can choose 

5.6 MEAN SQUARE ERROR 

Elj = (0,1) 

E2j = (1,0). 

The mean square error, MSE, is simply given by 

RII 
MSE = -N-

N 

(5-36) 

(5-37) 

(5-38) 

(5-39) 

= ~ 2 [Kg(an) 
n=1 

2 

- (K11 cos2a + 2K12~os a sin a + K22sin
2
a )~ 

n n n n ~ (5-40) 

In order to use the MSE to compare the data from different fracture samples 
the MSE must be normalized as follows. 



91 

NMSE t~SE 
= K1K2 

(5-41) 

As NMSE approaches zero, the fracture systems behave more like anisotropic 
homogeneous porous media. 
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6 LENGTH-DENSITY STUDY 

6.1 BACKGROUND 

With the exception of the rare underground test facility, most of what is 
known about fracture geometry in the underground is derived from boreholes. 
It is relatively easy and straightforward to determine the number of open frac­
tures which intersect a borehole and estimate their orientation. On the other 
hand it is relatively difficult to get a good estimate of volumetric fracture 
density, fracture lengths and fracture apertures from hydraulic tests. The 
aim of this study was to see the effect on permeability of these fracture geo­
metry parameters that cannot easily be determined from boreholes. In parti­
cular this study looks at the effect of varying fracture length and density. 
The effect of varying aperture has been discussed in Chapter 5 and is 
discussed in greater detail in Chapter 7. 

It is not necessary to look at all possible combinations of fracture 
length and density. As discussed in Chapter 2, the probabalistic relationship 
between the number of fractures per unit length of sample line, AL, the areal 
density, AA (or volumetric den~ity Ay in three dimensions), and the mean 
length, i or mean area in three dimensions), of the fractures is 

(6-1) 

for each set of fractures, where 8 is angle between the borehole and the mean 
fracture pole (Robertson, 1970; Baecher et al, 1977). This equation states 
the probability of a fracture intersecting a unit length of borehole increases 
as the volumetric density increases and also as the fractures become longer. 

From examination of core or TV log, the mean length or the volumetric 
density of the fractures cannot be determined absolutely. However, AL and 8 
can be readily determined. Rearranging Equation 6-1 with knowns on one·side 
and unknowns on the other, we have 

(6-2) 
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This means that for each set of fractures we may not be abls to determine ~A 
and t directly, but we can determine the product of ~A and t. The product of 
1 and ~A will be called LD, or the length-density parameter. 

Figure 6-1 illustrates this principle. In both 6-1A and 6-18, a borehole 
of length L penetrates a system of fractures. The fractures in A are twice as 
long as those in B, but there are half as many fractures per unit area in A as 
there are in &. Both boreholes intersect approximately 12 fractures. From 
the borehole wall, we see no difference in the two systems, but as will be 
shown below, there is a great deal of difference in the hydrologic behavior of 
the two systems. 

6.2 PARAMETERS USED IN THE LENGTH-DENSITY STUDY 

The parameters common to the whole length density study are given in 
Table 6-1. Table 6-2 gives the parameters used in the first series which was 
designed to study the effect of increasing length while keeping the product of 
length and density cqnstant. The units used in all these ~tudies are length 
in centimeters and hydraulic conductivity in cm/s. 

In all of the length-density.studies presented in Chapter 6, the length­
density parameter LD, is 0.288/cm. This_means 'borehole through such a rock 
would intersect roughly 288 fractures in 10 m. However~ these model results 
could easily be scaled to represent a fractured rock having an LD of say 
0.288/m or about 3 fractures every 10 meters of borehole. The relative magni­
tude of the results is important in this study, not the absolute magnitude. 
Also, larger values of LD will produce systems of higher permeability; lower 
values will produce lower permeability. Since LD can be measured, different 
values of LD were ~ot tried in these simulations. 

Orthogonal fracture sets were used because if the sample size is suffi­
ciently large, the-theoretical shape of the permeability ellipse for orthogonal 
fractures of constant length and aperture is a circle. Thus the degree of 
anisotropy was not an unknown. Apertures were held constant and orientations 
were varied with a 20° standard deviation. This.arrangement provided the best 
opportunity of finding p6rous medium behavior in fracture meshes that were 
small enough to be solved within the size limitation of the computer. Fracture 
lengths were kept constant only for the sake. of simplicity. 
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- AL 
AA£ =cos e =a measurable borehole parameter 

A B 
N 12 12 Number of intersecting fractures 

L 42 42 
Borehole length 

AL = N/L .29 .29 

t 16 8 
Mean fracture length 

AA= 
number of fractures .018 .036 

un1t area 

A. A f cos e ( e = o > .29 .29 

XBL829-2419 

Figure 6-1. Example of Two Boreholes of Equal Length Where (A) 
Penetrates a System of Fractures Whose Mean 
Fracture Length is Twice that of (B) 



Set 1 

Set 2 

Name 

LD2 
LD8 
LDlO 
LD12 
LD14 
LD16 
LD20 
LD24-
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Table 6-1. Parameters Common to the Whole Length-Denstty Study 

Mean 

04 

904 

Orientation 
Standard Deviation 

204 

204 

0.288 

0.288 

Aperture ( cnll__ __ 
Mean Standard Deviation 

0.001 

0.001 

0 

0 

Table 6-2. Input Parameters Used in the First Series of 
Length-Density Studies 

Fracture Length ~ Flow Region Number of Fractures 
(Set 1 and Set 2) Dimensions L x L Per Set Per Unit 

(em) (em) L/~ Area XA ( cm-2) 

2 12.5 X 12.5 6.25 0.1440 
8 50 X 50 6.25 0.0360 

10 62.5 X 62.5 6.25 0.0288 
12 75 X 75 6.25 0.0240 
14 87.5 X 87.5 6.25 0.0206 
16 100 X 100 6.25 0.0180 
20 125 X '125 6.25 0.1440 
24 150 X 150 6.25 0.0120 

In the first series, three parameters were varied in a systematic manner. 
These were the flow region size, the fracture length, and the fracture density, 
AA· The length and width of the flow region, L, was kept equa! to 6.25 times 
the fracture length to insure that an equal proportion of fractures would be 
truncated in the flow mesh of each case. Also, from previous experience the 
factor of 6.25 was expected to yield flow re~ions where the wean fracture 
length was reasonably close to the value used in input. That is, only a small 
proportion of the fractures were truncated by the flow region. Figure 6-2 -
shows mean fracture length for each rotation of all the flow regions divided 
by input length plotted as a function of input length. The mean fracture 
length was always about 85 percent_of the input value. Thus each of the frac­
ture systems was an approximately equally good statistical sample. 
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f,input fracture length (em) 

X BL 829-2442 

Figure 6-2. Normalized Mean Fracture Length, I in the 
Flow Region Versus Input Fracture Length, 
~ for Mesh Size, L = 6.25~ 
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The fracture density and input length were calculated using the equation: 

LD = tAA = 0.288. (6-2) 

So as t became larger, L became larger and AA became smaller. 

6.3 RESULTS OF THE FIRST ,SERIES OF LENGTH DENSITY STUDIES 

The flow regions and permeability plots are shown in Figures 6-3 through 
6-10. In each figure, the top left shows the 0° rotation flow region with ail 
the fractures as they were generated. The top right shows the reduced version 
of the fracture system for the 0° rotation. The ieduced version was used to 
calculate permeability. In the reduced version, all the dead ends on the 
fractures and all single isolated fractures are eliminated. Isolated patches 
of fractures persist because there is ~o simple algorithm for removing them. 
The flux through the reduced version is the same as the flux through the 
unreduced version, but the reduced version is smaller and less expensive to 
solve. It is easy to see flow paths and degree of connection between 
fractures on the plot of the reduced fracture system. 

, In each figure, only the 0° rotation is shown as an example, but for each 
model, a total of six differently oriented flow regions were defined. For 
each flow region, each of the four sides were sequentially used as the inflow 
side. Thus permeability was measured every 15° for 24 rotations in all. 

When the flow regions are reduced for analysis, a fracture which connec'ts 
two sides in one flow region may be isolated and nonconducting in a 
differently orientated flow region. In Figure 6-3 for instance, the 0° 
rotation had no conducting fractures. However, it can be seen from the 
permeability plots that conducting fractures intersecting the inflow side of 
the mesh for rotations of a= 15°, 30°, 75°, 105°, 120°, 225°, 315° and 345°. 
These conductive fractures cannot be observed in the reduced flow mesh at 0° 
rotation shown in the figure, but could be seen if all six rotations of the 
flow region were shown . 

. The bottom left of Figures 6-3 through 6-10 shows the permeability 
ellipse. The dashed lines connect the values of 1/~ calculated by the 

g . 
model. The area enclosed by the dashed lines is shaded. The solid-line 
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ellipse is the ellipse which best fits the data as calculated by the methods 
explained in Chapter 5. The XX and YY axes are the 1st and 2nd principal per­
meability axes, respectively. The bottom right of each figure shows a 
Cartesian plot of Kg versus a. The best fit values of Kg are shown by a solid 
curving line. The ellipse plot provides a simple visualization of how well 
the permeability can be represented by a symmetric tensor. The closer the 
shaded area is to the ellipse the better the representation. Since the 
Cartesian plot is linear in Kg,· it is better fo~ easy-visualization of the 
magnitude of the permeability and the scatter of the measurements. 

The fracture' meshes are not plotted to the same scale. The scale is 
varied such that each plot is the same size on the paper. The flow region 
size, L, is a ~onstant multiple of 6.25 times the fracture length, 1. Thus, 
the fractures in all the plots also appear to be the same length. Moving from 
Figure 6-3 to 6-10 the actual fracture length, 1, and the region size, L, are 
increasing and the areal density, ~A' is decreasing. The net result is that 

the number of fractures in each mesh is increasing as 1 increases. Thus there 
is an apparent increase iri density which is proportional to 1: 

Number of fractures 
.A L2 

in the flow region = A 

0.288 (6.25R.) 2 (6-4) 
= R. 

= 11 • 25R.. 

If a 11 the. meshes in Figures 6-3 through 6-10 were drawn to the. same sea 1 e, it 
could be seen that there are actually more fractures per unit area in 6-3 than 
6-4, etc., and t~at the fractures in 6-3 are shorter than those in 6-4, etc. 

Drawing all the meshes to the same ~ize is useful because the ''apparent 
density" has a strong influence on the hydrologic behavior of the fracture 
system. The longer the fracture, the higher the "apparent density", the higher 
the permeability, and the lower the NMSE. Figure 6-11 is a plot of the values 
of K1, K2 and NMSE versus fracture length. For the values of 1 studied, 
permeability increases and NMSE declines with increase in fracture length. 

It appears that the plot of K versus 1 levels off at the higher values of 
1. This should occur because as 1 becomes larger the density becomes smaller. 
The effect of increasing length may be partially canceled by decreasing density. 
In this series the limit as 1 goes to zero can be examined but the limit as 1 
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goes to infinity is difficult to examine. This is because the number of 
fractures per set in each mesh is equal to 11.251. Thus the number of nodes 
and elements increases rapidly with the fracture length, 1. Therefore systems 
with even moderately large values of 1 cannot be processed in the computer. 
In fact, the case where 1 = 24 was the largest problem which could be run. 
The apparent leveling off in the K versus 1 curve ~ould not be confirmed. 

Figure 6-12 is a plot of elliptici~y, K2/K1 versus fracture length. 
Ellipticity for a good statistical sample of orthogonal fracture sets is 
theoretically unity. For all cases studied the value is less than unity. 
Perhaps the statistical sample is too small. With a larger sample, one would 
expect ellipticity closer to 1.0. However, since the sample is statistically 
isotropic, the low ellipticity values are caused in some degree by the flip­
flop of the K1 and K2 axes, which have no preferred direction. Since K1 is 
always taken as the larger value, random fluctuations are not averaged.out. 

Figures 6-3 through 6-10 and Figure 6-11 could be used to separat~ frac­
ture systems which behave like porous media from those that do not. The 
closer NMSE is to zero, the more the fracture system is lik~ a porous medium. 
From a perusal of the figures on~ might conclude that a value of NMSE greater 
than 1.0 means the medium would be very poorly represented by a porous medium. 
Permeability plots for such sys~ems are irregular, nonsymmetri~, and not 
necessarily even closed figures .. A fairly smooth permeability ellipse seems 
to be produced for these systems when the .NMSE is l~ss than about 0.05 
(Figures 6-8, 6~9, 6-10). Above 0~05 there is a gradual transition from a 
relatively smooth symmetric figure to completely irregular and nonsymmetric 
figure. Another transition occurs at values of NMSE above 0.3. Above this 
point, for some directions, Kg is zero and the permeability plots are not 
closed figures. Below this transition the plots are clo~ed figures. For 
these systems, a cutoff point for use of a p'orous medium analysis could easily 
be put anywhere in the NMSE range of 0.05 to 0.3 depending on the degree of 
acceptable error in the solution. 

Dashed line$ are drawn on Figure 6-11 from NMSE values of 0.05 and 0.3 on 
the vertical axis to the NMSE curve and then down to the corresponding values 
of 1 which are approximately 1 = 15 and 1r~ 9.5, respectively. Thus for LD = 
0.288, orthogonal fracture sets with 20° of standard deviation in orientation~ 

' 
·( 
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Figure 6-11. Permeability and NMSE Versus Fracture Length for 
the First Series of Length-Density Studies 
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constant apertures, and lengths, the fracture systems can be categorized in 
terms of their lengths. Fracture systems with lengths greater than 15 can be 
well represented by a porous medium. Those with lengths less than about 9.5 
cannot be well represented by a porous medium. Between 9.5 and 15 is a transi­
tion area where acceptability of the porous medium approach will depend on the 
accuracy required in the solution. 

Caution should be used in setting up such a categorization. The NMSE 
calculated in this way is a measure of how well the permeability of a given 
fracture system is represented by a symmetric tensor. It is not directly a 
measure of the error involved in using a tensor for such a fracture system. 
This is because the more unlike a porous medium the fracture system is the 
mdre unrealistic the linear boundary conditions are. A modification of the 
method for measuring NMSE which makes the boundary conditions more realistic 
will be discussed in Chapter 10. Unless this modified method is used, 
categories like those determined above will be somewhat arbitrary. 

Anoth~r point of· cauiion is that these categories are based on a single 
realization for each fracture system. The validity of making conclusions based 
on a sin·gle realization was examined in a limited Monte Carlo type analysis 
which is explained in Section 6.4. 

Finally, it may be that the value of NMSE will be smaller for flow regions 
1 arger: than, t_hose tested, espec i a 11 y for cases where fracture 1 ength is 1 ess 
than 15. This possibility is examined in Section 6.5. 

6.4 THE MONTE CARLO STUDY 

A Monte Carlo type analysis was used to test the soundness of the obser­
vations made in Section 6.3, which were based on single realizations of each 
fracture system. The models for fracture lengths of 10 and 20 were chosen 
because 10 has a ~oor fit to an ellipse and 20 has a good fit. Only these two 
cases were run because the cost of doing this type of analysis is quite high. 

