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COMPUTER STUDIES OF MULTIPLE-QUANTUM SPIN DYNAMICS

JAMES BRYCE MURDOCH

ABSTRACT

The excitation and detection of multiple-quantum (MQ) transitions

in Fourier transform NMR spectroscopy is an interesting problem in

the quantum mechanical dynamics of spin systems as well as an important

new technique for investigation of molecular structure. In particular,

multiple-quantum spectroscopy can be used to simplify overly complex

spectra or to separate the various interactions between a nucleus and

its environment. The emphasis of this work is on computer simulation

of spin-system evolution to better relate theory and experiment.

The first example to be considered is the three-level system of

a spin-one nucleus, specifically deuterium in solids. Using an oper-

ator formalism and a physical model for coherence, the evolution of

the density matrix during a variety of pulse sequences is analyzed in

detail. Optimized pulse sequences are developed for the generation

of chemical shielding powder lineshapes via the double-quantum transi-

tion. The phenomenon of double-quantum spin locking is investigated

and used to measure spin-lattice relaxation times in the rotating

frame.

The dipolar=coupled protons of molecules dissolved in liquid

crystal solvents comprise the second type of spin system to be

examined here. For these systems, MQ spectroscopy offers better

resolution than the conventional single-quantum approach, simplifying
-;

the determination of dipolar couplings that in turn can be related

1



focuses on the MQ intensities expected from the basic three~pulse

to the averaged molecular conformation. The work reported here

2
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sequence. At the most concrete level, specific values for the

preparation and detection times are used to simulate six~ and eight-

spin experimental spectra. The concept of time-independent MQ

intensities is then introduced, an algorithm for efficient computation

of these quantities is described, and several representative spectra

are presented. A correlation between the relative standard

deviation of dipolar couplings and the intensity of high-quantum

lines is discussed at length; in many cases, these intensities are

predicted to be considerably larger than a simple statistical argument

would suggest. The effect of varying the preparation and detection

times independently is analyzed as a random-walk problem.
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Simulated Thoughts

(may be sung, if desired, to "Oh Little Town of Bethlehem il
)

Down in the depths of Hildebrand

Where sunlight never goes,

I sit and stare--I'm happy where

My terminal faintly glows.

My fingers stroke the keyboard

In near-orgasmic bliss;

I've often heard that nerd's the word

That fits a case like this.

I have no use for chemicals,

I haven't touched one yet;

They slosh and spill and make one ill,

That's not ~ basis set.

I'd rather be computing

The world's most perfect psi;

Just let me solve how states evolve,

And I'm a happy guy.

That little screen in Hildebrand

Holds all I want to know;

If things compile then life's worthwhile,

Just let those numbers flow.

My lab-mates try to tell me

The real world's overhead;

Who needs that life of toil and strife?

I'll simulate instead.
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1.1 Introduction

1. BACK TO BASICS

1

J~

I
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From its humble beginnings at Harvard and Stanford in 1946

[1,2], the field of nuclear magnetic resonance spectroscopy has

grown prodigiously, and today, a robust and mature technique, it

looms Colossus-like over many areas of physical and biological

science. This dissertation will focus on one new wrinkle on the

aforementioned Colossus, namely Fourier transform multiple-quantum

NMR as applied to solids and liquid crystals.

The "normal" spectroscopic transition involves the absorption

or emission of a single photon. Multiple-quantum transitions,

those involving more than one photon, were first postulated by

Goeppert-Mayer in 1931 [3]. They made their appearance in magnetic

resonance in 1956, when Anderson [4] and Kaplan and Meiboom [5]

independently discovered that when they turned up the radio frequency

irradiation power in their continuous-wave (cw) NMR spectrometers,

sharp lines sprouted up between the featureless blobs of saturation-

broadened single-quantum transitions. The use of these new lines

to assign transitions and to determine the sign of J-couplings

enjoyed a brief heyday in the ensuing years [6-9], but the

impossibility of separating lines corresponding to different

numbers of quanta limited the applicability of the technique (see

Chapter III).

The development in recent years of pulsed magnetic resonance

methods has made possible the investigation of a much wider range

of multiple-quantum phenomena, summarized in a new review article



by Bodenhausen [10]. This multiple-quantum renaissance is not due

so much to the practical advantages of Fourier transform spectro-

scopy [11,12]--improved signal-to-noise and signal-averaging

capabilities--but rather to the very nature of time-domain

spectroscopy, as will be discussed in the pages to come.

Multiple-quantum NMR is characterized by a number of valuable

properties that motivate its study. For instance, MQ techniques

can be used to isolate a small but interesting term in the

magnetic resonance Hamiltonian, one that would be masked in a

normal single-quantum experiment. An example, to be discussed in

Chapter II, is the determination of deuterium chemical shielding

tensors via the double-quantum transition; in the single-quantum

spectrum, the deuterium quadrupolar splitting usually dominates

any chemical shielding effect. Alternately, MQ NMR can be used

to simplify an overly complex spectrum,yet retain the structural

and conformational information it can provide. Chapters IV and V

describe the virtues of this simplification in the proton spectra

of small molecules dissolved in liquid crystal solvents. A third

useful feature is the accessibility of additional spectral density

parameters and information on relaxation correlation from multiple-

quantum relaxation or lineshape measurements [13-18]. The number

of lines in an MQ spectrum can also be used to determine the

degree to which intramolecular motion is correlated [18,19].

The investigation of multiple-quantum spectroscopy is

motivated by more than mere practicality, however. It is, in

fact, an elegant example of "quantum mechanics in action", and

2
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one for which theoretical predictions, computer simulations, and

experimental results can be carefully compared.

In the next several sections, a few important concepts in

magnetic resonance are briefly discussed: the basic nature of

the interaction, the forces at work and the Hamiltonians that

describe them, the density matrix formalism, and the properties

of spherical tensors. This information can of course be found

elsewhere in more profuse and useful detail [20-25J; it is

included here as a fleeting glimpse of "normal" NMR before we

wander off down the path to forbidden transitions. The chapter

ends with a few musings on the nature of simulated magnetic

resonance.

The remainder of the thesis addresses a variety of multiple-

quantum phenomena. Chapter II provides an in-depth analysis of

the simple three-level system of an isolated deuteron. A phase-

sh~fted cw technique for MQ spectroscopy and its application to

deuterium NMR are investigated in Chapter III. Pulsed multiple-

quantum NMR in multi-level systems is introduced in Chapter IV,

and the resulting spectral intensities are explored at length

as a function of pulse sequence p~rameters and dipolar coupling

distributions in Chapter V.

1.2 A Note on Units

"21T or not 21T, that is the question." In any discussion of

Hamiltonians, coupling constants, etc., one is faced with a

choice of units: frequency (Hz) or angular frequency (radians/sec).

3



There are advantages and disadvantages, of course, to each. Normal

frequency units ("V'S") find practical application but drag along

a distracting and inelegant factor of 2~ when used in any v-time

expression. Angular frequency units ("w's") are the traditional

choice for NMR formalism, but one never hears of a 200 megaradian-

per-second spectrometer or a 1.5 ki10radian-per-second 1inewidth.

A complete duplicate set of symbols becomes awkward, so it is

probably best to sacrifice consistency on the well-worn altar of

convenience. In definitions and formulas, therefore, each

Djk , 6w, crj , or the like will be assumed, unless stated otherwise,

to be in radians/sec; when assigned a value, however, the same
-iD·kt -

symbol will be expressed in hertz. (Example; U = e J with

Djk = 1200 HZ.) The exception is in the analysis of the three

level deuterium system--there the distinction between w's and v's

will be carefully maintained.

1.3 The Fundamental Interaction

Nuclear magnetic resonance involves the interaction of the

magnetic dipole moment of a nucleus with static and oscillating

magnetic fields. This magnetic moment ~ is proportional to the

nuclear spin vector I:

4

f -
(

}.l ::I yfi I (1.1)

where y is the magnetogyric ratio. The energy of interaction with

a field H is given by -}.l-H [26]. I is an angular momentum vector
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operator, and the usual relations hold [27]:

5

I /W> = ml1Ji>z m=-I,-I+l, ••• ,I-1,I

(1. 2a)

(1. 2b)

[I ,I] = I I -I I = i Ip q pq qp r

p,q,r=x,y,z; y,z,x; z,x,y • (1.2c)

,,
~

As far as we chemists are concerned, the nuclei themselves

are "black boxes"; we are simply grateful that some of them

possess a non-zero spin and thus can be Qsed as sensitive probes

of their magnetic and electronic environment. The two types of

1nuclei of interest in this work are normal hydrogen ( H, I=1/2,

y/2rr = 4.2575 MHz/kilogauss) and deuterium (2H, I=l, y/2rr =

0.6536 MHz/kilogauss). A nucleus of spin I has 2I+1 eigenstates,

each labeled by m, the eigenvalue of I. For I=1/2, m=±1/2; forz

I=l, m=-l,O, and 1.

If N of the same type of nuclei interact, we must deal with

N(2I+1) states. In the absence of relaxation mechanisms (coupling

to additional distant nuclei, fluctuating electric or magnetic

fields, phonons, etc.), the spin system of interest can thus be

described fully in terms of a finite number of eigenstates--un1ike,

say, the hydrogen atom or a harmonic oscillator. When N is not

undue1y large, a computer can be used to solve for the exact spin

dynamics--no perturbation treatment is necessary.



1.4 Gauss Encounters of the Second Rank

The interaction of a spin with its neighbors and with external

forces is described mathematically in terms of a Hermitian operator

*'X, the Hamiltonian. ("Hermitian" implies that Xi' = X.. .) However,
J J~

before the grand unveiling of these all-important operators for the

systems that interest us, an introduction to their form and

properties would be useful. Each individual term of the total

Hamiltonian that we will consider can be written as follows [28,29J:

6

X = c X-A-r = c
- :::: -n

(1.3)

where c is a constant, I is the spin vector (I ,I ,I ) for nucleus
-n x y z

n, and X can be, depending'on the type of interaction being-
formulated, a magnetic field vector, the spin vector of another

nucleus, or I itself. A is a symmetric second-rank Cartesian
-n ~

tensor [28-32] (or 3x3 matrix) which describes some physical

quantity--field gradients, internuclear distances, etc. X is thus

a product of real-space and spin-space terms; we will be exploring

and manipulating both. Let us tarry first in real space and

examine A.--
As a symmetric 3x3 matrix, A has at most six unique elements:--

All' A22 , A33 , AI2=A21 , AI3=A31 , and A23=A32 • The value of these

elements depends on the reference frame chosen. In particular,

A is diagonal in one frame--its principal axis system (PAS). The
:::

diagonal elements of A in this frame are called its principal--
values and are labeled ~,Ayy' and Azz . The elements of ~ in

another reference frame (the laboratory axis system, for example)

( -



are related to the principal values by an orthogonal transformation

R [29-31]:...

7

~ (LAB) = R A (PAS) Rt

~ 0 0

= R 0 Ayy 0 Rt
(1.4)- ::::-

0 0 A
ZZ

where each element Rij equals the cosine of the angle between the

i-axis of the lab frame and the j-axis of the PAS. The elements

of R also characterize the Euler angles of rotation a, S, and y

necessary to rotate the principal axis system into coincidence

*with the lab frame [31,32]:

*The Euler prescription for transformation from an x,y,z axis

system to an x"', y"', z'" axis system is as follows: 1. rotate

about the z axis by an angle a and transform to an intermediate

frame x',y',z' (z'=z), 2. rotate about the y' axis by an angle

6 to transform to a second intermediate frame x",y",z" (y"= y'),

3. rotate about the z" axis to complete the transformation

to x'" ,y'" ,z'" (z'''=z'').



R =--
cosacosScosy-sinasiny

( -cosacosBsiny-sinacosy

cosasinS

sinacosScosy+cosasiny

-sinacosSsiny+cosacosy

sinasinS

-sinScosy

SinBSiny ) •

cosS

(1.5)

r-~

!

In a general axis system, A can thus be determined by knowing its
~

three principal values and the three angles that specify the

orientation of the PAS relative to that axis system--six pieces

of information to match its six unique elements.

It is convenient to replace the principal values of A with

new quantities. Define A, the isot~opic component of A, as 1/3
~

Tr ~ = l/3(~Q(+Ayy+AZZ). Assume that the axes are labeled such

that

Two useful quanti,ties are then the anisotropy of A, given by
~

o = ~z-A, and the asynunetry parameter, given by

n = (1.6)

n is unitless and varies between 0 and 1.

And what of X and I? They are combined into another second-
-n

rank tensor, the dyadic T [28.29]:--

[~

U
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3
X = c r

a=l
X A b (I )ba a n

3
- c L

a=l

9

The effect of rotations on the form of X is most easily analyzed

if ~ and; are rewritten in terms of spherical tensors A~m and

T~m [31,32]. Spherical tensors of a given rank ~ transform

among themselves under a rotation in a manner analogous to the

spherical harmonic functions. If A is assumed to be symmetric,

then only tensors of rank zero and rank two need be considered

in the calculation of X:

(1. 7)

!
h

T~m tensors are usually expressed in the lab reference

frame, the appropriate choice not only for applied magnetic

fields but also for operators in spin space [29]. (The parallel

between magnetization in real space and a "state vector" in spin

space will be discussed in Chapter II.) Expressions for the T~m

tensors used in Hamiltonians of interest here are on display in

Table 1.1.

A in the lab frame is related to its spherical tensor

components in the principal axis system by Wigner rotation

matrix elements V~, (the spherical tensor alternate to themm

transformation matrix R) [3l,32J:



Table 1.1

Spherical Tensor Operators for NMR Hamiltoniansa

(those needed in the high-field approximation)

Hamiltonian

,~

\
10 \

Chemical Shielding

Quadrupole

Dipole-Dipole }
J-Coupling

aAdapted from Ref. 24.

I. elk
-J -

1/16 [3 I jl k-l.elk]
Z Z -J-

Table 1.2

Three Relevant Wigner Rotation Matrix Elementsa

2
(ct,S,Y) I3l8 sin2S e2iYV20

2
(ct,I3,Y) 2VOO 1/2 (3 cos 13-1)

2
(ct,S,Y) 1378 2 -2iy

~20 3/8 sin 13 e

aCondensed from Ref. 24.

t '
!
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, (PAS)

r
r

= A
OO

(PAS)

= r
m'

= (L8a)

(L 8b)

11

r ~,
i

l

where n is shorthand for a, a. and y, the Euler angles by which

*the lab frame is superimposed onto the PAS. (The same sort of

transformation connects any two axis systems. A partial list of

V2 values can be found in Table 1.2.) It so happens that inm'm

the principal axis system, only A20 and A2±2 are non-zero, with

.f6 1
values T 0 and 2' no respectively [29]. Thus

Equations 1.7 and 1.9 will prove quite useful in the struggle ahead.

1.5 Hamiltonians on Parade

In accord with Pines group tradition, a Hamiltonian operator

will now be proudly and prominently displayed. This Hamiltonian

is comprised of a number of different terms, corresponding to the

various interactions experienced by the nuclei of interest, In

general, we can write these as follows:

*Unfortunately, the opposite transformation path was used for R.
s::J

Convenience triumphs again over consistency.
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Each of these terms will be showcased in the remainder of this

section.

1.5.1 Zeeman Hamiltonian

In the 42 kilogauss field of our superconducting magnets t

the largest Hamiltonian term by far is that describing the direct

coupling of the nuclear magnetic dipoles to the static field.

Assuming this field lies along the z-axis t the so-called Zeeman

Hamiltonian iS t in angular frequency units [26]t

(-c.

!

r -
I

j( = -y H -I =z _0 _ = (I. 11)

In our magnets t Wo (the Larmor frequency) is roughly 180 MHz for

protons and 27.5 MHz for deuterons. This frequency describes not

only the splitting between eigenstates but also the precession

frequency of the nuclear magnetic moment about the applied field.

Although the largest term in the nuclear spin Hamiltonian t

the Zeeman interaction is miniscule in comparison to typical

vibrational or electronic energies. As a result, NMR spectroscopy

is fundamentally different in several respects from infrared or

optical spectroscopy. To begin with t the Boltzmann distribution

for nuclear magnetic systems at temperatures greater than roughly

10 K is such that all Zeeman energy levels are very nearly equally

populated. For a proton with a resonance frequency of 180 MHz in

! -
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a sample at 25°C, the ratio of the "ground" state m=i population

1to the "excited" state m= - '2 population is only 1.000029 (a far

cry from the usual situation in vibrational or electronic systems

of a populated ground state and essentially empty excited states).

Since the magnetization to be detected is proportional to this

population difference, effectively less than two nuclei in 10
5

contribute to the NMR signal.

A second difference between NMR and its higher-energy spectro-

scopic cousins is the relative rate of spontaneous and stimulated

and B respectively [33,34J.mn
3the v factor implies that spontaneous emission is a vastly more

emission, most simply described by the Einstein coefficients Amn

The ratio A /B equals 8TIhV3/c3 ;mn mn

In fact, the effects of

14
10 Hz and V

NMR
• 200

192.7 x 10 .)

important phenomenon in optical transitions than in NMR transitions.

6·
x 10 Hz, then the ratio(If v ti 1 = 6 xop ca

of the frequencies cubed is

spontaneous emission in NMR can be essentially ignored. Absorption

and stimulated emission are treated semiclassically with no explicit

mention of photons.

