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ABSTRACT
. The ‘dual to Mandelstam's SU(N) models of magnetic confinement,

which explicitly realize the superconducting phase of the SU(N) gauge
theory, are constructed and shown to explicitly realize 't Hooft's

physical picture of the confining phase in 2 + 1 dimensions, in which

*

electric vortices are Bloch walls between-ZN

magnetic domains. These
models generalize:Polyakov's.SU(2) > ﬁ(l) compact QED model to

SU(N) - U(l)N-lr These models have also been considered by Wadia
and Das. .Static baryons in SU(3) are studied. A Hamiltonian
analysis of the physics of confinement in these models is used to
-ellucidate the beautiful correspondence of Hosatani, that the

electric vortex in the Polyakov model is related to the naive dual

of a magnetic vortex in the insulating layer of a Josephson junction.

‘This work.was supported By the Director, Office of Energy
‘Research, Office of High Energy and Nuclear Physics,
Division of High Energy Physics of the U.S. Department

of Energy under Contract DE~AC03-76SF00098.
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I. TINTRODUCTION

There exist models of the superconducting phase of SU(N) gauge
theories,1 These models have magnetic vortex gkéitations that can
confine magnetic.charge sources in baryon as:ﬁell ﬁs meson like
configurations. Ordinary h;drons; howeverg.aré‘cOﬁfined states of
electric charges. It is therefore necessary to.dévelop models of
dual vortices. A precise meaning to this‘dpaiity follows frpm

2 . . ) .
't Hooft's” commutation relations. These commutation relations follow

-from theiglobal topology of the gauge group. As Ward identities,

which are relations between Green's functions {fbllowing from the
infinitesimal local gauge invariance, play an. important role in
analyzing the short distance behavior of the;gauge theory, the
expectation values of the 't Hooft.commutation relations play an
important role in analyzing the long distgnce $ehavior of the gauge
theory. In 2 + 1 dimensions, these relations will directly imﬁly

how to go from'models of magnetic vortices to. models of electric

vortices.

»28

.Polyakov3 had considered an SU(Z):A U(1) ‘gauge model in

2 + 1 dimensions to study the effects of'iﬁ;:Zéfdns;he found that
instantons could give confinement in thiSjmédéi}: We will argue that
the 't Hooft commutation relations impieroiﬁégév?s model is the dual

of the SU(2) Nei‘lsen—oleseﬁ4 model ofbmagneticfﬁbrtices.-'Previously,

Hosotam'.5 had made tHe beautiful observation tﬁatzthe.equations of

. .the Polyakov model are naively dual (E - B, B.» - E) to the equations

of the Josephson junction.6 The 't Hooft duality in 2 + 1

 dimensions is therefore nontrivial; the electric vortex in

the confining phase is not the naive dual qf a‘magenpic



vortex in a superconductor; but is closer to the naive dual éf a
magnetic vortex in the insulating layer of a Josephson junction.

Applying the 't Hooft commutatién relations to Mandelstam's1
SU(N)Vgeneralizatiép of the Nielsen-0Olesen maghetic vortex models,
we havevdetermined.the dual of these models in 2 + 1 dimensions.
These madels have Sﬁ(Nj electfic vortices fhat can confiﬁe N duarks
as well as a quark and antiquark. These models are simple generali-
zatiogs of Polyakov's SU(2) + U(1l) model in which SU(N) is spontane--
ously -broken with.aijint representation scalar fields, to its
maximal abelian.subgroup, U(l).N—lr Theée models have been
independentlychnsidered by Wadia and Das.z These models may
contain the eséential confinement physics of the pure- SU(N) gauge
theories; .the_relevant dynamical degrees of freedom of these models,
monopoles and abelian gauge fields, aié the same as those picked
out by the generalized unitary gauges 't Hooft.8 has considered to
describe the 1oﬁg distance behavior of the pure SU(N) gaﬁge theory.

In Section 2 we review the content of the 't Hooft commutation
relations in 2 + 1 dimensions, the different physical interpretations
of the order and disorder operators-in’the different phases, and
't Hooft's Z; (dual ZN) magnetic domain picture of confinement in
2+1 dimensions.2 In Section 3 we‘réview some of the features of
magnétic vértices in SU(N) gauge models, and how these models
explicitly realize the 't Hooft commhtation relatiﬁns for the
superconducting phase.‘ ‘

In Section 4 we arguethatinthetfansitionvfrom the superconducting
phase ta the confining phase, the dual realization of the 't Hooft

commutation relations; the explicit SU(N) models of the superconducting

phase go over to an SU(N) generalization of Polyakov's confinement
model. -
Section 5 reviews_ﬁhé 't Hoof t-Polyokov mbnopole ana its embedding

in SU(N) gauge tﬁeories.v‘Eor our later analysis we need the masses
of the monopoles for all'embeddiﬁgs of SU(2) in SU(N) to be equal; we
briefly discuss how the scalar fields can be chqsen to.realize this.
In Section 6 tﬁé SU(N) Polyakov modéls are discussed, and in Section
7 it is shown how these modelé explicitly realize 't Hooft's Z;
magnetic domain'picture of confinement.

" Static baryons in the SU(3) model are discussed in Section 8.
We show.how the SU(3) baryon loop decomposes in this model into a
product of abelian Wilson loops. - This .analysis of baryons suggests the
SU(3) meson Wilson loop can alsolbé decomposed into a product of
abelian loops. An additional hatmﬁnic excitation of the strings;
associated with "delaminating" sheets is suggested.

The Minkowski space-time physics- of confinement in these models

. is discussed iﬁ Section 9. For the SU‘Z) case, the Euciidean.space-

time physics of the Polyakov model is well known to have a corres-

pondenée with that of the abelian lattice gauge theory.28’29f3o

We develop the close relationship bgtwgen the Hamiltonian physics of

" the Polyakov model and that of the Drell, Quinnm, Sﬁetitsky and

Weinste1n27 Hamiltonian analysis of the abelian lattice gauge theory.
Our emphasis in this Hamiltonian analysis, through, is to clarify the
physics o§ the Hosotiani5 duality between the Polyakov model and
the Josephsoﬂ junction. » .

Finélly,in Section}lO we add some concluding remarks on the

. % .
relation of our analysis to the ZN fluxon spagetti vacuum, and on

T .



the possible relavance of‘these models to the pure gauge theory

without the additional scalar fields.

6
II. 't HOOFT COMMUTATION RELATIONS:
PHASES IN 2 + 1 DIMENSIONS

A summary of the content of ‘the 't Hooft commutation relation52
follows. These abstract notions will later be explicitly realized in
the models-of both the superconducting and confining phases. 1In
2 + 1 d1men51ons, the 't Hooft commutatlon relatlons for a pure SU(N)

gauge theory are9

¥ &0 uc, £ =W (c, DM *(x , t) exp (1 2 a*a(n@, O
" @
where WAﬂC, t) is a spatlal Wilson loop operator on a fixed time slice,
in the representation A of SU(N), and M (x, t) 45 an operator that
acts on fields by. gauge transformlng them by Q[x ](x, t);. this gauge
transformatlon 1s singular at (x t) and has the property that as x
encircles x*, Q does not return to its original value, but acquires a
Zﬁ phase, ’
2B ) - e 2@ = 0). e
A gauge transformation associates with each point in space-time a point
in the group; this gauge transformation associates with a closed path
in space an open pa;h in on the SU(N) group manifold, going, for
example, from the identity tu an elementef the ZN cenﬁer. This open
path in SU(N) corresponds to a closed path in SU(N)/ZN. n{A) is the
N-ality of the representation A, the number of fundamental minus the
number of anti fundamental representations from which the representation
A is built by tensor products.. F1na11y, n(x Cc) is the number- of
times the curve C loops around the point x*.

In the (in principle possible) superconducting phase of the

. * RS
SU(N) gauge theory, M(; , t) creates a magnetic vortex at (§ s t)

and W(C, t) = _p_ P exp(ie p Ak(x, t)dx ) = exp(ied is a gauge

invariant measure of the magnetic flux through C. The commutation
relations imply the magnetic flux ¢ is %E times an integer mod N.

Because of the mod N conservation of flux, a flux of %}-times an

integer is equivalent to the vacuum. N fundamental vortices of flux



) %%-can therefore combine to have no flux. An effective.field theory-
describing the interaction of magnetic vortices in the superconducting
phase therefore has an interaction term proportional to powers of
MN + M+N(as:well as MM.r terms), and consequently is invariant under a
global Z symmetry, M +‘exp(i'%g n*)M; Such a symmetry implies
<M>= 0. |

The phase dual to the superconducting phase is characterized by
a megnetization,<:M >¢ 0, spontaneously breaking this global Z;
symmetry. There are N degenerate vacuua associated with the N

2% :
orientations of <M >, <M >n =t T<M> p0n=1, ..., N In
this phase the commntation relations imply that W(C) creates a domain;

the Bloch wall along C seperates two different domains, say,S<M> and
2n

ig— v .
e ¥ <:M:> (See Fig.. 1) This Bloch wall is an electric vortex
that can confine quarks; Because N Bloch walls can meet at a point
(see Fig. 2), these electric vortices ‘can confine N quarks (baryon)

as well as a quark and'antiquark (meson) .

e t

8-

III. MODELS OF THE SUPERCONDUCTING PHASE

MAGNETIC VORTICES

The superconducting phase of an Sﬁ(N) gauge theory can be

‘explicitly modeled by introducing additional adjoint representation

scalar fields. The 't Hooft commutation relations also apply to an
SU(N) gauge theory with add1tiona1 fields in’ representations w1th
zero N—allty, only .niow M acts by gauge transformlng these f1e1ds as
well as the vertor potential. We first dlscuss these superconductor
models in 3 +1 oimensions, and then shéﬁ how, in 2 + l‘dimeneions,
the 't Hooft commutation relations imply from them models of the con-
fining phase.

The physical motivation for models of the superconducting phase
is as follows. If electrodynamics in ordinary superconductors is
considered to be part of a unified theory of electroweak interactions;
tnen the superconducting‘or&er parameter field is a representation'
of the non—abelian éroup. Electrodynamics in the Georgi-Glashow10
S0(3) electroweak gauge model is then made superconducting by breaking -
the U(i) symmetry with an additional isovector scalar field order
parameter. The SU(N) superconductor models generalize from this
physics in the following way.

