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THE PHYSICS OF DUAL VORTICES AND 

. * STATIC BARYONS IN 2 + 1 DIMENSIONS 

Neal J. Snyderman 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

ABSTRACT 

The dual to Mandelstam's SU(N) models of magnetic confinement, 

which explicitly realize the superconducting phase of the SU(N) gauge 

theory, are constructed and shown to explicitly realize 't Hoeft's 

physical picture of the confining phase in 2 + 1 dimensions, in which 

* electric vortices are Bloch walls between ZN magnetic domains. These 

models generalize.Polyakov's SU(2) + U(l) compact QED model to 

SU(N) + U(l)N-l.. These models have also been considered by Wadia 

and Das. Static baryons in SU(3) are studied. A Hamiltonian 

analysis of the physics of confinement in these models is used to 

.ellucidate the beautiful correspondence of Hosatani, that the 

electric vortex in the Polyakov model is related to the naive dual 

of a magnetic vortex. in the insulating layer of a Josephson junction. 

* This work was supported by the Director, Office of Energy 

Research, Office of High Energy and Nuclear Physics, 

Division of High Energy Physics of the U.S. Department 

of Energy under Contract DE-AC03-76SF00098. 

I. INTRODUCTION 

There exist models of the superconductingphase of SU(N) gauge 

theories.
1 

These models.have magnetic vortex excitations that can 

confine magnetic charge sources in baryon as well as meson like 

configurations. Ordinary hadrons, however, are .confined states of 

electric charges. It is therefore necessary to develop models of 

dual vortices. A precise meaning to this duality follows from 

't Hooft's2 commutation relations. These commutation relations follow 

from the global topology of the gauge group. As Ward identities, 

which are relations between Green's functions ·. following from the 

infinitesimal local gauge invariance, play an important role in 

analyzing the short distance behavior of the gauge theory, the 

expectation values of the 't Hooft commutation relations play an 

important role in analyzing the long distance behavior of the gauge 

theory. In 2 + 1 dimensions, these relations will directly imply 

how to go from'models of magnetic vortices to models. of electric 

vortices. 

3 28 
Polyakov ' had considered an SU(2) .c>- U(l) ·gauge model in 

2 + 1 dimensions to study the effects of instantcins;he found that 

instantons could give confinement in this.inodeil We will argue that 

the 't Hooft commutation relations imply Polyakov's model is the dual 

of the SU(2) Neilsen-Olesen4 model of magnetic .. vortices. Previously, 

Hosotani5 had made the beautiful observation that. the equations of 

the Polyakov model are naively dual (E + B, B.+- E) to the equations 

of the Josephson junction. 6 The 't Hooft duality in 2 + 1 

dimensions is therefore nontrivial; the electric vortex in 

the confining phase is not the naive dual of a magentic 
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vortex in a superconductor, but is closer to the naive dual of a 

magnetic vortex in the insulating layer of a Josephson junction. 

Applying the 't Hooft commutation relations to Mandelstam•s1 

SU(N) generalization of the Nielsen-Olesen magnetic vortex models, 

we have determined the dual of these models in 2 + 1 dimensions. 

These models have SU(N) electric vortices that can confine N quarks 

as well as a quark and antiquark. These models are simple generali-

zations of Polyakov' s SU (2) ->- U (1) model in which .SU (N) is spontane-

ously broken with. adjoint representation scalar fields, to its 

maximal abelian. subgroup, U(l).N-l. These models have been 

independently considered by Wadia and Das. 7 These models may 

contain the essential confinement physics of the pure SU(N) gauge 

theories; the relevant dynamical degrees of freedom of these models, 

monopoles and abelian gauge fields, are the same as those picked 

8 out by the generalized unitary gauges 't Hooft has considered to 

describe the long distance behavior of the pure SU(N) gauge theory. 

In Section 2 we review the content of the 't Hooft commutation 

relations in 2 + 1 dimensions, the different physical interpretations 

of the order and disorder operators in the different phases, and 

* 't Hoeft's ZN (dual ZN) magnetic domain picture of confinement in 

2 + 1 dimensions. 2 In Section 3 we review some of the features of 

magnetic vortices in SU(N) gauge models, and how these models 

explicitly realize the 't Hooft commutation relations for the 

superconducting phase. 

In Section 4 we argue that in the transition from the superconducting 

phase to the confining phase, the dual realization of the 't Hooft 

commutation relations; the explicit SU(N) models of the superconducting 

·• 
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phase go over to an SU(N) generalization of Polyakov's confinement 

model. 

Section 5 reviews the 't Hooft-Polyokov monopole and its embedding 

in SU(N) gauge theories. For our later analysis we rieed the masses 

of the monopoles for all embeddings of SU(2) in SU(N) to be equal; we 

briefly discuss how the scalar fields can be chosen to.realize this. 

In Section 6 the SU(N) Polyakov mod~ls are discussed, and in Section 

* 7 it is shown how these models explicitly realize 't Hoeft's ZN 

magnetic domain 'picture of confinement. 

Static bary?ns in the SU(3) model are discussed in Section 8. 

We show how the SU(3) baryon loop decomposes in this model into a. 

product of abelian Wilson loops. This .analysis of baryons suggests the 

SU(3) meson Wilson loop can also.be decomposed into a product of 

abelian loops. An additional harmonic excitation of the strings, 

associated with "delaminating" sheets is suggested. 

The Minkowski space-time physics· of confinement in these models 

is discussed in Section 9. For the SU(2) case, the Euclidean. space-

time physics of the Polyakov model is well known to have a corres-

28 29 30 pondence with that of the abelian lattice gauge theory. ' ' 

We develop the close relationship between the Hamiltonian physics of 

the Polyakov model and that of the Drell, Quinn, Svetitsky and 

Weinstein27 Hamiltonian analysis of the abelian lattice gauge theory. 

Our emphasis in this Hamiltonian analysis, through; is to clarify the 

physics of the Hosotiani5 duality between the Polyakov model and 

the Josephson junction. 

Finally., in Section 10 we add some concluding remarks on the 

* relation of our analysi~ to the ZN fluxon spagetti vacuum, and on 

• ' 
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the possible relavance of these models to the pure gauge theory 

without the additional scalar fields. 

-6-

II. 't HOOFT COMMUTATION RELATIONS: 

PHASES IN 2 + 1 DIMENSIONS 

A summary of the content of the 't Hooft commutation relations2 

follows. These abstract riotions.will later be explicitly realized in 

the models of both the superconducting and confining phases. In 

2 + 1 dimensions, the 't Hooft commutation relations for a pure SU(N) 
·g 

gauge theory are 

+* +* 
M *(x, t) WjC, t) = WA (C, t)M *.(x , t) exp 

2'11 * + . 
{i N' n ri(A)n(x, C)}, 

n n 
(2 .1) 

where W !J(C, t) is a spatial Wilson loop operator, on a fixed time slice, 
+* in the representation A of SU(N), and M *(x; t) is an operator that 

acts on fields by-gauge transforming th~m by n[x*](~, t);. this gauge 

transformation is singular at (~~ t) and has the property that a~ ~ 
encircies ~*, n does not return to its original value, but acquires a 

ZN phase, 

2n) = e 
i 2n ·* -n 

N n<s 0). (2.2) 

A gauge transformation associates with each point in space-time a point 

in the group; this. gauge transformation associates with a closed path 

in space ari open path in on the SU(N) group manifold, going, for 

example, from the identity to an elementof the ZN center. This open 

path in SU(N) corresponds to a closed path in SU(N)/ZN. n(A) is the 

N-ality of the representation A, the number of fundamental minus the 

number of anti fundamental representations from which the representation 
' ' . +* . . -· 

A is built by tensor products. Finally, n(x, C) is the number of 
+* times the curve C loops around the point x • 

In the (in principle possible) superconducting phase of the 

SU(N) gauge +* theory, M(x , t) creates a magnetic vortex at +* 
(x ' t)' 

and W(C, t) = y_ P exp(ie ~c'\(~, t)dxk) =: exp(ie~) is a gauge 
N 

invariant measure of the magnetic flux through C. The commutation 

relations imply the magnetic flux ~ is ~'II times an integer mod N. 
e 2'11 

Because of the mod N conservation of flux, a flux of E! times an 

integer is equivalent to the vacuum. · N fundamental vortices of flux 
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~: can therefore combine to have no flux. An effective field theory 

describing the interaction of magneticvortices in the superconducting 

phase therefore has an .interaction term propor;ional to powers of 

MN + MtN(as well as MMt terms), and consequently is invariant under a 

* global ZN symmetry, 21T * . M ->- exp(i N n )M. Such a symmetry implies 

< M>= 0. 

The phase dual to the superconducting phase.is characterized by 

a magnetization,<M >; * 0, spontaneously breaking this global ZN 

symmetry. There are N degenerate vacuua associated with the N 
i 21T 

orientations of<M >, <M > = e T <M>. 
1

, n = 1, , N. In 
n. n-

this phase the commutation relations imply that W(C) creates a domain; 

the Bloch wall along C. seperates two different domains, say,<M > and 
21T 

e iN <M >. (See Fig •. 1) This Bloch wall is an electric vortex 

that can confine quarks. Because N Bloch w~lls can meet at a point 

(see Fig. 2), these electric vortices can confine N quarks (baryon) 

as well as a ·quark and antiquark (meson) • 

:~ 
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III. MODELS OF THE SUPERCONDUCTING PHASE 

MAGNETIC VORTICES 

The superconducting phase of an SU(N) gauge theory can be 

·explicitly modeled by introducing additional adjoint representation 

scalar fields. The 't Hoeft commutation relations also apply to an 

SU(N) gauge theory with additional fields in representations with 

zero N-ality ,. only now M acts by gauge transforming ,these fields as 

well as the vertor potential. We first discuss these superconductor 

models in 3 + 1 dimensions, and thEm s~ow how, in 2 + 1 dimens.ions, 

the 't Hooft commutation relations imply from them models of the con-

fining phase. 

