
~..~~.. '

LBL-15253

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Materials & Molecular
Research Division

.~

MULTIPLE-QUANTUM NMR IN SOLIDS

Yu-Sze Yen
(Ph.D. Thesis)

November 1982

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098



LEGAL NOTICE

This book was prepared as an account of work
sponsored by an agency of the United States
Government. Neither the United States Govern
ment nor any agency thereof, nor any of their
employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process
disclosed, or represents that its use would not
infringe privately owned rights. Reference herein
to any specific commercial product, process, or
service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favor
ing by the United States Government or any agency
thereof. The views and opinions of authors ex
pressed herein do not necessarily state or reflect /
those of the United States Government or any
agency thereof.

Lawrence Berkeley Laboratory is an equal opportunity employer.

•

..



•

•

LBL-15253

MULTIPLE-QUANTUM NMR IN SOLIDS

by

Yu-Sze Yen

Ph.D. Thesis

November 1982

Materials and Molecular Research Division

Lawrence Berkeley Laboratory

University of California

Berkeley, CA 94720

This work was supported by the Director, Office of Energy
- Research, Office of Basic Energy Sciences, Materials Sciences

Division of the u.s. Department of Energy under Contract
Number DE-AC03-76SF00098.

This manuscript was printed from originals provided by the
author.



to

..



..

•

MULTIPLE-QUANTUM NMR IN SOLIDS

By

YU-SZE YEN

ABSTRACT

Time domain multiple-quantum (MQ) nuclear magnetic

resonance (NMR) spectroscopy is a powerful tool for

I

spectral simplification and for providing new

information on molecular dynamics. In this· thesis,

applications of MQ NMR are presented and show

distinctly the advantages of this method over the

conventional single-quantum NMR.

Chapter 1 introduces the spin Hamiltonians, the

density matrix formalism and some basic concepts of MQ

NMR spectroscopy.

In chapter 2, 14 N double-quantum coherence is

observed with high sensitivity in isotropic solution,

using only the magnetization of bound protons. Spin

echoes are used to obtain the homogeneous double-

quantum spectrum and to suppress a large H2 0 solvent

signa 1.

Chapter 3 resolves the main difficulty in

...
observing high MQ transitions in solids • Due to the

profusion of spin transitions in a solid, individual

lines are unresolved. Excitation and detection of high

quantum transitions by normal schemes are thus

difficult. To ensure that overlapping lines add



constructively and thereby to enhance sensitivity,

time-reversal pulse sequences are used to generate all

lines in phase. Up to 22-quantum 1a absorption in

2

solid adamantane is observed. A time dependence study

shows an increase in spin correlations as the ..
excitation time increased.

In chapter 4, a statistical theory of MQ second

1I0ments is developed for coupled spins of spin 1-1/2.

The model reveals that the ratio of the average dipolar

coupling to the rms value largely determines the

dependence of second moments on the number of quanta.

The results of this model are checked against computer

calculated and experimental second moments, and show

good agreement.

A simple scheme is proposed in chapter 5 for

sensitivity improvement in a KQ experiment. The scheme

involves acquiring all of the signal energy available

in the detection period by applying pulsed spinlocking

..

and sampling between pulses. Using this technique on

polycrystalline adamantane, a large increase in

sensitivity is observed.

Cor reI a t ion 0 f mo t ion 0 f two i n t era c tin g me thy 1

groups 1s the subject of chapter 6. This system serves

as a model for the study of hindered internal motion.

Because the spin system 1s small and the motions are

Group theory appropriate for nonrigid

well-defined,

tractable.

the calculations involved are



molecules is used to treat the change in the

3

Hamiltonian as the methyl groups transit from

correlated touncorrelated motion. Results show that"

the four-quantum order alone is

distinguish between the two motions.

sufficient ,to
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CHAPTER 1

IBTRODUCTIOR TO MULTIPLE-QUANTUM NMR

Multiple-quantum (MQ) spectroscopy has proven to

1

be a practical

analysis(l) as

tool in the simplication of spectral

• molecular spin

well as providing

dynamics.(2)

new information

Diverse in

in

its

applications, MQ NMR has been applied to heteronuclear

as well as homonuclear coupled spin systems, and to

systems wi th J coupling, dipolar and quadrupolar

interactions. Multiple-quantum transitions have been

observed 1n liquids, solids and liquid crystals.

Excellent reviews on this widely useful topic have been

available in the last couple of years.(3-6)

This chapter presents some of the basic concepts

of Fourier transform MQ NMR spect.roscopy. The

succeeding chapters will extend on particular aspects

relevant to the subject of discussion.

Before we enter into the realm of MQ NMR, the

matter of spin Hamiltonians and sptn dynamics as

described tn the density operator formalism will be

first discussed. Then we will proceed wit h a

coherence, discuss thedefinition

content of

of MQ

MQ spectroscopy, describe

information

a Fourier

transform MQ experiment, and present some properties of

MQ coherences.



1.1 SPIN HAMILTONIANS

2

The interaction of nuclear spins with their

surrounding can be divided into two parts:

The external Hamiltonian Hext is an interaction of the

spins with applied magnetic fields, whether they be

•

static or oscillating, and is subject to the

experimentalist's choice. The internal Hamiltonian

Hint is inherent to the spin system; it is composed of

the interaction of nuclear spins with the local

surroundings.

In the class of substances that we will be dealing

with, the following interactions are of interest:

H • H

The Zeeman term HZ and the applied rf term Hrf are

grouped as external Hamiltonians. The remainder are

internal Hamiltonians.

separately.

These terms wi 11 be discussed

1. 1. I Zeeman Hamiltonian

In typical laboratory magnets, by far the largest

term 1S the Zeeman Hamiltonian. Nuclei with dipole

+ +
moments 1.1. Y~I where y is the magnetogyric rat io,



will interact with the large applied static magnetic

3

+
field H .

o
Expressed in units of ~, this interaction is

..

described by

H • -it ·L~. /1\ • -HZ o. 1 0
1

Ly. I .
• 1 Z 1
1

where Z is chosen to be
+

in the direction of H and the
o

summation runs through all nuclei in the sample.

As a result of this interaction, the spins

experience a torque in the direction defined by

+
d lJ •
d t 1 =

+
y. ~.

1 1

+
x H

o

aud wi 11 precess Th is constant w . =
0,1

YiHo is referred to as the Larmor precession frequency.

I . I • 2 Rf Hamiltonian

For spin excitation, an oscillating field in the

radiofrequency range can be applied. To avoid coupling

with the stat ic field, it is applied ln the xy-plane.

Ch 00 sin g the r f fie 1d to be in the x - d ire c t ion, the r f

Hamiltonian is expressed as:

..
H ..
rf 2 HI cos (wt + 41) LY. I .

1 Xl

where HI is the amplitude of the rf field rotating at a

frequency w with an init ial phase 41.



1.1.3 Quadrupolar Hamiltonian

Nuclei with I >1 possess an electric quadrupole

4

moment due to the nonspherical distribution of nuclear

charge. The nuclear quadrupole moment can interact
..

electrons.

with the local electric field gradient generated by the

spacial anisotropy in the distribution of the valence

The quadrupolar Hamiltonian is given by:(7)

H •Q

eQ.
L---1

--
i 21.(21.-1)

1 1

+ +
1 . -v . -1 .1 -1 1

•
eQ. v. 2L 1 %%,1 [31.-

i 41.(21.-1) %1
1 1

1 2 2
1.(1.+1) + -2n.(1 .+1 .)]1 1 1 +1 -1

where Q.
1

1S the quadrupole moment and V.
-1

1S a second

rank tensor describing the electric field gradient.

The asymmetry parameter 11i 1S defined as:

11. •1

(V • - V . )
XX.1 yy,l

V .
%%.1

and VXX • i • Vyy • i ' and V%%.i are the electric field

gradient tensor components expressed 1n the principle

aX1S frame. For axially symmetric gradients, "-0.

In the presence of a large magnetic field. only

the secular part (Le. the part that commutes with HZ)

is retained:

H •Q

eQ. V . 2L 1 ZZ.l [31 . _
i 41. (21.-I) Zl

1 1

I.C!.+l)]
1 1



..

1.1.4 Dipolar Hamiltonian

The direct interaction between magnetic dipoles is

given by:

5

H ..
D

\ + +
L I. eD .• eI ..<. 1 -1 J J

1 J

+ + + +
Y.Y.f1 3(1. er .. )(1. er .. )• L 1 J [ 1 1) ) 1J

. <. 3 2
1 J r.. r ..

1J 1J

+ +
1. e I . ]

1 J

where D..
-lJ

the vector

+
is a traceless second rank tensor and r .. is

1J

connecting nuclei i and j. In high fields,

only the secular part of HO is retained:

H ..
D

y. Y.1\ 2
,- 1 J
I.. 3 (3cos 6 .. -1)[1 .1 ..<. . 1J Zl ZJ

1 Jr ..
1J

I- 4(1 .I .+1 .1 .)]
+1 -J -1 +J

This is referred to as the "truncated" dipolar

Hamiltonian.

For nuclei of different Yi' Yj and spins 1. S the

Hamiltonian is further truncated to:

..

H ..o
Y.Y.ll 2

\ 1 J
L. 3 (3cos 6 .. -1)1 .S ..

.(. 1J Zl ZJ
1 Jr ..

1J

I . 1 . 5 Chemical Shift Hamiltonian

polarized by the applied magnetic field and effectively

The electron cloud surrounding a nucleus 1S



shields the nucleus. As a result, nuclei in different

6

chemical surrounding do not experience the same local

field. In general, the shielding is expressed in

tensor form:

~ + +
H • Ly.I. "a. "Hc s . 1 1 -1 0

1

•

..

where is a second rank tensor. In isotropic

solution, it is reduced to a scalar interaction:

H .,
cs

,; . I .
1 Zl

where only a. •1

1
-3Tr (a.)

-1
is retained.

1 • 1 . 6 Indirect Spin-Spin Hamiltonian

The interaction between nuclei via electron clouds

in general is given by:

H •J
I t. "J .. "I.

i (j 1 -1 J J

is a second rank tensor.where J ..
-lJ

only the secular parts remain:

In high fields,

'II

H •J
\" + + aniso + +
L. [J .. 1. -1. + J.. (31.1 .-1. -r.)]

.(. 1J 1 J 1J Zl ZJ 1 J
1 J

Since the anisotropic part of HJ has the same form as

it is sometimes called the pseudo-dipolar



coupling. In isotropic solution, the anisotropic term

7

is averaged to zero, resulting in a purely scalar

coupling:

.. H ..
J

~ + +
L J .. I. -I .

.(. 1J 1 J
1 J

As in HD , the interaction between unlike nuclei I

and S is truncated to give:

H
J

" L J .• I . S ••
. (. 1J Zl ZJ
1 J

1.2 SPIN DYNAMICS

The state of a coupled sp1n system is conveniently

described by the density operator P. At thermal

equilibrium, the state of maximum entropy dictates that

the density operator takes the following form:

P ..
o

exp(-SH)

Tr{exp(-SH)}

:nperatures SH < 1, the density operator can be..
0. = -i\/kBT and k B is the Boltzmann constant. At

..
expanded 1n a Taylor's ser1es.

first order term,

Keeping only up to the



where z • Tr{exp(-6H)}. Since the first term is

8

proportional to identity and can never have an effect

on the spin dynamics, it is usually dropped, yielding

what is called the reduced density operator:

eo

...

In all our discussions,

be suppressed.

the constant b • -6w Z-l
o

will

The e qua t ion 0 f mo t ion for punde r the in flu en c e

of an explicitly time-independent Hamiltonian H is

given by:

dp
dt • -i[H, pl.

The formal solution to this first order differential

equation is:

pet) • exp(-iHt)p(O)exp(iHt)

where p(O) is the initial density operator. I f the

Hamiltonain changes discretely from one time-

independent ~"T.iltonian to another, successive

applications of the above equation yields:



The precession at the Larmor frequency is common

9

to all like spins. To remove this uninteresting term,

..

it is common to transform the equat ion of mot ion into

the rotating frame in which the rf Hamiltonian is

stationary:

d p*
d t • - i [ H*, P*].

In the rotating. frame,

p* • exp(-iwtI )pexp(iwtI )z z

H* • exp(-iwtI )Hexp(iwtI )z z

are the effective operators. In this representation,

the Hamiltonian for like spins lS,

H* • -6wI + w I + H* + H* + H* + H*
z 1 x Q D cs J

18 the resonance offset and the

..

internal Hamiltonians retain only the secular parts.

In all our discussions, the rotating frame is the

relevant one and the notation * will be suppressed .

1.3 MQ COHERENCE

Formally, MQ coherences are related to the off-

diagonal elements of the density matrix P, with the n-

quantum coherences associated with the elements n off



the diagonal of P. A MQ coherence describes the

10

transition between two eigenstates where the well-known

s e I e c t ion r u I e ~m • : lis v i 0 1 ate d • Consider the

energy level diagram for N coupled spin-I/2 system of

Fig.l.l. An "allowed" transition is one in which the ..
quantum number changes by ±l. A MQ transition has no

such restriction; it can be n-quantum or even zero-

quantum. In single-quantum spectroscopy, effectively

only one spin flips. In a n-quantum transition

multiple spins flip. Tnis multiple flip involves a

simultaneous absorption or emission of n photons. The

process is a coherent one and should be contrasted to a

sequential, and hence incoherent, process.

Be c a ~ ; l" a MQ co her e n c e 1 s a til any - bod Y cor rei at ion

phenomenon, it requires a Hamiltonian that couples

splns. More precisely, the criterion for whether a

Hamiltonian term will excite MQ coherences is that it

must be a bilinear operator. Such bilinear operators

are the dipolar, the J coupling and the quadrupolar

Hamiltonians.

In the nonlinear regime where Hrf L5 no longer a

weak perturbation. a nonselective excitatLon of MQ

coherences can be accomplished by either a long weak

time

intensepulse(S> (/Hrfl=IHintl>,

(IH I>IH I> sandwichingrf int

or short

delays Ln

pulses

which a

using short intense pulses to excite MQ coherences. In

bilinear operator is operative. Our focus will be on



••

•
•

•

••

..

.. Fi gu re 1.1

M = _N ----------r.-
2 I

I
I
I

-~ + I3~~~~~~$~- j

- ~. +2~~~~~~~~
I
I
I
I
I
I
I

o
I
I
I
I
I
I
I

N ~§~~~~~~~§~~I~~.2 -2§ 7 j -I

I
I
I
I

N
2--lL---------~--

XBL 771 0-1 0019

Generalized energy level diagram of N

11

solid arrows are

coupled spin-l/Z's. The

"forbidden" MQ transitions,

dashed

the

arrows indicate

"allowed" single-quantum transitions.

dashed arrow indicate a

symmet rYe

transition

The tom • -1

forbidden by



this limit, Hint can neglected in the duration of the

pulses.

1.4 SPECTRAL SIMPLIFICATION

The problem with single-quantum (SQ) spectroscopy

is apparent from the SQ spectra of oriented systems

shown in Fig. 1.2. In Fig. 1.2, the number of coupled

pro tonsinc r e as e s m0 not 0 n i call y d own the p age • One

observes that the spectral complexity increases with

the number of spins. For a two or three spin system,

the spectrum is still fairly simple. But one notices

that for, say, a six spin system, already the lines are

beginning to overlap. The situation for a sixteen spin

system is intractable one only gets a broad

featureless lineshape.

Three methods to reduce spectral complexity are

proposed and can be used in combination. The first two

methods involve reducing the number of coupled spins.

When reduction of system size is no longer feasible, MQ

spectroscopy offers a viable alternative.

The first method is to simulate isolated molecular

12

..

systems, thereby removing intermolecular dipolar

couplings.

In solids, extensive dipolar couplings can exist

and because of the rigid lattice structure, the full

effect of HO is achievable. In ot'd~r to simulate

isolated molecules and maintain the crystal structure,
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Figure 1.2 High resolution proton single-quantum
spectra

solvents.

of solutes oriented 1n liquid crystal
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..
liquid crystal solvent are

systems for studyingconvenientparticularly

the desired compound can be diluted into a matrix of

the isotopic counterpart. Oftentimes, the nuclei of

interest are in low natural abundance, as in the case

oj 13 C, and thus the isotopic dilution is already

provided.

Solutes dissolved in a

intramolecular dipolar couplings. The translational

diffusion of the liquid crystal molecules averages to

zero the intermolecular couplings. However, because

the I i qui d cry s tal mo 1e c u 1 e s are res t ric ted in the i r

molecular reorientation, the intramolecular

remain but are scaled by order parameters.(9)

situation occurs for solutes dissolved in

cryst al solvent. Thus we have a convenient

couplings

The same

a 1 iquid

method for

isolating molecules, provided the molecule is soluble

in some liquid crystal or 1S in liquid crystalline

form.

Another alternative is to reduce the number of

coupled spLns per molecule with selective isotopic

labeling. This can often be expensive or synthetically

difficult, and sometimes infeasible.

To see what spectral simplication can be found

from MQ spectroscopy, we refer again to Fig. 1.1. We

notice that there is only one N-quantum transition,

where N is the maXLmum quantum possible.

(N-I) quantum is at most N, and so on.

The number of

One can show



through a combinatorial argument that statistically the

number of transitions fal1:s off with the number of

q u an t a ina Gau s si an ma nne r. (3) In fa c t , eve n for a

small spin system such as benzene, this statistical

15

argument holds well at least qualitatively (Fig.

1.3) • Thus, it would be advantageous to observe the

higher quantum orders where the density of lines are

much lower, provided they contain the same amount of

information. This leads us to the problem of

determining the information content of MQ orders.

We compare the number of unknown physical

constants with the number of measurables, based on a

statistical argument. The claim is that it is usually

":-h to consider only the (N-l) and (N-2) quantum

_... asitions, provided that all the lines in these

orders are resolvable.

In oriented systems, typically one has as unknowns

the chemical. shifts, J couplings, and dipolar

couplings. The number of dipolar couplings is equal to

the number of pairs of spins. Likewise for the number

of J couplings. The number of chemical shift

differences

one • Thus,

is equal to the number of spins minus

the total number of unknowns is N2 - 1.

(N-l) quantum order has 2N lines,
...

(N-2)

The

quantum order has N(N-l) lines.

and the

The

accumulative amount of information available thusfar is

already N2 - 1. Therefore, indeed the (N-l) and (N-2)
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Figure 1.3 Integrated intensity versus the number of

quanta n. The measured benzene values (solid dots) are
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compared against a gaussian curve based

statistical counting argument (solid line).
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quantum orders offer enough information for a complete

determination of the physical constants.
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1.S FOURIER TRANSFORM MQ EXPERIMENT

A multiple-quantum experiment can be separated

into four time domains: preparation, evolution, mixing

and detection (Fig. 1.4). Separat ion of time domains

allows the experimentalist to create the effective

Hamiltonian of interest in each time period. This

offers great flexibiltiy for the experimentalist on

what he chooses to observe, depending on his ingenuity.

In the preparation period, the coherences of

interests are created, let evolve in t l under some

Hamiltonian HI. A direct detection of MQ coherences

would require multipole detectors. Since our coil is

capable of detecting only oscillating dipoles, a mixing

period lS required to convert the MQ coherences into

single quantum coherences, which are detected in time

t 2 . This is repeated for many values of t l until a MQ

interferogram In t l is obtained. The MQ evolution In

t l is detected as a modulation of the single-quantum

amplitude. The signal lS given as the trace of the

observable I •+ I +x with the density matrix at

the time of observation:

S(t,tl,t~,t2) • Tr{I1p(t,tl,t~,t2)}

• Tr{I exp(-iH2t2)vt(t~)exp(-iHltl)ut(t)

xpoU(t)exp(iHltl)V(t~)exp(iH2t2)}



PREPARATION EVOLUTION MIXING DETECTION

PROPAGATOR: J U exp(-iJJI tl) V exp (-l3J2t2)

TIME VARIABLE: T t, t 2

ilL S::2·lJ~;

Figure 1.4 A block diagram of ~Q pulse sequence,

indicating the separation of time domains.
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Shown in Fig. 1.5 are two simple MQ pulse

19

sequences. The first two pulses separated by a time

delay suffice to prepare MQ coherences.

The amount of coherence prepared depends on the

time delay between the pulses. To demonstrate, exact

dynamics calculation have been performed on benzene, a

6-spin system. (5) Figure 1.6 shows the dependence of

the average integrated intensity of n-quantum coherence

on the preparation time. Basically, after an

incubation period time on the order of the inverse of

the couplings, this dependence is roughly constant for

the lower orders. For the 6-quantum transition, since

there is no averaging with other transitions, the

oscillation is pronounced and continues for all times.

For small pumping times T, the power of the

rate of growth of n-quantum integrated intensity varies

with n (Fig. 1 . 7) • For the two-pulse preparation

sequence, the power is 2n-1 (n)1).(3) Th is power

dependence clearly indicates that it takes more time to

build up an n-body correlation. In chapter 4,

•

..

preliminary experiments in solid adamantane verify that

excitation of the higher quantum coherences do require

longer preparation times .

Transition phase and intensity depend on the

preparation and m1x1ng times for general MQ pulse

preparation time only if the m1x1ng propagator 1S the

sequences. The transit ion phase can be independent of
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Fig. 1.5 Two simple three-pulse sequences for

exciting and detecting MQ coherences in both

channels. If there is no offset, then the upper pulse

s~quence is even-selective, and the lower sequence 1S

odd-selective.
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times of the previous figure, showing the rate of

growth of coherences varies monotically with n (n~l).
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time-reversal of the preparation propagator. This can

23

be important since overlapping lines that are out of

phase destructively interfere. To avoid missing lines

that happen to have a small intensity at some poorly

chosen preparation time, it becomes necessary to do the

same experiment with enough different preparation times

and take an average.

1.6 EVEN AND ODD SELECTIVITY

Consider the sequence
11' 11'
-I - l' - -I
2 x 2 -x

- for

preparation (Fig. 1 .5) • The "prepared" density

operator for this sequence is

, 1') a exp(i
2
11'I )exp(-iH1')exp(- i21l'I )1

x x z

xexp(i;Ix)exp(iH1')exp(-i;I x )· (1)

A useful concept is to let the rotations operate on H,

thereby defining an effective preparation

Hamiltonian. We separate the linear terms from the

bilinear terms in H:

H a -6wI + H
z zz

where Hzz is bilinear.

is:

The effect of the rotation on H

= 6wI + H
Y yy



where H
yy

With

• exp(i~I)H exp(-i~I) •2 x zz 2 x

this, Eq. (1) becomes:

24

pXx( T) • exp(-iH T)(1 COS~WT + I sin~wT)exp(iH T)
yy Z x yy

- U [I ]COS~WT + U [I ]sin~wT,
yy z yy x

where U [I] :: exp(-iH T)1 exp( iH T). The operator
yy a yy a yy

Uyy [l z ] is composed of even-quantum operators, and

Uy Y [ I x I 0 foci..· qua n tum 0 per a tor s • I nthelimit ~w.. 0 ,

pXx ( T) • U [I]
yy z

is purely even-quantum.

