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Abstract 

We compute the entropy of latticized, self-avoiding 

planar surfaces in three dimensions, by computer simulation 

of surface fluctuations. Our data is consistent with the 

f 1 N SY cS 
ormu a S - e , where NS is the number of surfaces of 

area S, and y = - .5 ± .05, c = .531 ± .003. We also 

determine the phase structure of a field theory based on 

interacting surfaces, which reduces to z2 lattice gauge 

theory in the "non-interacting" limit. 
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It is widely believed that non-abelian gauge theories are in some 

way related to a quantum theory of surfaces [1]. The connection 

certainly seems to hold in strong-coupling lattice gauge theory, 

where any expectation value can be expressed in terms of a sum over 

latticized surfaces known as polymers [2]. ·This obvious relationship 

between gauge theories and surfaces motivates a study of the entropy of 

random, non-overlapping surfaces on the lattice. In this letter we 

will compute numerically the entropy of self-avoiding (i.e. non-

overlapping and non-intersecting) surfaces, having the topology of a 

sphere, on a 3-dirnensional lattice. These planar surfaces are the 

simplest type of polymer contributing to the functional integral of 

lattice gauge theory. It has been argued by Greensite and Bardakci [3] 

that the entropy of this type of surface, in D dimensions, controls 

whether or not QCD confines in D dimensions at weak couplings. Our 

calculation is for D = 3 dimensions, using, with some modifications, 

the technique of polymer simulations discussed in ref. [4]. We 

have previously used this technique to do numerical simulations of 

compact QED with external sources [4]. 

We will also determine the phase structure of a field theory of 

interacting surfaces, whose "non-interacting" limit is z2 lattice 

gauge-theory. The interaction is taken to be proportional to the 

length of intersections. We find that while a repulsive interaction 

seems to have little effect on the phase structure, an attractive 

interaction can induce a new "anti-frozen" phase in the theory. 

Our starting point is the observation, due to Osterwalder and 
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Seiler [5], that the number N
5

(A) of connected lattice surfaces 

(polymers) of area S that include a certain set of links A (such as 

a Wilson loop), is bounded asymptotically by· 

(1) 

where a(A). is a constant depending on A, and b is a constant depending 

only on the number of spatial dimensions D. This bound is crucial 

in proving confinement at strong-couplings in lattice gauge theory. 

If we drop the requirement that the polymers include the set of links 

. A, the bound is presumably 

- ' bS 
N

5 
::s a e • n 

sites .. (2) 

where the factor n . ( = no. of lattice sites) appears because s1.tes 

each connected polymer can be translated to n . different lattice 
s1.tes 

positions. Note that a polymer is ~orbidden to overlap itself, i.e. 

pass through any plaquette more than once. Latticized surfaces 

without this restriction are known to grow super-exponentially [6], 

perhaps likeS! [7]. 

Now consider the set of self-avoiding (i.e. non-overlapping, 

non-intersecting) surfaces with the topology of a sphere. Since this 

set of surfaces is a small subset of all possible closed polymers, it 

must also obey a bound of the form (2). It is therefore reasonable 

to assume an asymptotic behavior in the S ~ m limit 

" y e:S 
N - a S e • n S sites 

(3) 
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where N
5 

is the number of self-avoiding surfaces of area S with spherical 

(Le. closed and "planar") topology. Our objective is to compute 

the constants y and e::, and the strategy is to set up a statistical 

system associated with a fluctuating, self-avoiding surface. Let us 

therefore define the partition function 

z = 

= 

!: -as(Q) 
Q e 

where {Q} is the set. of all "spherical" self-avoiding surfaces on 

the lattice, and S(Q) is the surface area of surface Q. Consider 

the expectation value of the average surface area 

<S> = 

= 

.!..!: S(Q) e-aS(Q) 
z Q 

!: -as 
S SNS e 

!: -ss s Ns e 

(4) 

(5) 

For a >> e::, <S> << 1. As a+ e:: from above, large surfaces contribute 

to (5), and it makes sense to replace the sums overS by integrals. 