Consider an SU(N) gauge theory with a set of adjoint representation
scalar fields, di& and ¢a,.where i and o label which adjoint repre—

sentation field. The Hamiltonian is of the forml£

H =.tr(E§ + Bi)'+ I trID&E&IZ
i

Fn e [P+ V@, 0, (2.1)
o ua : ‘ :

[
o

-
-



where the adjoin; representation fields are chosén.to be fundamental
representation elements of the SUkN) Lie algebra (for example,

Ek = E: %;—). " The generator§, Aa/Z, are chosen so that there are
N - 1 mutuality commuting (neutral) generators, Hi’ and N(N - 1)

(charged) generators E+3’ where the N(N_—il)/? d's are N - 1

’ >
component'root vectors , (vector of charges, eigenvalues of H), obeying

C e Te
[H, Egl = * of
= o-H. (3.2).

[E+a’ E—(—;]

The electric and magnetic_ffeld; Ek and.Bk are the space~time, and
space-sﬁace components of the field tenmsor,

Guv = auAv -%Au + ie [Au, A

I . C(3.3)

v

and the covariant derivatives of the adjoint representation fields

are, for examplg,
= . ' .4
Du® _au@ +ie [A), ®1. _ ] (3.4)

The components of Au in.the basis (3.2) are

> 3 > >
= T ““E,) + A CH . 3.5
Ay —>|'(w“ Ez+W E) +ArH (3.5)

The scalar potemtial is chosen to break the symmetry in two stages.

" First, with the ® i's; SU(N) is spontaneously broken to its maximal”

“ []
-10-
abelian subgroup,
SU(N) » U(1) x U(1) x ... x U(1) (3.6)
~ - S so—— .-,/,
N-1

This is a generalization of compact QED where SU(2) » U(1l); ;hefe
are N - 1 'bhotons”, and the N(N - 1) massive gauge fields, W
carry N - 1 abelian electric charges, 3 = iez. In the next stage of

spontaneous symmetry breaking, these.N - 1 "eiectromagnetic"

directions are made superconducting; that is, U(l)N-1 is totally broken

by the é;s; the superconducting order parameter fields, so that the
photons acquire mass.

There are then magnetic vortex excitations in which the U(l)N_1
symmetry is:reStofed inside the vortex core. In 3 + 1 dimensions
these excitations are time indeéeﬁdent field cpnfigurations with
finite energy per unit length. The vortex is characterized by
being a vaéuum configuration almost everywhere, but with a line, C*,
along which @a = 0. Since this is not a g;obal minimum of the
potential, this increases -the energy.per.unit length of the line.
The curve C* can be an infinite line or a clbsed loop. We will
consider.£he fields on a 2-dimensional x ~ y plane perpendicular
to the curve C*;

Far frpm the vortex core the écalar fields take an vacuum '
values;‘from H; Eq. (3.1), this implies,

Du@i
D ¢ =490

T _ .
v-(@_l, ) JE A A L (3.7)

0

(qlsq2’a .. 'in_l)
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From D @, - 0, .
b,p] @, =ielc ,@®;]=0, (3.8)

~ 8o either Guv = 0, or it commutes with GDjf A gauge can be chosen
> > - . : :
for which V'= 0 when GD:i = fi-H; then Guv can be non zero only in
the abelian directions. Not only is G vA= 0 in the E¢ directions,’
. . s - o
. o
but Wu-= 0 as well (since QDi'is constant and so EJ@Di = 0 implies
[Au N @i] = 0). Along the x axis, the ¢ for which V'= 0 will be
chosen in the directions of the charged generators, E+,(the Qa are
a

charged relative to the U(1)'s). 1In directions in space other than

along the x axis the ¢a are gauge transformed vacuum fields,

2(8) = 2(8) 9(0)R 1(o). ©(3.9)

: . 3 . > >
From Du¢a =0, {Guv’¢§] = 0; since from-the Gg:i s, Gy - G,y Hs and

. > > . .
since [H,@a] # 0, we conclude Guv =0 everywhere in the vacuum far

from the vortex core, although now

A =% =

a1 q. . (3.10)
u u . :

.4u

ORICE

However, the vortex excitation is characterized by¢a== 0 in the vorex
) . N-1
core. Therefore, Epv # 0 and the abelian U(1) gauge symmetry will
be restored in the‘vortex core.
The vanshing of Qu inside some curve C in the vacuum is implied
by continuitity of the fields if the &a take an different vacuum values
along closed paths C, Eq. (3.9), with 2 having the property
2 % .
Q (29) = eI N (0). As € is shrunk to a point, @ becomes discontinuous,

and the only way the ¢'s can remain continuous is if they vanish at

a point. The adjoint representation of SU(N)‘fields are also

A

. Hl(S.U('N)'/ZN) z'z

=12~

representations of'SU(N)/ZN, and far froﬁ the vortex core

define mappings - from circies in‘spaqe onto closed paths in the group
SU(N)/ZN. ‘These mappings fall into homotopy classes,12

N thére are N homotopically inequivalent élasses
of paths associated with the mappingéof a closed path.in space
(circle, Sl) onto clqsed paths -on the group .- manifold of SU(N)/ZN.
This is aﬁ N-fold connected maniféld which identifies all points

of the SU(N) manifold that differ by an element of ZN. Different

' * . C .
values of n (mod N) correspond to paths in the different

connected-regions of the’ SU(N)/ZN manifold. The gauge

2m %
s L=
trgnsformatlons, Q(2r) ="e N - 2(0), topologically characterize

the magnetic vortex. Therefore, in this superéonducting

. * .
phase, for the models in 2 + 1 dimensions, M *(ﬁ, t), which creates
: n

a gauge transformation with such a ZN discontinuity, creates a magnetic

K 1
vortex soliton. 3

A Wilson loop surrounding such a configuration will measure its

magnetic flux. Far from the vortex core the vector potential from

the N = 1 abelian Qorticés‘is.a pure gauge; from Eq{ (3.10), this

gauge transformation is in the abelian directions of the group

~

Q(e) = exp(ig-Ho). =~ (3.11)
This implies
i -1 13 14
AO = E’Q (8) T 30 Q(e) = i (3.12)

Substituting this vector potential into the Wilson loop gives

© []
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tr 2n
W(C) = — P exp(die f A rde)
N 0 [:]
2w
_t 1
=N eXp f (t T Q) rde
0
igi n* i
= Zoone o =e N . (3.13)
This implies
g
e T o e 1. (3.14)

The different solutions of these eqnationsl4 for'g will give the flux

in each of thé N - 1 abelian directions in order that the total flux
21 :

* * o
is e ! , (n 1is an integer mod N).

For'SU(3); this condition, Eq. (3.14), is explicitly, since

8
i3
2 .y 2 t]
>
12"g'ﬁ = expli 2wg-
/i_)
,2m % .
17;n : . .
=e 1. L (3.15)

* - c. . .
Depending on n , there is a different set of solutions for E, shown

in Fig. (3). If n = 0 (mod 3), E = 2 x(adjoint represention roots);
* ' :

n =1 (mod 3), E = 2 x(antifundamental representation weights);

n* = 2 (mod 3), E = 2.x(fundamen£al renresentation weights). The

nontrivial vortices therefore carry (anti) fundamental representation

flux, %f-;;-where ﬁ is é (anti) fundamental weight. Because three

L]
By
-
)

“l4-

fundamental representation charges can combine into a singlet, it
is already clear that these magnetic vortices in 3 + 1 dimensions
will be able to confine fundamental representation magnetic monopole
sources into baryon as well as meson configurations;l

It will be useful for our later analysis of the dual phase to
discuss some further formal implications of this confinement of
monopoles. We first must consider the natural generalization

%
‘of the operator M(; ,t) to Minkowsik 3 + 1
. >% 2 *
dimensions. M(x , t) is generalized to the 't Hooft loop, t(C , t),
* ' ) .

where C 1is a closed curve in space. At fixed time we can then

. * ' ' 15 *
consider t(C ) appropriate for Euclidean 2 + 1 dimensionms. t(C )
creates a gauge transformation such that on any closed path C that
) % ! * *
pierces the surface S with boundary C , there is a ZN phase shift,
2y %
i“—n

N-

* * . .
o€ le=2m) - e el€le -0, 3.16)

: *
~ where 0 parametrizes the closed curve C that encircles C . A gauge

can be chosen so that the change by;a ZN factor occurs discon-

tinuously.2’15’16

Then S* can be chosen to containrthis sheet of
discontinuties.. In:the superconducting phase, C* is the world line
of a magngtic vortex soliton; on a Euclidean time slice through C*,
the state created by t(C*) corresponds to a magnetic vortex-anti-
vor;éxlsoliton pair. Therefore, along the curve C*, t(C*) creates
a‘magnetic vortex 1oon. The ﬁilson loop picks up a ZN factor every

. : . : ’ *
time it pierces the sheet of discontinuities bounded by the curve C -,

as it measures the magnetic flux through C. (See Fig. 4.)
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in Euclidean 3 + 1 diﬁensions, the 't Hooft 1§op can be oriented
in the space-time plane. It can then:bé interpreted aé the current
loop of a funaaﬁental ;épresentation magnetic monopolé (recall
thg ZN'discontihuity of the gaugé tréﬁsformatioh”impliéd fﬁndamgntal
representation mégnetic charge) propagating 6ﬂ the‘world line C*, or
in other words, the event of the creatioﬁ and subsequent annihilation

of 'a monopole~-antimonopole pair. For a large loop in the time direction,

& interaction éher of v
< k _(* L ergy : )
£(C) >.§ exp[ (seperate monopole pair) x time] (.17

Due to the magnetic vortex excitation with fundamental representation'

magnetic flux,
. % : * g
< t(C') > = exp[- const. x A(S )], . (3.18)

where A(S*) is the area of the sheet S* swept out in time by the-
magnetic vortex‘st;ing of‘finite_energyper ﬁnit length. Because of
Euélideén invariance, a spacial 't Hooft loop will also have an area“
law in the superconduqting phase. This impligs that both_a sﬁaciai
't Hooft loop in Milkowski 3 + 1 dimensions, and the Euclidean.lqop
in2+1 dimepsioné, will have area laws. The area law can thereforg

* :
be associated with the sheet S of ZN discontinuities.z’15

-16~
IV, DUAL OF SUPERCONDUCTING MODELS

Consider these superconductor models in 2 + 1 dimensions. As
we have seen,M(x, t) creates a magnetic vortex soliton. Inside the

vortex core, the U(l)N-l

abelian gauge symmetry is restored. Now
if<M># 0, the state created from the vacuum by acting on it with
M is not orihogonal to the vacuum. One can think of the vacuum

as filled with an infinite number of vortices, so the creation or

annihilation of one more makes no difference. The fundamental

N-1

consequence of this vortex condensate ‘is that the U(1) symﬁetry is
restored over all space. Thus the models with SU(N) - U(l)w_l age.dual
to the SU(N) sﬁperconductor models, and therefore should describe the

oonfiniﬁgphase;. For SU(2) in 2 + 1 dimensions the 't Hooft commutation

relations have therefore implied that the SU(2) + U(1l) gauge model,

whailch Folyakov had considered in order to analyze the effects of
instantons, -is dual to the SU(2) Nielsen-Olesen superconductor model.