The physical motivation for models of the superconducting phase 

is as follows. If electrodynamics in ordinary superconductors is 

considered to be part of a unified theory of electroweak interactions; 

then the superconducting .order parameter field. is a representation 

of the non-abeliari group. 10 Electrodynamics in the Georgi-Glashow 

S0(3) electroweak gauge model is then made.superconducting by breaking 

the U(l) symmetry with an additional isovector scalar field order 

parameter. The SU{N) superconductor models generalize from this 

physics in the following way. 

Consider an SU(N) gauge theory with a set of adjoint representation 

scalar fields, ~i and ~a' where i and a label which adjoint repre­

sentation field. The Hamiltonian is of the form11, 

f{ 

(2.1) 
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where the adjoint representation fieldE? are chosen. to be fundamental 

representation elements of the SU(N) Lie algebra (for example, 

a Aa 
Ek = Ek 2: ). The generators, >.a/2, are chosen so that there are 

N - 1 mutuality commu.ting (neutral) generators, Hi' and N(N ~ 1). 

(charged) generators E ±a' where the N(N- 1) /2 (t• s are N - 1 

component 1 root vectors , (vector of charges, eigenvalues of H), obeying 

-> -> 
a· H. (3. 2) 

The electric and magnetic fields ~ and.Bk are the space-time, and 

space-space components of the field tensor, 

(3.3) 

and the covariant derivatives of the adjoint representation fields 

are, for exampl~, 

a ® + ie [A , ® 1 • 
\1 . \1 

(3.4) 

The components of A\1 in the basis (3.2) are 

(3 .5) 

The scalar potential is chosen to break the symmetry in two ~tages. 

First, with the ®. 's·, SU(N) is spontaneously broken to its maximal·· 
:t 
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abelian subgroup, 

SU(N) -> _p(l) x UQ-).;. .•• x U(:/. (3 .6) 

N - 1 

This is a generalization of compact QED where SU(2)-> U(l); there 

. (ql'q2' ... ;(!N-1) 
are N - !'photons", and the N(N - 1) massive gauge f:telds, W , 

carry N - 1 abelian electric charges, q = ±e;i. In the next stage of 

spontaneous symmetry breaking, these.N- 1 "electromagnetic" 

N-1 
directions are made superconducting; that is, U(l) is totally broken 

by the cpa's, the superconducting order parameter fields, so that the 

photons acquire mass. 

There are then magnetic vortex excitations in which the U(l)N-l 

symmetry is.restored inside the vortex core. In 3 + 1 dimensions 

these excitations are time independent field configurations with 

finite energy per unit length. The vortex is characterized by 

* being a vacuum configuration almost everywhere·, but with a line, C , 

along which cpa = 0. Since this is not a global minimum of the 

potential, this increases the energy.per unit length of the line. 

'* The curve C can be an infinite line or a closed loop. We will 

consider the fields o.n a 2-dimensional x - y plane perpendicular 

* to the curve C • 

Far fr9m the vortex core the scalar fields take an vacuum 

values; from H, Eq. (3.1), this implies, 

D cp 
\1 a 

0 

V(@l, @2, ••• , cpl,cp2' .•• ) 0 (3. 7) 
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ie[G , ®il 
' ].l\! 

0, (3.8) 

--so either G 
].l\! 

0, or it commutes with @i. A gauge can be chosen 
.... .... 

for which V'= 0 when ® i = fi·H; then G].l\! can be non zero only in 

the abelian directions. Not only is G 
].l\! 

0 in the E directions,· .... 
Ct 

but W 
].l 

= 0 as well (since ® . is constant 
']. 

and so D ® . = 0 implies 
].l l. 

[A , @ .] = 0). 
].l l. . 

Along the x axis, the t for which V'= 0 will be 

chosen in the directions of the charged generators'· E..,., (the <!> are 
Ct Ct 

charged relative to the U(l)'s). In directions in space other than 

along the x axis the <!>a are gauge transformed vacuum fields, 

[G <!> J = 0; since from the ® i 's, G].l\! 
].IV' Cl 

(3.9) 
.... .... 
G].lv'H, and From D].l<!>Cl = 0, 

since rn. <!>Cl] 1- 0, we conclude G].lv =·o everywhere in the va~uum far 

from the vortex core, although now 

A 
].l 

A: ·H 
].l 

However, the vortex excitation is characterized by <!>a= 0 

N-1 
core. Therefore, G 1- 0 and the abelian U(l) gauge 

]1\! 

be restored in the yortex core. 

(3.10) 

in the vorex 

symmetry will 

The vanshing of <!>a inside some curve C in the vacuum is implied 

by continuit:ity of the fields .if the <!>a take an. different vacuum values 

along closed pat~s C, 
211 * 

n (211) = ei~ Q(O). 

Eq. (3.9), with n having the property 

As e is shrunk to a point, n becomes discontinuous, 

and the only way the <!>'s can remain continuous is if. they vanish at 

a point. The adjoint representation of SU(N) fields are also 

-12~ 

representations of ·SU(N)/ZN, and far from the vortex core 

definemappings from circles in space onto closed paths in the group 

12 SU(N)/ZN. ·These mappings fall into homotopy classes, 

rr1 (SU(N)/ZN) ::::: ZN; · there are N homotopically inequivalent classes 

of paths associated with the mappings of a closed path in space 

(circle, s1
) onto closed paths on the group manifold of SU(N)/ZN. 

This is an N-fold connected manifold which identifies all points 

of the SU(N) manifold that differ by an element of ZN. Different 

* values of n (mod N) correspond to paths in the different 

connected· regions of the SU(N)/ZN manifold. The gauge 
.211 n* 

transformations, n(2n) =·e1~ . n(O), topologically characterize 

the magnetic vortex.· Therefore, in this superconducting 

->-* phase, for the models in 2 + 1· dimensions, M *(x, t), which ·creates 
n 

a gauge transformation with such a Z discontinuity, creates a magnetic 
N 

vortex soliton. 13 

A Wilson loop surrounding such a configuration will measure its 

magnetic flux. Far from the vortex core the vector potential from 

the··N -' 1 abelian vortices is a pure gauge; from Eq. (3 .10), this 

gauge transformation is in the abelian directions of the group 

nee> 

This implies 

exp(ig·Re). 

l..2._ n(e) 
r ae 

l g·H 
e r 

Substituting this vector potential into the Wilson loop gives 

c 

(3.11) 

(3.12) 
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211 
W(C) tr P exp(ie f A

9
rd6) 

N 0 

= !!: !211 1 a 
N exp (t aB g,n Q) rd6 

This implies 

i2ng•ll 
e = e 

0 

.211 * l.-n 
N 1. 

= e 

.211 * 
l.Nn 

(3.13) 

(3.14) 

14 .... 
The different solutions of these equations for g will give the flux 

in each of the N - 1 abelian directions in order that the total flux 

211 * * 
is Ne n, (n is an integer mod N). 

For SU(3), 
A.3 A. 8 

this condition, Eq. (3,14), is explicitly, since 

<-z '2 ), 

* Depending on n 
' 

in Fig. (3). If 

* n 1 (mod 3)' 

* n 2 (mod 3)' 

(

.!., __!_:_) 
2 2/3 

... .1 1 exp i 211g• (- -; --) 

. 211 * 
l.JU 

= e 1. 

. . 2 213 
. . (0' 

_J 
13 

(3 .15) 

there is a different set of solutions for g, shown 

* n 0 (mod 3), g = 2· x(adjoint represention roots); 

... x(antifundamental representation weights); g 2 

... 
x(fundamental representation weights). The g 2 

nontrivial vortices therefore carry (anti) fundamental representation 

411->- + flux, e jJ' where jJ is a (anti) fundamental weight. Because three 
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fundamental representation charges can combine into a singlet, it 

is already clear that these magnetic vortices in 3 + 1 dimensions 

will be able to confine fundamental representation magnetic monopole 

sources into baryon as well as meson configurations. 1 

It will be useful for our later analysis of the dual phase to 

discuss some further formal implications of this confinement of 

monopoles. We first. must consider the natural generalization 

->-* 
of the operator M(x ,t) to Minkowsik 3 + 1 

->-* 2 * dimensions. M(x , t) is generalized to the 't Hooft loop, t(C , t), 

* where C is a closed curve in space. At fixed time we can then 

* consider t(C*) appropriate for Euclidean 2 + 1 dimensions.
15 

t (C ) 

creates a gauge transformation such that on any closed path C that 

* * * pierces the surface S with boundary C , there is a ZN phase shift, 

0)' (3.16) 

* where a parametrizes the closed curve C that encircles C • A gauge 

can be chosen so that the change by•a ZN factor occurs discon-

2 15 16 * tinuously. ' ' Then S can be chosen to contain this sheet of 

* discontinuties. In the superconducting phase, C is the world line 

* of a magnetic vortex soliton; on a Euclidean time slice through C , 

* the state created by t(C ) corresponds to a magnetic vortex-anti-

* * vortex soliton pair. Therefore, along the curve C , t(C ) creates 

a magnetic vortex loop. The Wilson loop picks up a ZN factor every 

* time it pierces the sheet of discontinuities bounded by the curve C , 

as it measures the magnetic flux through C. (See Fig. 4.) 
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In Euclidean 3 + 1 dimensions, the 't Hooft loop can be oriented 

in the space-time plane. It can then.be interpreted as the current 

loop of a fundamental representation magnetic monopole (recall 

the ~ discontinuity of the gauge tr<tnsformatioh implied fundamental 

* representation magnetic charge) propagating on the world line C , or 

in other words, the event of the creation and subsequent annihilation 

of a monopole-antimonopole pair. For a large loop in the time direction, 

< t(c*) >a: ex [- (interaction en(;!rgy o~ ) x time] 
P seperate monopole paxr 

(3 .17) 

Due to the magnetic vortex excitation with fundamental representation 

magnetic flux, 

. * * < t(C) >a: exp[- const. x A(S )], (3.18) 