Then, from (3) and (4) we have 

<S> = l + 1 
a - e:: 

(6) 

At Be = e:: there is a phase transition: <S> + ~ on an infinite lattice, 

while on a finite lattice <S> will approach some substantial fraction 

of the total number of plaquettes at Be = e::. In order to compute y 

and e::, we have only to compute <S> near the transition by Monte-Garlo 
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tethniques, and fit the data to (6) (the best procedure is actually 

-1 
a straight-line fit to <S> ). 

To set up the Monte-Carlo procedure, let us associate, with every 

plaquette p on the lattice, a number r = 0 or 1. Plaquettes on the ·. . p 

surface Q haver = 1, all others haver = 0. The lattice is 
p p 

initialized with a single cube of 6 plaquettes excited (i.e. r = 1), 
p 

all other plaquettes h~_ve r = 0. The basic operation for modifying 
p 

surfaces, the "change-a-cube" or "CC" operation, is to reset r 
p 

all 6 plaquettes on a give cube K by 

r + (r + 1) mod 2 
p p 

pe:K 

on 

(7) 

This operation will take a closed surface Q
1 

into a closed surface Q2 

by stretching or shrinking the surface over one cube. However, we 

must ensure that if Q
1 

is connected, self-avoiding, and has the 

topology of s2
, then Q2 also has these properties. 

In the first place, we require that the CC operation locally 

modify an existing surface Q
1

, and not just excite a disconnected 

cube. A necessary requirement is that at least one of the plaquettes 

in cube K belong to Q; i.e. not all r = 0 on K. Also, we don't 
p 

want to completely destroy the initial surface (all r = 1). So 
p 

we require: 

Rl) The CC operation is not applied to cube K 

if all plaquettes in K have the same valve 

of r • 
p 

With this restriction, the CC operation will modify surfaces by 
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stretching or shrinking them by one cube at a time, as in Fig. l{a). 

The next requirement is that the surface is self-avoiding, which 

is accomplished by the following restriction: 

R2) For each link R. on the surface Q, exactly two 

of the four plaquettes on the lattice which 

contain R. have r = 1. 
p 

This restriction eliminates all intersecting surfaces, sincelinks 

along the lines of intersection will not satisfy the condition R2. 

A CC operation is only acceptable if the resulting surface Q2 

satisfies R2. 

Finally, the CC operation must not change the connectedness of 

the surface, i.e. change a connected surface into two disconnected 

surfaces, or change the topology from a sphere to a torus. This is 

accomplished by one last restriction [see Fig. l(b)]: 

R3) The CC operation must not be applied to cube 

K if two plaquettes on opposite faces of K have 

have r = 0(1) while all other plaquettes 
p 

haver = 1(0). 
p 

To see why R3 is effective, consider the way in which a connected 

surface Q can be changed into two disconnected surfaces Qa' Qb 

by the CC operation acting on a single cube K. This is only possible 

if the two disconnected surfaces Qa' Qb are joined by the cube K, as 

sho~ in Fig. l(b) and l(c). But the operation shown in Fig. l(b) 

is forbidden by R3, while the operation in Fig. l(c) is suppressed by 

R2. So it is impossible to change a connected surface into two 

{' • 
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disconnected surfaces. Similarly, if Qa' Qb are connected by paths 

which do not run through K, the operations of Fig. 1(b) and 1(c) 

would create or destroy a handle. All such modifications which would 

change the connectedness of a surface are therefore suppressed by 
\) 

R2 and R3. 

The Monte-Carlo procedure is now as follows: The lattice is 

initialized by exciting a single cube of plaquettes. An iteration 

consists of sweeping through all cubes on the lattice, which in 3 

dimensions are in 1-1 correspondence with the sites on the dual lattice. 