In each case, the same statistical input was used to generate a series of 
random realizations of the fracture system. After each run the results were 
concatenated with the previous runs and a current best fit permeability tensor 
and NMSE were calculated. When the current values of K1, K2, and NMSE ceased 
to change noticeably, the study was terminated. Figures 6-13 and 6-14 show 
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plots of the NMSE, K1, K2, and the principal directions, 81 and 82, versus the 
number of runs averaged in for 1.= 10 and i ~ 20, respectively. For 1 = 10, a 
total of 25 realizations were generated; for 1 = 20, 10 realizations were 
generated. Results of each individual run are plotted on the ordinate to

1 

illustrate the range of the data. 
In the case of 1 = 10, the values of K1 and K2 never comple~ely converge 

to the same value. This fact goes hand in hand with the fact that the NMSE is 
fairly high and the direction of the principal axes is completely random. The 
high' value of NMSE means the connections between fractures are infrequently 

.. 

located. Therefore, in each run, there is usually some difference between K1 
and K2. Since there is no preferred orientation for the principal axes, the 
directio~ ~f K1 and K2 (i.e., 81 and 82) cbanges randomly in ea~h run. Since 

' 
K1 is always thosen to be the higher of the -two principal permeabilities, the 
difference between K1 and K2 does not get averaged out as it woul8 in a sample 
exhibiting strong anisotropy. With strong anisotropy, K1 and K2:would always 
be roughly in the same direction. Sometimes K1 would be a littl~ higher than 
the average, sometimes it would be lower, but eventually the differences would 
average out. In the isotropic case, K1 is determinad by which value of 
principal permeability is higher, not by orientation. So the differences 
between K1 and K2 are preserved. 

Figure 6-15 shows the permeability plots for the final concatenation of 
all the realizations for both the 1 = 10 and the 1 = 20 cases. In both cases, 
the ellipses are nearly circles as expected. The 1 = 20 results are closer to 
a circle than the 1 = 10 results. The scatter of points is greater in the 1 = 
10 case and the permeability is higher in the 1 = 20 case. 

The mean plus or minus one standard deviation of all permeability 
measurements and NMSE from this Monte Carlo ~tudy are plotted as bars on 
Figure 6-11. The standard deviation is larger for 1 = 10 than for 1 = 20 for 
both permeability and NMSE. The standard deviation for NMSE for 1 = 20 is so 
small it shows up only as a line on Figure 6-11. These bars reinforce the 
general observations made in Section 6.3. 

The Monte Carlo results provide the opportunity to make further 
observations. For a series of realizations of a fracture system, when the 
NMSE is higher, the standard deviation of permeability will also be higher. 
This trend has implications for regional stochastic modeling. The higher the 
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NMSE of the blocks chosen as REV's in the model, the greater the standard 
deviatinn that must be used to assign permeability to the blocks. This in 
turn will increase the standard deviation of the outcomes (Freeze 1975). 
Thus, the higher the NMSE, the lower the reliability of the model results~ 

6.5 STUDY ON THE EFFECT OF FLOW REGION SIZE 

_ In a second series of cases, the meshs for fracture lengths 10, 12, 14 
and 16 were increased in order to see if the NMSE would· decrease and if the 
permeability would change. The input parameters for this study are given in 
Table 6-3. In each case, t~e A flow mesh is. the same as presented in 
Sections 6.2 and 6.3 for cases where L/t = 6.25. The 8 mesh is larger than 
the A mesh, and the C mesh is larger than the 8 mesh. 

Flow Mesh 
Name 

LDlO A 
8 
c 

LD12 A 
8 
c 

LD14 A 
8 

LD16 A 
8 

Table 6-3. In~ut Parameters Used in Second Series of 
Length-Density Studies 

Fracture Length t Flow Region· Number of Fractures 
(Set 1 and Set 2) Dimensions Per Unit Area AA 

(em) L x L (em x em) L/t (cm-2) 

10 62.5 X 62.5 6.25 0.288 
10 90 X 90 9.00 0.288 
10 125 X 125 12.50 0.288 
12 75 X 75 6.25 0.024 
12 108 X 108 ·9.00 0.024 
12 150 X 150. · 12.50 0.024 
14 87.5 X 87.5 · 6.25 0.0206 
14 126 X 126 9.00 0.0206 
16 100 X 100 6.-25 0.0180 
16 175 X 175 10.90 0.0180 

F5gures 6-16 through 6-19 show the permeability plots for fracture lengths of 
10, 12, 14 and 16, respectively. On each plot the mesh sizey l, is the 
smallest for the results shown in the top frame and is larger for each 
succeeding frame. Figure 6-20 is a plot of NMSE versus mesh size for each 
fracture length studied. 
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In the case of 1 = 10, increasing the flow mesh size does not consist­
ently de~~ease the NMSE. Figure 6-16 shows that for L/1 = 9.0 the ellipse is 
more r~gular than for L/1 = 6.25. However for L/1 = 12.5, the ellipse is the) 
least regular of the three. In fact, the values of NMSE produced by all three 
of these runs are within the mean plus or minus one standard deviation of NMSE 
found in the Monte Carlo analysis of the 1 = 10 case in Section 6.4. Thus, 
for the case of 1 = 10, ihc~easing the mesh size may have little effect on 
the NMSE. For 1 = 12, 1 = 14, and 1 = 16 (Figures 6-17, 18, and i9, respec­
tively), there is a slight decrease in NMSE with increase in mesh size. The 
most significant decrease is for 1 = 16 which had the lowest NMSE to begin 
with. 

In the case of LD10B and LD16B, mesh sizes were increased such that the 
number of fractures in the flow region was the same as in the LD20 cas·e 
described in Seeton 6.3. By increasing the mesh size in this way the NMSE of 
LD16B became approximately equal to the NMSE of that of LD20. 

1
The NMSE of 

LDiOB was less than that of LD10A but still greater than LD20. Furthermore, 

as discussed above, the NMSE increased again in LDlOC, so LD10C had a value of 
NMSE greater than the value of NMSE for LD10A, LD10B, and LD20. Increasing 
the mesh size of LD10 such that it included the same or a larger number of 
fractures as were in LD20 did not result in lowering the NMSE to the same level 
as LD20. 

The question of whether or not large enough samples were examined can 
also be addressed by looking at the change in permeability with scale of meas­
urement. If permeability is relatiVely constant with scale increase, then the 
mesh may already be a good statisttcal sample and further increase in ~ample 
size will not change the conclusions. 

The average of K1 and K2 for the first and second series versus fracture 
length 1 are shown on Figure ·6.,.21.. Figure 6-22 shows all the principal per­
meabilities for both series versus mesh size, L. The bars on Figure 6-22 are 
the results of the Monte Carlo study discussed in Section 6.4. There is no 
substantial change in observations from Figure 6-21 versus Figure 6-11. On 
Figure 6-22, for all fracture lengths except 1 = 12, K1 and K2 are converging 
to the same value with increase in mesh size. Some permeabilities increase 
with mesh size, some decrease. In general, increase in mesh size seems to 
produce random fluctuations in behavior which do not qualitatively change the 
observations made in Section 6.3. · 
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For the case of ~ = 10, the Monte Carlo analysis demonstrated that the 
statistics used to generate this system yield permeabilities with a stable 

mean but a high standard deviation compared to those for the case of ~ = 20. 
This section demonstrated that for ~ = 10, the observed values of NMSE were 
not decreased by enlarging the scale of measurement. But, the values of K 
measured on larger scales are not within 2 standard deviations of the values 

measured on a smaller scale in the Monte Carlo analysis of LDlO. Short of 
doing another expensive Monte Carlo analysis on a larger scale, there is no 
way to ensure that a larger scale of measurement would not give a different 
mean value of K than that previously measured. The only evidence available 
that LD10 was a large enough statistical sample is that the change in magnitude 
of K with increase in mesh size is not a clear trend: the permeability of 
LD10B was greater than the permeability of LD10A and the permeability of LD10C 
was less than LDlOA (Figure 6-22). 

If further increases in the scale of measurement for LDlO will not even­
tually decrease the NMSE, then this fracture system apparently has an inherent 
range in NMSE that cannot necessarily be decreased by looking at larger sam­
ples. Certainly NMSE cannot be decreased for LD2 (Figure 6-3) by considering 
a larger sample. In LD2 the fractures are poorly connected no matter what 
the scale. This concept contradicts the common assumption that all fracture 
systems behave as a porous medium on some scale. Seme fracture systems appar­
ently do not behave in situ like a porous medium on any scale. 

6.6 REPRESENTATIVE ELEMENTARY VOLUME STUDY 

The case of LD20 is·~ sample that does behave like a porous medium. In 
order to see how this behavior develops with increase in scale, the representa­
tive elementary volume (REV) study was performed. In this study, 14 different 
flow region sizes within the generation region were each rotated every 15° to 
give 24 different measurements cif dire~tional permeabflity. The flow regions 
at 0° rotation are all shown superimposed on Figure 6-23. Figures 6-24 
through 6-37 show the flow region and the reduced flow region at 0° rotation, 
the ellipse, and the permeability plots for- each of the flow mesh sizes. 
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Figure 6-38 shows plots of normalized mean fracture length in the flow 
region, NMSE, and K1 and K2 versus flow mesh area. The NMSE values are less 
than 0.05 for all flow regions greater than 400 cm2. Thus large samples are 
not necessary for symmetric permeability tensors. At this scale of observa­
tion, however, permeability is still oscillating. Mesh sizes greater than 
about 1,000 cm2 are needed to avoid rapid oscillation of K with mesh size. 
Beyond mesh sizes of about 1,000 cm2, the value of K1 and K2 slowly decline. 
K1 and K2 converge to the same value when the area is 15,625 cm2. Normalized 
mean fracture length, I/20, has achieved most of its increase by about 9,000 
cm:2. The value I/20 in an infinite sample is 1.0, but in finite samples some 
fractures are always truncated, so I/20 ~s always less than 1.0. Thus in this 
case, representative values of NMSE and permeability are observed in samples 
which are much smaller than a good statistical sample. 

The question Gf what size mesh should be used for this particular fracture 
system in a regional ground-water model can be addressed using Figure 6-38. 
Any block size greater than 1,000 cm2 would probably be acceptable since the 
NMSE is fairly stable .in this range. However, block sizes greater than 5,000 
cm2 would provide a better estimate of permeability. Block sizes as large as 
possible are preferable in a regional model because they are less expensive to 
analyze. Constraints of the problem region must also be taken into account. 
Gradients in the region must be linear on the scale of the block sizes in order 
to have an accurate numerical solution. Thus Figure 6-38 provides information 
on ~he minimum acceptable block size, but the regional problem provides the 
constraint of the maximum acceptable block size. 

6.7 CONCLUSIONS 

The study described in this chapter was designed to see if permeability 
could be determined from the fracture frequency in a borehole without knowing 
the actual length distribution and ~ctual fracture density. For small values 
of fracture length, the fracture length must be known in order to predict the 
permeability. For fracture systems where all boreholes intersect the same 
number of fractures per unit length, those with shorter fracture lengths and 
higher density will have lower permeability than those with longer fracture 
lengths and lower density. Furthermore, fracture systems with shorter 
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fractures behaved less like porous media than fracture systems with longer 
lengths. The measured values of permeability and NMSE were much more strongly 
linked to fracture length than to sample size. Thus if a fracture system does 
not behave like a porous medium on one scale, increasing the scale of observa­
tion may do little to improve the behavior. Intuitive prediction of these 
results would not have been easy. 

For l~rge values of fracture length, the increase in permeability with 
increase in fracture length may become negligible. For fractures longer than 
a certain minimum, it would not be necessary to exactly specify the length and 
fracture d~nsity. Specification of the fracture frequency as measured in a 
borehole al~ng with the aperture and orientation distributions would be suffi­
cient. However, this trend could not be confirmed because of the size limita­
tions of the computer. 

~ The numerical study that was performed was based on an isotropic system 
of fractures with constant apertures. However the general trend in behavior 
exhibited by these isotropic systems should also be observed in anisotropic 
systems and in systems with distributed apertures~ 
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7 USE OF FIELD DATA FROM THE UNDERGROUND RESEARCH LABORATORY 

7.1 INTRODUCTION . 

The Lac du Bonnet granitic batholith in the Canadian Province of Manitoba 
is the site of investigations for the Canadian Nuclear Fuel Waste Management 
Program. As part of this program, Atomic Energy of Canada Limited (AECL) is 
conducting hydrologic research at the Underground Research Laboratory (URL) 
site in -the Lac du fforinet batholith. 

This chapter describes two studies in which hydrogeologic data from this 
site were used in the existing two-dimensional model of permeability. The 
analysis serves as an example of the application of field data to the model 

. ' 

and what can be learned about the sit& from even limit~d amounts. of data. 
Types of field data which could be used to furth~r this analysis are'discussed 
in Appendii A. . 

In the first study, the effect of a correlation between length ~nd aper-
ture was examined. Models wera created in which length and aperture are both 
correlated and uncorrelated.· When· length and aperture are correlated, the 
longer fractures tend to have the larger apertures~ The study 1hows that the 
hydraulic behavior of correlated systems is significantly different from the 
behavior of uncorr~lated systems. This study serves to dembnstrate the impor­
tance of understanding the relationship between length arid aperture. 

A second study evaluates the use of steady state well tests to determine 
the true mean aperture of the fracture system. Field data, including well 
test data were used to create a fracture model. Then well tests were 
simulated in the model. The simulated well tests are analyzed to see if the 
input data on fracture aperture can be retrieved. The study shows that steady 
state well tests are inadequate for determining the aperture distribution. 

At the time of this investigation, five boreholes, URL-1 through URL-5, 
had been drilled and tested at the URL site (Figure 7-1). Fracture traces on 
the extensive surface exposures had been mapped. Data from these sources 
indicate that approximately the upper 200-300 m of rock are fractured. The 
rock below this zone, as examined by these boreholes, is relatively unfrac­
fured except for one or two small fracture zones on the order of 10m thick. 
Data from the upper fractured zone and the surface are the focus of attention 
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for this analysis. Specifically, potential sources of data for analysis of 

the upper fractured zone are: 

(1) URL 1 70 m - 120 m 
(2) URL 2 45 m - 155 m 
(3) URL 3 50 m - 155 m 

.( 4) .URL 4 0 m - 90 m 
(5) URL 5 90 m - 110 m 
(6) Su~face Trace Data 

All fracture data were assumed to be samplss from the same overall population. 
Spatial correl"ation was assumed to be lacking. Where the input par~meters 
could not be determined from maps, well tests, or logs, a range of values was 

u.sed. 

7.2 TWO-DIMENSIONAL ANALYSIS OF A THREE-DIMENSIONAL FRACTURE SYSTEM 

Analysis of a real three-dimensional fracture system with a two­
dimensional model has drawbacks. The primary drawback is that fractures which 
do not intersect in the plane of analysis may intersect somewhere outside the 
plane of analysis as shown in Figure 7-2. Also, fractures parallel or 
subparallel to the ·plane of analysis are not represented in the analysis. For 
both these reasons,. a two-dimensional' analysis tends to underestimate 
permeability in the plane of analysis. ·Furthermore, there is no good way at 
this time to correct for this error. In a sense a two-dimensional analysis is 
a bounding study. However, for the purposes of waste storage, this bounding 
study is not a conservative analysis. 