* * where A(S ) is the area of the sheet S swept out in time by the 

magnetic vortex· string of finite energy per unit length. Because of 

Euclidean invariance, a spacial 't Hooft loop will also have an area 

law in the superconducting phase. This implies that both a spacial 

't Hooft loop in Milkowski 3 + 1 dimensions, and the Euclidean loop 

in 2 + 1 dimensions, will have area laws. The area law can therefore 

be associated with the sheets* of ZN discontinuities.
2

•
15 

'· 
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IV. DUAL OF SUPERCONDUCTING MODELS 

Consider these superconductor models in 2 + 1 dimensions. As 

. * we have seen,M(x, t) creates a magnetic vortex soliton. Inside the 

N-1 . 
vortex core, the U(l) abelian gauge symmetry is restored. Now 

if<M>/ 0, the state created from the vacuum by acting on it with 

M is not orthogonal to the vacuum. One can think of the vacuum 

as filled with an infinite number of vortices, so the creation or 

annihilation of one more makes no difference. The fundamental 
. ' . N-1 

consequence of this vortex condensate is that the U(l) symmetry is 

restored over all space. 
N-1 

Thus the models with SU(N) -+ U(l). a~:e dual 

to the SU(N) superconductor models, and therefore should describe the 

oonfiningphase. For SU(2) in 2 + 1 dimensions the 't Hooft commutation 

.L~-~:I,o~--~ave. t:.l.!.~~~for~_...!II:IPlied that the SU(2) ~- U(l)_~auge. __ ~odel, 

w!lich Polyakov had considered in order to analyze the effects of· 

instantons, is dual to the SU(2) Nielsen-Olesen superconductor model. 

Consequent!~ th~ electric vortex in the Polyakov model is dual to the 

magnetic vortex in .the SU(2) superconductor. We will later consider 

the SU(N) generalization of Polyakov's model. 
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V. MONOPOLES IN SU(N) + U(l)N-:l 

N-1 In 3 + 1 dimensions the SU(N) + U(l) models have magnetic 

monopole solitons •. We digress to briefly discuss these monopoles. 36 

The. Hamiltonian is the same as Eq. (3.1), but without the scalar 

fields $a' 

H (5.1) 

Our discussion of the monopoles is similar _to our discussion of 

vortices; we now consider the fields in 3-dimensionalspace, 

though. From our discussion of vortices, we concluded from Eq. (3.8) 

that for the scalar fields taking on vacuum values, there could still. 

be non zero gauge fields in the N-1 commuting directions. Now, instead 

of the vacuum~- being constant in space, by a local gauge transfor­
l. 

mation the ~-can be chosen to point in different directions at 
l. 

different points in space. Monopoles are associated with topologically 

nontrivial vacuum configurations for the ~.,just as the magnetic 
\!!ll. . 

vortices are associated with topologically nontrivial vac.uum configu-:-

rations for the $ • 
a 

Since monopoles in SU(N) + U(l)N-l are embeddings 

17 18 of the 't Hoeft -Polyakov monopole in SU(2) + U(l), we consider this 

case first. 
+ .... 

Now there is just one isovector scalar field @ = T • ®, where 

T = 1 I 2, and outside a finite spherical region of space S, ® takes an 

vacuum values 

0, (5. 2a) 

-18-

n@ 
]J 

0. (5.2b) 

The minima of V, QD 2 = f 2 , correspond to the points of a 2-dimensional 

sphere. Along the Z axis, for r outside S, ·we choose 

®<o,o,z)· (5.3) 

and in other directions of space, 

A + 
fr·'f; (5.4) 

that is, the isovector @ can be chosen to point radially outward, 

so the direction in the Lie algebra is correlated with the direction 

in space. However, the gauge transformation Q(6,~) must be singular 

inside the region S. The only way a singularity in @ (r,6 .~) can be 
+ 

avoided is if 1®1 depends on rand vanishes at some point insideS. 

Inside S where 1®1 +0, the potential V is no larger at its global 

minimum, so this configuration has finite energy. 

From the asymptotic condition that @ is covariantly constant, 

a non zero vector potential is necessary to compensate @ changing 

in space. From Eq. (5.2b) and (5.4),and for time independent fields 

in A
0 

= 0 gauge, 

(5.5) 

from which 

(5.6) 
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The projection of this non-abelian field into the electromagnetic 

direction (picked out by~, the generator of the unbroken U(l)) 

gives 

1 A + 41T 1< 
Bk = -2 e:igk@ •Gl.·J· =- --c,­

e 4rrr"'" 
(5. 7) 

Therefore, this configuration has the asymptotic field of a magnetic 

-20-

Polyakov ansatze for the fields which minimize the energy is, 

1 x. a 
~ =- e: -22 T (1 - K(r)), 
-1< e kaj r 

® - H(r) r•T 

(5.10a) 

(5.10b) 

monopole. However the asymptotic values, Eq. (5.4) and (5.5), are reached· 

A more general expression for the gauge invariant electromagnetic 

17 
. field, valid also in the non asymptotic region, is the 't Hoeft tensor, 

which can be rewritten in the form
19 

where\ 

F 
)J\J 

() A- Cl A -
)J \) \) j.i 

1 A A 

-@•(Cl @x () @), 
e IJ .\J 

&,, ·A . The magnetic flux is then 
·. )J 

(5.8a) 

5.8b) 

(iBkdSk = 
4
:n = /d

3
xai (~e:ijk(OjJ\- ClkAj) - ~@.<af®x\{j)]) 

(5.9) 

The first term on the right hand side is obviously zero. However in 

the second term,@(~) maps. a point in space onto a point on the 

0 19 1 1 ®A 
unJ.t sphere, and 41T ~ ~ijk H • 

of times, n, the sphere(jf = 1 is 

space as r -+ ""· 

(Cli@ x a{@dsk counts the number 

covered as. Jt covers the sphere of 

While we have considered the asymptotic fields, for non asymptotic 

r the fields have additional radial dependence. The 't Hoeft-

.. 

exponentially, the corrections to J\. for 
-M®r 

and for ® of order e , where ~ = ef, 

· -M r 
large r being of order e w 

and M ® = ~ ~· Within 
e 

the core region S, the fields deviate from their vacuum values; the 

charged gauge fields are non zero (since Dk ® ·,;, 0), though as r -+ 0 

all fields vanish. For ®. = 0, V(®) # 0. The explicit forms for 

the fields are determined by minimizing the field energy subject to· 

the boundary conditions. Physically, though, the core size is 

determined by balancing the Coulomb field energy in the region outside 

S,where the other fields take on essentially vacuum values, and the 

core energy associated with all fields deviating from their vacuum 

valves. If the Coulomb energy is cut off at a radius - 1/Mw, tnen 

2 
41T ) 

e f 
~1/~ 

= ~ 4~ Mw-
e 

(5 .11) 

The core energy should be comparable in magnitude, so we expect 

M " 4
1T2 M__. This estimate is in fact a lower bound to the mass. uu.n -,_ . e . 

This bound is simply obtained from
20 

~I 

( 
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M 

.... 
I d 3x { [ t<nk + ok ® > 2 ± 

.... .... 
Bk •Dk ®l + V( I ®I)} 

= 41T ~ 
e e (5 .12) 

The lower bound is proportional to the topological charge. Corrections 

to this bound are of order A/e 2; in the limit A(e
2 -+- 0 but with 

.... 21 I® I = ~ /e fixed, this bound is saturated (Prasad-Sommerfield-

?0 41T 2 
BogomolnYL ). In general, M = ~ ~£(A/e), where£ is a slowly 

varying' function of order 1. 

While the topological stability of the monopole and the consequent 

magnetic charge has been associated with the scalarfields, which 

define a mapping from the s2 
of space (surrounding the center of the 

monopole) onto the s2 of the minima of V, a gauge can be chosen so 

that these properties are transferred to the gauge fields. This gauge, 

31 32 . singular gauge, ' 1s very useful for superposing monopole 

configurations, which is necessary for our later analysis. Consider 

the gauge transformation 

Q(6) exp (iw(e)~·1/2) 

where 

w<e> = { a' 
-+-0, 

o,.;;;; a ,.;;;; 1T-£ 

1T-£ ,.;;;; e ,.;;;; 1T 

(5.13) 

(5.14) 
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Apart from a core of angle £ surrounding the -z axis, the scalar field 

can be smoothly gauge transformed> so that over the rest of space it 

points. in the same direction in isospin space, 

.... 
® = fx ·}: -+- Q ® Q -l 

3 
f :t. 

2 

In the limit £ -+- 0, the cone is shrunk to zero, so this gauge 

(5 .15) 

transformation becomes singular, and consequently the fields can 

become singular. While the scalar field is non singular, the vector 
.... 

pot.erit:i:al ~ = ® ·i\ acquires a ·Dirac string; this leads to a 

singular contribution to ai~ -akAi. Here, however, the electro­

magnetic. field is defined by the 't Hoeft tensor, Eq. (5.8), and in 

gauge'transforming to singular gauge becomes 

F 
'jlV 

.... 
'\1 (Av • ®) - a}AJl· ®) 1 ®·(a ® x a ®> e Jl v 

(5 .16) 

In.this expression the singularity of the V x A term is cancelled by 

~ .... .... 31 32 
the singularity in the limit £ -+- 0 of the @ • (A x A ) term. ' 

Jl v 

Theembeddings of the SU(2) monopole into SU(N)-+- U(l) 
N-l22,23 

follow from the spatial variation of the @ i. Outside S the ® i can 

be chosen so that along the Z axis 

® .(O,O,Z)--> f .. a, 
1 r-+«> 1 

(5.17) 

but in a.general direction in space 



®. (r,S,<f>) 
]. 
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-1 
rl(8,<j>) @. (O,O,Z) n (S,<j>). 

]. 