..

For the sequence
1r
-I
2 Y

the prepared

density operator is:

Py x ( t) • e x p ( - i 2" I ) e x p ( - i Ht' ) e x p ( i 2
1T

I ) I
x Y z

xexp(i;Iy)exp(iHt)exp(i;Ix) .

• U [I lcos~wt' + U [I lsin~wt'.yy x yy z

In the limit ~w-O,

is purely odd-quantum.



By inserting a 1r pulse in the middle of 't to

remove all resonance offsets, selective preparation

25

sequences can be created. Thus, an even-selective

...

preparation is
1r 't 't 1r

andsequence -I - - 11' - - -I an
2 x 2 2 2 -x

odd-selective is
1r 't 't 1r

one -I - - 1r - - IIy '2 x 2 2

1.6 SEPARATION OF ORDERS

A highly useful property is that the offset

ex per i en c e d by MQ coher e neessea I e s wit h n. By going

off-resonance by an amount dw greater than- the largest

MQ second moments, the orders can be separated. To see

how this comes about, we expand the density operator in

the irreducible spherical tensor operator basis:(lO)

p(t)· I a
k

(t)T
k

k ' n , n,n

where Tk,n is the nth-component of a k-rank tensor

( n <;k) • The tensor components Tk n are related to n,
quantum operators.

quantum operators:

It is convenient to group the n-

pet) • I
n

p (t)
n

where p (t) • Ia
k

(t)T
k

•
n k,n ,n

As a result of the commutation ru1e:(IO)

• nT k ,n



and the following property of exponential operators(10)

A -A 1 1
e Be • B + [A,B] + 21 [A, [A,B]] + 31 [A, [A, [A,B]] ]+•••

the effect of a rotation about I z on pis:

exp(-iepI )p (t)exp(iepI ) • p (t)exp(-inep).
z n z n

This implies that the existence of an offset term in H1

will cause n-quantum coherences to oscillate as n~w:

exp(i~Ult11 )p (T)exp(-iAUlt 1 1 ) • p (T)exp(in~wt1).z n z n

If the offset ~w is greater than the largest MQ second

moments, this will result in separation of the orders

in the Fourier spectrum.

As a corollary, the inhomogeneity is also scaled

26

by n. For high resolution work, it would be desirable

to remove the inhomogeneity by applying a 1r pulse in

the middle of the evolution period.

the centers of orders will coincide.

But by doing SOt

The method of time proportional phase ...
incrementation(l,ll) (TPPI) allows sorting of orders

meanwhile removing inhomogeneous line broadening. It

can accomplish separation regardless of whether there

is a real resonance offset.

As is evident from its name t the method involves



incrementing the phase of the preparation pulses for

each increment in t l , and keeping the mixing pulses at

a fixed phase.

Suppose we phase shift the preparation propagator

by an amount ~:

U,I.(T) • exp(-i4l1 )U(T)exp(i4l1 )
'I' Z Z

27

where U( T) is at an arbitrary fixed phase. Applying

the propagator on th~ initial density operator gives:

Consider incrementing the phase of the preparation

pulses by an amount 641 proportional to tlo

express the phase as

We can

where 6w

The

641. -
6t I 0

fictitious offset 6w is a parameter that can

be varied by changing the phase increment 641. To

observe up to a maximum order M, the bandwidth 1/6t l

must encompass up to 2M6w/2'll'o

increment in tl must satisfy:

That is, the minimum



1 ) 2MtHli
~t 1 2 l'

The corresponding condition on ~~ given ~tl is:

Keeping the mixing propagat or V( T#) at a fixed

phase, the expression for the signal is then:

S ( T, t 1 J T#) • Tr {V ( T#) I _Vt ( T#) e x p ( - i HIt 1 )

x U~(T)IzU~{T)exp{-iHltl)}

• Tr{V{T#)I_vt{T#)exp(-iHltl)exp(-i~wtl)

x ut(T)IzU(T)exp(i~wtlexp(iHltl).

Thus the signal experiences an additional, although

artificial, offset.

- 28

By insertin:- 11' pulse in the middle of tl' the

effective HI is free of all real offset terms. With

this and TPPI, we can obtain separation of orders

without losing high resolution.

In chapter 2, the scaling of inhomogeneity with n

is put to use to obtain separation of MQ spin echoes

and to allow selective detection.

..
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CBAPT1Ul 2

INDIRECT DETECTION OF SPIN-l DOUBLE-QUANTUM COBERE5CE

15 LIQUIDS

2.! INTRODUCTION

Time domain multiple-quantum (MQ) NMR has been

demonstrated in a variety of systems(!) to offer higher

resolution and more information on relaxation dynamics

30

..

than single-quantum (SQ) methods. Although S • I

nuclei in anisotropic systems were among the early

that the interesting

applications of time domain

NMR,(2,3,4) it is only recently

double-quantum ( DQ)

problem has been raised of observing these transitions

in isotropic solution where the quadrupole coupling

vanishes. Prestegard and Miner(S) recognized that the

usual preparation sequence using two 6/2 pulses(6,7) on

the S sp1ns does not excite DQ coherence, even

when the spectrum shows resolved J coupling to

neighboring heteronuclei. They demonstrated that

augmentation of this sequence by spin tiCkling of bound

protons (I • 1/2) did allow S spin DQ coherence to be

prepared from and mixed to S spin magnetization.

..

In this work we demonstrate that the S DQ

coherence can be excited and detected by using only the

I spin magnetization and applying simple hard pulses at

both I and

heteronuclear

S frequencies. This is

coherence transfer(S,9)

an example

and 15

of

an



extension of heteronuc1ear MQ techniques already
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demonstrated for I .. 5 • 1/2 in 1iquids(lO) and in

liquid crysta1s(11), and for I = 1/2, 5 .. 1 in liquid

crystals(12) and solids.(13,14,15)

This indirect method of observation of 5 = 1 DQ

coherence benefits from the signal enhancement(IO,12)

which comes from using only proton magnetization as the

initial and final conditions. In addition, we employ

spin echoes and time proportional phase incrementation

(TPPI)(7,16) to separate orders and a form of coherence

transfer echo(9,17)

interference.

to suppress large zero-quantum

In discussing the various coherences possible in a

heteronuc1ear system, it is useful to label them with a

pair of quantum numbers are conserved

under free evolution. For any coherent superposition

I i><j I of two eigenstates these are defined by the

relations

[I z , li><jl] • ntjli><jl,

[5 z , li><jll .. n~jli><jl.

(l a)

(l b)

These are just the differences in Zeeman quantum

.. numbers

m~ - m~.
1 J

for the states connected: n~ ... m~
1J 1

I- m·
J '

5n·· =
1J

2.2 THEORY

Shown in Fig. 2 . I are two pulse sequence
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90 180 90 90 180

I UJ ~ ~ •

A
180 90 90 180

S [[J ~ ~

90 180 90 180 90 180

_I_ -lL._.J....L---LL..-__....J......L..- -=--_~..:..!_~_...:.-_
8

180ep 90ep 180 90 180

_S_[J_~ -:----~~~"----
I I I

-I

..

be of the same phase. The delays ~l and

suppression of the signal from all but one

coherence.

heteronuclear

monitored at

two 5 spin

(TPPI). All other rf pulses of a given

~2 allow

order of

by f • ~wt I

frequency may

for observing

I ~pin FID is

B has the fi r s t

used

The

shiftedphase

Pulse sequence

sequences

coherence.HQ

Pulse

t 2 • T.

rf pulses

2. IFig.



variations for observation of various orders of
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coherence (nl ..
1 J • n~j) using only I spin magnetization.

Perfect rf pulses of negligible duration are assumed.

We consider here the case of a group of equivalent I

spins identically coupled to a single S -1 spin. The

unperturbed rotating frame Hamiltonian is

H • - 61&1 I - 61&1 S + J"'I SI z S z z z'

wher e J'" • 2 'lrJ is the s cal a r h e t e ron u c lea r co u p lin g (i n

rad! sec) and I • I I .• For the preparat ion sequencez . z 1
1

('lr!2)x- T!2-( 'lr)x(I ,S)-T!2-( 'lr!2)x(I ,S) the propagator is

U( T) - exp[i('lr!2)(I + S )]exp(-iHT!2)exp[i'lr(I + S )]
x x x x

x exp(-iHT!2)exp[i('lr!2)I ]
x

• exp (- i TJ"'I S ) exp [- i ( 'lr!2) S ]. (3)
y y x

The simultaneous 'lr pulses remove the dependence on the

offset terms in the Hamiltonian of Eq. (2) making the

propagator even-quantum selective(4,lO,lS) and

dependent only on the variable J"'T.

The density operator at the end of the preparation

.. period is pet) • U(T)p(O)U- 1 (T). Neglecting the term

proportional to the identity this is given by

p( t) - exp(-iTJ"'I S )(bI )exp(iTJ"'r S )
Y Y z Y Y

• b[I cos(J"'TS ) + r sin(J"'tS )]
z y x y



• b{I [1 + S 2(cosJ--T - 1)]z y

+ ISs i nJ -- T}.
X y

In the last step. the identities

cos(8S) • 1 + S 2(cose - 1).
y Y

sin(eS) • S siney y

appropriate to S • 1 have been used.

(4)

(Sa)

(Sb)

The initial

34

•

equilibrium spin density operator proportional to Sz is

not included in the expression. since it does not yield

DQ coherence nor does it lead to an eventual signal in

the proton channel. Equation (4) can be written using

the fictitious spin-l/2 operators(19.20) for th~ S

operators:

p(T). b{r [1 + (2/3 - S 1-3
z x

- 1/3(S 1-2 - S 2-3»(cosJ--T - 1)]
z z

+ 21/ 2 r (S 1-2 + S 2-3)sinJ--T}. (6)
x y y

This expansion shows that Sy
2 consists of zero-quantum

and DQ operators. The coefficient of the operator

tzS y
2 and thus of the (n t • 0. nS • 1:2) coherence

IzS x
1-3 is maximized by setting T • 1/2J sec, where J,

1S in hertz.

only (n r • 1:1, n S • 0) coherences can freely evolve

The prepared coherences evolve during t 1 . Since



into proton transverse magnetization, the W/2 pulses at

the end of t l are needed to convert MQ coherence into

35

such SQ coherence. For each increment in tl' only the

peak of the MQ spin echo at t 2 • T is sampled in the

proton channel. The resulting heteronuclear MQ

.. interferogram as a function of the evolution time t l is

the autocorrelation function of p( T) .. p( T, t l • 0).

Neglecting relaxation and with 6 1 • 6 2 .. ° (Fig. 2.1),

this is

S(t
l

) • Tr{p(T,O)P(T,t
l

)}

• Tr{p(T,O)exp(-itlJ~I S )p(T,O)exp(itlJ~I S )}
z z z z

• L Ip(T,O)I~ .exp(-iw.. t
1
), (7)

• • 1.,J 1.J
1 , J

where w.. .. w. - w. and w
l
' .. <iIJ~IzSzli>.

1. J 1. J

Evaluation of the matrix elements of I z Sx
l - 3 [Eq.

( 6) ] for the case of four equivalent I· ..
1

1/2 spins

shows that the DQ spectrum is a quintet with line

separation of 2J and line amplitude of

..

..

A(m I ) .. (1/4)(cosJ~T - 1)(cosJ~t2 

.. (cosJ~T- 1)(cosJ~t2- 1),

• (cosJ~T - 1)(cosJ~t2 - 1),

• 0,

l)(m I )2 g (m I )

I
m ":2

Im .. 0.

Note that the central line of the quintet has zero

amplitude. The degeneracies g(m I ) are 1,4,6 for mI ..



%2, %1, 0, res pe c t i vel y •

The fixed time delays 411 and 412 are included to

36

selectively echo the desired order for detection. The

scheme is similar to pulsed field gradient methods(17),

except that here the static field inhomogeneity and a

longer time delay are used for the dephasing and

..

..
selective rephasing. Advantage is taken of the

proportionality of the dephasing rate S
+ n YS'

other orders.

thereby allowing separation of various MQ echoes.

Sampling at the peak of the desired MQ echo results in

detection of the selected order and suppression of the

In our experiments, the l4 N DQ coherence

dephases at a rate proportional to 2ys in 411 and

rephases as proton SQ coherence at a rate proportional

to YI i n ~. To observe the l4N DQ coherence echo as

proton transverse magnetization, 412 must be set at

A •2
( 9 )

This scheme can be viewed as a coherence transfer

echo filterng (CTEF) processo The desired DQ signal is

a small oscillation on top of a large signal
..

originating from coherences not of DQ nature, the

largest being from the H20 solvent 0 Fluctuations in

the large signal resulting from instrumental

instability appear ln the Fourier transform as noise at

all values of wlo Because this t l noise can be



comparable to the DQ signal, it is desirable to
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eliminate it by "filtering" out the large signal. In

addition, the dynamic range requirements of the

spectrometer are reduced, since the largest signals

never reach the receiver.

Pulse sequence B differs from A only in the way

the separation of MQ orders is accomplished. Because

of the

+

tensorial

(1), the

Sn awS •

properties of MQ operators expressed

center of the order (n I , n S ) is at

Pulse sequence- A requires a real

The 'II' pulses in t l

resonance offset, whereas pulse sequence B creates an

artificial offset by TPPI.(7,l6)

remove all real resonance offset terms and thus field

inhomogeneity. The phase incrementation of the S rf

pulses in the preparation period for each

incrementation in t l effects an apparent S frequency

offset in the observing frame. TPPI yields a spectrum

that is free of inhomogeneous broadening and yet

retains separation of the MQ orders.

2.3 RESULTS AND DISCUSSION

Spectra were obtained at 27 0 C of an 8 molar NH4 N0 3

aqueous solution acidified to pH 1 to slow down proton

exchange with the solvent. The spectrum in Fig. 2.2

was obtained using pulse sequence A with the 14N

carrier frequency offset by 0.85 kHz from NH +4

resonance and the proton carrier frequency on resonance
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-2 -I

~w (kHz)

o

XIL 619-4949

Fig. 2.2 Proton-detected heteronuclear MQ magnitude

spectrum of acidified 8 molar NH 4 N0 3 aqueous solution

observed at 185 MHz. The spectrum is obtained using

pulse sequence A in Fig. 2.1 with 14 N carrier frequency
+offset from NH 4 resonance by 6wS • 0.85 kHz, T • t 2 •

9.6 msec, t 1 increment • 200 usec, 6 1 • 11.327 msec,

and 62 • 1. 6 18m sec • The inc 0 mp 1e tel y sup pre sse don 

resonance line arises predominantly from longitudinal

H2 0 magnetization present during tl. The multiplet

with the center offset by 1.70 kHz is the l4 N DQ

spectrum.

..

•
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at lS5 MHz. The time delays Al and A2 were set

according to Eq. (9). The central peak at Aw = 0

arises predominantly from imperfect CTEF of the

1 0 n g i t udinalprot on mag net i z at i on 0 f the sol v e n t H2 0

present during evolution. Other contributions are from

the zero-quantum portion of I
Z

Sy
2 and from I z of the

ammonium protons, both of which are present in p(T)

even when DQ coherence is maximized [Eqs. (4) to

(6)]. The multiplet corresponds to the DQ coherence

transfer spectrum of 14 N• Its center is offset by 1~70

kHz, which is twice the carrier frequency offset, the

splitting is 2J, and the linewidth is twice that of l4 N

SQ inhomogeneous linewidth all of which are

indicative of 14 N DQ transitions.

Figure 2.3 shows the improvement l.n resolution of

the multiplet using pulse sequence B with the same

parameter settings. The spectrum is a quintet with

spin echo sequence. with a

is the comparison of the

simultaneous n pulse applied to the protons to preserve

Through aSQ linewidths.

relative amplitudes of 1:1 :0:1:1 and splittings of 2J,

in agreement with the calculat ions [Eq. (S)]. The

splitting is 105 ± 1 Hz; the homogeneous absorption

linewidth (full width at half maximum) is 7 ± 1 Hz as

compared with the inhomogeneous linewidth of 70 to SO

Hz in Fig. 2.2 •

Also of importance

homogeneous l4 N DQ and

conventional l4 N detected

..
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500 Hz .
XBL 819-4SSC

Fig. 2.3 Proton-detected 14 N DQ magnitude

using pulse sequence B in Fig. 2.1 with 1 H

carrier frequencies on resonance. 't. t 2 •

all other parameter settings are the same as

2.2. The spectrum is a quintet with

amplitude ratio and 105 Hz peak separation.

spectrum

and 14 N

10 msec;

in Fig.

1:1:0:1:1



the J coupling, the absorption linewidth of 14 N DQ and

SQ homogeneous linewidths are the same.

In both Figs. 2.2 and 2.3, the magnitude spectra

41

are displayed. The lines of the quintet can in

principle be observed in phase [Eq. (7)], but were not

.. because of the use of CTEF • The insertion of the time

delay t.1 in t l necessitates that the heteronuclear MQ

interferogram is first sampled not at t 1 • 0 but at tl

During the extra time t. l , the lines accumulate

phase at different rates resulting in a large phase

shift linear in wI'

To demonstrate the sinusoidal dependence of the

I z sx
l - 3 operator on preparaton time [Eq. (6)], pulse

sequence B was employed with t 2 held constant for

different values of T. With t 2 fixed, the line

amplitude varies with T as (cosJ"'T

Figure 2.4 shows the integrated line amplitude

where

time.

refers to the 1 homogeneous decay

of the quintet as a function of T.

analysis gave T2 • 80 t 11 msec.

A least squares

In summary, DQ transitions 1n a quadrupolar

n' ~ . oJ S 0 f s pin S • 1, is ma de po s sib leth r 0 ugh the J

.. coupling to the protons • Sensitivity is greatly

improved by indirectly detecting the quadrupolar nuclei

through the protons. Using TPPI and a spin echo in the

evolution period, the inherently higher resolution of

the DQ spectrum is realized.
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..

Fig. 2.4 Normalized l4 N DO line amplitude as a

fun c t ion 0 f the pre par a t ion tim e T. Th e ex per i men tal

points are compared with the solid theoretical curve of

(cosJ"T - 1)exp(-T/T2 ).
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CHAPTER 3

TIME-REVERSAL MULTIPLE-QUANTUM RMR 1M SOLIDS

45

..
3.1 INTRODUCTION

Multiple-quantum NMR spectroscopy has

.. generally been applied to systems of isolated molecules

with a small number of spins.(l,2) The small system

size limits the complexity of the spectrum as well as

the number of rf quanta that can be absorbed or

emitted. One difficulty in studying large spin systems

is that the average intensity per transition decreases

rapidly with the number of spins. As a result,

selective exci~ation schemes(3) may be necessary to

channel intensity into the desired n-quantum order.

haveapplicationsThus, comparatively few

performed in solids,(4,5) where extensive

been

dipolar

coupling makes the coupled spin system essentially

infinite in size.

In this chapter, we present the utilization of

time reversal(3,6) to enhance overall signal intensity

so that very high quautum absorption can be observed in

solids. In Fig. 3.1, we show a lH MQ spectrum of solid

adamantane C10 H16 obtained by such a time-reversal

excitation-detection scheme, where up to 22-quantum

absorption is observed. Adamantane is a plastic

crystal; the molecule is nearly spherical and as such

can tumble isotropically ln the solid phase. At room



,500 KHz,
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..

..

'.

4 6 8 10 12

n (quanta)

'4 16 18 20 22

18L ee8.10791

..

Figure 3.1 lH multiple-quantum NMR spectrum of solid

adamantane at room temperature, obtained with time

reversal sequence of Fig. 3.2(d) and excitation time of

480 us e c.
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temperature, this motion averages to zero all

is the high

continuum of

..

...

intramolecular couplings but retains the intermolecular

terms. Our system is thus not an isolated molecule but

rather a network of molecules. Very high quantum

transitions might thereby be excited.

One of the main features of solids

density of spin Itates. Due to the

transitions, individual lines within each n-quantum

order are unresolved. Since both the intensity and

phase of individual MQ coherences depend uniquely on

the excitation time, there may occur destructive

interference between overlapping lines. The integrated

intensity of the MQ spectrum is decreased and the

signal-to-noise ratio suffers. This problem becomes

more severe as the excitation time 1S increased, as is

ob~erved experimentally. Very quiCkly, typically

within 10-4 sec, the signal-to-noise ratio is dominated

by instrumental noise. It eventually becomes very

difficult to observ~ high quantum absorption, where

long excitation times are required.

What is desired then is the generation of all

homogeneous

to

theof

able1S

pE:ak

one

the

point of detection, that is, in

the dephasing that occurred 1n

In solids, the dominant

the dipole-dipole interaction,

in nature. If

spin echo,(6)

is

the

period.

reverse

at

to

mechanism

homogeneous

a

in phase

manner

excitation

lines

the

produce

lome

dephasing

which is



echo is free of the dipolar Hamiltonian. This in fact
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can be accomplished by applying a series of intense rf

pulses to the spin system to effect what is in essence

time reversal. With the method of time reversal, we

were able to regain the intensity lost due to fast

homogeneous dephasing of spins in solids.

3.2 THEORY

For the following discussions, it is convenient to

introduce the time-domain MQ NMR experiment, described

•

s c he ma tic all y in Fig. 3 • 2 ( a) • The sequence can be

partitioned into four time domains:(]) preparation (T),

evolution mixing ( T"') , and detection

periods. As a specific example, consider the simple

three-pulse sequence in Fig. 3.2(b). The first two

pulses separated by an excitation delay T prepare MQ

coherences, which then evolve freely for a time t l •

Because MQ coherences do not correspond to

~agnetization, they are not directly observable with

our detection coil. A third pulse is needed to convert

them into single-quantum coherences, which are detected

in time t 2 • For our experiments, only the point at t 2

• T is sampled.(S) The sequence is repeated for many

values of t l until one maps out an interferogram.

Fourier transformation with respect to t l of this

interferogram yields the MQ spectrum.

The equation of motion of a coupled spin system is

..
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Figure 3.2 Multiple-quantum pulse sequences: (a)

Schematic pulse sequence showing relevant periods. (b)

Nonselective three-pulse experiment. (c) Even-selective

sequence with preparation pulses phase shifted by an

amount ~dllJtl (TPPI) to separate n-quantum orders. (d)

Time-reversed preparation and mixing periods with the

preparation 'ff/2 pulses phase shifted by an amount 41

(TPPI). The preparation and mixing periods are

composed of

shown be low.

period from

cycles of the a-pulse (Hxx-H yy ) sequence

A delay of 1.6 msec separates the mixing

the final detecting pulse to allow



transients to decay away.

receiver deadtime before

dotted line.

30 ~sec is allowed

sampling is taken at

for

the

49a

..

