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Abstract 

The semiclassical perturbation (SCP) approximation of Miller 

and Smith [Phys. Rev. A 12, 17 (1978] is applied to the scattering 

of atoms and molecules from crystal surfaces. Specifically, 

diffraction of He from LiF, and diffraction and rotationally 

inelastic scattering of H2 from LiF are treated, and the SCP model 

is seen to agree well with earlier coupled-channel and quantum 

sudden calculations. These tests of the SCP model are all for 

"soft" interaction potentials, e.g., of the Lennard-Janes Devonshire 

variety, but it is also shown that the model behaves correctly 

in the limit of an impulsive hard-wall potential function. The 

SCP picture thus appears to have a wide range of validity for 

describing the dynamics of gas-surface collisions, 
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I. Introduction. 

The understanding of the gas-surface scattering interaction 

has been the focus of considerable research recently by both 

h . d . 1. 1 
t eor~sts an exper~menta ~sts. Experimental techniques have 

advanced to a point where the energy distribution of the final 

states of incident gas particles scattering off of a solid surface 

can be determined, and at least part of the recent theoretical 

interest can be attributed to the interesting questions generat.ed 

2-7 by such experiments. In particular, measurements of rotationally 

inelastic scattering of polar and nonpolar diatoms off of ionic 

6 7 crystal surfaces ' has provided excellent data on final rotational 

state distributions from which theoretical interpretation of the 

form of the interaction potential, as well as the dominant mechanisms 

for energy transfer, can be made. 

Although coupled,..channel quantum scattering calculations of 

diffractive and inelastic gas .... solid collisions are obviously· the 

most rigorous theoretical treatment of the problem, they are not 

feasible except at low collision energy and for the lightest gas 

species (e.g., He, H
2
), both qualifications tending to minimize 

the number of strongly coupled channels, Because of their expense, 

it is also usually not possible to carry out extensive parameter 

variation in an assumed potential function in order to fit calculations 

to experiments. 

It is thus desirable to have at hand reliable theoretical 

models that are relatively easy to apply to a variety of physical 

systems, Also, it is clear that one must resort to approximate 

.. 

., 
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models if one wishes to include the dynamical effects of surface 

motion (i.e., phonons). 8-ll To this end a number of workers have 

recently considered various kinds of sudden approximations to 

describe the gas-surface collision, and in this paper we consider 

another simple but often quantitatively reliable dynamical model, 

the semiclassical perturbation (SCP) approximation as developed 

by Miller and Smith. 12 , 13 The SCP approximation is particularly 

appealing because a large part of the calculation can be carried 

out analytically, thus providing more insight into the relation 

between the "input", the potential function, and the "output", the 

transition probabilities. Appli"cation14"'"16 of the SCP model to a 

variety of phenomena in inelastic scattering and other aspects of 

polyatomic reaction dynamics has shown it to have a wide range of 

validity. 

The purpose of this paper is to demonstrate the extent to 

which the SCP approach can be useful for describing gas.-.surface 

scattering phenomena. The accurate coupled~~hannel calculations 

by Wolken17~19 on diffraction of He from LiF, and diffractive 

rotationally inelastic scattering of H2 from LiF, provide excellent 

data for testing the SCP apprax±mation, and these applications are 

presented in Sections II and III. (This. in fact, is one of the 

important uses of accurate coupled-channel calculations, namely 

to produce benchmarks to test and calibrate simpler dynamical 

models.) The results of the SCP approximation are in general in 

excellent agreement with Wolken•s accurate coupled~hannel 

calculations. Section III also describes the results of SCP 
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calculations on the H2-LiF system at energies that give significant 

10 rotational inelasticity, the same system treated by Gerber et al. 

within the sudden approximation. The results of the SCP model 

agree well with those of the sudden approximation, which in this 

case should be accurate. Finally, Section IV concludes and discusses 

possible further extensions. 
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II. Atom-Surface Scattering in the SCP Approximation. 