1.5.2 Radio Frequency Hamiltonian

The static magnetic field in an NMR experiment merely lifts

the degeneracy of spin eigenstates with different values of m.

As in other forms of spectroscopy, a source of electromagnetic

radiation is needed to induce transitions between levels. In NMR,

the resonant radio-frequency (rf) irradiation is applied

perpendicular to the static field and can be described semi-

classically by the following time-dependent Hamiltonian 135,36J:



3C
rf = -2yHl coswt Ix

= -2wl coswt Ix

= -w (eiwt+e-iwt) I1 x

(l.l2a)

(1.12b)

(1.12c)

14

Here w is the rf frequency, HI is the strength of the oscillating

magnetic field, and wI is the corresponding spin precession

frequency. Typical values for wI in a pulsed spectrometer are

30-120 kHz.

Mathematically and conceptually, it is easier to deal with

a time-independent Hamiltonian. The standard technique is to

switch from the laboratory frame of reference to one rotating

about the z-axis at the rf frequency w. In this rotating frame,

%iWt
one of the counter-rotating e components of 3Crf will appear to

stand still; the other will rotate with frequency 2w and can almost

always be ignored. Thus the rf Hamiltonian in the rotating

frame is given simply by the following [35,36]:

3C*
rf = (1.13)

where the asterisk denotes the rotating frame.

The Zeeman Hamiltonian is also affected by the change in

reference system. In the rotating frame, the transverse magnetiza-

tion is seen to precess not at the Larmor frequency Wo but rather

at frequency ~w = wO-w. (For all experiments to be described

here, we will be close to resonance with ~w «wO,w,) The Zeeman

F
[j
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Hamiltonian in the rotating frame becomes

15
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X*
z = ....!!,.w I

z

Henceforth, we shall remain firmly rooted in that frame and so

will discontinue the asterisk notation. Additionally, since the

Larmor frequency has been replaced by a frequency offset, the

expression "offset Hamiltonian" and Xoff will be used interchangeably

with Zeeman Hamiltonian and X .z

The rotating frame transformation is an example of a more

general technique: rewriting a Hamiltonian in the so....called

interaction representation [37] to eliminate large terms which

give rise to simple but uninteresting time development. Such a

transformation will usually modify other terms in the overall

Hamiltonian. The general approach for X = 3Ca + ~ with l13Ca" »I3Cb"

is to compute ~ = e

(II ••• 11 can be thought of simply as "the

113C11 = [Tr(xl)/N]\)

size of •• ,"; more
-iX t iX t

a "U' a
"'"b e

rigorously,

The

time-independent or "secular" portion of ~ is retained in the

interaction representation [28J. The time-dependent, "non...secular"

part of ~ will not perturb energy levels to first order and can

be ignored. This exclusion of time-dependent terms when X is the
a

L::
!
l~

Zeeman Hamiltonian is known as the high-field approximation.

3C and 3C f both describe the effect of external magneticz r

fields and both are under the control of the (competent) experimenter

through his choice of magnet and rf parameters. The remaining

terms describe forces at the molecular level and together comprise



what is ca~led the internal Hamiltonian. To better understand

~i t 1 is the motivation for most of NMR spectroscopy.n erna

1.5.3 Chemical Shielding Hamiltonian

A nucleus in an atom or molecule is never exp~~ed to the

full force of' the external static magnetic field. Instead, it

is shielded to varying degrees by compensating magnetic fields

16
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which result from the motion of surrounding electrons. The

degree of shielding depends on the orientation of the molecule

with respect to the external field. As such, the chemical

shielding (or chemical shift) for a given nucleus can be expressed

in terms of the external field vector, the nuclear spin, and a

Cartesian shielding tensor S [28,29]:..

~ = -y H ·S·Ics ..0 :ll ..

With the static fie1~ along the z~axis and the high~fie1d

approximation, this simplifies to the following:

(1.14)

(1.15)

where (J = With a number of different nuclear sites,

Note the similarity to the Zeeman offset Hamiltonian:

(1.16)



f ~

I

[
(1.17)
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The division into offset and chemical shielding terms of that

portion of the total Hamiltonian proportional to an operator I zi

is arbitrary. Experimentally, the chemical shielding is measured

relative to a reference compound (usually tetramethylsilane, TMS,

for proton work). For computational purposes, it is often

convenient to write Koff and Kcs such that the chemi~al shifts

cr sum to zero.zzi

The directional aspects of chemical shielding are most clearly

understood when spherical tensors are used. The high-field approxi-

mation requiring [Kcs,Iz] • 0 limits the sum of spherical tensor

operators in Eq. I. to those terms with maO. For a single nucleus,

With the substitutions c • -y and A =S, plus the tensor and
!=' lIl:

rotation matrix values' from Table 1.1 and 1.2,

2
K • -y H {S + o[3cos S-l + 1 n sin2S cos2y]}I

cs . 0 2 2 z (1.19)

Replacing angles Sand y with the more familiar polar angles e and

~ (describing the orientation of the external field vector in the

principal axis system of the chemical shielding tensor) and



substituting a few more variables, this becomes

(1.20)

-cr is the isotropic chemical shift, the quantity measured from

a liquid sample (in which rapid molecular motion averages the

angle-dependent terms to zero). For hydrogen in organic compounds,

cr varies over a range of roughly 15 ppm of the resonance frequency

[38]. In a magnet with proton resonance at 180 MHz, this translates

18
r"'
I

n
I

to 2.7 kHz for protons and 420 Hz for deuterons. cr will be called
o r-

the characteristic chemical shielding anisotropy; typical values

are on the order of 0-10 ppm [39,40].

When the spin system of interest consists of nuclei with

different shielding environments, then the overall chemical shielding

Hamiltonian is composed of a sum of terms like Eq. 1.20.

1.5.4 Quadrupole Hamiltonian

A nucleus with I > 1/2 is non-spherical and as such, its energy

depends on its orientation relative to local electric field

gradients. This interaction is described by the quadrupole

Hamiltonian [29,41]:

eQ
2h 1(21-1)

= ~--,.;:e~Q,--.,..
2h 1 (21-1) - ::: - (1. 2lb)
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where V, a traceless, symmetric second-rank tensor, characterizes--
e is the charge

the electricnucleus. (If

ft= axay' etc.)

the electric field gradients at the

npotential is ~, then V • 2' V
xx ax xy

of the electron, and Q is the nuclear quadrupole moment, an

n
I

intrinsic property of each type of nucleus. A positive value of

Q indicates a prolate (football-like) shape; a negative value

corresponds to an oblate (Frisbee-like) nucleus. Q for deuterium

is 2.8 x 10-3 in units of 10-24
cm

2
(l ''barn''), rather small as such

things go. (In comparison, the Q's for chlorine-35 and bromine-79

-7.89 x -2 and 0.33 barn respectively.)are 10 barn

As with chemical shielding, it will be useful to rewrite :K
Q

in terms of spherical tensors, Because V is traceless, V
OO

is zero;--
hence there is no isotropic component of the quadrupole interaction.

Furthermore, in the high-field approximation (which is often not

completely valid with regard to :KQ--see section 2.12), we again limit

the sum in Eq. 1.7 to terms with maO. With the conventional choice

of writing "eq" for IS or Iv I and once more replacing angleszz

and y with e and ~, the quadrupole Hamiltonian becomes a
2

• e qQ
:KQ 2hI(2I-l) (I.22a)

2= e qQ
BhI(2I-l) (1. 22b)

r
c 1=1 for deuterium and :KQ simplifies to



where

3 2n /"'l 2 2
WQ = 8 eh~ [(3 cos 6-1) + n sin 6 cos2~J

(I.23a)

(1. 23b)

(1.24)

20
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As a final variable, we will define (in Hz) the characteristic

quadrupole frequency VQc :

.. 1 ~
"Qc 8 h (1.25)

Values for "Qc are typically 5-70 kHz for deuterium in organic

solids [40,42].

1.5.5 Direct Dipole-Dipole Hamiltonian

This term is the first of those we've considered that is not a

single-spin Hamiltonian; rather it describes the direct magnetic

dipole-magnetic dipole interaction between pairs of nuclei (one

little magnet responding to the field of another). Written in

terms of Cartesian tensors [28,29,43],

:K ..
D

(1. 26)

For each pair of nuclei, the strength of the coupling (expressed
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I

as elements of ~jk) is inversely proportional to the cube of r jk,

the distance between the nuclei, and depends also on the orientation

of the internuclear vector relative to the magnetic field.

The transition to spherical tensors is uncomplicated, as Djk

is traceless and the interaction is axially symmetric (n~O).

Setting 0jk • -2/r ;k and invoking yet again the high-field (m=O)

approximation, XD for a homonuc1ear collection of spins is given

by the following [29,44]:

21

(I.27a)

(I.27b)

N N
= r r

j < k
(1-3 2 I

cos ejk) [Izj I Zk - '2 (Ixj Ixk+Iyj I yk) ]

(I.27c)

(I.28)

(1. 29)

where 8jk ~s the angle between the internuclear vector jk and the

static field and I+ = I ± i I. The definition here of D'k' the
- x y J

dipolar coupling constant for spins j and k, is consistent with

Meiboom and Snyder's usage [45], but unfortunately differs from



Diehl's definition [46]:

this Djk = 2 x Diehl's Djk (1.30)

22

r~
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For heteronuc1ear spins I and S, flip-flop terms such as

I+jS_k . and I_jS+k do not conserve energy in high field, so ~

must be further truncated:

K
D(heteronuc1ear) = L

j
1: Djk I . Szk
k ZJ

(1.31)

The angle-independent factor in D. k , expressed in Hz, is
hY'Yk J

J 3 ; for the interaction of two protons this becomes
2n r jk

120.067 kHz
o 3

[rjk(A)]
(1.32)

o

For a separation of 2.477 A, the ortho H-H distance in benzene,

, 2= (7.83)(1-cos 6jk)kHz

Such a coupling is reduced by molecular motion, as will be

(1.33)

discussed in Chapter IV. For the rapid isotropic tumbling of

normal liquids, the dipolar coupling has no effect on line

positions or intensities since ~ contains no isotropic term.

1.5.6 Indirect Dipole-Dipole Hamiltonian

Indirect dipole-dipole coupling or J-coup1ing is the indirect

interaction between magnetic nuclei mediated by the presence of

! .

k

I
l~
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electrons. It can in general be Written as follows 129J:

N N

=[ I:
j < k

(1.34)
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This is similar to the previous expression for direct dipolar

coupling (Eq. 1.26), but J, unlike D, possesses a non-zero trace.
ll:l ::::

Hence there is an isotropic component to J-coupling which is not

averaged to zero by the rapid, isotropic molecular motion in

liquids.

Invoking the high-field approximation and manipulating as

in the previous section, one finds that [47J

(1.35)

i

h

The anisotropic component of J jk cannot be distinguished from a

direct dipolar interaction (compare Eq.I.2R) and furthermore is

expected to be negligible for coupling between two hydrogens 148].

Thus we will assume that only the isotropic or scalar portion of

the J-coupling is important and write

fr---:
LJ

'JC =
J

N Nr I:
j < k

J I. -I
jk ...J -k

(1.36)

l'
The coupling constants J jk are themselves small, on the order



of -20 to 20 Hz for protons [38]. In anisotropic phases, they

are dwarfed by the direct dipole-dipole interactions. In liquids,

however, they are the sole source of spin-spin coupling.

1.5.7 Other Terms

The most glaring omission in our overview of NMR interactions

is any mention of rela~ation effects. Relaxation is of course a

fundamental and unavoidable aspect of spectroscopy, and several

authors [13-18] have tackled its role in multiple-quantum NMR.

Here, however, it will be almost completely ignored; for systems

of interest (deuterium in solids, proton-bearing molecules in liquid

crystal solvents), its effect on spectra is but a mild broadening,

readily simulated by digital smoothing if desired. Only when a

variant of a cw NMR experiment is analyzed (Chapter III) will

relaxation be explicitly included in a calculation. Even then it

will be treated phenomenologically using the Bloch equations 135J.

Other Hamiltonian terms which have not been covered include

spin-rotation coupling and antisymmetric chemical shielding

components [29], but the effect of these terms is negligible on

the types of spectra we will be considering.

1.6 The Density Matrix

When an appropriate set of basis functions has been chosen

for the system of interest, each Hamiltonian discussed in the

previous section can be written as a matrix, where the element

Xab (or <aIXlb» is a measure of the overlap of state a with

the result of operating X on state b. Another matrix, the density

24
r
I

n
r-c
i
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matrix [37,49J, is needed to describe the overall ensemble-averaged

quantum-mechanical state of the system itself at each point in

time. Because the density matrix formalism is central to all that

transpires in the succeeding pages, a brief summary is perhaps in

order.

Assume that the wavefunction ~ for a given isolated quantum-

mechanical system can always be written as a linear combination of

L basis functions ~i:

25

L
~(t) = L c i (t) <Pi

i=l
(I. 37)

The choice of states ~i is arbitrary so long as they form a complete

set. The L coefficients ci ' in general complex and time-dependent,

can be used to fully describe the system. If we consider an

ensemble of identical systems, as is appropriate for NMR, we need

an ensemble-averaged description of the quantum mechanics. The

ensemble-averaged expectation value of an operator F is given

by

(I. 38)



where the bar indicates an ensemble average. A knowledge of all

quantities CjC~ suffices to calculate any ensemble-averaged

expectation value. Hence these quantities are compiled in that

most useful of constructs, the density matrix P, defined such that

Pjk = CjC~. The diagonal elements Pjj = cjcj describe ensemble

averaged populations of basis states ¢' and are always real
J

numbers. Off-diagonal elements Pjk describe coherence between

states ¢j and ¢k and are in general complex, each with a magnitude

*and phase in the complex plane. Since Pkj = Pjk ' the density

matrix is Hermitian.

Using the density matrix, it is simple to write the ensemble-

averaged expectation value of an operator:

26
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<F> = r r P'k Fkj = Tr(pF)
j k J

(1.39)

The density matrix is thus the key to knowing what's going on in

our ensemble of spin systems. The time dependence of P is given

by the Liouville equation [20,21]:

!!Q. = i [ P,3(']
dt

(1.40)

If X is time-independent for an interval T, this expression can be

integrated to give

-iXT iXT
p(T) = e p(O) e (1. 41)
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(the most important equation for all that is to follow in this

thesis). Quantum-mechanical evolution under a time-independent

Hamiltonian is seen to be merely a unitary transformation of the

density matrix.

A knowledge of evolution is not enough, however; we need to

know also the initial equilibrium state of our ensemble of spin

systems. Off-diagonal elements Pjk = CjC~ are the averaged

products of two difrerent complex numbers; at equilibrium there

is no reason to expect any special phase relationship, and hence

off-diagonal elements are equal to zero (the random-phase hypothesis)

[37]. Diagonal elements describing populations should at

equilibrium satisfy a Boltzmann distribution:

27

1 -E./kt
(p) = (-) e J

o jj Z

or in operator form,

(1. 42)

(I, 43)

where Z is the partition function, the sum over all states of

-3f/kT
e It is traditional to first expand the exponential

L...:'! .
t::;

P = (zl)(l - :JC/kT + ~ •. )
o ::::

(1.44)

I .
; -

L

and then realize that the spin-system energies described by this

Hamiltonian are miniscule in comparison to kT for T > 1 0 K.



(At T = 25°C, kT = 6.2 x 10
12

Hz.) In the "high" temperature li.lnit,

therefore, one truncates the expansion:

28

Po = (~)(; - :K/kT) (1. 45)
r
!

In this limit, Z is just the number of states in the system. If

the system contains N spins of the same type with spin I, then

Z = (2I+l)N.

To simplify Po further, recall that the Zeeman Hamiltonian

:K in the lab frame equals -w I z and is usually orders of magnitudez 0

larger than any other term in:K. Thus we can write

(1. 46)

Lastly we note that the unit matrix 1 is unaltered by a unitary
:ll

transformation and hence does not evolve. This excess baggage is

therefore unceremoniously jettisoned, and p is re-defined as the

reduced density matrix, with

Po = B I (1. 47a)z

f '

and

n
B

1 (2I+l)-N(W
O

/kT) (I.47b)
ij

= (Z)(wO/kT) =
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The reduced equilibrium density ~atrix in the rotating frame

is also B I --the form of p is unchanged by the lab frame toz 0

rotating frame transformation [37J.

1.7 The Basic Computational Approach

With the assumption that X is time-independent, determining the

exact spin dynamics of a system of interest is equivalent to

solving the matrix equation

29
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p(t) = e-iXt
p(O)

iXt
e (1. 48)

A brief outline of this procedure follows; more details can be

found in Appendix D.

The first step is to set up the Hamiltonian as a matrix

expressed in some convenient basis set~-usually the set of spin~

product states, e.g., 1++-...+>. To calculate the propagator

-iXte directly as a power series in X is possible only in

special cases. In general, one first diagonalizes X;

, (1. 49)

where E is a diagonal matrix of eigenvalues E. and U is a unitary
J

t -1transformation matrix of column eigenvectors U*j (V =U ). An

analytic solution for U and E using the secular equation IX-E.ll = 0
J::::

is possible and palatable for two- and three-level systems. More

commonly, however, X is diagonalized numerically using a standard



algorithm [50,51J. (We have employed a Jacobi transformation

program [52} that applies a series of unitary transformations on

X to eliminate the largest remaining off-diagonal elements.)

