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Most geothermal reservoirs  are extensively fractured and have l o w  
The f rac tures  provide the pr inc ipa l  c0nduit.s f o r  matrix permeability. 

f l u i d  and heat  flow. 

Conventional approaches t o  geothermal reservoi r  modeling have em- 
ployed a paroys medium approximation, but  recent ly  methods have been 
developed which can take i n t o  account the  d i f f e ren t  thermodynamic con- 
d i t i ons  i n  rock matrix and f rac tures .  
method (%INC") developed by Pruess and Narasimhan treats- the  thermal-and 
hydraul ic  i n t e rac t ion  between rock matrix and f rac tures  i~ terms of a.set  
of geometrical parameters. However, t h i s  approach was  r k s t r i c t e d  t o  idea- 
l i z e d  f r ac tu re  d i s t r ibu t ions  with regular ly  shaped matrix blocks. 

. 
sets with a certain scatter i n  or ien ta t ion ,  and a s tochas t i c  d i s t r ibu t ion  
of spacings and apertures.  We have extended t h e  MICNC-method t o  realistic 
f r ac tu re  systems with s tochas t i c  d%tributions.  
matrix and f rac tures  is parameterized i n  terms of a "proximity function", 
which represents the volume of matrix rock as a function'of dis tance from 
the  fractures .  
t ions f o r  a nunher of two-dimensional s y s t e m  with or s tochas t i c  
f r ac tu re  d is t r ibu t ions .  how the  proxi t Y  functions can be 

The multiple i n t e rac t ing  continua 

* =  

Fractures i n  geothermal reservoirs  usually occur i n  nearly p a r a l l e l  

The in t e rac t ion  between 

We employ Monte Carlo techniques t com~irte proximity func- 

ed t o  generate computat f o r  modeling f l u i  
d reservoi rs .  

This work w a s  s i s t a n t  Secretary for Conservation 
Renewable Ener ice of Renewable Technology. Division of Geothermal 

der  Contract 
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1. Introduction 

It is well astabllshed that most 
high-temperatme geothermal mser~olrs 
are extensively fractured.. Zhe fractures 
provide the principal conduits for fluld and 
heat flow. The rock matrix contains most of 
the fluid and heat reservese but it usually 
haa a very l o w  permeabilitye parhap in the 

ange 

Convantional approaches to 
reservoir modeling have employed a porous 
medium 4pprowimatione although the validity 
cf thla approrimation for naturally fractured 
reservoirs haa never been Uemonrrtrated in 
detail. It appears that moat researchers 

L expected a porous medium approximatLon to 
work in Cases with -not too Zarge' fracture 
spacing. Btacently it was shown by Prue6s 
and Uarasimhan (1982a1, that la -phase 

othanaal reservoirs strong discontinuftias 

between fluid convcctlon and heat conduc+ion. 
This euggesta that fractured 8ystem w i t h  
two-phase fluid may behave quite differently 

vapor saturation can arise at matrLx/ 
cture interfacese due to M iaterplay 

(e.g., resarrroir si=, vel1 spacings, 
completian fntervalm) . 

Coupled fluid and heat flow, and to PaiLtl- 
phase fluids w i t h  ;Large and varying compras- 
&ibfLitye 8och II 8team-rater mixtures. 

The work of Pruess and Narasimhan 
employed highly 14aaZized regular & a t  
ture distributionse but the authors polnted 
out that the UXNC-rmthod can be extended to 
realiotlc (stochastic) fracture distributions 
as w e l l .  
paper to catty out the gcneraliration to 
arbitrary irregular fracture distributions. 
after briefly reviewing the main assump- 
tions of the 8iXNC-method. we shall introduce 
the concept of o .proxhlty function- the 
central qearmetricalquantity which defines 
the matrk-fracture interaction. subsr 
quently we shall consider proxhlty functions 
for regular or ittegulu fracture dlstribu- 
tionrre using Monte Carlo integration techniques. 