At each dual site, the corresponding cube is examined to see if a CC 

operation is allowed, according to restrictions R1, R2, R3. If a 

CC operation ~s allowed, the standard Metropolis algorithm [with 
·~ ·.· 

Action= 8S(Q)] is applied to determine whether to operate on the cube. 

Averaging the total surface area, we .arrive at a numerical determination 

of <S> for any given 8. 

-1 In Fig. 2 we have plotted <S> vs. 8, determined on a 

10 x 10 x 10 lattice. Fitting this data to the inverse of eq. (6), 

we arrive at the values 

E = .531 ~ .003 
(8) 

y = -.50 ~ .05 , 

which determine the asymptotic behavior of the entropy of self-avoiding 

surfaces. 

Let us now consider theories in which surfaces not only fluctuate, 

but can be created and destroyed, i.e. "field theories" of surfaces. 
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If we remove restrictions Rl, R2, R3, then it is not hard to see, 

from standard duality arguments [8), that the monte-carlo procedure 

outlined above is just a numerical simulation of z
2 

lattice gauge 

theory in the polymer formulation (see ref. [4] for monte-carlo 

studies of U(l) gauge theory by polymer simulation). If restriction 

R2 only is imposed, then the procedure simulates a field theory of 

self-avoiding (but not necessarily planar) surfaces. 

A theory of self-avoiding surfaces can of course be viewed as a 

theory in which intersecting surfaces have extremely strong repulsive 

interactions along the length of their intersections. This suggests 

considering a generalized theory which interpolates between z2 lattice 

gauge theory (a "free" theory of surfaces), and the field theory of 

self-avoiding surfaces, 

z 

where the sum runs over all polymers generated by the unrestricted 

CC operation, i.e. all the polymers of z
2 

lattice gauge theory. 

S(Q) is the surface area (no. of plaquettes) of polymer Q, while 

(9) 

L(Q) is the length (no. of links) of intersections. Note that a link 

belongs to a surface intersection if all four plaquettes containing 

the link have r = 1. 
p 

One question of interest, in a theory of interacting surfaces, 

is whether the mutual repulsion among closed surfaces would tend to 

suppress large polymers, and in that way perhaps eliminate a transition 

between the large- and small-SA coupling regimes. A further question 

:/ 
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is. whether new phases are produced if the surfaces are highly attractive 

along their intersections. 

To study the phase structure of the generalized surface theory in 

(9), we compute by the Monte-Carlo procedure the average surface ~rea 

per plaquette 

S = <S>/N 
p p 

which·is analagous to the plaquette energy in lattice gauge theory. 

A discontinuity in Sp as a function of SA signals a first-order 

phase transition, while a sudden, steep (but continuous) change is 

usually associated with a second-order transition. 

In Fig. 3 we show the phase structure of the 3-dimensional 

interacting surface theory in the SA - s
1 

plane, as determined 

(10) 

by the Monte-Carlo method. It seems that the self-avoiding property 

(S
1 
~ ~> does not make much difference even to the value of S~ritical; 

so presumably large non-intersecting surfaces can still form and give 

rise to long-range correlations at the second-order transition point. 

At s1 << 0 (surfaces attract) we do find a new "antifrozen" phase 

of some kind. The frozen (SA>> 0), antifrozen, and disordered 

phases meet at a bicritical point [9], which is the juncture of two 

lines of second-order, and one line of first-order, phase transitions. 
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Fig. 1 

Fig. 2 

Fig. 3 

Figure Captions 

Allowed and forbidden CC operations: a) an allowed operation; 

b) operation suppressed by R3; c) operation suppressed by R2. 

-1 
Plot of <S> vs. ~ near ~ •t• 

1 
= .53. Data is taken 

cr~ ~ca 

on a 10 x 10 x 10 lattice. 

Phase diagram in the ~A - ~I plane of the interacting surface 

·theory. Solid dots are 2nd order transition points, open 

circles are 1st order transition points; .the hi-critical 

point is denoted by an open triangle. 
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