This gauge transformation can be chosen so that 

where 

E + E 
r'-=(a -a 

12 

·r, 

E - E 
a -a , ;.}i) 
!Zi 

is an embedding of the SU(2) Lie algebra into the root space of 

SU(N) associated with the roota; there are N(N-1)/2 embeddings, 

corresponding to N(N-1)/2 monopoles. Also, the constant 

(5.18) 

(5.19) 

(5. 20) 

(5. 21) 

is the "hypercharge" relative to the SU(2) embedding; it is a vector 

in the root space perpendicular to; in the plane· containing ;.and 

+ 
fi. Since 

+ 
[Y~, H] 0 

0, (5.22) 

a N-2 Yi breakes SU(N) + SU(2) x U(l) · , and the second term in Eq. (5.19) 

breaks this SU(2) + U(l). Asymptotically, 

(5.23) 
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which is the projection of f. into the direction of the SU(2) subspace. 
]. 

11'1\ -t -+- a Along the Z axis, this part of ~ i, (t •a)T
3

, corresponds to the vacuum 

expectation value that determines the mass of the SU(2) monopole, 

:7T lf•;le:. 
The asymptotic condition that~. is covariantly constant implies 

]. 

the vector potential is non zero to compensate for the® i changing 

in space. From Eqs. C>.l9) and (5.23), Dk ® i = 0 implies asymptotically 

(5.25) 

from which 

(5.26) 

This is the field of a monopole with its magnetic flux partitioned 

47T + 
into each of the N-1 (conjugated) abelian directions given by E!~ 

That is, the monopole has ·adjoint representation charge. 

The complete Hamiltonian·:_for time independent fields in A
0 

0 

gauge is 

+ V( @1, ~··· ., ®N(N-1)/2)}. (5. 27) 

Although only one adjoint representation scalar field is necessary to 
.· . . · N-1 

spontaneously break SU(N) to U(l) , (although not with a quartic 

potential), we choose N(N-1)/2 adjoint representation scalar fields 

.. 



" ,. ,, 
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so that all the N(N:-1)/2 monopoles (and N(N-1)/2 antimonopoles with 

~+-~)have the same mass. Each of the N(N-l)/2 QD ·fields' asymptoti-

cally takes on non trivial vacuum values, with the same~· Eq. (5.25), 

contributing to Dk ® i = 0 for each i. V is chosen so that along the 

z axis all ·® i take an asymptotic values, Eq. (5.17), with l'fil= f for 

all i, but with the directions of the f. determined from a term in V 
l. 

of the form 

2 h 2 A A 

hi~.(tr@.@ .) -:-->--2 f .~.f .• f.. 
+J l. J r-!:<0 l.'FJ l. J 

(5.28) 

The ® i repel; the minimum energy occurs when the fi point as far 

away from one another as possible in the N-1 dimensional space. This 

occurs for f. 
l. 

+· + 
ui, the ui being roots of the weight diagram. 

each i there is an embedding of the SU(2) monopole in the SU(2) 

For 

determined by the root ~- The total contribution to the monopole 

mass squared from all the @ . 's, from Eq. (5. 23) and below, is 
l. 

proportional to. 

(5.29) 

so the monopole in SU(N) + U(l)N-l has a lower bound to its mass 

/NJ2 times that of the SU(2) monopole; also, £ will now depend an all 

other couplings in V. 
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VI. SU(N) POLYAKOV MODELS 

If the fields of the Hamiltonian are time independent in A0 = 0 

gauge, then fd 3x H =S(A,®); the Hamiltonianof the 3 + 1 dimensional 

theory corresponds to the Euclidean action for the 2 + 1 dimensional 

theory. The Euclidean functional integral of a d-dimensional quantum 

field theory corresponds to the classical .partition function of a 

statistical system in d + 1 dimensions with Hamiltonian. (For the 

2 + 1 dimensional gauge theory the fields can be re-scaled so that 

the corresponding 
2 . 

temperature is ~e .) The Euclidean functional 

integral sums over all field configurations e~p{ -S(A$)}; in the 

semiclassical approximation, which. is characterized here by the 

dimensionless parameter ~e2/41T~ being small (or low temperature 

relative to~), this functional integral is dominated by configurations 

with finite Euclidean action. Since the monopole is a finite energy, 

time independent A
0 0 gauge. field configuration of the 3 + 1 

dimensional theory, it is a finite Euclidean action configuration 

of the 2 + 1 dimensional theory. Also, the monopole is a solution 

of the time independent field equations and corresponds to a local 

minimum of S(A,QD). 

The action for configurations with more than one monopole is 

easily constructed in singular gauge. Space is divided into regions 

around the monopole cores and regions outside the cores. Outside the 

core regions the scalar fields point in the same direction over all 

of space and take an vacuum values, (Dk ® i = 0, V( ® i ) = 0), and 

f . ld b 1' (Gcihkarged = 0). The action is the only long range I.e s a~e a e 1.an, 

then 
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s 
N(N-1)/2 2 

+ ~ tr(Dk@ .) +V(@ .)} 
i=l l. l. 

(6.1) 

where Bk is the set of N-1 abelian magnetic fields. The superposition 

of Coulomb fields just gives the Coulomb interaction energies between 

the monopoles (plus approximately half the self energies of the 

monopoles), so 

S"' ~ M + l (4TI) 
n monopole · 2 e 

2 

n#n' 4n JR -R ,_I n n 

(6.2) 

The monopoles interact through the Coulomb potentials of N-1 abelian 

+ 
charges, where mn are N-1 component' root vectors of SU(N). (Also the 

monopole "mass", M is dimensionless in Euclidean 2 + 1 monopole' 

dimensions since e
2 

now. has dimensions of mass.) 

Polyakov3considers expanding the 2 + 1 dimensional functional 

integral-about configurations with an arbitrary number of monopoles 

and anti-monopol~s; in the limit of very·large separations, these 

configurations approach minima of the Euclidean action. This turns 

4TI 2 
out to be an expansion in powers of exp(- 2 ~E) and e /4n~. The 

e 
functional integral over all configurations, when approximated by this 

sum of configurations, corresponds to. the grand canonical partition 

function for a monopole -plasma. The grand canonical partition 

function for this monopole plasma can be re-expressed in terms of an 

effective generalized Sine-Gordon theory, 
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Z =f'VAV@e-S(A, @) 

-J{l(v~) 2 -"~ M2 ~ cos(4
TI ~-~)}d3R 

Jv;e 2 16n
2 1~1 e (6 .3) 

const. 

M_7/2 
·-w 4n 3 exp(- 2 ~E), (6.4) 
e e 

the coefficient of exp(- M 
1 

) arising from quantum fluctuations 
. monopo e 

around the monopole configurations. In this effective field theory, 

represents the N-1 component magnetic scalar potential; 

e 
±i~·lct> e represents the exponential of i times the interaction 

4n + ~ energy of a (anti) monopole of charge E!m at position Kin the 

presence of the potential of the other monopoles. If the interaction 
. 2 

term is expanded in powers of _e_ M2 = p exp (-M · ) 
32~4 monopole , the 

+ functional integral over $ is easily done; the kinetic term 

B; inserts Coulomb potentials between all pairs of ~'s, 

X 

4TI + + :t 
i- m $(R1)] e 1 

4n + + 

rJd
JR._ -Mmonopole ~ i E! ~-$(~)] 

x ••• x -~Pe + e 

._ ~ - l ~ (4TI)2 
oo -M N 2 i;l'j . e 
~ l <Jd3R monopole) ~ 

N=O Nl pe ~ 
4n liti""tj l­

(6.s) 



,, 
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The problem of static quark confinement is studied by inserting 

a Wilson loop, 

W(C) = tr P exp(ie ~ ~dxk), 
N C 

(6.6) 

into the vacuum. The 
-+- dx 

J~(x(s))•e ~ dsk ds, 

exponent can be re-expressed as i times 
1: dxk 

where e 2 dS represents the electric current 

of a fundamental representation quark charge propagating along'the 

path C, parameterized by a proper time ~. The exponent then represents 

the interaction action of an electric current interacting with a 

vector potential. If Ak is the vector potential from a monopole at 

R, its interaction with the electric current loop C is, 

... +:t-
e J ~.~ (x-K) ·dS 

as=c 2 e 4'!11~-R\3 x 

(6. 7) 

t The only components of 2 that contribute are in the N-1 abelian 

directions, so 

(6.8) 

where the ii. are the N-1 component weight vectors of the fundamental 
1 

representation. Now the expression (6.7) corresponds to the 

4'!1 ... interaction energy between a magnetic charge of strength ~ m located 

at R with the potential from a set of magnetic dipole sheets, the 
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... 
magnetic dipoles of strength e~i having a uniform density over the 

sheet bounded by the curve C of the Wilson loop. 

The expectation value of the Wilson loop in the original field 

theory then takes the.following form in the effective field theory, 

i~~d i~~d~ 
t e-K ~ l -S(A, @) C-K 1< 

< : Pe · >= -zfVAV@e r: Pe . 

3 1 -+- 2 e 2 2 
1 1 _..-fd R{-

2
('1¢) - - .. -

2 
M 1: 

-1:-JV¢e 16'!1 Jriil N-+- Z 
~ 

- 4'!1 ... ... ... :t-
l( cos[~ m•(cji + ~~JK))J}, (6.9) 

:t- e J 1 -+- + 
where again, ~ C(R) = 4'!1 as=e 'lJ_.. _..

1 
• dS; the sum over m is over all 

x-R _.. 
N(N-1)/2 positive adjoint representation roots, and the sum over ~ 

is over all N fundamental representation weights. -The Wilson loop 

inserted into the monopole plasma behaves like a sheet of magnetic 

dipoles, and produces at large distance from the sheet a: dipole 

magnetic field. The monopoles of the vacutim plasma, . however, are 

polarized by this dipole field and react to produce'.a dip'ole field to 

try to cancel the field from the sheet. The magnetic-potential is 

approximately determined fr<im the classical field-~quations, for each 

... 
~. 