•

..



conveniently described in the density matrix
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formalism. In this formalism, neglecting relaxation,

..

the signal in the time domain is given by the trace of

the product of the observable and the reduced density

matrix:

S(T,tl,T") • Tr{Izp(T,tl,T")}

• Tr{VIzvtexp(-iHltl)utIzuexp(iHltl)}

• Tr{Q(T")exp(-iHltl)p(T)exp(iHlt
l

)}

• 1 P.k(T)Qk.(T")exp(-iw·kt l ). (1)
j,k J J J

Here U • exp(iHT) is the preparation propagator, V •

exp(iH"T") 18 the mixing propagator, P • UtIzU is the

preparation density operator, Q • VIzV t is the mixing

density operator, Ij>'s are eigenstates of the

Hamiltonian HI' and • w.
J

is the transition

frequency. In the above equation, the invariance of

the trace to cyclic permutation is used. The spin

..

..

system is assumed to be initially at equilibrium. For

n o·.t a t ion a 1 con v e n i e n c e, a vir t u a 1 'If / 2 p u 1 s e i sap p lie d

at end of T" so that I z rather than I+ = Ix + iI y is

our observable.

To see how phase terms can arise in a MQ NMR

experiment, let us consider the situation V • U, which

is the case for the commonly-used pulse sequences in

Figs. 3.2(b) and 3.2(c). The transition between states

I j> and Ik> is then described by a complex vector



...

to

..



(P jk )2, where the intensity is given by IP jk l 2 and the

phase is a complicated function of the preparation

51

period:
2

-1 Im[P jk (or)]
tan { 2 }.

Re[P
jk

(or)]
(2)

..
The preparation density operator P and hence the phase

of a transition vary with the excitation time or.(9)

If we now look at the cas e v • U
t , then Q • P •

p t , and the signal can be written as an autocorrelation

function of th, p-oparation density operator p(or):

Note that here the signal contains no phase factor for

all lines. Suppose further that V differs from Ut only

in phase by an amount X, i. e. ,

(4)

..

..

l:1en Q • exp(-iXlz)Pexp(iXl z )' and the signal is given

by:

This states that all line s within order n • m· - mk ,
J

where the m. IS are Zeeman magnetic quantum numbers,
J

have the same phase, and lines between neighboring



orde'rs differ in phase by ±x. Thus, if orders are
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well-separated, the condition in Eq. (4) is sufficient

to ensure no phase cancellation. In practice,

Hermitian conjugation of U or V is achieved by negating

the Hamiltonian, which has the same effect as reversing

time, hence the term time reversal.

3.3 EXPERIMENTAL

The actual pulse sequence used to generate the

time-reversed spectra is shown in Fig. 3.2{d). The

...

eight-pulse cycle preparation

average Hamiltonian{lO) (H xx

double-quantum operator(3) and

sequence

can excite

creates an

is a pure

only even-

quantum transitions. The excitation time is increased

by adding more cycles. To account for finite rf

pulsewidths, 2~ + t p is used in place of 2~, where t p

is the pulse duration. The experiment was performed on

resonance, causing all MQ orders to overlap. To create

the large artificial offset required for separation of

orders, the method of time proportional phase

incrementation is used. For each

incrementation in t l , the phase of the preparation

pulses is incremented by the amount:

(6 )

where M is the maXlmum MQ order to be observed.

I n p r inc i p 1e , d e tee t ion can b e mad e i mm e d i ate 1y

after the mixing pulses with a final detecting pulse.



In practice, however, due to pulse imperfections and

relaxation, a delay of 1.6 msec is introduced after the

mixing pulses, allowing transients to decay before

53

applying a detecting pulse. These transients should

..

decay on

time,(lZ)

the order of TZ ' the

which is typically 10-4

spin-spin relaxation

sec for solids. The

desired signal, after mixing, is in the form of

populations. It decays

relaxation time,(12) which

as TI , the spin-lattice

is on the order of seconds,

and should essentially be preserved during the 1.6 msec

delay. The final W/2 pulse rotates it into the

transverse plane for detection. The detecting pulse

can be of arbitrary phase, as long as it remains fixed

from poi n t top 0 i ntin t 1 • A delay of 30 lJsec is

inserted

deadtime.

before sampling to allow for receiver

3.4 RESULTS AND DISCUSSION

To demonstrate the severity of intensity loss due

to phase cancellation in the normal nontime-reversal

approach to MQ NMR, in Fig. 3.3 we compare 1 H MQ
..

magnitude spectra of adamantane obtained with and

without time reversal, uSlng pulse sequences of Figs.

3.2(d) and 3.2(c), respectively. The w pulses in Fig.

3.2(c) remove all resonance-offset terms, rendering

this sequence even-selective,(13) as is the sequence of

Fig. 3.2(d). Both spectra were obtained at 3S o C with a
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..

(0 )

(b) J. .... A. At ,..-..,

0 2 4 6

n (quanta)
XBL 828-10790

...

Figure 3.3 Comparison of adamantane multiple-

quantum NMR spectra obtained with 144 ~sec excitation

time and using (a) time-reversal pulse sequence of Fig.

3 . 2 ( d ) wit h ~. 0 . 8 ~s e cand t P• 3 . 2 ~s e c tand ( b )

nontime-reversal pulse sequence of Fig. 3.2(c).



preparat ion time of 144 lJsec. Without time reversal,
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phase cancellation results in a significant reduction

of absolute integrated intensity. This difference in

intensity becomes more pronounced as the excitation

.. time increases. We emphasize here that without time

reversal, we were not able to increase the excitation

time long enough to observe high quantum absorption.

Comparison of lineshapes, in particular second moments,

with and without incorporation of time reversal will be

discussed elsewhere.(14)

An interesting result of these experiments is the

initial time dependence of MQ intensities on n, the

number of quanta. The short time behavior can be

obtained from a power expansion in T of the preparation

density operator:(l)

p( T) • exp(-iHT)P(O)exp( iHT)

T
2

• p(o) - iT[H,P(O)] - 2' [H,[H,P(O)]] + (7)

For the (H xx Hyy ) pulse sequence in Fig. 3.2(d)

assuming perfect o-function pulses, evaluation of the

..
co mm uta tor s for P ( 0 ) • I reveals thatz the integrated

intensity of a given order (n=O,4,6,8, ... ) grows in as:

L
j ,k

(8)

where the summation runs through all j,k such that m· -
J
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quantum

n. The

in as T
2 •

•

grows

intensity of the double-quantum order

Thus, in the short T limit, the higher

ope rat 0 r sappearat a 1ate rexcit at ion time

than the lower

illustrated in

quantum operators.

experimental results

This behavior

for adamantane

is

in

Fig. 3.4. We observe that indeed the coherences

"diffuse" outward toward higher n as the excitation

time is increased. A physical interpretation for this

behavior can be obtained by realizing that MQ coherence

is a many-spin correlation phenomenon at least n

spins are interacting concertedly to absorb n

..

occur.to

of quanta,

longer it for

morethe

picture

takes

walkrandom

the

A

numberthe

hence

higher

and

photons. The

spins involved,

correlations

connecting spin diffusion with evolution of multiple

spin correlations and MQ coherences is appealing.

Insu mm a r y, the d iff i cuI t yin a p ply in g nor ma I MQ

NMR lDethods to solids can be attributed to the fast

homogeneous dephasing of spins. The incorporation of

tilDe reversal enables all transition lines to be phased

with respect to each other, thereby enhancing the

signal-to-noise ratio. Using tilDe-reversal pulse

sequences, we were able to obtain very high quantulD

absorption spectra of solid adalDantane. From a time

dependence study, we observed an increase in spin

correlations as the excitation tilDe increased.
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a T =122.4 fLs
b T=204.0fLs
C T =367.2fLs

),B~ B26-10793

16

o 500
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free induction decay

8
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-8-16
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E
~

o
Z

-0
Q)
N

-0
Q)-c
~

C"
Q)-c

~-'Vi
c
Q)-c

quantum order for various excitation times extracted

from adamantane time-reversal spectra, showing how the

spin correlations "diffuse" out t, higher n. These

..

..

Figure 3.4 Normalized integrated intensity of n-

intensities are normalized so that the total integrated

intensity for

corresponding

free induction

each excitation time is unity. The

excitation times on the single-quantum

decay are indicated in the insert.
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CHAPTEl. 4

SICORD KOHEHTS or KULTIPLI-QUARTUK SKI. SPICTI.A

4.1 INTRODUCTION

Recent years have shown much experimental and

theoretical progress on multiple-quantum (MQ) NMR

60

"
studies of dipolar systems.(1,2,3) Most of these

studies depend on the high resolution available in the

spin systems for dynami cal and structural

information. In studies where resolution is poor,

particularly in solids, lineshape analysis provides the

only practical means of extracting information. Thus,

it would be of interest to explore the behavior of MQ

lineshapes as a function of the number of rf quanta

absorbed or emitted.

For a system containing nuclei of spin 1-1/2, the

second moments (M 2 ) of the dipolar structure of MQ

spectra can be rigorously calculated by assuming a

statistical model. With this assumption, only sums and

products of the dipolar coupling constants are needed

to determine the second moments. No diagonalization of ..
the Hamiltonian is necessary. Results reveal that the

ratio r of the average dipolar coupling constant to the

rms value:

d
r •



(1)

(2)

•

determines to a large extent the second moments

behavior. The two extreme cases:

rat, all the couplings are the same,

r-O, couplings of both signs occur in such a

way that the average coupling is zero,

show distinctively different behavior •

One may inquire here whether a statistical model

contains enough information to describe lineshape

behavior as a function of n. A statistical assumption

implies no symmetry in the spin system.- What are the

implications of neglecting symmetry, or conversely,

what role does spin symmetry play in M2 behavior?

Also, how large does the system have to be in order for

the statistical assumption to hold? These are the

questions that we explore in our experiments.

In section 4.2, we will proceed first with a brief

description of a Fourier transform MQ experiment and

some terminologies. A formulation for the MQ signal

and its moments is given, the need for an unique M2

definition is recognized, and the statistical model for

MQ moments is introduced. In section 4.3, a comparison

of experiment with theory is made.

61

4.2 THEORY

In a Fourier transform MQ experiment (Fig. 4.1),

MQ coherences are created by applying a series of

intense rf pulses to the spin system. The preparation



PREPARATION EVOl.UTlON MIXING DETECTION

JPROPAGATOR: U exp (-iJi. tl) V exp (-i3J2 t 2)

TIME VARIABl.E: T t l T' t 2

IlL 11l2·l3oa~
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..

Figure

relevant periods in a

pulse

Fourier

sequence showing the

transform multiple-

quantum NMR experiment.



sequence may be described by a preparation propagator
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OCT). The density operator at the end of the

preparation pulse sequence is given by utpou, where Po

is the initial density operator, and contains MQ

.. coherences. The system evolves in tl under the effect

of the Hamiltonian HI. To detect MQ coherences, a

mixing period described by the operator V(T#) is

required to convert MQ coherences into detectable

single-quantum coherenc~ Typically, one point at

tz-O is sampled for each incrementation in t l , keeping

( T, T#) fixe d.

given by:(3)

The resultant MQ interferogram in tl is

..

..

S(t 1 ) - <I+(t 1» (1)

- Tr{Q(-T#)exp(-iH 1 t 1 )P(t)exp(iH l t 1 )}

where

Q(-t#) - V(t#)I_Vt(t#),

t
pet) - 0 (t)p U(t).o

Fourier transforming Eq. (1) with respect to t 1 yields

the conjugate frequency spectrum in WI' the frequency

spectrum of interest (as opposed to wz, the conjugate

of t z , if the entire free induction decay in tz is

sampled). Henceforth, the subscript 1 will be dropped.

If the signal Set) is separable into components of

order n, labeled Sn(t), such as by selective excitation

or detection schemes,(1,3) the n-quantum moments can be



obtained from the time-domain signal Set) with the

following well-known relation:(4)

64

(_i)k

•

By differentiating Eq. (1), the analogous n-quantum

kth-moment expression to Van Vleck's single-quantum

moments formula(6) is:

k times

Tr{Q (-~~)[ ••••• [B,[B,P (~)]] ••••• ]
n n-_......._-----------------.

Tr{Q (-~~)P (~)}
n n

Specifically, the second moments M2 expression is:(7)

Tr{[B, Q (-T~)][B, P (T)]}

M2 (n) • Tr{~ (-T~)P (T)} .
n n

Finding expressions for Pn and Qn' which depend on

the pulse sequence used t and performing the

commutations are nontrivial tasks. Instead of

evaluating the commutators directlYt an alternative is

to examine the density of states distributed by the

di polar Hami 1 t onian and see what inf orma t ion can be

inferred.

A schematic energy level diagram of an N spin-I/2

system with random coupling constants is depicted in

..

Fig. 4.2. The s pin s tat e s are mo s t s t ron g1 Y s P li t by

the Zeeman interaction of spin dipoles with the large

external static magnetic field. Ea c h Ze e ma n ma n i f old
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N'2-----------
XBL 771 0-10022

Figure 4.2 Schematic energy level diagram for an

arbitrary spin system of N spin-1/2's. The states,

s p 1i t by the Ze e ma n in t era c t ion, are g r 0 u p e d a c cordin g

to their Zeeman quantum numbers. Within each Zeeman

manifold, the states are further split by the dipolar

Hamiltonian.
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of magnetic quantum number m is further split by

dipole-dipole interactions among spins to form a

distribution of states. An n-quantum order is composed

of the sets of transitions between states of ml and m2
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that satisfy the condition n • ml - m2. There may be

more than one pair (mI' m2) that satisfies this

condition.

Each Zeeman manifold can be labeled by either m,

the magnetic quantum number, or p, the number of spins

aligned parallel to the static external magnetic

field. The relationship between m and pis:

Np. - m,2

where N is the total number of spins in the system. We

find the label p more convenient for the following

discussions.

Let G1(w) and G2 (w) be the distribution functions

for the density of states of manifolds labeled by PI

and P2. The statistical lineshape of the set of

transitions between two manifolds is described by the

cross-correlation of the two distribution functions:

( 2)

where * denotes a cross-correlation integral (Fig.

4.3). Explicitly, this is: (8)



p=N

P =N-I

p= N-2
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•
•

p=2

l(w, P, n+ p) =GI(W)*~(w)

,>
"-----,

p = I

p=o

,~:::=»
" '?------,

"r,,-----,
XBL. .210-6711

Figure 4.3 Each Zeeman manifold can be described by a

characteristic distribution of states with a mean

dipolar energy shift and a dipolar width. The

statistical lineshape function for a set of transitions

between two Zeeman mani folds is a cross -co rre la t ion

between the two distributions.



(3)
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The n-quantum spectrum is the superposition of all

cross-correlations between manifolds that satisfy the "

5-n
I(~,n) - I I(~,Pl,P2·Pl+n).

Pl-O

The kth-moment of the lineshape fun~tion I(~,n) is:

Mk(n) - ------.
JI(~,n)d~

(4)

(5)

We shall show that the MQ moments can be related

toth e mo me n t s 0 f the dis t r i bu t ion s Gi ( ~) • To do so,

we list the following properties of cross-correlation

integrals.

Let G
l
(~) and G2(~) be two distribution funct10ns

w1th normalization constants Nl and NZ' centr01ds at

2 2
~1 and ~2' and variances a l and aZ ' 1.e.:

"

2! ( w- 6
i

) G1 ( ~) d ~

fGi(w)d~

z
• a •1



Let h • G1*G 2 be the cross-correlation of G1 with G2 •

The corresponding properties of hare:

!wh (w) dw
A - ~---'-~...;;...- • Al - A2 ,

!h (w)dw

!(W-A)2h (w)dw 2 2
• °1 + °2 •

!h(w)dw

We distinguish the definition of second moment from

variance (which is measured from the centroid):
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(6)

Generalizing, it is evident from the binomial

formula that the kth-moment as measured from the

centroid is:

~ [h) -
! ( w- A) k h ( w) d w

•
Ih( w)dw

where the moments of the distribution functions are

similarly defined:

sI( w-A
i

) G
i

(w) dw

IGi(w)dw



The k th moment in terms of the moments of the

distributions G1 and G2 is given by:
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K •k

kfw h(w)dw

!h(w)dw
•

(7)

The above expressions are valid for any functions

describing the distribution of states. The functional

form enters only in the quantitative values of the

moments.

4.2.1 Exact Dynamics

Consider thes chematic MQ pulse sequence of Fig.

4.1. The expression for the signal intensity of such a

pu lse sequence is gi ven by Eq. (1). Expressed in the

eigenstates of the Hamiltonian R. this becomes:

where f.Iljk • f.Ilj - f.Ilk , and alj> • f.Il
j U>. Upon Fourier

transforming with respect to t we obtain the frequency

spectrum:

..

(8)

By going off-resonance by the amount ~f.Il or creating an



artificial offset by time proportional phase
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incrementation, (5) the MQ spectrum is separable into

components of order n:

N
S(w). L

n-O
S (w)~(w - n6w),n

assuming w on the right hand side of the equation

contains no offset component.

the n-quantum order is then:

The second moments of

Evaluation of the Fourier coefficients (Pn)jk(Qn)kj in

the eigenbasis of the Hamiltonian yields a numerical

4.2.2 Unique Second Moments Value

A feature not present in conventional single-

quantum spectra is the dependence of phase on

preparation as a result of the nature of MQ pulse

experiments. The Fourier coefficient PjkQkj [Eq. (8)]

is complex and thus contains a phase term. Moreover,

.. the operators P and Q are functions of T and T'" , and

thus so are the transition amplitude and phase.

Consequently, there is a MZ value associated with each

(T, T") value.

We would like to define an unique MZ value for
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discrete transition lines as well as for a continuum of

transition lines. A convenient choice is one in which

all lines appear in phase and the transition amplitudes

show their time-averaged value.(9)

over T • T'" in Eq. (8) and

transition amplitude.

spectra yield

Upon T

...
T"ultimatean

Averaging PjkQkj

assuming magnitude

average N (9) for each

averaging. the inherent transition amplitude is

bydone

realized; thus ultimate T average spectra should be

used to determine the unique K2 value.

Experimental T averages are

superimposing spectra of many randomly chosen

preparation times. The phasing of each spectrum can be

accomplished by converting it into a magnitude spectrum

if lines are resolvable. or incorporating time reversal

in the KQ pulse sequence. ClO )

The statistical model to be described in the next

section implicitly assumes no phase factors.

4.2.3 Statistical Model

For large spin systems, a complete diagonalization

of the Hamiltonian for exact dynamics calculations is

..

prohibitively cumbersome. For this reason, we turn to

approximation with a statistical model for a

qualitative description.

The statistical model assumes a spin system of no

apparent symmetry so that all transitions are allowed



and are assigned equal intensity. The assumption of
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all transitions being allowed is embodied in the

construction of one distribution function describing

the density of states for each Zeeman manifold,

regardless of their classification according to the

irreducible representations of the symmetry group. The

equality of transition intensity appears in the

resulting lineshape of the set of transitions between

two manifolds. By taking the cross-correlation between

two density of states functions, each transition is

assigned unit intensity; that is, the cross-corralation

function counts the number of transitions per frequency

bandwidth. Any further intensity specification would

require exact dynamics treatment.

Our focus will be on the broadening of resonance

lines by the dipolar Hamiltonian. Derivation of MQ

second moments involves first evaluating the dipolar

mean and variance of each Zeeman manifold. Given these

two it e ms, are pre s '" . ive distributl.on of states is

constructed for each ,lDan manifold. For a complete

description of the distribution of states, higher

moments should be included. However, for the second

.. moments of n-quantum orders, only the second moments of

the distribution of states are necessary [cf. Eq.

(6)]. The second moment of each MQ order is then found

appropriate Zeeman manifolds.

by taking the sum of cross-correlations between



4.2.3.1 Dipolar Mean and Variance of a Zeeman manifold

The dipolar mean and variance of a p-manif old is

given by the following expectation values:
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<HD>p • Trp {pHD}

<HD
2

>P - <HD>; • Tr p {PHD
2

} - Trp
2

{PHD}

(9)

(10)
..

The bracket

p-manifold,

p-manifold,

< >p denotes the ensemble average over the

Tr { } is the trace over the states in thep

P here is the weighting function of these

states, and HD is the secular part of the dipole-dipole

Hamiltonian expressed in units of h:(4)

H •D

The dij's (rad/sec) are the dipolar coupling constants

between spin i and spin j:

The spin operators 1 zi ' l+i • and l_ i are the zth

component, the raising operator. and the lowering

operator of spin i.

Giving equal weight to each state, as is proper. P

must be the reciprocal of the number of states. The

number of states in the p-manifold is given by (N), the
p

..



..

combinatorial of N with p.

(10) become:

With this, Eqs. (9) and

(12)
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.. (13)

The evaluation of Tr
p

{H
D

} 2and Tr
p

{H
D

} involves

combi nat oria1 arguments. In evaluating these traces,

it is convenient- to define a quantity f(p) to be the

probability that a spin pair will be antipara11e1 for a

given state in the p-manifo1d. The number of

antipara11e1 spin pairs out of N spins is peN - p).

Thus, f(p) is just this number divided by the number of

pal rs:

f(p) • peN - p).

(~ )
(14)

From the form of Eq. (14), f(p) is also the probability

that a state in the p-manifo1d will have a given spin

left to appendices 4.A and 4.B. The results are quoted

pair (i,j) antipara11e1 with respect to each other •

..

..

The exp 1ici t eva1uat ions

here:

(15 )



where
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c • ..

g • (N-p-l)(N-p-2) + (p-l)(p-2)
(N-2)(N-3) ,

and f is defined in Eq. (14). We mention here that the

N
number of terms in the summations a, band care (2)'

2(N-2)(~) and ( N-
2

2)(N
2

), respectively, and that the

total number of terms in a, band c is (~)2.

Combining Eqs. (12) and (13) with (15) and (16)

yields for the p-manifold:

h(p) • (1-2f) L ~ij
i<j

2a (p) • f(5-4f)a + 2f(1-2f)b + 4f(1-f-g)c.

For brevity of notation, we have defined

h(p) • <Bo>p

a2 (p) • <Bo
2>p - <B O>p2.

(17)

(18)

..

..

Written in this form. it is apparent that the dipolar

shift h(p) [Eq. (17)} is directly proportional to the



..

average dipolar coupling.

Por the special case of r-l, 1. e. all couplings

are the same, these quantities reduce to:

h(p) - (:)[(~) - 2p(N - p)],

2 d 2
a (p) - (7;) peN - p) •
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where d is the unique coupling constant. That is, in

this limit, the width of a Zeeman manifold is

proportional to the square root of the number of

antiparallel spins.

The features of the dipolar structure of the

energy level diagram can be examined. By

differentiating a 2 (p) with respect to p, the extrema of

a2 (p) can be found. Equation (18) can be factored as

fF(p), where Pcp) is quadratic in p. One extremum is

found from df/dp • 0, which yields a root at p - N/2

(or the maO manifold for N even). The other two roots

can be obtained from solving dF/dp • O. These roots,

..

which can be either real or complex, occur in pairs

since F(p) is symmetric about p - N/2 •

The behavior of h(p) and a(p) versus p for ten

randomly-generated sets of couplings between 30 spins

of 1-1/2 is illustrated in Fig. 4.4(a) for r=l and in

Fig. 4 • 4 ( b ) for r =0 • These plots were generated with

the computer programs listed in appendix 4.C. They

show that the extreme states are shifted by the largest



(0) Positi v e couplings

lb) Negotll;e and positIve couplings
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..