The Hamiltonian for an atom of mass m scattering from a 

rigid surface is 

2 
H = ~m + V(x,y,z) (2 .1) 

and for use of the semiclassical perturbation (SCP) approximation 

the potential is divided into a zeroth order part plus a 

perturbation, 

V (X, y, Z) = V Q (z) + V1 (x, y, Z) (2. 2) 

(The z coordinate is perpendicular to the surface; i,e., the surface 

is in the x-y plane.) We choose the potential to be of the form 

originally proposed by Lennard-Janes and Devonshire
20 

and later used 

17..-19 . 
by Wolken (and by many others) in his coupled-channel calcula- · 

tions. The zeroth order potential is a Morse function, 

(2.3) 

and the perturbation term is 

vl (x,y,z) = -28De- 2etz[cos(21Tx) + cos(21TY)] 
a a 

(2.4) 
X y 

where a and a are the lattice spacings, D the dissociation energy 
X y 

of v
0

(z), and B the dimensionless coupling parameter that determines 
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the strength of the surface corrugation. We have used the same 

potential parameters as those used by Wolken for the (001) face of 

the LiF crystal in both 
17 . 18 

the atom. (He) and d~atom (H
2 

,D
2

) cases 

studied here. 

The S-matrix element, i.e., amplitude, for scattering to the 

final diffractive channel characterized by quantum numbers (n ,n ) 
X y 

(channel (0,0) is the specular channel) is given within the SCP 

approximation by 

s 
n n ,.00 

X y 

a 

l
y -illkx x0 

. dy0 e 

0 

-illk y 
y 0 

e 

where llk and llk are the changes in the x- and y-momenta (in 
X y 

units of h), and are. related to the diffraction order quantum 

numbers by 

llk 
X 

2rr n /a 
X X 

llk = 2TI n /a y y y 

(2.5) 

(2.6) 

n
0 

is the zeroth order WKB (elastic) phase shift determined by the 

potential v0 , and n1 is the first order phase shift given by 

00 

= - Jdt,V1 (x(t) ,y(t) ,z(t)) . (2. 7) 

..m 

In Eq. (2. 7) the trajectory (x(t) ,y(t) ,z(t)) is that determined 

th 
by the zero order potential v

0
; i.e., z(t) is the inverse 

function of 



.. 
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dz' {! [E-V (z')] }-l/2 
m 0 

k 
x(t) = x 0 + mx t 

k 
y(t) = Yo + ~ t 

(2.8a) 

(2.8b) 

(2.8c) 

where k and k are the averages of the initial and final values 
X y 

of the momenta. 

The above equations take on the more standard form of inelastic 

scatt·ering within the SCP model if one introduces the angle 

variables (qx,qy) that are conjugate to the quantum numbers 

(n , n ) , 
X y 

q = 21ry
0
/a 

y y 

Equation (2~5) then becomes 

(2.9a) 

(2.9b) 

= e 2inoj21T dq 
X 1

21T ~ -~n q -~n q 2in
1

(q ,q) e ·XXe yye X y 
21T 

0 
21T 

0 (2.10) 
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and if one introduces the explicit form for v
1 

of Eq. (2.4), the 

expression for the first order phase shift becomes 

where 

We note also that 

k 
X 

k y 

and that 

00 

J dt e -Za.z(t) [cos(q +w t) 
X X 

+ cos(q +w t)] y y 

w 
X 

21Tk I (a m) 
X X 

w = 21Tk /(a m) y y y 

= k i + ~k = 
X 2 X 

k 
i +~k = = 

y 2 y 

k 
i 

k sinS = 
X 

k 
i 

k sinS = y 

ki + 1Tn /a 
X X X 

k 
i 

+ 1Tn /a 
y y y 

cos<P 

sin<P 

(2.11) 

(2.12a) 

(2.12b) 

(2.13a) 

(2.13b) 

(2 .14a) 

(2.14b) 

where E = h~2/2m is the initial translational energy of the atom 

and (S,q,) the polar angles of the incident beam. 

