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Abstracy 

Second derivatives of polyatomic potential energy hypersurfaces 

are of widespread importance to problems in theoretical chemistry. 

A formalism is presented which allows the analytic evaluation 

of energy second derivatives from restricted Hartree-Fock wave 

functions for arbitrary closed or open-shell molecular systems. 

The present method 111akes use of previously reported integral second 

derivative techniques and earlier advances in the solution of the 

open-shell coupled p~rturbed Hartree ... Fock equations. The 

applicability of the new 111ethod is demonstrated in studies of the 

first excited singlet state of formaldehyde, for which the 

equilibrium geometry and vibrational frequencies have been 

determined with two different basis sets. 
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·Int-roduction 

Analytic gradient techniques in conjunction witlt ~ 'i.;..;:n.;..;··-i_t,...::lo,_ 

self .... consistent ... field (SCF), multiconfiguration (MC) SCF and 

configuration interaction (CI) wave functions, have proven to 

be very efficient and accurate in characterizing potential energy 

1-13 hypersurfaces. Recent developments of analytic second 

5 14 15 derivative techniques for closed shell ' ' and high spin 

open~she1115 SCF wave functions are also qUite promising, 

Specifically, it now appears that the effort required to form a 

force constant {Hessian) matrix is five to ten ti:Ines less than 

the corresponding work necessary using finite diffel"ences of 

analytic first derivati-ves. 

Analytic second derivatives of the total energy may he 

utilized to explore the potential energy hypel"sur;faces o£ molecular 

systems in several important ways, some of which are; 

1) As discussed by~urrell and Laidler16 and Mciver and 

17 Komornicki, eigenvalues of the second derivative :matr:tx (force 

constant matrix) give conclusive information concerning the 

nature of stationary points for the molecular system under 

consideration • 

2) Vibrational frequencies can be readily obtained by· 

18 
diagonalizing a 1D.ass ... weighted force constant -:matrix. These 

frequencies and the corresponding vibrational eigenvectors· can 

be further used to evaluate related physical properties, such 
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as vibrational contributions to the quantum statistical partition 

function, vibrational mean amplitudes, Coriolis coupling constants 

and centrifugal distorsion constants, 

3) In geometry optimization procedures, the second derivative 

matrix (Hessian; .matrix, H) for a certain point may be used to 

obtain an improved geometry employing the Newton~Raphson method, 

.X ... n+l =:x ,.,.n 

where ~n and ~n+l are geometries for present and next steps, and 

~n is the gradient vector. It is also found that the Hessian 

matrix at a stationary"point from a lower level of. theory is 

very useful in geometry optimization at a higher level of theory. 

Furthermore, such an approximate Hessian has proved to be an 

excellent initial 111atrfx for use in iterative geometry optimization 

. 19-22 technJ.ques, 

4) Following one or a few specific eigenvectors of the 

second derivative 1Uatr:f:x, one can find stationary points relatively 

easily, as discussed by Cerj an and 'Miller, 23 

5) The coordinate invariant 111inimum energy- reaction pathway 

which is a mass-weighted steepest descent reaction coordinate, was 

independently suggested by Fukui24 and Schaefer25 about eight 

' 26 
years ago, As demonstrated by Morokuma and coworkers, the 

vibrational frequencies along this well~efined reaction pathway 

provide an illuminating way of discussing the mechanisms of 

chemical reactions, 

\/ 
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6) The reaction path Hamiltonian method of Miller, Handy 

and Adams 27 allows detailed predictions of reaction dynamics to 

28-30 be made, taking as input the energy second derivatives along 

the minimum energy path described in 5). 

Here we present a compact, unified theoretical treatment of 

analytic first and second energy derivatives in the context of 

single configuration restricted Hartree-Fock (RHF) theory. Unlike 

5 15 previous second derivative methods, '. the present formalism is 

not restricted to single determinant wave functions. This is 

explicitly demonstrated by applications to open-shell singlet RHF 

wave functions. Finally, it should be emphasized that this 

research is a logical outgrowth of our previous work on (a) 

integral second derivatives in the context of single determinant 
. 15 . 

RHF theory (b) the open-shell coupled perturbed Hartree-Fock 

equations, treated in the context of analytic first derivatives 

13 for large CI wave functions . 