..

p

Figure 4.4 The dependence on p of the mean dipolar

shift h(p) and the standard deviation a(p) for ten

randomly generated 30-spin systems in the limit of (a)

r=l. with couplings in the range 0.0 - 1.0 kHz; (b)

r=O. with couplings in the range -1.0 - 1.0 kHz. In

(a). the top of the scale is 5.7 kHz. and in (b) is 3.8

kHz.

..



amount, and the p-N/2 manifold is shifted slightly in

the opposite direction. They also show that the width

of the distributions is the largest at p-N/2.

One observes that the two cases have distinctly
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different features. For r-1, the width of the

distribution is much smaller than the dipolar shift.

For r-O, ideally there is no dipolar shift. Also,

gi ven the same upper limit on the magni tude of the

couplings, the width is generally larger for r-1 than

for r-O. These features dictate the behavior of MQ

second moments.

4.2.3.2 Multiple-Quantum Second Moments

For each Zeeman manif old, a distri bution func t ion

is constructed from h(p) and a 2 (p):

(19)

..

The normalized function gi (w) is defined to have the

following properties:

Evaluating the cross-correlation integral of Eq.

(2) using Eq. (19), and summing over the manifolds



yields the final expression of the n-quantum second

moments:

(20)

where h(p) and a2 (p) are given in Eqs. (17) and (18).

Since each transition is given unit intensity, the

normalization constant Z is just the total number of n

quantum transitions:(II)
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..

1 <n<N

(21)

Higher moments are readily generalized using Eq.(7) and

evaluating Trp{HD
r }, for r-O,l,2, ••• k.

Shown in Fig. 4.5 are the M2 values for the same

set of ten random spin systems as in Fig. 4.4. Figure

4.6 shows the decomposition into the two contributing

exclusively on one term or the other.

terms. As is evident, the M2 behavior depends almost

For r-l [Fig. ..
4 • 6 ( a >], the do mi nan t con t ributi 0 n is fro m the mea n

displacements ~2 - [h(Pl>-h(P2)]2. For r-O [Fig.

4.6(b)], it is the widths of the lineshape functions a2

• a2(Pl) + a2 (p2) that is dominant. From the dipolar
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Figure 4.5 Second moments versus

n for the same ten systems in the

(b) r =0. The top of the scale is

29 kHz 2 in (b).

the number of quanta

limit (a) r=l, and

240 kHz 2 in (a) and
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Figure 4.6 Contributions to the second mo me n t s • The

quantity 6,2 is the square of the mean shift difference

«(h(Pl) h(P2)J2) contribution, and 02 1s the width

(02(Pl) + 02 (p 2» contribution. Note how different

contributions dominate in the two cases.



behaviors are

as constructed

..

structure of the energy level diagram,

from Figs. 4.4(a) and 4.4(b), these

obvious.

For r-l, the mean displacement of an m-manifold is

much greater than its width and thus is the dominant

contributor. From this and the fact that the higher

quantum orders probe only the more extreme states

(which differ little in mean dipolar shift), we expect

the M2 of high quantum orders to be small. For the

lower quantum orders, the sampling is between adjacent

manifolds (which again do net differ much in mean

dipolar shift). Thus, we expect the M2 of low quantum

orders to also be small. For the orders that connect

p =N/2 to p =0 manifolds, the difference in mean dipolar

shift is at its largest, and we expect these orders

(n=N/2) to have the largest M2 •

For r-O, the opposite is true. Since the dipolar

shift is ideally zero for all manifolds, only the

variances can contribute. The variances are roughly

the same except for the more extreme states. This

suggests that M2 should remain roughly constant for the

lower quantum orders and then drop to zero at naN.

Figure 4.5(a) shows that for r=l the maximum M2

occurs off center toward higher n. This is due to a

third competing factor: the normalization constant.

Since the number of transitions decreases with n, the

maximum M2 is driven toward higher n.

83



To summarize, the three competing factors in

determining the features of M2 are:

(1) the difference in mean displacements between

transition manifolds.
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(2) the

manifolds.

distribution widths of transition

(3) the normalization constant.

The first term never contributes to the zero-quantum

order and drives maximum M2 toward n:::rNI2. The second

term, which is directly proportional to -2
d , drives

maximum M2 towards n-O. The smaller the average

-coupling d is, the smaller M2 is.

term favors higher n.

Finally, the third

The plots in Figs. 4.5 and 4.6 were generated with

the same programs listed in appendix 4.C.

4.3 COMPARISON OF EXPERIMENT WITH COMPUTER SIMULATIONS

AND STATISTICAL MODEL

We show examples of systems exhibiting both

behaviors predicted by the statistical model.

Experimental results can be compared against exact

dynamics calculations of ultimate averaged

spectra(12) and the statistical model using the

experimental coupling constants.

The r=O behavior is exhibited by n-hexane-d 6 • with

the methyl positions deuterated, oriented in a nematic

liquid crystal. It is an a-spin system: only



intramolecular couplings are nonzero since rapid

translational diffusion of solutes in a liquid crystal

averages to zero intermolecular couplings. The ratio

of the average IH dipolar coupling to the rms value is
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measured to

values of a

system.(13)

be r-0.12. Shown in Fig. 4.7 are the M2

T-averaged MQ magnitude spectrum of this

The T values range from 9.0 - 11.5 msec,

in increments of 0.5 msec. A nonselective three-pulse

se('" .':e was used. The largest second moments occur

neat ~-O, in agreement with the statistical model.

The other extreme is illustrated in the

experimental second moments versus n of polycrystalline

adamantane, shown in Fig. 4.8. The T values range from

244.8 - 448.8 usee, in increments of 40.8 usec. The

transition lines are overlapping, and thus a time

reve rsal (even-selective) pulse sequence was used to

obtain these spectra.(10) Since the sample is a

powder, it is hard to assign a single r value to the

spin system. Furthermore, there are an Avogadro's

..

..

number of coupled spins so the system size is

essentially infinite. These experiments show that M2

increases with n up to 16-quantum, indicating that r>O

and the number of spins involved is indeed very large •

4.4 CONCLUSION

Van Vleck's moments formula for single-quantum

spectra can be easily extended for MQ spectra. In the
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..
Figure 4.7 Results of n-hexane-d 6 oriented in a

nematic liquid crystal: experimental values (solid

dots), exact dynamics calculated ultimate T average M2
values (solid line), and statistical M2 values versus n

(dashed line). The experimental MQ spectrum used is

the average of six magnitude spectra with T values

ranging from 9.0 - 11.5 msec.
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Figure 4.8 The HQ HZ values of solid adamantane

powder. The spectrum used is the average of 5 spectra

with preparation times ranging from 244.8 - 448.8 ~sec.



process of generalization, we find the dependence of M2
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on the number of quanta. One useful consequence of

this is that one can choose to observe the broader

orders that are more sensitive to molecular dynamics

than the conventional single-quantum order.

Using a statistical assumption, the second moments

of MQ orders are rigorously evaluated. The statistical

model reveals that two distinct behaviors can occur in

M2 values as a function of n. Both behaviors have been

shown to exist experimentally. The experimental

results are in accord with statistical model·

predictions and with exact dynamics calculations. T'he

agreement of the n-hexane-d 6 MQ spectra with the

statistical model demonstrates that even for a small 8-

spin system wit h symme t ry (C 2h ), the stat is tical model

predicts the correct general M2 behavior. This

indicates that the manifolds of states grouped

according to the irreducible representations must have

distributions similar to those of a random spin

system. In combination, the two systems demonstrate

that a statistical second moment s treatment is

appropriate for small spin systems as well as for large

spin systems.

•
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APPENDIX 4.A

Evaluation of Trp{HD} for the p-manifold

Since the trace is independent of the choice of

representation, the simple product basis set will be
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fit

used. Henceforth all states will be referred to in

this bas is set. Only the operator I zi I Zj of HD is

diagonal and contributes to the trace. Thus,

(N)

I <kIHDlk>
k-l

- (A.I)

Exchanging the order of the two summations ~ which are

done independently, we sum over the states first.

Using the relation:

1

{_ :' (i,j)

4' (i,j)

are

are

: .;:allel in Ik>

antiparallel in Ik>
(A.2)

"

the summation over the states k produces:

r <k I I z i I Z j Ik> - ~ [ S (N , P ) - 0 ( N, P ) ] ,
k

(A.3)

where S(N,p) is defined as the number of states in the

p-manifold that has spin pair (i,j) parallel, and

O(N,p) is the number of states that has (i,j)



antiparallel. These two quantities are determined by
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combinatorial arguments and are given by:

O(N,p) • (N) p(N-p).
p (~ )

Conservation of states requires:

S(N,p) + O(N,p) • (N).
P

(A.4)

(A.5)

Substituting Eqs. (A.3) - (A.5) in Eq. (A.1) yields

Tr p {HD} • (N)[ (N ) - 2p(N -
1- (A.6)p) 11;dp 2

N- (N r 1 1where d • dij is the average dipolar
2 i<j

coupling.

..

..



Evaluation of

APPENDIX 4.B

2
Trp{HD } for the p-manifold
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As in appendix A, we use the simple product basis

set 2in evaluating Tr
p

{HD }. Written in the form of

2summation over states, Tr
p

{HD } can be separated into

diagonal and off-diagonal elements of HD:

Tr{HD
2

} • L<kIHDlk><kIHDlk> + L~ <kIHDI1><lIHDlk>,{B.l)
k k,l

where the prime on the second summation indicates that

the l-k term is excluded. The first term is the sum of

squares of the diagonal elements of HD, and the second

term is the corresponding sum for off-diagonal

elements. From the form of HD, we re cognize that the

operator IziI zj is purely diagonal and the flip-flop

operator (I+i I_j + I_i I+j ) is purely of f-diagonal.

This implies that only IziI zj contributes to the first

summation, and only (I+i I_j + I_ i I+j ) cont ri butes to

the second summation in Eq. (B.l):

Nr dijdi~j~<kII i I j Ik><kII i~I j~lk>i ~<j ~ z z z z



1. Consider for now the first summation of Eq.

92

(B.2). This term is more easily evaluated by

exchanging the order of summations over states and

spins, i.e.

(N )

i<kIHDlk><kIHDlk> •
k

where

N N 1
1 1 -16 dijdi'*j,*Q(N,p)

i<j i'*<j'*

Q(N,p) • (B.3)

The sum Q(N,p) has both positive and negative

contributions. The summand in Q(N,p) is positive when

and are both either

positive (+1/4) or negative (-1/4) [see Eq. (A.2)] and

is negative when <kIIZiIZjlk> and <kIIzi,*IZj'*lk> are

opposite in sign. Performing the summation over states

k of Eq. (B.3) yields:

Q(N,p) • A-B. (B.4)

Here A is defined to be the number of states within the

p-manifold that, given two spin pairs (i,j) and

(i'*,j '*), have both pairs parallel in spin ~ both pairs

anti parallel in spin. B 1s defined to be the number of

states within the p-manifold that have one spin pair

parallel in spin .!.!!.! the other antiparallel in spin.
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Conservation of states requires:

implying that Eq. (B.4) becomes:
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Q(N,p) • (N) - 2B.
P

(B.5)

Thus it is only necessary to evaluate B. Three

cases can be distinguished:

(a) (i,j) • (i"',j"'),

(b) (i, j ) and (i"',j"') share one common spin,

(c) (i, j ) and (i"',j"') share no common spin.

We will treat each case separately.

Case (a): B • 0, by definition.

Case (b): Suppose i,j,k are the spins of interest,

whe re k • i'" or j ....

two parts:

We divide the N spin system into

(1) a 3-spin system consisting of spins i,j,k, and

(2) a (N-3)-spin system consisting of the rest of

the spins.

Division of the system facilitates the counting

argument. We designate the number of spins that are

parallel to the magnetic field in the first spin

subsystem by Pr' and likewise the same for Ps in the

second spin subsystem. Note that conservation of spins

requires Pr + Ps • p. We also let Br and Bs have



analogous meanings in the subsystems as B does in the

total system [Eq. (B.4)].

For the 3-spin system,
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p .0,3
r

p .1,2 •
r

(B.6)

To treat the (N-3)-spin system, we utilize the facts

that Ps • p - Pr and that it is the product of B r and

Bs that is important, i.e.:

..

B .0 and the contribution to B is zeror

regardless of Bs • We thus will not evaluate Bs for

ps·p,p-3. For ps·p-1,p-2, the contribution is nonzero,

and

Therefore,

( N-3 )
p-1 '

( N-3 )
p-2 '

p .p-1
s

p ·p-2
s

•

Case (c):

B • 2(N-3) + 2(N-3)
p-1 p-2

Evaluation of B here involves the same

..

four distinct spins, we divide the N spin system into a

concept as in case (b). Since (i,j) and (i--,j--) are



•

4-spin system and a (N-4) spin system. The results

are:

{ O.
P -0,2,4

B r

- (i ) (j ), ,r p -1,3- r

(N-4 ) p -p-l
• { p-l • s

B •s (N-4 ) p -p-3p-3 ' s

Therefore,
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where

g _ (N-p-l)(N-p-2) + (p-l)(p-2)
(N-2)(N-3) • (B.])

In tabulated form, we have for expressions of B:

B

case (a)

case (b)

case (c)

..

The sum Q(N,p) for each of these cases can be found

with Eq. (B.5).

The final form of the first summation term is:

(N )

l<kIHDlk><kIHD lk> - (:)[a + (1-2f)b + (1-4fg)c), (B.8)
k

where



1 N 2
a - 16 1: dij ,

i<j

1 N N
b - -1: 1: dij(d ik + dkj ),

16 i <j k iti, j

1 N N

c - -1: 1: dijdi"'j'" , (i"i', j"j')16 i <j i"'<j '"

are merely constants, and f and g are defined in Eqs.

(14) and (B.7).

2. To evaluate the second summation in Eq. (B.2),

we realize that for a given pair of states Ik> and 11>,

at most one of the terms I+iI_j and I_iI+j will give a

nonzero matrix element. Also, if one spin pair flip-

f lop term takes 11> into Ik>, then a different spin

pair flip-flop term cannot take the same state 11> into

Ik>. That is,

<kII+iI_j+I_iI+jll><lII+i",I_j",+I_i",I+j",lk> - ~ij,i"'j"'·

(B.9)

Furthermore, for a given state Ik>, Eq. (B.9) is

satisfied for only one state 11>. Thus summation over

1 of l<kII+iI_j + I_ i I+j ll>1 2 gives:

2 0, (i,j) are parallel in Ik>
I"'I<kII+iI_j+I_iI+jll>1 -{I, (i,j) are antiparallel in Ik>·

(B.lO)

Performing the summation over k of Eq. (B.10) produces:
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...

"

..

(B.ll)



•

where O(N,p) is defined in appendix A, Eq. (A.5).

Making use of Eqs. (B.9) and (B.ll) and the

freedom of exchanging the order of summations, the

second summation term is:
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•

(B.l2)

Combining the two summations [Eqs. (B.8) and

(B.l2)], we have as our final expression:

Tr p {H
D

2 } • (: ){(l+f)a + (l-2f)b + (l-4fg)c}, (B.l3)

where a, b, c, f and g are as defined in Eq. (B.8).



APPENDIX 4.C

Computer listings of programs MOMENTS, PLOTI, and

PLOT2

These programs were written for use on the VAX/VMS

computer system.

MOMENTS calculates the statistical dipolar second

moments of each multiple-quantum order. It requires as

inputs the number of spins and the dipolar coupling

constants. An option is provided for generating random

couplings, given a range of couplings and the number of

98

..

spins. The program also has the capability of running

consecutively up to seven different syste~s having the

same number of spins.

The second moments for the multiple-quantum orders

are gathered in the datafile PLOTI.DA. If the lIlean

dipolar shifts and standard deviations for the Zeeman

manifolds are also desired as outputs, the datafile

PLOT2.DA is created.

~unning PLOTI and PLOT2 will allow the plotting of

the data arrays PLOTI.DA and PLOT2.DA, respectively, on

the Tektronix 4014 and 4662 plotters.

..

The

Murdc ~ ..•

plotting routines were supplied by Jim



c
c
c
c
c
c

c

c

Ib1s pro~ram talc~lates tte ~ultlple-quantum

seconJ ~oments f~r a S~lD system conta1nlD6 u;
to ~~ s~1n-l/~'s. lL~ c4lculatlon ls based OD
a statlstlcal mo~el, .blcb ~lsre~ards s1~metr1.

~lmenslon ~(~95~),var(1~1),sqvar(1~1),h(leli
l1lteger p,pc:
real mo~(1~1),mo~1\101),mom2(101),norm

t(p)-~~(n-p)02.~/float(nO(n-1»
ran~(J)·c.l·ran(j) - 1.2

open(~nlt·~l,name.'plotl.da',t1pe·'De~')

OfeQ(unlta~"namea'plotZ.~a',t7pe·'ne~')
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=fc4.. ,~

c
~,

:~5

:Z6

c
lZ type :~1

=,1 formate/I,' enter tee :umter of spins: ',~)

accept .,n
D,:an+D
:11-n+1

t
t;f'oe =1~ ,n

:l~ ror~at(/.1 bow ~anJ #,13,' spin sjstems s:ouli be tr1edJ #,$)
~ccept .,Ilsets

c
t:'j;; e :w; ~

:~~ ror~at(/.' stOU~Q t~e .idtn all~ the meaD contributloD be plotte~'/
1 ' in ajaltioD to the secoD1 ~omeDt ? (~-uo.l·yesJ ',~)

accept .,isep
mll'-Dl
ou-20;&01
if(isep .eq. 1i mm·~·nl

~r1:e(1.721) nsets,~m

.rlte(~,(01) Dsets,DIl
c

~o 4SC lset-l,ns~ts

If(nsets .~t. 1) type :14.D,lset
=14 format(II,14.' ~EIN SYSTi~ ~·.13,' ••••• './)
c

tlpe :~c

=~, format(/,' 1~ you .allt rando~ cou?11D~s? (~·nc,layes) ',~)

acce~t •• 1c~olce
l!(lc~olce .eq. 1~ ~c to ~0

c
tlPE: :~~

e£J for~at(II,' enter t~e 1ipolar coupllc~ const4Dts in hz ••••• './)
10 ~0 1-1.11-1
do ,g Ja l+1.n
~-~¥(1-1) - 1·(1+1)/2 + j
tJile :1::4, 1.J
£ ortra t (: 1., • cl ( , .l.!. ' • ' , 13, ') , , ~)
accept li.d(~)

cODtlnue
go to ::0

t Y~E: :0:
format(//,' Ellter 4 ma%l~um tr4gnltude tor cou;11n6s In bz: '.~)
accept .,1;nal
tlpe ="'c:
£OrIl'4t(' sDoula a~l coupliDgs be posltive 7 (e-110.1-yes) ',$)
accept .,1~OS

tlpe :07



100

tcr~at(· enter a rando"l~lng integer: •• $)
aCC!l)t *.jr
JreaJr

c

"

"

:co.. p·c om b C11 .4:)
ty~c :~a •. =coup
for~Qt(/. ~Q 10~ -ant tne • .1~.· coupl1n~s pr1nted out? •• $)
aC:C:.:iH .... iprlllt

rio ..S 1a 1.a-1
10 4' Ja1+1.a
&a09(1-1) - 1*C1+1)/2 + J
~(~)ar1ma%~ran:(Jr)

1t(lpos .eq. 1) ~(~)aatsCdCI»
contln~e

'. 4.l
c:
••
:.;c

c:
c
c:

"as .2
ta~."

ta"}.l
~o C.za 1a 1.=-1
40 2~e Ja 1+1.n
::'Q ~C:~ ~al.n-l

a.c: 22e 1-'+1.11
'1-~¥,i-1) - 1"'C1·1)/~ + J
"a"*('-1) - '.(~.1)1' • 1
1t'(1.c~.,).,r.'1._q.l).or.CJ.e~.~).or.(J.eq.l»1 =-b. d(~l)·~(~~)
<0 to ~~,Q

11~ tat • 1(~1)
.-a • 1(&1)·dt£~)

C~~ c:o:t1nue
tat/~

a-all:
:l a til::

c
c

.. 0 4:'~ :ra~.n

rr.:,-m+1
c
c ccrr.~ute t~e ~orm~lllatloa tactor •••••
c

nrr-t&-ll:
1i(rr .cq. 2) Qorrr-ccrr'(n~.a) - 2.0*·u
1!(~ .:1. ~) Qorrr. acom'(QZ.l1m)

c
c cQmp~,e ,~e v~rianc:e 4a4 the meaa ot t~e ~eemaa maalfo11s •••••
c

10 j",,, ~ae.n

;Hap·l
var(pl).t(;)* «e-~·r(r»·a + CZ-4*rCp»¥b • 4¥(f'p)~

1 (~¥"-;J-'·(11-1»/«n-')·(n-~»·Ct·t-a-b»
a(~1)-(1-4¥f'p»"'t

~ze c:o"t1a~e
c:
c: c:c~pute tC! !!C~Q~ ~omeot •••••
c:

1l'0m(~l)·J.1IJ
moml (ml ).a., • .,

;rorr:2(11'1)·"'.i
10 4eiil p-a.trr
.. l·p·l



4ti:e

.. c
4;fi:
c
c

c~l

c~2

4tit:

=ic:~
1

c:Il4
C
47e

:c:.