2+ e 2 + 4'!1 ... ... ... _· .. 
-'l 4> +---:-M ~m sin-m•(¢ +11<1>) = 0. 

4'!1 lriil e C 
(6.10) 

In terms of the total potential of the monopole plasma plus the_ 

dipole· sheet, 

(6.11) 

this equation becomes 
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2++ 2 + + + -V x(R) + M L m sin m•x(R) 
liril 

With the ansatze of Wadia and Das, 

we have 

+ + 
X= JlX, 

2_x N 2 X -r 3 + -v 2 +2M sin 2 = 2~ f d~k·Vko (x-R) 
as=c 

(6.12) 

'(6.13) 

(6.14) 

The same equation is obtained for each t. For the loop C in the t-x 

plane, we consider the solution to this equation well inside the loop 

where X is approximately only a function of Y. The right hand side of 

this equation is-2~ o'(Y)9g(X,T), where e5 (X,T) is one if X and T 

are on the surface S, and zero otherwise. 

by Y and integrated from Y = - e to +e, we 

If Eq. (6.14) is multiplied 

obtain llil - .xJ::0 = 2~ ,· . 2 2. " 

the solution to this equation with this discontinuity is 

x_(Y) 
2 

4e (Y) 

_/[M lui 
-1 /2 ,., 

tan e (6.15) 

where e(Y) ={-i i ~ ~ From this potential and Eq. (6.11) _we obtain 

the total field, 

a <Y> y 

+ 
elx_ 

- 4~ ay (y) 

--1 Mjyj 
+ 2e M IN e Jl - { ::;- ----:=.----

~ 2 -2!I Mjyj 
1 + e 

(6.16) 

Far from the sheet the plasma can completely cancel the field from the 

sheet, although in a region of the thickness of the plasma screening 

•. 
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length, 1//¥ M, around the sheet, the field of the sheet is not 

completely canceled by the field of the plasma. This is because the 

monopoles that make up the dipole sheet have fundamental representation 

charge, while the monopoles of the vacuum have adjoint representation 

charge. There remains, then, across the sheet with the Wilson loop as 

boundary, magnetic flux with a thickness of the plasma screening length~ 

+ 
This is a y-component of magnetic field, By, which corresponds to the 

Ftx component of the field tensor. In Minkowski space-time, this 

corresponds -to an electric field in the x-direction: 

e (- l a a)+ 
4~ ax' - ay' - at X 

= (F F F '> + (- E E B) • yt' tx' ·xy y' x' (6.17), 

Thus on every time slice of the Minkowski space-time Wilson loop there 

is an electric flux tube, wfth the thickness of the plasma. screening 

length,· connecting the quark and anti-quark charges; the total electric 

flux is 

00 o-
f dy Ex(y) = ~ f dy _a_ +X + ~ f 
-oo 4~ o+ . ay 4~ 

a + 
dy- X ay 

+ 
- eJl. 

Returning to Eq. (6.9), with (6.11), (6.13) and (6.15), the leading 

35 
term ·'in the expectation value of the Wilson loop is then 

(6.18) . 



where 

,. 
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const. 
e 2 -+2 2 1 

2 j'N 2 
exp(- --2 4 ll fd R {2(17 t> - 2M cos t}) 

16TT 

e
2 

-+2 
const. exp(- --

2 
11 e: 

1
XT), 

4TT SO 

BM/¥ 2 

(6.19) 

(6.20) 

is the energy of the !-dimensional Sine-Gordon soliton .transverse to 

the Wilson loop, and 'for the fundamental representation of SU(N), 

-+2 N:...l 
\1 =2N (6.21) 

,. 
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* VII. ZN MAGNETIZATION AND DOMAINS IN SU(N) POLYAKOV MODELS. 

We previously argued abstractly from the 't Hoeft commutation 

relations that the SU(N) -+ U(l)N-l models are dual to the SU(N) 

Mandelstam-Nielsen-Olesen superconductor models. We now explicitly 

demonstrate how 't Hoeft's physical picture of the confining phase in 

2 + .1 dimensions, that is implied by the commutation relations, is 

realized in these models~ 

We have previously seen how to express <W(C)> in the effective 

field theory; we must now consider<M >. We will show that in 

Euclidean 2 + 1 dimensions, M(~) creates a monopole at the )-dimensional 

. -+* 4TT -+ -+ po1nt x , with magnetic flux E! 11, where 11 is a fundamental representation 

weight. Sirice the only topologically stable monopoles in this theory 

have adjoint representation flux, this fundamental representation 

monopole must carry a Dirac string. (Intuitively, one can think of the 

* Dirac string along C as the remnant of the world line of the vortex 

-+* of the superconducting phase that comes· from t = - oo and ends at x from 

N-1 therethe flux can spread since the U{l) symmetry is everywhere 

restored in the confining phase.) 

M acts on ~ and @ by gauge transforming them. Acting on the 

fields which dominated the semiclassical approximation to the functional 

integral, configurations with arbitrary numbers of monopoles and anti-

monopoles· in singular gauge, 

(7.1a) 

(7.lb) 
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the gauge transformation-~ can also b~ chosen in the abelian d~rections, 

+-+-+* -+ 
exp[ia(x-x )•H]. 

Therefore, 

-+ -+ -+* 
where a = a•H. For x at the origin of coordinates, a particular 

representation for ~ is 

+ 
a 

(7 .2) 

(7.3a) 

(7 .3b) 

(7.4) 

where :ji is a weight .of the fundamental representation of SU(N), and ~ 

_is the azimuthal angle in spherical polar coordinates. The flux of 

this configuration through a c·urve C surrounding t' in the x-y plane 

is., 

(7 .5) 

Therefore, this singular gauge transformation has created fundamental 

representation flux, 4rr + +* e \1, at.x 

Now consider the correlation +* t + * function <M(x2)M (x1 ) >. 
+* and x2 are Minkowski space-time points seperated only in time, then 

the gauge transformation created by the Heisenberg representation 

t * * operator M at ~l is propagated in time to ~2 where it is undone. 

+* +* ni: Euclidean space-time, this creates a string from x
1 

to Jt2 around 
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Because this gauge transformation is 

smooth over all of space except along the string, the magnetic flux 

arises from a non-zero magnetic field only along the sf:dng. 

The Euclidean act~on for a monopole configuration A,~after the 

action of this gauge transformation is 

S(A, @) 

+ ~ + Jd3 1 " + m. X'V • v X A i , 
. e 4niR-~I . s ng 

(7.6) 

where R is the position of the monopole, and 

+ 1 + + 41T +J + 3 .... + 
'V x A . = - 'V x V( a

1
-.<l2) = - \1 dy o (x-y), 

s1ng e . e c* 
(7. 7) 

* +* +* where C runs from x
1 

to x
2 

We have neglected the constant action of 

the singular string, and made the approximation that the monopole 

is much farther than 1/Mw from the string. The interaction term is 

'4 2 3 1 -+3++ 
(.err) ~.ji Jd x'V ~ • f dye (x-y) 

. 4'!TIK-xl c* 

(7 .8) 

Retracing the derivation of the effective field theory, it follows 

that this correlation function can be expressed, 

+* t * 1 lf + < M(x )M (x ) > = - :E - V~ 
2 1 N + Z 

\1 

. 2 

f 3 1 -+ 2 e 2 4rr-+ + 
- d R{-2 ('V~) - --2 M :E COS(-111·~)} 

e 1+1 e · 16rr m 

(7~9) 
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If this functional integral is dominated by the classical 

field, ; satisfies 

411 + 3 + +* 3 + +* 
i-- ~(o (R-x) - o (R-x )) 

e 1 2 (7 ·10) 

We are calculating the potential of a momopole- anti-monopole pair 

in a momopole·plasma; the physics suggests linearization is legitimate 

+ 411+ 
so we have, for X = e~' 

+ + 

2++ 2_+++:~-
-'V X (R) + M~m(m")( (K)) 

m 

For x = ~x. we have 

In this approximation, then, the correlation function becomes, 

(7.11) 

(7.12) 

(7 .13) 

Due to the screening of the source monopoles by the vacuum monopo-le 

plasma, we have 

(7.14) 
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Therefore, the first ingredient of 't Hoeft's physical picture of 

confinement in 2 + !,dimensions, that there is a magnetization, 

< M >1- 0, is explicitly realized in our generalized Polyakov 

confinement models. We will show below how a domain of the effective 

magnetic system is created by a Wilson loop·. We note in passing that 

<+*t+*> since -~n M(x2)M (x1) is physically the interaction energy 

between a mortop¢le and anti-monopole, in the superconducting phase 

· 411+ 
where there is a magnetic vortex of flux e~ the interaction energy 

of a fundamental representation monopole and anti-monopole pair is 

-+-* -+* 
proportional to \x1-x2 j, so 

(7 .15) 

Thus< M>=· 0 in the superconducting phase, reflecting the confinement 

of fundamental represention monopoles. 

+* 
We next consider the important correlation functio~<M(x )W(C) > *" 

This can be expressed in the effective field theory, 

+* > < M(x )W(C) .. * 
c 

1 2 2 2 411 + +. 
-(V't) - _e_ M ~cos -- m·(~+~4> ) } 
2 16l m e C 

" sing 411+~+ * + +* ) 

c 

ie)l' A k d~ i --w\'l>(x )+~4> (x ) 
xe c e e e (7 .16) 

* where the curve C now comes from infinity and ends at the fundamental 

· -+'< sing . · 
representation monopole at x -. - Ak is the addition to the vector 

-+'< potential from the singular gauge transformation generated by M(x ), 
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¢c A_sing dx. ~ dx .!. a sing 
-K K C k e kcx 

471..,. ..,. f ..,. f + 3 ..,. ..,. 
=-Jl'•Jl· dS • ;,.dyo (x-y). 

e ilS=C .x C 
(7.17) 

There are two kinds of contributions .from this term which arise from 

re-writing it as 

- f dS ·V 
ClS=C X X 

+ 1 ' f dy•V --] 
c* Y 471 llf-Y"I 

(7 .18) 

When c* is a closed curve, the first term in square brackets is the 

linking number
2
if the curves C and c*; it is a gauge invariant 

measure of the number of times the singular string pieces the sheet 

spanned by the Wilson loop. The second term gives the interaction 

energy of the Wilson loop and the string. When the string from 

+* infinity ends on-a monopole at x , this term is just 

(7 .19) 

the interaction energy of a monopole at ~* with the dipole potential 

* of the sheet bounded by the Wilson loop; the string along C does 

not contribute to the interaction energy with the Wilson loop. 