·"'··· 
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Theory 

I. The Coupled Perturbed Hartree-Fock (CPHF) Equations 

In this section the derivation of CPHF equations is reviewed. 

Our approach here is similar in content to reference 13, but 

employs a simpler formalism which is also easier to apply. The 

31 generalized Fock operator for a single configuration SCF wave 

function may be expressed as 

occ 
Fi = fih + t (aiR.JR. + aiR.KR.) (1) 

th where fi is a constant related to occupation of i mole~ular 

th th orbital (MO), aiR. and aiR. are constants unique to i and R. 

MO's, J and K are the standard Coulomb.and exchange operators, 

respectively. The· electronic energy for such a system is given 

by 

occ occ occ 
E =· 2 [ fihii + [ [ {aij(iiljj) + aij(ijlij)} elec i i j 

(2) 

At this point it is convenient to define the Lagrangian matrix 

whose ij element is given 

(3) 

v 

" 



.. 

\.! 

.. 

-7-

Using this quantity, the RHF variational conditions for the system 

are expressed as 

Eij - Eji = 0 for occ~pied-occupied orbital 
pairs 

(4) 

and 

Eij = 0 for occupied-virtual orbital 
pairs 

(5) 

The expansion of the molecular orbitals about the chosen 

reference geometry is given by 

I i> + I i> + A r· I j > u; i + ••. 
j 

(6) 

which implies that the atomic orbital (AO) integrals are expanded 

as 

(7) 

(8) 

Substituting these expressions into Eq. (4) and collecting the 

first-order in A, we find 
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all occ 
+ [ 

k 
t u~R- r 2 <aiR--aj R-> (ij I kR->+<siR--s j R-H Cik I j R->+CiR- I jk)} J 

(9) 

where the generalized Lagrangian matrix ~j is 

(10) 

It should be noted the following relationship holds for Eq. (10), 

(11) 

The derivative Lagrangian matrix e:a appearing in Eq. (9) is defined 

by, 

+ [ 
llVPO" 

occ 

~ (12) 

The orthonormality condition for molecular orbitals leads 

a significant decrease13 in the number of independent elements of 

lj 

.. 
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a the orbital change matrix U , following 

+ ua + sa 
ji ij 

= 0 (13) 

. \.J where 

(14) 

The coupled equation which contains the independent elements of 

a U can then be obtained by combining Eqs. (9) and (13); 

(15) . ' 

where 

(16) 

and 



a a 
= - Eij + Eji 

-10-

(17) 

This is the CPHF equation for the general open-shell SCF wave 

function whose energy is given by Eq. (2). This equation must 

be solved for the pairs of orbitals i,j or U~j 

(a) (i=virtual, j=doubly occupied) for closed shell SCF 

wave functions. 

(b) (i=half occupied, j=doubly occupied), (i=virtual, 

j=doubly occupied), and (i=virtual, j=half occupied) for high 

spin open-shell wave functions. 

(c) (i=half occupied, j=doubly occupied), (i=half occupied, 

j=half occupied), (!=virtual, j=doubly occupied), and (i=virtual, 

j=half occupied) for open-shell singlet wave functions. 

In the general open-..,.shell t!1eory, a unitary transformation among 

unique shells, i.e., (doubly occupied- doubly occupied), (a spin-

a spin), (B spin- S spin), and (virtual- virtual), does not change 

v 

I/ 
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total energy of the system. It is there.fore advantageous to redefine 

these orbitals uniquely, when the entire Ua matrix is necessary in 

the later process. This can be done by separately diagonalizing each 

32 shell of the Fock matrix, constructed using the ave~aged Fock operator 

Fe = h + L f. ( 2 J. -K.) 
j J J J 

(18) 

a The remaining (non-independent) elements of U may be obtained from 

where 

1 
c c 

e:j-Ei 

o~c a I I k skk fk {2 (ij kk)-(ik jk)} 

(19) 

(20) 

The entire purpose of course in solving the CPHF equations is to 
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a determine the matrix elements Uji' which tell us !see Eq. (6)] 

for a cartesian nuclear displacement "a" to what degree the 

new SCF molecular orbital i takes on some of the character of 

MO j, determined at the reference geometry. It should be noted, however, 

that the non.,...independent elements of Ua in Eq,(19) are not required in the 

calculation of SCF second deriv~tives, as_will be demonstrated in Section III. 