.. 
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Inserting Eq. (2.11) into Eq. (2.10), it is quite straight-

forward to show that the probability for transition to the channel 

(n , n ) is 
X y 

p 
n n ,00 

X y 

J (A ) 2 J 
n x n 

(2.15) 
X y 

where the arguments, A and A , of the regular Bessel functions are 
X y 

A = 2BD 
X 

-2az·( t) 
e cos(w t) 

X 
(2 .16a) 

A = 2SD 
y 

e-2az{t) co~(w t) 
y 

. (2.16b) 

For the Morse potential v
0

(z), the integral which defines z(t), 

Eq. (2.8a), is evaluated to give 

-az(t) 
e 

E -
.l.(0) /[cosh(av zt)-A] 

where A= (l+E/D)-l/2 , and v is taken to be the average of the 
z 

(2.17) 

initial and final values of the velocity in the z-direction. With 

Eq. (2.17), the collision integrals of Eq. (2,16)· are evaluated to 

give 



A = 
X 

4rr8 
a.v sinh(rrw /a.v ) 

Z X Z 

Ew 
{ _x 
a.v 

z 
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wx -1 
cosh [a.v (rr-cos A)] 

z 

w 
+IDE sinh [ ! (rr-cos-1A)]} 

a.v z 

and similarly for A with w + w . 
y X y 

(2.18) 

Equations (2.15) and (2.18) are the final result of the SCP 

calculation. For small 6 they give first order diffr•ction 

2 probabilities proportional to 8 and are essentially the same as 

a dis tor ted wave calculation. Simila'r to a sudden approximation, 

however, the SCP e·xpres.sion also describes highe:r ord·er di.ffraction 

processes. The sudden approximation, in fact, is obtained if one 

sets w = 0 in Eq. (2 .18-) (and w = 0 in the corresponding 
X y 

equation for A ) • The SCP result· is thus in principle better than y 

the sudden approximation since it allows, in an approximate fashion, 

for some motion in the x and y direct.ions during the collision. 

Figure 1 compares the results given by the SCP model (i.e., 

. 17 
Eqs. ( 2.15) and (2 .18)) to Wolken's coupled .... channel quantum calcula.tJ.ons 

for specular, first-, second-, and third-order diffraction intensities 

as a function of the surface corrugation parameter B. The agreement 

is quite good over the entire range of 6; this is particularly 

gratifying with regard to the second and third order diffractive 

transitions. Figure 2 shows a similar comparison for the four 

individual first order transitions. The individual components of 

the first-order diffraction are in good agreement with the exact 

. 17 
quantum results. The experimental results of O'Keefe 21 et al., 

.. 
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indicate that the intensity of the (0,±1) peaks are considerably 

larger than the (-1,0) peak, to which both sets of calculated results 

agree. Finally, the SCP approximation also predicts decreasing 

specular intensity with decreasing 8., in agreement with the trend 
1 

predicted by the coupled-channel calculations
17 

and the experimental 

b 
. 21 o servat1ons. 

In concluding our treatment of atom-surface scattering it is 

interesting to compare the SCP expression, Eqs. (2.15) and (2.18), 

which has used the "soft" Lennard-Janes Devonshire potential, to the 

semiclassical expression (which is extremely accurat.e) for scattering 

from a hard-wall potential. For the case of normal incidence and 

th 
high energy, the semiclassical expression for the n order 

diffraction probability, for a one~dimensional hard sinusoidal surface 

. 22 
lS 

p = J (2hk) 2 
n,O n 

(2.19) 

where k = mv/h and h is the amplitude of the sinusoidal hard-wall 

potential. This is seen to be the same form as the one~d±mensional 

SCP expression, if one can make the identification 

A +-+ 2hk (2,20) 

From Eq. (2,18) it is not hard to show that in the high energy limit 

A - A becomes 
X 

A ~ 2 B k + constant 
a 

(2 .·21) 
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and consistent with higher energy (i.e., large k) one may neglect 

the constant (which is proportional to the well-depth of the Morse 

potential). To complete the comparison we identify the hard-wall corrogation 

parameter h as one half the difference between the classical turning 

points in the Lennard-Jones Devonshire potent.ial for the 

on-site and off-site locations; i.e., 

(2.22a) 

where z+ and z are the roots of the equation 

D((l±28)e-2o.z- 2e..-az] = E (2.2.2b) 

In the limit of high energy and small 8, it is easy to show that 

Eq. (2.22) gives 

8 h=­a 

so that with Eq. (2.21) one has 

A = 2hk 

and the identification in Eq. (2,20) is indeed established. In 

addition to working well for soft potentials, one thus sees that 

the SCP approximation behaves correctly for hard-wall potentials 

and impulsive dynamics. 



-13-

III. Diatom-Surface Diffraction and Translational~Rotational Energy 

Exchange. 

