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ABSTRACT 

Apparent r e s i s t i v i t i e s ,  oeasured by means of 
r epe t i t i ve ,  dipole-dipole dc r e s i s t i v i t y  
surveys s ince 1979, show s igni f icant  and 
somewhat systematic changer over t h e  area o f  
the  Cerro P r i e t o  '*a*' reservoir .  
Change8 are a t t r ibu ted  t o  temperature and 
s a l i n i t y  changes, consequences of production, 
and na tura l  recharge. 
t he  observed geophysical phenomena, we 
performed a series of s imple  reservoi r  
simulation s tudies  combined v i t h  the  appro- 
p r i a t e  dc r e s i s t i v i t y  ca lcu la t ions  t o  deter- 
mine the  magnitude and form of r e s i s t i v i t y  
change. 
l iquiddominated reservoi r  with dimensions 
and pa rme te r s  of t he  Cerro P r i e to  a reservoi r  
and assumed lateral and v e r t i c a l  recharge of 
colder ,  less sa l ine  waters. 
apparent r e s i s t i v i t i e s  increase 10 t o  20% 
over t h e  production area during a 3 year 
period a t  the  current rate of production. 
These calculated changes agree i n  magnitude 
v i t h  the  observed changes fo r  t he  s m e  
production period. Xowever, displayed i n  
conventional pseudosection form, the  pa t te rns  
of calculated r e s i s t i v i t y  change only par- 
t i a l l y  resanble the  observed data. This i s  
explained by the f ac t  t h a t  na tura l  recharge 
i n t o  the  a reservoi r  i s  more complicated than 
our simple t ~ d i m e n s i o n a l  schanatic recharge 

cluded t h a t  i f  properly 
i s t i v i t y  monitoring appears 

capable of providing ind i r ec t  information on 
f lu id  flow processes, including r e in j ec t ion  
i n  a producing reservoir. Such information 
is extremely valuable f o r  t he  development of 

These 

To b e t t e r  understand 

We considered production from a 

The associated 

reservoi r  perfor- 

.. 
INTRODUCTION 

c m- Since the  inception of t he  j o i n t  U.S. Depart- 
Pent of Energy (DOE) - Comisiin Federal de 
t l ec t r i c idad  (CFE) reservoi r  engineering 
project  t o  study the  Cerro P r i e to  Geothermal 
Field, LBL and CFE have conducted numerous dc 
r e s i s t i v i t y  rurveys t o  he lp  def ine the  
re rervoi r  and map rubrurface r t t uc tu rc r  and 
thermal conditions. 
have undertaken r epe t i t i ve  r e s i s t i v i t y  
measurements along one long l i n e  tha t  pa88e8 

Beginning i n  1978, we 

1y over the  producing reservoi r  on t h e  
8sslrmption tha t  reservoi r  pa rme te r s  a l t e r ed  
by production o ight  be ind i r ec t ly  monitored 
from the  surface.  
gested by f i s k  (1975) i n  h i s  s tud ies  at t h e  
Broadlands Geothemal F ie ld  and has recently 
been extended t o  monitoring formation resis- 
t i v i t y  changes Iccanpanying t e r t i a r y  o i l  
recovery (Bartcl and Wayland, 1981). 

Since 1979, when we were s a t i s f i e d  our f i e l d  
technique produced high qua l i ty  data ,  we have 
observed r a the r  systcmatic changes i n  apparent 
r e s i s t i v i t i e s  that could be caused by several  
pO88ibh hydrological, thermophysical and 
thermochemical ~echan inns  ( w i l t  and Coldstein, 
1981): 
ground waterc, ( i i )  coalescence of two-phase 
zonee near t he  w e l l s  i n t o  a more extensive 
two-phase region, (iii) gradual cooling, and 
( iv )  porosity reduction due t o  the  precipi- 
t a t i on  of r e o l i t e s  and carbonates as cooler 
waters reac t  with the  ho t t e r  rocks near t he  
reservoi r  boundaries. 