Knowing U and E, one can then compute the propagator using

the relationship

30
r
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(see Appendix A). -iEte is diagonal with

(L50)

( -iEt)
e jj

-iEjt= e (1.51)

[ -

!

pet) is then giyen by the following:

(1.52)

Mathematically, this expression is a series of matrix multiplications;

physically it describes the transformation of p(O) to the eigenbasis

of X, the simplified evolution of p in that basis, and then the

transformation back to the original basis set.

If the Hamiltonian changes at a finite number of points during

the evolution of p, the sequence of operations outlined above can

be repeated for each step. If the Hamiltonian is time-dependent

but periodic, an average Hamiltonian can be calculated using the

Magnus expansion [23,24,53,54]. Alternately, a time-dependent

Hamiltonian can be approximated by a string of time-independent

b
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X. 's operating for very short intervals:
J

t. +L\t

lf
j

= (6
1
t)jJ If(t) dt

t.
J

1.8 Assorted Thoughts

(I.53)
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The past year has seen a veritable eruption of Pines group

dissertations detailing the unfolding multiple-quantum saga

[55-59]. Before plunging onward, I should perhaps describe the

emphasis of this particular work. As the title suggests, I have

dealt largely (though not entirely) with computer simulation of

multiple-quantum processes. I like to think that I have succeeded

in generating a somewhat better understanding of such-phenomena

as well as a glut of numbers, that the computer and I have sallied

forth as Douglas Hofsteder has described this type of exploration

[60]:

It is a kind of experimental mathematics, in
which the digital computer plays the role of
Magellan's ship, the astronomer's telescope,
and the physicist's accelerator •••• This way
of doing mathematics builds powerful visual
imagery and intuitions directly into one's
understanding.

To continue in this philosophic vein, I would also like to

note that the study of multiple-quantum spectroscopy using

computers also gives rise to its own set of images and insights

which complement those associated with experimentation or

theoretical analysis. For one thing, the density matrix is seen



as no mere Greek symbol but rather as an actual matrix of numbers,

a matrix whose elements depend critically on the basis set in use.

Similarly, the physical concept of eigenstates becomes less

important; instead the computer-adapted mind deals with the square

arrays of unitary transformation matrices. Finally, the creation

of multiple-quantum coherence is seen not as spikes on an

oscilloscope screen or extra terms in an equation, but rather as

a flow of coherence from the density matrix diagonal out into the

normally forbidden and thus arid reaches of the matrix. As the

system approaches the long-time "statistical limit" (see Chapter

V), one can imagine this outward rush slowing into a gentle lapping

of coherence waves as the matrix "levels off".

Lastly some thoughts on terminology. The power, elegance, and

flexibility of pulsed NMR techniques are enough to inspire a search

for some descriptive encompassing phrase. Mehring 123J has suggested

"spin engineering", but this seems lacking in pizzazz. Others have

put forth "spin gymnastics", yet this term tends to evoke the

exploits of a single nucleus rather than an ensemble of them.

To fully capture the sense of a vast sea of nuclei flipping and

cavorting as the experimenter so desires, I propose 'f' "spin

choreography".
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CHAPTER II

DEUTERIUM DOUBLE-QUANTUM NMR IN SOLIDS

2.1 Introduction

Models play an important role in quantum mechanics. The harmonic

oscillator, the'particle in a box, and the hydrogen atom are

conceptual building blocks with which more complicated problems can

be understood. Similarly, the two-level system (as exemplified by a

single spin- ~ nucleus) introduces a vector description of the density

matrix which can be used to explain a wide range of time-dependent

spectroscopic phenomena: coherence evolution, spin echoes, population

inversion, adiabatic demagnetization, etc. Feynman, Vernon, and

Hellwarthina famous paper [61] have generalized this two-level

model beyond the bounds of NMRto a variety of spectroscopic applications.

In this chapter, the dynamics of a three-level system will be

discussed. As the simplest system in which multiple-quantum coherence

can occur, it serves as a prototype for the tangled networks of MQ

coherence to be considered later. Moreover, a description of the

quantum mechanics can be made very physically intuitive: an expansion

of the density matrix as a linear combination of conveniently commuting

operators simplifies the mathematics and generates a real "feel" for

the effect of each term in the Hamiltonian. As such, the three-level

system will perhaps take its place in quantum mechanics and spectroscopy

texts as another "building block" of physics.

The particular three levels of interest in this chapter are those

of a spin-one nucleus, specifically a deuteron. In the absence of

applied rf fields, its Hamiltonian in the laboratory frame is simply



=~

the sum of a Zeeman and a quadrupole term:

'JC = 'JCz + 'JC
Q

= - W I + W (I 2 - ~)o z Q z 3
(11.1)
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Q
as written describes the first-order quadrupole shift; second-order

effects will be considered later.) The energy levels of the three

spin states are as follows:

1 E
l

1
m = = - W + 3" WQ0

2 r~

m = 0 EO = .. -w i -

3 Q !

-1 E 1
(II. 2)m = = Wo + 3" wQ-1

These are illustrated in Fig. 11.1, which also depicts the "cigar-

shaped" deuterium nucleus.

When we jump aboard the rotating frame, the Hamiltonian becomes

(II. 3)

where here we will not attempt to separate ~w into a chemical shift

and a deliberate frequency offset. The energies of this Hamiltonian

are E1 = - ~w + wQ/3, EO = - 2 WQ/3, and E_1 = ~w + WQ/3. That the

frequency of the double-quantum (DQ) transition between E1 and E_1

equals 2 ~ (and thus is independent of the quadrupole splitting) is

crucial for much of what evolves in this chapter. Indeed, the

fundamental experiment of interest is as follows. (1) Create a state

of double-quantum coherence, a quantum-mechanical superposition of

I·

L



35

f"'"
L SPIN I =I

QuadrupoleZeeman

----r---,
" '---l~--

m = -I

I
I

I
I

O~-'_~__·I

r,:
I
C'
!

+1 ','....-_....._--

XBL 7610-4907

Figure 11.1 Deuterium energy levels in the laboratory frame, along

with the corresponding single-quantum spectra. It is assumed that

the quadrupole shifts are a small perturbation of the Zeeman interaction.
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states 11> and 1-1> which does not average to zero over the sample.

Both the rf Hamiltonian and the quadrupole Hamiltonian must be called

upon to prepare this state. (2) Let the double-quantum coherence

evolve at the frequency 2 ~w. This evolution is not directly observable;

only single-quantum coherence gives rise to a macroscopic transverse

magnetization detectable by the current it induces in the NMR coil.

(An alternate explanation is that only single-quantum coherence can

emit dipolar radiation.) (3) Apply additional rf pulses to transfer

double-quantum coherence into single-quantum coherence that can be

detected. By incrementing the DQ evolution time and Fourier transform-

ing with respect to it, the double-quantum spectrum is obtained.

Before we plu~ into a detailed analysis of the experiment,

however, a brief description of applications and a bit of three-level

history will be presented.

2.2 An Outline of Previous Work

A number of groups have prob'ed and prodded three-level sys tems

with FT-NMR since the mid-1970's. Among the most prolific have been

Hatanaka, Hashi, and co-workers [62], who have performed the double-

quantum analogs to a wide variety of conventional single-quantum NMR

experiments. Using three of the six spin states of aluminum in A1203 ,

they have observed double-quantum FID's, spin echoes, coherence

transfer echoes, transient nutations, rotary echoes, spin locking,

spin-locked echoes, and rotary saturation.

My Pines group colleagues, Shimon Vega and Tom Shattuck,

investigated double-quantum cross-polarization and made the first

practical use of Fourier transform DQ spectroscopy in the determination

c
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of deuterium chemical shielding tensors [63a,bJ. The shielding

measurements were continued and expanded upon by Dave Wemmer [40].

Meanwhile, Vega and Pines reported the first observations of DQ spin

locking [64] and presented an operator formalism that greatly facilitated

analysis of three-level spin dynamics [65]. A revised set of operators

was later developed by Vega [66] and independently by Wokaun and

Ernst [67].

Along a second Berkeley axis of activity, Dave Gold and Erwin

Hahn used three of the four sodium spin states in a single crystal of

NaND3 as their three-level NMR domain [68]. They verified the form of

the Brewer-Hahn equations [69] developed earlier for optical phenomena·

and studied the DQ analogs to spin locking, rotary saturation, and

adiabatic fast passage. They also considered the effect of the fourth

sodium state on these results and observed the three-quantum transition

in a steady-state experiment.

The Volds and fold at San Diego [15,16] have studied the

deuterium DQ spectra of small molecules dissolved in liquid crystal

solvents; the lack of rotational isotropy in these ordered phases gives

rise to non-zero quadrupole splittings. (See Chapter IV.) Their

emphasis has been on the measurement of relaxation parameters in order

to better determine the spectral densities of molecular motion. In

other liquid crystal work, Hsi, Zimmerman, and Luz [70] have used the

DQ spectra of isotopically 'substituted deuterons to investigate the

ordering and motion of methylene chains. Hoatson and Packer, on the

other hand, have used a deuteron in a lyotropic liquid crystal as

their laboratory for testing various double-quantum pulse sequences

[71] •



In a very elegant study, Stoll, Wolff, and Mehring [72] applied

the technique of NMR interferometry developed initially by Stoll, Vega,

and Vaughan [14] to the three levels of deuterium in a dlS-hexamethyl

benzene single crystal. They demonstrated that any pair of spin

states, including the double-quantum pair 1+1> and 1-1>, have spinor

character when irradiated: a rotation of 2TI causes wavefunctions to

38
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change sign. 1Fictitious spin-"2 systems are thus fermion!:; just like

1real spin -"2 systems. Moreover, by varying the relative irradiation

power at the two single-quantum frequencies, the authors were able to

proceed continuously from an effective two-level system to a full

three-level system with a corresponding continuous change in rotational

symmetry from 4TI to 2TI. (Like a Cheshire cat, the middle state changes

from a virtual to an actual intermediate.) The authors also detailed

the variety of fictitious sPin-t frames present and pointed out the

curious analogy between 1=1 spin states and quarks.

The preceding is only a partial list of activities; further

referenc.es can be found in the review article by Bodenhausen [lOJ.

2.3 An Actual, Although Tenuous, Link to Chemistry

2.3.1 We Gaze Upon the Deuteron: Two-Quantum Yielding the

Chemical Shielding

One of the most useful applications of NMR spectroscopy to the

study of solids is the determination of chemical shielding tensors.

Information gained on the distribution of electron density around the

probe nucleus is difficult to obtain by other techniques. Moreover,

accurately measured values of shielding anisotropies constitute a real

acid test of orbital calculations, a means of separating good theory

I ',
b

L
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from bad. In addition to what can be learned regarding structure and

bonding, the extent, the symmetry, and even the mechanism of molecular

motion can be revealed in shielding lineshapes and their temperature

dependence [40].

Unfortunately, chemical shielding effects are usually masked by

other spin interactions, so the perspicacious spectroscopist must weed

out unwanted terms in his Hamiltonian; these include heteronuclear and

homonuclear dipolar couplings, plus quadrupolar splittings when

II > 2' Different nuclei can be treated in different ways. For those

with either small gyromagnetic ratios or low isotopic abundance (two

chemically interesting examp~es are carbon-13 and silicon-29), homo-

nuclear dipolar interactions are not a problem. High-powered decoupling

of heteronuclei (most commonly protons) plus cross-polarization to

improve sensitivity can be used most successfully in the pursuit of

shielding tensors [23].

For protons and fluorines, however, the existence of sizeable

homonuclear dipolar couplings entails more elaborate techniques. One

option is the multiple pulse spin-space-averaging approach of WAHUHA

and its complicated progeny [24], but the instrumental requirements

in terms of pulse power, pulse accuracy, and pulse timing are

formidable and set the heart to yearning for a simpler procedure.

Such yearning was soothed in 1976 when Vega, Shattuck, and Pines

[63a] proposed the following alternative for investigation of hydrogen

shielding tensors. First one isotopically substitutes deuterium for

protons at a concentration of a few percent in chemical sites of

interest. The deuterium NMR signal will not be plagued by homonuclear

39



dipolar couplings since the dilute deuterium nuclei will, on average,

be far away from each other. Interaction with protons can be

eliminated in turn by straightforward proton decoupling. Of course,

the use of deuterium introduces a new source of broadening--the

quadrupole splitting--but this impediment is overcome by exciting the

double-quantum transition; as noted earlier, its frequency to first

order depends only on ~w and hence on the chemical shift. Idealized

deuterium single-quantum and double-quantum lineshapes associated

with a powdered sample are illustrated in Fig. 11.2.

A number of shielding tensors have been studied using this DQ

technique, including oxalic acid dihydrate [63a,b], plus benzene,

p-methoxybenzoic acid (deuterated at the acid position), ferrocene,

barium chlorate monohydrate, and hexamethylbenzene (all these described

in Ref. 40). Measured values of the chemical shielding anisotropies

agree well with the results of proton multiple pulse work [23,24].

2.3.2 Single Crystals vs. Powders

In the quest for chemical shielding data, one often has the

choice of examining either a single crystal or a powdered sample.

There are advantages and disadvantages to each. Only with single

crystals, for example, can the orientation of the shielding tensor

in general be established relative to the molecular fr~ework.

Single-crystal rotation experiments, however, are tedious, time-

consuming, and often complicated by multiple molecular orientations

in the unit cell. Moreover, many substances cannot be readily

crystallized. This chapter will therefore focus largely on the line-

shapes associated with powder spectra. Although the orientation of

tensor principal axes cannot in general be learned with this approach

40
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Figure 11.2 Idealized deuterium powder spectra, with shielding anisotropies

and quadrupole shifts appropriate for rotating ferrocene or benzene rings

(0 =-2 ppm v =36 KHz n =n =0 v =28.4 MHz). The single-quantum spectrumo 'Qc 'cs Q ' 0

features a quadrupole powder lineshape; the much more narrow chemical shielding

lineshape appears in the DQ spectrum. Pulse sequence distortions are not

included in either case.



(unless dictated by molecular synlIl1etry or motion), the principal

values of the chemical shielding tensor are readily determined from

the discontinuities in the 1ineshape (Fig. 11.3).

From Eq. 1.20, an expression f~r the angular dependence of the

chemical shielding can be written as follows:

42
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(II. 4)

The principal valueq of ~ QTe 0xx - -= a - 0 0 (1 + n ), a = a - 0
0cs yy

The width

(1 - ncs)' and 0zz = cr + 2CO. When ncs = 0, the unbroadened powder

lineshape h.as an edge of infinite. intensity at 01 = a = 0 (thexx yy

unique principal axis perpendicular to HO) and a "normal" edge at

01 I = °zz (the unique axis parallel to HO)· The width of the 1ineshape

is 60 = (T II - 01 = 300 • When ncs :/: 0, the edges of the powder lineshape

lie at 0 and a with an interior discontinuity at axx zz yy

is given by 60 = 0zz - 0xx = (3 + ncs)oO·

As a follow-up to the pione~ring efforts of Shattuck, Vega, and

Wemmer, the work described in this chapter will deal mostly with

computer simulation and optimization of DQ pulse sequences and their

effect on chemical shielding powder lineshapes. A new model for spin-

one evolution and a few experimental results will also be presented.

2.4 Operator Assistance for Studying Spin-System Evolution

A desire for chemical shielding data is only one reason for

investigating the spin dynamics of a deuteron. A more basic

motivation is that the details of spin evolution are fascinating

in their own right, independent of any chemical applications. Much
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Figure 11.3 Chemical shielding powder lineshapes. (a) An axially

symmetric tensor (n =0). (b) The general case of n ~O.
cs cs
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of the aesthetics is associated with an operator formalism that can

be used to describe the Hamiltonian and the density matrix. Before

presenting this approach in terms of three levels, however, let us

review the properties of the more familiar two-level system.

2.4.1 Starting Small: A Look Back at Two Levels

Where else to begin but the rotating frame Hamiltonian? In the

general case of an offset frequency ~w and rf irradiation of intensity

W
1

and phase ~, we have

44
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- -(w I + W I + wI)z z x x y y

(II.5a)

(II. 5b)

f -

I

The second equation emphasizes that X can be expressed as a linear

combination of the angular momentum operators Ix, I , and I .y z

{It>,
. 1

As a reminder, the form of these operators in the I-->}2

set of a single 1
is as follows [73J:basis spin - I nucleus

I = ~ (: :), I = 1(° ~i ) I =1(1 :Jx y 2 i z 2 0
(II. 6)

The reduced density matrix (see section 1.6) can also be written at

all times as a linear combination of operators Ix, Iy ' and I z with

real coefficients:

p(t) = 6(a (t) I + a (t) I + a (t) I )
x x y y z z (II.7)
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r
In other words, three operators span the "spin space" of a

1single I = 2 nucleus. (In general, the constraint that p be hermitian

and traceless implies that K2_l linearly independent operators are

needed to fully describe a KxK density matrix.)

The most important advantage 'of this operator expansion is that

p can be displayed geometrically as a vector with components ax'

a , and a. Moreover, there exists a beautiful and exact analogyy z

between this "state-of-the-system" vector in spin space and the

macroscopic magnetization vector M in real space:

45

M=M x+M y+M z
x Y z

_ M (a x + a y + a z)
o x y z

(II. 8a),

(II.8b)

A second advantage is that the evolution of p can be calculated by

making use of the angular momentum commutation rules of Eq. I.2c or

more conveniently by using the following simple formulas [73]:

!
I=

-ieI ier
e p I e p = I

P P

-ier ieI
e p r e p = cose I + sine I rq q

-ier ieI
e p I e p = cose I r sine Ir q

(II. 9a)

(II. 9b)

(II. 9c)

,.