II. First Derivative of Electronic Energy 

The expression for the first derivative ofthe electronic energy of 

the system is obtained by differentiating Eq. (2) with respect to the 

cartesian nuclear coord:i.,nate "a", 

()E = 2 
a a 

occ 
+ r 

i 

occ 
+ 4 1: 

i 

occ 

r 
r 

(21) 

where Eir is an element of the Lagrangian matrix defined in Eq. 

(3). This equation can be simplified using the relationships 

shown in Eqs. (4), (5) and (13), 

()E 
. aa = 2 

occ occ r {a cicicjcj + B c1cjcicj}(~vlpcr)a + t r 
i j llVPO 

ij ll v p 0 ij ll v p 0 . 

otc occ 
- 2 I: a (22) sij E .. 

i J 
~J 

v 

.. 
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Equation (22) shows the well-known fact
1 

any wave function which 

satisfies variational conditions given by Eqs. (4) and (5) does 

not require the orbital changes Ua to obtain the gradient of 

electronic energy. 

III. Second Derivative of Electronic Energy 

In a similar fashion the expression for the second derivative 

of the electronic energy may be obtained by differentiating Eq. 

(21) with respect to a second variable "b", 

occ 
+ [ 

i 

occ 
I: f. 
i ~ 

occ "L. L. 
j l.IVPO' 

o~c 

+ 4 L 
i 

all 
'\ ub a 
L. ri e:ir 
r 

occ occ 
... 2 I: [ 

i j 

occ occ 
[ L: 
i j 

a s .. 
~J 

·de:i. 
J 

db 

Equation (23) may be cast in a more tractable form using the 

readily derived relationships 

a 
dSij = 

db 

(23) 

(24) 
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with 

(25) 

and 

all 
+ l: 

r 

occ 
~ u:1 [2 a.i1 <ijlrR-> + si1 {(irljR-)+(iR-Ijr)ll 

(26) 

Combining Eqs. (23), (24) and (26), one obtains the final expression 

for the second derivative, 

a?E 
2 occ r ci ci 

a.·h].lv 
[ f. aaab = 2 

1 ].1 v 8a3b i ].IV 

occ occ ab occ otc 
- 2 1:. I: - 2 [ a b s .. £ .. s .. £ .. 

i j 1] 1] i j 1] 1] 

all otc b + L a 
uij w .. 

i j 1] 
(27) 

where 

a a w .. = 4 £ .. 
1] J 1 

- 2 ~kc ~ L 'r [2 ~j (ij lkR-) + skj { (ik lj .Q.)+(i.Q, ljk)} 1 (28) 
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In this expression, the first four terms are due to changes 

in AO integrals, while the last term may be attributed to. changes 

in the SCF molecular orbitals due to nuclear displacements from 

the reference geometry. In the last term, contributions from non-

a independent elements of U can be calculated without explicitly 

evaluating these elements because of the symmetric character of 

the wa matrix in Eq. (28) and the well-known relationship seen in 

Eq~ (13). In other words, only the elements of the ua matrix which 

are obtained from Eq. (15), are necessary to evaluate the last term 

in Eq. (27). The remaining part of the summation can be calculated 

by using the overlap derivatives Sa instead of explicit values of 

ua. 

' 
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Practical Overview 

In light of the complexity of the formalism presented here, it 

may be of value to give some idea of the order in which the different 

steps of the problem are actually tackled. The computational procedure 

for the application of the general open-shell CPHF method may be 

concisely summarized as follows: 

1. Evaluate the atomic orbital integrals, <lJjhjv> and (lJVjpcr). 

2. Obtain the RHF SCF molecular orbitals. 

3. Transform the AO integrals to the MO basis set. 

4. Form the Lagrangian matrix and ~ matrices defined in 

Eq. (10). 

5. Evaluate the first derivative AO integrals, Sa , <lJjhjv>a 
lJ\1 

and (lJ\ilpcr)a, and construct the derivative MO overlap integrals 

Sa in Eq. (14) and the derivative Lagrangian matrix Ea in Eq. (12). 