The two-dimensional analysis is useful for examining the relationship 
between fracture geometry and the hydraulic behavio~_of the system. A 
fracture system which behaves'like an equivalent.porous medium in two 
dimensions will probably behave like an equivalent porous medium in three 
dimensions. 

The permeability in a horizontal plane of the upper fractured zone at URL 
was analyzed because' information about trace langth and orientation distribu­
tion could be easily-obtained from excellent trace maps of surface exposures. 
However, it is difficult to obtain a consistent data set for analysis of the 
horizontal plane. All the hydraulic data are from wells which have prefer­
entially sampled horizontal fractures. Samples of fractures taken from traces 
in the horizontal plane are biased towards vertical fractures. Furthermore, 
most of the information on fracture patterns comes from the surface. Since 
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stress conditions at depth are quite different from those at the surface, the 
fracture pattern is also likely to be different. This study proceeds 
initially on the assumption that the aperture distribution of near vertical 
fractures is the same as that at the surface. This assumption was then 
evaluated in examining the results. · 

7.3 INPUT PARAMETERS USED IN THE STUDY 

Input for the model was obtained in two steps. First, density, orienta­
tion, and length input statistics were derived from the surface trace data. 
That is, the fracture pattern was determined completely from the surface data. 
Second, apertures were assigned to the fractures in the pattern. 

For the first study, the same realization of this fracture pattern was 
used for each calculation of permeability. However, for each different calcu­
lation the fracture pattern was given a different assignment of apertures. 
Seven different statistical models for aperture were used. In five of these 
models, the correlated models, A, 81, 82, 83, and C, an aperture was assigned 
to each fracture such that the longer fractures tended to be assigned the 
larger apertures. In two other uncorrelated models, D and E, apertures were 
assigned randomly without regard to the fracture length. All seven, corre­
lated and uncorrelated models, have the exact same fracture pattern. That is, 

' 
each has fractures of the same length and orientation which are located in the 
same place. However, in each model the apertures are distributed differently. 

An analysis of the effect of packer spacings was also made. For this 
study, many realizations of the fracture pattern were used; each With the same 
distribution of apertures determined by the 81 model. In each of these models 
the statistical distributions are the same, but each is a different random 
~ealization. The packer spacing st~dy is a Monte Carlo type study. 

7.3.1 Fracture Pattern 

The fracture pattern input data was obtained from a fracture trace map . 2 -
provided by AECL. A 3,100 m triangular area of the map was chosen for study 
becasue of the good exposure in this area (Figure 7-3). Two sets of fractures 
were identified. Set 1 strikes approximately N27°E and Set 2 strikes N115°E. 
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A 200m sample line was. drawn on the map for each set~ The sample lines were 
approximately perpendicular to the ·mean strikes of the fracture sets. The 
lengths and orientations of the fractur~s intersecting the sample lines·were 
recorded. The statistics of this sample are summarized in Table 7-1. 

Table 7-1. Underground Research Laboratory Fracture Statistics 

Set 

1 
2 

Orientation 

Mean 
(Stri~e) 

Standard 
Deviation 

2.74 
2.34 

Mean 
(m) 

24.72 
25.0 

Length 
. Standard 
Deviation 

(m) 

26.9 
26.9 

Range 
(m) 

5.0-100.0 
2.0-112.0 

Density 
Number of fractures 

per unit length 
(m-1) 

0.100 
0.135 . 

For data input the mean and standard deviations for length were rounded 
off to two digits. The fracture density for each set was calculated using the 
length,..density relationship described in Chapter 6. Recall that ifthe sample. 
line is perpendicular to the strike of the fracture, the number of fractures 
per unit sample length equals the product of mean fracture length and number.· 
of fractures per unit area: 

(7-2) 

(7-3) 
For Set 1, 

-1 . 
~ _ 0. 001 em 4 0 -7; 2 
AA - 2500 em = • x 10 em ' (7-4) 

and for Set 2, 

-1 0.00135 em -7 2 
>.A = 2500 em = 5.4 x 10 /em • 

(7-5) 
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The input data for density, orientation, and length are summarized in Table 
7-2. Orientation in the model is measured counterclockwise from the x-axis 
(East) .. The ~racture mesh pattern generated using the data in this table is 
shown in Figure 7-4. 

Table 7-2. Input Data 

Areal Density (cm-2) Orientation, SO 

Set 1 
Set 2 

7.3.2 Apertures 

4 x 1o-7 
5.4 x 1o-7 

63°, 2.7° 
155°, 2.3° 

Length, SC (em) 

2500, 2200 
2500, 2700 

1he· available borehole well test data were analyzed in order to obtain an 
estimate of the aperture distribution. In the zones of interest, data from 12 
packer tests in the URL boreholes were available. For these test zones, the 
equivalent aperture of a single fracture, b1, which would account for the 
measured p~rmeability in the test zone was calculated. Then the number of 
open f~~clu~e~, N, intersecting the zone was counted using the T.V. log of the 
borehole. Assuming all N fractures were of equal aperture, the value of that 
aperture, bA, which would account for the permeability was calculated. 
table 7-3 gives the results of these calculations. 

A simple correlation model for length and aperture was developed based on 

this data. In Figure 7-5, various plots of the log of fracture length, ~. 

versus aperture, b, illustrate the models used. Four points as summarized in 
Table 7-4 are labeled 1, 2, 3, and 4. Point 1 is the mean length and the approxi­
mate mean aperture; Point 2 is the maximum recorded length and the maximum 
expected aperture; Point 3 is the minimum recorded length and the minimum recorded 
aperture; Point 4 is the mean plus two standard deviations of length and the 
mean plus two standard deviations of aperture. The points do not lie on a 
straight line. The lines on the graph show the model relationships between 
~ and b that were chosen for the A, 8, and C models. 
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All the models were chosen such that they passed through Point 3. This 
was done to insure that any fractures with generated lengths less than those 
observed in the field sample would have a minimum aperture and therefore a 
small effect on the flow. These trial correlation models are fairly simple; 
only one straight line segment on the semilog plot (Figure 7-5) is used to 
govern the choice of aperture for fractures with lengths greater than 100 em. 
Model A was chosen as a probable maximum. Model B was chosen to give some 

weight to Points 1, 2, 3, and 4. Model C was chosen to give weight only to 
Points 1 and 3. Model C was chosen to achieve a good match with the average 
aperture statistics as given at the bottom of Table 7-3. 

Table 7-3. Aperture Data 

N Equivalent Aperture # of Frac-
# of K · Single tures per 

·Zone· 
Hole . (m) 

Open Conduc- · Fracture N Fractures Unit Length 
Frac- tivitr b ** b ** in the Zone 
tures cm/s- ( tm). (~m) (m-1) 

URL-1 .73.9,-91.1 3 1. 5x1o-7 3.16x1o-3 2.19x1o-3 0.1744 
URL-1 108.6-115.6 12 · 4.0x1o-6 7.00x1o-3 3.06x1o-3 1. 714 
URL-2 45.0-55.2 7 5.0xlo-6 "8. 55xJo-3 4.47x1Q-3 1. 457 
URL -2 · . .. 60.0-70.2 3 1. 5xlo-6 5. 72x1o-J 3. 97xlQ-3 2.941 
URl-2 . 86.0,:-96. 2 3 5.25x1o-7 4. Oxlo-3 2.80x1o-3 2.941 
URL-2 105.0-115.2 1 2.0xlo-6 6: 29x10-3 6.29x1o-3 0.0984 
URL -2< 120.0-130.2- 4 . 2.0x10~6 L 36xlo-2 8.55x1o-3 0.3921 
URL:-2 130.0-140.2 2' 6;0x10""7 · 4. 22x10-3 ··· 3.35x1o-3 0.1961 
URL-2 148.0-158.2 0 2.0x1o-7 0.0 
URL--3 6'1. 0-64.5 2* ' 1. Ox1o-B 7 ~ 54x1o-4 · 5.98x1o-4 1. 75 
URL-3 116.0-120.5 4* · 2.0x1o-7 2.23x1o-3 1. 40x1o-3 0.8 
URL-4 ··2.36-62.84 9* not avail. 0.319 
URL-5 79.35-94.11 0* 2.6x1o-B 0.0 
URL-5 94 .ll-108. 87 31. 9.0x1o-5 2. 53x1o-2 8.06xlo-3 2.1 

*Estimated from fracture frequency graphs, T.V. log not availabl~. 

** b = 3/~L 12~ 
pg 

L = zone 1 ength 
N = number of fractures assumed to be conducting 

b1 = 7.35x10-3 em 
SO = 6.89x10-3 em 

bA = 5.54x1o-3 em 

SO = 2.67x1o-3 em 
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Figure 7-5. Length-Aperture Correlation Models Used' in the 
Underground Research Laboratory Data Study 
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Table 7-4. Description of Length and Aperture Coordinates 
Used to Plot Points 1,2,3, and 4 on Figure 7-5 

D~scription of length, 
Point 1 · 

1' Approximate mean value 
of length from 
Tab 1 e .7--1 

2 Order 6f ~agnitude of 
Uie. -maxi mum observed 
value 6f length in 
the triangle on 
Figure 7'-3 

·.;_,, 

. 3 'or.der of magnitude o'f 
the-minimum observed· 
. value of. length in 
the triangl~.on 
Figure 7-3 

4 The mean value of length 
(from 1 above) plus 
approximately 2 standard 
deviations from 
Table 7-3 

Description of aperture 
b 

Approximate average of 
b1 and bA from 
Table 7-3 

The maximum expected 
aperture based on 
Table 7-3 

Order of magnit~de of 
the minimum observed . 
value of aperture on 
Table 7-3 

The mean value of 
aperture {from 1 above) 
plus approximately 2 
standard deviations from 
from Table 7-3 

Values of length 
and aperture 
( i, b) (em) 

(2,500, 0.006) 

(10,000, 0.65) 

(100, 0.0005) 

( 7 ' 500, 0. 02) 

Thes~ correlation models were used to pick a value of aperture for each 
fracture in the existing fracture pattern. First the length, 1, of each fra~­
ture was us·.ed to find the value of b(1) on Figure 7-5. If aperture and 
length were perfectly correlated {i.e., ·a one-to-one correlation), then b(1) 
would be the apertute issign~d to a fracturi of length. However, in this study, 
b(1) was considered to be the mean value of aperture for all fractures of 
length 1. The value of aperture actually assigned to the fracture was assumed 
to be a member of a normal distribution with mean, b(1), and standard devia­
tion, SDb(1), specified in the input. Thus, if the values of aperture assigned 
to each fracture were plotted on Figure 7-5, they would be scattered around 
the sloped portion of the line. 

magnitude of SDb(1). The total 
mined both by SDb(1) and by the 

The amount of scatter is determined by the 
dispersion of the ~alues of aperture is deter­
randomness inherent in 1. 
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Model B was run with three different standard deviations as 81, 82, and 
83. In 81, SD(b(1)) (the standard deviation of b(1) around b{1)), was 0.001~ 
in 82, it was 0.01; in 83, it was 0.04. 

Zero aperture fractures create a problem in the numerical analysis and 
negative aperture fractures do not make sense physica~ly. Therefore a minimum 
aperture, in ~his case 0.0001 em, was assigned to any fracture wtth a length 
less than 100 em, which is the minimum length recorded in the f~eld data. This 
aperture was also assigned to any fracture for which the correlation model 
gave a negative aperture .. 

In simulations D and 'E, length and aperture were uncorrelated. Model'D 
used values of mean aperture and standard deviation the same as those measured 
in the generation region of Model 81. Model E used a sl ig.htly small.er mean 
aperture and a much larger standard deviation than· Model D. A s~mmary of the 
aperture assignments used in each model is given in Table 7-5. 

For each model the permeability was calculated in 24 directions.15° apart. 
The superimposed flow regions for the permeability calculations are shown in 
Figure 7~6. The flow regi6n size was 250 x 250 m~ These dimensions are 10 
times the mean fracture length, which is la·rge enough to insure a good statis­
tical sample. All of the models used the same fracture ~attern, but apert~res 
were assigned differently in each model. The flow regions were simplified for 
the purpose of economy by eliminating the isolated ahd deadend fractures which 
do not conduct. These red~ced flow meshes are shown in Figure 7-7. Each of 
the six reduced flow regions shown represent four different directions of 
measurement: e, e + 90, e + 180°, and e + 270°. 

7.4 RESULTS OF THE PERMEABILITY STUDY 

... 
The results of the permeability calculations. are shown in Figures 7-8 

through 7-11. The left-hand side of each frame is a per~eability ellipse 
p 1 ot. The dashed 1 i ne connects the va 1 ues of 1/IRQ ca 1 cu.l ated by the model. 
The smooth ellipse drawn with a solid line is the best fit ellipse. The right­
hand side of the figure shows the values of calculated permeabil.ity plotted 
against rotation angle in Cartesian coordinates. The smooth soltd~l4ne curve 
on this plot is the best fit""ellipse." The polar plot provides a g.ood 
visualization of the hydraulic behavior, but the Cartesian plot provides a 



Table 7-5. Input and Output Aperture Statistics for the Underground Research Laboratory Models 

Coefficient of ' Observed Aperture 
Length and l:;orrelation in Input Aperture Statistics in the .. 

Model Aperture Ineut Correlation Parameters the Generation . Statistics Generation Region 
Set Correlation · Y-Intercept Slope SDb~tT . Region b SOb b SOb 

A Yes 
1 -.06 .03 • 01 .5461 - - .0388 .0135 
2· -.06 • 03 .01 .6340 - - .0369 .0153 

B1 Yes 
1 -.036 .019 .001 .8283 - - .0262 .00596 
2 -.036 .019' .001 .8215 ~ - .0255 .00738 

B2 Yes 
1 -.036 .019 .01 .3886 - - .0269 .0115 
2 -.036 .019 .01 .5011 - - .0253 .0123 

...... 
U1 

B3 Yes 0'1 

1 -.036 .• 019 .04 .084 - - .0343 .0337 
2 -.036 .019 .04 .1656 .0312 .0318 ... 

c Yes 
1 -.01 .005 .001 .6937 - - .00643 .00182 
2 -.01 .005 .001 .7392 .00616 .00217 

D No 
1. - - - - ·.026 .0065 .027 .007 
2 - - - - .026 .0065 .026 .006' 

E No 
1 - - - - .02 .04 .024 .050 
2 - - - - .02 .04 .019 .029 
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figure 7~6. Superimposed Flow Regions for the Underground 
Research Laboratory Data Study 
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Figure 7-7. Reduced Flow Regions for the Underground Research Laboratory Data 
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Figure 7-8. Permeability from Models A and Bl of the 
Underground Research Laboratory 
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better visualization of tha magnitude of permeability and the degree of scatter. 
The values of the principal permeabilities, the principal dir~ctions, and the 
normalized mean square error (NMSE) for each case are given in Table 7-6. 