Consequently the electric vortex in the Polyakov model is dual to’the

" magnetic vortex in,tﬁe SU(2) superconductor. We will later cdnsider

the SU(N) generalization of Polyakov's model.

L4 i

-
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' : N-1
V. MONOPOLES IN SU(N) + U(1) .

In 3 + 1 dimensions the SU(N) - U(l)N_l-models have magnetic.
monopole solitons.. We digress'tolbriefly discuss these monopoles.36
The. Hamiltonian is the same as Eq. (3.1), but without the scalar

fields ¢ ,
) a
H=trl + 8% +1 ério ® [2 +v(® ) T (5.1)
k Tk i i . i’ o

Our discussion of the monopoles is similar_tovour discussion of
vortices; we now consider the fields in 3-dimensional  space,
though. From our discussion'of vortices, we concluded from Eq. (3.8)
that for the scalar fields taking on vacuum values, there could still
be non zero gauge fields in the N-1 commuting directions. Now, instead
of the vacuum>Q.Di being constant in space, by a local gauge transfor;
mation the GDi can be chqsen'to point in different directions at
different points in space. Monopoles are assoéiated with topologically
nontrivial vacuum configurations for the GDE} just as the magnetic
vortices are associated with topologically nontrivial vacuum configuf
rations for the @a. Since monopoles in SU(N) - U(l)N'-1 are embeddings -
of the 't Hooft”—quyakov18 monopole in SU(2) - U(l), we consider this
case first. ‘
> >

Now there is just one isovector scalar field @D = T-(), where‘
T = ?/2, and outside a finite spheriéalregion of space S, @D’takes an
- . vacuum valués ‘ |

: > ) 2 . .
V@ =32 ®-H -o, S (5.22)

-18-

nu(:) = 0. (5.2b)

>
The minima of V, C)z = fz; correspond to the points of a 2-dimensional

sphere. Along the Z axis, for r outside S, we choose

(®00,0,2) = £1°, S (5.3)

and in other directions of spade,

@.0.0) = 26,0 @10,0,207 8,00 = £2.1; (5.4)

" that is,the isovector Cj can be chosen to point radially outward,

so the direction in the Lie algebra is correlated with the direction
in‘épécé. Howevef, thé gauge transformation 2(6,$) must be singular
inside fhe region S. The only way a siﬁgularity in QD(r,6,¢) can be
avoided is if|&b] depénds bﬂ r and vanishes at some poiﬁt inSi&e S.
Insidé S where ]éby+0, the potential V is no larger at its global
minimum, so this configuration has.finite eneréy.

From the asymptotic.condition that QD is covariantly constant,
a non zero vector potential is neéessary to compensate @D changing
in space. From Eq. (5.2b) and (5.4), and for time indgpendent fields

in A0 = 0 gauge,

(txr) :
Ak.;:; %'7 r k’ : (5.5
from which
1 fk(;'%) .
Gij =% fijk 2 - (5.6)



s

The projection of this non-abelian field into the electromagnetic
diréction (picked out by (@ , the generator of the unbroken u()
gives -
o sk :
. =— . 5.
ek @65 =0 T2 o -~ 6D

txd
|
|4

Therefore, this configuration has the asymptotic field of a magnetic
monopole.

A more general expression for the gauge invariant electromagnetic

. 17
- field, valid also in the non asymptotic region, is the 't_Hoof; tensor,

= @®-C 1a.-0 G A
Fy = @¢, -20-0,0 3@, - | (5.8a)

19

which can be rewritten in the form

l ~ ~ A : .
Fo = auAv— 3, = ;@ (au®x 5, @, ... 5.8b)

where Au = (ﬁ;-Z@. The magnetic flux is then

4Tn 3 1 , 1 N
=— = I = - - = .
f,as, = =8 = Ja'wd, Geogpl Oy - 28y - @6 DR
' (5.9)
The first term on the fight hand side is obviously zero. However in
the second term,&D(;) maps. a point in space onto a point on the
. 19 141 2 N :
unit sphere, and an ¢7€ijko' (3i®x a{@)dsk counts the number
of times, n, the‘sphere{ﬁg = 1 is covered as.;'covers the sphere of
space as r »>,
While we have considered the asymptotic fields, for non asymptotic

r the fields have additional radial dependence. JThe 't Hooft-

< ¢
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Polyakov ansatze for the fields which minimize the energy is,

X,
A - % ka 1% (1 - k), (5.10a)
" e “kaj |

®

H(r) €T . (5.10)

However the asymptotic values,vK. (5.4).and (5.5), are reached
- . . ) -Mr
exponentially, the corrections to Ak_for large r being of order e hd s

aﬁdfor @ of ‘o.rdex.: e_M®r, where Mw = ef, and M®=/:—Tz M.w Within
the core reéioﬁ S, the fiélds deviaﬁefIOm-théir vacuum values; the
éharged gauée fields are non éero (since DkQD~# o, fhough as r~> 0
all fields vanish. For ® =0, V(®) # 0. The explicit forms for
the fields are determined by miﬁimiziﬁg the field energy subjéct to
the bounaary conditions. ?hysically,'tﬁéugh, the core size is
deternined by balancing the Coulomb field energy in the region outside _
S,where the other fields‘ﬁake_én essentially vacuum values, and the
core energy associated with all fields deviating from their vacuum
val;es. 'If the Coulémb énergy is cut off at a radius ~'1/MW, then

f B a3x " (‘4n 2 = xk 2

Ly [ 4rrldr =
v"l/Mw 4rr T e

N
£~
nl3

Bt

(5.11)

The core energy should be comparable in magnitude, so we expect

w2

on ez,mw.This estimate is in fagt a lower bound to the mass.

This bound is simply obtained from20

“ L]
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> >
M= fadH=] d3x{% 312( +%(Dk®)2 +v( @}

>

: d -+ ->
- (a3 76 7D, @)% £ 3,0, @ + v( @D

\%

s [@x B0 @+ [Px (@D
>¢lfas, @B | = -“E"-Eg’— - (5.12)

The lower bound is proportional to the topologicai'charge. Correqtions
to this bound are of order A/e’; in the limit A/e’ + O but with
|d§|’=‘Mﬁ/e fixed, this bound is saturated (Praséd-Sommerfield—_ZII
Bogomofhy%o).' In general, M = ﬁ% Mwe(x/ez), where ¢ is a slowly
var&ing'function of order 1. A

While fhe topological stability of the monofole and the consequent
magnetic charge has been associaged with the scalarfields, which
define a mapping from the_82 of space (surrounding the center of the
monopole) onto the SZ of the minima of V, a gauge can be ghosen so
that these pto@erties are transferred to the gauge fiélds. This gauge,
singular gauge,3 E is very useful for superposing monopole '
configufations, which is necessafy for our later analysis. Consider
the gauge transformation .

Q(8) = exp (ip(8)g-T/2) (5.13)

where

$(6) (5.14)

=22

Apart from a core of angle ¢ surrounding the -Z axis, the scalar field

can be smoothly gauge transformed, so that over the rest of space it

points. .in the ‘same direction in isospin space,

L _ 3 _ o
@- x5+ 2@0 1. £ . (5.15)

In ;he limit e > O, the cone is shrumk to zero, so this gauge
transformation becomes singular, and consequently the fields can

begbmelsingular. While the écalar field is non singular, the vector

L d :
potéﬁtial A= QD'Kk acquires a Dirac string; this leads to a

singqlar_contiibutibn to aiAk —akAi. Here, however, the electro-

mégnéﬁic.field ié defined by the 't Hooft temsor, Eq. (5.8), and in

gaﬁgéiﬁyansforming to singular gauge becomes

F =03 (A @) -5.(A - -1 e.
Ty =20 @) - @) -3 ®@-6,@x,®

3

- (5.16)

. >
> ®'(3K -3 A +:EKUX&:)) =G

_Ihfthis expression the singularity of the ¥ x A term is cancelled by

31,32

the:singularity in the limit € -~ 0 of the @ (A x A) term.
R LA 22,23

T'_Tﬁé_ehbeddings of the SU(2) monopole into SU(N) » U(l)N_1

fblldw from the spatial variation of the ()i' Outside S the QDi can
be chosén so that along the Z axis
> ’
. ® ;(0:0,2) ;;?i-u, S (5.17).

but in a‘general direction in space
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®,(r,8,0) = 2(8,8) ®,00,0,2) 977(0,9). (5.18)

This gauge transformation can be chosen so that

®,(r,0,0) = Y] + Hg(r)_fa -z, o (5.19)
where

: E+E_ E -E _

G Sy gt N S S N S (5.20)

2 Y2 i

is an embedding of the SU(2) Lie algebra into fhe root space of
SU(N) associated with'thé roota; there are N(N-l)/Z embeddings,

corresponding to N(N-1)/2 monopoles. Also, the constant
Y = (F (?.-+ )" |
ic g .y a)a (5.21)

~ is the "hypercharge" relative to the SU(2) embedding; it is a vector
in the root spaceiperpendiculaf to & in the piane- containing E'and
Since

x
ti.

a o
(Y], H] =0
[Y‘;, Ea] = 0, : (5.22)

Yg breakes SU(N) -+ SU(2) x U(l)N?Z, and the second term in Eq. (5.19)

breaks this SU(2) » U(1l). Asymptotically,

B} (1) = %ib-Z, (5.23)

% &
[N ‘
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which is the projection of ?i into the direction of the SU(2) subspace.
Along the Z axis, this part of Qng (?-;)Tg, corresponds to the vacuum
expectation value that determines the mass of the SU(2) monopole,

f-;je.