It is the purpose of the present 

The HXNC-method fo  the double- 
porosity apptoach in adopting a continuum 
treatrmcnt for both the fracture netmrk and 
for the porous rock matrix. Global flow in 
the reservoir is assumed to occur only 
through the natwrk of interconnected 
fractures, whereas fractures and rock matrix 
can exchange fluid and heat locally. Xn 
order to obtain 8 numerical description 
for interporosity flowe it ia aecessaxy to 
psrtition the flow damah into discrete 
volume elementse or grid blocks. 
crucial point of the MXNC-mathod is the 
partitioning tor bi6cntitation) procedure 
adopted for interporosity flow. It should 
be noted that the cu~tmary equations for 
mass- and energy-consenration. when written 
in integral form, hold for ub i t r a ry  
resuvoir subdomains (Naxarrimhan, 1982). 
However, disaet lzed equations are only 
useful (solvable), when the flow terms 
between volume elements can be related to 
the accunula mass and heat within 
volume elune lu ld  and heat flow &re 

e respectively, andethese can be 
seed in terms of average values of 
odynamic variables if (and only i f )  

re is approximate themedynamic equlli- 

as.- In porous media, this reprrircment 
ill oeually be satlafled for  any suitably 

11" simply-connected oubregion, .LI 

The 

byw of pressure and temper- 

vithin each volume element at  all 

thermo&ynamic conditions generally vary 
contiauously and moothly w i t h  position. 
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z2rc situation can be quite ditferent kr 
fractured media, where changes in thermo- 
dynamic conditions as a consequence of 
boiling or cold water injectfon MY propagate 
rapidly in the fracture network, while 
migrating only slowly into the rock matrix. 
mua, thermodynamic wnditiaun w y  ahow 
strong varfations as a function of position 
in the vicinity of the fractures. Because of 
the different response times, thermodynancic 
changes in the rock matrix w i l l  locally 
depend mainly upon the distance from the 
nearest fracture. Then, interporosity flow 
w i l l  be perpendicular to the fracture faces. 
This suggests partitioning (discretizing) of 
the rock m a t r i x  into sequences of nested 
volume element., which are defined on the 
basin of distance from the fractures. 
Figure 1 i l lust rates  this concept for the 
case of an idealized two-dimensional fracture 
distribution, U t h h  case the geametric 
quantities governing the intetporosity f h u  
(element volumes, interface areasI and 
nodal distances) can be easily abtained in 
expUdt  analytical form {Rrrrzass and 
Naraslnhan, 1982b) 

The mesh design wncept as ahown i n  
Figure 1 can be generalized, t o  make it more 
suitable for applications of practical 
j.nterest. In reservoir regions where 
thermodynamic conditions vary slowly 8s a 
function of position, it is not necessary to 
have separate volume elementa w i t h i n  each of 
the elementary \mito depicted in Figure 1. 
Instead, correspondfng nested volumes in 
neighboring units, which are identlficd by 
an index number in Figure 1, can be lumped 
together into one computational volume 
element. Element volumes and interface 
areas scale proportional to the number of 
elementary units which ub lumped together, 
whereas aodal distances rumin unchanged. 
The scaling procedure can be further general- 
ized by applying the same scaling law to 
grid blocks of ub i t ra ry  size or shape. 
Thus we arrive at a two-step procedure for  
defining a computational mesh for a fractured 
resenwir. 
mesh just  as would be done for a porous- 
medium type system with small grid blocks 
near wells, etc. ("primary mesh"). The 
second step b to sub-partition each grid 
block into several continua. the mspective 
volumes, interface araas, md nom distances 
of which are obtained by appropriate scaling 
frcm the quantities partaining to the basic 
fractured unl t  f asecondary mesha). 

The f i r s t  s tep is to construct a 

The concept of partitioning based on 
distance from the fractures can be readily 
extended to ubi t ra ry  irregular fracture 
distributions. Figure 2 i l lust rates  this 
for a s e t  of f raaures  of f in i te  length.  
F i r s t  it is necessary t o  eliminate the 
*ad-end portions of the fractures, which do 
not participate in global flow within the 
fracture system (Figure 2b). 
~ t r h  can then be readily partitioned into 
several continua with increasing U t a n c e  

The rock 

from the fractures (Figure 2c).  while the 
general case of irregular fractures is 
strafghtforward from the conceptual point of 
view, it is not possible t o  obtain the 
geometrical parameters for  the sub-continua 

de %atroduce an auxiliasy function, termed a 

for any given facture distribution, and 
which allow to completely define a l l  
geometric parameters for intarporosity flow. 