This effective field theory representation for the correlation 

. +* > function <M(x )W(C) * physically corresponds to a fundamental 
c 

representation magnetic dipole sheet with.boundary C in an adjoint 

representation monopole plasma, interacting with a string of 

.... 
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fundamental representation magnetic flux along c* that ends at a 

· . ..,.* +* +* * 
monopole at x ; - tn <M(x )W(C)> * = F(x ,C ;C) is the interaction 

c 
free energy of this system. The classical equations"for the vacuum 

monopole potentials due to these extra sources are, 

2-t e - 2 + 471 + -t + 471+ 3 +* * 
-V <1> +- M l: m sin- m•(<i> +Jl<ll)=-Jl'o (x- K) 471 m e e (7.20) 

or for the total potential of the system, 

(7. 21) 

2-+ ..,. 2 "' +m + +(+ - v x(R) + M = sin m•x R) 

(7 .22) 

While we have not salved these equations, we can extract the relevant 

behavior from physical arguments. We have previously seen that for 

<M >and <w(c) > seperately, the potential falls off exponentially with 

~ * ~ scale-1/M. For lx I >>1/M and IKI >> 1/M, that is, for lx I far from 

the dipole sheet,· the potential far from both is just the superposition 

of potentials, 

+* + 
X (R) 

- - ~ MIYI -1-tiR-x*l + -.:.1 2 +. e 
4Jl e: (Y)tan e. +ll' ~ 

IR-x I 
(7.23) 

where R= (X, Y, Z). The Euclidean correlation function then 

factorizes, 

-+" ' * <M(x )W(C) >-<M(~ )> <W(C)> • (7 .24) 
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For our analysis, though, we need to understand the behavior of 

+* this correlation function as x passes through the sheet of the loop 

C. We therefore need to consider the region where the source monopole 

is close to the sheet. Considering the screened monopole close to 

the screened dipole sheet, we must make the perhaps crude approximation 

that the source monopole does not affect· the potential of the screened 

dipole sheet. In this approximation the contribution to the correlation 

function from the interaction energy of the source monopole and the 

screened sheet is obtained by substituting the potential x of Eq. (6.15), 

the solution to Eq. (6.14), into (refer to Eq. (7.16)) 

i ; "t· . a<~*) +"tv~*» 
e 

(7.25) 

We then .have, using 

1 1 
- 2N + 2 '\j' (7.26) 

and Eqs. (6.15), and (7.16)-(7.18), · 

< M(~*)W(C) > * 1M * . c - 'tMiy I • 
. -i4 * · .. ·.::r. 

::: < M> <W(C) > exp( N e: (y. )tan · e 

-i4 tF. + (~-'t) + 
X exp(N ~ dx• ~* r:.....£..1 xdy) (7 .27) 

-i.:!!.. i.:!!.. 
N N The first exponential term jumps from e to e as y* crosses 

the flux tube from 0+ to 0-. Physically this discontinuity is due 

~· 
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to the source monopole having an attractive interaction with the 

dipole sheet on one side, and a repulsive interaction on the other 

side. From this result we obtain the important relations, 

and 

.271 
+ . l.N 

< M(O )W(C)>c* = < M(O-)W('C) > e 
c*' 

(7 .28a) 

(7. 28b) 

( * * +* where see Fig. (5)) C comes from y =co to x on the + side of the 

* +* * sheet spanned by C, and C ' comes to x from y - co on the - side 

of the sheet; in the last expression c* has crossed the sheet. The 

first of these equations shows there is a dynamical discontinuity 
i 271 +* 

of e 1r as x crosses the flux tube, but without a string crossing the 

flux tube. The second equation shows the dynamical discontinuity is 

compensated by a kinematic discontinuity as the string also crosses 

the flux tube; There is a branch cut extending, for example, between 

the two branch.points where the space-time Wilson loop pierces the 

* plane of a fixed time slice. For the contour C making a complete 

circuit around a 
. 271 

branch point there is a kinimatic discontinuity of 

-l.N 
e coming ( .. c sing k) from the exp J.eYJ A.- . dx term. 

c -"kc* 
This kinimatic singularity 

compensates the dynamical one due to the electric flux tube so that 

in the confining phase<M>can approach the same constant far from the 

9 
sheet in all spacial directions. Thus the same result is obtained 

as~* traverses either path shown in Fig. (6). 

From this Euclidean result we now show that in Minkowski space-

time, for a spacial Wilson loop, there is a discontinuity as M crosses. 
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the electric vortex along the curve C of the Wilson loop. The behavior 

* of the Euclidean .correlation function we have just obtained as y is 

varied, corresponding to M moving.; through the sheet of the Wilson 

loop, is.unchanged, by Euclidean invariance, if this picture is 

' 0 
rotated by 90 around the x axis. C is now a spacial loop, and M 

moves through the plane of the loop as time is varied. If M is infini-

tesimally below the loop, with its string below the loop, then on 

analytically continuing .to Minkowski space-time the Heisenberg operators 

should be ordered with M to the right of W. Similarly, if M is 

infinitesimally above the loop with its string above the loop, in the 

continuation the operators should be ordered with M to the left of W. 
211 

From Eq. (7.28a) there is a discontinuity of ei·~. confirming the 

operator commutation relations. 

This discontinuity in Euclidean space-time is due to the discon-

tinuity of the potential for the screened dipole sheet; in Minkowski 

space-time, from Eq. (6.17), this corresponds .to a discontinuity 

across an electric flux sheet. Thus the discontinuity in the Minkowski 

space-time operator connnutation relations is a. discontinuity across 

an electric vortex. Combined with our explicitdemonstration that 

<M>;I 0, we conclude that the electric vortex is a Bloch wall between 
. 21T. . 

two domains of magnetization,< M > and ei T <M>, A transition 

from the Euclidean space-time correlation function <M(1i*)W(C) > c*, to 

the Minkowski space-time event of the creation, propogation,and 

annhilation of a spacial electric flux loop, seperating a magnetic 

bubble domain, can be pictured by folding up the.Wilson loop as shown 

in Fig. (7). 

,, .-. 

VIII. BARYONS 

We can now apply 't Hoeft's physical picture of confinement to 

quide our understanding of baryons. In this section we specialize to 

SU(3). The baryonic analog of themesonic Wiison loop oriented in 

24 space-time is 

where c1 , c2 , and c3 are seperate curves that begin and end at the 

same end points ~ and -;.. In Minkowski space-time, this operator 

creates a sum over-permutations of color singlet combinations of 

+ three fundamental representation quarks· at x which propogate along 

would lines c1 , c2 , and c3 , and annhilate at y. For the paths shown 

in Fig. (8), 

(8.2) 

where V is the interaction energy of three static quarks sources at 

+ + + 
the two dimensional spacial positions x

1
, x

2
, and x

3
• 

Since SU(3) is spontaneously broken in our model to U(l) x U(l), 

the only long range fields are abelian. The contribution to the 

baryon loop from these long range fields simplifies to 

(8.3) 
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_,. 
where.the \.li are the two component weight vectors of the fundamental 

representation of SU(3). Because of this abelianization, the exponents 

can be added and re-arranged. 
. -+ + + a 
Using \.1 1 + \.1 2 + \.1 3 = 0 (since .tr A = 0), 

we can make the replacements 

(8.4a) 

(8.4b) 

further, using 

- J i\d~ 
c 

(8.5) 

where -C means· the line integral is takert along C in the opposite 

direction, we have 

(8.6) 

From this we obtain a factorized expression for B, 

=! L W (C -C )W (C 2-c3
)W l (c

3
-c

1
), 

6 perms <t,O) 1 2 (O _1_) (O,- -) . 
213 213 (8. 7) 

-46-

where, for example,·w 1 (c
1

- c2) is an abeiian Wilson loop along 
(2,0) 1 

the closed curve c1- c2 with charge 2 e'in the first abelian direction, 

and the sum over permutations puts the three different ·abelian charges 

on the three separate Wilson loops.· Therefore, in this approximation 

in which all separations are much larger than 1/~, the baryon 

operator has factorized into a product of three abelian Wilson loops. 

Let us first'consider the Coulomb fields in this SU(3) + U(l) x U(l) 

model. See Fig. (9). We have a super position of two 6oulomb fields: 

e the first is attractive ~between two quarks of charges ±2; the second 

is repulsive between those quarks which have the same charge e/213, 

and attractive with tne third quark of charge ~e/13. The sum of the 

two Coulomb interactions gives equally strong attractive interactions 

between all three quarks. 

When the contribution of the vacuum monopoles is turned on, the 

minimum energy field configurations will no longer be Coulomb; we will 

show the minimum energy field configuration will have these field lines 

collapsed into the "Y" configuration of Fig. lO(a), as opposed to, for 

example, the "V" configuration of Fig. lO(b). 

·The effects of the vacuum monopoles are described by the effective 

field theory. The baryon loop is 

< B(C1 , c2 , c3)>= t! L ifv; exp -f d
3
x {t (4)

2 

perms 

_,. 
\.13 

+ 2 ~c -c )}. 
3 1 

(8.8) 
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The adjoint representation monopoles of the vacuum pla_sma, which 

in general carry fields in both abelian directions, are interacting 

with the potential fro~ t~ree 
\l -IJ 

abelian charge (since ~ = 

dipole 

1 

sheets, each 
-+-

with a single 

<z· o> 
\13 

and 2 = 1 (0, - -)). The 
2/3 

difference of charge on two adjacent sheets gives the fundamental 

representation quark charges, (see Fig. 11)), 

1 1 c2, o> - .<o, - -> 
213 

1 1 (-,-) 2 
213' 

1 1 
(- -. -) 2 213 

1 1 1 (0, - --=--) - (0, --=--)= (0, - - ) 
213 213 13 

(8.9) 

The positions of the sheets bounded by the Wilson loops are determined 

by minimizing the total energy; we must determine the potential from 

the product of the three dipole sheets immersed in the monopole 

plasma. 