The direct scattering of a diatomic molecule off of a solid 

surface results in specular reflection, diffraction, and inelastic 

processes associated with energy exchange between the translational 

degree of freedom of the incoming particle, the various internal 

degrees of freedom of the diatom, and the phonon modes of the 

solid. To illustrate the potential usefulness of the SCP approxi-

mation for describing diatom-surface scattering, we consider here 

the specific case of diffractive and rotationally inelastic 

scattering of H2 off of a LiF (001) surface, and compare these 

results with those of two previous theoretical treatments of the 

10,18,19 
same system. The large amount of experimental and theoretical 

data available on H2 scattering off of LiF makes it a particularly 

appealing system for testing our dynamical model. 

The results of calculations using the SCP approximation are 

first compared with the coupled~channel quantum calculations of 

Woiken, who considered _mostly ~j=O diffraction intensities of H
2 

and 

D . f f f L . F- 18 ' 19 N h S CP . . . d 
2 scatter1ng o o 1 . • ext, t e · approxllllat1on 1s teste 

against the data of Gerber et a1~10 who studied rotationally 

inelastic H2-LiF scattering using the sudden approximation. Since 

the first vibrational level of H2 lies weli above the energy range 

·of interest in both of these studies, H2 is treated as a rigid rotor. 

Also, the coupled-channel calculations of Wolken
19 

strongly support 

the argument that exchange of energy between H2 and the phonon modes 

of the solid is unimportant in reproducing many of the observed 

experimental results. and thus phonon modes have been neglected 



-14-

in all of these calculations. 

The SCP S-matrix element for a transition from initial rotational 

state j 1 , with space-fixed z-axis projection m
1

, to final rotational 

state j
2 

and m2 , and final diffraction channel nx and n ' y 

by 

1
21T dqx 

21T 
0 

-iq n 
X X e 

2rr d~ -iilm~ 2in1 

1 21T e e 
·o 

21T d 

l J 
21T 

0 

...,iq n 
e y y 

is given 

21T 

1 dqj 
21T e 

0 

( 3 .1) 

where, as before, the q's are the t=O values of the angle variables 

for the various degrees of freedom, and the first order phase 2n
1 

is 

the t.ime integral of the perturbation. We use the same potential 

as that used by Wolken for his coupled-channel calculations on the 

18 19 
H2-LiF system, ' 

V(x,y,z,8) = V(8)·V(x,y,z) = [l+I..'P/cos8)]•[V0 (z)+V1(x,y,z)] ,(3.2) 

where V(x,y,z) has the same form as in the atom-surface interaction 

[Eqs. (2.2)-(2.4)] but here describes the portion of the diatom-

surface interaction which is averaged over the orientation and the 

vibrational amplitude of the diatom. V(8) describes the orientation 

dependence of the potential, where e is the angle between the z-axis 

(normal to the surface plane) and the diatom bend, >.. determines the 

-iiljq. 
J 
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strength of the dependence of the potential on the rotational motion 

of the diatom, and P2 (cos8) is the usual Legendre polynomial. This 

form ·of the interaction potential assumes no <P dependence (azimuthal 

angle) and thus there can be no change in the component along a 

space-fixed z-axis of the rotational angular momentum: 

27T 

.J 
0 

dq 
m 

27T 

-i~m ~ 

e 

Expanding the product of factors in the potential gives 

(3.3) 

(3.4) 

the last three terms account for diffraction, rotational inelasticity, 

and the coupling of diffraction with rotational inelasticity,· 

respectively, and are treated as the perturbation. As in the treat-

f f . h th d . . ment o atom-sur ace scatter1.ng, t e zero or er traJectory 1.s 

calculated from v
0

(z). Identifying 8 as the angle variable q., the 
J 

first order phase shift is given by 

co 

= - J dt [V1(x(t),y(t)z(t)) + .A'P2(cosq/t))V0 (z(t)) 

--00 

+ .A'P2(cosqj(t)) v
1
(x(t),y(t),z(t))] (3. 5) 
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x(t), y(t), and z(t) are given as before in Section II, and 

where 

q. ( t) 
J 

q. + W. t 
J J 

w. = B(2]+1) 
J 

Substituting in these trajectory functions gives 

=A cosqx +A cosq +A· cos(2q.) 
X y y J J 

+A+. cos(q +2q.) +A-. cos(q .,-2q.) 
XJ X J XJ X J 

+A+. cos(q +2q.) + A~j cos(q -2q.) 
YJ y J y y J 

'"here the collision integrals are 

and similarly for A , 
y 

A. 
J 

3A.'D 
--4-

00 

·jdt 

00 

J dt e-Zaz(t) cos(w t) 
. X 

[e-2az(t)_2e-az(t)] cos(2w.t) 
J 

(3. 6) 

..,.. 