3. 

in an u t p U C % t  fashion, TO ac-plirrh this 

a p O X h i t y  hmc+iOn", PhiCh can be CAlculatad 

The Conceot of Proximity Functions 

For any given reservoir subdomain with 
known fracture distribution a function V(x) 
can be defined, which represents total 
matrix volume V within a distance x from the 
fxactuxe faces. Note that the volume V w i l l  
generally consist of a Sinite number of 
disjoint multiply-wauected regions, repre- 
senting a quite complex topological 
(see Figure 2c). 
the nubdomain, and 91 i s  the volume 
fraction (average porosity) of the fracture 
system, the volume of the fracture contlnuum 
wi th in  VO is V1 = 41.~0. 
to introduce a aproXhity function" PXDX(x), 
which expresses, for a given reservoir 
subdomain VO, the to ta l  fraction of matrix 
volme within a distance x from the fractures. 
Wting that the total matrix volume in dmnain 
vo is 

If Vg is the volume of 

It is convenient 

v, * (1-1) vo (1) 

ve have 

In  the IblNCC-method, a discretization is 
adopted for the rock matrix (see Figure 3) 
whereby a11 matrix volume within a distance 
x2 from the fracture faces will be lumped 
into one computational volume element (or 
subcontinuum) V21 matrix volume within A 
distance larger than x2 but less than x3 
w i l l  be lumped into V3, etc. This i s  
i l lustrated i n  Figure 3 for  a regular 
fracture network, but it is evident that the 
same procedure can be applied to arbitrary 
-gular fracture distributions, see Figure 
2c. To define flow towards or away from the 
fractures, it is necessary to specify 
interface u e a s  and nodal distances between 
the m a t r i x  ~ub-con th~a .  Frcm the definition 
of the proxbity function as given above, 
the interface area for flow at  distance x is 
simply 

In conventional porous medium-type 
sirnulation methods w i t h  simply-connected 
grid blocks, the computational nodes are 
points, usually located at  the center  of a 
volume element. 
volume elements of the HZXC-ntethod, the 

For the multiply connected 
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element nodes becane nodal surfaces, which 
are located half-way between the inner and 
the outer marface of an alement. The 
btscretiration procedure adopted in the . 
IbfwC-method can now be ascr ibed as f 
First, a eprimaryn mash la specified 
Zntegral finite difference form by P 
a se t  of volume a m e n t s  fVnp a=), 
interface areas &,,, and nodal distan &,. All primaty *connections* t b r  
&m) between oalume elements u e  assigned 

Vn of the primary mash ir;l then partitioned 
into a sequence of interacting continua 
Vaj (3-1, . . ., J). The continua u e  
specified by means cf e s e t  of volume 
fractions $3 ( j-1, . . *, J), where 91 
is the average fracture porosity, and the 

the mat r ix  a t  increasing distance f r m  
fractures. Qbviously we a t  the'fntedace u - 1 ,  xn general, DJ 

The fracture nodes u e  placed at  the fracture- 
matrix interface, so that 

(9) 

'4 to the fracture continuum. Each grid block 

surface w i t h  index J frau the innennost 
interface uaa ,  b - 1 ,  n ~ .  
chosen in such away that the f in i te  differ- 
a c e  approximatfon for pressure - 6nd 
temperature * gradienfs gives the most 
accurate estimate for the actual gradients 

may be taken h quasi-steady flow approxi- 

steady nodal di6t.nce i n  many eases is 

5 
DJ should be 

w e  QJ denote volume fractions tn 

J mation. A good approximation for the quasi- 
(dl  ( W a r r e n  Uld Root, 1963) 

constraint, the Q j  (j-2 (11) ., Yl are u b i t r u y ,  but for best accura 
tho volume fractions near the fractures 

large. 
(82, Q j ,  

are simply 

0 )  ahodd be ch08- Mt '+gg" 
The volumes of the s 

In the case Of XegUIatly shaped M t r k  
blocks, analytical expressions can be 

(5) written down for proximity functions. ?or 
axampla, for  two-dimensional square matrix Vnj Q j  Vn 

a0 +bat 

e 
e . . . .  

3 



The averaged proximity function in each layer Is 

(16) 5 2 P,(x) - 7 Pr(x) + 7 Pt(x) 

These functions are F l lus t r a t ed  +n Figure 40 
Fluid  and heat  f low calculations w i n g  these 
functions u e  reported in another paper 
presented at  t h i s  workshop (ihnsbedt et aL.1982). 