Consider the-energy if the sheets are chosen in the "Y" configu.o; 

ration of Fig. lO(a). We can then consider the baryon loop to be a 

product of ordinary meson Wilson loops c1- C, c2 - C, and c3- C, 

where C is the curve "going down" in the center of the "Y". From our 

previous analysis of meson loops, demonstrating that an. electric 

* vortex is a Bloch wall between z3 domains, we see that in the limit 

* of infinte separation of the quarks, the baryonic vortices are z3 

domain·walls, as shown in Fig. 2. 

If we consider the configuration where the sheets are "delaminated", 

as in Fig. lO(b) or Fig. 11, then the energy of such a "'J" 
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configuration must be larger than that of the "Y" configuration. We 

1 1 1 1 1 
could imagine a (2, 0) flux tube between the (2, --=--) and (- Z' ---) 

. 213 213 
1 1 1 quarks, and (0, ± --.-) flux tubes be~ween the (± 2• ---) and 

213 213 
1 

(O, - .:::> quarks. We now consider the effect of moving the sheets 
13. 

bounded by the Wilson loops For simplicity, let us first consider 

delaminating the sheets in the meson case. If we redefine variables 

in the effective field thec;n:y for <W(C) >, Eq. (6. 9), using instead 

of the monopole potential the ··total potential, 

(8.10) 

then -the Euclidean action becomes 

(8.11) 

The .. next to last term is the Coulomb energy· of the dipole field 

times the time. The last term in Eq. (8.11) represents the interaction 

of the string field, that is, the total field of the dipole sheet plus 

plasma, Vx, with the Coulomb field from the dipole sheet, V~C' which 

can be re-expresse·d, 

.. 
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e 2-+-2 
-c-..,---> )l I ds·vx; 411 as=c 

(8.12) 

This is the magnetic field of the flux tube integrated over the 

surface S bounded by C. If this surfaceS = s1 is changed to s2 , 

then using 

I dVV•(Vx), 
av=s1-s2 

there is an extra term in (8.13), (using Eq. 6.17), 

corresponding-to the net magnetic charge within the volume V 

(8.13) 

(8.14) 

between the surfaces s
1 

and s2 • Since the plasma is polarized by 

the dipole sheets, we expect a contribution proportional to the 

mo.nopole density times the volume. From Eq. (6.16) for BY, for 

small deformations, we have the extra contribution to the Euclidean 

action·, 

2 
~ -+-2 !'! M2V 

2 )l 2 • 
411 

(8,15) 

Therefore, there is a "harmonic" restoring force trying to prevent 

" 
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the sheets .from delaminating. Such excitations of the sheets may be 

phenom~nologically relevant for mesonic heavy quark systems. 

: Returning to the baryon case, we therefore expect an additional 

eneX:gy for the "V" configuration proportional to the area of the 

triangle as opposed to the sum of . the lengths of the .arms of the ''Y". 
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IX. DUAL JOSEPHSON JUNCTION 

While it is easy to demonstrate confinement in these models, it 

is less easy to understand it. We now consider how a magnetic 

screening mechanism in Euclidean space-time is related to a dual 

~eissner effect in Minkowski space-time. Since monopoles play a 

.crucial role in Euclidean space-time, and since they are instantons 

of the 2 + 1 dimensional theory, they therefore correspond to 

,tunneling .eve~ts· which will dominate the Minkowski space-time 

physics. We. confine our discussion to SU(2) . 

. The nature of the vacuum tunneling·can be analyzed from the 

At 0 gauge monopole; as t + ± "'\ this configuration should 

approach the degenerate vacuua that are being connected by the 

tunneling event. For the SU(2) monopole, the gauge transformation 

23 
to At = 0 gauge is . 

0 (9.1) 

with ... 
···,_. n(x). 

.• A T ( ) l.<f>•2 w r,t 
e (9.2) 

where r;<j> are polar coordinates in the x-y plane, and 

w(r, t) (tan-1 ~ + ~)- LrrK(r,t') dt', 
r 2 r2 + t'2 

(9.3) 

where K is the function in the 't Hooft-Polyakov ansatze for the 

monopole vector potential, Eq. (5.10a). The integral term vanishes 

.. 
>' 
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-M~l 
like e for r >> 1/MW. Asymptotically, 

since 

'-1 t = tan -
r 

* 

{ 
* (n 

* (n 

1T * .... + 
i 2 (n + l)cp•T, t ... 00 

11 * A ... i 2 n <j>•T t + - co 

1 
- 2)11, t ... -

1 + 2>11, t ... 00 

(9.4) 

(9.5) 

where n is an integer. n The x and y components of A approach pure 

gauges 

(9.6) 

and the scalar field approaches the perturbative vacuum, 

(9. 7) 

The magnetic flux topological charge associated with rr
2
(sU(2)/U(l)) 

can· be expressed in terms of topological charges associated with 

I]. (U(l)); in At = 0 gauge we have 

... ... 
= . ~ dx <® •A ) 

C(t=+oo) . a a 
~ dx <® •A >' 

C(t=-oo) a . a 

- .. ), (9.8) 



-53-

where C is a contour along the boundary of the x-y plane. For 

the gauge transformation of Eqs. (9.2) - (9.4), the pure gauge 

vacuua (Eq, (9.6)) at .t = ± can have non zero topological charge; 

* * * * if n (t = - oo) = n then n (t = + oo) = n + 1. Therefore, there are 

an infinate -number of vacuua with non zero topological charge.. Since 

the topological charge corresponds to magnetic charge, we have a 

picture of the tunneling process as connected two vortex-like 

vacuua differing by 4rr of magnetic charge. Also, while the topological 
e 

charge is globally defined, the tunneling event is local in space-

time. These points will be important for our following analysis. 

The set of all time independent gauge transformations breaks up 

into homotopy classes (all gauge transformations in a given class can 

be transformed into one another by conjugation with gauge trans-
_,. _,. 

formation of the form exp(ia(x)T
3
), for which a(x) ~a). The classes 

1~1->-oo 
correspond to elements of rr1 (U(l)) ~ Z which maps the boundary of 

2-dimensional space onto_ the U(l) subgroup of SU(2) associated with 

the direction of the unbroken gauge symmetry. 

of the form 

XT -yT * 
( Y x )n 

r-:;-;;­
{ x'"+y~ 

Gauge transformations 

(9.10) 

characterize the n*'th class. The change in homotopy class associated 

4rr * with this transformation charges the abelian magnetic flux by E! n 

This charge in flux occu~s locally, 

1 ® . (D. ® X Dk ® ) l e . J 

(9 .11) 

,, ., 
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The Hamiltonian, which is invariant under this gauge transformation, 

is therefore periodic in the abelian magnetic field! (It is in 

d . 24 ) this sense that this theory is perio ic and compact QED. 

Because of this periodicity of H in B, we consider a canonical 

formulation. -of the theory in which B (i) are canonical coordinates (for 

the charged gauge fields, the transverse vector potenials are 

canonical coordinates, as usual). 
n* The unitary transformation T 

associated with nn* acts on the wavefunctional by translating the 

abelian magnetic field (we suppress writing the other canonical 

coordinates), 

n* + ~ T (R)lp[B (x)] 
->- 4rr * 2 ->-->-

lji[B(x) + E! n cS (x-R)]. (9.12) 

Since [T, H) = 0, we must simultaneously diagonalize T and H (as in 

the Bloch wave problem of an electron in a periodic crystal). Consider, 

then, the wavefunctional, 

(9.13) 

Under the action of T, 

(9.14) 

where exp i 4rr ~(R) is the eigenfunction of the unitary operator, 
e 

T(R). This wavefunctional can also be expressed as 

J 
2 _,. _,. 

ei d xB(x)$(x) ijl[B), (9.15) 
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which behaves correctly under the action. of T for ~ a periodic 

functional of B. This form of the wavefunctional implies that 

~ and B are canonically conjugate, 

(9.16) 

The abelian magnetic and .transverse electric fields can be express·ed 

27 
in terms of ~. 

_E_t 
B - at ' (9.17a) 

(9.17b) 

. (9.17c) 

which are the dual of the relations between the fields and the 

ordinary vector potential. 