L

where p, q, and r represent x, y, and z or cyclical permutations

thereof. Each of these expressions describes a rotation; indeed,
±ieI

e p is the generator of rotations about the p-axis. The density



matrix evolution equation

pet) = e-iXt p(O) iXt
e (11.10)
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is itself the prescription for a r.otation of the density matrix

vector (a , a
y

, az) about the Hamiltonian vector (w , w , w ) inx x y z

spin space, or a rotation of the magnetization about the effective

rotating-frame magnetic field in real space.

One quick run through the mathematics of Eq. 11.10 will get us

in the mood for manipulations to come. The Hamiltonian of Eq. II.5b

describes rotation about three separate axes, but this is equivalent

to a single rotation about the vector (wx ' w , w ). To express Xy z

in that simplified form, we must apply two successive transformations,

one involving the rf phase angle ~, the other involving an angle

-1e = tan (wl/~w):

iq,I -itjJI
X'= e Z X e z

r -

= - (~w I + wI I )
Z x

(11.11)

ieI
JC" = e Y

-ieI
;;c'e Y

(11.12)

The primes and double-primes refer to transformed Hamiltonians and

(11.13)
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Of course, if X is transformed, p must be too. Defining a
-itPI -i8Iz· ytransformation matrix R = e e , we can write

-i3C"t 1- i3C"t Rt= R e R p(O) R e

= R exp(i Weff t Iz)[R
t

p(O) R] exp(-i weff t Iz)Rt

(11.14)

Each successive transformation of p(O) involves rotation by a single

angular momentum operator; because p(O) is itself a linear combination

of these operators, solving for p(t) merely entails repeated use

of Eqs. II.9a-II.9c.

So much for the evolution of a two-level system--now on to

bigger game

2.4.2 The Three-Level Circus

With the addition of an rf term (assumed for now to be aligned

with the x-axis of the rotating frame), the Hamiltonian of Eq. 11.3

becomes

47

X = - ~w I - W I + W
Q

(I 2 _ 1)
z 1 x z 3 (11.15)

When the quadrupole splitting is zero, X is the same as for the two-

level system, and p is again a linear combination of I , I , and I .
x Y z

In general, however, w
Q

~ 0 and evolution is more involved and more

interesting. The presence of a bilinear operator (I 2) in X insures
z



that exp(-~t) p exp(~t) cannot describe the simple rotation of a

density matrix vector in three dimensions. Indeed, an operator

expansion of p(t) can no longer be limited to three linearly

independent terms; at least 32-1 D 8 operators are needed to span

the 3x3 density matrix.

As to which operators should be used in this expansion, the

choice is arbitrary: convenience, simplicity, and generality are

the deciding criteria. Two sets have been presented in the literature.

The first was developed by Shimon Vega [74] originally for the

analysis of pure NQR spectra of nitrogen-14 and later applied to

spin-one NMR [65]. This set of nine operators I i (p - x,y,z;p,

i =1,2,3; one linear dependence in that I 3 + I 3 + I 3 = 0)x, y, z,

will be discussed at great length in the pages to come. Subsequently

Vega [66] as well as Wokaun and Ernst [67] recast the spin-one
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problem in terms of a second set of operators.

states Ij> and Ik>

I j-k, and I j-k:
y z

they defined fictitious

For each pair of

1 j-k
spin - '2 operators Ix '

(11.16)

with I k-j = I j-k
x x'

I k-j = -I j-k I k-j =
y y' z

j-k-r z ' and the following

commutation relationships:



r-c
,

[I j-k I j-k]
p 'q

= i I j-k
r

(p,q,r =x,y,z; y,z,x; z,x,y) ,

49

[I j-k I R.-k] [I j-k I R.-k] i j-R.= = -Ix 'x y 'y 2. Y

[I j-k I R.:-k] = 0z 'z

[I j-k I R.-k] = i I-j-R.
x 'y 2 x

[I j-k I R.-k] =
x 'Z'

[I j-k I R.-k] =
y 'z

i j-k--I
2 y

i j-k-I
2 x

(ILl7)

As there are three ways of choosing two states in a spin-one system,

the total number of operators is again nine, with one linear dependence:

I 1-0 + I 0-(-1) =
z z

1-(-1)
I z • Not surprisingly, these fictitious spin - ~

f -----

r-=
C

operators are most useful when the spin-one system most resembles

a real spin - ~ system; that is, when one level can be largely ignored.

This is the case, for example, when the system is irradiated at one

of the single-quantum frequencies (~w ~ ± WQ) or when the double

quantum transition is excited. If both single-quantum transitions

must be considered simultaneously, however, the operator expressions

become somewhat awkward. In contrast, the I operators are admirably
p,i

suited for any sort of coherence when ~w ~ 0 but prove to be unwieldy

when ~w ~ WQo

The two sets of operators differ also in their applicability to

other, more complicated systems. The newer formalism is the more

general and has been used in the description of density matrices for



I . operators are not readily adapted to anything but the threep,l.

level system; nonetheless, it is this set of operators that will

· 3 . 1 d f 1 d . 1 l' [66 67]a spl.n - '2 partl.c e an or two coup e spl.n - 2 nuc el. , • The
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be used here--mostly for the sake of familiarity but also because

they~ the mo're useful formalism for the /:'w ~ 0 experiments we

will consider.

2.4.3 The World According to I . Operators
p,l.

From this point onward, our analysis of the three-level system

will be couched entirely in terms of the following linear and

bilinear angular momentum operators [65]:

I 1 1
x,l = - I I =-12 x z,l 2 z

I 1 (I I +1 I ) I 1= - = - (I I +1 I )x,2 2 y z z y z,2 2 x y y x

1x,3
= 1. (I 2_1 2) I z,3

= .!. (I 2_1 2) (11.18)2 z y 2 y x

1 1
y,l = - I2 y

11y,2 = - (I I +1 I )2 z x x z

1y,3
= .!. (1 2_1 2)

2 x z

In addition, we will for convenience define

, '

f -
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I = I -I = 12 [3 I
Z

2-2Jxy,3 x,3 y,3

I = I -Iyz,3 y,3 z,3
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I = I ' -Izx,3 z,3 x,3

The Hamiltonian of Eq. II.15 in its new incarnation

becomes

(II.19)

(II. 20)

we will examine its effect on the system shortly. First, however,

a closer look at the operators themselves is warranted. They are

most neatly expressed in terms of a basis set {Ix>, IY>, Iz>} where

Ix> = - 1T [11> - 1-1>]

Iy> = ~ [11> + 1-1>]

Iz> = 10>

(II. 2la)

(II.2lb)

(II.2lc)

F, -

t~

The matrix form of the operators in this basis set can be found in

Table II.l. Additional Vega-tables summarize their commutation and

rotation properties and present the matrix form of the exponential

operators exp(-i8 I i)' Note that rotations which involve the
p,

three operators I l' I 2' and I 3 of the p-frame (p = x, y, orp, p, p,

z) occur with twice the intrinsic angular frequency of rotations
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I f o 0)

IX, I = 2' Ix - 0 o I n
2 0

I C

I '0 I

I It o 0)
I X,2 = 2 (Iylz + IzIy) - 0 o -i p

2 0 i 0 !

- ~ (I; - I~) f o 0)
I X',3 = - 0 I 0

2 0 o -I

= .1 I J(0 0 g)I y, I - 0 02 Y 2 I 0

= ~ (IZIx+ Ix Iz ) f 0 g)I y,2 - 0 02 •
-I 0

_1 (I2 _ 12) f 0

?)
r-

I y,3 = - 0 0 l-
2 z x 2 0 0

= .L I f i g)IZ,I 2: -~ 02 z
0

I 1(° I g)I Z,2 = 2 (IxIy+ IyIx) '2 I 0
0 0

I z,3 = - ~(Ii - I;) 1(' ° g)2 0 -I
o 0

I[Ip,j ,Ip,k] =ilp,ll

p =x,y,z
j,k,.2 = 1,2,3 or cyclic

permutation
XBL 7611·9877 ca.

Table 11.1
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Table 11.2

Properties of the I Operatorsp,i

COMMUTATORS

[I . , I . J iI [I l' I 1J
i= = - I

p,~ P,] p,k p, q, 2 r,l

[I l' I 2J i
[I 2' I 2J i= - - I = - - Ip, q, 2 r,2 p, q, 2 r,l

[I 2' I 1J
i

[I l' (I -I )J = 0= - - Ip,. q, 2 r,2 p, q,3 r,3

[I 3' I 3] = 0p, q,

ROTATIONS

exp(-i8I .) I expCi8I .. ) = cos8 I + sin8 I
p,~ p,j p,~ p,j p,k

exp(-i8I 1) I exp(i81 1) 8 .8 1= cos"2 I 1 + s~nz r,lp, q,l p, q,

exp(-i8I 1) I exp(i8I 1)
8 8 I= co~ I 2 - s irr::-p, q,2 p, q, 2 r,2

exp(-i8I 2) I exp(i8I 2)
8 8= co~ I 1 - sin- Ip, q,l p, q, 2 r,2

exp(-i8I 2) I 2 exp(i8I 2)
8 .8 1= co~ I 2 - s~nz r,lp, q, p, q,

where p, q, r = x, y, z or cyclic permutation

and i, j , k = 1, 2, 3 or cyclic pennutation.
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Table 11.2 continued

RELATIONSHIP TO SINGLE-TRAlISITION OPERATORS [67]

I y,l
= JL (11- 2 + 12- 3)

12 y y

I y,2
= JL (11- 2 _ 12- 3)

12 x x

r 1 (r l - 3 _ r l - 2 + r 2- 3)= -y,3 2 x z z

r = rl - 3
z,l z

r = rl - 3
z,2 y

r = _ rl - 3
z,3 x

54

("

f1
I

r~
r -

I



r~

I

Table II. 3

Rotations Generated by Fictitious Spin - %Operators

R l(e)x,

I ~ I
x,l x,l

55

I x,2 ~ cose I + sine I 3x,2 x.

L~

I .
b

R 2(e)x,

I ~ -sine I + cose Ix,3 x.2 x,3

I ~ cose/2 I + sine/2 1y,l y,l z,l

1 ~ cose/2 1 - sine/2 1y,2 y,2 z,2

=1 (1 sine - 1 cose) + 12 (1 3 - I 3)2 x,2 x,3 y, z,

I ~ cose/2 1 - sine/2 1z,l z,l y,l

I ~ cose/2 I + sine/2 1z,2 z,2 y,2

1 2
I ~ 1 3 + -2 sine I 2 + sin e/2 I 3z,3 z, x, x,

=12 (I 2 sine - I 3 cose) - 12 (I 3 - I 3)x, x, y, z,

1 ~ cose 1 . - sine 1 3x,l x,l x,

1 ~ I
x,2 x.2

1 ~ sine I + cosB 1 3x,3 x,l x.



Table 11.3 continued

I ~ cos8/2 I - sin8/2 Iy,l y,l z,2

I ~ cos8/2 I 2 - sin8/2 Iy,2 y, z,l

I ~ I - 1 sin8 I 1 + sin28/2 Iy,3 y,3 2 x, x,3

= - 12 (I 1 sin8 + I 3 cos8) + 12 (I 3 - 1 3)x, x, y, z,

I ~ cos8/2 I + sin8/2 Iz,l z,l y,2

I 2 ~ cos8/2 I + sin8/2 Iz, z,2 y,l

1 ~ 1 - 12 sin8 I + sin28/2 Iz,3 z,3 x,l x,3

= - 1 (I sin8 + I ·3 cos8) - 1 (1 - 1z ,3)2 x,l x, 2 y,3

R 3(8)x,
1x,l ~. cos8 Ix,l + sin8 Ix,2

I x,2 ~ -sin8 1x,l + cos8 1 2.x,

I ~ I
x,3 x,3

1 1 ~ cos8/2 Iy,l - sin8/2 Iy,2y,

1y,2 ~ cos8/2 1y,2 + sin8/2 1y,l

1y,3
~ 1y,3

1z,l ~ cos8/2 I z,l - sin8/2 1z,2

I z,2 ~ cos8/2 1z,2 + sin8/2 1 1z,

1z,3
~ 1

z,3
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Table 11.3 continued

R l(e)y,
I ~ cose/2 I - sine/2 Ix,l .x,l z,l

I 2 ~ cose/2 I x,2 + sine/2 I z,2x,

+ ~ sine
2I ~ I

x,3 Iy,2 + sin e/2 I y,3x,3

1 sine - cose) 1 (I - I )= - (I I y,3 -"2 z,32 . y,2 x,3

I ~ I
y,l y,1

I ~ cose I + sine Iy,2 y,2 y,3

I ~ -sine I + cose Iy,3 y,2 y,3

I 1 ~ cose/2 I 1 + sine/2 1z, z, x,l

I ~ cose/2 I 2 - sine/2 Iz,2 z, x,2

1 (1 i e I e) + 1. (I I)="2 . y,2 s n - y,3 cos 2 z,3 - x,3

R 2(e)y,
I ~ cose/2 1 1 + sine/2 Ix,1 x, z,2

I ~ cose/2 I 2 + sine/2 1x,2 x, z,1

I 3 ~ I - 12 sine I + sin2e/2 Ix, x.3 y,1 y,3

1 1
= - - (I sine + I cose) - -2 (1 - I )2 y,1 y,3 7.,3 x,3

57



Table 11.3 continued

I + case I - sine I
y,l y,l y,3

I + I
y,2 y,2

I + sine I + case I
y,3 y,l y,3

I + cose/2 I 7,,1 - sine/2 I
z,l x,2

I z,2 + cose/2 I 2 - sine/2 I .
z, x,1

I z ,3 ... ~ sine
2

I + I + sin e/2 I
y,3z,3 y,l

1
sine + case) +1 (I 3 - I 3)= - - (I I2 y,l y,3 2 z, x,

R 3(e)y,
I + cose/2 I - sine/2 I
x,1 x,1 x,2

I + cose/2 I 2 + sine/2 I Ix,2 x, x,

I + I
x,3 x,3

I + -sine I 1 + case I 2y,2 y, y,

I + I
y,3 y,3

I + cose/2 I - sine/2 Iz,1 z,l z,2

I + cose/2 I 2 + sine/2 Iz,2 z, z,l

I + I
z,3 z,3
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Table 11.3 continued

R 1(8)z,
I ~ cos8/2 I + sin8/2 Ix,l x,l y,l

I' ~ cos8/2 I - sin8/2 Ix,2 x,2 y,2

I 3 ~ I 3 + 2
1

sin8 I + sin
2
8/2 I 3x, x, z,2 z,

1 1
= 2 (Iz ,2 sin8 - I z ,3 cose) + 2 (Ix ,3 - Iy ,3)

I ~ cos8/2 I - sin8/2 Iy,l y,l x,l

I ~ cos8/2 I + sine/2 Iy,2 y,2 x,2

I ~ I + 1. sin8 I + sin2e/2 Iy,3 y,3 2 z,2 z,3

1 1
= -2 (I 2 sin8 - I 3 cose) - -2 (I 3 - I 3)z, z, x, y,

I ~ I
z,l z,l

I -+ cos 8 I 2 + sin 8 I 3z,2 z, z,

I ~ -sin 8 I + cos 8 I 3z,3 z,2 z,

R 2(8)z,
I -+ cos8/2 I - sin8/2 Ix,1 x,l y,2

I -+ cos8/2 I - sine/2 Ix,2 x,2 y,l

I -+ I - !2 sin8 I + sin2e/2 Ix,3 x,3 z,l z,3

1 ( + 1-= - 2 1z ,l sin8 + I z ,3 cos8) 2 (Ix ,3 - I y ,3)
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Table 11.3 continued

I + cose/2 I + sine/2 I
y,l y,l x,2

I 2 + cose/2 I 2 + sine/2 I 1y, y, x,

I 3 + I 3 - 2
1

sine I + sin
2
e/2 Iy, y, z,l z,3

= .... ! (I sine + I cose) - -2
1

(1 - I 3)2 z,l z,3 x,3 y,
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r"
I

I + Iz,2 z,2

I z,l + cose I 1 - sine I 3z, z,

r 
I

I 3 + sine I 1 + cose I 3z, z, z,

R 3(e)z,
Ix,l

+ cose/2 Ix,l - sin8/2 Ix,2

I x,2 + cose/2 I x,2 + sine/2 Ix,l

Ix,3
+ Ix,3

I
y,l

+ cose/2 Iy,l - sine/2 Iy,2

I y,2 + cose/2 Iy,2 + sine/2 Iy,l

Iy,3
+ Iy,3

I z,l + sine I z,2 + cose I z,l

I z,2 + cose I z,2 .... sine I 1z,

I + I
z,3 z,3

t...2
! -
lJ
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Table 11.3 continued
fC

r' R 3(8)
I ' xy,

~ .~I .. cos I + S1n 2 I
x,l 2 x,l x,2

I Je I .4e I
x,2

.. cos x,2 - S1n 2 x,l2

3
I .JB II .. cos ¥ - S1n 2y,l y,l . y,2

I .. cos ~ I + .~ I
y,2 2 y,2 S1n 2 y,l

R /8)yz,
~ 3

I .. cos I + sin ze I
y,l 2 y,l y,2

~ I
3

II .. cos y,2 - sin zey,2 2 y,l

I ~ I
3

I
z,l

.. cos
2 z,l - sin ze z,2

3 3
I .. cos ¥ I + sin ze I
z,2 z,2 z,l

R 3(8)zx, 3 3
I .. cos ze I - sin ze I
x,l x,l x,2

I
3

I
3 I.. cos ¥ + sin zex,2 x,2 x,l

I -k 3
z,l

.. cos
2 I z,l + sin ze I z,2

I ~ 3
z,2

.. cos I z,2 - sin ze I z,l2

L..::.