I n  the general case of a r b i t r a r y  
irregular fracture dis t r ibut ions,  prox- 
Laity functions can be computed by m e a n s  of 
Monte Carlo - integration. 
program was writ ten which generates random 
points w i t h i n  a region V0 with k n o ~  
fracture bimtrlbution. The mblmum dlmtance 
of each poInt from the fractures is ctxnputed, 
and a11 poiat. are so r t ed  in order of 
Ancreasing di.tance. 
f a l l i n g  below a certain distance x is t h e  
value of the proximity function at x. This 
procedure, whlch Is applicable to a r b i t r a r y  
fracture d i r t r ibu t ions ,  defines the proximity 
function at  discrete points, subject to 
stati.tica1 f luctuat ions from t h e  Monte 
Carlo - integrat ion process. 
able t o  numerically compute der ivat ives  of 
the proximity function, a moothcd curve Is 
computed by f i t t l n g  t h e  discrete function 
with a succession of cubic 8plines. 
accuracy of the Monte Carlo procedure was 
t e s t e d  by computing p r o x a t y  functions and 
their der ivat ives  f o r  cases where t h e  
tesults u e  known in analytical form. 

A canputer 

The f r ac t ion  of points 

In order to  be 

The 

Figures 5 and 6 show proximity functions 
and their der ivat ives  for square matrix 
blocks. Note that the results of the Uonte 
Carlo - integrat ion give a close approxima- 
tion t o  the analytical solut ion as given by 
equation (13) already f o r  5,000 integrat ion 
points. However, .mall deviations are 
magnified when Interface areas u e  computed 
by different ia t ion.  When 50,000 integrat ion 
points  u e  \tried, a good approxhat ion i n  
obtained for Interface areas, see Figure 6b. 

Figure 7 shows a two-dimensional 
s tochas t i c  f r ac tu re  pattern.  This was 
generated with a computer program developed 
at  LBL, accordlng to  a given d i s t r i b u t i o n  of 
or ientat ione and lengths, with randam 
locations (Long et al., 1982). The proximity 
function for this system, obtained by M n t e  
Carlo - integrat ion w i t h  100,000 integrat ion 
pohts. L. rhovn Fn Figure 8,  a l e  Figure 9 
gives the  in t e r f ace  areas a6 obtalntd by 
ntrmerical different ia t ion.  

5. sualmarp 

The proximity function quant i f ies ,  for 
a given f ractured rock m a s s ,  t h e  volume of 
rock matrix present i n  dependence upon the 
distance from the f ractures .  This function 
and its f i r s t  de r iva t ive  are s u f f i c i e n t  t o  
completely de f i ae  t h e  gcaaetr ic  parameters 
f o r  interporosi ty  flow between rock matrix 
and fractures ,  as rcquired by t h e  method of 

% u l t l p l e  I n t t r a c t l n g  continua" (xRJC1 mess 
and Narralmhan. 1982b). For regular ly  shaped 
matrix blocks, proximity functions CM be 
v r i t t e n  down in analytical form, while for 
stochastic fracture dlstrlbutions they are 
obtained by m e a n s  of Monte Car l a in t eg ra t ion .  
W e  are currently studying the dependence of 
proximity functions upon t h e  parameters of 
f r a c t u r e  distributions, a d  u p n  sample sire 
and spec i f i c  r e a l i r a t i o n  of a stochastic 
d i s t r ibu t ion .  Also, w e  have begun elmula- 
t i o n s  of f l u i d  and heat  flow i n  geothermal 
reservoirs with realimtic fractare dls t r ibu-  
tions . 

It should be emphasized that for m o d d -  
ing of f low i n  f ractured rock m a s s e s ,  t h e  
proxLmity function of the f low systan can be 
computed once and f o r  all, ahead of actual 
flow simulations. A prep rocesso r  program 
has been wr i t t en  (Pruess, 19821, which 
generates a l l  geanetric parameters for 
Interporosi ty  flow i n  a f o m t  compatible 
with Lawrence Berkeley Laboratory*s gcothex- 
m a l  simulators SHAFT79 and ItULlCW. The 
preprocessor can also i n t e r f a c e  with other 
In t eg ra l  f i n i t e  difference simlators, such 
as TRUST (saturated-unsaturated flow), €T 
(single-phase non-isotharraal flow), and 
TRUMP (advec t iocd i f fus ive  heat  and chanical 
t r a m p o r t ) .  
this paper, Qoddfng of f luid and heat  f low 
i n  na tu ra l ly  f ractured reservoism is no more 
d i f f i c u l t  than slmulations for poroua 
Qddia. 
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Figure 6 .  Derivative of proximity function 
for two-dimensional aquare 
matrix blocks (DMAX = 1). 
(a) 5,000 integration points. 
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