The as totic¢ condition that . 1s covariantly constant implies
ymp i

4n

the vector potential is non zero to compensate for the changin
P p i ging

in space. From Eqs. (6.19) and (5.23),_DkQ§i_= 0 implies asymptotically

(P xx)
A %___r k _ (5.25)

from which

B, = (€% 3

avs 'xk"-ﬂ(é,w 2, ' (5.26)
k 4rr” . ’ .

fhis is the field of a moﬁépoié’with its magnetic flux partitioned
into each of the N;l (conjugatééj‘abelién directions given by %?Z;
Thaﬁ is, the monopole has édj;int representation charge.

The compleﬁe Hamiltonién?igfvtiﬁé independent fields in Ay = 0

gauge is

% H = fadxices? ;I?(g-l)/z:t o . 2
f x H I x{ f k”_ i=1.. r kQDj

FVO L By Oygugy ) (5.27)

Although only one adjoint réﬁfésentation scalar field is necessary to
_spontaneously break SU(N) to U(i)N—l, (although not with a quartic

potential), we choose ﬁ(N—l)/Z édjoint representation scalar fields
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so»that all the N(N-1)/2 monopoles (and N(N-1)/2 antimonopoles with

a - —Z) have the same mass. Each of the N(N-1)/2 QD'fields’asymptoti—
cally takes on non trivial vacuum values, wi;h the same Ak,’Eq. (5.25),
contributipg.tp Dk.QD i = 0 for each i. V is chosen 'so that along. the’
z axis all AGDi take an asymptotic values, Eq. (5.17), with i¥il= f for
éllli, but with the directions of the ?i'detetmined from a térm in V

of the form
h

higj(cr@i®j)2—_r;§fzi%%i.fj. S (5.28)
The QDi_repgl; the minimum ehergy occurs when the %i point as far
away_from one anofher as possible in the N-1 dimensional space. This
occurs for %i = 3;, the gi being roots of the weight diagram. For
each i there is aﬁ gmbedding of the SU(2) monopole in the SU(2)
determined by the root Z., The total contribution to the monopole
mass squared from all the GDi's, from Eq. (5.23) and below, is

proportional to.

N(N-1)/2
le,31% = €23, (5.29)
1=1 A : .

so the monopole in SU(N) -+ U(l)N‘1 has a lower bound to its mass
YN/2 times thaonf.the SU(2) monopole; also, £ will nowdepend an all

other couplings in V.

—26—
VI. SU(N) POLYAKOV MODELS

If the fields of the Hamiltonian are time independent in A, = 0

0
gauge, then fd3x:H =S(A,QD’; the Hamiltonian of the 3 + 1 dimensional
theory corresponds to the Euclidean action for the 2 + 1 dimensional
theory. The Euclidean fuﬁctional integral of a d-dimensional quantum
field theory correéponds to the claésical.partition function of a
statistical system in d + 1 dimensions with Haﬁiltonian. (For the

2+1 dimeﬁéional‘gauge fheory the_fields can be re-scaled so that

the corresponding teﬁperature is Mez.) The Euclidéén functional

integral sums over all field configurations ekp{—S(AﬁD)}; in the
semiclassical approximation, which.is Eh;racterized here.by~thé
dimensionless - parameter Me2/4nMw being small (or low temperature
relative to MW), this functionalhintegral is dominated by configurations
with finite Euclidean action. Since the ﬁonopole is a finite eneréy,
timeﬂindependent A0 =0 gauge‘fiéld configuration of the 3 + 1
dimensional theory, itbis'a finite Euclidean action configuration

of the 2>+ 1 dimensional théory. Also, the monopole is‘a solution

of tﬁe time independent field équations and'correspoﬁds'to a lqcal
minimum of S('A,@) .

The action for configurations with more than ene monopole is
easily constructed in singular gauge. Space is divided into regions
around the monépole cores and regions outside'the cores. Op:side the
core regions the scalar fields point in the same direction over all

of space and take an vacuum values, (DkQDi.= 0, V(QDj.) = 0), and

charged _ 0).

the only long range fields are abelian, (Gik The action is

then
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j 3 2 N(N-1)/2 2
S =3 d”x{trB, + ‘i>=:1 tr(d @) (@}

., J L xi@o. 6D

where gk is the set of N-1 abelian magnetic fields. The superposition
of Coulomb fields just gives the Coulomb interaction energies between
the monopoles (plus approximately half the self energies of the

monopoles), so

2 > >
. 1 4n B "Pht
S‘_ZM +5 )

4 z - (6.2)
T monopole n#n’ 4"|ﬁn'§ht|

The monopoles interact through the Coulomb potentials of N-1 abelian
. - .
charges, where m are N-1 component root vectors of SU(N). (Also the

monopole "mass", M

nonopole’ is dimensionless in Euclidean 2 + 1

dimensions since.é2 now. has dimensions of mass.)

Polyékov3considers expanding the 2 + 1 dimensional functional
integral'about.configurations with an arbitrary number of monopoles
and anti-monopoles; in the limit of very large seperations, these
configurations approach miﬁima of the Euclidean action. This turns
out to be an expansion in powers of exp(—vﬁ% Mwe) and ez/évﬁw. The
Ifunctionai integral over all configuration:, when approximated by this
sum of configurations, corresponds}to‘the grand canonical partition
function for a monopole plasma. ' The grand canonical partition
function for this monopole plasma can bere—expressédin terms of an

effective géneralized Sine-Gordon theory,

» §
[\ . (8
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Z=fDAD®_e_S(A’®)
. . 2 .
. 2 e 2 b > > 0 3
. —f{l(V$) -—5 M Z cos(— me¢)}d°R
= [Ode ~ % 1er°  |a] © (6.3)
where3
7/2
M2 = const. — exp(- Lk £) ' (6.4)
eonst- 73 2 e :

the coefficient.of exp(- M ) arising from quantum fluctuations

monopole

-around the monopole configurations. In this effective field theory,

> . '
¢ represents the N-1 component magnetic scalar potential;

=475 3R
e represents the exponential of i times the interaction

energy of a (anti)_monopole of charge %f-E at position R in the

presence of the potential of the other monopoles. If the interaction

term is expanded in powers of = Z M2'= o} exp(4!

324 monopole), the
functional integral over $ is easily‘done; the kinetic term

(Vk$)2 = Bi inserts COulombbpotentials between all pairs of g's,

. ] 2
~[’r 37
[D%e
bu > >

e .Y £ 4T3 3R
1 |¢.3 monopole e 1"1
x X N1 [ d°R ‘ Te _ ]
. m

. -

-M i—m.-
X;..X[fd3RNpe monopole E e © ™
L my

-M N
-y 1 3 monopole P>
= w0 i (Jd Roe v ) e

4

> >

&)
] 2 mpem,

4w i3]
L &)
1§J € 4ﬂ|§i+§.l.
J

N[

(6.5)
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The problem of static¢ quark confinement is studied by inserting

a Wilson loop,

wey = e exp(ie § A, (6.6)
c

into the vacuum. The exponent can be re-expressed as i times
3 dxk ] > dx ) ]
fzk(x(s))‘e 2 ds ds, where e & —— represents the electric current

2 ds
of a fundamental representation quark charge propagating along the
path C, parameterized by a proper time s. The exponent then represents
the interaction action of an electric current interacting with a

vector potential. If Zk is the vector potential from a monopole at

'ﬁ, its interaction with the electric current loop C is,

> >
e . %«é}% -15531—3 . g;
as= 4r|x-R|

eg Ak(§—§)dxk

N
Am > 2 0,®. . O 6.7)

The only components of E-that contribute are in the N-1 abelian

directions, so

>
O ' |
= % | SN CX )
o
st

where the ﬁi are the N-1 component weight vectors of the fundamental
representation. Now the expression (6.7) corresponds to the

. ) > .
interaction energy between a magnetic charge of strength %f-m located

at R with the potential from a set of magnetic dipole sheets, the

~-30-

magnetic dipoles of strength eﬁ; having a uniform density over the
sheet bounded by the curve C of the Wilson loop.-
The expectation value of the Wilson loop in the original field

theory then takes the following form in the effective field theory,

igAkdxk -5, @) PeigAka?k

tr 1 tr

<—N— Pe " >= EfDAD@e N
- [Pribah <2

11 2 T2 5

:-ﬁgi'f%e 16w - m|
u
x cos[%}-ﬁ-(E + Te @)1, : _ (6.9)
where again, ¢C(§ =2 f V——l——--dg; the sum ovetr m is over all

4m 38=c lz?il

N(N-1)/2 positive adjoint representation roots, and-the sum over :

" is over all N fundamental representation weights. ;Thé Wilson loop

inserted into the monopole plasma behaves like avsﬁéet df magnétic
dipoles, and produces at 1§rge distance from the éhéet_a dipole
magnetic field. Tﬁe'monopoles of the vacuum plésmé? hévé?gr,'are
polérized‘by this dipole fieid and reaé;tb producéiéﬁaipﬁié field to
tryvto cancel thé field from the sheet. The magﬁé£i¢%§d¥ential is
approxiﬁately determined from the classical field?éiugﬁioﬁs; for each

-
U,

%5+ —z;.e; M

In terms of the total potential of the monopole'piaéméfp;ﬁévthe;

2 y =0, . (6.10)

[3 > >
e C

§$ sin X m-(§ +p 0
|}

dipole- sheet, S
wx= G +ie, ' L (6

this equation becomes
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‘2+ - 2 - > 5> > > 3 > >
C=VX®) + M7 Zm osin meX(R) = 4my [ 45, -V, § (xK). (6.12)
i |m ) 35=C
With the ansatze of Wadia and Das,
5(>=KX) (6.13)
" we have
'—V2'1-+.H-Mzsin X =2 f d§ .V 53(x¥§) (6.14)
22 2 38%C k 'k

The same equation is obtained for each K. For the loop C in the t-x
plane, ‘we consider the solution to this equatioﬁ well inside the loop
where X is approximately only a function of Y. The right hand side of
this equation is 2 6'(Y)OS(X,T), where es(X,I) ié one if X and T

are on the surface S, and zero'otherwise. If Eq. (6.14) is multiplied
by Y and integrated from Y = - ¢ to +&, we obtain XS%l - X£§§)= 27y

the solution to this equation with this discontinuity}is}

1‘7‘%“ b

X(¥) = 4e(¥) tan” (6.15)

where €(Y) ={_ 2:8 . From this potential énd Eq. (6.11) we obtain

1Y
1 Y

the total field,

/Ty

>

3 - .8 X T2 y/Ne =~

By(y) = " %oy () = w=—"M/3 'Z/EMIYI . (6.16)
l+e 2

Far from the sheet the plasma can completely cancel the field from the

sheet, although in a region of the thickness of the piasma screening

L 1

- charge, while the monopoles of the vacuum have adjoint representation"'
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length, 1//(g M, around the sheet, the field of the sheet is not
completely canceled by the field of the plasma. This is because the .~ T

monépoles that make up the dipole sheet have fundamental representation ' -

charge. There remains, then, across the sheet with the Wilson loop as.
boundary, magnetic flux with a thickness of the plasma screening length.