When the  apparent r e s i s t i v i t y  changes were 
noticed, M attempted t o  explain than using 
simple conjectured r e s i s t i v i t y  models. The 
r e s u l t s  were unconvincing and the  models 
did not address the  phenomenological aspects  
of the  problem. We therefore  addressed the 
problem i n  a more rigorous fashion by f i r s t  
applying numerical modeling techniques t o  
study the  migration of waters of d i f f e ren t  
temperature and s a l i n i t y  i n  response t o  
production, and ve then used computed 
changes of temperature and s a l i n i t y  within 
v o l m e  elements of the  numerical model t o  
e s t b t e  changes i n  apparent r e s i s t i v i t y  tha t  
would be observed a t  the  surface. Although 
our s tud ies  employ r a the r  schanatic and 
s implif ied reservoi r  mode18, they demonstrate 
the  technique of combining reservoi r  engineer- 
ing and geophysical methods for  reservoi r  

This technique vas sug- 

(i) natura l  recharge of less sa l ine  

magnitude and pa t te rn  of r e s i r t i v i t y  change 
r e l a t i v e  t o  baseline da t a  collected i n  the  
Fa l l  of 1979. The f i e l d  da t a  vere collected 
using the  dipole-dipole a r ray  with a dipole  



length of 1.0 km and d ipole  separations n 
from 1 t o  8 (n - in teger  multiples of the  
dipole length). Results are plotted a t  the 
in te rsec t ion  of t he  45' diagonals subtended 
from the  mid-points of the  t ransmi t te r  and 
rece iver  dipoles. In these  pseudosections 
the  Gspycing bears a rough re la t ionship  t o  
depth of  u p l o r a t i o n .  For example, a t  n-1 
oos t  of the  in fomat ion  comes fran the  upper 
600 m ,  whereas a t  n-8 most of t h e  information 
i s  a volume averaged composite of the  upper 2 
Ian. The a production zone lies approximately 
between r e s i s t i v i t y  e lec t rodes  10 and 12 a t  a 
depth of 1.1 t o  1.4 km. 
d i scon t inu i t i e s  i n  r e s i s t i v i t y  manifest 
thanselves as diagonal stripes on a pseudo- 
section, da ta  points having a high information 
content of r e s i s t i v i t y  change within t h e  
reservoi r  would occur along diagonals 
centered a t  s t a t i o n  11 and pa r t i cu la r ly  a t  
n-spacings of 5, 6, and 7. The dipole-dipole 
electrode a r ray  was used i n  t h i s  study 
because it is sens i t i ve  t o  18teral discontin- 
u i t i e s  i n  subsurface r e s i s t i v i t y ,  even when 
these occur beneath a conductive overburden 
layer (Beyer,  1977). 

It may be observed i n  Figure 1 how r e s i s t i v i t y  
changes have evolved with time and hov by the  
Fa l l  1981, 2.5 years a f t e r  the  baseline da ta  
h e t  w a s  collected,  a d e f i n i t e  r e s i s t i v i t y  
increase developed along the  western par t  of 
the  reservoi r  region, and a broad r e s i s t i v i t y  
decrease developed along the  eas te rn  margin 
of the  reservoir.  In the  area of resis- 
t i v i t y  decrease the  r e s i s t i v i t i e s  a r e  low 
(1.5 ohm-m) resu l t ing  i n  large percentage 
changes for  small absolute changes. 

Near-surface r e s i s t i v i t i e s  a re  seen t o  be 
increasing on both ends of t h e  l ine .  The 
increase on the  west ( s t a t i o n s  1 through 6) 
i s  believed due to an increased leve l  of 
i r r iga t ion .  
re la ted  t o  increased underflow of Colorado 
River va te rs  because of high runoff l a s t  
year. 

However, as lateral 

The increase on the eas t  may be 

SIMILATION OF A RESERVOIR WITH TWO WATERS OF 
DIFFERENT SALINITY 

To simulate the  r e s i s t i v i t y  changes we begin 
by considering production of l iqu id  water 
from a porous a reservoi r  with an i n i t i a l  
temperature of T - 300'C. 
pressure p ro f i l e  i s  assurmed hydrostatic,  with 
an average pressure PaV = 120 bars. 
reservoi r  communicates with recharge waters 
of T - 1OO'C above and a t  the  margins. The 
mass f rac t ion  of recharge water i s  denoted by 
X; i n i t i a l l y  x = 0 i n  t h e  reservoi r .  The 
recharge va t e r s  are assurmed t o  have d i f f e ren t  
(lower) s a l i n i t y  than the  water i n i t i a l l y  i n  
place i n  t h e  reservoir.  For purposes of 
numerical modeling, however, we ignore a l l  
d i f fe rences  i n  thermophysical properties 
a r i s ing  from d i f f e ren t  s a l i n i t y ,  such as 
differences i n  v iscos i ty ,  density,  boil ing 
curve, etc.  We m i t e  separate mass bslances 
for  "water 1" (x  m 0 )  and "water 2" (x = 11, 