;;5
47:J
C
C
4c.
ci7

514
477
c
c
c
c

p4:-pl+m
~oml(~1)·mo",1(m1) + CO"b(n.p)¥co~b(n.m+p).(var(p1)+var(p2»/norm

~om2(ml)amom~(m1) + CQ"~(~.p).comt(n.m+p).(~(r2)-c(pl»~.2/norm
con t.1nue
mom(",l) - ~o"1(m1) + ~o"2(~1)

c onUnue

print. ;~1.:l

for~4t.(1~11/1 5econ~ ",o~ents tor a 1.13. 1 spin 51stem ••••• 1/1)
1f(1ctoicc .eq. 1) 60 t.o ~5a

pr1ll toW:,
for~Qt(=~.1 coupliobs entere~ b1 hand l )
&0 to 4,0
Ii l~ .. a-C11T' a.l
1f(lpos .eq. 1) dlo. a d.2
~r1ot cl~. dlQ~.dmax

~cr~at(:x.' ran~e or ra:~o~lJ-ctosen coupl1n~' '.tS.2.
• az to l.f;,.~.1 nz l )

~ :u t ea,*.J rd
fcrmat(II.:x. 1lnitlal ran~omi%ln~ 1nte~er - .• :.~)

If(iprint .eq. e) ~o tc 4c0
prlot ~~=
ror~at(IIII.1 the c~upl1n6 constants in nz ••••• 1./)
110 47:: 1-1.n-1
110 ..n j a i+1.n
£-n*(1-1) - 1~(1+1)1, + j
pr1nt o~c. 1.J.~(A)

fcr~at(:.l.'~~I.i~.',1.13.1)• 1,£5.2)
con t 1n Uc:

pri:1t ofl?
fcr"at(III/I.7~.l.1 .1~tA',1Ql.'~eanll' m'.ax,lsecond ",oments',

1 ;2x • ' ~a t 10 ' • .: ~.l J I C~!1 t r ; bUt:. c~ 1 ,=X. I ~o ~ t ~1 but! 0~ I J I J
1 --- .(l.l~l - 1,.,.1, ----- ,3~x.l'\ - ),~x.1,~ - ),/)

i 0 os:l2 "-~.n
IT1-1T+1
r£tmoma",o~(ml)/~cm(,)

print sec. ~.mom(m1),rat~om,"om1(m1).mom2(~1)

fcrlT'at(i •• 't.1.e13.~.E1.e1J.Q.~5x.e13.6.ax,e13.a)
contil1ue

':)r1n t 011
for~at(ltl//1111 p',12x,I.1dthl.16x,lrat1o' ,~4.1.'mean'/

1 ' ---' .11.1.;"l ' - 1) • lex, ' ----- ' .34.1. ' --- ' ,. )
:10 477 ;:-0.n
p1·p+1
sqv£r(?l)asqrt(var{pll'
ratvar-sqv4f(pl)/sqr~ .. ~ ,2»
1'1"1nt 01",. MI. sqvar~ p .. , ,ranar .o(p1)
twr~at{1~.7.l.e1J.6.&.l.e13.6"~x.e13.6)

COD tiJ:lue

create ~ata arra1S tor plotting •••••

write{1.70~) (mom{1),1-1.n1)
1f(lsep.eq.1) .rlte(1.7d') (mom1(1).l a 1,n1).(lT'om2(1).la1,n1)
writ e (, • ?e 42) (sq va r (1) ,1-1 .111 )
wrlte(~,~0,) (=(1),l a 1,nl)

101



c
4",13 c: 011 t 111 ue
c:
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type ~lii

OZ~ fcr~at(//,' 40 lOU .al1t auotner 5p111 system 1 (0-l1o,l-1es) ',$)
ac:cei)t *,1sp111
1t(15;1111 .l1:q. 1) 60 to 12

c

c: 1':
c:
7U
7~~

c
4:it9

c:
c
c
c
c

prlu t c13
t crrr.u (1.11)

formate lEi)
tcrmat(e1:.e)

c 10 se( 1011 H-l)
c lo !I! ( ul1i t-2 )
eu~

funct10Q c:omb(D,~)

..

c
c: eO~rutes tbe o1nom1al cQtft1cle:t tor Q ·t41~5· ta~ea
C ~ at a tl~d

c
c: o~G-l
1f(m .le. ~) r~turQ

1i(~ .~e. 11) rttura
jlHr-m
li(~ .4t. n/,) ~m-D-m

ccmb~

1t (iT.m • eq. 1) re tun
:r.~l·mll"-l

q<1-~m

doo 23 1-1,llIrr.l
co:rIC-COll"c"'(~-1)

q:.aqd. ... l~lr-l )
If(m04(1,l~) .~e. a) go to 29
como-co" 01 ~.1

q4-1. ~
~~ cCl1tl~ue

cOlllo-comC/qj
returl1
!D4

11



(;

c ~ ;ro~ram for plotting cqual17-spaced data polcts on the
c TeA troQlx ~~14 and 4062
c

..

•

c

c

~lmenslon 4at(le.10~1).4~a%(10}.1poS(10).1De~(10).%Y(4).
1 corr (4 J

ctaracter~a word(~)

~cr~(lJ-'!DSemtle'
.or1(Z)-'E~sE~tle'
wori(~)a'~ata set'
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tY1'e 5~1
eZl for~at(/.' enter plotter used: ~- 4014. 1- 4352 '.$)

accept ·.1pl
Jpa~

1f(lpl .ne. ~) j~-2

c
tj'lle ;:)02

ee2 tor~at(/.' In W~1CL "plot" fl1e 1s t~e data? '.$)
acce!)t • .1£1

c
call ieille('plot'.ltl.l)

c
tylle :21~

:~~ tormat(/.' h~. ~aDY iata !~Si~~liS ? '.$)
accept " •.:lens

c
tyP! :0:

:~e fcr~at(/.' _nicD units 10 you prefer - lnches (~) or cm '
1 '(1)? '.$)

accept .... 1un
c

cordl )-Wl. ::e4eS
corr(,)a~.:3="2
corr(~)-0.:222c

corr(4 )·a •.7.5~co
c

%y(l)-E:.~~
%y(~)-6.~:

%;.(3)al~.a

Jy(4)-e.S
c

If(1un .eq. ~J ~o to ~(

do U 1.-1.4
1e %Y(1)-ly(1) • 2.:4
c
2Z call ~rstrt(4e14.2)

call iasnllt(~J
cdl ell;!
ca~l l.DcLes

c

c
~o 400 ltn-l.Dens

c
tlpe 50E. len

~ed tormat(/I.' ~ata ensemtle '.12.' ••••• ')
c

read(1.c£2) nsets.np
reaQ(1.e0~} «dat(1.J). J-l.np). t-l.nsets)

c
tYPE 50=. nsets
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..

for~a~(/.17.' da~a SlTS In tals ensemble')

lps a 1
If(osets .e~. 1) 60 to 22
tlpe 512
tormat(/.~x.'eater the deslre1 plottl:g style ••••• './.
e~.'l a all jata sets ou the same pa~e'.I.
=%,'2 a se~arate pa~es but conslstent scallng'.I.
e~.'3 a separue pat':es and lndependent scall11g '.$)

accep~ -.lps

It(l?s .It. ~) cr~psal
If(lps .eq. ~) ere;sansets

:~ ~~~ lre;-l,nreps

If(~rep! .~t. 1) type ~11. lrep
t~r~at(/.~l.'~ata set ',11,' ••••• ')

~~e

c
c
~1

~U

1
2
"'..

c..-
4:~

C

c

~1l

c

:12
1.,

4:.

:l~

1

~Jpe 512, l1p
format(/,41,'norlzoatal scalln~ tor 10ur',15,' data poll1ts',, ,

• • • •• I

t:lPc =1~
!or~4t(/,~~,'el1ter 104 aad t16b polnt 11mlts to be' ,I,
~%,'Hs:J1!ye4: (for III pOlnts, enter ~,0J ' .~)

!cee?~ ~,111o,nul

lHalo .eq. 0) :110-1
It(~~l .eq. ,) nnl·a;
If(a~l .le. n1o) 00 to 23
:1j:;;a:1Dl - 1110
~ypa ~14, xy(Jp+1)

:14 fcr~a~(/,=x,'enter tne 1islred ~lot .1dth In your preferred',
1 1,:l,'ualts: (',!~.1,' mal1~u~) ',~)

acc~p~ -,%%1
1!(1~4 .eq. 1) x%~al%l I ,.~~

1Jl-1J1 I corr(J,·l)
c

a~ac£aQsets

l£(lps .eq. ~) l1:ac~-lrep

c
io ,: ls·lr~p,n4a~

1. po 5 (1. 5 ).~

l.:eol(ls)·.a
~~ ~~ax(1.s)·~.~

Js:o 5·0
Jae~-e
S:Ta.l· ... ~

c
do ~i ls-lrtp.l1h4C£
10 'C l~·~lo.a~l
1!(1U(ls,l;;) .le••eal) 1-0 to 26
l;os(h)-l
JPos-1

~6 It(dat(ls.1p) .~e. -.Zi1) go to ~7
lneaOs )al
Jaef( a 1

£7 4"41(ls)-a"4.l1(d"4z(ls),abs(d4t(ls,lp»)
~e contlnue

S"al-a"411(im41(ls).S"41)
~e contlnue
c
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e

•

..

1f ( 1Ps • eq. ~) ,i; 0 to Is';
pI"41 a !1T'4.t
"posaJpos
~l1e~·Joel!i

go to =e
p:rU a i:T.4X (1 re;)
t(J)osalpo s( lrep)
~ ce (lal 0 E~ ( 1r E;; )

height 10 your preferred',
, , $)1

c

:If)
1
2

:5
:17

1
2

c
Et
=18

:1=-
•..,

c
:" He ;law:

1bo t a :::
If(,ne~ .ne. ~) ~e to 55
ty~e =lE
ror~at(/,;~,'your ~ata polnts are all posltlve. do you',I,
ex,'.aat tee De~atlve calf-plaue s~ppresse1 7 (e=no,l-yes) "
$)

accep t ·,1 to p
1f(l;OS .ne. ~J ~o to c0
type =17
ror~at(/,el,'your ~ata polots are all ne~atlve. do you',I,
c%,'.ao\ toe ~os1t1ve half-plane s~npressed 7 (0 z Qo,layes) "
$)

acce;lt ·,leot

type :la, P:IIU
tcrmat(/,:x,'t~e beeflest ~ata pol~t has abs. value a ',~14.6)

t;;o~ :16
tor~at(/,:~,'tor "auto~atlc" full-value scall~~, e~ter 2.~;',
I,til,'otter~lse enter tte n~~~er ~tlct corr~5;o:4s to',I,
ox,'rr.,ulttum ll:a~111tu~e on tne plot: ',$)

accept ·,fv
If(tv .tq. a.0) yll:a1ap~a%

It(tv .@t. ,.~) 1:1141-£V

~yp~ 5~0, lJ~JP+2)
tor~at(/,:~, enter the deslred plot
l,ol,'un1ts: (',fj.l.' ~a%111:um)

accept ·,111
It(luQ .eq. 1) YYlayyy I ,.54
ilY·YYI I corr(J~+')
'ltop-Y'YY • ·lJ0

c
H(lPs .oe. ,) t:rpe =,1

:21 tor~at(/,:x,'sQould a y-a%ls be d.ra~o ? (a-oo,l-yes)
,
,$ )

HOps .!q. 2) tj'pe 522
c:.'~ tormat(/.5x.'!Q~u11 a 1-41:15 be dra~o ? (.,a!2o,layes.'./,-" 1 el. '2 a yes, bu t 001/ on the t1rst page) .

• $ )
4~cept ·,lal

e
U(,HI c .. ~o to 7lt:... ., .
t .YP'! :2~. lilS)

lt you',I.:~5 torrrat(//. ~:l ter 1 it JOU are read.y to plot. ill
1 4% , ' .a:1 ~ Sod; ra ...~ , ,a, ,

or -1 it lOU lIa:1t to q.u1t. . ,
, $ ), .

..ec~pt .., ... lee...
H( lcholce .eq. e) b O to .3~a

1f(lctolce .1 t. 1:) t:o to 430
e
c
7e :1pa~esal

It(lps .aq. ,) a;ages-Dsets
e



c

c
n

c

do 152 lpa~e-l,npa6es

It(lps .~!. ~) ~o ;0 7~
;ne 52t:, lpa;:e
rorm.;\/,e%,'~at. set ',1~,' -- plot it 11 (a-no,l-yes) ',$)
accapt -,leo
1£(1&0 .eq. i) ~o to 150

call :1tw~.~
olIO-lila
l:l-!!bl
It(ltop .eq. ltot) call ~ln~ow(%10.%hl,~~a%,1ma%)

It(ltop .eq. IJ call .1adow(Jlo,%~l,z.e,lm~%)
l£(lbot .!q. 1) call .lac10~(110.%!11,-11'1U.a.0)
call v.~ort(l.0,.II%,l.1~a,lto,)

~f(iaJ .eq. d) ~o to 75
lC«l!% .e~. 2) .a4~. (lpa~e .~t. 1» ~o to 7~
l!xt a ymax • (1 - loot)
ya%b--l~al ¥ (1 - lto.)
call ~ove{Jlo,/axt)

call '1ra.(llo,J~tl)

call ~ove(110.a.a)

c!~l ira.(£a1,'.~J

a l1nes-l
It(lps .aq. 1) nllnes-lSsets
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..

c
az do 12e 111l1e-l,nllne,

1~·~aJQ(1rep,l;aie,1l1ae)
call mov~(110,~a~(1~,~lo»

'10 ill 1.-1 Q;)P
Sl call dra.lllo.c,1at(1~,nlo.I»

cdl l!rsen~
lU con tlAue

c
:ne ;J2

:~e ter~at(/,101,'a~.AE~ 11 (0-no,l-yes,2-uev stYle,',
1 '~-Il'!V en!le.~tle,i-c.~ltJ ',~J

accept *,1011
H(lon .eq. l) ~o ;0 7~

1t(lo4 .eq. ~J cic to 21
l£(lou .eq. ~) go to 4ie
1tt 1011 .eq. 4j ~o to 4:.1

"e
1:"2 con;lnul!
~ze cOl1tlDl:!
4~0 contiDue
c ...
c
..:it: call ~r5top

c lose ( IUli t-U)
c
Si:2 tormU(le)
ee:3 tor:ru(e16.8J
c

end



..

c
c
c
c
c

c

c

jJrogrQlT: pIo"

a pro~ram tor pIo'tin~ equally-spaced data polnts on the
Te~'ro~lx 4~1~ and 406, -- slmllar to PLOT1, tut comblnes
u~ to seven aifferent data ensembles on toe sa~e ~raph.

~l~enslon ~at(12,bel,7),dmax(10),lpoS(10),lne~(10),%y(4),

1 corr(4)
cnaracter*e .ord(3)

word(l).'nAl aCLi'
~ord(~)·'iOFSIAN~'
wcri(3)-'da,a se~'
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type =~1

:.:1 format(/,' e:1ter i=lotter used: 0- 4014,1- 4662 ',~)
accep' ·,lpl
H-0
If(lpl .~e. ~) Jp-2

c
tYSle e0~

:e2 tor~~·.' i~ .~lc~ ·plot· tlle 15 the iata ~ ',~)
acc,~~ ·._.1

c

..

c
tl~e :0~

:~3 tor~a'(/,' h04 ~any ~ata iN5iMBLES ? ',$)
accept ·,nens

c
type :d:

tee for-at(/,' .hlcL units 10 lOU prefer - inches (~) or cm '
1 '(1)? ',;)

accept ·,lun
c

corr (1 )·''.5c,05
corr(2)·~.=SE4~

corr(.3J&".;;'i;"S
corr (~) alfj. ::h~ic::

c
x:
x;,. ._ ...
xy( •.• ,;.E
xy(4J·S.;:i

c
it( 1un .sq. 111) 60 to 15
do 10 1-1,4

1~ ~y(1 %Y(l)· 2.:4
c
1: call ,:strt(4~14,2)

call asnp t(eI J
call cl1f)
call in:lIes

c
c
c

do 40 It-l,nens
read(1,e02) nsetS,np
rea~(l,,~~) «da'(l,J,~), J-l,np), 1-1,nsets)

"Z con'inue
c

type :0E, nstt5
~l8 tormat(/,' (',12,' data SETS per ensembleJ')
c
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..1~(lps .It. ~) nrt:rs-l
It(1p5 .e~. ~J nrep5-~sets

do ~00 1re~-1.nre;s

It(Qre~s .~t. 1J t7pe 511. lre~

tor~at(/.~%.';4ta sat '.11.' .: ••• 'J

1psal
1t(CSitS .e1. lJ ~o to 22
typt: :1Z
f'crll'.at(/.~:l.'ecter tne :1es1red l)lotU!1~ st71e ••••• '.1.
c~.'1 • .11 Jata s~ts cc toe sa~e pa~e'.I.
~1.'C • st:,ilarate pa(,!:s tut cons1stent scal1n~'./.
Ex.'3 • 5e~~rate pa~es an:1 1ndepen!ent scal1ng '.$J

3cC':ilt ·.ips

H

:12
1
2
4..

,
c2
c

c

~11

c

~12

1
Z~

~1~

1

t:ipe ~12. ll~

tor~at(/.4%.'~ortzoQtalsealln~ tor 1our'.15.' data polnts'.
, ••••• # J

tiPe ;1~
for~at'I.~x.'e!1ter !04 atd high p01nt 11~1ts to be'.I.
~l.'jls~l=le:1: (tor all p01nts. enter a.a) , .$)

accept ·.nlo.nnl
1f( clo •e'.1. ~) clo-1
li(chl .~G.~) n111-cp
It'~Ql .le. aloJ &0 to 2J
D5=p-uc1 ... nlo
t,pe :14. 11(J~·1J

:14 tor~at(/.~l.'e!1ter th~ jeslred plot .1dth 1n lour preterred'.
1 I.ex.'unlts: ('.l;.l.' ~axlmum) '.$)

accept ••111
It(l~a .eq. 1) l11-X%1 I ~.5.

%%%-1%% I corr(J~.lJ

c
ahac,-nsets
1£(1ps .eq. ~) abac~-~rep

....
~ ...

c

10 25 ls-1re~.abac~
1 ;:0 s , 1s )-.a
1l:e~ (15 )-a
dll'a1(15)·~.~

Hos-"
,jD!Z-t,l
srral-ol.~

:10 ~0 1s-trep.aaae.
10 ,.7 1l-1.aeas
40 2E lp-clo,ctl
1t(~at(H.~_.~; .le •• 221) ~o to 2:
lr~5'ls)-1
J,os-l

~~ It(~~t(1s.1P.~) .~e. -.~21) ~o to 27
1~e~ (15)-1
JDe~-l

~7 ~"-az(1s).a~4%1(d~a1(ls).abs(dat(1s.1P.~»)
~c cont1nue
~S coa:lnue

s"-4x-amal1(1ma1(1sJ.sma1)
~e cont1nue
c

t1pe :1:
:1: tor~at(II.41.'vert1calsca11ng ••••• ')



c

=,1
522

1..
c

~25 1

hel~ht ln your preferred',
',$)

..

..

c

c
:a

51c
1
~

~5

:17
1,

c
ee
51c

:1=
1
2

c

1

1f(1ps .eq. ~) eo to 45
plT4X-Srnal
kPOS-JPos
41le~-Jneg

~o to ~~

ptTax-c1mu (1 r f: p)
It}:OS-1pos(1rep)
~neg·ll1E~(1reil)

1top-a
1cot=1IJ
1f(.ne~ .ne. ~, go to 05
type 51:
forlTat(/':~,'lour1ata p01nts are all pos1tive. do you',I,
ol,'.ant t~e nE6atlve calf-plane s~ppressed 1 (~=~o,l.]es) ,
~)

accept ·,itop
1f(4pOS .ne. ~) go to ca
type :H7
for~at(/,51,'10ur ~ata points ar! all ne~at1ve. do you',I,
:x,'.ant tte positive half-?lane suppressed 1 (Z·~o,l·yes) ,
$)

accept • ,1 co t

type elc:, pll'al
for~at(/,5~,'tee ceef1est ~ata po1nt nas abs. value = ',~1~.5)
type 51=
format(/,:x,'ror "autolTatic" full-value scall~~, e~ter Z.~;',
I,al,'ot~er.ise enter the num~er walch eorres;onis to',I,
:x,'~al1lTum ~agnltude on the plot: ',$)

accept ",fv
It(fv .eq. 0.Z) l~ax=~lTax

1f(fv .et. ~.~) /max-fv

tjpe :2Z, lY(JP+')
forlTa .:~,'enter tne ~eslre1 plot

I , ,; ;. . . os: {, •f ~ .1 .' rna 11~ urn }
accept '-.;iJ~

If{lun .eq. 1) ~YJ·~YY I 2.5~
yrY·YYY I corr(J~+2)
ytop·yn + .1~"

if( lps .I1E. 2) type 521
forlTat(/.:l,'Sl10Uld a y-al1s b~ dra~11 ? (~=no,l=yes) '.$)
1f(1ps .eq. ,) type 522
fcrmat(/.5x,'s~ould a ~-axls oe dra~11 ? ~~=no.:=. ~s.',I.
tix.'~·~es. out onll OD tee flrst pa6 e) .~)

accept'" ,lax

H( JP " .• w:) ~o to n
tipe ~4 .orQ~lps)

tor" .:. I.~~,'enter 1 if ~ou ar! ready to plot, a 1f you',I,
41,'.aat, to SAll; ThIS '.a.', or -lit you ~aDt to quit : ',~)

accept -,lenolce
1f(1cn01;e .eq. ~J go to ~00

1f(lcaolce .It. 0) go to 4e0
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c
c
7~ Dpa~es.1

1t(1ps .eq. 2) npages=nsets
c



c
It(lps .AE. 2) ~o ~o 72
~ne :~e, 1 ;:ele;i!
!or~a~(/,=%,'4ata set ',1~,' -- plo~ 1t 11 (Zano,l-]es) ',$)
accep~ ·,l~o
1f(1,0 .eq. ,) ,0 ~o l~e

c
7~ call newpag

.llo-do
1tl-at1
It(l~op .e~. 1to~) call wlniow(%lo,%n1.-,~a%r1~a%)
It(l~op .eq. 1) c.ll .ln~o~(.llo,%~l".0.y~ax)

If(lbot .eq. 1) call .1:~0.(Jlo,%tl,-,~a%,0.e)
Cell! v.;Qrt(Z.~,%%%,~.~la"top)

7~ ll(lax .eq. l) ,0 to 75
1£«1£% .eq. ,) .and. (lpage .gt. 1» go to 75
ya%t- 7max • (1 - 100~)
laxo.-l~a.l - (1 - l~op)
call ~0'~(110,la1t)
cdl 1raw(J.lo ,:fU c)

7: call ~ove(xlo,a.i)

call 1ra.(1~l,~.Z)

110

..

c

c

c

=~;;....
lie
c
c

e~~

1

c
l;~

.!d
c
c
UI

1111l1es-l
11(1~s .eq. 1) nllnes-nsets

do 1'~ 111ne-1,1111nlS
la.~axi(lrip,l~G6e,lllAe)

010 == ~"l,l1~n5
call ~ovd(xlo,4a~(1~,:lo,&»

~o ~a J-l,Djl;
call ~ra.(xlo.J,da~(lm,Alo.J,&»

CODUAue

call o!rseI1d
COA ~ lAue

type SJi
torma~{/,10.l,'U~.AAJ 11 (e-no.l-yes,2-new styli,',
'~-qI:U} ',~)

accept -,lon
U ( 10:1 •~. ~) ~o to 7 ~
H(lon .eq. 4;} ,0 ~o ,1
l!{lon .Eq • .!) ,0 ~o 422

c ont 1lule
contl:ue

call ~rstop

c~ose(lln1t-1lI1)

tcrll'u (16)
lcrmat(e1c.c)

..

..
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CHAPTER S

SENSITIVITY BBRANCEHERT BY SPIHLOCXIHG IN THE

DETECTION PERIOD

5.1. INTRODUCTION AND THEORY

112

experiment.(I) That is, one of the dimensions is

A MQ experiment is a two-dimensional
..

scanned in real time, and the other is scanned by

successive incrementation from shot to shot. Every

shot noise.

two-dimensional experiment suffers from two sources of

noise: the real time noise, and the successive shot to

The first type of noise, the t2 noise, is

predominantly thermal noise in the electronics, and is

also common to single-dimension experiments. The

second type of noise, which has been termed the t I

noise,(2) is due to the irreproducibility of the

experiment and is inherent in any two-dimensional

experiment.

A simple scheme is proposed to improve S IN by

minimizing the t2 noise. The idea is to acquire more

signal energy() in the detect10n per1od.