. N »
This is a y-component of magnetic field, By, which corresponds to the

th component of the field tensor. In Minkowski space-time, this

corresponds ‘to an electric field in the x-direction:

e 3 3 9 \>  _ )
G~y “aex - B BL B
> . » -
= (?yt, ¥ _?xy) > (- B, E, B). (6..17.)

Thus on every time'slice of the Minkowski spaée—time Wilson loop there -
is an electric flux'tube, with the thickness of the plasma screening. - .

length,'connecting the quark and anti-quark charges; the total electric
flux is
w© ©

0-
=& N 23
[ ave =4 £+ oy x+gm [ aygox

= 2 (@ -XO") = (X(==) - XO)] = - &b

Returning to Eq; (6.9), with (6.11), (6.13) and. (6.15), the leading

35, . :
term -in the expectation value of the Wilson loop is then
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.

1§ Aedxy * o .
. VII. ZN MAGNETIZATION AND DOMAINS IN SU(N) POLYAKOV MODELS.

2 . /- ) . : ' .
N .2 We previously argued abstractly from the 't Hooft commutation
= const. exp{- e 3 lrﬁzfdzk {%(V 221) —/7 M cos )é‘}) . :

16w relations Ehat the SU(N) -~ U(l)N_l models are dual to the SU(N)

Mandelstam-Nielsen-Olesen superconductor models. We now explicitly

. 2 .
= const. exp(- E_E ﬁ ESOIXT)’ (6.19)
4 demonstrate how 't Hooft's physical picture of the confining phase in
2 + 1 dimensions, that is implied by the commutation relations, is
where ’
realized in these models.
_ ) We have previously seen how to eipfess'<:W(C)>’ in the effective
ey = /3 (6.20) » |

field theory; we must now consider<M >. We wili show that in

. " .
) : Euclidean 2 + 1 dimensions, M(x ) creates a monopole at the 3-dimensional

is the energy of the l-dimensional Sine-Gordon soliton . transverse to '* B o A .

point ¥ , with magnetic flux ?} 3, where ; is a fundamental representation

the Wilson loop, and for the fundameﬁtalVrepresentation of SU(N), o ) ]
weight, Since the only_topologically stable monopoles in this theory
K2 - Eil' ) (6.21) have adjoint represeﬂtation flux, this.funﬂamental representation
monopole must éarry a Dirac string. (Intuitively, one can think of the
Dirac string along C* as -the remnant of the world line of the vortex
.of the supefcondpctiﬁé phaée that comes from t = - © and ends at 2*; from
there the flux can spread since the U(l)N-1 symmetry is everywhere
restored in the confining phasé.)v ‘
M acts on Ak and QD-By gagge.transfofming fhém. Acting on the

fields which dominated the semiclassicélvapproximation to the functional

integral, configurations with arbitrary.numbers of monopoles and anti-

monopoles- in singular gaugé,

) - o a®=TERE-R)-E, - gaw
®D - @G -1 -0, (7.1b)
i X a(gg a ’ "
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the gauge transformation.Q can also be chosen in the abelian directioms,

o® 1) = explizGa™)-H1. . (7.2)

Therefore,

®'- @ o (7.3a)

Q 1. '

DERIER s - aaw
> >% v ’

where a. = a*H. For x at the origin of coordinates, a particular

representation for Z is
>
o = 2u¢, - (7.4)

where.ﬂ' is a weight .of the fundamental representatioﬁ of SU(N), and ¢
»is‘the azimuthal angle in spherical pélag coordinates. The flux of
this configuration through a curve C surrounding §* in the x-y plane
s,

. 4

| favax = §a ax + I (1.5)
- A _ .

Therefore, this singular gauge transformation has created fundamental
L by > >k
representation flux, o W at.x .
S " . O ok
Now consider the correlation funct10n<<M(x2)M (xl )y >, If Xy
ok
and §2 arée Minkowski space-time points seperated only -in time, then
‘the gauge transformation created by the’ Heisenberg representation

S
operator Mf at x1 is propogated in time to 22 where it is undone.

L . ok
In: Enclidean space-time, this creates a string from £ to XZ around

1

- s

which: §o 3-Hax, =

smooth over all of space except along the string, the magnetic flux

k

i“—,
e

> >
ueH.
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Because this gauge transformation is

arises from a non-zero magnetic field only along the stfing.

The Euclidean action for a monopole configuration A,GDafter the

action of this gauge transformation is

s(a + %V(ul—u.z), ® = s:(A, ©®)

* ) >% >k
where C” runs from x, to x

1

2

. We have negiected the constant action of

the singular string, and made

4 > ’ 3-‘»-}
-e—uf dy & (x-y),
N C

(7.6)

a.7

. the approximation that the monopole

is much farther than 1/Mw from the string. The interaction term is

( ) m-p fd xV ———

- 4n72+ >
o= 7;? mey f

4wlﬁ;x|

C

*

AT ———

‘ 3> > -
f dys” (x-y)
c*

4n|R—y|

| (3.8)

Retracing the derivation of the effective field theory, it follows

that this correlation function can be expressed,

< M&;)M’f (x;) > = %

e

i 4

e

>
u-

$( >

X

z
>
u

4

e

1e>
2]

e $(§

*

3.,1,.>.2 e
e—[d RG(VH) - =5

- 16w

U

M2§ cos(41T
fm| ¢

7.9y

m-$)}
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If this functional integral is dominated by the classical

field, ¢ satisfies

2> e

. 2 > o4 > >
_V¢+41rM %m sin (—E—m-qb)

b4 >, 3,2 % 3, %
= 1 =% 587 (R-%,) - 8°(B-x.,)) . . (740
) e 1 2
We are calculating the potential of a momopole-~ anti-monopole pair
in a momopole plasma; the physics suggests linearization is legitimate
so we have, for ; = %:;,
V&) + WER@X@)
bm B 3y o 3o
=1 ) W ER) - &R E) . (7.11)

> >
For x'= ux; we have

* 5 : *
-/% M|§1-K]- ) v -/g M|%,-K|

® = -(4_")2_9_ _qldmy e
X = e * 3 e gy *
- k) 4 %51
. (7.12)
In this approximation, then, the correlation function becomes, .
. : N. 2% %
2 EEVLSYE
2ot 2> - Auy'N-1 e 7207172l
< M(xz)M (x1)> =exp {-2( e) N % oF }oo. (7.13)
: A-n|x1—x2|

Due to the screening of the source monopole_s by -the vacuum monopo']_.e
plasina, we have

>E ok 2
< M(xz)M xl)_>_>*—_:*—> .l< M >‘ # 0. _ (7.14)

. xl-xz >0
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Therefore, the first ingredient of 't Hooft's physical picture of
confinement in 2 + 1l,dimensions, that there is a magnétization,
<M># 0, is explicitly realized in our generalized Polyakov
confinement models. We will show below how a domain of the effective

magnetic system is created by a Wilson loop. We note in passing that

* % . )
‘'since —£n<M(§2)Hf(§1) > is physically the interaction energy

between a monopole and anti-monopole, in the superconducting phase
. o .

where there is a magnetic vortex of flux %Tp, the interaction energy

of a fundainent_al representation monopole and anti-monopole pair is

Sk ok
proportional to ]xi—le, so

* +*|
- * * =¥, =X . . .
<MEOUTEH>~e 1P — 0. o (1.15)
xl—le-)‘” S

Thus< M>=" 0 in the superconducting phase, reflecting the confinement
of fundamental represention monopoles.

: : ’ - Lk
We next consider the important correlation function,< M(x YW(C) > x°
' C
This can be expressed in the effective field theory, -

) _f4q3
<ME WD, =5 B, 7 [0k Jaowt
o~ _

> >
u,u
2

e

_16112

1,52 2 bn >
—2-(V¢) - M uElcos o o (¢+ud>c)}

. sin o ey N
) ief A x g dx, i —e-u'(fb(x )+u¢e(x ))
e ¢ . e __

(7.16)

where the curve C now comes from infinity and ends at the fundamental

. ) .. . ) .
- representation monopole at x . —'Ailng is the addition tothe vector

. . ' Sk
potential from the singular gauge transformation generated by M(x ),
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wen [ a8 -fi ayedny. (7.17)

There are two kinds of contributions -from this term which arise from

refwriting it as

-
4 >'> > (x-y) >
o [§ dx-f, XL x dy
C C 4w|x—y|
1 .
- [ & . ¥y, ——1 .- (7.18)
as=c * ¥ fe %y b |27 ‘

When C* is a closed curve, the fifst term in square brackets is the
linking number?%f the curves C and C*; it is a gauge invariant
measufe of the number of times the singular string pieces the sheet
spanned by the Wilson loop. The second term gives the interaction
»énergy of the Wilson loop and the string. When the string from

- *
infinity ends on-a monopole at % , this term is just

1

< as_ .V ——
as=c ¥ Y 4nlx -y|
the interaction eﬁérgy of a mongpole at §f with the dipole potential
of the shéet bouﬁded by the Wilson loop; the string along C* does
not con£ribute to the interaction energy with the Wilson loop.