The v e r t i c a l  

The 

which makes it  possible t o  keep t rack  of the  
individual waters as they start  flowing and 
mixing i n  response t o  production. A s imi la r  
approach was presented by Geshelin e t  81. 
(1981) f o r  t rac ing  f lu id  atinigration during 
stem ass i s t ed  o i l  reewery .  

The reservoi r  simulations were car r ied  out 
v i t h  LBL's compositional simulator MILKOH, 
which is similar t o  the  geotherma1,reservoir 
simulator SHAFT79 (Pruess and Schroeder, 
19801, except t ha t  two water components are 
included. 
only one of t he  models f o r  which ca lcu la t ions  
were made. 
presented by Pruess e t  al. (1982). The model 
shown i n  Figure 2 i s  a two-dimensional 
reservoi r  v i t h  recharge from above (ve r t i ca l  
recharge) and the  s ides  (horizontal  recharge); 
t he  bottan is 866~1~ed  to  be an impermeable 
boundary. The v e r t i c a l  recharge zone begins 
600 m beneath the  surface and extends to  the  
reservoi r  top a t  800 m depth. 
extent of the  reservoi r  i s  400 IP and its 
lateral width i s  1600 o. 

Due t o  symmetry, only one ha l f  of t he  system 
needs t o  be modeled. Laterally,  t he  reservoi r  
is connected t o  a recharge zone of 1000 m 
length with boundary conditions of T = lOO'C, 
x * 1 on the outer boundary. The i n i t i a l  
d i s t r ibu t ions  i n  temperature and f lu id  
composition between reservoi r  and v e r t i c a l  
and l a t e r a l  recharge boundaries a r e  assumed 
t o  vary mnoothly as follovs:  

In  t h i s  paper ve w i l l  describe 

Other r e s u l t s  were previously 

The v e r t i c a l  

(i) composition: 

i n  reservoi r ;  

Xin I 

f(g) between reservoi r  and 
recharge boundary; c 1 a t  recharge boundary; 

(ii) temperature: 

300 - f (g)  x (300-1OO)'C 

recharge boundary; 

Here g is the  distance from the  v e r t i c a l  o r  
horizontal  reservoi r  boundary, and 

f (a )  - 
L i s  the  v e r t i c a l  or hor izonta l  distance 
between reservoi r  and recharge boundaries 
( h e r t i c a l  - 200 0; Lhorizontal 1000 m). 
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The computational mesh employs 100 m horiron- 
t a l  and 50 m v e r t i c a l  spacing, for  a t o t a l  of 
(18 x 8) + (8 x 4) = 176 elements, plur  
elements for  representing the boundaries. 
The problem is  i n i t i a l i z e d  with approxhate  
grav i ta t iona l  equilibrium r e l a t i v e  t o  a 
reference.prersure of p * 120 bars  a t  lo00 m 
depth. 
betveen reservoi r  urd recharge waters no 
rigorous grav i ta t iona l  equilibrium i s  po6- 
r ib te ) .  Production rate was t8ken as 600 
kg/s (-2,160 tonner/hr) , approximately 
the actual  average production rate at Cerro 
Prieto. 
placed i n  elements D1, E3, D5, and I7 of the  
model (Figure 2). 