The pulse sequence used 1s shown 1n F1g. 5.1. It

is a typical MQ sequence but with a train of pulses in

the detection period. The first three pulses allow

even-quantum selection and are phase-shifted

21'
by A; • 2M ' where M is the maximum order desired, for

each incrementation in t1 to effect separation of
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,... ~ ~ - I I I

T T T T I I I

t l
I I I

2' 2' 2' 2 I I I •••
I I I
I ! !t

prepare evolve mix spinlack

X".ZI~n7

Figure 5 . 1 Even-selective multiple-quantum pulse
'" sequence with spin locking pulses in the detection

period. The preparation pulses are incremented by an.. amount 4, for each incrementation in t l (TPPI) •



orders (TPPI(4}). The 11' pulse in tl removes offset
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terms in the WI spectrum. The next two rf pulses mix

the MQ coherences into single-quantum (SQ) coherences.

Detecting the amplitude modulation of the SQ coherences

as a function of t 1 maps out the MQ evolution.

Because the evolution in t 2 is uninteresting for

our purposes, it is unnecessary to acquire the entire
..

-

~

F.I.D. in t 2 • In fact, typically only one point in t 2

is samp led for each incrementat ion in t 1. Only the

amplitude modulation of the SQ coherences in t 2 is

desired. Therefore. instead of subjecting the SQ

coherences to decay under the full Hamiltonian, which

may contain rapidly dephasing terms, one can increase

the signal energy available for detection by removing

the rapidly decaying terms.

is the dip 0 1a r Ham i 1 ton ian.

The main source i~ solids

One solution is to apply

WAHUHA(5} in t 2 to remove this term. Best yet is to

remove all such terms by pulsed spinlocking.(6.])

Under perfect spinlocking conditions. the only decay

that will occur will be due to the spin-lattice

relaxation in the rotating frame.

The multiple pulses in t 2 (Fig. 5.l) are applied

for just that effect. Rhim et al(]} have shown that

optimal spinlocking is achieved with a series of 11'/4

pulses at a repetition rate n satisfying



where is proportional to the average rf
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irradiation ,trength and Hlocis the local field

..
strength •

By spinlocking the SQ coherences in t 2 , we are in

essence preserving the signal amplitude as modulated by

the evolut ion in t 1 • By sampling in the pulse windows

and averaging over all the signal that is available in

the detection period, we have performed an integration

of the signal in t 2 • The integral is proportional to

the signal amplitude at • o averaged over the

noise.

5.2 EXPERIMENTAL RESULTS AND DISCUSSION

The sample is polycrystalline adamantane,

Experiments were performed at a regulated

temperature of 2S·C.

The following observations on the effective

relaxation rates were made. The SQ transverse decay

time under free evolution was measured to be = 100

lJS e c . A series of tr/4 pulses was applied at various

repet it ion rates to the SQ coherences. The ob served

decay times in the rotating frame

0-
1

• 15.9 lJsec, Tie> 1.2

f"J-
1 • 25.9 T 1 0U lJsec, Ie = •

0-
1

• 35.9 lisee, TIe = 0.2

were

sec

sec

sec

-1o > 90 lisee, saw no spinlocking effect



With Tr/2 spinloe:king rf pulses at a repetition time of

0- 1 - 54. 8 \.is e e:, TIe • 2. 2 msee: •

For our MQ experiments, the repetition rate was 0

• (39 \.isee:)-l • 25.6 kHz and the pulse duration for a Tr

116

pulse was 8.0 \.isee:. Thus the average irradiation

Thus the e:ondition for spinloe:king was

st reng th was

measurements,

adamantane.

W1 /2 Tf • 3.2 kHz.

YH 10(/211' is

From

roughly

see:ond

15

moments

kHz for

modestly satisfied, and for our purposes suffie:ient.

The preparation time was .T-60 \.isee: in all our MQ

experiments.

The first sampled point oe:e:urs at • 0, the

normal sampling point. This is to be e:ompared with the

integrated spinloe:ked signal. Integration was

simulated by taking the average of 1000 points sampled

in the spinloe:king windows. These points were taken

after the first 25 Tr/4 pulses, or at a delay of 250- 1
2

1. 00 msee: after the mixing period. This delay moves

the sampling far away from any transients that were not

spinloe:ked.

Shown in Fig. 5.2 is a e:omparison of MQ spee:tra ..
obtained wi th one point sampled at t 2 • 0 and the

..
average of 1000 points sampled between spinloe:king

pulses. There is an improvement in SiN of roughly )(2

by sampling more points, indie:ating that the signal was

large enough so that t 1 nois~ dominates.

To effee:t t 2 limitation in noise, the signal was
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500kHz
I

..

(bl

o 2
I I

4 6
n (quanta)

8 10

500 kHZ
I

o 2 4
n (quanta)

6 8 10

11L1I104710

•

..

.Fi..i~~ _5_:.~ MQ spectrum obtained with pulse sequen..:e of

Fig. 5.1 using (a) the first sampled point, yielding

the normal spectrum, (b) an average of 1000 points

sampled between the spinlocking pulses, yielding the

spinlocked spectrum. The comparison shows lit:

improvement by t2 spinlocking, indicating that t 1 nee

dominates.



attenuated by 30dB and the receiver amplifier gain was

increased appropriately to achieve its full dynamic
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range. Figure 5.3 shows the large improvement in SIN

by spinlocking. The SIN is increased by 20 - 30 times,

which is near the maximum improvement possible. That "

spectrum is equivalent to an accumulation of runs

is, for limited sensitivity, the spin locking
•

roughly equal to the number of points sampled in t 2 .

In both instances, Figs. 5.2 and 5.3, we observe

the i n tensityin the 0 dd - qua n t um 0 r derre 1at i vet 0 the

even-quantum order is less in the spinlocking

spectrum. The odd-quantum coherences appear as a

result of imperfect even-selection, and must be a

result of imperfect offset cancellation in the

preparation and mixing periods. If even-selection is

perfect, the signal should appear as <Ix> for the pulse

sequence shown in Fig. 5.1. A small offset term causes

signal to appear in the orthogonal channel. It also

creates a small amount of odd-quantum in both channels

in addition to even-quantum coherences, but in

different amounts. The difference in the spinlocked

spectrum and the normal spectrum reflects this

difference in the preparation of even and odd quantum

c 0 her e n c esin the t wo c han ne 1s : the s pin 10 c ked s i g na 1

pertains to only one of the channels. Based on this

argument, we should expect to see a difference ln

spectra obtained with t 2 spinlocking if selectivity is



•

•

(0)

.500kHZ I
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(b)

o 2 4
n (Quonta)

6 8 10

.500 kHz I

o 2 4
n (Quanta)

8 10

Figure 5.3 MQ spectra obtained in the same way as Fig.

5.2 but with attenuated signal input to receiver. The

comparison shows large improvement by t 2 spinlocking

when the SiN in the spectrum is limited by t 2 noise.



imperfect.

For nonselective sequences, signal in the other

channel can be obtained by repeating the experiment a

second time with the spinlocking pulses changed in

120

phase by 90·. Another strategy is to phase the •

spinlocking pulses at 45· with respect to the mixing

pulses, thereby spinlocking both channels

simultaneously and with equal weighting.

In conclusion, the experiments show that the

pro p 0 sed s c heme can imp r 0 v e sen sit i v i t y 0 f de t e c t ion.

The t 1 noise is proportional to the magnetization and

cannot be minimized by increasing sample size. In

contrast, the t 2 noise can be made insignificant by

doing so. However, given the situation that the t 2

noise is an important limitation, these preliminary

experiments show that pulsed spinlocking in the

detection period and with integration of signal in the

windows is successful in enlarging SiN.
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CHAPTER 6

CORRELATIOR OF MOTIOR OF TWO METHYL GROUPS

6.1 INTRODUCTION

Two interacting methyl groups serve as a model

system for studying hindered internal rotation.

•

Because it involves only six nuclear spins, the

calculations involved are tractable. Definitions of

correlated anduncorrelated motion are well defined and

thus exact treatment is possible.

We wish to utilize the fact that molecular motion

modifies the observed couplings between nuclear

spins. In oriented systems, such as solids or solutes

dissolved in a liquid crystal, the dipolar interaction

is typically two or three orders of magnitude larger

than the J couplings. Our studies will be in such

systems; thu~ we will concentrate on motional averaging

Jtheneglectandcouplingsof the dipolar

couplings.(l)

The definitions of correlated and uncorrelated

motion of two methyl groups are first stated. The form

of the Hamiltonians is thus defined and is different

for the two motions, ensuring that NMR is sensitive to

cor r e 1a t ion 0 f mo t ion • The NMR spectrum for each of

these cases can be calculated as a function of the

dipolar coupling constants. Group theory for nonrigid

molecules is used to simplify the calculations in these
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•

two extremes and in the intermediate region. The

transition from correlated to uncorrelated motion can

be likened to an exchange process and hence is amenable

to treatment with exchange theory. Multiple-quantum

NMR en t e r s a s a s imp 1 i f i cat ion tool in the ext r act ion

of coupling constants. A computer simulation of the 4

quantum spectra for the molecule 1,8-dimethyl

naphthalene-do undergoing exchange processes at a

particular crystal orientation is presented.

Experiments on the same molecule dissolved in a nematic

liquid cry~cal reveals that at room temperature this

system has uncorrelated equivalent methyl grO_?5.

Finally, we present the analysis of a simple two-spin

system, diprotonated 1,8-dimethylnaphthalene-d IO ' in

the limit of correlated and uncorrelated motion.

6.2 DEFINITION OF CORRELATED AND UNCORRELATED MOTION

I n bot h 1 i mit s, the me thy 1 gr 0 ups are un de r g 0 in g

rapid torsional motions about their C3 axes. The

distinction we would like to make here is in the

follows.

motion

groups

orientation

in time.

the

are

random

relative

completely

I f the

define

groups

We

group.

the

completely

otherthe

methyl groups.

If the me thy 1

one me thy 1 groupof

of

the

are uncorrelated,

me thy I groups is

of

motion

motion

theof

the

the

as

relative

motions

methyl

correlated,

determines



The above definition of correlated motion is
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independent of how the motion is executed. The methyl

groups can either be correlated in an "eel ipsed" or

"staggered" configuration, as shown in Fig. 6.1, or in

an intermediate configuration. The motionally averaged

values of the dipolar couplings are modified by the

t y pe 0 f cor r e 1ated mo t ion the s pin s y s t emunde r g 0 e s ,

but the number of coupling constants remains the

same. Experimental determination of the dipolar

coupling constants, assuming a certain fixed distance

between the two C3 axes, can lead to information on how

the methyl groups move in a correlated manner. The C3

axes distance can be determined by other means, such as

X-ray diffraction or neutron scattering methods.(2)

The symmetry group of the spin Hamiltonian is also

independent of how the correlated motion is executed,

and can be found based on the above definition.

Correlation o~ two methyl groups can be viewed as

two wheels in gear, however the methyl groups are

positioned. In the transition to becoming

uncorrelated, there is an occasional slipping of

gears. The rate of s lipp age depends on the pot e n t i a I

barrier determined by the environment and on the

temperature of observation.

6.3 DETERMINATION OF THE SPIN HAMILTONIAN

We will assume a system of isolated molecules
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Fig_ure 6.1 When the correlated motion of two methyl

groups occur in an "eclipsed" manner, the methyl groups

are mirror images. In a "staggered" configuration,

they act as gears in a cogwheel mesh.



oriented in a matrix. The relevant Hamiltonian is the
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one that is averaged over the nuc lear mot ion. The

Hamiltonian also has to be consistent with the spacial

symmetry of the molecule.

At room temperature, the correlation time of

rotation Tc is typically 10-9 - 10- 11 sec for methyl

groups.(2) To observe the effect on dipolar spectrum
..

the inherent time scale is roughly 10- 3 - 10-4 sec for

typical dipolar couplings. Thus, on the NMR time

scale, at room temperature the methyl groups are

motionally averaged.

To determine the Hamiltonian of the spin system,

one must know the number of spins involved, the number

of unique dipolar couplings according to the molecular

mot ion , and the mol e cuI a r 0 r i e n tat ion with res pe c t t 0

the external magnetic field. Specification of the

molecular orientation is essential since the magnitude

of the coupling depends on the polar angle e that the

internuclear vector r makes with the external magnetic

•field H :
o

d .. « 31 (3cos 2 e.. - 1).
lJ lJr ..

lJ

We will first treat a hypothetical case of rigid

lattice structure with one molecule per unit cell. The

•

reorientation, such as happens in a liquid crystal,

influence on the spin Hamiltonian by molecular



will be treated in section 6.6. The determination of
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6.3.1..

the number of motionally averaged dipolar coupling

constants is discussed separately for the intramethyl

and intermethyl parts of the dipolar Hamiltonian.

IntramethylCouplings

Due to the fast C3 reorientation of the methyl

groups, the dipolar couplings within each methyl group

is averaged to the same value. If the orientation of

the crystal is such that the two C3 axes make the same

with
+

angle respect to H then the methyl groups are
0

equivalent and there is only one unique intramethyl

coupling constant. Otherwise, the methyl groups are

inequivalent and there are two distinct intramethyl

coupling constants. The above statements are true

regardless of whether the methyl groups are correlated

or not. Thus, intramethyl couplings do not lead to

..

information on correlation.

6.3.2 Intermethyl couplings

The determination of the number of intermethyl

couplings is more complicated as a result of two

factors: the relative motion of the methyl groups and

the d ire c t ion 0 f the C3 a xes wit h res pe c t
+

to H
o

We

will assume for simplicity that each methyl group can

hop between three equivalent equilibrium positions.



6.3.2.1 Uncorrelated Motion

If the methyl groups are uncorrelated [Fig.

6.2(a)], a proton on one group senses the same coupling

to all three protons on the other group. But all the

protons on a methyl group are equivalent as a result of

the rapid methyl reorientation. Averaging the

couplings over this motion yields one unique

intermethyl coupling constant. Any type of molecular

reorientation will not alter this uniqueness.

6.3.2.2 Correlated Motion

This case is the most difficult one to contend

with. Determination of the couplings depends on the

factors mentioned at the beginning of section 6.3.2.

In Fig. 6.2(b), for the sake of discussion, we have

assumed a particular relative positioning of the methyl
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."'

groups.

relative

However, the

positioning

results

or by

r em a in una 1t ered

whether the

by the

methyl

reorient at ion is discrete or cont inuous. According to

Fig. 6.2(b), there are three configurations that are

possible.

When the motion is correlated, the number of

unique intermethyl couplings depends on the orientation

of the molecule, and thus the symmetry group of the

Hamiltonian will vary with the orientation. (Take note

that this fact does not hold when the motion is

uncorrelated.) Three situations can occur.



•

(0) Uncorrelated Motion

(b) Correlated Motion
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1-<2
3

2-<~

5>-4
6

:>-4
XBL 8210-2926

Figure 6.2 (a) In uncorrelated motion~ the methyl

groups have a random relationship with respect to each

other. (b) Assuming the methyl rotor can hop only

between equilibrium positions, there are only three

possible configurations for correlated motion.



(i) Equivalent Methyl Groups

When the two methyl C3 axes make the same polar

angle with respect to Ho ' they are NMR equivalent.

Averaging the dipolar couplings over the three possible

configurations results in:

dI4-d2S-d36

dIS-dI6-d24-d26-d34-d3S'

where the subscripts are consistent with the labeling

130

..

scheme of Fig. 6 .2(b). Thus there are two unique

intermethyl coupling constants when the methyl groups

are equivalent. The net result is that the dipolar

Hamiltonian is of the form:

HD - u 1 u.. + v l: Vk 1 + w L W ,
• • 1 J k 1 mnl,J , m,n

where u is the unique intramethyl coupling constant, v

and w are the two unique intermethyl coupling

constants.

same form:

The spin operators U, V, and Ware of the

1
U .. - 1 .1 . - -4(1+.1 . + I .1 .),

1J Zl ZJ 1 -J -1 +J

and the indices run through the following labels:

(i,i) - {(l,2), (2,3), (1,3), (4,S), (S,6), (4,6)}

(k,l) - {(I,4), (2,5), (3,6)}

(m,n) - {(l,S), (1,6), (2,4), (2,6), (3,4), (3,S)}.



..

( i i )
+
H and the Methyl C3 Axes are Contained in ae

Plane

The two methyl C3 axes define a plane in the

Cartesian space. The orientation of interest here is

the one where this plane contains also the direction
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+
of H .

o
We distinguish here the case where the methyl

groups are inequivalent. In this orientation, assuming

the same proton labeling scheme as before, one finds

that the equivalency of the intermethyl couplings are

the same as in case (i). Thus. the dipolar Hamiltonian

is of the form:

H • u
l

ru~~) + u
2

r u~~~ ..
D •• lJ ...... 1 J

1 d 1 • J
+ v r ~.T 1. +

k 1 ",1, .
w r W •mn

m.n

and the indices run through the following sets:

(i.i) • {(I.2). (2.3), (1,3)}

( i .. , j") • { ( 4 • 5 ), ( 5 , 6 ), ( 4 , 6 ) } ,

and (k,l) and (m,n) run through the same sets as

before.

(iii) Arbitrary Orientation

Excluding the particular orientations listed in

the above two cases ( i) and ( i i ) , all other

orientations fall in this class. The averaging of the

intermethyl couplings is different and yields:



dIS-d26-d34

dI6-d24-d3S'

Thus for an arbitrary orientation, the number of unique
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intermethyl couplings is three. The dipolar

Hamiltonian is then of the form:

\ (1)
HD - u 1 ,U .. +. . 1J

1. J
u

2
r U~:~ # + V r V

kl
+ W L w( l)

• # • # 1 J 1 mn
1 ,J k.l m,n

The indices run through the following sets:

(i,i) - {(I .2), (2,3) , (1,3)}

( i # • j #) - {(4.S), (S ,6), (4,6)}

(k,l) - {(1,4), (2,S) , (3,6)}

(m,n) - {(I,S), (2,6) , (3,4)}

The number of unique intramethyl and intermethyl

couplings are displayed in Table 6.1.

6.4 NMR PERMUTATION GROUP OF NON-RIGID MOLECULES

The commutability of I z and R implies that the

Hamiltonian in the eigenbasis of I z is already in block

diagonal form according to the Zeeman quantum number

m. By fin din g the s y mm e try g r 0 up 0 f the s pin s y s t em,

each Zeeman block can be further block diagonalized

..

according to the irreducible representations of the

symmetry group. This reduces substantially the amount



'It

Table 6.1

Number of unique dipolar couplings

intramethyl intermethyl

uncorrelated: (S3 xS 3) AS 2 1 1

S3 xS3 2 1

correlated: D3h 1 2

S3 2 2

C3 2 3
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of time and effort in diagonalizing the Hamiltonian to

solve for eigenenergies, and even more so when solving

for the equation of motion of the density matrix.

The objective is to find all operations that leave
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the spin Hamiltonian invariant. This defines the

symmetry group of the Hamiltonian. The following

procedure for group determination applies also to rigid

systems:

1. Find equalities among dipolar couplings. This

contains the symmetry of the dipolar Hamiltonian,

including the motionally averaged symmetry as well as

the spacial symmetry of the molecule. Form sets of

equal dipolar couplings Q
le

- {(i,j): dij-d k }, where dk

represents the unique coupling constant for the set Qk.

2. Find all permutations of labels such that the

dipolar couplings remain in the same set. These

permutations are the elements of the symmetry group of

the dipolar Hamiltonian:

where

- {p d .• • dr 1J mn d .. and d are both in Qk}'
1J mn

...

One lIlust be careful to locate all symmetry

operations. It is 1Il0re likely the case that a symmetry

operation is lIlissed, and more transition lin~s are

predicted than is really the case.



3. Given the ident.ity of the group, the goal is
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to ultimately determine the energy level diagram

according to the irreducible representations of the

group. This can be accomplished by calculating the

and

coefficients

products,(3,4)

reducible

"

the group

of

or

generating

by obtaining

decomposing

functions of

the cha rac t er

constructed

wreath

table of

representations of the Zeeman manifolds i nt 0 the

group's irreducible representations.

Often it is difficult to identify the group even

when the· elements of the group are known. One may use

elementary group theory, i. e. construct a

multiplication table of the elements, extract the

Th is is

classes and subgroups from this table,

eventually construct ·the character table.

etc. , and

usually a difficult problem. Sometimes through

recognition one may find an isomorphism(S) with a known

group and the obtainment of the group's character table

is automatic, since isomorphic groups have identical

character tables. Fortunately, there is a systematic

...

approach to group determination of nonrigid molecules

that involves decomposing a larger group into products

of smaller groups, which are easier to handle •

Two t ypes 0 f pro d uc t s are reI e van t , the d ire c t

product and the semidirect product. The conditions in

which they are applicable are discussed below.

A direct product can be formed between two groups



on 1y if the y co mmute. An obvious case to recognize is
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the following. Ph Ysic a 11 y , if two sub g r 0 upsinvol ve

permutations of labels only between disjoint parts of

the molecule, and no other operations in the group will

connect the two subgroups, then these parts of the

molecules can be considered as separate entities. The

operations on separate entities commute, and a direct

product can be formed.

Semidirect products is used when one of the

subgroups is the set of all operations that permute

entire identical molecular parts, but that do not

involve any permutations within the molecular

parts.(7,S) Note that the frame subgroup does not

commute with the internal subgroups.

I tis us e f u 1 tore ali z e t h at all NMR s e mid ire c t

product groups of spin systems undergoing uncorrelated

internal motion can be categorized as generalized

wreath products.

semidirect products.

Wreath products are a subset of

In general for nonrigid systems,

the molecular symmetry group can be decomposed into a

semidirect product of internal torsional subgroups and

a skeletal frame subgroup. When a frame subgroup which

When more

permutes a set of identical rotors can be defined, it

can be decomposed into a wreath product. (5)

..

than one set of rotors are to be permuted, the

generalized wreath product should be used.(6)

When the molecule is undergoing correlated
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internal motion, the group is isomorphic to a point

group. More specifically, the subgroup for the parts

of the molecule that move in a relative manner are

isomorphic to point groups.

As an example, consider the para-disubstituted

biphenyl molecule At room

temperature rapid torsional motion occurs about the

phenyl-phenyl bond. We will analyze the composition of

its symmetry group based on the above concepts. Each

phenyl ri ng has C2v symmet ry. Juxt apos ed toano ther

phenyl ring, its symmetry is reduced to C2 • I f the

para-substituents X and Y distort the phenyl structures

inequivalently, then the group of the whole molecule is

just the direct product C2xC2 ' which is isomorphic to

D2 • If the para-substituents distort the phenyl

structure equivalently, then an additional subgroup,

that contains the permutation of the two phenyl rings,

must be included. This group C2 does not commute with

either ~: ~he phenyl C2 's nor with their direct

product. The group for the symmetrically disubstituted

biphenyl molecule is (C2xC2)"'C2' which can be shown to

be isomorphic to D4 • Here the symbol x represents a

direct product, and", represents a semidirect product.