This effective field theory representation for the correlation
function'<:M(;*)w(C) > . physically corresponds to a fundamental
representation magnetig dipole sheet with-boundary C in an adjoint

representation monopole plasma, interacting with a string of

(7.19)
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I . : % .
fundamental representation magnetic flux along C that ends at a
: Lk >k - Xk
monopole at ;- en<M(x YW(C)> x = F(; ,C ;C) is the interaction
. : . . c . .
free energy of this system. The classical equations for the vacuum
monopole_potentials due to these extra sources are,
S .
VB4 2 Mzg asin L33 o=@ B (7.20)

or for the total potential of the system,

RN _ v . _
mx=é e, o (7.21)

- 5@ +-M2- Z @ sin B-X(®)

X Wosle d§‘y-vya3(ﬁ-§’)' rEnede. oo
While we have not sbived these.equatibné, we can extréct the relevant
bghavior from physical arguments. We have previously seen that for
<M >and <W(C) > seperately, the potential falls off exponentially with
scale ~1/M. For'I;*|>$>1/M‘and |R] >> 1/M, that is, for |§*| far from
the‘ dipole sheeﬁ,‘ the potential far from bofh is just the superposition

of potentials,

-/g M|Y'

%
: S “M|R-x" |
* - .
X R = 4n eMtan e, 2 4 : ., (7.23)
' R3]
whére R-= (X; Y, Z). The Euclidean correlation function then
factorizes,
> : %
<M(X IW(C) >~ <ME )><W(C)> . _ (7.24)
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For our analysis, though, we need to understand the behavior of
this correlation functioﬁ as §* passes thtough the sheet of the loop
C. We therefore need tov;onsider_the.xegiop_where-the séurce monopole
is close to the sheet. Considering the sgreened-mpnopole close to
the screened dipole sheet, we must makg the pérhaps crude approximation
that the source monopole does not affe@t-ihe pqtential of the screened
dipole sheet. In this approximation the contribution to_thé correlation
function from the interaction energy of the source monopole and thg
screened sheet is obtéined'byusubstitﬁiihg the poteﬂtial_x of.Eq. (6.15),

the solution to Eq. (6.14), into (refer to Eq. (7.16))

ILEEY 4l G

e -

>, > >k ;)-, > —»‘*'.
= el huTeux Gy (7.25)

We then have, using

> > 1l 1
ui-uj = -9 + > sij’ (7.26)
and Eqs. (6.15), and (7.16)-(7.18),
<uE > s I
MGE W) > _ - /;Mly I
. : ] * o -
= <M><W(C)> exp( % e(y Jtan,
—i4 ; > GE-‘.’). % o
x exp(5 § dx- [, T'll xdy) (7.27)
' : C C. . o
. — n i
The first exponential term jumps from ¢ = ° to e N as y* crosses

the flux tube from 07 to 0 . Physically this discontinuity is due
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to the source monopole having an attractive interaction with the
dipole sheet on one side, and a repulsive interaction on the other

side. From this result we obtain the important relations,

. el
<MOIWCC) > e N (7.28a)
C

< M(0+)w(q)>c*

~and

+ -
<mM(0 )W(C)>C* < M(0 )HW(C) >c*’ (7.28b)
. * * >*

where (see Fig. (5)) C" comes from y == to x on the + side of the

» * >% . *
sheet spanned by C, and C ' comes to x fromy = - « on the - side

*
of the sheet; in the last expression C has crossed the sheet. The
first of these equations shows there is a dynamical discontinuity
i—g&r,— >% .

of e as x crosses the flux tube, but without a string crossing the
flux tube. The second equation shows the dynamical discontinuity is
compensated by a kinematic discontinuity as the string also crosses
the flux tﬁbe;_ There is a branch cut extending, for example, between
the two branch.points where the space-time Wilson loop pierces the

. *-
plane of a fixed time slice. For the contour C making a complete

circuit around a branch point there is a kinimatic discontinuity of

.21
L

e N coming from the exp(ieg A;i:gdxk)term. This kinimatic singularity
coﬁpensates the dynamical one dug to the electric flux tube so that
in the .confining phase <M>can approach the same constant far from the
sheet  in all spagial directions.9 Thus the same result is obtained

as i* traverses either path shown in Fig. (6). ‘

From this Euclidean result we now show that in Minkowski space-

time, for a spacial Wilson 'loop, there is a discontinuity as M crosses
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the electric vortex along the curve C of the Wilson loop. The behavior
of the Euclidean correlation function we have just obfained as y* is
varied, correspending to M moving.; through the sheet of the Wilson
loop, is:uhchanged, by Euelidean invariance, if this picture ‘is

‘ rotafed.by 90° afeund the x axis. C is now a spacial loop, and M
moves thidugh the‘plane of the loop as time is‘varied. If M.is infini~-
teeimelly below the loop, with its string below the loop, tﬁen on
analytically continuing fe.Miﬁkowski space~time the Heisenberg operators
should be ordered with M to the right of W. Similarly, if M is
iﬁfinitesimail&labovelthe loop with its string above the loop, in the
continuation the operators should be ordered with M to the left of W.
From Eq. (7.28a) there is a discontinuity of ei‘%g, confirmibg the
operator commutation relations.

This discontinuity in Euclidean space-tiﬁe is due torthe discon-
tinuity of the potential for the scfeened.dipoie.sheet; in Minkowski
space-time, from Eq.'(6ﬂ17), this corresponds{to a discontinuity
across an electric flux sheet. Thus the discontimiity in the Minkowski
space~time operator commutation relations is egdiscontinuity across
an electric vortex. Combined with our explicitdemonstration that
<M># 0, we conclude that the electric vortex is a Bloch wall between
two domains of magnetization,< M > and el T<M> A t_ransition

from the Euclidean space-time correlation functioﬁ<iM(§*)W(C):>c*, to
the Minkowski space time event of the creation, propogation, and
annhilation of a spacial electrlc flux 1oop, seperating a magnetic
bubble domaln, can be pictured by folding up thegWilson loop as shown

in Fig. (7).
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VIII. BARYONS

We can now apply 't Hooft's physical picture of confinement to
quide our understanding of baryons. In this section we specialize to

SU(3). The baryonic analog .of themesonibWiiéon loop oriented in

space-time 1324

ie d
4,058 8,8, (FC élAk ™, 8
“1“2“3 1P2"3 %%
‘ieé Akdxk ie£3Akdxk
x (Pe 2 ) (Pe ) s
: %282 %383

1
B(Cys Cys Cy) = Fye

(8.1)

where Cl, CZ’ and C3 are seperate curves that-ﬁegin and end et the
same end points ; and ;, In Minkowski space-time, this operator
creates a sum over'permutations of color singlet combinations ef
three fundamental reéresentation quarks: at- X which propogate along
would lines C1 29 and C3, and annhilate at y. For the paths shown
in Fig.A(B),
<B(C, C

- Lo >
yr €3> empl- VG, Ky, FTLL (8.2)

Toroo
where V is the interaction energy of three static quarks sources at
the two dimensional spacial positions xl, x2, and x3

Since SU(3) is spontaneously broken in our model to U() x U(Ll),
the enly long range fields are abelian. The contribution to the

baryon 1oop from these long range fields simplifies to

ieju - Kyax, tef hye Kax, 1e[ nyeK ax,

Cl xe 27 T T4 b3

=N

6 ,perms of, € ’

ul’UZ’u:; ) (8-3)
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where -the u, are the two component weight vectors of the fundamental

representation of SU(3). Because of this abelianization, the exponents-

can be added and re-arranged. Using K

F#h, +n, =0 (si 2@ =0
1 uz u3 = _(s nce Fr S =0),

we can make the replacements

: > >
> 1- 112‘ u - -
iy —2—3 , | (8.4a)
; - ->
> T HT HT g T
uy > 5 H . (8.4b)
further, using
-~f dexk = fAkdxk, . ) (8.5)
C -C

where -C means. the line integral is taken along C in the opposite

direction, we have

byef Rax 40, [ Rax + Uy K
c, c, c, '

> > >
UyTiy

Wy [ .
=55 | Rax +5 [ Rax -5 Kax
. Cl_CZ. C3-Cl : ‘ CZ-C3

(8.6)
From this we obtain a factorized expression for B,
. > >
Ba—H .
d "2 LT
: le(—") [ A4
=1 2 C.t= A'k X
B(C1s €35 C3) = § pedms & 1%
> e »
N .
3 - ie 5« A dx
. e-ie 7 j_ Adx 572 Ca—CIKk k
25 :
=L 3w, (c-cw (€ ~COW (C.-C.)
. 6 perms ,1 172 1 273 1 3717
° PEmE (2,0 0= 7 0-
2/3 2/3 . (8.7
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where, for example, W 1 (Cl— CZ) is an abelian Wilson loop along
the closed curve Cl— C2 with charge % e’'in the first abelian direction,

and the sum over permutations puts tﬁe three different ‘abelian charges
on the three separate ﬁilson loops.: Therefore, in this approxiﬁation
in which all separations are much larger than 1/Mw, the bary&n
operator has factorized into a product of three abelian Wilson loops.

Let us first consider the Coulomb fields in this SU(3) - U(1l) x U(1)
model. See.Fig. (9). We have a super position of two €oulomb fields: -
the first is attractive. ‘'between two quarks of chargeéirg; the second
is repulsive between those quafks which have fhe same charge e/2v/3,
and Attractive with the third quark of.chatge Aef/gl The sum of the
two Coulomb interaétions givesveéually strong attractive interactions
between allvthrée quarks.

When thé contributién of the vacuum monopoles is‘turned oﬂ, the
minimum energy field configurations will no longer be Coulomb; we will
show the minimum energy field configuration will haveé these field lines
collapsed into the "y configuration of Fig. 10(a), as opposed to, for
example, the "V" configuration of Fig. 10(b).

‘The effects of the vacuum monopoles are described Byvthe effective

field theory. The baryon 'loop is

1
<B(C,, C,, C)>= 2 I 10§ exp -f aOx (3 (V)2
1’ 72 73 3! z 2
perms .
e
——'%Mzz cos ﬁ'el;.(; + 12 z “DC -c
16n¢  ® : 1772
> > :
i I 20, ) (8.8)
2 C,-C 2 C.,-C * ’ ’ ’ :

273 371
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The adjoint representation monopoles of the vacuum plasma, which configuration must bé'larger than that of the "Y" configuration. We
in general carry fields in both abelian directions, are interactihg . .could imagine a (%, 0) flux tube between the (%} —%:) and (- %3 —%&j
with the potential fro: t:ree dipole sheets, each with a single : quarhs, and»(O' ___) flux tubes between the (¢ i’ __—) and 273

abelian charge: (Slnce = 2 _ (2, 0) and —= (0 - ;;%))- The ©, /_) quarks. éesnow consider the effect of mOVingthe cheets

difference of charge on two adjacent sheets gives the fundamental
bounded by the Wilson 1oops For simplicity, let us first consider

representation quark charges, (see Fig. 11
P . 4 ges, (- & » delaminating the sheets in the meson case. If we redefine variables

in the effective field theary for <W(C)>, Eq. (6.9), using instead

G o-© -2=4 L) | |
2 ' 3. 2 9.3 _ of the monopole potential the ‘total potential,
1 1 1 1
0, =9 - G0 = (-5 =) > dn
"2#3)' 20 2 03 X =g (6 +ue); S ©(8.10)

0, - —) - (0, —)= (0, - — . . )

©, 2/3 ©. 2/3 ©, /3 ) _ (®.9) ~ 'then -the Eiclidean action becomes
The positions of the sheets boundgd}by the Wilson loopé are détermined o : Id3R.{%[V(;_- fgla¢ )] ) MZE s ;.;}
by minimizing the total energy; we must determine the potential from 16w
the phoduct of the three dipole sheets immersed in the monopo}e ‘ __e . fdst% (V;)z,_ Mzg'cos ;.;}
plasma. . ‘ ' : 16?