L:
.~~
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Table lI.S

What the I . Operators Signify as Density Matrix Componentsp,).

63

I z,l

I l' I 1x, y,

I 2' I 2x, y,

I 2' I 3z:, z,

I xy,3

I 3' I 3x, y,

equilibrium Zeeman population manifested

as magnetization along the z-axis.

single-quantum coherence states giving rise

to transverse magnetization. The two

transitions 1-1> ++ 10> and 10> ++ 11> have

the same phase, either 0° (I 1) or 90° (I 1).x, y,

single-quantum coherence states in which the

two transitions are completely out of phase

with each other, aligned along either the

y-axis (I 2) or the x-axis (I 2). Nox, y,

magnetization results.

states of double-quantum coherence with no

magnetization.

describes a population characteristic of

quadrupolar order (no magnetization).

entail both double-quantum coherence and

quadrupolar order:

I = l (I -I )x,3 2 xy,3 z,3
1

I 3 = - -2 (I 3+1 3)y, xy, z,



that "mix letters". This difference will be discussed in more detail

shortly.

The density matrix can also be expressed as a linear combination

of the I . operators:
P,1

64
r~

I

p(t) = L.
p,1

a i(t) I .p, p,1
(11.22)

[The constant B equals (1/3) '(,wa/kT) and shouldn't really be omitted

or forgotten--but will be for the remainder of the chapter.] The nine

coefficients a i(t) completely describe the system, but to make
p,

sense of these numbers, we must know the meaning of each operator

component of p in terms of populations and coherences. This sort of

information is presented in Table 11.5. Note that only the three

operators I l' I l' and I 1 correspond to a macroscopic magnetization.x, y, z,

The coefficients a i(t) also describe the position of a state-ofp,

the-system vector in a nine-dimensional space. The evolution of the

density matrix is mirrored by the motion of this vector. Figure 11.4

1shows typical projections into the three fictitious spin -"2 frames

r-
t

x, Y, and Z. ("x" is the three-dimensional space spanned by I l'x,

I 2' and I 3' with analogous definitions for Y and Z.)x, x,

The vector representation of density matrix evolution will be

used extensively in the pages to come, especially when only two

components of p are of interest at a time. Nonetheless, there is a

fundamental conceptual problem with the vector model: one's inability

in any but the most altered of mental states to fully visualize nine

dimensions. We would like a three-dimensional model, something to tie

a vivid concrete image to an abstract state of coherence. Clearly a
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Figure 11.4 A typical projection of the state~of~the~systemvector

in the X, Y, and Z frames spanned by the spin~l I i operators.p,



vector in three dimensions does not provide enough information; it

can only specify the coefficients of three operators. To model a

three-level system in three dimensions requires a more complicated

"state-of-the-system object".

2.4.4 Additional Models for the Three-Level System

In the quest for physical insight, several other pictorial

representations have been proposed for ~he three-level system.

Hoatson and Packer [71] suggested the use of two vectors in an x-y

plane to signify the two single-quantum coherences. After a hard 90°

pulse with phase = 0° (WI » wQ' ~w), the two vec~ors are collinear

along the y-axis of the rotating frame. They then precess at the

single-quantum frequencies ~w + wQ and ~w - WQ' growing out of

phase with one another. The transverse magnetization at any time is

proportional to the vector sum. When the two vectors are 180° out

of phase and pointing in opposite directions along the x-axis (p =

I ·2)' a second hard 90° x-pulse creates double-quantum coherencey,

(1 z ,2). [For a general orientation of the SQ vectors vI and v2 '

ax,l = ~e(Vl+V2)' ay,l = ge(vl +v2), ax ,2 = ge(vl -v2), and ay ,2 =

Xe(vl -v2).] The DQ coherence then evolves as a two-headed arrow in a

separate axis system. Although Hoatson and Packer were able to

accurately model the density matrix in this fashion, the need for

two axis systems and the somewhat magical appearance of the two-headed

DQ coherence vector are aesthetic disadvantages.

Vega, Pines, and co-workers [64], in the spirit of the Wigner-

Eckhardt theorem [21], have related the I i operators to the familiar
p,

p and d orbitals (Fig. 11.5):
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Figure 11.5 d-orbital representations of the operators I 2 and I 3.z, z,
Only a 45 0 rotation is needed to interconvert the two; in contrast,

the p and p orbitals that represent I and I 1 are related by ax y x,l y,
90 0 rotation.
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This analogy is of great help in illuminating the rotation properties

of the operators. Consider an initial density matrix proportional

to I 2 (i.e., a state of double-quantum coherence). Applicationz,

of an rf pulse along the x-axis (Xrf = -2wl Ix,l) rotates I z ,2 to

Iy ,2 with an angular frequency of wl (see Table 11.3). In terms of

the model, a d orbital is rotated 90 0 to become a d orbital. Inxy xz

contrast, the offset Hamiltonian, -2~w I l' rotates I 2 to Iz, z, z,3

with an angular frequency of 2~w. The orbital picture makes clear

the reason for the faster rate of rotation: only 45 0 is needed to

convert a d orbital to a d 2 2 orbital.xy -x y
The limitation of this operator representation is the difficulty

in displaying the effects of the quadrupolar Hamiltonian. As stated

earlier, XQ contains a bilinear operator, and therefore it cannot be

modeled as a simple rotation in three dimensions. Indeed, X
Q

acts

to interconvert p-orbital and d-orbital operators. After much thought,

I have sadly concluded that there is no simple way of simulating this

transmutation of first-rank and second-rank tensors without unappealing

and arbitrary restrictions. If one accepts its inelegancies, however,

the following scheme can be used to incorporate the effects of the

I '

b

, ~I ~

u
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quadrupole Hamiltonian into the orbital picture.

Central to this approach is the mimicking of a p-orbital by

an adulterated d-orbital. Imagine the d orbital, for example,xz

with its positive lobes in the first and third quadrants of the x-z

plane and its negative lobes in the second and fourth quadrants of

the x-z plane. Now imagine keeping the shape and position of the

lobes the same but swapping the sign of the second-quadrant and

third-quadrant lobes. The resulting "four-leaf clover" is positive

above the x-y plane, negative below. As such, it is reminiscent of

a p orbital, although certainly lacking the appropriate cylindricalz

symmetry about the z-axis. To compensate for this symmetry problem,

certain restrictions will have to be applied to the rotation of "pseudo-

p-orbitals", as we shall see below.

Rather than toiling with various manipulations on two-dimensional

figures, let us instead play with a very real and no doubt familiar

object: a Rubik's cube. Only four edge "cubelets" interest us. those

lying on any given plane passing through the center of the cube and

parallel to a face. Two of these cubelets are marked with a plus sign

(positive lobes), two with a minus sign (negative lobes); none of the

colors matter. Different arrangements of the marked cubelets and

different orientations of the entire cube generate the nine I .
p,l.

operators. as shown in Fig. 11.6. Those operators analogous to

d-orbitals (any I 2 or I 3 operator) are unambiguously defined
p, p,

by four cubelets signifying lobes. With I 1 operators a problem
p.

arises: should I l' for example. be depicted as a "sign-swapped"x,

d orbital or "sign-swapped" d orbital? For the model to workxy ,xz

correctly, the choice must always be dxz Similarly, I 1 is depicted
y,
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Figure 11.6 A Rubik's cube representation of the I . operators used
p,:L

in the expansion of the spin-l density matrix. Cubelets marked with a

"+" signify positive lobes; those marked with an "0" signify negative

lobes. (The remaining cubelets are blank.) I 1 can be representedz,
in two different ways.
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as a sign~wapped d orbital. For I either choice (d or d )yz z,l xz yz

is allowed.

Now for the rules of the game. The effects of various terms

in the Hamiltonian are as follows. X
off

and Xrf cause simple

rotations of the entire cube, but the I
z

2 term in XQ induces internal

rotation about the z-axis. To be specific, XQ acts to rotate the top

third of the cube clockwise and the bottom third counterclockwise;

the middle third is unaffected. This rule is arbitrary to say the

least, but it bears some conceptual links to the counter-rotating

single-quantum vectors of Hoatson and Packer.

Let us check to see if the model correctly simulates the properties

of XQ: interconverting I 1 and I 2 as well as I 1 and I 2 butx, x, y, y,

leaving all other operator components of the density matrix unchanged.

A look at Fig. 11.6 reveals that a 90 0 twist of the top third of

the cube and a -90 0 twist of the bottom third convert Ix,l to ± I
x,2

and vice-versa. (The signs are unimportant at this stage.) A similar

relationship holds for Iy,l and I y ,2' In contrast, I z ,2 and I z ,3

lie entirely within the middle third of the cube and are unaffected

by the twisting.

to a sign-swapped

The form of I 1 switches from a sign-swapped dz, xz

d orbital, but these both represent the operator.yz

f,
r

F
[

As for I 3 and I 3' their orientation does not allow the conceptx, y,

of top, middle, and bottom thirds, but we do note that the marked

cubelets lie either in the x-y plane or along the z-axis. Were

counter-rotations about the z-axis possible wi~h this cube configuration,

these operator representations would be unchanged.

Subject to a certain amount of hand-waving, then, the model does

mimic the effects of XQ. Note, however, that if I were depictedx,l
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as a sign-swapped d orbital, our rules would predict it to be unalteredxy

by a quadrupole term. Such inelegancies are unfortunately unavoidable.

But enough background--let's move on to applications. With cube

in hand (or in mind) let us follow the course of a few pulse sequences.

For simplicity,. we will assume that only one term of the Hamiltonian

acts on the system at a time. (This assumption is not at all unreasonable

when hard pulses are used and wQ »~w.) The cases we will consider

are as follows. For each, the initial density matrix is proportional

to I 1.z,

(1) Preparation of double-quantum coherence with the pulse

sequence 90X-T-90x. The first 90° pulse along the x-axis converts

I 1 (sign-swapped d representation) to I I" Between pulses thez, yz y,

quadrupole Hamiltonian converts I 1 to I 2.' The second x-pulse theny, y,

flips the d orbital signifying I 2 to the d orbital representingxz y, xy

1z ,2. This operator is unaffected by 3CQ but is rotated to 1z ,3 by

the offset term.

(2) The quadrupole echo sequence 90X-T-90Y-T. As before, the

first pulse rotates lIto I l' and in the interval T I isz, y, y,l

twisted by XQ to become 1y ,Z. The second pulse along the y-axis spins

the I Z pinwheel by 90°, creating -I " (Because I 1 and Iy, y,Z y, y,2

are two components of the same fictitious spin _1. frame, this 90°
2

pulse has the inverting effect of a 180° pulse.) Subsequent twisting

by X
Q

returns the density matrix to 1y ,1" Were different quadrupole

frequencies ~Q acting on different molecules in a sample (as would be

expected in a powder), single-quantum coherences would dephase during

the first delay, twisting at different rates from I to I 2' buty,l y,

r

('

r

b

,
tt
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would refocus during the second delay and echo after a total delay of

2T.

(3) Creation of quadrupolar order via the Jeener-Brockaert

73

sequence 90X-T-45y [75]. Once again, the first pulse creates I 1
y,

I They,2·

This latter

from Iz,l and t~e delay permits XQ to twist Iy,l into

45 0 pulse along the y-axis then rotates I 2 to I 3.y, y,

operator, we recall, equals -(I 3 + I 3)/2. The system is thusxy, z,

characterized by the presence of both quadrupolar order (populations

proportional to X
Q

) and double-quantum coherence, as noted by Hoatson

and Packer PI].

Many other sequences can of course be simulated with the Rubik's

cube model. It is hoped that this approach gives the reader a literal

feel for the density matrix properties of the three-level system and

a hands-on familiarity with the I i operators. In addition, those
p,

for whom three levels are passe might wish to think about the marvelous

cube as a model for more complicated spin systems--after all, only 4

out of 26 cubelets were used here.

2.5 Expressions for the Effects of Various Hamiltonians

Time now to put the models aside and return to the more abstract

and less colorful realm of operator algebra. We wish to derive

expressions for the evolution of the density matrix when acted upon by

all or part of the Hamiltonian in Eq. 11.20. In the simplest case,

two out of three terms in X are zero. The effect of the remaining

term on p is then found by calculating simple operator rotations, as

compiled in Table 11.3. The value of e to be used when the Hamiltonian

is applied for a time t is -2~wt for Xoff ' -2wl t for Xrf , and



2wQt/3 for XQ• Density matrix expressions are derived below for the

more general circumstance of at least two non-zero terms in X.

2.5.1 3(off"O,Xt'f~

This case is not really very interesting--when there is no

quadrupolar spli~ting, the density matrix remains a linear combination

of I , I , and I z ' (There is no need for I i operators.) Itsx y p,

evolution is exactly that of the two-level system described earlier--

see Eqs. II.9a-II.9c. Explicit expressions for operator coefficients

can be found in the literature [73].

2.5.2 Xoff ~ 0, Xrf • 0, XQ ~ 0

The equation describing density matrix evolution in the absence

of a pulse is as follows:
•

74

f ~

I

• (11.23)

Because [I 1,1 3]· 0, these two rotations can be appliedz, xy,

successively:

h

(II. 24)

i
U
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As a sampl~ calculation, let I 1 be the initial density matrix.x,

Using the rotation expressions listed in Table II.3,

(11.25)

Complete results (in frequency units) can be found in Table II.6 •

2.5.3 :Koff • 0, :Krf~

In this case, the two non-zero terms of the Hamiltonian do not

commute ([I l' I 3]· -3i I 2/2) so an immediate separation ofx, 'XY, x,

:Krf and :KQ in the exponentials is not possible. Instead we proceed

as follows. Since I 3 + I 3 + I 3· 0, we can writex, y, z,

2 1
• -2wl I 1 + -3 wQ (I 3-1 3) + -3 wQ (I 3+1 3+1 3)x, x, y, x, y, z,.

75

(II. 26)

Next transform the Hamiltonian and the density matrix by rotating

about I 2:x,
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Table 1I.6

Spin-l Evolution Under the Hamiltonian Xoff + Je
Q n

Je= -2!!.v I
2

(I 3-1 3) nz,l + 3' vQ x, y, 'I

various initial density matrices

p(O) = I x,l
a = (cos2n!!.vt) (cos2nVQt)x,l

a = (cos2n!!.vt) (sin2TIV
Q
t)x,2

t 0

a = - (sin2n!!.vt) (cos2nVQt) Iy,l ,

a = (sin2n!!.vt) (sin2nV
Q
t)y,2

p(O) = I x,2
a = (cos2n!!.vt) (cos2nVQt)x,2

a = -(cos2n!!.vt) (sin2nV
Q
t)x,l

a = (sin2n!!.vt) (cos2nVQt)y,2

a = (sin2n!!.vt) (sin2nV
Q
t)y,l

p(O) = Iy,l
a = (cos2n!!.vt) (cos2nVQt)y,l

'f

a = -(cos2n!!.vt) (sin2nvQt) 6
y,2

-
- =t 'J

a = (sin2n!!.vt) (cos2nvQt) Gx,l

t~

a = (sin2n!!.vt) (sin2nv
Q
t) t~x,2 j

1-,
.~

L
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G Table 11.6 continued

n
p(O) = 1y,2

n a = (cos2rr~vt)(cos2rrVQt)y,2

r' ,a = (cos2rr~vt)(sin2rrVQt)I

I y,l

1 - a = - (sin2rr~vt)(cos2rrvQt)x,2

a = (sin2rr~vt)(sin2rrvQt)x,l

p(O) = 1z,2
a = cos4rr~vtz,2

a = -sin4rr~vtz,3

p(O) = 1z,3
a = sin4rr~vt

z,2

a = cos4rr~vtz,3

t 
,I
b

n,,}
1j

n



-iSI 2 iSI 2
iC' • eX, 'Je eX,

-iSI
p'(O) • e x,2 p(O)

iSI 2x,e
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(II. 27)

(II.28a)

r
I

pet) • e-i'Jet p(O) i'JCte

iSIX 2 -i'JC't
• e ' e p' (0)

i'JC't
e

-iSIx,2e (II.28b)

The calculation of 'Je' is straightforward:

'Je' • -2wl (cosS I 1 - sinS I 3) + wQ (sinS I 1 + cosS I 3)x, x, x, x,

1 '

I
" -

When e is chosen such that W
Q

sinS • 2wl cosS, the term

proportional to I 1 vanishes. We definex,

[ W
Q

2 + 4w. 2]1/2
weff • .1.

(II. 29)

(II.30a)
, :::

i

h

cosS •

sinS •

, (II.30b)

(II.30c)

I .