Table 7-6. Permeability Results for the Underground Research. 
Laboratory Data 

Model 
Principal Permeabilities (cm/s) 

K1 k2 
Principal Directions 

81 82 NMSE 

A 7.61 X 10-4 4.26 X 10-4 -9.5 -80.5 0.044 
81 2.09 X 10-1 1.32 X 10-4 -9.5 -80.5 0.041 
82 2.40 X 10-4 1. 31 X 10-4 -8.3 81.6 0.051 
83 8.25 X 10-4 2.05 X 10-4 -4.7 85.3 1. 727 . 
c 3.38· X lo-6 1.98 X ·10-6 -10.0 80.1 0.041 
D 8.17 X 10-5 5.13 X 10-5 -6.8 83.2 0.046 
E 3.55 X 10-5 2.51 X 10-5 -24.6 65.4 1.317 

Model A represents a probable maximum aperture model based on Figure 
7-5 and thus had the largest permeability of all the models. The p~rmea~ 
bility of this model was on the order of 1o-4 cm/s whereas the p~rmeabil­
ities measured in URL-1 through URL-5 are generally on the order of 10-6 
or 10~7 cm/s. This difference may or may not be a discrepancy. Permea­
bility may simply be increasing with scale of measurement. The borehole 
measurements were on the scale of 10m. The permeability models were on 
the scale of 250 m. However, none of the individual borehole measurements 
were as high as 1o-4 cm/s. The difference between the model results and 
the borehole measurements is strong evidence that either the aperture 
model is wrong or the fracture pattern from the surface doe~ not apply at 
depth, or both. 

The overall linear density, AL, of open fractures as recorded in the 
borehole T.V. logs for the zones tif int~rest is about 0.65 fractures per 
meter. This number is larger than the values measured at the surface as 
given in the last column of Table 7-1. Therefore, the linear density at 
depth is probably larger than at the surface. All else being equal, a larger 
density at depth than at the surface would imply a larger permeability at 
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depth than predicted by the model using surface data. Yet the permeability at 
depth is evidently lower than predicted by Model A. This is more evidence 
that the apertures in Model A are too large or the fractures may be much 
shorter at depth than those at the surface. 

The observed values of mean aperture and standard deviation of aperture 
in Model A are not the same as calculated from the borehole test data. The 

field mean aperature and standard deviation are lower than the model. Note 
that the overall mean aperture and standard deviation of the aperture are not 
assigned directly in the correlation model. These statistics can only be cal­
culated after the model is generated. Reproducing specific aperture statistics 
can only be done by trial and e~ror. 

The aperture model used in A may very likely be wrong because it results 
in apertures which are too high. This discrepanc~ would also account for the 
permeability of the model being too high. Since the aperture statistics of 
Model A did not match the aperture statistics measured in the field, the Bl, · 
B2, B3 and C models were tried to see if the permeability of the models could 
be significantly lowered. The B models were ~11 set to give more weight to 
Points 1, 2, and 4 on Figure 7-5. These models still result in a mean aperture 
higher than that observed in the field (Table 7-5). Some decrease in permea­
bility from Model A to the B models was observed. However the permeability of 
the B models is still significantly larger than the packer test results. 

From-Model Bl to B3, the only signific~nt change in the fracture mesh is 
an increase in the standard deviation of the overall aperture distribution. 
This increase has two net effects. The first is the permeability increases 
slightly and the second is the normalized mean square error (NMSE) increases 
substantially. The net increase in permeability can be explained because the 

' flux carried by the fracture is proportional to aperture cubed. When the stan-
dard deviation is increased, a fracture of initial aperture, b, is likely to 
have its aperture increased or decreased by an amount, say 6. However, 
in this case the resulting net increase in flux is greater than the net 
decrease. This can be seen by calculating (b - 6)3 and (b + 6)3. 

(7-6) 

(7-7) 
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The magnitude of increase in b3 is 

(7-8) 

The magnitude of decrease in b3 is 

(7-9) 

The magnitude of the increase is greater than the magnitude of the de­
crease by 662b. Therefore the permeability of individual fractures increases 
systematically. However, with a higher standard deviation of aperture the 
cbnnections between fractures in the pattern are more heterogeneous, and there­
fore the NMSE increases. This increase in heterogeneity itself also causes 
random dec rea sa and increase in the permeabi 1 i ty. ·· When 1 ength and aperture 
are correlated the net result of both the systematic and r~ridom sffects 6f 
increasing standard deviation seems to be an increase in permeability. 

Model C was designed to find an aperture-length model which woul~ achieve 
permeabilities on the order of lo-6 cm/s with the same fracture pattern used 
in the A and 8 models. Mean apertures ih this model were decreased by a factor 
of about 1/4 from the 81 models. The perm~ability of C was decreased bj a 
factor of about 1/62, which is approximately equal to (1/4)3. Model C best 
represents the field statistics. The permeability of Model C was th~refore on 
the same order of magnitude as the field test results. 

Permeabilities of models with uncor~elate~ length and aperture ~re smalle~ 
than those of correlated models. Model D was designed to determine the magni­
tude of decrease in permeability caused by having length and aperture uncor­
related; Model D has approximately the same overall aperture statistics as 
Mode 1 81. 

Model D has a slightly higher NMSE and a significantly lower permeability 
than 81. In 81, the correlated model, large apertures are not "wasted" on 
short fractures which do not as often connect to oth~r fractures. Therefore 
the correlated Model 81 has a higher ~ermeability than the uncorrelated Model D. 
Correlation did not seem to produce a large effect on the NMSE. 

A comparison can be made betwee·n 83 and E. The correlated Model 83 has a 
lower standard deviation of aperture than the uncorrelated Model E. In this 
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case, however the correlated model has a higher NMSE. This disparity is 
apparently due to a random long, higher aperture fracture which connects the 
inflow side at 0° rotation to an adjacent side rather than the opposite side. 
This creates the anomalously high permeability at 0° and the anomalously low 
value at 180°. It may be that correlation between length and aperture may be 
responsible for creating a "super conductor" which increases the value of NMSE. 
In both the correlated and uncorrelated models, an increase in the standard 
deviation of aperture increases the NMSE. , 

All else being constant, an increase in the standard deviation of aperture 
increases the NMSE. If length and aperture are correlated, an increase in 
standard deviation of aperture will probably increase the .permeability. All 
else being constant, uncorrelated models have lower permeability than do corre­
lated models. All else being constant, increasing the mean aperture by a fac­
tor of m increases the permeability by a factor of about m3. Correlation 
between length and aperture may explain the occurrence of "super conductors." 

7.5 THE MONTE CARLO PACKER SPACING STUDY 

A study was conducted to observe the influence of packer spadng on the 
ability to predict the true mean aperture of the fracture system. First a 350 
x 350 m fracture mesh generation region was created using the fracture statis­
tics of Model 81. Then, a series of flow regions were defined in the genera-
tion region. All the flow regions were at 0° rotation and the sizes varied as 
follows: 1 x 1m, 2 x 2m, 5 x 5 m, 10 x 10m, 20 x 20m, 50 x 50 m, 80 x 80 m, 
150 x 150 m. In the first set of runs, the sizes ranged from 1 x 1 m to 50 

x 50 m. Then another set of runs was made to see the results in regions larger 
than 50 x 50 m. In this second set of runs flow regions ranged in size from 1 
x 1 m to 250 x 250 m. In each set of runs, 20 different generation regions 
and the associated flow regions were created as different realizations of the 
same statistics. Figure 7;12 shows one of these realizations from the second 
set of runs. Figure 7-13 shows the flow regions of different si~es for.this 
realization. Figure 7-14 shows the.reduced flow regions. 

In each of the flow regions, permeability was calculated in the 
·I 

x-direction. In fact, two values of permeability were calculated for.each 
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Figure 7-12. Generation Region ·for One Realization of the 
Packer Spacing Study 
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flow region, one based on flow into~the region in the x-direction and one based 
on flow out of the region in the x-direction. Therefore 40 values of Kxx were 
calculated for each set of runs and each size of flow region. These values of 
Kxx were assumed to repres~nt the·results of permeability tests in a well bor~ 
when the packer spacing is equal to the flow region dimensions. The values of 
Kxx were used to calculate fracture apertures in the same way that the field 

data in Section 7.5 was analyzed. That is, a single equivalent aperture, b1,. 
was calculated as 

(7-10) 

where L is the zone length or flow region dimension. Then the number of frac­
tures, N·, which actually intersected the side in question was counted. An 
average equivalent aperture, bA, was calculated as 

3 . XX fi K L 
bA = N pg/12}.1 • (7-11) 

The actual apertures b of the N fractures which intersected the zones as they 
existed in the model were also recorded. Then for each set of 20 runs, the 
average values of b1, bA, and b were calculated: 51, bA, and b. The mean 
aperture of all the fractures in all of the 40 generation regions was approxi­

mately constant at 0.026 em. 
Figure 7-15 shows b, 51, and 5A plotted versus zone length, L. The true 

mean aperture for all of the generati6n region is shown as a horizontal line. 
The object of doing the packer tests is to determine this value of mean aper­
ture. 

For all zone lengths the mean of the actual fracture apertures intersect-
1ng the well zone is larger than the true mean aperture of fractures in the 
whole region as Figure 7-15 shows. Because length and aperture are correlated, 
the fractures with larger aperture are also longer and thus more likely to 
intersect the well_,zone. If length and aperture were uncorrelated, the average 
actual aperture would be expected to converge to the average aperture for the 
whole region. 

The values of 51 and bA are less than the mean aperture of the generation 
regions for all the zone lengths tested. The value of bA is stable for all 
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zone lengths. A slight decline in bA with zone length can be explained by 
the slow decline in average permeability of all the samples with flow mesh size 
as shown in Figure 7-16. This effect also explains why the increase in b1 

does not become a linear function of the packer spacing. 
Within the limits of the size of the fractured zone at URL, neither b1 

nor bA are likely to provide good estimates of the mean aperture. The magni­
tudes of 61 and bA are lower than the mean aperture because of two factors. 
First, the cal~ulation of b1 or bA assumes the fractures are perpendicular to 
the well when in fact they are not necessarily perpendicular. The error 
involved is proportional to the cube root of cos 8 where 8 is the angle between 
the fracture and the plane perpendicular to the well. 

The second error in calculating b1 and bA results from assuming that the 
fractures are all perfectly connected and conducting. A good example of this 
error can be seen in Figures 7-12, 7-13 and 7-14 for the 2,000 x 2,000 em (20 
x 20m) flow region. Figure 7-12 is one realization from the packer spacing 
study, and Figure 7-13 shows the flow regions which were analyzed. As can be 
seen in Figure 7-13, the right-hand side (the outflow side) of this mesh inter­
sects two fractures. But, as can be seen in the 2,000 x 2,000 em red~ced flow 
mesh of Figure 7-14, both of these fractures have been eliminated from the 
flow calculation because they do not connect with any other fractures or any 
other boundary. Thus in this extreme example, the well intersects two iso­
lated fractures but zero permeability is measured. So zerb~apertures would be 
calculated for the two fractures if they were assumed to be "connected." In 
fact, they are not connected and have nonzero apertures. 

In less extreme cases, the larger aperture fractures that intersect the 
well are connected, but only through smaller aperture fractures. When a large 
aperture fracture feeds into a smaller one, the flux carried by the larger 
aperture fracture is reduced. Therefore, the measured permeability is reduced 
and the calculated equivalent aperture is smaller than the real aperture. In 
the opposite case, when a small aperture fracture is connected through larger 
aperture fractures, the flux is not significantly increased. 

This effect can be illustrated by considering the example of two fractures 
in series. Figure 7-17 shows two such fractures, A and B, under an overall 
field gradient, JF. The equivalent overall permeability in the x-direction, 
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K, of the two fractures can be found by equating the flux. through A to the 
flux through~B. That..is, 

QA = QB = Q, (7-12) 

3 _e.g_ (cp1 - cpM) _ b3 -.£..9. (cpM - cp2) = 
b A 12~ LA . B 12~ L

8 
O' (7-13) 

where ¢1 is the head at the left-hand face of the rock element, ¢0 is the head 
at the right-hand face and ¢M .is the head at the intersection. SolviQg.for 
the head ¢M at the intersection, 

(7-14) 

The field gradient Jf is 

i ' .. 

(7-15) 

The equivalent K for this rock element in the direction of the field grapient 
. I 

is 

(7-16) 

The single equivalent aperture, b, for this system is found by e_quating 

So we have: 

b = 

or 

y Kh 
pg/12~ ' 

( 7-: 17) 

(7-18) 

(7-19) 
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If b8 is much greater than bA, ahd LA and L8 are -both approximately equal 

to each other, then b8/bA >> 1 and 

So if bA is smaller than b8, the·equi~alent aperture, b, is approximately 
equal to bA. 

(7-.20) 

(7-21) 

Heterogeneous connections between fractures usually result in the measured 
aperture being less than the actual aperture. In this case, although the aver­
age of the actual apertures of fractures intersected by the well zone is higher 
than the true mean aperture this does not compensate for the lack of perfect 
connection. In the case where length and aperture are not correlated, the 
average of the actual aperture of fr~ctures intersected by the well will be 
closer to the true mean aperture of the system. However as a result, in the 
uncorrelated'case the estimate of aperture obtained in steady-state well tests 
may be even worse than the correlated case. 

7.6 CONCLUSIONS AND RECOMMENDATIONS 

In these model studies the aperture distributions were varied in three 
differeht ways. The mean and standard de~iation of aperture were varied and 
aperture was assigned to the fractures such that it was correlated or uncorre­
lated to fracture length. These three variants influence both the magnitude 
of the permeability and the NMSE. The magnitude of the permeability is most 
affected by the magnitude of the mean aperture. An m-fold increase in mean 
aperture results in an m3 increase in permeability. Thus even a less than an 
order of magnitude change in mean aperture can result in several orders of 
magnitude of change in permeability. The next strongest influence on the mag­
nitude of the permeability is correlation between length and aperture. Corre­
lated systems may have permeabilities about an order of magnitude higher than 
similar uncorrelated systems. Finally the standard deviation of the aperture 
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distribution influences the magnitude of the permeability. An increase in the 
standard deviation of aperture when fracture apertures are correlat~d to frac­
ture lengths results in an increase in permeability. If they are not corre­
lated, then· an increase in the standard deviation may increase or decrease the 
permeability. Thus, in order of importance the magnitude of the permeability 
is affected by the mean aperture, th~ correlation between length and aperture 
and the standard deviation of aperture. 

The value of NMSE is most significantly influenced by a change in the 
standard deviation of the aperture distribution. An order of magnitude change 
in standard deviation can result in a change in NMSE of two orders of magnitude. 
Corelation between length and aperture has some influence on the NMSE. If 
length.and aperture are correlated, long, high aperture fractures may be formed 
which serve to increase the NMSE. The value of the mean aperture effectively 
has no influence on the NMSE. Thus. in order of importance the magnitude of 
the NMSE is affected by the standard deviation of the aperture distribution, 
and the correlation between l~ngth and aperture. 

Based on Model C of this study, the best estimate of the NMSE of URL rock 
is very roughly 0.04. A value of 0.04 means the permeability ellipse is prob~­
bly fairly regular. This estimate would be decreased by adding a third dimen~ 

I " 

sion to the analysis. However, it would be increased by shortening the frac7 
ture lengths or by restricting the sample size to the width of the upper frac­
ture zone. Since we have no estimate of the length of fractures or depth this 
estimate of NMSE must be treated with extreme caution. 