. Consider the -ener if the sheets are chosen in the "Y" configu= 22 31 2
| 8y v g +u°[ &R 5(90)
ration of Fig. 10(a). We can then consider the baryon loop to be a

: on Wilson loops C.- C, C, - -c
product of ordinary meson.w son loops Cy » Gy C, and C3 . _ ) _ i% Id3R'V;- KV¢C ; (8.11)

where C is the curve "going down" in the center of the "Y". From our
i lysis of loops, demonstrating that an electric. v o : . : o
previous analysis of meson 2oops, 8 an The:next to last term is the Coulomb energy of the dipole field

*
i Z, domai; hat in the limit :
vortex.ls a Bloch wall between 3 domains, we see that in the lim times the time. The last term in Eq. (8.11) represents the interaction

I . *
£i i f th k the baryoni rtices are 2 o
of infinte separation of the quarks, the baryonic vo 3 of the string field, that is, the total field 5f the dipole sheet plus

domain'walls, as shown in Fig. 2. plasma, V;, with the Coulomb field from the dipole sheet, Ve, which

If we con51der the conflguration where the sheets are "delaminated"
can be re-expressed,

as in Fig. lO(b) or Fig. 11, then the energy of such a "v"
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2 ‘
2.3 > 1
-(e ) 3 fd R Vx(R)- V fds .y
S AT T R Y R

2 .
e 2 .3 re 33 >
-G 1 JTR X(®) [ dS-V 87 (R-y)

2 ' ’ .
-G 220 devy - (8.12)
as=c : :

'This is the magnetic field of the flux tube integrated over the

surface S bounded by C.. If this surface S = S. is changed to SZ’

1
then using
| a8y - [ &= [ dvee(my, (8.13)
351=C BSZ=C 3V=Sl—Sz
there is an extra term in (8.13), (using Eq. 6.17),
e 22 3.2 e > N
G u / A% Vi g { 4 v-8, (8.14)
BV?SljSZ ) 8V=3182

corresponding-to the net magnetic charge within the volume V
between the surfaces S1 and SZ.‘ Since the plasma is polarized by
the dipole sheets, Qe expect a contribution proportional to the
monopole density. timés the volume. From Eq.'(6.16) for By’ for

small deformations, we have the extra contribution to the Euclidean

action,

|o
(NI
=4
)=z

MV, o - ’ T (8;15)
4 :

Therefore, there is a "harmonic" restoring force trying to prevent
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the sheets from delaminating. Such excitations of the sheets may be

phepo@ghologicélly relevant for mesonic heavy quark systems.

:Réturning to the baryon case, we therefore expect an additional
energy for the "V" configuration proportional to the area of the

triéﬁgiéfas opposed to the sum of the lengths of the .arms of the "Y".
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IX.  DUAL JOSEPHSON JUNCTION

While it is easy to demonstrate confinement in these models, it
is less easy.;o understand it. We now consider how a magnetié
séreening mechanisﬁ in Euclidean space~time is related to a dual
Meissner effect in Minkowski space-time. Since monbpoles play a-

.crucial role in Euclidean space-time, and since they.are instantons
pf_the 2 + 1 dimensional theory, they therefore correspond to
Tﬂgunnelingvevepts'which'will dominate the Minkowski space-time -
..physics. We confine our discussion to SU(2).
-fhe,na;ure of the vacuum tunneling'can be analyzed from the
A; =0 gaﬁge mopopgie; as 't + t+o« this configuration'should
bapproach the degenerate vacuua thét are being connected by the

tunneling event.. For the SU(2) monopole, the'gaugé transformation

to AE = O gauge 1329

Q

=0 = -1 i, .71
A,t =0=0AQ +2030 , 9.1)
‘with - . . ? :
i¢'7 w(r,t)
Q(x) = e .

s ) . ) ’ (9.2)

where r;¢ are polar coordinates in the x-y plane,‘and

r

wr,) = (tan P £4 P - [ERELD gpr, (9.3)

r+ t'

where K is the function in the 't Hooft—Poiyakov.ansatze for the

monopole vector potential, Eq. (5.10a). The integral term vanishes
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M ‘
like e for r > l/MW' Asymptotically,
. * AN
exp i E—(n + 1)pet, t >
% . : :
exp i %-n 67 s - (9.4)
. ) * 1
since : (n - 5)"’ t > -

"

=l t=
L
. (n + E)n, t > o (9.5)

ok .
where n is an integer. The x and y components of AQ approach pure

gaﬁges

8,0y - -1 ,4i,,3 3,.-1 i ~1
,(‘}x’Ay) Qa0 = + 2 e, e e 203,300 7,
. (9.6)
and‘theﬂscalar field appfuaches the perturbative vacuum,
. 3 . :
Q _ -1 . T
@ = Q@Q tTi‘-": £ f . . (9.7)

The magnetic flux topological charge associated with HZ(SU(Z)/U(l))
ca#;be5expressed in terms of topological charges associated with

I&(qil)); in At = 0 gauge we have

a1 - 14 - 2
22‘1 512 gijk[@-ﬁjk- e ®’(Dj® * 0 @1

- ) ‘+ . g .
= ax_ (® %) - Cdx (@ -R)
c-ct% 8 ® - C(tg—w) " ®_ 8
= %"n*(t =+ ) - 4?" ¥t = - ), : 0.8
i L)
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where C is a contour along the boundary of the x-y plame. For
the ggugé tranéformation of_Eqs. (9.2) - (9.4), the pure gauge
.vacuua_(Eq,»(9.6)) at t = * « can have non zero topoiogical charge;
if-n*(t = - ) = n*‘then n*(; =+ o) = n* + 1. Therefore, there are
an infinate number of vacuua with non éero topological chargé.: Since
_the topological.charge corresponds to magnetic charge, we have a
piétuﬁe of the tunneling process as connected two vortex-like
vacuua differing by %} of magnetic_chafge. Also, while the topological
charge is globaliy defined, the tunneling event i§ local in spacé—
time. These points will be important for our followiné analysis.
‘The set of all time independent gauge transférmationsbreaks up
into homotopy élasses (all gauge transformations in a given class can

be transformed into one another by conjﬁgation with gauge trans-

formation of the form exp(ia(;)T3), for which a(;)j:~+0). The classes

x|
correspond to elements ofvnl(U(l)) =~ Z which maps the boundary of

2-dimensional spacé onto‘the (1) subgroup of SU(2) associated with
the direction of the unbroken gauge symmetry. Gauge transformations
of thé form

o S L AT -
Q(x) = exp i 0 (—L)n_ _ (9.10)

v. x2+y2

* : ‘
characterize the n 'th class. The change in homotopy class associated

' *
with this transformation charges .the abelian magnetic flux by %} n .

This charge in flux occurs locally,

~

1 > 1.4 e “D. (@
B :fezjk[®'(’jk-e @ (Dj® Dk®)]

* st Ry . ' (9.11)

¥

B(;) + %} n
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The Hamiltonian, which is invariant under this gauge transformation,

is therefore periodic'in the abelian magnetic field! (It is in
this sense that this theory is periodic and compéct24 QED.)

Because of -this periodicity of H in B, we consider a canonical
formulation -of the theory in which B(;) are canonical cooidinates (for
the charéed gauge fields, the transverse vector potenfals are
canonical coordinates, as usuai). The unitary transformation Tn*
associated with-ﬂn* acts on the’ wavéfunctionalvby'translating the
dbelian magnetié field: (we 5uppreés writing therbthét canonical

coordinates),
™ @@ = wBE) + Lt @R 9.12)

Since [T, H] = 0, we must simulténeouSlydiagonalize T and H (as in
the Bloch wave.problem of an electron in a periodic crystal). ' Consider,

then, the wavefunctional,

b

*
© 17T 074 (R) R
v,(8] = I fare © yI[B(R) + %"n*&z(x-ﬁ)].
n =-c

(9.13)

Under the action of T, ‘

S Ew

T(ﬁ)w¢[sl =e v,lB1, (9.14)

where exp 1 %} ¢(R) is the eigenfunction of the unitary operator,A
T(R). This wavefunctional can also be expressed as
» 2 >

ijd xB -
LA xB() 4 (x) 981,

%[B] = (9.15)
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which behavescorrectly under the action.of T for ¥ a periodic
functiondl of B. This form of the wavefunctional implies that
¢ and B are canonically conjugate,

2

[6G,0), BERO] = 167G, o (918)

The abelian magnetic and transverse electric fields can be expressed

in terms of ¢,27

-
B 5t » : (9.17a)
tr_ 2 |

B, = 32, o (9.17b)

gif- - 2 o - o (9.17¢)

which are the dual of the relations between the fields and the
ordinar& vector potential.