L
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and the rotated Hamiltonian becomes

r
I

f'
- 3Ci + 3C2

The reason for performing the rotation is now apparent:

(II.3la)

(II.3lb)

r -

!

iaI 2 -i3C't -i3C't i;K't
peT) • e x, e 2 e 1 p'(o) e 1

i3C't
.2

e
-iaIx,2e • (11.32)

The effect of the Hamiltonian is described by a series of simple

rotations. For illustrative purposes, let's calculate the value

of a 2 in the expansion of.p(t) when p(O) = I 1:z, z,

a e
p'(O) • cos - I + sin -2 I 22 z,l y, , (II. 33)

f-2
I -

C

, ,
-ill t i3Cl t

• (cos ~)[cos
wefft Weffte 1

,
I 2]p (0) e

2
I z,l - sin 2 z,

e Wefft
I + sin

Wefft
I 1]+ (sin I) [COS 2 y,2 2 ,y,

(II. 34)

, , , ,
-i3C t -ill t i3Cl t iiC2t2 1 p' (0)e e e e
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wefft wgt . Wgt
- sin 2 [cos 2 I z ,2 s~n -2- Iz,l]}

+ (sin ~) {cos
Wefft

[cos
wgt

+
. wgt

2 -I s~n -2- Iy,l]2 y,2

sin
Wefft - wgt wgt

+ 2 [cos -2- I 1 + sin -2- I 2]}y, y,

r
\
i

n
r

. (II. 35)

The effect on the operators of the last rotation about I 2 is as
x,

follows:

I 6 I . 6 I
y,l ~ cos 2 y,l + s~n 2 z,2

I 61 +.6 1y,2 ~ cos 2 y,2 s~n 2 z,l

I 1 ~ cos i I - sin i Iz, 2 z,l .2 y,2

I 2 ~ cos i Iz, 2 z,2
e

sin 2 I 1y,

b
We find a 2 at last by picking out terms proportional to I 2:z, z,

.I '

L
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1 wn (Weff-WQ)t 1 wn (Weff+wg)t
= - - (1 +~) sin 2 - + -2 (1 - --=:L) sin -

2 eff weff 2

(II .36a)

Wefft) wgt= (cos 2 (sin 2)
W t

(cos ~)

(IIo36b)

v
• (cos~ Veff t) (sin~ VQ t) - (Ve;f) (sin~ Veff t) (cos~ VQ t) •

(IIo36c)

Needless to say, one sample calculation is enough! Complete results

(in frequency units) can be found in Table 11.7.

Three additional points should. be made concerning these equations.

The first is what to do if your rf phase is not zero but rather some

value ~, so that

(IIo37)

Relief is but a rotation away: since [I 1,1 3] = 0,z, xy,

-2il1>'I 2i~'I 1
X~ • e z,l Xo e z,

where Xo here signifies our familiar Hamiltonian with ¢; = O.

By rewriting

(IIo38)



Table II. 7

Spin-l Evolution Under the Hamiltonian XQ~rf
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r
\
ft
I

2
I 1 + -3 VQ (I 3-1 3)x, x, y,

2 2 1/2
Veff = [VQ + 4vl ]

various initial density matrices

p(O) = I z,l v
a = (cosrrvefft) (cosrrVQt) +-~ (sinrrvefft) (sinrrVQt)z,l Veff

-~
{-

(cosrrvefft) (sinrrvQt) (sinrrvefft) (cosrrvQt)
Ia = I

z,2 veff !

2v l
a 1 = ---- (sinrrv fft)(cosrrvQt)y, veff e

2V l
(sinTIVefft) (sinrrvQt)a = ---y,2 veff

p(O) = I z,2 VQa = -(cosrrvefft) (sinrrvQt) +-- (sinrrvefft) (cosrrvQt)z,l Veff

(cosrrvefft) (cosrrvQt)
VQ

(sinTIVefft) (sinrrvQt)a = +--z,2 Veff
2Vl

(sinrrvefft) (sinrrvQt)a = ---y,l Veff
2Vl

(sinrrvefft) (cosrrvQt)a = ---y,2 Veff

p(O) = I y,l v ,
a = (cosrrvefft) (cosrrvQt) -~ (sinrrv fft) (sinrrvQt) b
y,l veff e

-
- H

-~
t ~.

a = -(cosrrvefft) (sinrrvQt) (sinrrvefft) (cosrrvQt) ij
y,2 Veff

2Vl
€~

= (sinrrvefft) (cosrrvQt) t1a ---z,l Veff
u

2Vl ft

(sinrrvefft) (sinrrvQt)
,

a = --- Lz,2 Veff

!
L
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[ Table II. 7 continued

r~

p(O) = I y,2
r~ +~a = (cosrrvefft) (sinrrVQt) (sinrrvefft) (cosrrvQt)y,l Veff

a = (cosrrvefft) (cosrrvQt) -~ (sinrrvefft) (sinrrvQt), y,2 Veff
2v1

(sinrrvefft) (sinrrvQt)a = ---z,l Veff
2V1

(sinrrvefft) (cosrrvQt)a =--z,2 Veff

p(O) = I 2 2x,l v Q 4v1a = (cos2rrvefft) +--x,l 2 2Veff veff

a =~ (sin2rrVefft)x,2 veff

a = -
2v1vQ (1 - cos2rrvefft]x,3 2Veff

p(O) = I x,2
-~a = (sin2rrvefft)x,l Veff

a = cos2rrvefftx,2

2V1 (sin2rrveff t)a = ---x,3 veff

p(O) = I z,3 v 1VOa =~ [1 - cos2rrveff t ]x,l 2
veff

v 1 (sin2rrvefft)a = ---x,-2 Veff
- £. --,.,

---:; i ~
~-'

2Lj[ 2v 1a = (1 - cos2rrvefftJ- t -? x,3 2-
~

, -
, c: veff- U

a = 1z,3
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Table 11.7 continued

p(O) = I y,3 =V1VQa [1 - cos27TVefft] a -- J.x,l 2 y,3Veff

V
1 (sin27TVefft)a = ---x,2 veff

2v 2
1

[1 .. COS27TVefft]a =x,3 2
Veff

p(O) = I x,3

a = -
2V1v Q

[1- cos27TVefft]x,1 2
Veff

2v
1 (sin27TVeff t)a =x,2 veff

4v
1

2 2

(cos'27TVefft) +
VQa =x,3 2 2Veff V
eff

84
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-i3C t ij( t
pet) = e ¢ p(O) e ~ (II .39a)
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pet) -
-2i¢1 I

e z,
-iX toe

2i¢I I -2i¢ I I
Ie z, p(O) e z, J

2icP I Ie z, (I1.39b)

the expressions in Table 11.7 can be used in the case of general rf

phase if the initial density matrix is first rotated about the z-axis

and the resulting evolved operators are then rotated back to the

initial frame.

The second point to make regarding these expressions is that

they are equivalent to equations derived by Brewer and Hahn [69] for

optical three-level systems and later modified by Gold and Hahn [68]

for NMR. A term-by-term concordance will not be given here; instead

what is interesting is to compare the method of solution. Hahn and

co-workers solved for the eight unknowns in a set of eight coupled

differential equations (Bloch equations without relaxation terms).

~, -

tJ

We on the other hand started with the integrated equation of motion

for p and manipulated its form so that the effect of the Hamiltonian

could be expressed as a series of rotations based on the properties

of angular momentum operators.

The final point worth noting with regard to the results in Tables

11.6 and 11.7 is their usefulness in analyzing real pulse sequences.

True, the three-level Hamiltonian in general contains non-zero

offset, rf, and quadrupole terms, and for this general Hamiltonian
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neither set of equations is applicable. For the deuterium chemical

shielding experiments we are interested in, however, it is usually

the case that wQ ~ wI »~w. During rf pulses (typically 3 to 30 ~sec

long), the puny effects of Xoff can be ignored, and Table 11.7 provides

a nearly exact description ,of density matrix evolution. During the

longer periods of time between pulses when Xrf • 0, the equations of

Table 11.6 govern the evolution. An analytical expression for an

entire pulse sequence can thus be generated by stringing together the

appropriate two-term-Hamiltonian formulas. Only when a pulse is

exceptionally long or when ~w is on purpose made large is the exact

solution discussed in the next section necessary.

2.5.4 The General Hamiltonian

The most general three-level Hamiltonian,

can be expressed in the basis set {Ix>, IY>, Iz>} as

wQ/3 -iAw -wI sinq,

X = iAw WQ/3 -wI cosep

-wl sirup -wl cos<P -2wQ/3 (II. 41)

This 3x3 hermitian matrix can be diagonalized numerically (using the

Jacobi transformation method. for example) or analytically (using the

formula for the roots of a cubic equation); the result is

I
L
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(

, (11.42)
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where A is the diagonal matrix of energy eigenvalues and U is the

complex and unitary matrix of eigenvectors. As stated in Chapter I

and in Appendix ~, the density matrix equation of motion is

-iAt -iAt -iAj . t
where e is diagonal with (e )jj. e J. Successive steps

in the pulse sequence are computed by successive application of

Eq. 11.43. Although an analytical solution for pet) is possible,it

will in general be so complicated and so heavy laden with inverse

trigonometric functions that no trace of physical insight is

extractable. Instead we will use computed values of the operator

coefficients a that characterize pet) to graph the course ofp,i

evolution through the nine dimensions of ''Vega space".

2.6 Pulse Sequences for Creation and Detection of Double-Quantum

Coherence

Our reasons for studying double-quantum deuterium spectra were

discussed in section 2.3, and the operator algebra techniques needed

to analyze the dynamics of a spin-one system were presented in the

previous section. We now wish to consider specific pulse sequences_

to excite and detect double-quantum coherence. Our strategy is shaped

both by the nature of the sample and the capabilities of our spectro-

meter. Typically we will be interested in examining powdered samples

because they are easier to prepare and easier to study than single



crystals. Hence there will be a wide range of VQ values (and on a

much smaller scale, a range of ~v values) for the pulse sequence to

accomodate. (Note that our change in focus from theory to applications

is mirrored by a switch from w's to V's. )

It is helpful to get a feel for the magnitude of the quantities

~V, VI' and VQ which appear in the Hamiltonian. As discussed in

section 1.5.4, the quadrupole frequency experienced by a given nucleus

depends on the angles a and ~ which describe the orientation of the

magnetic field HO in the principal axis system of the local electric

field gradient tensor:

88

r
I ~

nI -
I

f -

I
2 2

VQ(Hz) • vQc (3 cos a-I) + nQ sin a cos2~J , (11.44)

where n
Q

is the asymmetry parameter of the field gradient. Some

representative values ofVQc are 7.1 KHz for the methyl deuterons
~ ~

in hexamethylbenzene (subject to C3 methyl group rotation and C6

ring rotation), 36 KHz for aromatic deuterons on a rapidly spinning

ring, and 72 KHz for aromatic deuterons on a stationary molecule [40J.

The size of ~V is largely in the hands of the spectroscopist, but

a typical value is 1-2 KHz in a double-quantum experiment. The

chemical shift is the interesting contribution to the offset frequency,

and the range in chemical shift values due to molecular orientation is

on the order of 5-20 ppm, or 140-550 Hz in a field of 42 kilogauss

(180 MHz proton resonance).

Finally, the size of VI is governed by the technical specifications

of the spectrometer: amplifier power, the Q factor of the coil, its



[

r
r~

l

propensity to arc at high voltage, etc. I found the usual upper limit

for VI to be on the order of 80 KHz, corresponding to a 3 ~sec 90°

pulse length.

These numbers have been paraded to support the statement made

earlier that V
Q

and VI are likely to be comparable in magnitude,

whereas 6v is apt to be considerably smaller. Because VI is not

gigantic compared to other terms in the Hamiltonian, we are not in

89
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the hard pulse regime (as will be the case in Chapter~ IV and V when

the proton NMR of molecules dissolved in liquid crystals is considered).

That is to say, the effect of a pulse is not governed solely by Krf-

terms of similar size, in particular X
Q

, must be included in the

analysis.

With this in mind, we turn at last to the four pulse sequences

shown in Fig. 11.7. (These have been discussed before [40,65], but

a brief recapitulation here will make subsequent sections clearer.)

Sequence A is the simplest means of preparing and detecting double-

quantum coherence. The weak pulse at the beginning is "tailored" in

terms of pulse length and rf strength to rotate the initial density

matrix I 1 directly into the double-quantum coherence state I 2'z, z,

(The effective rotation axis is in fact I 3; see section 2.8.1.)z,

During the interval L, the double-quantum coherence evolves but

cannot be detected until a second pulse transfers coherence to I 1
Je,

or I l' The transverse magnetization which accompanies single-quantum
y,

coherence is sampled as a function of L; the Fourier transform of

this point-by-point FID is the desired double-quantum spectrum.

Although simple, sequence A has it~ problems. The first is the

difficulty of measuring an NMR signal directly after an rf pulse:
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Figure 11.7 Four possible pulse sequences for the excitation and

detection of double-quantum coherence. Sequence A is most convenient

if the sample is a single crystal, but sequence D works best for a

powder. In each case, DQ coherence evolves during the variable delay

T.
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probe "ringing" due to slow dissipation of rf energy in the tuned

probe circuit can completely swamp any sample response. If one waits

20-30 ~sec for the ringing to go away, the signal often disappears

too: deuterons subject to different values of vQ evolve at differing

rates from lIto I 2 or lIto I 2. This dephasing destroys thex, x, y, y,

signal. As mentioned earlier, the cure is the quadrupole echo of

Sequence B. The additional pulse after a delay L' refocuses the

errant single-quantum coherences, which then echo after an additional

time L'. (See section 2.9 for details.) If L' is greater than the

ringdown time, the transverse magnetization can be cleanly sampled.

The second problem with Sequence A is that there is no guarantee

the entire chemical shielding powder pattern will appear with the same

sign. As we will see, a certain amount of distortion of the powder

lineshape is unavoidable, but it helps to avoid undue zero-crossing

and cancellation of positive and negative intensity. One way of

bettering our chances is to use a second weak pulse after DQ evolution

to rotate I 2 back to I 1. If the first and second pulses are thez, z,

same, and on resonance, then spin-inversion transition arguments as in

section 4.6.3'indicate that all transitions comprising the DQ line-

shape will have the same phase. Of course, another pulse must

be applied as in Sequence C to rotate double-quantum-dependent population

into double-quantum-dependent magnetization. (Inadequencies in this

pulse may also bring about cancellation of intensity, but that can't

be helped.) An additional advantage to Sequence C accrues if the time

between the second and third pulses is made greater than the transverse

relaxation time T2: unwanted single-quantum coherences inadvertently

created by the weak pulses will die away while the double-quantum



information is stored as a longer-lived population.

Saving the best for last, Sequence D combines the improvements

introduced in Band C and thus is the DQ pulse sequence we will

concentrate on henceforth.

2.7 On the Nature of Powders

In going from a fixed value of VQ to the continuous range of VQ
values in a polycrystalline sample, it is best to remember this

maxim: a powder, like politics, requires the art of compromise.

No given combination of pulse length and strength can be ideal for

all crystallites; instead we seek the pulse or pulse sequence with

the best average performance. To be specific, we want the chemical

shielding tensor lineshape with as much overall intensity and as

little distortion as possible.

In the absence of broadening, the lineshape L(o) that results

from a particular experiment is given by

92 ('
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(11.45)

where LO(O) is the undistorted and characteristic powder lineshape

associated with a particular set of principal values for the chemical

shielding tensor (as in Fig. 11.3) and T(o) is a transfer function

which describes the efficiency of the pulse sequence for each value

of a (-1.0~ T(O) ~ 1.0).

The functional form of LO(a) depends on the value of the chemical

shielding asymmetry parameter; when n • 0, one finds [24]cs

r-"
~

i ::
G

f
L

{
l~



As noted earlier, a discontinuity (modified in "real life" by

broadening) occurs at one end of the lineshape where 0 =01 = cr - 00 .

To generate an LO on the computer that is n points wide, the following

non~normalized·formulais useful:
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L (1) ... [2(n_l)J l / 2
o

1/2
L (i) ... (:n;1)o i~

i=2,3, ••• ,n

(11.47a)

• (II.47b)

vfuen n # 0, LO(O) is described by an elliptic integral that can becs

readily approximated by three-term polynomials of 0 [40].

The transfer function T(o) cannot be obtained. directly from the

pulse sequence because 0 (a component of the offset frequency ~v)

is small in comparison to that other variable quantity, VQ. Indeed

it is T(VQ), the efficiency of the sequence as a function of the

quadrupole splitting, that must be calculated first, using either the

equations of Table 11.6 and 11.7 or the numerical solution provided

by the computer. The relationship between the chemical shielding

transfer function and the quadrupole transfer function is governed

by the relative orientation of the chemical shielding and electric

field gradient tensors. For each crystallite, the orientation of the

external field nO relative to the two sets of principal axes generates

a value for VQ and for o. The former determines the efficiency of

the pulse sequence and thus the intensity associated with the

crystallite; the latter determines at what point in the chemical



= 0) with unique principal axes parallel,

shielding lineshape this intensity makes a contribution.

In the general case, the computation of T(a) requires extensive

averaging over orientation. For the sake of clarity and speed,

however, we will mainly focus on only the simplest case: both tensors

axially symmetric (n
Q

= ncs

as would be expected in the case of rapid molecular motion about an

n-fold axis (n > 2). We then can write

94 r
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- 2AV = a • a + a O (3 cos a-I)

(II.48a)

(II.48b)

Values for VQ range from -VQc to 2~Qc; values for a range from

a - a O to a + 2aO' Because the tensors are aligned, only one

vQ value is associated with each a value; as a result, T(a) is

identical in form to T(VQ).