For these statistical systems, NMSE values as high as 1.7 still produce 
permeability plots that are closed figures. Thus approximation of the URL 
rock as a porous medium may be acceptable. However, due to the combination of 
adding a third dimension, shortening the fractures, and decreasing the sample 
size, the net change in the NMSE may be an increase. If such increase in NMSE 
produces a permeability plot which is not closed, approximation as a porous 
medium will be poor. 

Steady-state packer tests are likely to give estimates of the mean aper­
tures that are lower than the true mean. In estimating the mean aperture, the 
packer spacing is not very ~mportant as long as bA is used to estimate the 
mean aperture instead of b1 and enough tests are run. The relationship between 

the true mean aperture and bA has not been established, but it will clearly be 
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a complex function of fracture densities, orientations, lengths, and the 
correlation between length and aperture. 

Research and data collection in several areas would be very useful at 
URL. The correlation between length and aperture should be examined. Field 
data collected at depth using transient methods (Doe et al, 1982) that provide 
data on local hydraulic aperture and fracture extent would help to determine 
whether and how length and aperture are correlated. Complementary theoretical 
work from a rock mechanics standpoint on the relationship between length and 
aperture w6uld help to guide these field efforts. More numerical analyses 
aimed at uncovering the relati6nship between 5A, 5, and the true mean aperture 
under various correlation conditions would greatly help to interpret steady­
state packer tests at URL. Research on the relatibnship of radial flow permea­
bility test results to the behavior of·fractured rock under quasi-linear 
regional flow would also allow for better interpretation of well tests. The 
development of a three-dimensional fracture model as described in Chapter 8 
would greatly reduce uncertainty in understanding the hydraulic behavior of 
the fractured rock ~t URL. Finally, so~e error will likely be associated with 
application of classical tensorial analysis to flux in the upper fracture 
zone. Work should be done to quantify this error, possibly by using the 
methods presented in Chapter 10. 
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8 EXTENSION OF THE MODEL .TO THREE DIMENSIONS 

8.1 INTRODUCTION 

A two-dimensional model of a system of finite fractures is useful for 
examining qual~tative relationships between fracture geometry and permeability. 
HoweVer, two-d~mensional models will never be able to completely describe three­
dimensional behavior. The reason for this is that fractures which are not 
connected in the plane of a two-dimensional analysis may be connected in some 
other part of the rock mass. Permeability will always be underestimated and 
hydraulic behavior will always ap~ear to be less like porous media in a two 
dimensional analysis than in a three-dimensional analysis. Thus, a three­
dimensional model would greatly increase the reliability of the results when 
field ~ata are analyzed using a fracture model. 

In reality fractures are irregular, finite discontinuities in the rock .. 
In two dimensions we made the idealization that the fractures could be modeled 
by straight line segments. Likewise, we will assume fractures-are planar seg­
ments in three dimensions. We now have to make a further assumption about the 
shape of the planar segments. 

As described in Chapter 2, there is support in the literature for 
elliptically shaped fractures. However, the simplest and most pragmatic 
approach is to assume fractures are circular. Circles of course are a subset 
of ellipses. The irlentification of intersections between circular fractures 
is much more straightforward than that for elliptical fractures. The calcula­
tion of flow in a fracture between intersections is simplified. Als6 if 
circular fractures are assumed, the lateral dimensions of the fracture can be 
speci1ied with only one parameter, the radius. For ellipses, three parameters 
are needed: the dimensions of the major and minor.axes and the orientation of 
the axes. The assumption of a circle is pragmatic because the availabil-ity of 
statistically significant field data on the length versus width of fractures 
and the orientation of the major axes of the ellipse in the fracture plane is 
unlikely. Therefore fractures wjll be represented as circles. 

The radii of these discs can be considered to vary lognormally, just as 

the length of fractures in the two-dimensional model varied. Baecher and Larney 
(1978) have shown that lognormally distributed radii give rise to lognormally 
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distributed trace lengths. Since lognormally distributed trace lengths are 
observed in the field the assumption of lognormally distributed radii is 
reasonable. Fracture centers are located randomly. Fracture orientations and 
apertures are distributed by sets in a manner similar to the construction of 
the two-dimensional model except that orientations can vary in two directions. 
Distributions such as Arnolds' spherical normal distribution (Mahtab et al, 
1972) or Bingham's distribution (Mahtab, 1982) can be used to gene~ate the 

/ 

orientations. Also, discrete field data could be used to specify the orienta-
tions directly. 

The complete three-dimensional model consists of randomly located discs 
with distributed orienta~ions~ apertures, and radii (Figure 8-1) These discs 
intersect to form the flow system. The form of the intersections is a line 
segment, whereas in the two-dimensional model the intersections are points. 
Thus the line segments will become the "nodes" of the three-dimensional model. 
Steady flow takes place in any given disc-shaped fracture from one node to 
another. 

The fracture system can be generated in a spherical generation region and 
the flow region will be a cube that lies entirely within the generation region 
(Figure 8-2). Boundary conditions for the overall model will be similar to 
those of the two-dimensional model. Boundaries will be the faces of the cubic 
flow region rather than the edges of the square flow region in the two­
dimensional model. As an example consider Figure 8-1. Suppose Side 1 is the 
inflow face and Side III is the outflow face. Then Side I will be assigned a 

head of unity. Any fracture intersecting Side I will have a node with 
prescribed unit head. Thus the intersection of fracture 3 with Side I will 
have a prescribed head of one. Likewise, Side III will be assigned a head of 
zero, and the intersection of fracture 5 w{th Side III will be a node with 
prescribed head of zero. On Sides II, IV, V, and VI the head will have a 
fixed, linear distribution. A plot of the head distribution over these 
boundaries would look like a wedge: the head would be unity along the edge 
where each of these sides intersects Side I and zero along the edge where each 
of these sides intersects Side III. The head in between these two lines can 
be fo.und by 1 i near i nterpo 1 at ion. Fractures such as 2 and 4 intersect the 
distributed head boundaries. The treatment of these nodes will be discussed 
below. 
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Figure 8-1. Three-Dimensional Fracture Model 
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As in the two-dimensional model, permeability in the direction of gradient 
can be measured. The direction of gradient can be changed by mathematically 
defining different cubic regions of simulated rock oriented in different direc­
tions but centered at the same point. In the two-dimensional model the flow 
region was rotated in equal intervals from 0° td 180° to obtain the entire 
permeability ellipse. in three dimensions, the rotations must be over a half­
sphere in order to define the permeability ellipsoid. 

8.2 SOLUTION OF THE FLOW EQUATION 

As in the two-dimensional model, a general analytical solution cannot be 
found for flow in large, random, three-dimensional fracture systems. On the 
other hand, in three dimensions, a purely numeric~l solution scheme such as 
used in the two-dimensional prohlem would require discretization of each frac­
ture plane. While this is theoretical~y possible, t~ii approach has two prac­
tical problems. The first is that the total number of unknowns would be equal 
to the number of fractures times the average number of elements in each 
fracture. Thus there would.be severe limitations on the size of problem which 
could be analyzed. S~condly, the intersections between fractures are randomly 
located in the fracture disc. Thus the development of a numerical mesh genera­
tor which could successfully discretize every fracture would be difficult. 
The solution technique proposed here is an approximate mixed numerical and 
analytical method. Flow in each fracture plane is handled analytically. The 
flux through the system is then calculated using a numerical solution based on 
mass balance in the system. 

The analytical solution in each fracture plane is based on the assumption 
that each fracture intersection acts like a source or sink with constant 
strength per unit line length (Figure 8-3). The fracture itself acts like a 
permeable disc with impermeable boundaries. Solution of the Laplace equation 
for this case allows calculation of the head distribution along each fracture 
intersection (node) in terms of the total flux entering or leaving each of the 
nodes in the fracture disc (Figure 8-3C). When this is done in each fracture 
disc, two different head distributions will have been found for each node, one 
for each fracture which forms the intersection. 
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Figure 8-3. Flow, Conditions in a Fracture· ' 
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It is impossible to force these two head distributions to be identical 
under the assumption that the intersections are of constant strength per unit 
line length. In reality, the nodes will not have constant strength per unit 
line length and the head distribution along the node must be the same. as 
measured in either fracture. The actual distribution of strength along the 
intersections can only be found by using the completely numerical scheme 
described above, but such a procedure is impractical. In this mixed numerical/ 
analytical scheme, the total flux into or out of an intersection is assumed to 
be approximately equal to the flux predicted with a source of constant 
strength per unit length. Furthermore, we require only the average head along 
the fracture intersection to be the same in each of the fractures which form 
the intersection. Therefore. for each intersection, the two unknowns are the 
value of average head and the total flux through the intersection. 

Solution of the Laplace equation in each fracture disc allows us to write 
a set of equations for the average head at each of the ihtersections in terms_ 
of the total flux into or out of each of the intersections. The particular 
form of these expressions will be determined by the particular geometry of 
intersections present in that fracture. When inverted this set of equations 
produces an equation for the total flux into or out of each intersection in 
term~ of the average head at each of the nodes. A global mass balance equa­
tion can then be written by equating the flux into a node from one of its 
associated fractures tb the flux out of the intersection into the other frac­
ture. J~st as in the two-dimensional case, there will be one equation for 
each node. Solution of these equations gives the aver.age head at each inter~ 

section. Knowing the average heads, the flux through each intersection can be 
calculated using the analytical solutions for each fracture. The flux through 
the boundary nodes of each boundary can then be cumulated to find the total 
flux through the boundary. 

8.2.1 Flow in a Fracture Disc 

Flow can only take place in a fracture if it is intersected by at least 
two other fractures. If a fracture is intersected by only one other fracture, 
then it is a dead end which does not conduct fluid. If a fracture is inter­
sected by two other fractures, then one of the intersections acts as a line 
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source and the other acts as a line sink. If the fracture is interested by 
more than two other fractures then at least one of the intersections acts like 
a source and at least one acts like~a sink. 

The sqlution of the problem of flow in the fracture discs uses image 
sources and sinks to account for the impermeable boundaries. In fact, the 
simplicity of the image system for a sauce or sink within a cirtle is a major 
advantage of assuming fracture~ aie circular. The solution for an arbitrary 
number of line sources and sinks within a disc with impermeable boundaries is 
derived from the solution for a point source within a circular flow region. 
Consider a circular disc which contains a point source of strength +m at B as 
shown in Figure 8-4. For steady state conditions, Milne-Thomsen (1968, p. 222) 
gives an image system which accounts for the impermeabl~ boundary at r = a. 
If the source is located in the circle at r = g, then there is an image source 
of strength +m at r = a2/g 'and an image sink of strength -m at r = 0. Since 
the source and the images all lie on the same ~adial line, the head at any 
point in the fracture can be found by cumulating the head contributions of the 
source and the two images. 

Recall at least two fracture int~rsections in~ fractur~ disc are 
necessary to have flow in the disc, and at least one of the intersections must 
act like a source and at least one mu~t act like a sink. Furthermnre, in 
order that the total flow into the fractu~e equals the total flow JDt of the 
fracture, the total strength of all sources must be equal and opposite to the 
total strength of ~11 sinks. Therefore, the total stre~gth of all required 
images at r = 0 will always be zero. 

Now we allow point sources to be distributed along an arbitrafy line seg­
ment in the ~ircle such that the strength per unit line length is constant. 
First we must find the locus·of the distributed images. Then we must find the 
expression for the total head at any point in the circle due to th~·sources 
along the intersection and along the image. 

A nonradial line segment source will have an arc-shaped image constructed 
as shown in Figure 8-5. A radial source will have a radial segment image. 
The equations 
follows. The 
Ax = By = C. 

for the 16cus of the arc and radial images can be derived as 
equation of the line on which the segment lies can be given as 
Changing to radial coordinates, let x = r cose and y = r sine.· 

Then the equation is Ar cose + Br sine = C, or 
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Ar cose + Br sine = C , or 

c r = A cose + 8 sine . (8-1) 

If the line segment is radi a 1 , c = 0, so 

e = tan- 1(-A/8), (8-2) 

is the equation of the image segment. The endpoints of the image segmeht are 
giveh by r = a2/g1 and r = a2/g2, where a is the radiu~ of the fracture and g1 
and g2 are the distances from the endpoints of the intersection to the center 
of the fracture. 

If C I 0, the equation of the ima~e arc, R, is 

2 2 
R=~ =r (Acose+Bsine). 

Returning to Cartesian coordinates, let 

X X 
cose = ~ = ; 2 + 2 • 

X y 

and 

sine = y_ = 
R l/ 

So we have 

y 

2 y ' 

Equation 8-4 is the equation of a circle centered at 

(
a

2
A. a

2
8) 

2C ' 2C ' C * b' 

with radius 

a2/A2 + 82 
2 ·, c 

and which always passes through the origin. 

·• ( 8-3) 

(8-4) 
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Now it remains to evaluate the potential distribution in the circle due 
to both the sources distributed on the intersection itself and the sources 
distributed on the image arc or radial segment. In the following, ¢~N will be 
the potential due to the sources distributed along the intersection i on frac­

ture k; ~~I will be the potential due to the sources distributed along the 
image. The potential due to the presence of intersection i is ¢~ = ¢~N + ¢~I' , , , 
The total potential due to all the intersections in the circle will be given 
by ~k, and the average potential on the intersection will be~~. 

First, consider a nonradial intersection (Figure 8-6). A local arbitrary 
X, Y ~oordinate system is established for each fracture disc. All the equations 
for potential distribution must be referred to X, Y coordinates before they 
are added. Coordinates convenient for calculation are the x', y' coordi~ates 

shown on Figure 8-6. These coordinates are centered at one endpoint of the 
intersection. The y'-axis lies on the intersectibn .. Point 0 is the center of 
the fracture. Point P is an arbitrary point in the plane. 

The fundamental solution of the Laplace equation for a point source in an 
infinite plane is 

-Q 
¢ = Kh = 2n R.n r , (8-5) 

where m = 0 is the strength of the source, r is the distance from the source, 
K is the permeability (K = b2pg/12~), and h is the hydraulic head. Milne­
Thomsen (1968) shows that the potential due to sources distributed over a line 
segment of length ~ on the y'-axis is given by 

R. 

f i R.n[x'2 + (y' - ~)2] d~, 
(8-6) 

0 

where m~ = Oi/~ is the strength per unit line length and Oi is the total 
strength of the line source. The subscript i refers to intersection i. This 
integral has been evaluated in Selby (1965, p. 334, No. 380): 

k Qi { ' 2 
<PiN=- 4nR. (~- y')R.n[x' + (y'- ~) 2 ] 

- 2" + 2lx'J tan-
1 

( • 1 ~,() }: , 

(8-7) 
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Changing to x, y-coordinates (see Figure 8-6) 

x = x' + B; (8-8) 
y = y' c. 

So Equation 8-7 becomes 

·~N =- ~~t{[(t- y '+- C)Rn (<x- Bl
2 

+ (y- C- t)
2

) (8-9) 

- u + 2jx- sltan-1 (t,: ~ ;n -[<-y + clm(<x- Bl 
2 

+ ( y - C) 
2 )+ 2j x - B I tan -

1 I~ = ~ I J } , 
where B and C are defined on Figure 8-6. This expressiun must now be written 
in X, Y coordinates which involves the rotation: 

x = X cos e - Y sine; 
(8-10) 

y = X sin e + Y cos e. 