Instead of.éonétructing a trial variational wavefunctional,-‘_
we will physically motivate an approximation to the ground state
energy. Consider';he matrix elements of H with. the wavefunctional,
w¢[B,---],

IDB..,w;[B,...]fd xH&)%[B,...], - (9.18)

where the dots refer to the other canonical coordinates. ‘There are

*
tunneling terms that change n , and terms that do not. If we consider
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only tunneling between nearest neighbor vacuua, n >+ n * 1, then,

using simplified‘notation.where

2 s

. l¢>=¢¢[B,-'--], = (9-19)
Lam k)
. 175“ ¢|n* >
|‘¢ > Ze ’ (9.20)
with '
[n> = $[BG) + ‘{?" el ERI, (9.21)
we have ' _ ' ) : o
<¢|ujp > = fdzx(s --£ 3 2 cos % +()); ’ (9.22)
: 16w .
here ¢ is.the eﬁergy density in each homotopy sector, and
* e2 2
<a't 1| H @) [a>=- M ' (9.23)

167

is the tunneling amplitude which can be'computed either from the
Euclidean functional integral,33 or'using a functional WKB like
approximation.25 Apart from their contribution to the tunneling
amplitude, the only confgibution of the heavy charged véctor fieids
and heavy neuéral'écalar field to the long distance effective
Hamiltonian is vacuum fluctuation energy, and this will Be éubtracted.
out. The dominant non tunneling contribution to thelong distanée
effecﬁive-Hamiltonian is just theenergyof the long range abelian

fields. We therefore consider the energy functional

. , .2
B(p = [ x50 v0’ + 5 CD

2 2 un
M° cos —¢} . (9.24)
16m2 € : ) :
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Static quark sources impésg én external glectric field on this
system which can affect the ¢ distfibqtion. For static quark
sources of apéiiaﬂ‘charge i'% (corrgéponding to fundamental repre-
sentatioy quarks):ap X = % %, the eneégy functional becomes

e A2, L 28,2
E(¢)—fdxv 5 (ay) +35 (- ax)»

: 2
1 342 2 4 :
+3 GH® - 12#2 M cos(T(o+ )}, (9.25)

" where

-1,x - R/2

EXRI2) _ an )1 (9.26)

e -1
¢ = —E-[tan (

is the potential from two steady currents. The equation for ¢ that
minimizes the energy in the presence of the duark sources can be
written in the form,

3B Ly xE=-2 Mz_sin-lgl(q_)+¢),‘ 9.27)

where we.have'used Eé. (9.17) for E and B in-térms of ¢. Erom this
equation, (which we could have written by anaiyﬁnally continuing the
Minkowski space-time Equation (6.10) using Eq. (6.17)), the

physics can be underétood. The right hand side represents a
magnetic current. From our analysis of the topological charge ve
had a picture of éhe tunneling process as connecting two vortex-
like vacuua differing by %f—of magnetic charge. Therefore

associated with the tunneling is a magnetic current. The tunneling
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current depends on the external potehtial ¢. Since the tunneling
process is a magnetic current, it induces electric field loops in

the plane. The term in the energy density associated with coupling
2

the degenmerate states through tunmeling, - € M2

] . " 167 .

the energy of the system, while the fields induced by the tunneling

4y

3 cos :;¢, lowers
process increase the energy of the system. The external Coulomb field
induces the tunneling currents and. the associated fields. The
system must minimize fts total energy by Balancing these contributions.
It can do it by having the electric loops from the tunneling‘pr0cesses.
cancel the external Coulomb electric field almost everywhere, leaving
an electric flux tube. The tunneling current diétribﬁtidn,

_ez 2

J = 5 M sih(4e(y)tan_le
16w

il

_(9.28)

goes up on one side of the flux tuﬁe and down on the other, vamishing
in the middle of the flux tube.

The physics of the electric flux tube is dual tobﬁhg physics of
a magnetic flux tube in the insulating layer of a .loséi:hsorijunction.6
Consider a 2-dimensional élane (x-y plane) which is to be thought of
as a thin insulating layer.34 Above and belowvthis.ih;uiéting pléne
consider superconducting materials. If a monopole- aﬁfi—monopole
pair is placed in the insulating plane, we expect the:magnetic field
to be essentially confined to the iﬁsulating.piane since éhe magnetic
field can not penetrate the superconductors above and below the plane;
We might therefore expect a 2-dimensional Coulomb fiéld confined to.
the insulating plane. However Cooper pairs can tunnel from one .

superconductor through the plane to the other superconductor.(Because

i
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~each supethnductqr is a condensate of Cooper pairs, states formed
by adding_or subtracting Cooper pairs are degenerate in enefgy.) The
tunneling of a Cooper pair is a transfer of electric charge, that is,
an.elect;ic current ;hrpugh the_ingulating.plané. Such a current
-induces magpetic loops in_the.insulating plane, The system
minimi;es}its.;otal energy by. having.these tunneling processes
correlated'so that .the magnetic loops iqducéd by the tunneling'
processes.cancel the Coulomb magnetic field except for a magnetic
flux tube.’ |

in the Josephson junction case, ¢ is interpre;ed as the phase
?Hifféreﬁée of the wavefuhcfions ofxéhe two.gﬁperconductorg. One
Lfirsﬁ thinks iﬁ:a non-gauge invafiént Qéy in'ﬁhich»eéch superconductor
is iﬁ one of ifsdegéne;étevaé;uaﬁééociated'Qitﬁ the spontaneous
symmetry breaging gtoun&'étafe, the diffetéhgvvacuua cor:espoﬁding
to different'vaiuesAdf the'phase of the wavefunction. The two
superconductors can have different directions of spontaneous symmetry
‘breaking; tunneling is a manifestion of this phase difference, the
current being pfoportional to éin¢§x,y). .To make the analysis

gauge invariant, the phase difference ¢ must be replaced by
¢ > ¢'-efAudxu, v o : (9.29)

where the line integral is taken from one superconductor through
the insulator to the correéﬁonding point in the other supercdnductor.
This constraint of gauge invariance implies relations between

changes in the phase difference and fields,6
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L I . (9.30)

These relations are dual to the equations for thé‘Polyakov model,

as was first recognized by Hosatani.
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X. FINAL REMARKS

.The 't Hooft commutation relations.in 2 + 1 dimensions imply
that confinement arrises from<M > # 0. 1In the superconducting
éhase M creates a magneticvvorteﬁ soliton excitation in the 2-

.dimensional plane'of.space, in Minkowski.space—time; in Euciidean
space-tlme the world lin° of this soliton is a magnetlc vortex 11ne‘
The transition to the confinlng phase is then characterlzed by a
vortexcondensate;or in Euclidean space—time a "ZN fluxon'spagetti

vacuum." Such a spagetti vacuum restores the abelian gauge symmetry,

as was shown explicitly by Samue1.24 However, such a spagetti vacuum

qees not, in. and 6f itself, give confinement.

Our analysis of the vacuem of the SU) + U(le—l'models
suggests there should still be tunneling processes even in the'
FSuperconducting phase where U(l)N_1 is sponteneously broken. The
monopole instatons in the superconducting phase_wiil no longer
interactvlike a plasma, thdugh. Diamagnetic‘supercurrents'will
‘screen the monopole's' abelian'fieid into.fqu tubes; the monopole
instantons are "confined" by vortices in the superconducting
phase. (Of course an'adjointrrepresentation 't Hooft ioop, does
not have an area law since dymanical.adjoint representation
mdnoéole excitations can screen it. This is why an adjoint repre=

sentation magnetic vortex is unstable;) A fundamental representation
Wilson 1oop.in the superconducting phase is screened by.the adjoint
representation electric charges of the vacuum condensate. The vaceum
monopoles can now only interact with the Wilson loop if- they ere

within this screening length. They no longer interact with the

—62-

Wilson loop as if the sheet bounded by C was a magneitc dipole
sheet. The only effects of the vacuum tunneling in the supercon-
ducting phase, then, are possibly very small contributions to
coupling and mass renormalization. When the abelian gauge
Syﬁmetry is restqred by the'spagetti vacuum, however, the

monopoles are liberated. It is the. correlations of the monopole

" instanton plasma that confines quarks.

The SU(N) > U(l)N_1 models in 2 + 1 dimensions have the
confinement features we expect of the pure SU(N) gauge theories

without the additional scalar fields. These models are explicit-

in that there is a well defined justifiable semiclassical approximation

method; all connections are systematically calculable, and for

appropriate ranges of the parameters can be shown (in principle)
to be small. ‘

't Hooft8 has recently shown that a unitary like gauge can be
chosenvfor the pure SU(&) Yang-Mills theory which picks out as the
relevant degrees of freedom in 2 + l.dimensions ekactly those of
the hodels we have considered, N-1 abelian gauge fields interacting
with monopoles. The monopoles arise due to points in space whete
this gauge fixing perscriptioe is singular. Just selecting a set
of.dynamical variables.does not insure the dynamics is simple in
terms of these.variabies,'though. Because of the difficulty of
trying to understand asymptotlc freedom in terms of these variables,
't Hooft also considers 1ntermed1ate gauges that 1nterpolate
between this unitary gauge, appropriate for the long distance
physics, and ordinary renormalizable gauges appropriate for theb

short distance physics. Such gauges, though, introduce additional .
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"phantom soliton"‘deg£ees'of freedom that would play an important
role in the transition region. Our models with explicit scalar
fields, hqwéve:, suggest that confinement may be easily understood in
terms of_the_degfees of freedqm.qf"t Hoof;'s‘unitary gauge.. We there-
fore expect these models may be go;d éffgctive field theories of the

long distance physics of the pure gauge theory, and thus .offer a

-good description of the physics of confinement in-Z + 1 dimensions.’
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FIGURE CAPTIONS

Lk
Magnetic ZN domains with Bloch wall electric vortex along the

‘curve C of the Wilson loop.

*

:23 domains with electric vortex Bloch walls in a baryonic

configuraﬁion.

:

$U(3)zweigh£ diagram for (anti) fundamental and adjoint

Yy

Sheet éf.discontinuities, across which @ jumps by e . ,
bounded by a ﬁéénetic vortex looﬁ aloﬁg the curve C*

of the 't Hooft loop. A_Wiison loop on a Euclidean time
siiée measures the magnetic flux through C.

Dirac strinég C* and C*ﬁ 6n a Euclidean time slice through

a Wilson loop C.

“Contours of Dirac stfings on a Euclidean time slice through a

Wilson loop C. A branch cut extends between the branch points

where C pierces the plane of the slice. The discontinuity

across the branch cut is compensated, for the contour at left,
by the physical discontinuity across the electric flux tube.

Folding up Euclidean Wilson loop and continuing to

Minkowski space-time. In'top figure there 1is a physical

discontinuity across the sheet of the Euclidean Wilson loop

(c.f. Eq. 7.28a); in botton figure the sheet of the former

Wilson loop forms a surface of electric flux between magnetic

domains. In_Minkowski space-time, the time evolution of a
spacial Wilson loop creates a magnetic bubble domain.
Baryoﬁ loop{ In Miﬁkqwski space-time‘threg fundamental -
representation ﬁuarks are‘created, propagate in time at a

fixed spacial separation (along world lines Gl’ CZ’ C3), and

later annhilate.



Fig. 9.

Fig. 10.

Fig. 11.
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Superposition of independent Coulomb fields of U(1l) x U(1)
gauge fields between three fundaméntal representation quark
charges.’

Possible configurations for the collapse of Coulomb fields
into strings due to vacuum monopoles.

Cross sectional view ofvsheets §f three abelian Wilson

loops. N
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FIGURE 2
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