Horizontal permeability i s  taken t o  be 100 x 

10'12 3 .  
"f ie ld  value" 36 x 10'12 0 3 ,  which can be 
derived from an average t ransmissivi ty  U/r 
0.4 x 10'6 m3lPa.s (Liguori, 1979) and P 
(300'C) = 9.01 x 10-5 ~ a . 8 .  
permeability vas  arrrnned one tenth of hori- 
zontal permeability. For these permer 
b i l i t i e r ,  the  reservoi r  can eas i ly  sus ta in  
the applied production rate. 
observed pressure decl ine a f t e r  5 ' y e r r r  i s  
approximately 1 Wa, so t ha t  pressures remain 
ve l1  above sa tura t ion  pressure and no tvo- 
phase zones evolve. 

Temperature p ro f i l e s  for  layers  C, E, and C 
a f t e r  3 years of simulation a re  preren teddn 
Figure 3. 
bution ( t  
The f igure shows a s igni f icant  migration 
(ve r t i ca l  and l a t e r a l )  of colder  vaters in to  
t h e  production zone (0-800 m away from the 
symmetry l i ne )  due t o  the  massive exploi- 
t a t ion .  
va te rs  from above is evident from the  lower 
temperatures i n  the  C layer  i n  comparison 
v i t h  the temperature p ro f i l e  i n  the C 
layer  i n  the  production region. Lateral 
migration of t he  recharge va te rs  i s  a l so  
evident in Figure 3 when the  temperature 
p ro f i l e s  fo r  layers  C and C are compared t 
the  i n i t i a l  temperature d i r t r i b u t i o a  ( t  
The temperatures i n  layer  C a re  everyvhere 
higher than the temperatures i n  layers  C 
and E i n  the  outs ide region (> 800 m away 
from t h e  symmetry l i ne )  because of buoyancy 
ef fcc ts. 

The composition p ro f i l e s  for  layers  
C a f t e r  3 years of simulation are shown i n  
Figure 0 .  
pro f i l e  ( t  0 )  i s  included for  reference. 
The e f f e c t s  of ve r t i ca l  and l a t e r a l  recharg 
a8 vel1 as buoyancy e f f ec t s ,  a r e  c l ea r ly  
evident. Compositional change v i th in  the 
production region is dominated by v e r t i c a l  
recharge, vhich i s  @trongest fo r  the t O p 0 8 t  
layer. Accordingly, the  mass f rac t ion  of 
recharge water is grea tes t  i n  layer C, and 
rmallest i n  layer C near the bottom o f  the 
reservoir .  
a t  t h e  reservoir  margins a t  a distance of 800 

(Due t o  the  temperature differences 

Fluid sources of equal s i z e  arc 

m2, corresponding t o  a k€? 40 x 
This agrees c losely with the 

Vert ical  

The l a rges t  

I h e  i n i t i a l  temperature d i r t r i -  
0 )  i s  a l t o  plot ted for  comparison. 

The migration of  the  colder recharge 

Again, the i n i t i a l  composition 

A d i f f e ren t  p ic ture  is observed 

m from the sgmmetry i i n t .  
recharge i s  dominant, which, due t o  buoyancy 
e f f ec t s ,  tends t o  be stronger i n  the  lower 
portions of t he  reservoi r ,  so t ha t  x ( layer  
C) > x ( layer  E) > x ( layer  C). 
e f fec t s  cause .x . ( layer  .c) t o  decrease more 
rapidly away"frbm the lateral recharge 
boundary (at  1800 m d i r tu rce  fram the  symmetry 
l i ne )  than is observed f o r  layer  E or C. 
decrease i n  x ( layer  C) i s  reversed ins ide  
the  reservoir  due t o  v e r t i c a l  recharge, 
giving f i re  t o  a minimum i n  x ( layer  G) near 
the reservoir  pargin (800 m). 
in te rp lay  of v e r t i c a l  and lateral recharge is 
a lso  observed for  layer  E. 

There lateral 

The buoyancy 

The 

A complex 

UESISTIVITY UODELINC OF A RESERVOIR W I T H  
WATER KIXZNC 

A tvcrdhens iona l  f i n i t e  difference computer 
code vas used i n  nrnnerical calculat ions for  
r e s i s t i v i t y  models i n  t h i r  study. The code 
RESIS2D 8 0 l V e 8  f i n i t e  difference equations 
fo r  the e l e c t r i c  po ten t ia l s  i n  o r  on t he  
surface of  a two-dimensional ha l f  space v i t h  
an a rb i t r a ry  conductivity d i s t r ibu t ion  (Dey 
urd Xorrison, 1976; Dey, 1976). 