After this substitution we have an expression of the form 

Now consider the image arc as shown in Figure 8-7. The total strength of 
·the sources on the image arc is Oi because the total strength of the sources 
on the intersection is Oi· However, the strength per unit arc length on the 
image is not constant as it is on the intersection. For any infinitesimal 
piece of the intersection, d~, the total strength is 

Q. 
1 

m~ d~ = ~ d~. (8-12) 

The total strength on the corresponding infinitesimal piece of image arc, ds, 
is also (Q./1)d~. However along the arc this strength is distributed over 

1 
the length ds. Thus, the strength per unit line length along the image arc, 

mi is 

(8-13) 
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The integral for the head distribution at any point in the plane due to 
, sources on S distributed according to mr can be written. Figure 8 shows the 

coordinate systems used to evaluate this integral: 

s 
k k -Qi ·J 2 d~ 

cpil = K hil = 2ni ds Jl.n rp ds, 

51 

where rp is the distance from a point S on the arc to any point P in the 

plane. 

(8-14) 

In order to avoid evaluating d~/dS, we wish to find rp in terms of ~ and 

integrate from ; 1 to ; 2. On S we have 

2 
xl = R cosel = ~ cosel s (8-15} 

yl = R sine I = 
a2 

Sine I 

"2"8" . s 
So rp is given by 

r 2 = (x 1 
- R cos6') 2 + (y'- R sine')~ p (8-16) 

where (X 1
, Y1

) is any point in the plane. Expanding and collecting terms: 

r 2 = x• 2 + y~ 2 + R2 - 2R(x 1 cose' + y'sine'). 
p 

Now referring to Figure 8-8: 

cos e ' = cos2a 

= 1 - 2sin2 a 

= 1 - 2 ( 2 ;2 2) ' 
~ + B 

and sine I = sin2a 

= Zsin a cos a 

2C,:B 
= ~2 + 82 • 

(8-17) 

(8-18) 

(8-19) 
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x 1 2 + y 1 2 + R2 + 2R [- x 1 + 2x 1 f.2 - 2y 1 f;8] • 
u;2 + 82) 

Expanding and collecting terms in the numerator gives: 

(8-20) 

r2 = (x 12 + y 12 + R
2 

+ 2Rx 1)E;
2

- (4Ry 18g + (x 12 + y 12 + R
2

- 2Rx 1)8
2 

p r.2 + 82 
(8-21) 

Now ~k can be written in terms of ~ Substituting 8-21 into 8-14 gives ~tl ~· 

(8-22) 

where 
2 

~ = 1F. + Sf; + a; 

2 2 2 1 = (x 1
. + y 1 + R + 2Rx 1

); 
(8-23) 

S = -(4Ry 18); 

"' -- ( 12 1 2 R2 . ··2R 1 )·. 82 ~ X t y + . - ~ • 

These integrals can be evaluated using the same formula used to evaluate 8-6, 
Selby (1965, p.-··334, No. 380): 

~ 

( 
2 2 I I -1 ~ )] 2 - ~ tn( ~ + 8 l - 2~ + 2 8 tan iBI , 

~1 

(8-24) 
k k 

~ i r· = K hi I = \ or 

-Qi [(' ...!!..) •- n- 2'- /a2- 4a-r t h-1 2 -y~ + 6 
4ii1 '" + 2"Y .,, '" + -- an /, 2 

-y 6 - 4a-y 

~ 

( 
2 2 I I -1 ~ )] 2 - ~ £n( ~ + 8 ) - 2~ + 2 8 tan IBI , 

~1 

if (e2
- 4a-r) > o. 
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To move to x, y coordinates allow 

x' = x- R = x- (a2/2B) 
y' = y. 

(8-25) 

The value of 4ay - s2 ~an be positive or negativ' depending on the k 

values of x andy for point P where ¢~ 1 is to be evaluated •. 'Finally. 

Equation 8-24 must be written in X, Y coordinates by using the transformatiOn 
given in Equation 8-10. After this substitution we have 

k k k 
~. 1 = K h. 1 = Q.f. 1(X, Y). 

1 . 1 1 1 (8-26) 

k 
<Pi I · 

If the intersection is radial, a different form must be used for <P~N and 
Figure 8-9 shows the geometry f6r this case. For <P~N w~ have· 

( 8-27) 

This integral is evaluated by the same formula as 8-6 and 8-24. 

k -Q .. { .· 2 2 (r, y- ..• x'~}OC-B.' <PiN= 4nl (~- x')[£n.o(x'.- r,)· + y' ] - 2r, + 2Jy'Jtan \ J (8-28) 

Changing to x, y coordinates 

x' = x - B 

. y' = y. 

The equation becomes 

·~N = 4,(~Q~ B) { [(C - x + B) tn[/ + (x - B)
2 

- 2(x + B)C + c2
] 

- 2C ~ 2jyftan-
1 

(C -~~(X) J- [<-x + 2B) tn[l +(x -2B)
2J 

- 2B + 2j y J tan_, (i~j')] } . 

(8-29) 

(8-30) 
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The image for this case is also a radial line segment. First the. 
strength per unit length, m1 must be evaluated. Referring to Figure 8-9B: 

d~ 
ml = m~ CiT1 

Qi d~ Q. 
1 d~· 

ml = T dn = c - B dn 

The distance from a point on the image to any point P(x', y') is 

Now we have 

but 

k 
~il 

2 2 2 
r = [ ( n - x") + y" ] 

p 

Q. 
1 

= -41T_(....,c--""""s-.-) 

0 

and to change x; y-coordinates: 
2 a 

x" = B- x 

y" = - y. 

So 8-33 becomes 

t tn [(x 
R 

-Q. 
1 

= ....,.4-1T .,...,( c""'"--=s ...... ) 

Expanding the term in square brackets we have 

= 
(x 2

+ y 2 )~ 2 
+ 2((x 2 

+ y
2)B- a 2x)~ + Cx 2 

+ y
2

)s
2 - 2a 2xB + a4 

· ~ 2 + 2W + s2 

(8-31) 

(8-32) 

(8-33) 

(8-34) 

(8-35) 

(8-36) 

( 8-37) 
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Equation 8-36 can now be written: 

c 
-j( ~n(~ 2 

+ 2~8 + 82) 

where 

Q = a + St.: + y~ 2' 

2 2 
y = X + y • 

8 

4 
+ a ' 

(8-38) 

Since s2 -4aB can be positive or negative depending on the values of x 
and y, two forms of the solution are needed as in Equation 8-24. The two forms 
are given in Equation 8-39. Furthermore, if the radial intersection passes 
through the center of the fracture there will be two image segments, one on 
each side of the fracture. In this case B is zero and two values of C, C1 and 
C2, are defined, one positive and one negative. ¢;I then becomes the sum of 
the two versions of Equation 8-39, one using C1.and the other using C2. 

4n(~Q= B) { [( ~,; + ~!') £n n - n . 

+ /4ya - a2 tan- 1 2 ~'~ + B J 
. y /4ya - a2 

k k 
~il = K hil = 

(8-39) 
or 

4n(~Q= B) { [(~ + ~) £n n 

- H + /s2- 4a!' tanh-1 2 ~'~ + B J 
y /s2 - 4a!' 
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Finally the rotation of coordinates expressed by Equation 8-10 is applied 
to Figure 8-39 and the result is of the form 

k k 
cj>iN = Qi fiN (X,Y), 

(8-40) 

8.2.1 The Global Mass Balance Equations 

The potential in fracture k due to any intersection and its images is 

.~,k, ( k k 
~1 X,Y) = cj>iN + cj>ii • (8-41) 

Note that a third potential term, ¢iO' associated with intersection i could 
also have been defined. This term would be the potential due to an image of 
strength -Q; at the center of the fracture. However, as previously explained, 
the total strength of all such images at the center is zero, so no head is 
contributed from the sum of the images at the center~ 

Now the total potential in fracture k is 

where I are the numbers of the intersections in the fracture disc, k. Equation 
8-42 becomes 1 

where 

~k(X,Y) = ~ Q.F~(X,Y), L...J 1 1 

i=1 (8-43) 

k k k 
F. = f.N + f. 1• 

1 1 1 

The F~ represent shape functions for the total head distribution over i the 
entire fracture due to the presence of the ith intersection. Now the average 
potential at each intersection, i, of fracture k is 
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I 
-k l I k . <J>. = r · <I> (X,Y)dR.. 

1 =r 
i f ~ Q.F~(X,Y)dR.. LJ J J 1 

(8-44) 
1 . 1 

1 R. 
i 

I 
-k .. 
<I>.(X,Y) 

1 
=~(Q.}-

L.J J i 
j=1 

R.. 
.l 

j =1 

I ·! F~ (X, Y) di ·) = ~Q . §~. . J 1 ~ J J1 
1. j=l 

1 
k 

where Stji is the shape function for the average head on intersection in 
fracture k due to the intersection j also on fracture k. That is, 

k 

1. 
1 

F. d1 .• 
J 1 (8-45) 

k 
The value of srji may be difficult to obtain analytically, but it can be 
easily approximated by evaluating Fj at a discrete number of points on each 
intersection. 

Changing to indicial notation,. where summation over repeated. subscript 
indices is implied, we have 

<I>~ = Q .§~. 1 J J1 (8-46) 

where i, j take on I values and the I are the numbers of the intersections on 
fracture k. By inverting Equation 8-42 we have 

Q. = L~~. r1 <~>~ = 
J . J1 1 

k k 
G .. <I>. J1 1 (8-47) 

k ]-1 k where [ § . . = G ..• Equation 8-43 is the analytical solution for the 
J1 J1 

average head on the ;th intersection of fracture k. 
Now assume all ·the fracture intersections in the whole system have been 

numbered sequentially, 1 toN. In Equation 8-43, i and j assume the intersec-
tion numbers which lie on fracture k. Thus fof instance if intersection 3,7, 
and 9 lie on fracture k = 4, we have 

4 -4 4 -4 4 -4 
Q3 = G33 <I} + G37<f7 + G39<P9 

4-4 4 -4 G4 ~4 = Q7 G73<l> 3 + G77<l>7 + 79 9 (8-48) 

G4 4>4 4-4 G4 ¢4 
Q9 = + G97<l>7 + 93 3 99 9 

', 
' 
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Note that the order of the indices on G .. is important. G
1
.J. may not be 

- 1 J 
symmetric. 

Equation 8-47 can be written twice for each intersection, once for each 
fracture k associated with intersection i. If fractures k1 and k2 make up 
intersection j, then Qj for k1 equals -Qj for k2: 

(8-49) 

where the i1 are the numbers of the intersections on fracture k1 and the i2 
are the numbers of the intersections on-fracture k2. ( 

8.2.2 Construction of the Matrix Equations 

To explain the formation of the ~atrix equations, an example fractUfe 
system has been chosen (Figure 8-10). In-thia fracture system both the frac-
tures and th~ intersections have been numbered. 
circled. Table 8-1 describes each intersection. 

The intersection numbers are 
Remember that any intersec-

tion between two.fractures or a fracture ~nd a side is referred to as a node. 

Assume that the shape factors, G~., have been calculated for each inter-
.· J 

section i, with reference to every other intersection j, in fracture k. The 
matrix equations will then b~ formed by writing Eq~ation 8-49 for each inter­
section. Equation 8-49 is written in t~rms of the average potential, i~. 

. ' 1 
In order to solve for the average head~ h. at each intersection, i, we write: 

1 

-k k 
h. = K h. 'i'i 1 
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Table 8-1. Description of Intersections for Figure.8~10. 

·This node is an intersection between: 
Node No. Node Description Fracture Numbers Side Number 

1 
2 
3 
4 
5. 
6 
7 
8 
9 

Boundary 
Internal 
Internal 
Boundary 
Internal 
Boundary · 

Internal/Boundary* 
Boundary 
Boundary 

3 
3 
1 
2 
1 
4 
4 
5 
5 

1 
2 

4 

5 

" 

*Node 7 is an internal ·node which intersects Side V at one point. 

I 

VI 

v 
v 
v 

III 

N6te that if permeability, Kk, is different in the two fractures forming the 
intersection then the·potential ~ will have a different value in eath of 
the two fractures. However, the head, hi is the ~arne as measured in either 
fracture. 

Now the following e~uations can be written for flux through each 
intersection: 

Q1 
3 3 3 3 

= G11K h1 + G12K h2; . 

Q2 = 
3 3 

G21K h1 
3 3 

+ G22K h2; 

Q2 
1 1 ' l 1 1 1 

= G22K h2 + G23K h3 + G25K h5; 

2 2 2 2. ' 
Q4 = G44K h4 + G43K-h3; 

1 1 1 .· 1 1 
QS = G52K h2 + G53K1h3 + GSSK hS; 



206 

(8-51) 

By e~uating the flux into ~nd out_of each intersection and identifying the 
known values of head on the boundary nodes with H we have 

Intersection Equation 

1 h1 = H1 

2 
3 3 3 3 1"1 "1 1· 1 1 

0 = G21 K H1 + G22K hz + G22K h2 + G23K h3 + G25K h5 

3 

4 h4 = H4 

11 11 11 44 44 
0 = G52K hz + G53K h3 + G55K h5 + G55K h5 + G56K H6 5 

(8-52) 

6 

7 
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Note that the special case of node 7 has been t~eated by allowing the 
average head, h7, to be equal to the average of the head at the point on the 

e i boundary, H7, and the head ~t the opposite endpoint of the_intersection, h7• 

In this case we solve for h; and then calculate h7. 
Now rearr~nging these equations and putting-them in matrix form we have: 

h, H, 

hz -Gl1K
3H1 

h3 -~Kzl-4-

h4 1-4 

hs -G~K4ti, - i ~7K4Hf 

hs til 

h7 
~sK4ti, - t G#rK

4Hf. 
-GfeK5Ha - GfgK5Hg - i GfrK5Hf 

he He 

hg Hg 

XBL 834-1774 

that is, A.jh. =b .. 
1 1 J 

In general most of the elements of the bj vector will be zero. However, 
in this simple example each fracture is either connected to a boundary 
directly or connected to another fracture which is directly connected to a 
boundary. As a result all the elements in bj are non-zero. For each fracture 
that does not intersect a boundary or another fracture which intersects the 
bounda~y, th~ value of bj will be zero. 

The matrix is sparse, banded and nonsymmetric. When the matrix equation 
is solved, the values of hi can be substituted into Equation 8-47 to determine 
the fluxes through each node. The fluxes through.the nodes on each boundary 
can then be added to find the total flux through each boundary.-
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8.3 REQUIRED OUTPUT FROM THE FRACTURE MESH GENERATOR 

In order to fill the Aij matrix and modify the bj vector for the connec­
tions to the boundary, the fracture mesh generator must provide the following 
tables: a fracture list, a·node list, and a fracture plane geometry list. 
These are given below in Tables 8-2, 8-3, and 8-4. 