(3. 7) 

(3. 8a) 

(3.8b) 
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e-Zaz(t) cos(2w.±w )t 
J X 

(3. Be) 

Because of the mixed terms in Eq. (3.7)~-i.e., the last four 

terms--the integral giving the S-matrix element, 

2TT 

l~TT dqX J2TT ~ 
2TT 2TT J 

dqj 

2TT 
0 

-in q -in q -i6jq. 
e x x e y y e J 

X 

0 '0 

2 in ( q , q , q . ) 
X y J 

e (3. 9) 

cannot be evaluated to give a simple product of Bessel functions. 

This can be dealt with by using the trick of Miller and Smith:
12 

one 

defines the following variables 

Q~ = 2q.-q Qx = 2q.+q 
J X + J X 

o:: 2q.-q qY = 2qj+qy J y + 

and inserts for each new vari·able the following integral representation 

of the delta function expanded in a Fourier representation, 

2TT 

J 
0 

00 

I 
k=-'00 

-ik(Q~ -2qj *qx) 
e (3.10) 
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with a similar additional two integrals for qY. The S-matrix 
± 

element for diffraction and rotational inelasticity can then be 

written as a sum of products of Bessel functions, so that the 

transition probability is 

x J +k -k (A ) Jny+k
2
-k

4
(Ay) J Ai -k -k -k -k (Aj) 

nx 1 3 x 2 1 2 3 4 

(3.11) 

where the various collision integrals are given by Eq. (3.8). 

Evaluation of these integrals gives the following expressions:. 

A' 
4'11'8(1 + 4) w E wx -l w l 

A = { (.2......:-) cosh [-=('IT-cos A)] + /ED sinh [ x('IT-cos- A)]} 
X 'ITW X Cl V Z ClV z CJ:V z 

a.v sinh( -) z cxv 
z 

(similary for A ) 
y 

(3.12a) 

l'ITA' 2w. _1 2w.E 2w. 1 
A .. _ ___;;___;;-~- {/ED sinh[~('IT-cos A)] - (_l_) cosh[--::J-('11'-cos- ).) J} 

j 2'1TW ClV Z Cl V Z fiV Z 

2cxv sinh(~) 
Z ClV 

z 

(3.12b) 

'1/ 
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+ 37T A I 
A-. = ------~~~----~-

XJ 7T(2w.±w ) 

(2w.±w )E 
{ J .X 

dV 
z 

2w.±w 
cosh[ J x (7T-cos- 1A.)] + lED 

av 
2av sinh( 1 x ) 

z av 
z 

z 

2w. ±w 
1 sinh[ J x (7T-cos- A.)]} 

av z 

+ 
(similarly for A-.). 

YJ 
The four infinite sums in Eq. (3.11) may 

appear formidable, but one can easily show that only the 0, ±1 

terms contribute significantly. Thus, Eq. (3.11) provides an 

(3.12c) 

extremely efficient means for calculating intensities of rotational 

and diffractive transitions. 

Figure 3 shows the intensity of the specular, first-, second-, 

and third-order diffraction channels (with 6j=O) as a function of 

the surface corrugation parameter B. The parameter A.', which 

determines the strength in the potential of the orientation dependence 

18 
of the diatom, is kept constant at 0.24. The calculations were 

performed assuming an initial distribution of ortho to para hydrogen 

of 3:1. Also, the SCP results were normalized such that R
0 

= 1 at 

B=O. Comparison of the resulis of the SCP approximation with the 

coupled-channel calculations of Wolken19 shows quite good agreement 

with, as in the He/LiF comparison, the deviation between the two sets 

of results less than 5%, except at the very largest values of S. 

The effect of increasing the strength of the perturbation is also 

shown quite clearly in Figure 3, where the deviation between the SCP 

versus the coupled-channel results for R1 and R11 increases with S. 