The code u t i l i z e s  a mesh of 113 x 16 nodes of  
which 58 x 13 can be used for  a rb i t r a ry  
r e s i s t i v i t y  d is t r ibu t ions .  Because of  the 
limited mesh s ize ,  only 32 elements Vera u6cd 
t o  describe r e s i s t i v i t y  within the production 
zone, and thus r e s i s t i v i t y  var ia t ions  due t o  
tanperature and s a l i n i t y  changes were averaged 
over f a i r l y  large cross-sectional areas .  
This should produce some inaccuracies but 
these are not considered s igni f icant  for  the 
purposes of t h i r  demonstration. 

CALCULATION OF RESISTIVITY VARIATIONS 

A study of the  var ia t ions  i n  r e r i s t i v i t y  due 
t o  changer i n  f lu id  propertie6 i n  geothermal 
systems has recent ly  been published (Errhagi 
e t  a l . ,  1981). In the  present paper ve use 
those r e s u l t s  t o  ca lcu la te  r e s i s t i v i t y  as a 
function o f  s a l i n i t y  and temperature. 

Figure 5 indicates  the 'effect  of s a l i n i t y  and 
temperature on r e s i s t i v i t y  for-"typical" 
sediments i n  a geothermal environment. For 
our study we assume tha t  recharge waters have 
.3% dissolved sol id8 by veight and are a t  a 
temperature of 10O.C. In the production zone 
the parameters a re  1.5% and 300'C, respec- 
t ive ly .  
water chemirtty a t  Cerro P r i e to  (Grant et 
al., 1981). 
v r r i a t ions  due t o  s a l i n i t y  and temperature 
ch8nger can be qui te  large. 
zone, i n i t i a l  r e s i s t i v i t y  i s  50 percent 
la rger  than i n  the production zone due t o  
temperrture var ia t ion  and more than 300 
percent la rger  due t o  s a l i n i t y  differences.  

The i n i t i a l  subsurface r e s i s t i v i t y  d is t r ibu-  
t ion  as8111~ed i n  t h i s  6tudy i s  shown i n  Figure 
6. The 5 ohm-m surface layer corresponds t o  
a caprock. 

These values a re  based on observed 

Figure 5 6hows tha t  r e s i s t i v i t y  

In the recharge 

The 15.6 o h  background i s  

3 
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sedimentary rock 6 t h  15 percent porosi ty  and 
saturated with 1OO'C water a t  .3 veight  
percent laC1. 
value fo r  t he  background vas calculated from 
Archie's lav. 
represented by a 1600 m x 400 P zone buried 
at  a depth of 800 m. 
region the r e s i s t i v i t y  is  i n i t i a l l y  2.15 
o b .  
the  background of 15.6 0tnn-m fo r  increased 
s a l i n i t y  and temperature i n  the  reservoi r  
region. Note tha t  the  center  of t he  model 
(Stat ion 6) w u l d  correspond t o  S ta t ion  11 i n  
the  f i e l d  da ta  (Figure 1). 

RESULTS AND DISCUSSION 

R e  sis t i v i  t y  ca lcu la t ions  for  the tw-d h e  
s ional  r e s i s t i v i t y  model were made for  a 
d ipo led ipo le  array centered over the reser- 
voi r .  In the calculat ions dipole  length o f  
800 m vas used because of convenience, ra ther  
than 1000 m as used i n  the f i e l d  survey. 
Therefore, calculated and f i e l d  r e s u l t s  
are not geometrically ident ica l  but the  
differences should not de te r  simple compui- 
sons. Res is t iv i ty  pseudosections vere 
calculated for  various points  i n  the produc- 
t i on  his tory;  pr ior  t o  production and then at 
times of 0.5 ,  1, 3, and 5 years a f t e r  the 
onset of production. Apparent r e s i s t i v i t y  
changes for each t i m e  r e l a t ive  t o  preproduc- 
t ion  a re  then calculated and presented i n  
pseudosection fonu i n  Figure 7. 