Table 8-2. Fracture List 

Fracture Number 

0 

0 

0 

Aperture 

0 

0 

0 

Table 8-3; 

Boundary Code 
a-Internal 

Intersection 1-Const. ¢ 
or (-1-const.q) 

Node Number 2-Int'l/bdry 

1 0 

2 0 

3 0 

Radius Number of Intersecting Fractures 

0 

0 

0 

Node or Intersection List 

Number of 
Fractures 

Forming the 
Side Code I nte.rsect ion 

1 -+ 6 I J 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

Global 
Coordinates of 
the End Points 
of Intersection 

. (x,y,x)K (x,y,z)L 

0 0 

0 0 

0 0 



Fracture 
Number 

I 
I 
I 
I 
J 
J 
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Table 8-4. Fracture Geometry List 

Intersecting 
Fractures 

J 
K 
L 
M 
I 
Q 

Definition of Local 
Coordinates in the 

Fracture in Column 1 

4 
0 

0 

0 

0 

0 

End Points of IJ 
Intersection in 

Local Coordinates 

0 0 

0 0 

0 0 

0 0 

0 0 
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9 SUMMARY 

This investigation defined criteria for determining when the permeability 
of a two-dimensional discontinuous fracture syst~m can be represented by a 
symmetric permeability tensor. Tests to establi~h these criteria compare the 
average hydraulic behavior of the fractured medium to that of an ideal homo­
geneous anistropic porous medium. That is, when the directional permeability, 

Kg, of the fracture systems is measured, 1/~ should plot as an ellipse in a 
polar plot for those systems where flux through the system can be predicted 
with a symmetric permeability tensor~ This ellipse provides a means to calcu­
late the values of the permeability tensor. 

The literature on fracture statistics was reviewed to develop a stochastic 
model of fracture geometry. The size, orientation, and location of fractures 
in an impermeable matrix were selected as the controlling random variables. 
These variables served as the basis for random generation of discontinuous 
fracture systems~ Selected portions of these fracture systems called flow 
regions were then analyzed by finite-element methods to calculate flux through 
the fracture system. Using Darcy's law, directional permeability was then 
calculated by dividing the flux through the flow region by the gradient and 
the cross-sectional area. 

To determine directional permeability without ambiguity, it was necessary 
to impose boundary conditions that would produce a constant gradient in the 
flow region of systems that were ideally homogeneous and anisotropic (see 
Figure 3-2). The behavior predicted by using these boundary conditions will 
be the actual behavior of the rock volume in the field only if the rock volume 
does in fact behave as an ideal, homogeneous and anisotropic medium. The 
boundary conditions were rotated for selected regions of the fracture networks 
to obtain directional permeabilities in different directions. Flow is induced 
across the flow region, but flux may also occur into or out of the sides of 
the region since none of the boundaries are impermeable. Thus the inflow on a 
given side may not equal outflow on the opposite side. The convention adopted 
in this investigation was that the inflow into the region of interest in the 
direction of interest would be used in the calculatioD of permeability. Thus, 
permeability for the e-direction may be different than for the 180 + 

e-direction. In an ideal anisotropic porous medium, inflow equals outflow on 
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opposite sides. Thus, permeability in the 8-direction equals permeability in 
the e + 180°-direction. 

Use of this model demonstrated that fracture systems behave more like 
porous media when (1) the fracture density is increased, (2) apertures are 
constant rather than distributed, (3) orientations are distributed rather con­
stant, and (4) larger sample sizes are tested. 

A regression technique was developed to quantitatively interpret the 
directional permeability data by determining a best-fit permeability tensor. 
The differences between the values of directional permeability calculated using 
the tensor and the measured values is considered the "error." The niean square 
error can then be calculated and normalized by dividing by the product of the 
principle permeabilities. This normalized mean square error (NMSE) approaches 
zero as the behavior of the fracture system approaches that of an anisotropic, 
homogeneous porous medium~ 

A series of parameter studies were performed to examine the effect of 
fracture length and density on fracture system permeability. For a given set 
of fractures in a gi~en rock matrix, the number of fractures intersected by a 
unit length of borehole perpendicular to the set provides a characteristic 
parameter, AL· In two dimensions, AL is the product of areal density of the 
fractures, AA' and mean fracture length, i. In three dimensions, AL is the 
product of the volumetric density, AV, and the mean fracture area. 

The linear density, AL, can be measured in a borehole but I and AA are 
very difficult to measure. To investigate the importance of these parameters, 
fracture systems were analyzed where AL was held constant and i and AA varied 
such that AAl = AL. The ratio of mesh size to fracture length was also kept 
constant to ensure the statistical samples were similar. For very short frac­
ture lengths and high areal densities, the permeability values were relati~ely 
low and the value of NMSE was very high because there were very few connections 
between fractures. As i increase~ and AA decreased, the permeability 
increased. For higher values oft the rate of increase in permeability 

appeared to decline. This trend was expected but could not be confirmed due 
to the inability to analyze larger problems with the computer. 

The value of NMSE could be used to categorize fracture systems based on 
the criteria of an acceptable error level. For instance, the fracture systems 
used in this study with values of NMSE below 0.05 could be considered to be 
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well represented by a porous medium. For a system with values of NMSE above 
about 0.3, representation as a porous medium could be considered marginal. 
With values above 1.0, representation could be considered poor. The same 
categorization system will not apply to all fracture systems. 

Because this length-density analysis was based on a single realization 
for each statistically different case, a Monte Carlo-type analysis seemed 
necessary to provide substantiation for the results. The Monte Carlo study 
was limited due to the costs of computer time required. However the results 
tended to confirm the general observations based on the single realizations. 
Furthermore they showed that for a series of realizations of a given fracture 
system, when the NMSE is higher, the standard deviation of permeability will 
also be htgher. Thus the reliability of regional ground-water models based on 
the equivalent porous medium concept will be subject to more uncertainty when 
their NMSE values are ~igher. 

Another series of fracture systems was studied to determine if an increase 
in the mesh size would reduce the NMSE .. In general, the NMSE slightly decreased 
with increase in mesh size. However, for a particular instance where the NMSE 
was high to begin with, increasing the mesh size produced an apparently random 
decrease and then increase in NMSE. This case suggests that certain fracture 
systems with values of i below a critical level will not behave like a porous 
mediu~ on any scale. 

An REV study was performed to observe the development of equivalent porous 
medium behavior as the scale of measurement increases. In this study, the 
oscillation and.gradual leveling off of perme~bility and NMSE was plotted as a 
function of the area of the flow region. These plots can be used to determine 
a lower limit for the scale of the REV for us~ in a continuum ground-water 
model. 

The modeling te~hniques were applied to data from the Underground Research 
I 

Laboratory (URL) facility of Atomic Energy.of Canada Ltd. in Manitoba, Canada. 
Good surface exposures were used to develop a model of the fracture pattern. 
This fracture pattern was assumed to persist at depth. Well test data were 
used to estimate aperture distribution models for the model. Seven different 
aperture models were used to assig~ apertures to the same fracture pattern 
model. In the. first five models, aperture was correlated with fracture length 
such that long fractures tended tb be assigned larger apertures and shorter 
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fractures were assigned smaller apertures. In the last two models length and 
aperture were independent. 

The permeabilities of models with uncorrelated length and aperture were 
smaller than those for correlated models with the same overall fracture 
statistics. The NMSE of certain correlated models may become high due to the 
production of very long, high-aperture ''superconductors.'' ·Increasing the stan­
dard deviation of the apertures incre~ses the value of NMSE. For correlated 
models increasing the standard deviation of the apertures increases the permea­
bility. Increasing the mean aperture iri the model by a factor of m increases 
the permeability by about m3 as expected. 

For all ·the models tested, the permeability plots were closed figure,, 
even when the NMSE wa~ as high as 1.7. However the permeability of the model 
which best reproduced the field data for apertures well represented the permea­
bility measured in the well tests. However, the fr~cture pattern at depth may 
not be as well connected as that at the surface. A less well-c6nnected fra~~ 
ture pattern implies a lower permeability and also a higher NMSE. Howevef, 
the NMSE would probably be decreased by adding a third dimension to the 
analysis. The permeability plot may or may not produce a closed figute if the 
change in NMSE is a net increase. 

Another Monte Carlo study was performed using the URL data to investigate 
the effect of well test packer spacing on the ability to predict the true aper­
ture distribution. A total of 40 different realizations of the URL fracture 
system were produced using a correlated aperture-length model. In each of 
these, flow regions with sizes, L x L from 1 x 1 m to 250 x 250 m were isolated. 
Flow through all of these regions was calculated. These fluxes were used to 
determine the mean aperture, 61 of the single equivalent fracture whi~h would 
account for the flux, and the mean aperture, 6A, of N equivalent fractures 
where N was the number of fractures which intersected the "test zone." For 
each flow region the.apertures of the fractures which actually intersected the 
test zone were recorded and the mean 6 was calculated. 

The results showed that the fractures which actually intersected the test 
zone had a mean aperture, 6, that is higher than the true mean aperture. 
Since length and aperture were correlated, longer fractures with higher aper­
tures were more likely to intersected by the test zone. The value of 61 
and bA are both less than b and also less than the true mean aperture. This 
is because the fractures are not perfectly connected and not perpendicular to 
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the b6rehole as was assumed in the calculation of 61 and 6A. The value of 61 
increased with L as expected, but 6A very quickly became stable. The value of 
6A was approximately 1/5 the true mean for all the packer spacings tested. 

This factor would have been even smaller if length and aperture were 
uncorrelated. 

Finally, the extension of the fracture model to three dimensions was 
discussed. A model was described where fractures are discs randomly located 
in space. The intersections between the fracture discs are line segments. 
Flow in each fracture occurs between the line segment intersections. These 
line segments are assumed to'be at constant head. An approach to an 
analytical solution for the flow in a fracture disc between all the line 
segment intersections was described using the method of images and the 
principle of superposition.. An approximate solution was given which 
analytically calculates the flux between line·segments as a function of the 
geometry of the fracture disc and the average head at each intersection line 
segment. Then global mass balance equations were developed to solve for the 
head at each intersection. Fluxes through each intersection can then be back­
calculated. This development provides a basis for extending the two­
dimensional method of analyzing networks of discontinuous fractures to three 
dimensions. 
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10 CONCLUSIONS AND RECOMMENDATIONS 

10.1 USE OF THIS TECHNIQUE 

It is obvious that an analytical expression cannot be written for the 

overall permeability of a network of. randomly located, discontinuous fractures. 
Therefore, in this work a numerical approach has been adopted. In this 

approach a statistical description of fracture network geometry is used to 

produce random realizations of fracture systems. By measuring the permeability 

of these network realizations one can investigate the important parameters of 
fracture flow in a systematic manner .. There are, however, certain trade-offs: 
(1) many realizations must be made in order to obtain the mean and standard 

deviation of the permeability of the statistically described fracture system, 

and (2) there is no quantitative way to predict the permeability of fracture 
systems which have not been measured. Prediction of hydraulic behavio~ with 

these techniques is cumbersome. 
Use of this model, however, does provide insight into the behavior of 

fracture systems that was heretofore unavailable.· The techniques can be used 

to study the conditions under which an equivalent porous media permeability 

can be used to represent the behavior of a fractured rock. The effect on the 
hydraulic behavior of each of the geometric fracture system parameters can be 
examined. Field data on fracture geometry can be used in the model. The 

model can then be used to determine the most important needs for further data 
collection. In all applications to field situations, the limitations inherent 
in a two-dimensional model of three-dimensional reality must be remembered. A 
two-dimensional analysis does not include all the connections between fractures 
that exist in a three-dimensional fracture system. 

A three-dimensional model is necessary for prediction of in-situ behavior 
but it is ~ot suffic~ent. In order to have a predictive tool, means must be 
found to provide the geometric data for the model and to verify the results. 
Well tests used to determine these parameters are di~ficult to interpret. It 
may be that one of the best uses of this model will be an interactive process 

of (1) using well tests to obtain model parameters, (2) creating a fracture 
network model, (3) numerically reproducing the well tests in the model, (4) 

adjusting the interpretation of the well test data and ~oJlecting more data, 
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and (5) adjusting the fracture model, etc. If the basic assumptions are cor­
rect, this iterative process should converge to a prediction of hydraulic 
behavior of the rock mass. 

10.2 MODELING TECHNIQUES 

The major limitation in the numerical analysis of systems of random frac­
tures is problem size. Over the period in which this research was conducted 
two major steps were taken to increase the maximum size of the problem which 
could be solved. The first was to recede the programs to run on the Vax-11 
computer which has virtual memory and thus increase the allowable number ~f 

unknown~. The second was to eliminate the dead-ends and isolated fractures 
from the flow analysis and thus decrease the number of unknowns that had to be 
solved. This streamlining could be augmented in several other ways. The 
numbering system of the nodes could be changed to decrease the band width. 
More efficient solvers could be incorporated. Finally, the fracture system 
could be further reduced to a hydraulic equivalent for flux calculations 
through an algorithm combining fractures in series or fractures in parallel 
into hydraulic equivalent fractures. 

Such an algorithm waul~ first identify nodes which connect only two frac­
ture elements. For such nodes, the two fracture elements could be combined 
into one equivalent. Then ~ach fracture element could be compared to every 
other element to see if it is connected to the same two nodes. If so, these 
two fracture elements would be combined. The process could be repeated until 
no further changes could, be made. Once the mesh was simplified, it would no 
longer be easy to determine the average isopotentials, as explained in Chapter 
3. Also the details of the velocity distribution would be lost. However, the 
advantage would be that much more could be learned about permeability. 

The boundary conditions used in this work are only useful for determining 
the best-fit permeability tensor and the NMSE when the system does behave as a 
porous medium, i.e., if NMSE is small. If the system does not behave as a 
porous medium on the scale of interest, then the boundary conditions are 
unrealistic. This is because the actual head distribution on the boundaries 
will be more variable with a higher value of NMSE. 

A technique for predicting the behavior of fracture systems which do not 
have porous medium equivalents could be developed based on the current methods 

. I 
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that have been discussed. The primary change in the analysis would be the 
addition of a study region within the flow region. The boundary conditions 
would be applied to the flow region and the flow region would be rotated as 
before. However, the flux into and out of the smaller study region within the 
f 1 ow region wou 1 d be used to deve 1 op the permeabil-ity ana 1 ys is. 

The relative difference in siz~ between the flow region and the study 
-

region may depend on how far the fracture-system deviates from porous medium 
' behavior. For higher values of the NMSE, the distance between the study region 

' and the flow region may have to be larger. For a system with NMSE close to 
zero, the flow region and study region can be the same s1ze .. The appropriate· 
ratio between the dimensions of the flow region and the study region might 
also be determined by steadily increasing the ratio from unity until there is 
no change in the resulting permeability. Alternatively, the appropriate ratio 
might be determined by a field situation where the real boundaries would be 
known. At the least, the ratio should probably be large enough such that no 
fracture in the study region intersects .the boundarie·s of the flow region.· 

·The implications of using a_study region in the tomputer analysi& may be 
difficult to surmount in some cases. Flow through the entire flow region must 
still be calculated. Therefore it may be difficult to analyze large study · · 
regioris, especially for high values of NMSE. Furthermore, the mesh simplifi~a­

tion techniques discussed above could not be applied in a straightforward 
manner~ Care would have to be taken to ensure that flux through the boundaries 
of the study region remains unchanged for the simplified mesh. This could' 
probably be accomplished by tagging each fracture which intersects the study. 
region boundaries and exempting these from the simplification p~ocedure~ 

The permeability plot from a study region analysis could be used to pre­
dict the hydraulic behavior in situ of fractured rocks which do not behave as 
porous media. Two approaches could be used. One is to assume a mean and 
deviation of behavior that can be expressed by a permeability ellipse and a 
function of the NMSE. The second method would be appropriate if some pattern 
of nonsymmetry persistently recurred in most or all -realizations of the frac~ 
ture system. It might then be possible to quantify this pattern in a probabil­
istic manner such that the response of the rock .volume to a specified gradient 
could be calculated.· In both methods, Darcy's law would be used as it is in 
other stochastic modeling methods. However, in the first method the 
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permeability would be a symmetric tensor with associated error. In the second, 
the quantification of the permeability plot pattern would. replace the tensor. 