More complicated tensor orientations will be considered briefly

in section 2.11.

2.8 Preparing Double-Quantum Coherence: An In-Depth Report

Double-quantum coherence •••we know what it is, we know what

it's good for, but how can we get as much of it as we want? How

best can we succumb to the lure of forbidden transitions? That is

the question which will dominate our thoughts in the pages to come.

The answer will depend largely on two factors: the nature of the

sample (powder or single crystal) and the relative size of vI and

1 ..
c
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2.8.1 Results for a Fixed Value of VQ

Before taking on a powder, we will first consider the details

of double-quantum excitation for a single value of V
Q

with ~v = Ot

a problem discussed by several of my Pines group colleagues 140,63b,

65]. For the hard-pulse limit (VI » VQ) a preparation sequence

was presented earlier during our Rubik's cube ruminations: x-pulse,

delay, ± x-pulse, with the length of the delay given by
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or l'
7T.--2wQ

1. --4v
Q

(11.49)

( ,

I An effective Hamiltonian (see section 4.6 and Appendix A) can be

readily calculated when the two pulses are 1800 out of phase:

(II. 50)

The I 3 term in X ff rotates the initial density matrix I 1 intoz, e z,

double-quantum coherence described by I ·2.z,

When VI ; VQ' a single pulse can be used to create DQ coherence;

by choosing VI and the pulse length t correctly, 100% efficiency is

achieved. The key is Eq. II.36c. To make la 2 1 = 1 requiresz,

(II. 5la)
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and

I
C

Icos~ Veff tl = 1 (II.5lb)
("
I

The first condition puts a limitation on t in terms of an integer

m:

/ ",

2m-I
t =--2 vQ

m • 1,2, ••• (II. 52a)

The second condition then determines allowed values for VI: r -
I

.~V
2m-l Q (II.52b)

[ --

VI • .! (~)2
2 2m-l (k ~ m) (II.52c)

With two "knobs" to turn, it's easy experimentally to conveniently

convert Zeeman populations totally into DQ coherence.

As an aside, the same method can be used to create perfect

180 0 pulses for I 1 or I 2' with applications to inversion-recoveryz, z,

Tl measurements or double-quantum spin echoes. In Table 11.7, the

same formula describes a let) for Po • I 1 and a 2(t) for Po =z, z, z,

I 2:z,

a let)z,

a 2(t)z,

V

• (cos~ Veff t)(cos~ vQt) +~ (sin~ Veff t)(sin~ vQt).
eff

(11.53)



Inverting the sign of the coefficient requires

or

CosTI Veff t • -1 and cosTI vQt • 1

The first set of conditions leads to

(11.54)
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whereas the second set implies

k,m=l,2, ••• ,k ~ m (11. 55a)

2m
t .-vQ

k,m-l,2, ••• ,k ~ m. (I1.55b)

Back now to the preparation of DQ coherence. When VI « V
Q

'

it is possible to simplify Eq. II.36a as follows:

- w
Q



A weak pulse thus acts as a rotadon about the I 3 a::is with anz,

effective frequency -v
1

2/vQ. Vega and Pines [65] discuss this

limiting case in detail.

a ..,(t)z, .. (II-56)
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For a more graphic understanding of evolution during a double-

quantum preparation pulse, let us beam down to the I l' I 2 plane.z, z,

of Vegc space. Figure 11.8 shows the idealized trajectory of the

state-of-zhe-system vector for Vl «VQ: a 90° rotation about

the I axis lying perpendicular to the plane. An actual trajectoryz,3

for VQ = 50 KHz and Vl .. 10 KHz'appears in Fig. 11.9; the trajectory

fo~ v = 50 KHz and VI .. 20 KHz is shown in Fig. 11.10. In each case
Q

the length of the pulse (125 lJsec and 31.25 lJsec, respectively) was

chosen by the weak-pulse criterion

r ~

I
{ :...

W 2
sin _1_ t • 1

WQ
(II. 57)

The scalloped indentations are due to periodic creation of single-

quantum coherence; these grow broader and deeper as Vl increases.

Moreover, it can be seen that Eq. 11.57 is, as one would expect,

a less accur~te guide to good pulse lengths for larger values of V
l

•

We can instead use Eqs. II.52a and II.52c with m =k = 2 to optimize

the pulse in Fig. 11.10:

3t .. -- c 30 lJsec2V
Q

(II. 58a)
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~v =0 kHz

-/.O

XBL828- 6383

Figure 11.8 Spin-system evolution during a double-quantum excitation

pulse in the limit that Vl«VQ' The pulse length t was chosen such
2that sin{2TI vI t/V

Q
) = I, It is seen that the effect of the Hamiltonian

is a rotation about the I axis,
z,3
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Figure 11.9 Spin-system evolution during a DQ excitation pulse for a

larger value of VI than in Figure 11.8. Again the pulse length twas

chosen such that sin(2rr V1
2
t/V

Q
) = 1. Indentations in the trajectory

represent periodic creatiop of single-quantum coherence.
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Figure 11.10 Another example of a spin vector trajectory in the I l'z,
I 2 plane during DQ preparation. The weak-pulse formula for creation
z, 2

of DQ coherence [sin(2TI VI t/VQ) = 1] was used, but its growing

inaccuracy as VI increases is apparent.
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Figure 11.11 Double-quantum coherence can be fully prepared <Ia 2=11)
z,

for a given value of VQ when Eqs. II.52a and II.52c are used to find

optimal t and VI values. Integers m and k were chosen to yield t and

vI values close to those in Figure 11.10.
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!

.,T-f.. ""6 vQ .. 22 KHz

The result of this adjustment can be seen in Fig. 11.11.

(II. 58b)

Another way to present the effect of an optimized DQ pulse is

to plot the operator coefficients a l' a 2' a 1 and a 2 as ay, y, z, z,

function of time. For VQ .. 20 KHz and m .. k .. 1, the optimized

pulse strength is VI .. 17.3 KHz; a (t) values are plotted in
p,i

Fig. 11.12 versus the length of this pulse, from 0-60 ~sec. The

optimal . point for double-quantum coherence is t .. 25 ~sec, when

a .. -1. When the pulse is twice as long, the initial densityz,2

matrix is inverted. At other times, the single-quantum coherences

described by I 1 and I 2 are present in addition to DQ coherence.y, y,

It is constructive at this point to define the following

frame-projection coefficients:

p .. x,y,z;

i .. 1,2,3 (II. 59)

For evolution during an x-phase pulse with ~v .. 0, the only

non-zero frame-projection coefficients are

a • la2 + a 2 Jl/2
y y,l y,2 a • I 2 + 2 ]1/2

z az,l az ,2

a =
1 I 2 + a 2 ]1/2
ally, z,

a .. la2 2 + a2 ]1/2
2 y, z,2 (II. 60)
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Figure 11.12 Evolution during a DQ preparation pulse with VI optimized

using m=k=l in Eq. 1I.52c (V
l
= 13 V

Q
/2). The initial density matrix is

I l' and because ~v is zero, only four operators--1 l' I 2' I l'z, z, z, y,
and I 2--are needed in an expansion of p. Maximum creation of DQ

y,
coherence (a 2=-1) occurs at t=25 ~sec.z,
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Figure 11.13 Frame-projection coefficients ay , a z ' aI' and aZ during

the optimized DQ pulse of Figure 11.12. Note that a l and a Z are related

merely by a shift along the time axis; in contrast, a z oscillates from

1 to VQ/V
eff

while ay varies from 0 to ZVl/Veff •



These are plotted in Fig. II.13 for the pulse and system parameters

of the previous paragraph. Note that the time-averaged projections

of the state-of-the-system vector in frames "1" and "2" are equal--

in fact, al(t) and a2(t) have the same functional form, only shifted

in time. There is no such symmetry with respect to its travels

through the "z" and "y" frames, however:
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fJ
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2
= [cos 7T Veff t

v 2
+ Q

2veff

2 t]1/2sin 7T Veff

a (t)
y

2Vl= 1----- sin7T Veff tlVeff
(II. 61)

( ,

t

The value of

rises higher

V

a z oscillates between 1 and~ whereas a never
2V

l
eff y

than -v---. (For an optimized pulse with m = k = 1,
.eff

and 2Vl /Veff = 1:3/2.) This dichotomy simply reflects

the fact that rf irradiation with ~v = 0 is resonant for the double-

quantum transition and not so for the single-quantum transitions.

Only in the limit of VI » VQ is this off-resonance discrimination

overcome and sYmmetry achieved between Z and Y frames.

2.8.2 Preparing Double-Quantum Coherence in Powders

Our starting point is again the equation describing the time

evolution of az ,2 for Po ~ Iz,l and ~v ~ 0:

V

az ,2(t) = (COS7T veff t)(sin7T vQt) - (~)(Sin7T veff t)(COS7T vQt).

(II. 62)

Note that at all times a z ,2 is an odd function of vQ and thus,

r
b

H..~..~tJ
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as mentioned earlier, no double-quantum coherence can be prepared

when VQ = O. (This latter statement is true no matter what the

value of ~v.) A typical plot of az ,2 vs. VQ is shown in Fig. 11.14.

We wish now to find the best pulse or pulse sequence for

excitation of DQ coherence over the entire range of VQ values,

realizing of course that there is nothing we can do about V
Q

= O.

One technique, proposed by Dave Wemmer [40], utilizes two hard

107

pulses separated by a delay T'.

sequence is given by

The value of a 2 after thisz,

a =-sin271' v T'z,2 Q
(II. 63)

for -v < v < 0 and a =-1 for 0 < vQ ~ 2vQc.'Qc - Q z,2

We would like az ,2 to be a square-wave function of vQ: az ,2 = 1

This idealized

form for a 2 can be expanded as a Fourier sum of sine terms likez,

Eq. 11.63 above with T' = (2k-l)/(4VQc
) and k=1,2,3, ••• Preparation

delay times can then be chosen on the basis of this Fourier series

expansion and resulting spectra combined using the appropriate

weighting functions. The first three terms of the expansion,

I
I
t-e

71' V{'\ 1 371' V {'\ 1 571' V Q
{sin(- -.::L) + - sin(- -.::L) + - sin(- --) }

2V~ 3 2 V~ 5 2 V~

approximate a square wave reasonably well; to create the look

experimentally, results from sequences with T' = 1/(4v )
. Qc '

3/(4vQc ). and S/(4VQd are added together in the proper ratio.

The simple relationship of az ,2' VQ' and T' breaks down

(II. 64)
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Figure 11.14 Creation of double-quantum coherence as a function of

V
Q

• The solid line represents the exact response; the dashed line

is based on the weak-pulse formula a z ,2 = -sin(2TI vl
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when VI ~ vQ and the rf pulses are more complicated than simple

rotations. For the record, the prepared value of a 2 is givenz,

by the following hefty expression, where t ~ the length of each

of the pulses:

V

- (~)(sin2TI Veff t)(cos2TI vQt)
V
eff

! '

I
2vl 2 2

- (----) (sin V ff TI t)[sin2TI VQ(t + T')]
Veff e

• (II. 65) .

r ~
r
I

One could try to extract some useful analytical corrections to the

Fourier series expansion from this tangle of sines and cosines, but

it is easier to vary pulse and delay lengths on the computer to

numerically fit the desired sine wave components, as was done for

Fig. 11.15.

In a similar fashion, the computer can be used to find the

best single pulse for DQ excitation in a powder. The idea is to

try a variety of pulse lengths and VI values, seeking the combination

that yields the best least-squares fit to a step function for

az ,2(vQ), The results of this computerized search through a

two-dimensional parameter space are the following "powder-optimized"

values:

t - 0.862 - .492
vQc -~

(II. 66)
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Figure 11.15 A weighted sum of three actual pulse-delay-pulse transfer

functions for the creation of DQ coherence in a powder with V
Qc

= 65 kHz

and ~v = O. These ideally are sine functions, the lowest three terms

in a Fourier series expansion of a square wave. (The overall sign of

each is opposite that used in the text.) Were VI » V
Qc

' one would simply

choose three delays given by T' = (2k-l)!(4V
Qc

) with k = 1, 2, 3. Instead,

VI was fixed at 100 kHz, and the computer was used to find pulse and delay

times to best reproduce the appropriate sines. Details can be found in

Ref. 40.
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In quicker and dirtier terms, the best choice for single-pulse DQ

excitation in a powder is an apparent pi pulse (Vlt ~ ~) with 01

somewhat less than 60% of the characteristic quadrupole frequency.

For VQc = 36 KHz (the value for rotating benzene and

ferrocene rings), a good DQ pulse is 25 ~sec long with VI = 20 KHz.

A plot of az ,2 vs. vQ for this pulse is featured in Fig. 11.16.

Double-quantum coherence must of course be detected as well

as created. For our favorite pulse sequence, model D in Fig. 11.7,

a transfer function TDQ(V
Q

) can be defined to describe the efficiency

of the two weak pulses in transforming 1_ 1 into I 2 and then
"', z

back into Iz,l' As one might expect, the dependence on VQ is nearly

identical for these two related operations, differing only by

an overall sign which we will ignore. (Compare the equations for

a 2(t) evolving from Po = I 1 and for a let) evolving from Po =z, . z, z,

I z ,2 in Table 11.7.) The expression for TDQ(VQ) is therefore just

the square of Eq. 11.62, and a plot of the transfer function for

VQc • 36 KHz, vI • 20 KHz, and t • 25 ~sec can be found in Fig. 11.17.

Note the unavoidable "big dip" centered at VQ = O.

For the sake of insight and aesthetics, it is worthwhile to

plot the spin-space trajectories of a powder under the influence

of a DQ preparation pulse. To be specific, Figs. 11.18-11.20

present "snapshots" at 5 sec intervals of the evolution of a powder

(V
Qc

and VI as in the previous paragraph). For a slightly different

view of the proceedings, Fig. 11.21 features the microsecond by

microsecond development in the I I' I 2 plane associated withz, z,

four values of VQ.
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Figure 11.17 A transfer function for creation of DQ coherence and

subsequent return of the density matrix to I 1 (Zeeman populations).z,
This function is merely the square of the az,Z VS. VQ plot in Figure

11.16. Note the "big dip" at VQ=O.
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Figure 11.19 The growth of single-quantum coherence during a DQ

preparation pulse, with Liv=Q--a companion to Figure 11.18, Note that

ay,l(vQ) = ay,l(-vQ) and ay ,2(vQ) = -ay ,2(-vQ),
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Figure II.21 Yet another view of evolution during a powder-optimized
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with four values of vQ.



Z.9 Analysis of the Quadrupole Echo Sequence

We now focus attention on the second half of our double-quantum

118

r
l ,

pulse sequence (and a useful construct all by itself), the quadrupole

echo. Its purpose is to transform Zeeman population I 1 intoz,

measurable single-quantum coherence for a powder. A 90X-TI~90Y-TZ

sequence works as follows. The first pulse rotates I 1 into I l'z, y,

which due to probe ringing cannot be readily detected. Instead,

spin vectors associated with different values of VQ fan out in the

Iy,l' Iy,Z plane under the influence of XQ for a time Tl • A 90y

pulse is then applied that acts within the Y frame as a 1800 pulse,

flipping the spin pancake [ZO]. The wandering vectors then refocus

and echo along Iy,l after a time TZ• For perfect pulses with

VI » VQ, TZ eq~als Tl •

We, however, must adapt to the real world, where among other

imperfections it is often the case that VI ~ VQ. A naively chosen

quadrupole echo sequence with both pulse flip angles equal to 90 0

and signal detection set at TZ = Tl might not work very well at all.

To optimize the sequence for a particular value of VQc ' we

turn to the two-term-Hamiltonian equations of evolution in Tables

11.6 and II. 7. An analytical expression.for a 1 after the second
y,

delay is readily obtained as a function of VI' VQ, ~v, the pulse

lengths t l and t z' and the delays TI and TZ• It is the job of

the computer then to vary each of the pulse sequence parameters

independently over a specified range to determine the largest

average value of a l' averaged over a specified number ofy,

quadrupole frequencies from -VQc to ZVQc . (In practice, the values

f ~

I



r
1

I
h

of VI and T
l

are constrained by the properties of the spectrometer,

so there is less "playing" with these parameters than with the

others.)

Before considering some of the optimized results, let's examine

the effect of the two pulses individually. Figure 11.22 displays

the growth of single-quantum coherence in the I l' I 2 plane fory, y,

a powder with V = 36 KHz. As the 50 KHz pulse lengthens micro
Qc

second by microsecond, the curves representing the spin-vector

projections grow out from the origin towards a 1 = 1, as we wouldy,

expect for an x-pulse. However, the effect of ~Q during this pulse

is to twist the spin vectors of those systems with large values of

IvQI away from the Iy,l axis. By the time we are close to a 90°

pulse (t
l

= 5 ~sec), a sizeable arc has developed. It is to

compensate for this initial dephasing that the optimal value of T2

is usually roughly equal to T
l

+ (t
l
/2).

Another view of the problem is provided by plotting a 1 as
y,

a function of vQ for different values of the pulse length (Fig.

11.23). The unhappy choice between narrow bandwidth (WIt ~ ~/2)

and broad but mediocre excitation (WIt < TI/2) is readily apparent.