Table I compares the SCP calculations with the coupled-channel 
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calculations of Wolken
19 

on H2 versus n2 scattering from LiF at 

B = 0.003. These calculations were performed at the same de Broglie 

wave length for each isotope, with an incident energy of n2 at half 

the incident energy of H2 . As can be seen, all of the differences 

between H2 and n2 observed in the experiments of O'Keefe.~ al.,
21 

18,19 
and predicted by the calculations of Wolken, are reproduced 

(at comparable accuracies) in the SCP approximation (e.g., increase 

in higher order diffraction with decrease in spetular reflection for 

n2 compared to H2). In both the H2 and n2 calculations at B = 0.03, 

the SCP approximation predicts a larger value for R
0 

than the exact 

quantum calculations, with a concomitant lower value for R
1

. It 

should be noted. however, that this particular B value was chosen by 

Wolken such that the exact quantum calculations matched the 

experimental data for R
1

. The bottom of Table 1 compares SCP and 

exact quantum for the one rotationally inelastic transition intensity 

reported in reference 19. The increase in rotational inelasticity 

of n2 over H2 is seen to-be not quite as dramatic as predicted by the 

exact quantum calculations, but it is still significant, 

Finally, we focus on the accuracy of the SCP approximation in 

predicting rotational inelasticity. The report by Gerber,~ al., 

on rotationally inelastic molecule-surface scattering in the sudden 

approximation discusses the separability of rotational and diffractive 

transitions for a potential with low corrugation (small B) and weak 

dependence on orientation of the diatom (small A'). 
10 

Their tabulated 

data showing 6j .transitions for different diffraction channels 

demonstrated a reasonably strong independence of the relative 
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rotapional distribution on the diffraction channel, at the particular 

energies (0.5-0.9 eV) and B values (0.005-0.03) used in their 

calculations. At these particularly small values of B, the term in 

the potential which couples the orientation dependence with the 

dependence on surface corrugation (i.e., the term which contains the 

product 8A'), can be neglected. In this case, Eq. (3.11) reduces to 

2 
I sn n j +OOj I 

X y 2 1 
= J2 (A) J2 (A) J2 ~; (A.) 

n x n y ~ J 
X y 2 

(3 .13) 

where the only modification of the collision integrals of Eq. (3.8) 

is that A1 is set to zero in Eq. (.3.8a). Equation (3.13) shows 

explicitly the decoupling of rotational inelasticity and diffraction. 

Figure 4 shows the probability for rotational transitions, 

P. . , summed·over all diffraction channels n and n , as a function 
J 2+J 1 X Y 

of final rotation number j
2

, where 

p. . 
J 2+] 1 

= 
n ,n 

X y 

2 
I sn n j +OOj I 

X y 2 1 
(3.14) 

and S . ~o. is calculated using Eq. (3 .13), The results of the 
nxny] 2~ Jl 

SCP approximation are compared with those of the sudden approximation 

10 
as formulated by Gerber, et.al., at two different energies (0.5 and 

0.7 eV) and three different B values (0.03, 0.01 and 0.005) . 

Rotational inelasticity for the diffraction summed rotational 

probabilities is seen to increase as B is decreased. This is primarily 

due to the dominant individual rotationally inelastic transition 
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probabilities for the n ~n =0 diffraction spot, which increases with 
X y 

increasing S. We do observe, however, that for n ,n rO, rotational 
X y 

inelasticity decreases with decreasing B, in agreement with the 

10 
observation by Gerber, et al. The agreement between the SCP 

and the sudden approximation is slightly better at 0.5 eV than at 

0.7 eV. As energy is increased, more probability is shifted into 

the higher order diffraction channels as more of these channels become 

open. The same set of diffraction channels was consistently used at 

10 
all energies in the calculations based on the sudden approximation, 

and we have used the same set here to facilitate comparison of the 

results. At least part of the discrepancy at higher energies is 

due to neglect of some of these higher order channels. Also, one 

would expect the SCP approximation to increase in accuracy as the 

probability for rotational inelasticity (and thus the perturbation) 

decreases, which is the observed trend for decreasing energy. 