The use of NMSE, especially when measured with a study region as described 
above, is probably valid as a quantification of error. The derivation of the 
term should be kept in mind during application to a stochastic ground-water 
model. The NMSE is the sum of the squared difference between the measured and 
best~fit values of Kg, all divided by the product of the principal permea­
bilities. The lowest value the measured Kg can have is zero but there is no 
maximum value. Thus, there is a limit to the contribution to NMSE made by 
values of measured Kg less than the best-fit v.alues. There is no limit to the 
contribution made by values of measured. Kg greater than the best-fit values. 

10.3 PARAMETER STUDIES 

The parameter studies examined the effect on permeability of aspects of 
fracture geometry that are poorly understood. The motivation behind the 
lerigth-density study was to determine the extent permeability co~ld be quanti­
fied by measuring fracture frequency in a borehole, given the orientation and 
aperture distribution. Such a relationship would be very useful since fracture 
length and density are diff~cult to measure and fracture frequency in a bore­
hole is easy to measure. 

Fracture frequency is proportional to both the density and the mean length 
of fractures. If the length or the density of the fractures increases, the 
permeability should increase. Therefore, for some range in values when the 
product of length and density is constant, the net effect on permeability might 
be small. Unfortunately, such a range of values could not be identified in 
the study. Access to a larger computer is needed to e~tend this part of the 
investigation. 

The results do indicate that, at least for shorter fractures, the mean 
value of permeability is roughly proportional to fracture length. Also the 
shorter the fracture length is the higher the NMSE tends to be. In fact, for 
the range of fracture lengths studied, although a porous medium equivalent is 
a good approximation for the systems with longer fracture lengths, it is not a 
good approximation for the systems with shorter fracture lengths. Given a 
measurement of the fracture frequency in a borehole, some knowledge of fracture 
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length is critical to determining the permeability and in deciding whether to 
use an equivalent porous-m~dium approach in ground-water analysis. 

If the programs used in this analysis were streamlined as described in 
Section 10.2, fractur~ systems with longer lengths could be analyzed~ F6f 
given values of borehole fracture frequency, aperture distfibution and 6rienta­
tion distribution, it may then be possible to determine whether or not there 
is a critical value of fracture length. For mean values of fracture l~ngth · 
less than the ,critical length, permeability and NMSE are strongly dep~ndent on 
fracture length. For mean values of fracture length greater than the critical. 
value, permeability and NMSE are only weakly dependent on fracture length. 

l 

This information would be useful to site exploration programs where efforts-
. -

could be concentrated on determining whether the mean fracture length was 
larger or smaller than the critical value. 

In the REV study, the model was used to show how representative behavior 
develops as scale increases. Su~h an analy~is of field data would be useful 
in selecting an appropriate scale for elements in a regional grbund~water flow 
model. This analysis also giv~s a very good indication of how l~rge large­
scale permeability tests should be in such situations. 

The URL data study has shown the importance of po~sible correlation~ be: 
tween length and aperture. If length and aperture are correlated, permeability 
is higher than if they are not. Also the c6rrelation between length and aper­
ture can possibly provide a method for predicting th~ existence of ''super con­
ductors" or "big cracks" so commonly encountered in wells and undergr9und exca­
vations. The actual relationship betw~en length and aperture should be 
pursued. A study of the mechanics of crack formatibn might provide a useful 
model for the relationship between length and aperture. Field data using 
transient 'techniques which indicate bo~h the size of the aperture and extent 
of an isolated fracture are largely unavailable but would be of great use. 

The packer spacing study of the URL data demonstrated that steady-state 
ana 1 yses of we 11 te,sts underestimate the true mean aperture of the fractures-. 
New research should be done to determine the relationship between the true 
mean aperture and well test results. These results also point out the need 
for transient well test analysis. Such transient analysis will give a good 
estimate of the apertures of the fractures which intersect the wells. If 
length and aperture are correlated however both the mean aperture and the mean 
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lengths will be overestimated since the longer fractures with larger apertures 
are more likely to intersect the well. With a know~ correlation between length 
and aperture, the model studies can be used to det~rmine the mean length and 
aperture of fractures intersecting a line sample. These values can be compared 
to the mean 1 ength and aperture of the fracture samp 1 e as a who 1 e. In this 
manner model studies can ba used to develop correction factors for steady state . 
well test analyses. 

In all the parameter studies, values of NMSE below about 0.05 appeared to 
have very regular, symmetric permeability plots. However, there is no distinct 
upper value of NMSE ~bove which the permeability plots are irregular open 
figures where 1/IK is infinite in some directions.· In the length density 
study, values of NMSE greater than 0.2 produced perme~bili1y plots that were 
not closed. In the URL study, values of NMSE as high as 1.7 were obser0ed, 
but for all cases the permeability was never zero in any direction. This dis­
parity is due in part to three factors. First, the boundary conditions are· 
not realistic for high values of NMSE, so NMSE is only a valid measurement 
when it has a low value (e.g., below 0.05). Secondly, whether or not the per­
meability is zero in a given direction depends only on the fracture pattern, 
not on the aperture distribution. The NMSE, however, depends on both pattern 
and aperture ~istribution~ Thus, the values of NMSE based on the URL fracture 
data are higher because the apertures are distributed rather than constant as 
they were in the· length density study. Finally, NMSE is based on the 
difference between the best fit and measured va 1 ues of Kg, not 1//Kg. 
Therefore, anomalously large measured values of Kg can contribute to a large 
value of NMSE. However, in the polar plot, the value of 1//RQ for these 
directions can, at most, plot near the origin and do not cause the ellipse to 
become an open figure. Care must be taken in comparing the values of NMSE 
from diffe~ent statistical systems when the values of NMSE are high. Even 
when evaluating with a study regioh as discussed above, a higher value of NMSE 
does not give a quantitative measure of the shape of the permeability plot. 
The NMSE is only a measure of relative error and as such is really more impor­
tant than the shape of the polar plot. 
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10.4 THE THREE-DIMENSIONAL MODEL 

The three-dimensional modal shows great promise for understanding the 
permeability of real fracture systems. A major problem with this model will 
be verification. Because of the nature of the circular fractures, th~re is no 
limiting case which reduces to a two-dimensional problem. It may be that 
verification cah only be accomplished with a laboratory study. As an alter­
native, it may be possible to partially validate this approximate model with 
numerical techniques. One good technique may be to divide each intersection 
into n parts which are then treated as n independent intersections. Dividing 
each intersection into increments allows a more accurate representation of the 
head distribution along the intersection. An optimal value of n may be identi­
fied in this process. Another possibility is to write a completely numerical 
solution that discretizes each fracture. This model could then be compared to 
the mixed analytical/numerical model in a limited number of small cases. 

The two-dimensional parameter studies that have been presented here should 
be repeated with the three-dimensional model in order to observe the behavior 
of three-dimensional systems and also evaluate the error associated with using 
a two-dimensional analysis as opposed to a three-dimensional analysis. Also 
the possibility of including mechanical transport in the three-dimensional 
model should be pursued. Once the solution for flow is known, the head distri­
bution throughout the fractures is known. Thus, it may be possible to identify 
and trace flow tubes through the system. 

Three- or two-dimensional models to predict permeability should be used 
with caution. Determining the hydraulic aperture distribution from borehole 
investigations is very difficult. Yet this parameter is extremely important 
in the calculation of permeability since the bulk permeability is proportional 
to the aperture cubed. In some cases, the model may be better used to deter­
mine the relative error associated with using a porous medium model for the 
fracture system. In these cases the skewedness of the aperture distribution 
is more important than its magnitude. In fact, this use of the model is quite 
important because the NMSE or its equivalent is not easily measured in the 
field whereas the magnitude of the permeability can be measured. If one 
desires to use this model to predict the magnitude of permeability throughout 
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a site, then the. techniques used in collectirig small-scale data m~st be 
validated. Large-scale permeability measurements performed at the same loca­
tion where small-scale data is collected for use in the model can serve to 
validate the technique. Such large-scale measurements and their relation to 
the synthesis of data on small-scale fracture geometry data have been discussed 
by Long et al (1980). 

. I 
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APPENDIX A 

FIELD DATA WHICH CAN BE USED TO DETERMINE 
THE INPUT PARAMETERS FOR THE MODEL 

A.1 FRACTURE LENGTH 

Some information about fracture length can be obtained from measurements 
made i~ th~ borehole. Such information may be extract~d from well test results 
on fractures isolated by packers if transient methods are used (Doe, et al, 
1982). At URL and other sites, trace length data are available at the surface 
and in excavations. This is currently the primary source of data on fracture 
length.· · Foi each fracture set, measuring the meari and st~ndard deviation rif 
the observable trace lengths is useful. The data can be collected as shown in 
Table A-1. The minimum trace length included in the sample indicates where 
the Ten~th distribution is effectively truncated. A plot such as ~hown in 
Figure A-1 is useful for determining the distribution parameters. 

If apparent apertures (i.e .• apertures as measured with a caliper) can be 
measured ~t th~ iame time as trace length. it may be possible to gain informa­
tion on the relati'onship between l·ength and aperture. this possibility is 
explained below under the section on aperture. 

A.2 AREAL DENSITY 

·If the horizont~l plarie is ~hosen for analysis. areal density can be · 
. . 

estimated from the tra.ce observations at the surface: Areal density is defined 
as 'the number ·of open fractures per unit area per:· set and should be fairly 
easy to obtain. Fractures too small to be included in the trace length data 
should al~o be excluded from the density data. The data may also be recorded 
as s~own on Table A-1. The sample area should be as large as feasible. Also, 
the surfac·e·data provides direct information on both length and orientation. 

For any plane a length-density analysis c'an ·be performed as described 'in. 
Chapter 6. Data can be obtained from boreholes in or near the plane of 
analysis. In this case, the number of open or partly open fractures of each 
set intersecting the borehole zones under consideration and the angle between 
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the mean pole for each set and the borehole must be known. These values can 
be obtained from a borehole television survey. 

If borehole surveys are used to determine the number of fractures per 
unit length, the boreholes should preferably be drilled perpendicular to each 
set. But if only one survey can be run, a direction halfway between the strike 

of the two most prominant sets would be best. The data needed are shown in 
Table A-2. Data can be recorded as in Table A-1. 

Table A-1. Sample Data Form for Area Surveys 

SAMPLE No. AREA OF SAMPLE: ---

Set 1 Mean Orientation: Std. Dev. of Orientation: ----

Fracture Number Trace Length Number of Visible Apparent Aperture 
end points (0~ 1 or 2) 

.o 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

.. 
Set 2 Mean Orientation: Std. Dev. of Orientation~ ------ ---~ 

Fracture Number Trace Length Number of Vi sib 1 e Apparent Aperture 
end points (0, 1 or 2) 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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Table A-2. Sample Data Form for Line Survey 

SURVEY NO.: LENGTH OF SURVEY LINE: ORIENTATION OF 
-- SURVEY LINE: 

Set 

1 

2 

/ 

No. of Fractures 
From Set Inter-

secting the Mean Strike 
Line Sample of Set 

A.3 ORIENTATION 

Standard 
Deviation 

Strike 

Mean Trace Length 
for Fractures of 
Set 1 Intersect­

ing the Sample 

Standard 
Deviation 
of Trace 
Length 

The orientation distribution obtained from the surface trace data will be 
of primary interest to the study of the horizontal plane. The open fractu-res 
should be divided into sets. The mean and standard deviation of orientation 
(i.e., strike) for each set should be calculated. A plot for each set such as 
shown in Figure A-2 would be useful to determine the form of the orientation 
distribution. Dip angle is ignored for the analysis of the horizontal plane. 

For application to another plane of analysis similar data could be obtained 
from a borehole T.V. survey. But, in this case the mean and dispersion of 
the fracture pole directions for each set should be calculated. Stereographic 
projections of these data would be useful. 
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A.4 APERTURE 

Aperture is a very difficult parameter to estimate. The only way to 
obtain effective hydraulic apertures may be to measure them in a well in which 
each fracture is packed off·separately. Very little, if any, of this type of 
data is available on any site. Well tests performed on short zones containing 
several fractures-may be available. From these data one can make an educated 
guess about the ap~rture distribution by assuming the largest fracture in each 
zone was responsible for all or most of the permeability, o~ by assuming all 
the fractures conducted equally. The usefulness of these assumptions are 
examined·in Section 7.4. 

Furthermore, fracture length, 1, can initial)y be assumed to be related 
to hydraulic aperture,, 5, for example by: 

1/n b = 1 og Cf. (A-1) 

where C is a constant and n > 1. The physics of fracture formation and 

measurements of fracture. roughnes.s as described in Chapter 2 suggest a 
corre 1 ati on between 1 ength and aper1ture. The hydro 1 ogi c importance of this 

. . \ 

relationship is that the permeabili~y should be hi9her if length and aperture 
are correlated than if they are not. If length and aperture are correlated, 
the long conductors which tend to b~ conn~cted will also tend to be the strong 
conductors. The short fractures which tend to be unconnected will also tend 
to be weak conductors. 

The best way to determine a correlation model for length and aperture 
might be to perform transient constant head tests on isolated fractures in the 
borehole. The early time data (i.e., the first minute) from such tests give 
an estimate of the hydraulic aperture of the fracture intersecting the well. 
Later time data can give information about the size of the fracture (Doe et 
a 1, 1982). 

As an alternative, a correlation model might be obtained using surface 
trace data. The mean apparent aperture can be estimated by a caliper measure­
ment. If fracture trace lengths and mean apparent apertures are recorded as 
suggested in Table A-1, it may be possible to deduce a correlation model from 
a regression analysis of the data, perhaps as shown in Figure A-3. Linear and 
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exponential models could also be tried. Data should be,plotted by sets for 
~pen fractures only. The model might then be adjusted using the results of 
permeability tests on isolated single fractures in the boreholes. From the 
measured permeability, the values of effective apperture, b, can be calculated. 
The mean value of effective aperture should then be compared to the mean aper­
ture as measured by T.V. log. The ratio of mean hydraulic aperture to mean 
observed aperture can then be used to move the regression line up or down. 

The aperture-length correlation model proposed in Equation A-1 is only 

a guess. However, so far no work has been done on the relationship between 
length and aperture which would help to derive a model. Since a correlation 
between length and aperture is very important' to the hydraulics of fracture 
networks, this simple model was tried in Chapter 7. 

·•··. 
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