6. Evaluate the second derivative AO integrals, sab, <lJlhlv>ab 
lJ\1 

ab -
and (lJVjpcr) , and determine first three terms in Eq. (27). 

7. Set up the A and B
0

a matrices in Eqs. (16) and 

(17). 

8. Sblve the linear equations (15), directly or iteratively. 

9. Evaluate the fourth and fifth terms in Eq. (27). 

It should be noted that in step four there may be different 

numbers of ~ matrices depending on the number of unique shells in 

the system--under consideration. 

v 
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Application to Open-Shell Singlet Formaldehyde 

One test of any new theoretical method is its applicability 

to previously difficult problems. An obvious example for the 

present formalism is the vibrational spectra of open-shell singlet 

states, examples of wh~ch occupy much of Herzberg's .classic tex~4 

on polyatomic molecules. Most known electronic spectroscopy 

involves transitions of the type s
0
+s

1 
or s0+s2 and in the vast 

majority of these cases s1 and s2 are open-shell singlet electronic 

states. These state~ typically involve two unpaired electrons, 

residing in spatial orbitals a and b,and spin coupled in the 

manner 

1 
.f2' [aa.bS-aSba] (29) 

35 In general the unrestricted Hartree-Fock (UHF) method (in 

conjunction with which analytic second derivative methods already 

exist5) is not applicable to such problems since either of the 

two determinants in (29) taken separately does not come close to 

being a singlet (S=O) spin eigenfunction. 

Although the failure of the UHF method to treat open-shell 

singlet states is well known, less widely appreciated is the 

fact that analytic restricted Hartree-Fock (RHF) first derivative 

methods are not in general applicable to the determination of 

harmonic vibrational frequencies. This arises from the fact that 

33 RHF wave functions for open-shell singlet states only satisfy 

the variational principal if the spatial orbitals a and b in (29) 
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belong to different irreducible representations [or, at least to 

different rows of the same (degenerate) irreducible representation]. 

When the spatial orbitals a and b belong to the same irreducible 

representation, then the excited singlet is of the same symmetry 

as the ground state and the open-shell singlet RHF procedure may 

only serve to provide a poor description of the closed-shell 

* ground state. Exactly this happens for the ~~ singlet state of 

formaldehyde, for example. 36 

The above paragraph is pertinent here because for larger 

polyatomic molecules the determination of cartesian force constants 

as finite differences of analytic gradients usually requires 

consideration of geometries containing no elements of point group 

symmetry (other than the identity E), i•e., c1 point group. For 

the molecular electronic system given as example here, the s1 

* n-+'IT open-shell singlet state of formaldehyde, the equilibrium 

geometry electron configuration is 

- 1 " A A •2 •2 ·•2 f2 •2 "2 ' " la 2a 3a .4a Sa la 6a 2a (30) 

Thus for Cs geometries the spatial orbitals a and b in (29) are 

of a' and a" symmetry, respectively, and the open-shell singlet 

RHF procedure provides an upper bound to the true energy of s
1

, 

1 II 
the lowest electronic state of A symmetry. However, it is not 

possible to obtain RHF cartesian force constants via analytic 

6 7 gradients, ' since this would require the consideration of 

c1 geometries, for which the RHF open-shell singlet procedure is of 

ij 

.. 
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dubious validity. 

The application of analytic second derivatives to electronic 

states such as (30) never faces this problem since all force 

constants are calculated simultaneously at the (higher symmetry) 

equilibrium geometry. The practicality of this approach has been 

* demonstrated for the n~ s
1 

state of H2co using standard double 

zeta (DZ) 37 and double zeta plus polarization (DZ+P) 38 basis sets. 

These results are summarized in Table I. The predicted equilibrium 

geometries are presented for completeness but are of relatively 

little value otherwise, since very similar results were reported 

39 earlier by Bell. For a discussion of the comparison between 

theoretical and experimental geometries, the reader is referred 

to Bell's fine paper. 

As Table I shows, the vibrational spectroscopy of s1 

formaldehyde is essentially unique among molecules with more than 

three nuclei, in that all fundamentals have apparently been 

observed. Of these, the admittedly most tentative assignment is 

40 - -1 that of Hardwick and Till, v3 = 1290 em • The DZ+P SCF 

harmonic frequency for this methylene scissors vibration is 

-1 
1544 em , or 19.7% higher than observed. Systematic studies 

indicate that closed-shell ground state SCF harmonic vibrational 

41 frequencies are an average ~ 12% higher than the observed 

fundamentals, so such a result is not entirely surprising. 