The 15.6 ohpw r e s i s t i v i t y  

me geothermal reservoi r  is  

Within the  reservoi r  

This number vas derived by adjust ing 

Despite the  large rate of production the 
apparent r e s i s t i v i t y  changes are small a f t e r  
one year of production. 
times, production - re la ted  r e s i s t i v i t y  
changes might be obscured by seasonal varia- 
t ions  i n  r a i n f a l l ,  runoff, o r  i r r iga t ion  o r  
obscured by measurement e r ro r s  i f  suf f i -  
c ien t  accuracy cannot be achieved ( W i l t  and 
Goldstein, 1982). However, it is c l ea r  from 
t h i s  example tha t  t h e  hydraulic ( s a l i n i t y )  
f ront  moves r e l a t ive ly  rapidly,  and tha t  
s ign i f icant  changes i n  apparent r e s i s t i v i t y  
appear between one and three years a f t e r  the 
s t a r t  of production. 

A compsrison of the simulated r e s i s t i v i t y  
changes t o  the actual  changes for  times of 1, 
1.5, and 2.5 years a f t e r  the  1979 basel ine 
da ta  (Figure 1) reveals  tha t  the f i e l d  da t a  
show a f a r  more complex pat tern of change, 
but there  a re  a l so  similarities i n  pa t te rn  
and magnitude tha t  deserve mention. 
tha t  only the western limb of the r e s i s t i v i t y  
increase emerges a f t e r  2.5 years (Fa l l  1981). 
The asymmetry i n  t h e  r e s i s t i v i t y  change indi- 
ca tes  an asymmetry i n  the physical processes, 
i n  d i s t inc t ion  from t h e  symmetrical recharge 
of our schematic model. There is no unique 
solut ion t o  t h e  problem, but a f lu id  flow 
model tha t  migh t  produce the  observed changes 

During such ea r ly  

Notice 

i s  one proposed by Halfman et  01. (1982); 
i.e., (a) cooler, less sa l ine  recharge from 
the  Vest and above, and (b) hot ,  sa l ine  
recharge from below and from the east. 

CONCLUSIONS 

A methodology has been presented fo r  ind i rec t  
study of a geothermal reservoi r  which combines 
numerical reservoi r  simulation v i t h  modeling 
of  apparent r e s i s t i v i t i e s  as measured v i t h  
the  dipole-dipole technique. 
Prieto-type reservoir ,  tanporal changes i n  
apparent r e s i s t i v i t y  due t o  production and 
recharge of colder and less sa l ine  waters are 
both calculated and are observed t o  be 
subs tan t ia l  over t i m e  i n t e rva l s  of several  
years. T t  therefore  appears feas ib le  t o  use 
r e s i s t i v i t y  fo r  monitoring reservoi r  processes. 
Our schematic models predict  r r s i s t i v i t y  
changes which are only approximately compar- 
able t o  f i e l d  observations, and thus more 
ref ined reservoi r  models are required t o  
adequately represent  the f i e l d  data. 

For most geothexmal reservoi rs ,  the pa t te rns  
of f lu id  flow and r e s i s t i v i t y  change vi11 be 
three-dimensional. Therefore, accurate 
r e s i s t i v i t y  monitoring requi res  measurements 
along several in te rsec t ing  prof i les .  

The proposed methodology should a l so  be 
applicable for  monitoring the migration of 
re in jec ted  f lu ids .  
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For a Cerro 

This 

TABLE 1 
Parameters fo r  Production Simulation 

rock densi ty  2600 kg/d 
porosi ty  15% 
horizontal  permeability 

heat conductivity 2.1 W/m'C 
rock spec i f ic  heat 900 J/kg'C 
v e r t i c a l  extent  

of reservoir  400 m 
vol tmetr ic  r a t e  

of production 
i n i t i a l  reservoir  

temperature 300'C 
average i n i t i a l  

reservoir  pressure 

100 x 10-15 m2 
ve r t  i ca  1 permeab i 1 it y i o  10-15 m2 

9.71 x 10-7 ~g/s.m3 

12 Wa (120 bars) 
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Figure 1 .  Resistivity pseudosections measured 
over the Cerro Prieto Geothermal F i e l d  shown 
as percent changes from the 1979 baseline 
data s e t .  
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Figure 2. Ttm-dimensional reservoir model 
for vertical and lateral recharge. 
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