Fina 11 y , we consid e r t he imp 0 r t an ceo f s epa rat i on

To cite an example, considerof motional time scales.

the n-hexane molecule, theSuppose

slow conformationalundergoingismoleculehexane



changes but rapid torsional motions about the C-C

bond s • A d iffere n t s ymm e try g l' 0 U P may ex is t for e a c h

conformation. Each conformation must be considered as

a separate motionally averaged nonrigid specie, each

contributing individually to the NMR spectrum. If the

hexane molecule is also undergoing rapid conformational

changes, then the molecule is considered as one specie

which is averaged over the conformations as well as the

torsional motions.

6.S DETERMINATION OF THE HAMILTONIAN SYMMETRY GROUP

Molecules undergoing rapid internal motion must be

treated with group theory appropriate for nonrigid
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•

systems, as discussed in the previous section. As the

environment of the spin· system changes, so may the

symmetry group of the Hamiltonian. Specifically, if

one is dealing with a single crystal, as the

orientation changes, the Hamiltonian changes and the

symmetry of the Hamiltonian may change. In the case of

two coupled methyl groups, there are five symmetry

groups to consider. We demonstrate the determination

of the Hamiltonian group on the different motional

cases.

6.S.1 wncorrelated Equivalent Methyl Groups

The group for the case of an equivalent pair of

methyl groups undergoing uncorrelated motion is G •

...



The prime on the second subgroup
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allows differentiation between the two methyl groups.

The notation Sn represents the group of permutation of

n identical objects (nuclei). In wreath notation, G •

The elements of S3' S3"', and S2 are listed

below:

(1)(2)(3)

{(12), (23), (13)}

{(123), (132)}

S ...
3

(4)(5)(6)

{(45), (56), (46)}

{(456), (465)}

(1)(2)(3)(4)(5)(6)

(14)(25)(36)

permutation of p objects, i.e. a l becomes a2' a2...

The notation (a1 a 2 a p ) represents a cyclic

becomesbecomes

permutations

• • • •
can

and

be

a p

related to

The

point

above

group

character and (12) has C2 character on an individual

operations. As examples, the permutation (123) has C3



methyl group.

There are a total of (6 x6)x2-72 elements in the
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The construction of the group G in

terms of products of smaller groups can be formulated

in the following manner. .,

subgroups; they represent the rapid reorientations of

individual methyl groups. All the elements of the S3

commute with all the elements of S3~ since they permute

disjoint sets of nuclear labels. One can then form a

direct product S3xS3~ • which-is also a subgroup of G.

The product of S3xS3" with S2 is a semidirect product

since S2 does not commute with either S3 and S3".

The character table of (S3 xS3) ",S2 can be obtained

from the subgroups S3 and S2' as prescribed in many

references.(7,S) However, we will utilize the identity

of a pair of coupled methyl groups to gaseous ethane,

of which the character table has already been

derived.(IO) Given the character table, projection

operators are used to obtain the energy level diagram

according to the irreducible representations of G, up

to the number of states for each Zeeman manifold.

6.5.2 Uncorrelated Inequivalent Methyl Groups

When the methyl groups are inequivalent and

uncorrelated in motion, the S2 subgroup present in the

previous group that characterizes the symmetry of two

ident ical rotors is removed. The appropriate group is



The elements of the group can obtained
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from a direct product of 8 3 with 8 3 '.

-

~

6.5.3 Correlated Equivalent Methyl Groups

.. If the methyl groups are correlated and

equivalent, the operations on this spin system are

isomorphic to those that are performed on

cyclopropane. That is, the protons in both cases are

restricted to move in a relative manner. The group for

this case is D3h . The elements of this group are:

(1)(2)(3)(4)(5)(6)

{( 123)(456), (132)(465)}

{(12)(45), (23)(56), (13)(46)}

(14)(25)(36)

{(l53426), (162435)}

{(15)(24){36), (14)(26)(35), (16){2S)(34)}

6 .5 .4 Correlated Inequivalent Methyl Grou~s in a

"Planar" Orientation

I f the me thy 1 g r 0 ups are ine qui val en tandin an

+
orient at ion such that the methyl C3 axes and H

o
lie in

•
a plane, then the appropriate group is 8 3 . That is,

since the methyl groups are constrained to move

together but are not interchangeable, this system acts

isomorphically as a single methyl group, and thus its

s y mm e try g r 0 u p mu s t bet h e same as t hat 0 f a met h y I

group. The elements of the 8 3 group are:



6 .5 .5

(1)(2)(3)(4)(5)(6)

{(123)(456), (132)(465)}

{(23)(56), (13)(46), (12)(45)}

Correlated Inequivalent Methyl Groups at an
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....

Arbitrary Orientation

For an arbitrary orientation of the methyl C3 axes
..

but with correlated motion, the group is C3 •

group has the lowest symmetry of all the cases.

This

I t is

easy to show that the elements of the C3 group are:

(1)(2)(3)(4)(5)(6)

(123)(456)

( 132)( 46 5)

The list of groups for all five cases are

tabulated in Table 6.2.

6.6 EFFECT OF SPINNING OR MOLECULAR REORIENTATION

ABOUT A FIXED AXIS

Molecular reorientation is of particular concern

ln a liquid crystalline environment where solutes have

rota~ional freedom, although usually it is axially

restricted. Molecular reorientation can also occur in
..

a solid matrix if spacial symmetry allows it.

To treat this matter, we first determine the

+
effect of spinning on an internuclear vector r. Figure

+ +
6.3 shows the vector r being spun about an axis w withs



Table 6.2

Symmetry groups of two interacting methyl groups
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..

..

uncorrelated:

correlated:

equivalent

(S 3 xS 3) ",S2

D3h

inequivalent

S3 X S 3

S3

C3
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..spinning axis has a

external magnetic

Therateaat

A vector diagram showing the relevant
+

an internuclear vector r is being spun

Figure 6.3

angles when

about an ax is

fixed angle e. relative to the
+ +

field H , and the vector r has a fixed angle 6 relativeo
to the .pinning axis. As a result of spinning, the

+ +
angle e that r makes with H is time-dependent.

o



..

..

e with
+

an angle respect to H and an angle a with
0

+
respect to w Assuming the rate of spinning Ws iss

much faster than the inverse of the coupling, the time-

average value of cos 2 S(t) is given by:(1I)

145

If two internuclear vectors
+ +
r ij and r kl of equal

magnitude in th is spinning system have angles

8i jand 13k I s uc h t hat

or (p-O, %1, %2, ... > (1)

then the two coupling constants d ij and dkl are made

equal.

The case of two methyl groups has three axes of

rot at ion: the two C3 axes and the spinning axes. To

t rea t the combine d mo t ion s , it is con ven i en t tore I ate

the spinning axis with respect to a "molecular"

coordinate system defined by the two C3 axes.

Figure 6.4 depicts the methyl groups as planar

... rotors with their C3 axes at some orientation with

+
definedrespect to H . The a-axis is to have the

0

high est symmetry; it bisects the two C3 axes and is

contained in the same plane. The b-axis lies

perpendicular to the a-axis in this plane, and the c-
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x

y
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..

..

XBL 821 0-6729

.!..!..Jure 6.4 Definition of the molecular frame (abc),

shown here with the laboratory frame (xy:). The plane

defined by the two C3 axes will be labeled the ab

plane, with the a-axis (the axis of highest symmetry)

bisecting the two C3 axes. The c-axis is perpendicular

to this plane.

..



axis is perpendicular to this plane.
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Using Eq.(l) and some elementary geometry

arguments, the following conclusions are drawn and are

applicable regardless of the direction of the C3 axes

+
with respect to H :

o

(1) If the spinning axis is contained in the ac-

plane or be-plane, then the two methyl groups are made

equivalent. Any other spinning axis will make the

methyl groups inequivalent. The groups that can arise

from' spinning at th is axis are if

uncorrelated and D3h if correlated.

(2) If the methyl groups are uncorrelated,

spinning about an axis anywhere but in the ae- or bc-

plane will leave the methyl groups inequivalent. The

group that results is S3xS3.

(3) Consider correlated methyl groups. Suppose

the C3 axes are parallel and the two methyl groups are

mirror images. Spinning about an axis in the ab-plane,

but excluding the a- and b-axis, will result in the

group 53. If there is any deviatiJn from this ideal

geometry, the 53 group will never oecur ane :he C3

~n~Jmpa88es any spinning axis not contained in the ab-,..
group is the appropriate one. T~e C3 gruup also

ac-, or be-planes.

6.7 ENERGY LEVEL DIAGRAMS

The corresponding energy level diagrams are in



Figs. 6.S - 6.9. Group theory allows the ~etermination

of the energy level diagram up to the number of levels

in each irreducible representation of a given Zeeman

quantum number. It requires no quantitative values of

the couplings, only the equivalence in the couplings,

and thus cannot lead to information on the

eigenenergies. Further determinat ion of the energy

level diagram requires diagonalization of the

Hamiltonian within each subblock, or interpretation of

the experimental dipolar spectrum, depending on one's

objective.

Correlated systems have a lower symmetry than

uncorrelated systems. The uncorrelated representations

must be reducible in correlated representations. By

decomposing the uncorrelated representations into

correlated irreducible representations, one can find

how uncorrelated states transform under the correlated

group. This decomposition shows how the levels split

under a small perturbation. The method of

decomposition is called subduction of a higher symmetry
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..

group into

called an

a lower symmetry group.

induction. To perform a

The reverse is

subduction, one

first finds the correspondence 'between classes of the

two symmetry groups and thereby obtain the character of

the higher symmetry group's representations for each of

the classes of the lower symmetry group. With the

great orthogonality theorem, one can decompose the
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m=

m= 0
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Figure 6.5 Energy level diagram for (S3xS3)AS2:

uncorrelated equivalent methyl groups.



m = I

m=O

m =-1

m =-2

m =-3

G

XBL 8210-2931
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•

Figure 6.6 Energy level diagram for 53 )(5 3 :

uncorrelated inequivalent methyl groups.
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D3h A' A' A" A" E' E"I 2 I 2
'"

m= 3

2m=

m=

0m=

m= -I

-2m=

m= -3
XSL 8210-2928

Figure 6.7 Energy level diagram for D3h : correlated

equivalent methyl groups.
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m= :3 ..

m= 2 ..

m= }5

m=O }s }6
m =-1 }5

m =-2

m =-3
XBl 8210-2929

..

inequivalent methyl

Figure 6.8 Ene rgy level diagram for S3: correlated.

groups with the two C3 axes and H
a

contained in the same plane.



..

Figure 6.9 Energy level diagram for C3 : correlated

inequivalent methyl groups at an arbitrary orientation.
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representations into a linear combination of the

irreducible representations of the lower group.

"Coalescence diagrams" describing the convergence

and separation of representations in the transition

region are shown in Figs. 6.10 - 6.12. Note that it is

not possible to subduce or induce energy level diagrams

between equivalent and inequivalent methyl groups.

This is because equivalent methyl groups, whether

uncorrelated or correlated, contain a C2 type o~eration

that is not present in inequivalent methyl groups, and

complete correspondence between classes can never be

achieved.

Coalescence diagrams can also be found between

correlated methyl groups, and between uncorrelated

methyl groups. Such diagrams show the change in the

symmetry of the Hamiltonian with changes in the crystal

orientation. These diagrams are in Figs. 6.13 - 6.16.

6.8 MQ SPECTRA

From the energy level diagram, one can count the

number of transitions that occur for a given quantum

order, excluding accidental degeneracy due to poor

spectral resolution. Table 6.3 lists the number of

transition lines for each quantum order and for each of

the limiting cases. The NQ (6Q) order always contains

one central line with no dipolar information (to first

order) and is excluded from the table. The S-quantum

154



..

(53 )( 53) 1\ 52 A 1g A 1u G1 G2Q G2u

m=3

m=2

I.. m=

m = O'
...

m = -I

m =-2

m =-3

-'1
D3h A' A' A" A" E' E"I 2 I 2

m=3

m=2

m= I

m=O - ---.-
m = -I

m =-2

m =-3
XBl 8210-2975

155

Coalescence diagram from uncorrelated,

equivalent methyl groups [(53 x53) "52] to correlated

equivalent methyl groups (D3h ).
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m = I

m=O

m =-1

m =-2

m =-3
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Figure 6.11 Coalescence diagram from uncorrelated

inequivalent methyl groups (53X53)

inequivalent methyl groups (53)'
to correlated



..

53 x 53

m=3

m=2

m= 1

m=O

m=-1

m=-2

m= -3
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m=O

m= -I

m =-2

m =-3
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Figure 6.12 Coalescence diagram from uncorrelated

inequivalent methyl groups (53 x5 3 )

inequivalent methyl groups (C 3)·

to correlated



(53 X 53)" 52

m=3

m=2

m = 1

m=O

m =-1

m =-2

m =-3
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...

53)C 53 A, E, E2 G

m=3

m=2

1m=

m=O

m =-1

m =-2

rfa = -3 XBl 8210-2934

Figure 6.13 Coalescence diagram from equivalent

uncorrelated methyl groups (S3xS3)·S2] to inequivalent

uncorrelated methyl groups (S3xS3)'

..



•

D3h

m=3

m=2

m = 1

m=O

m =-1

m =-2

m =-3

A'I A'2 A"I A"2 E' E"
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..

correlated methyl groups

correlated methyl groups (53).

Figure 6.14 Coalescence diagram from

to

equivalent

inequivalent



E'°3h

m=3

m=2

m = I

m=O

m =-I

m=-2

m =-3

A'I A'2 A"I A"2 E"
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•

..

..

correlated methyl groups

correlated methyl groups (C3 ).

Figure 6.15 Coalescence diagram from

to

equivalent

inequivalent



"
Figure. 6.16 Coalescence diagram between the groups 53

and C3' both of which correspond to correlated,

inequivalent methyl groups but at different crystal

orientction.



Table 6.3

Number of transitions in the MQ spectrum for each of

the symmetry groups

162

uncorrelated correlated •

SQ* 1 2 1 2 2

4Q* 2 4 3 6 7

3Q* 7 14 12 24 28

2Q* 13 20 22 36 53

lQ* 20 34 38 60 92

OQt 6 15 19 36 65

* The entry corresponds to the number of doublets. The

4Q and 2Q orders have in addition a strong central

line. Note that the nQ (n'*O) orders are symmetric

about the order center.

t The entry corresponds to the number of lines. The OQ

order is not symmetric about the order center. ..



order offers no differentiation between correlated and
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uncorrelated motion. (It does tell however whether the

methyl groups are equivalent.) The 4-quantum spectrum

..

co

is sensitive to two-body correlations, and is able to

distinguish the motions •

6.9 INTERMEDIATE REGION - EXCHANGE THEORY

Suppose we begin with a pair of correlated methyl

groups at very low temperature. The methyl protons are

undergoing fast torsional motions but always at a fixed

relationship with one another. As the temperature

increases, an occasional slippage of gears can occur,

and the methyl groups change configurations. This

slippage of gears can occur in either sense; i. e. one

of the methyl gears can slip in the clockwise or

counterclockwise direction (Fig. 6.17>' This

occasional slipppage in either sense can be envisioned

.~ a hopping between three equivalent sites

(configurations). !~us we can apply exchange theory to

this process.

6.9.1 Exchange Operators

Let

sense.

p

Then

represent a

its inverse

slippage

p- l must

of

be

gears in

the slippage

one

in

the opposite sense. Properties of the permutation

operators P and p- 1 are:

(1) p3 • p-3 • 1,



,--< )-4
3 6

3-< )-4
2 6

XSL82 11-6800
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to

Figure__c..=..;:"::- 6. 1 7 In b
methyl ecoming

groups can .
countercl . Sllp in a

ockWlse direct'lon,

uncorrel atedcl one fockwise 0 the
direct'lon or 'ln a



(3) P, p-l are real, nonsymmetric (non-Hermitian)

165

•

..

(4)

and non-unitary,

(p + p-l) is real, symmetric (Hermitian) and

non-unitary •

6.9.2 Master Equation with Exchange

Let p be the initial density operator. The form

of the density operator after exchange P can be

determined in the following manner. Let rp be the wave

function describing the initial state of the spin

system. The density matrix p is defined as rprpt, where

here rp is written as a column vector. The wavefunction

after exchange by definition is prp. This implies that

the density operator after exchange is (prp)(prp)t •

The change in the density matrix as a

result of exchange is then pppt - p.

We assume that both senses of slippage are random

independent processes with the same rate of occurrence

characterized by T -1 (12)
e . Because the exchanges are

between equivalent sites, the Hamiltonians before and

after exchange are the same. Neglecting all other

relaxation effects, the master equation governing the

evolution of the density matrix is:

d pppt _ p + p-lpp-lt _ p
..-£ • i[P,H] +dt T T

e e
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In 8uperoperator representation, this is written as :

PI 1 All,ll All ,12 ·....... All,kk PII
Pl2 A12 ,11 A12 ,12 ·..... . . A12 , kk Pl2 c

d - ,-
r:;

dt ·· .· .
Akk,ll Akk ,12 Akk,kk

..
Pkk ·....... Pkk

k-2 N x2 N.
..

where here Compactly written, th is is

A

The superoperator A is composed of the Liouville

"operator i and an exchange superoperator X:

... ... ...

Equation

A - iH + X.

represents a set of

(3)

simultaneous linear differential equations:

The lIlat r ix element S 0 f the supero per at or scan

where

(k,k)\.

( a, 6) • {( 1 , I ) , (1,2), .. . , (2,1), (2,2), ... ,

..

be related to those of the Heisenberg operators:

H • H 0 - H 0as,Yo 06 la ay oS'



•

When solving for eigenvalues of the matrix A,

properties of the superoperators to recognize are:
A

(1) H is Hermitian,
A

(2) X is real non-symmetric,

(3) Thus Ais complex non-Hermitian.

A simplification results from the commutation of

I z with the exchange operators:
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This means that the Zeeman quantum number m is

conserved under permutations (exchanges) p and -1p •

Alternatively stated, P and p- 1 do not mix blocks of

different m. Thus, each Zeeman manifold can be treated

separately.

The exchange operators P and p-l in general do mix

states belonging to different irreducible

representations. As evident from the coalescence

diagrams of Figs. 6.10 - 6.12, this is to be expected

since the states rearrange in the transition between

• the two energy level diagrams. However, some

simplification do result and the symmetry-adapted

linear-combination(6) (SALe) basis will be adopted.

The solutions to the master equation are found by
A

diagonalizing A. The eigenvalues that result are
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frequenciescharacteristic

Lorentzian lineshapes

linewidths. The

the

with

linear,are

and

equationsthe

yield

Becausecomplex.

solutions

imaginary part of the eigenvalue gives the frequency of

transition, and the real part yields the exchange

broadening r - w/2(full-width-half-maximum value). The

phase of a transition is determined by the initial

conditions, Le. the phase factors of the prepared

density matrix ~(t-O), where t refers to the evolution

time.

..

Before performing a computer simulation, numerical

values for the coupling constants are required.

takes us to the next section.

This

6.10 I,S-DIMETHYLNAPHTHALENE

The reasons for choosing I,S-dimethylnaphthalene

(I,S-DMN) for our studies

are sterically hindered,

s t r uc t urei s k n 0 wn • ( 13 )

are: (I) the methyl groups

and (2) its crystallographic

Presented below are some of

the relevant structural information of this molecule in

the single crystal form. Complete information is "

available from the structure parameters glven in ..
reference [13].

The crystal structure is monoclinic with four

molecules per unit cell and lattice constants a-9.S3SA,

b-7.012A, and c-16.114A. The angles that a, band c

axes make with respect to one another are a-90·,



and Y-90 - • The crystallographic data
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presented in reference [ 13 ] are in fractional

•

coordinates x, y, z as referred in this coordinate

system. In order to determine an internuclear distance

r··, the following formula should be used:1J

.. 2
r.. •1J

2 2 2 2 2 2(x.-x.) a + (y.-y.) b + (z.-z.) C
1 J 1 J 1 J

+ 2(x.-x.)(z.-z.)abcosS.
1 J 1 J

in Fig. 6.18 is t~e labeling scheme for 1,8-

oMN mol e cuI e, con sis ten t wit h refere nc e [1 3] . In the

minimum strain-energy configuration, the carbon

skeleton of the l,8-DMN molecule is planar. The methyl

groups are in an eclipsed configuration where the outer

methyl C-H bonds [C(ll)-H(llC) and C(12)-H(12C)] lie

rough ly in the same plane as the aroma tic fr ame . The

amount of tilt of the outer C-H bonds out of the

aromatic plane is 5· for the C(ll)-H(llC) bond and

- I 0 •8· for the C( 12 ) - H( 12 C) bon d . Th us the t wo met h y 1

groups are not quite mirror images.

The methyl C3 axes are also slightly tilted out of

this plane: the methyl(ll) C3 axis [COl-COl) bond]

.. deviates by 0.2-, and the methyl(12) C3 axis [C(8)-(12)

bond] deviates by -0.2·, which are negligible.

The methyl C3 axes are nOL parallel; they are

splayed outward to accomodate both methyl groups in

such close proximity. Taking the C(9)-C(10) bond to be



a

-J-----. b
c

XBL 8210-2978
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•

..

..

!igure 6.18 Molecular structure and the labeling

scheme of 1,8-dimethylnaphthalene.



•

the axis of highest symmetry, the methyl(ll) C3 axis

deviates by -7.4-, and the methyl(12) C3 axis deviates

by +7.4-.

In the equilibrium configuration, assuming the

covalent radius of proton is O.32A, the clearance

between the outer radii of the closest intermethyl

protons is 1.32A. The separation of the methyl C3 axes

are determined from the C(I)-C(8) distance (2.543A) and

171

the C(11)-C(12) distance (2.932A). The effective

activation barrier to methyl rotation for this molecule

has been measured to be 3 kcal/mole.(14)

From Fig. 6.18, one observes that the aromatic

protons H(2) and H(7) are significantly close to the

methyl protons. The average distance of H(2) and H(7)

with the methyl protons is 3.00A. Another useful

distance to know is the closest intermolecular proton-

proton distance, which is 6.79A. Both of these

distances will be useful when estimating the rf power

required for heteronuclear decoupling.

"

6.11 COMPUTER SIMULATION OF EXCHANGE PROCESS

We will choose one particular crystal orientation

.. for discussion. The orientation chosen 1S where the

methyl C3 axes and Ho lie in the same plane and the

polar angles of the C3 axes with Ho are 78- and 92-.

The me thy 1 gr 0 ups are ine qui val en tand the a ppro pria t e

groups are if uncorrelated, and if



cor r e 1ate d . Th e dip 0 I arc 0 u p lin g con s tan t s for t his

crystal orientation are:
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uncorrelated:

correlated:

u1 - 10.858 kHz

u2 - 14.645 kHz

v - 8.327 kHz

- 17.001 kHz

- 3.990 kHz.

(4)

,.

..

The 5-quantum lines are unaffected by exchange.

We will concern ourselves with the 4-quantum spectrum

- in the exchange process. The transitions of interest

are between the m-z2 to m-;2 Zeeman manifolds, and m-±l

to m-;) manifolds. We start with the correlated limit

since it is easier to envision slippage of gears as an

exchange process than the reverse situation.