41 However, for ground state formaldehyde the DZ+P SCF harmonic 

-1 -1 CH2 scissor is 1656 em and the observed fundamental 1500 em , 

the difference being only 10.4%. It is also important to note 
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that the present theoretical predictions completely rule out the 

previously (i.e., prior to Hardwick and Till40) accepted 

42 -1 experimental value of v
3 

(S1), namely 887 em 

Among the other observed fundamentals, the comparison with 

the theoretical harmonic frequency for the out-of-plane bending 

frequency v4 is obviously meaningless, since the two lowest 

vibrational states correspond to a tunneling splitting induced by 

the double minimum potential for this degree of freedom. This 

is nicely illustrated in Figure 1 of the paper by Jones and Coon. 43 

-1 More comparable to the DZ+P SCF harmonic frequency of 928 em 

are the differences 6E(O+~l+) = 542 cm-l and 6E(O-~l-) = 823 cm-l 

and agreement with the latter is quite acceptable. 

The symmetric and asymmetric CH stretching harmonic frequencies 

at the DZ+P SCF level of theory are respectively 15.0% and 14.7% 

higher than the observed fundamentals, essentially comparable to 

. 15 41 the comparisons reported earl~er ' for both ground state H2Co 

and its lowest triplet electronic state. The DZ+P SCF theoretical 

CO harmonic stretching frequency for s1 H2co is 5.6% greater than 

the observed fundamental, and even better agreement has been 

15 a • 41 
reported for T1 H2co, while a +10.4% d~fference was found 

for s0 H2co. Finally the theoretical methylene rocking frequency 

is 19.3% greater than experiment. The general conclusion drawn 

from this work is that while excited state harmonic vibrational 

frequencies approaching the Hartree-Fock level of theory seem to 

be invariably higher than the observed fundamentals, they do not 

display the consistent errors of ~ 12% which are more typical 

~I 
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for the analogous closed-shell singlet states. 

Concluding Remarks 

A unified theory for analytic first and second energy 

derivatives has been presented and is suitable for a broad 

range of open-shell molecular electronic states. The new method 

should be particularly valuable for use in the characterization 

of potential energy hypersurfaces for reactive chemical systems. 

A preview of the utility of the analytic second derivative 

technique is given by application to the vibrational frequencies of 

the first excited state of formaldehyde. This example should be 

the first of many for which earlier theoretical methods are 

not appropriate. 
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Table I. Theoretical and experimental structures and vibrational 
... 1 " frequencies for the A A electronic state of formaldehyde. 

Theoretical vibrational frequencies were determined within 

the harmonic approximation, while the experimental results 

are the observed (anharmonic) fundamentals. Bond distances 
0 -1 

are given in A and vibrational frequencies in em 

DZ SCF DZ+P SCF 

Energy (hartrees) -113.76569 -113.80795 

re(CO) 1.401 1.360 

r (CH) 1.074 1.079 e 

a (HCH) 120.8° 118.8° 
e 

Out-of-plane angle 34.2° 38.r 

Vibrational Frequencies 

a' CH2 symmetric stretch 3315 3275 

a' CH2 scissor 1533 1544 

a' CO stretch 1141 1239 

a 
,. CH2 wag 814 928 

a" CH2 asymmetric stretch 3463 3403 

a" CH2 rock 1069 1078 

Experiment 

1.325±0.00Ja 

1.095±0.005a 

118±1° a 

2847b 

"' 1290c 

1173b 

125d 

2968b 

904b 

~- T. Jones and J. B. Coon, J. Mol. Spectroscopy 31, 137 (1969). 

bv. A. Job, V. Sethuraman, and K. K. Innes, J. Mol. Spectroscopy 30, 365 (1969). 

cJ. L. Hardwick and S.M. Till, J. Chern. Phys. lQ, 2340 (1979). 

~ote in references a and b of this Table that the double minimum potential 

associated with this degree of freedom gives rise to a tunneling splitting 

and an extraordinarily anharmonic set of vibrational energy levels. 
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