Instead of constructing a trial variational wavefunctional, 

we will physically motivate an approximation to the ground state 

energy~ Consider the matrix elements of H with the wavefunctional, 

(9.18) 

where the dots refer to the other canonical coordinates. There are 

* tunneling terms that change n , and terms that do not. If we consider 
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* * only tunneling between nearest neighbor vacuua, n ~ n ± 1, then, 

using simplified notation where 

with 

* ~ 411 * 2 ~ :i-ln > = W[B(x) +--no (x-R)j, e 
we have 

I I > f 2 e2 
2 411 + ) <~ H.~ · = d x(e: - -- M cos ---' ~(x) ; 

l611 2 e 

here e: is the energy density in each homotopy sector, and 

* *... 2 2 < n ± 11 H (x) In .> " -~ M , 
. . 1611 

. (9.19) 

(9.20) 

(9.21) 

(9. 22) 

(9 .23) 

is the tunneling amplitude which can be computed either from the 

33 Euclidean functional integral, or using a functional WKB like 

approximation. 25 Apart from their contribution to the tunneling 

amplitude, the only contribution of the heavy charged vector ~ields 

and heavy neutral· scalar field to the long distance effective 

Hamiltonian is vacuum fluctuation energy, and this will be subtracted 

out. The dominant non tunneling contribution to thelong distance 

effective Hamiltonian is just the energy of the long range· abelian 

fields. We therefore consider the energy functional 

2 1 ·2 1 ""' 
2 

f d { ( \ +'- (~) 
X l e:ij 'lj ~~ 2 a t 

2 411 
M cos~} (9.24) 
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Static quark sources impose an external electric field o.n this 

system which can affect the ~ distrib~tion. For static quark 

sources of abelian charge ±I (corresponding to fundamental repre­

sentation quarks) at x = ± ~· the energy functional becomes 

E(~) 

1 _Ef 2 e 2 2 411 +- ( ) - -- M cos(-(~+<!>))}, 
2 at 161i2 e (9.25) 

·where 

(9.26) 

is the potential from two steady currents. The equation for ~ that 

minimizestheenergy in the presence of the quark sources can be 

written in the form, 

aB 
2 

2 . 411 - + 11 x E = _e_ M sm- (~ + <!>), 
at 1611 2 e 

(9.27) 

where we have used Eq. (9.17) for E and B in terms of ~· From this 

equation, (which we could have written by analytically continuing the 

Minkowski space-time Equation (6.10) using Eq. (6.17)), the 

physics can be understood. The right hand side represents a 

magnetic current. From our analysis of the topological charge we 

had a picture of the tunneling process as connecting two vortex 

like vacuua differing by 411 of magnetic charge. Therefore 
e 

associated with the tunneling is a magnetic current. The tunneling 

., 
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current depends on the. external potential <1>. Since the tunneling 

process is a magnetic current, it induces electric field loops in 

the plane. The term in the energy density associated with coupling 

the degenerate states through tunneling, -
e 2 2 411 lowers -.-2 M cos -e~· 

1611 
the energy of the system, .while the fields induced by the tunneling 

process increase the energy of the system. The external Coulomb field 

induces the tunneling currents and the associated fields. The 

system must minimize its total energy by balancing these contributions. 

It can do at by having the electric loops from the tunneling processes 

cancel the external Coulomb electric field almost everywhere, leaving 

an electric flux tube. The tunneling current distribution, 

e
2 

2 . -1 -MIYI J = -·-- M sin(4E(y)tan e ), 
16i 

(9.28) 

goes up on one side of the flux tube and down on the other, vanishing 

in the middle of the flux tube. 

The physics of the electric flux tube is dual to the physics of 

a magnetic flux tube in the insulating layer of a Josephson junction.
6 

Consider a 2:-diniensional plane (x-y plane) which is to be thought of 

34 . 
as a thin insulating layer. Above and below this insulating plane 

consider superconducting materials. If a monopole- anti-monopole 

pair is placed in the insulating plane, we expect the magnetic field 

to be essentially confined to the insulating. plane since the magnetic 

field can not penetrate the superconductors above and below the plane. 

We might therefore expect a 2-dimensional Coulomb field confined to 

the insulating plane. However Cooper pairs can tunnel from one 

superconductor through the plane to the other superconductor.(Because 
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. each superconductor i~. a condensate of Cooper pairs, states formed 

by adding or subtracting Cooper pairs are degenerate in energy.) The 

tunneling of a Cooper pair_is a transfer of electric charge, that is, 

an electric current through the insulating_p~ane. Such a current 

induces magnetic looj:>S inthe.insulating plane. The system 

minimizes its tota,l energy by. having these tunneling processes 

correlated so that,the magnetic loops induced by the tunneling 

processes cancel the Coulomb magnetic field except for a magnetic 

flux tube. · 

In the Josephson junction case, ~ is interpreted as the phase 

difference of the wavefunctions of the two superconductors. One 

·first thinks in a non gauge invariant way in which each superconductor 

is :i.n one of its degenerate vacuua associated with the spontaneous 

symmetry breaking ground state, the different vacuua corresponding 

to different values of the-phase of the wavefunction. The two 

superconductors can have different directions of spontaneous symmetry 

breaking; tunneling is a manifestion of this phase difference, the 

current being proportional to sin~(x,y). To make the analysis 

gauge invariant, the phase difference ~must be replaced by 

~ + ~ -e J A dx11 , 
- ll 

(9.29) 

where the line integral is ·taken from_one superconductor through 

the insulator to _the corresponding point in the other superconductor. 

This constraint of gauge invariance implies relations between 

6 
changes in the phase difference and fields, 

E z 

B 
X 

Ji o:-l! 
y ax 
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(9.30) 

These relations are dual to the equations for the Polyakov model, 

as was first recognized by Hosatani. 

.. 
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X. FINAL REMAIU<S 

The 't Hooft commutation relations in 2 + 1 dimensions imply 

that confinement arrises from<M >I 0. In the superconducting 

phase M creates a magnetic vortex soliton excitation in the 2-

dimensional plane of space, in Hinkowski .space-time; in Euclidean 

space-time the world line of this soliton is a magnetic vortex line. 

The transition to the confining phase is then characterized by a 

* vortex condensate; or in Euclidean space-time a "ZN fluxon spagetti 

vacuum." Such a spagetti vacuum restores the abelian gauge symmetry, 

24 
as was shown explicitly by Samuel. However, such a spagetti vacuum 

does not, in and of itself, give confinement. 

N-1 
Our analysis of the vacuum of the SU(N) + U(l) models 

suggests there should still be tunneling processes even in the 

N-1 - h superconducting phase where U(l) is spontaneously broken. T e 

monopole instatons in the superconducting phase will no longer 

interact like a plasma, though. Diamagnetic supercurrents will 

screen the monopole's abelian field into flux tubes; the monopole 

instantons are "confined" by vortices in the superconducting 

phase. (Of course an adjoint representation 't Hooft loop, does 

not have an. area law since dymanical adjoint representation 

monopole excitations can screen it. This is why an adjoint repre-

sentation magnetic vortex is unstable,) A fundamental representation 

Wilson loop in the superconducting phase is screened by the adjoint 

representation electric charges of the vacuum condensate. The vacuum 

monopoles can now only interact with the Wilson loop if they are 

within this screening length. They no longer interact with the 
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Wilson loop as if the sheet bounded by C was a magneitc dipole 

sheet. The only effects of the vacuum tunneling in the supercon-

ducting phase, then, are possibly very small contributions to 

coupling and mass renormalization. When the abelian gauge 

symmetry is restored by the spagetti vacuum, however, the 

monopoles are liberated. It is the correlations of the monopole 

instanton plasma that confines quarks. 

The SU(N) + U(l)N-l models in 2 + 1 dimensions have the 

confinement features we expect of the pure SU{N) gauge theories 

without the additional scalar fields. These models are explicit-

in that there is a well defined justifiable semiclassical approximation 

method; all connections are systematically calculable, and for 

app-ropriate ranges of the parameters can be shown (in principle) 

to be small. 

't Hooft8 has_ recently shown that a unitary like gauge can be 

chosen for the pure SU(N) Yang-Mills theory which picks out as the 

relevant degrees of freedom in 2 + 1 dimensions exactly those of 

the models we have considered, N-1 abelian gauge fields interacting 

with monopoles. The monopoles arise due to points in space where 

this gauge fixing perscription is singular. Just selecting a set 

of dynamical variables does not insure the dynamics is simple in 

terms of these variab.les, though. Because of i:he difficulty of 

trying to understand asympto_tic freedom in terms of these variables, 

't Hooft also considers intermediate gauges that interpolate 

between this unitary gauge, appropriate for the long distance 

physics, and ordinary renormalizable gauges appropriate for the 

short distance physics. Such gauges, though, introduce additional 
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"phantom soliton" degrees of freedom that would play an important 

role in the transition region. Our models with explicit scalar 

fields, h~wever, suggest that confinement may be easily understood in 

terms of the degrees of freedom of 't Hoeft's unitary gauge .. We there­

fore expect these models may be good effective field theories of the 

long distance physics of the pure gauge theory, and thus offer a 

good description of the physics of confinement in 2 + 1 dimensions. 

t. 
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FIGURE CAPTIONS 

* Fig. 1. Magnetic ZN domains with Bloch wall electric vortex along the 

curve C of the Wilson loop. 

* Fig. 2 .. z
3 

domains with electric vortex Bloch walls in a baryonic 

configuration. 

Fig. 3. SU(3) weight diagram for (anti) fundamental and adjoint 

representations. 

Fig. 4. Sheet of discontinuities, across which n jumps by e 

• 211 
1-

N 

* bounded by a magnetic vortex loop along the curve C 

of the 't Hooft loop. A Wilson loop on a Euclidean time 

slice measures the magnetic flux through C. 

* *' Fig. 5. Dirac strings C and C · on a Euclidean time slice through 

a Wilson loop C. 

Fig. 6. Contours of Dirac strings on a Euclidean time slice through a 

Wilson loop C. A branch cut extends between the branch points 

where C pierces the plane of the slice·. The discontinuity 

across the branch cut is compensated, for the contour at left, 

by the physical discontinuity across the electric flux tube. 

Fig. 7. Folding up Euclidean Wilson loop and continuing to 

Minkowski space-time. In top figure there is a physical 

discontinuity across the sheet of the Euclidean Wilson loop 

(c.f. Eq. 7.28a); in botton figure the sheet of the former 

Wilson loop forms a surface of electric flux between magnetic 

domains. In Minkowski space-time, the time evolution of a 

spacial Wilson loop creates a magnetic bubble domain. 

Fig. 8. Baryon loop. In Minkowski space-time three fundamental 

representation quarks are created, propagate in time at a 

fixed spacial separation (along world lines c1 , c2 , c3), and 

later annhilate. 
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Fig. 9. Superposition of independent Coulomb fields of U(l) x U(l) 

gauge fields between three fundamental representation quark 

charges. 

Fig. 10. Possible configurations for the collapse of Coulomb fields 

into strings due to vacuum monopoles. 

Fig. 11. Cross sectional view of sheets of three abelian Wilson 

loops. 
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