The secular determinant can be constructed given

the matrix elements of the Hamiltonian and the exchange

operators in the SALe basis of the correlated symmetry

group.

For simplicity we dictate that all coherences, or

the elements of the prepared density matrix, assume the

same init ial phase and intensity. In the rotat ing

frame and on resonance, only the dipolar Hamiltonian

needs to be considered in the equation of motion [Eq.

( 2) J•

..

Secular Determinant for m-t2 to m-;2 Manifolds6.11.1

The manifolds are unaffected by



remain sharp with noexchange. These n-4 transitions

frequency shift.

The E manifold is affected

secular determinant is 16x16 and

by exchange. The

wi 11 not be shown
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here. The actual construction was done trivially

within a computer program, listed in appendix 6.A. The

solutions to the secular determinant were derived from

running a package computer program EIGCC from the IMSL

library. EIGCC is an iterative routine for

diagonalizing a general complex matrix.

6.11.2 Secular Determinant for m=±1 to m=+3 Manifolds

Only the Al manifold

manifolds corresponding

representations are mixed

is involved. In general, the

to different irreducible

by P and p-l. Note that

..

although the A2 (m-±I) is mixed with the A1 (m=±I)

states, the secular determinant is not. This exception

occurs when transitions involve the extreme states Al

(m-±3). The origin of this exception arises from the

invariance of the extreme states to exchange. Thus the

secular determinant for the 4-quantum order is also

block diagonal with respect to the irreducible

... representations of the group .

it is:

For the Al transitions,

a-A

o

e

f

o

b-A

e

f

e

e

c-A

g

f

f

g

d-).

- 0
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where

· (3 + + 2w)a --1 -u V ~

2 1 -

~

b · (3 + + 2w)- -1 -u V4 2
2 ..

c - -i(u + u
2

+ 2w)
1 't

d -i[t(u1+u 2 ) + w] 1- v + - -'t ...

· Ie --l-W
2

f .12( + w)- -1- v
4

.12( u
2

) 12g --1- U + +-
4 1 'to

With the insertion of the coupling constants

listed in Eq. (4) into the program EXCH2 listed in

appendix 6.A for the E manifold and EXCRI in appendix

6.B for the Al manifold, the results are shown in Table

6.4. The sharp transit ion Al (m-t 2 ) to Al (m-.2) at

13.722 kHz is exc I uded from th is tab le. Since the 4Q

spectrum is symmetric, only half of it is tabulated.

The frequencies are measured from the center of the 4Q

order. The lines that are broadened near the center

(at 0 kHz) are also excluded from the table.

The data in Table 6.4 and including the Al (m-:t2)

transitions are illustrated in Fig. 6.19. At Te-l sec,

the lines are fairly sharp and correspond to correlated
..

1I0tion. Th e 110 s t act i on 0 c cursin the O. I 2 msec

As the rate of exchange increases, the E

transitions, broadens and is shifted in frequency

EcentralthewithmixeskHz7at

range.

transition



Table 6.4

The frequencies ('II) and exchange broadenings (r) for

the 4-quantum order : E(m=±2) to E(m=+2) and Al (m=±2)

t 0 A1 (m· +2) t ransit ion s .

T( sec) 'II(kHz) r(kHz)

1 xl 0- 7 60.235 (AI) 0.003
44.758 (AI) 0.0001
36.805 (AI) 0.0002

1 X10- 4 61.545 (AI) 1 . 157
44.780 (AI) 0.032
36.814 (AI) 0.025

2 xl 0- 4 62.171 (AI) 0.825
44.802 (AI) 0.032
36.831 (AI) 0.034
26.777 (A

J
) 14.109

5.626 (E 14.33

1 XlO- 3 62.485 (AI) o . 188
44.825 (AI) 0.009
36.871 (AI) 0.017
26.401 (A

J
) 2. 785

6.91 (E 2.08

2 ,,1,,-3 62.496 (AI) 0.095
44.825 (AI) 0.005
36.875 (AI) 0.009
26.386 (A~ ) I .392

7.05 (E I .03

1 62.500 (AI) 0.0002.. 44.825 (AI) 0.0
36.876 (AI) 0.0
26.381 (A

J
) 0.003..

(E7.099 0.002
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4-Quantum Order

l UI r
-7

T'e = I x 10 5
(uncorrelated)

I U
"

A
-4

T'e = I x 10 5

r I ..

U ~
-4

T'e =2 x 10 5

I

A /\ IJ 1 T'e = I x 10-3 5

I I i

JJ r. U I -3
T'e =2x 10 5

I

E A, A, A, A, A,

JJ I U I T' =15e
(correlated)

i i i i
0 10 20 30. 40 50 60

II (kHz)
XBL 8210-Z996

..

Figure 6.19 Computer simulation of one half of the 4

quantum region showing the broadening and merging of

lines as correlation sets in.



..

...

toward the order center as it disappears. The outer

four Al transitions are mixed and shifted in frequency

toward each other as the trans it ion I ine at 26 kHz

broadens and disappears. At Te -IO- 7 sec, fast exchange

is occuring and the spectrum corresponds to

uncorrelated motion •

177

reorientation of the solute

freedom averages intermolecular

retains only intramolecular

couplings to zero and

couplings. Molecular

in the liquid crystal

matrix does occur .:.r.d scales down the intramolecular

dipolar couplings. This

by restricted molecular

scaling of coupling constants

reorientat ion is described by

• order parameters, the number of them depending on the

structural symmetry of the solute molecule.

The MQ spectrum for 1,8-dimethylnaphthalene-d6

(1,8-DMN-d 6 ) dissolved astman #15320 liquid crystal

at room temperature is shown in Fig. 6.20. From this



FREQUENCY (~~ - 13.67 KHz)
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XlL 802-83Ci

Figure 6.20 MQ spectrum of 1.8-dimethylnaphthalene-d6
dissolved in a nematic liquid crystal at 2S·C.

..
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spectrum, we wish to determine whether the methyl

groups are correlated ~n motion. It is not obvious a

priori whether the methyl groups are equivalent. Their

equivalency relies on the molecular reorientation that

o c cur s in the 1 i qui d cry s tall ine mat r i x • [ See sec t i on

6 .6. ]

Figure 6.20 shows two doublets in the 4-quantum

region. Referring to Table 6.3, we see immediately

that this corresponds to the group (S3xS3)AS2, implying

equivalent and uncorrelated methyl groups.

Often the object is to obtain mole~ular structural

information by iterating on the couplings and the order

parameters. However in our case we know the molecular

179

structure bef~rehand. We can use this extra piece of

information to solve directly for the order parameters

which informs us of the type of molecular reorientation

occuring in the liquid crystal matrix.

To extract coupling constants from the 4- and 5

quantum orders, an iteration routine MQITER(9) is

used. This routine requires as inputs the experimental

transition frequencies and an initial guess of the

coupling constants. The latter input requires

s p e c i f i cat ion 0 f the t y Pe 0 f mo t ion t hat the me thy 1

groups are experiencing. The resulting couplings from

iterating on the 4- and 5-quantum orders are used to

g e nera t e the 3- qua n t um 0 r de r , wh i chi s thencompare d

with the experimental 3-quantum spectrum. The best fit



for these orders corresponds to equivalent and
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uncorrelated methyl groups (as expected) with dipolar

couplings (Fig. 6.21):

u· 1.196 kHz

v· -1.223 kHz.

Here u and v are scaled by the order parameters.

(5)

For 1,8-DMN-d6 , the molecular point group is

C2v ' For C2v molecules, there are two order

parameters:(15) Saa and Sbb-Scc' where a,b, and c are

the axes of the molecular frame. The a-axis is taken

t 0 betheone 0 f h i gh est s ymm e try, the b - axis i s

defined here to lie also in the aromatic plane, and the

c-axis is perpendicular to the aromatic plane (Fig.

6.18).

The motionalty averaged dipolar Hamiltonian can be

expressed as:

HD • r <D•• >(I • I • - -4
1
(I . I . + I . I .) 1.</,.. 1J Zl ZJ +1 -J -1 +J

1 J

where Z refers to the direction of the external

magnetic field. For molecules having more than one

configuration, in the limit of fast conformational

changes .11 configurations contribute to the observed

coupling constants:

< > .L rD(.Q.)D. • /,.
1J n

Q
Q 1JZZ

(6)



...

~ ... ..............-..1.... W ......
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4b.w

FREQUENCY (~~ • 13.61 KHz)

5b.w

XBL 8e2·S3JB

Figure 6.21 MQ spectrum of the 3- to 6-quantum region

presented with the theoretical stick spectrum for

uncorrelated equivalent methyl groups.



where n a is the number of configurations. In general,
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each configuration may differ in symmetry and thus may

have a different set of order parameters. In our case,

the methyl reorientation about the C3 axes does not

affect the order parameters since they hop about

equivalent positions. Hence each configuration must

have the same order parameters, which can then be

f act 0 red 0 u t 0 f the s umm a t ion.

is then:(lS}

The spacial part of HD

<1> ••> • IC[ 5 LlJ aa a

a

For the intramethyl coupling u there are six

configurations to be averaged, and for the intermethyl

coupling v there are nine. Inserting Eq. (7) into (6)

given the observed coupling constants (1)ij> in Eq. (5),

and calculating e.. I S
1.)

from the crystallographic data

result in an unique solution for the order parameters:

5 aa • 0.037

5 bb -5 cc• -0.291.

molecular reorientation in the liquid crystal solvent

The relation 5 < 5 - 5aa bb cc
implies that the



is predominantly about an axis in the be-plane. We

deduce however that since l,8-DMN is planar, the open

volume required for a rotation about the c-axis is less
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than for about the b-axis (or about the a-axis). Thus

we assert that the reorientation is predominantly about

It
the c-axis. Also, this reorientation equalizes both

methyl groups, which is consistent with the obtained MQ

spectrum.

To summarize, the number of lines in the 4-quantum
-

order allows us to determine that the methyl groups on

1 ,8-DMN at room temperature are uncorrelated and

equivalent in the nemat ic liquid crystalline

environment. Since l,8-DMN is planar, to minimize

steric hindrance between solute and solvent we can

expect the aromatic plane tc lie along the direction of

the long axis of the liquid c-ystal. Considering the

amount of free volume required, it can be argued that

the molecular reorientation is predominantly about an

axis perpendicular to the aromatic plane. The above

a f f i rmat ions are in ag reement wi th the measured order

parameters.

.II 6.13 l,8-DIMETHYLNAPHTHALENE-D 10

The practical advantages and disadvantages of MQ

spectroscopy on the molecule 1,8-DMN-d 6 can be compared

wit h tho s e 0 f sin g 1e - qua n t um ~ SQ) s pee t r 0 s copyon 1, 8-

In both cases, an isolated molecular system



is simulated by diluting the desired guest molecule in

a perdeuterated host which preserves the molecular and
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The power required for proton-crystal structure.

deuteron decoupling is roughly the same for both

cases. The advantages and disadvantages of MQ NMR on

fi rst discussed. The SQ spectroscopy of1.8-DMN-d 6 is

1.8-DMN-d 10 is analyzed and the significance of

impurity concentration is examined.

For the MQ experiment, the wise choice for the

guest molecule is 1.8-DMN-d 6 where the uninteresting

aromatic positions are deuterated. The advantages are:

(1) it requires a lower deuteration level, and (2) it

has the capability of separating the desired signal

from impurity signal. The previous sections have shown

that the 4Q order is sensitive to correlation of

motion. It is highly improbable that the perdeuterated

host impurities will contribute to the 4Q spectrum 

the probability of four or more impurity protons on the

same molecule is extremely small. Thus the purity

requirement of the host is not stringent. The

c

impurities of the guest molecule will contribute to the

4Q region, but if the purity is reasonably high (>90%)

the purity level again is not critical.

The disadvantage of a MQ experiment is that it is

..

a two-dimensional experiment. Hence for a given data

acquisition time, it is inherently a lower sensitivity

experiment, with noise in tl as well as in t2.(l6) To



get the same amount of sensitivity as in an one

dimensional SQ experiment, perfect selective excitation

of the desired quantum order and a full two-dimensional

data acquisition are required.

For SQ spectroscopy to be feasible, a two-proton

system with one proton on each methyl group (and the
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rest of the positions deuterated) is the most

convenient choice. Single-quantum spectroscopy on this

system can give information on the correlation of

motion.

The advantage of SQ NMR is that it is a simple

compared

one-dimensional

inhomogeneity is

experiment,

small

provided

to

the

the

magnet

dipolar

broadening. The pulse sequence involves one pulse, or

at best a two-pulse solid echo sequence. (17) (The

solid echo experiment is preferred to minimize linear

phase distortion and since most solids have a decay

time comparable to the receiver deadtime.)

The major problem of SQ NMR is that the desired SQ

signal will overlap with impurity signal. I f the

dilution level is high (which is desirable for better

isolation of guest molecules), the impurities of the

host contribute a signifL:ant amount of signal. The

details of this matter will be discussed separately in

section 6.13.2.

a

We make the case for pr~ferring a powder sample to

single crystal.(lS) The experimental problems
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associated with a single crystal are: (1) a crystal may

undergo crystal structural phase transitions as

temperature is lowered, and (2) cracking of crystal may

result if the cooling or heating of the sample occurs

too quickly. In using a powder, it becomes unnecessary

to know the crystal orientation, nor to know the number

of molecules in the unit cell and their relative

orientation in the unit cell. Though the SiN is lower

for a powder per frequency bandwidth, the singularities

(th at occ ur at 6-90·) in the powder spec t rum shou ld be

sharp and the peak SiN should be substantial, excluding

dominant impurity signal contributions.

5.13.1 Single-Quantum Spectrum

If the system is uncorrelated, we expect on the

average one unique dipolar coupling constant. The nine

configurations possible are shown in Fig. 6.22, where

it is assumed that the methyl group can only hop

between equilibrium orientations. The dipolar

Hamiltonian for this case is just:

1
HD • v[I z1 I z2 - 4(1+ 1 1_ 2+1_ 1 1+ 2 )]

- vV 12 •

"

•

The

the eigenstate

1--> are shifted

-l( 1+_> + 1-+»
Iii-(1+-> - 1-+» is

Ii

symmetric

eigenstates 1++> and

the antisymmetric state

1
4v ,.

1
- -v,and

;'2

extreme

by

by



II

'"

Uncorrelated Motion

-<H>- -<H>- -< >-H

Correlated Motion

(0) -<~ ~>- H-< ~

XBl 8210-2935

Figure 6.22 Assuming random hopping only between

equilibrium positions, f~r uncorrelated motion the

methyl groups have :andom relationship. For

correlated motion there are only three possible initial

conditions. and three possible configurations each.

Note that configurations band c are indistinguishable

by NMR.
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unshifted.

Assuming the methyl geometry is unaltered by

deuteration, the coupling constant can be calculated.

The coupling for a-o·, which is the maximum inherent

value possible, is:

V o • 5.784 kHz.

The SQ spectrum for this molecule is then a doublet

with a separat ion of (f2 + ~)v, or 11.072 kHz for a-o·

[Fig.6.23(a)].

If the system is correlated in motion, on the

18S

..

average there are two unique dipolar coupling

constants. Th. two constants arise from the fact that

there are two initial configurations possible [Fig.

6 .22(b)]. (Actually there are three; however, two of

them are NMR equivalent but are enantiomers.) The

superimposed Hamiltonian is:

The coupling constants for a-o· are:

V o • 10.535 kHz

wo • 3.408 kHz

The SQ spectrum is a superposition of two doublets with

separations (12 + i)v and (12 + i) w. or 20.167 and
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(0) Uncorrelated Motion
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-10

(b) Correlated Motion

-10

o
11 (kHz)

I

o
'11 (kHz)

10

10

XBl 8210-2927

Figure 6.23 The single-quantum spectrum for 1,8

dimethylnapthalene-d lO molecule at orientation -90·

undergoing (a) uncorrelated motion, resulting in a

doublet, and (b) correlated motion, showing two

doublets with one doublet having twice the intensity of

the other.



6 . 524 kHz for a- 0 • [ Fig. 6. 23 ( b ) ] •

The dispersion function of a powder pattern is

given by:(l9)

f ( v) (-~ 1 ) .J/2, 1• + -d <v<--dd 0200

-(~ + 1) .J/2 + (~ + 1) .J/2, -.!.d <v<k
d d 202 00 0

• (~.+ 1) .J/2, id <v<dd o 0
0

190

..,

..

where do corresponds to the appropriate coupling

con s tan tat a- O· • The singularities occur at %d o /2,

which corresponds to d at a-90·. Calculated dipolar

powder patterns for uncorrelated and correlated motion

of l,8-DMN-d lO are shown in Fig. 6.24. Measurement of

the splittings between singularities of a powder

pattern yields the coupling constant at a-o·.

6.13.2 Impurity Content

The motivation for including this section stemmed

from measurements made on 1,8-DMN-d 10 showing impurity

signal comparable to or larger than the desired signal,

even at a high host purity level of 99.0% and at a 5%

dilution. This came rather as a surprise at first.

The arguments to be discussed be low wi 11 clearly show

why SQ spectroscopy requires high purity samples.

The level of sample purity can be estimated
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(0) Uncorrelated Motion
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-5

(b) Correlated Motion

o
~71 (kHz)

5

-10 -5 o
~71 (kHz)

5 10

XBL 8210-2979

Figure 6.24 The single-quantum powder

1,8-dimethylnaphthalene-d lO undergoing (a)

motion, and (b) correlated motion,

superposition of two powder patterns.

spectrum for

uncorrelated

showing a



assuming a statistical distribution of proton
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attachments. Generalizing, suppose there are N

molecules with m sites each, totaling a number of mN

sites. The question is: what is the probability that

each molecule with m sites will have k impurities?

This can be abst racted to the following p.roblem.

Suppose there are a total of tiN objects, where % of

them are of one kind and y of them of another kind.

What is the probability of picking m objects such that

k of them are of the y type, assuming k<y

and (m-k) <%1 Through combinatorial arguments, this

probability is found to be:

P(m,k) -

Listed in Table 6.5 are the probabilities for

typical impurity levels. The percentage refers to the

number of sites occupied by an impurity and not molar

percent. The notation P(m,k) is interpreted as the

probability of 1,a-OMN having k impurity protons. For

1,a-DHN, the number of sites is m-12. The tabulated

values assume N-100 molecules, which is large enough to

yield values close to those of N·-.
Note that a portion of P(12,2) has protons in the

...

desired location. Thi i ( 122)-1 or 1/66,s amount s

implying P(12,2) should be multiplied by 65/66 to give

the correct impurity content.
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Table 6.5

Probability P(m,k) of m sites being occupied by k

impurities

193

.. impurity content

10%

1%

0.5%

P(12,1)

0.38

0.11

0.06

P(12,2)

0.23

0.006

0.001

P(12,3)

o .17

2 xl 0- 4

1 xl 0- 5



The calculation of impurity content of the

starting guest material is more complicated. It

depends on the selectivity of the deuteration

procedure. Thus the proton attachment is no longer a

statistical problem. Fortunately, the purity

requirement is less stringent since the guest molecule

will be in low abundance. For example, if the net

effect of the selectivity and extraction procedure is

90% effective, then roughly >10% of the sites are

occupied by mislocated protons and the desired signal

is <90% of the expected value. (Compare this to a

random deuteration composing of 38% single-proton

impurity, 23% two-proton impurity and 17% three-proton

impurity.) For the rough estimate that we want to make

this modification can be neglected. Note that part of

this reduction is counteracted by the perdeuterated

host having the desired proton attachment.

Gi ven Ta ble 6.5, the compa ris on of the size of

impurity signal from the host versus the desired guest

signal can be made for a given guest dilution.

A 5% molar dilution is a reasonable amount for

effecting isolation of guest molecules. (Considering

cubic-closest-packing structure, 2% dilution is

optimal. But if the nearest intermolecular distance is

greater than the intramolecular distances, 5% dilution

is tolerable.) When the dilution is high, the impurity

of the guest compound can be neglected.

194
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The total 1 a signal size is proportional to the

single-proton host moleucles. is (0.11)95% ,. 10%, to

two-proton hosts is 2(0.06)95% ,. 1%, and to three

proton hosts is 3(0.016)95% ,. 0.05%. Compare this to

the number of guest proton sites, which is at best

are hosts.

number of prot on

ofthe mo 1 e c u 1e s

occupied At 5% dilution, 95%

Assuming a host impurity

sites corresponding toof

sites.

numberthe1%,oflevel
..

..

(2)5% • 10%. The rest of the sites contribute to

deuterium signal. Thus even at 5% molar dilution and

with a 99% host purity level, the impurity signal is

comparable to the desired signal.

the

the

may either

(which may

decrease

consider

onesituation,abovetheimproveTo

increase the amount of guest molecules

result in intermolecular broadening) or

impurity content of the host. Let us

latter.

Suppose the host impurity level is ultra-low at

negligible three-proton.

derives from 10% of the host0.5%atThussites.

the number of host impurity

0.2% two-proton and

The desired signal again

single-proton,

dilution,5%

5%

At

issites

0.5%.

• impurity level, the desired signal is twice as large as

the impurity signal, which is tolerable.

It is worth mentioning that it is very difficult

to get higher than 99.5% purity since most commercial

starting materials (D 2 0) are graded at 99.5%.



6.13.3 Conclusion
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of motion of two methyl groups is then an one-pulse

expe riment wi th het eronuc 1ear de cou pi i ng. A powd er

sample of 1,8-DMN-d 10 is preferable to a single crystal

for experimental ease and to remove the need to know

the unit cell structure. In contrast to the single

crystal spectrum, the powder spectrum is also

unaffected by the fact that in the slow motional limit,

the methyl groups can no longer be treated as an

averaged specie.

A preliminary measurement on a powder sample of 5%

dilution in a host of 99% purity resulted in a smearing

out of the powder pattern by impurity signal. A simple

calculation assuming statistical proton attachments

reveals the importance of high purity requirement of

the host compound.

Provided

feasible to

selectively

perdeuterated

the sample purity is high enough, it is

perform SQ NMR spectroscopy on the

deuterated 1,8-DMN-d 10 diluted in a

matrix. The observation of correlation

•

...



APPENDIX 6.A

Computer listings of programs EXCH2 and HARDMAT

EXCH2 diagonalizes the superoperator A for the

f 0 ur - qua n tum t ransit ionsin the E man i f 0 1d . The NMR

permutation group 53 and the dipolar couplings for the

orientation specified in section 6.11 'are assumed. It

requires as inputs only the exchange times (ll tau ll).

HARDMAT is called within EXCH2 to create a IIhard

197

copy" of the constructed l6x16 superoperator A.

subroutine was supplied by Jim Murdoch.

This
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APPENDIX 6.B

Computer listing for program EXCRI

EXCRI diagonalizes the superoperator A for the

four-quantum transitions involving the Al m-zl and m-z3

manifolds. The NMR permutation group S3 is assumed.

The programs asks for the matrix elements of the

Liouville operator B and the exchange times as inputs.
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