Increasing B also decreases the probability for diffractive summed 

rotational inelasticity, which is one reason why the agreement 

between the SCP and sudden approximations is seen to get better with 

increasing B, at all energies. 
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IV. Concluding Remarks. 

The purpose of this paper has been to show the usefulness of 

the SCP approximation in describing gas-surface dynamics. The results 

presented in Section II are in excellent agreement with coupled-

channel quantum calculations-which describe specular and diffractive 

scattering for a particular atom-surface system. Section III has 

extended the atom-surface description to include the rotational degree 

of freedom of a diatom-surface scattering event, which is valid when 

the diatom can be treated as a rigid rotor. As in the atom.,-surface 

case., comparis.on with experimental observation and previous calcula-

tions for a particular scattering system show both qualitative and 

quantitative agreement. These results imply that the SCP approximation 

can be useful on a predictive basis. 

It is clear how the model can be easily generalized to include 

the vibrational degree of freedom of a diatomic molecule, but more 

challenging is the generalization to include vibrational degrees of-

freedom of the surface atoms, i.e., phonons. Work is in progress 

with this specific goal, and to the extent that it is successful we 

plan to apply the SCP approach in conjunction with the semiclassical 

16 
multichannel branching model to describe sticking probabilities and 

accommodation coefficients, i.e., phenomena that involve energy 

transfer between the surface and the gas molecules, The dynamics 

of surface phenomena is sufficiently complex that we believe simple 

models of the SCP variety have much to offer to the understanding of 

these processes, 
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Table 1. Calculated and observed intensities for the H2(o2)/LiF(001) 

scattering system at 6 = 0.03. 

(ortho:para=3:1) 
Incident Energy=104 meV 

Exact b 
SCP Quantum 

0.526 

0.023 

0.049 

0.161 

0.394 

0.062 

0.469 

0.021 

0.060 

0.189 

0.459 

0.067 

D2 (ortho:para=2:1) 
~~=50°, Incident Energy=52 meV 

..... 
Exact b 

SCP Quantum 

0.254 

0.025 

0.048 

0.220 

0.513 

0.187 

0.176 

0.048 

0.114 

0.221 

0.604 

0.185 

SCP 

1.0 

0.043 

0.092 

0.306 

0.744 

0.118 

SCP 

1.0 

0.098 

0.189 

0.866 

2.020 

o. 736 

Same conditions as above except 6 

SCP 

~ ((}+2) 0.026 

Exact b 
.Quantum 

0.014 

SCP 

0.059 

Relative to Ro=~l __ .o ______ __ 
Exact b 

Quantum 

1.0 

0.045 

0.129 

0.402 

0.978a 

0.140 

c Observed 

1.0 

0.22 

0.38 

0.98 

0.60 

Relative to R0r=~l~·~o ______ __ 
Exact b 

Quantum Observedc 

1.0 

0.273 

0.647 

1.257 

3.430 

1.050 

0.05. 

Exact b 
Quantum 

0.086 

1.0 

0. 72 

0. 72 

2.16 

1.32 

~olken adjusted B parameter to fit this number to experimental data. 

b Reference 19. 

c 
Reference 21. 
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Figure Captions 

Figure 1. Specular, first-, second-, and third-order diffraction 

intensities as a function of 8 for He scattering off of 

a LiF(OOl) surface: 

17 
quantum, ... SCP). 

E = ZO meV, e. 
1. 

( __ exact 

Figure Z. Intensity scattered into the four first.,-order diffraction 

spots as a function of 8, with the same conditions as 

given in Figure 1. 17 ( __ exact quantum, ... SCP). 

Figure 3. Specular, first-, second.,-, and third~order diffraction 

intensities as a function of 8 for Hz scattering off of 

a LiF(OOl) surface: 

ortho:para Hz = 3:1. 

E = 104 meV, e. = 50°, 6j = 0, 
1 

19 ( __ exact quantum, SCP). 

Figure 4. Rotationally inelastic transition probabilities (summed 

over all diffractive channels) for Hz scattering off LiF, 

for 

jl 

e. 
1. 

= 

three different values of 8. (a) 

1, (b) E = 0.7 eV, e. = oo jl = 
1 

, 

0. (, .. quantum sudden, 

E = 0.7 eV, e. = oo 
1 

0, (c) E = 0.5 eV, 

S.CP) . 

.. ~ 

' 
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