Indeed the major stumbling block to effective DQ spectroscopy when

VI < v
Qc

is not double-quantum preparation or even the echo in the

I I' I 2 plane; it is in the creation of single-quantum coherencey, y,

from I 1 (As a remedy, however, modulation of the amplitude, the
z,

frequency, or the phase of the single-quantum preparation pulse

could be used to increase its effective bandwidth--see Chapter III.)

The spin vectors arrayed in the I l' I 2 plane as a legacyy, y,

of the first pulse continue to evolve during the first delay. As

119
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of VQ for various pulse lengths (~v = 0).

f-, -

t:;



=

122

noted earlier, the effect of XQ is a rotation about I y ,3' spreading

the vectors throughout the plane. If an offset term is present in

the Hamiltonian, coherence will appear in the X-frame as well--

Xoff converts Iy,l and Iy ,2 to ~~,l and Ix ,2' These operators are

in turn rotated to I 1 and I by the second pulse of the quadrupolez, z, 2

echo sequence; as a consequence, any X~frame coherenc~ created during

the first delay is not subsequently observable.

Now for a look at the effer.:ts of the echoing pulse i.n the

Y-frame. 1deally~ this pulse should act as a 180 0 rotation about

the I 1 axis, changing the sign ofa 2 for each spin vector buty, y,

keeping a" 1 intact. In realit:', the presence of Je
Q

modifies the
.J ,

simple rot~tion picture. Figur~ 11,24 depicts the microsecond-by-

microsecond evolution of the spin vectors for a powder with vG<c

36 KHz. i'he pulse strength vI J_S 50 Kliz and the initial density

mat~ix for each veCLor is I y ,2 (an unlikely situation in practice,

but usefvl in showing what happens to 1 2 components). Although
y,

only the vector with VQ = 0 remains in the I ~~ I plane during
y,,- y~3

its journey, the pulse actually works quite well when its len5th

is 4-5 ~sec--every value of a 2 is close to -1. The effect of
y, .

Jf
Q

seems first to be '1 divergence of spin vectors and then a

refocusing of coherence around -I ,
y,2

In fact.the echoing pulse is more effective in ge~eral when a

spin vector is initially along the I 2 axis than when it is aligned
y~

with the I 1 axis, as illustrated in Fig. 11.25. There the spread
y,

of spin vector positions after a 4.5 ~sec 50 KHz pulse is compared

for two different initial density matrices, I and I 2' The
y,l y~

P
t )

L
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Figure 11.25 A demonstration that the quadrupole echo is more effective

axis than along the I y,l
in quadrupole

to this difference.]

when a spin vector is initially along the I 2y,
axis, particularly for large values of VQ. [Wiggles

echo transfer functions (as in Figure 11.27) are due

Each curve represents a spread in spin vector projections following an

echoing pulse for -36 KHz ~ VQ < 72 KHz and a given Po'
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Po = I 1 curve is indicative of better echoing for va ~ 0 but drops
y, .

noticeably in efficiency relative to the Po = I y ,2 curve for VQ

values on the order of V
Qc

(36 KHz) and beyond.

The overall efficiency of the quadrupole echo sequence can be

described by a transfer function TQE(VQ). In the limit of large vI'

the use of 90° pulses insures that TQE(VQ) ~ 1.0 for all VQ values.

When vI does not dominate v
Qc

. the computer can be used to select

an optimized sequence for a powder. An ex~ple is the following,

for VQc = 36 KHz, vI fixed arbitrarily at 50 KHz, and Tl set at

40 ~sec:

125

1. x-pulse 4.5 ~sec 50 KHz 3. y-pulse 4.5 ~sec 50 KHz

2. delay 40 ~sec 4. delay 41.5 ~sec.

The transfer function for the first pulse of this sequence is

shown in Fig. 11.26, and the overall TQE(V
Q

) appears in Fig. 11.27.

Notice that the latter function is essentially a series of wiggles

superimposed on the a 1 vs. vQ response to the first pulse. The
y,

wiggles reflect the difference in echoing efficiency for a spin

vector aligned with either the

echo pulse; they go roughly as

I 1 or I 2 axis just prior to they, y,
2sin [2TI V

Q
(T l +t

l
/2)] except for

small vQ values.

The computer can in addition be trained to generate pulse

sequences optimized over a limited range of VQ values or for a

single value of VQ. An application suggested by Gary Drobny [76]

involved a deuterated liquid crystal for which vQ was measured to

be 44 KHz. The available rf power was VI = 35 KHz. A quadrupole

echo sequence with two 90° pulses (t l = t 2 = 7 ~sec) and T
l

= T
2

=
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Figure II.26 Creation of single-quantum coherence as a function of

vQ following the first pulse of an optimized quadrupole echo sequence.

The initial density matrix is I l'z,

r '
L
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Figure II.27 The transfer function (I l~I 1) for an optimizedz, y,
quadrupole echo sequence with ~v=O. Comparison with Figure II.26

reveals that the basic shape is governed by response to the first

pulse; superimposed wiggles result from the fact that the second

pulse can in general convert a 2 to -a 2 more efficiently than ity, y,
can maintain a value of ay,l·
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Yigure 11.28 Three different quadrupole echo pulse sequences and

corresponding transfer functions, inspired by Gary Drobny's liquid

crystal experiment for which V
Q

=44 KHz and Vl~35 KHz. Sequence A

uses 90° pulses and equal delay lengths Tl and (2' Sequence B is

computer-optimized for 40 KHz ~ V
Q

~ 44 KHz; sequence C is optimized

for VQ=44 KHz. Final ay ,l values at vQ=44 ~Hz are 0.19, 0.64, and

0.85, respectively.
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40 ~sec yielded a puny final a 1 value of 0.19. A sequence
y,

optimized over the range 40-44 KHz gave rise to a final a 1
. y,

value of 0.64; optimization solely for VQ = 44 KHz resulted in

a 1 = 0.85. The three transfer functions are compared in Fig.y,

II. 28.

Bloom and co-workers [77] have also used the equations of

Table II.7 to determine the spectral distortions due to finite

pulse width in the quadrupole echo sequence and to choose the best

pulse flip angles in order to minimize the distortion.

2.10 At Long Last Lineshapes

2.10.1 Aligned and Axially Symmetric EFG and Chemical

Shielding Tensors

For pulse sequence D, the overall quadrupole transfer function

T(VQ~ is the product of the double-quantum transfer function TDQ(V
Q

)

and the quadrupole echo transfer function TQE(V
Q
). 'T(V

Q
) is illustrated

in Fig. II.29 for the following familiar set of pulse parameters:

1. x-pulse 25 ~sec 20 KHz 5. x~pulse 4.5 ~sec 50 KHz

2. delay 6. delay 40 ~sec

3. x-pulse 25 ~sec 20 KHz 7. y-pulse 4.5 ~sec 50 KHz

4. delay 8. delay 41.5 ~sec.

Assuming that the electric field gradient (EFG) and shielding

tensors are aligned and that nQ • n ,the chemical shieldingcs

transfer function T(O) is identical in form to T(V
Q
). The

chemical shielding powder lineshape (for an axial tensor and

VQc • 36 KHz) that would result from the pulse sequence above is
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Figure 11.29 An overall four-pulse transfer function for DQ preparation

and detection, optimized for V
Qc

=36 KHz. A delay on the order of T
2

between the second and third pulses allows any unwanted coherences to

die away.
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Figure II.30 Simulated and slightly broadened chemical shielding

powder lineshapes, with and without the distortions due to the

transfer function in Figure II.29. The shielding and electric field

gradient tensors are assumed to be axial and aligned.
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shown in Fig. 11.30, modified by a small amount of simulated

broadening. Higher overall intensity and less distortion would

be expected if a larger value of VI were used in the quadrupole

echo sequence.

To match 'any of the experimental spectra obtained thus far,

a good deal more broadening must be applied to the distorted

lineshape. (The distinctive bumps and wiggles in the simulation

have never been seen experimentally due to residual dipolar

couplings, magnetic field inhomogeneities, and other ravishers of

resolution.) The most accurate way of introducing a certain degree

of Gaussian broadening into a computed lineshape is to make use of

the convolution theorem [78]: (1) Inverse Fourier transform the

lineshape. (2) Multiply the resulting function of time by a Gaussian

decay (itself the inverse FT of the desired Gaussian frequency

broadening). (3) Fourier transform the product back into frequency

space. A much easier technique of sufficient accuracy for our work

is to use a three-point smoothing algorithm, which replaces each

point s(i) in the lineshape with the quantity [s(i-l) + 2s(i) +

s(i+l)]/4. After n smooths, the broadening of a sharp line of unit

intensity at i=O is described by the following formula for intensity

at i=m:
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(n!) 2
s (m) = -,--~~-..,-,

(n+m)!(n-m)! s(O) (II. 67a)

s(O) = and Iml ~ n (II. 67b)
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The function s(m)/$(O) approximates the Gaussian exp(-m2/n) in

the limit of large n and small m. The standard deviation of

s(m)/s(O) is thus on the order of (n/2)1/2 points, corresponding

1/2 ..
to a full width at half maximum (FWHM) of ~ 2(n In 2) p01nts.

Because these,quantities are measured in points, the effective

broadening of a computed lineshape is governed both by the number

of smooths and by the number of points used to represent the

lineshape.

2.10.2 Comparison with Experiments

A number of axially symmetric chemical shielding powder line-

shapes have been measured experimentally by Dave Wemmer ,[40]--a

typical result obtained with pulse sequence D appears in Fig. 11.31

along with an "ultra-smoothed" simulation. As one searches vainly

for pulse sequence distortions in the 6.5 ppm wide experimental

spectrum (in particular the "big dip" corresponding to vQ = 0),

it is clear that an appreciable amount of broadening is present that

washes away the resolution. As such, it is impossible to actually

verify the computed transfer functions experimentally; moreover,

an accurate determination of ~cr is difficult and subject to

ambiguity.

Wemmer [40] lists a variety of possible sources for broadening--

magnetic field inhomogeneity, residual homonuclear or heteronuclear

dipolar couplings, second order quadrupole shifts, and T
l

lifetime

broadening--to which can be added the sample-shape dependence of

the bulk magnetic susceptibility [79]. Many of these peak plumpers

can be minimized, however, by time- and labor-intensive devotion

to experimental detail. Conscientious shimming can reduce the
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b) Simulation
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Figure 11.31 (a) The DQ chemical shielding powder 1ineshape for d-1

ferrocene (5% in normal ferrocene), obtained by Dave Wemmer [40]. (b)

A simulation assuming axial and aligned shielding and EFG tensors, v =Qc .
36 KHz, and a four - pulse DQ sequence (weak pulses: VI=20 KHz, t=25 )Jsec; H
strong pulses: Vl=~2.5 KHz, t=4 )Jsec). The positions of 0'1'0, and U

01 I were obtained from the unbroadened lineshape. 150 points wide

initially, it was smoothed 2000 times, equivalent to a convolution

with a Gaussian of standard deviation ~ 32 points. Experimentally,

101-0' II' = 6.5 ppm.
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magnet inhomogeneity to a fraction of a ppm, especially if both

room-temperature and superconducting shims are used. Linewidth

measurements at several different deuterium concentrations will

indicate if homonuclear dipolar coupling is an important source of

broadening. If so, the concentration can be lowered, although this

reduction entails a longer acquisition time. In a similar manner,

a study of linewidth vs. proton decoupling power will reveal if

heteronuclear di~olar coupling is a problem. A spherical sample

will minimize broadening due to the bulk susceptibility, and the

use of as high a magnetic field as possible will shrink second-order

quadrupole effects (as well as increasing the chemical shielding

range relative to the size of the dipolar couplings). Therefore,

despite the considerable effort required, I am confident that

someday someone will see a trace experimentally of the dips and

wiggles my computer programs predict.

2.10.3 Non-Axial But Aligned Tensors: A Simulated Lineshape for

At the suggestion of Dave Wemmer, the DQ transfer function for

B3tl01iHDO has also been computed. Chiba [80] has studied the

single-quantum spectrum of a single crystal of BBtl01iD20 and

determined the orientation and magnitude of the electric field

135

gradient tensor.

almost perfectly

At low temperature (~-1300C), the EFG tensor is

2axial (n
Q

~ 0.0) with e qQ/h = 243.5 KHz and the

unique principal axis parallel to the O-D bond--a result consistent

with a stationary D20 molecule. At room temperature, water

molecules make rapid two-fold jumps about their C2 axes. To

describe the effect of this motion on the spectrum, we first recall



that an axial EFG tensor V can be written in its principal axis

system X, Y, Z as
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o 0

1
- I 0

o 1

)
(II. 68)

i"<

In an axis system with x perpendicular to the C2 symmetry axis

but in the plane of the water molecule, y parallel to the C2 axis,

and z perpendicular to the plane of the molecule, the EFG tensors

of the two deuteron sites are

. 2e 1 2e 3 cose sine 0s~n -I cos 2 oj~l eqtt cos6 :106
2 1 . 2e (II. 69a)= cos e -- s~n2

0 -I

and

. 2e 1 2e -t cose sine 0s~n -I cos

ojv = eq ( - ~ cose sine 2e 1 . 2e (II.69b)
:::2 cos -I s~n

0 0 -I

where e is half of the D-O-D bond angle. When rapid 180 0 flips

occur about the Cz axis, the deuterons see the average of ~land

i
b
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0 0

)2 1 2
cos a-2" sin a 0

10 -2"

(II. 70)

The 0-0-0 bond angle is 105°; half of this is approximately

angle, 54.7°,
. 2 1 2 2

the magic for wh1ch cos a .. 3 and sin a .. 3·

With this choice of a,

1 0 0

V - ~ eq ( a 0 0 ) (II. 71)
ave

0 0 -1

Thus when the tensor is motiona1ly averaged, the coupling constant

2e qQ!h drops by a factor of two and nQ becomes approximately equal

to one, as Chiba indeed observed in the single-quantum spectrum.

Our interest lies, however, in the double-quantum spectrum

of B~IOjiHOO. The deuterium chemical shielding tensor at low

temperature is also expected to be axial and aligned with the 0-0

bond. The effect of motional averaging will be the same for this

tensor as for the EFG tensor; hence n ~ 1.0 at room temperaturecs

as well. That the two averaged tensors have the same principal

axis system orientation and the same asymmetry parameter means

that only one value of vQ corresponds to each value of cr--thus

T(VQ) and T(cr) are identical. functions.

. An optimized transfer function has naturally been calculated

and appears in Fig. 11.32. The value of VQc is 45 KHz IBO] and

the pulse sequence is as follows:
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Figure 11.32 An optimized four-pulse transfer function for preparation

and detection of deuterium DQ coherence in polycrystalline Ba(Cl03)2· HDO •

Additional numbers: v
Q

=45.6 KHz, nQ~l.O, n ~l.O, and 6v=O.c cs



f ~

I
\

Chemical Shieldino Powder Loineshopes for Bo eCI ~)z • HOO

(0) without pulse sequence
distortion
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(b) with pulse sequence
distortion

leI further broodenino
of (b)

Oil CTZZ

f
(
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Figure 11.33 Three simulated chemical shielding powder lineshapes

for Ba(Cl03)2oHDO. (a) An n = 0 lineshape without pulse sequence

distortion. (b) The lineshape in (a) multiplied by the transfer

function of Fig. 11.32.

of (b).

(c) A smoothed and hence broadened version



1. x-pulse 20 ~sec 25 KHz

2. delay T

3. x-pulse 20 ~sec 25 KHz

4. delay t > T2

5. x-pulse 3 ~sec 80 KHz

6. delay 30 ~sec

7. y-pulse 3 ~sec 80 KHz

8. delay 31.5 ~sec
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Appropriate distorted lineshapes with ncs = 1.0 appear in Fig. 11.33.

Notice that the "big dip" associated with \,lQ = 0 eliminates the

central peak of the undistorted powder pattern. The resulting

double-humped structure should be readily detected experimentally;

unfortunately, the experiment has not yet been done.

2.11 Lineshapes for General Tensor Orientations

Thus far we have only considered shielding tensor lineshapes

for systems in which the principal axis frames of the quadrupole

and chemical shielding tensors are aligned and for which ncs

In these cases, there is a one-to-one correspondence between 0 and

V
Q

and thus T(O) = T(\,lQ)' For the general case of non-congruent

tensors at an arbitrary relative orientation, the relationship of

T(O) and T(V
Q

) is not at all simple--a range of v
Q

values will

correspond to a particular value of o. As a result, each point

of T(o) involves an integral over portions of T(\,lQ) , and the two

functions can thus be very different.

The most general case of non-axial and non-aligned shielding

and quadrupole tensors requires a knowledge of the three Euler

angles which relate the two principal axis frames. To preserve

a shred of simplicity, however, we will assume that the chemical

shielding tensor is axially sYmmetric. The relative orientation

of the two tensor frames can then be specified by only two angles

r '

I
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a and S describing the position of the unique shielding axis in

the EFG principal axis system. [The coordinates of the shielding

"vector" are (sinS cosa, sinS sina, cosS).]

Calculation of T(O) for a given pair of angles a and S, a

-given set of parameters n
Q

, vQc ' 0 0 , and 0, and a given pulse

sequence proceeds as follows. (1) T(VQ) is determined for the

pulse sequence using either the two-term-Hamiltonian evolution

equations of Tables 11.6 and 11.7 or the exact computer results.

(2) A large number (~ 20 000) of nearly equally spaced points are

chosen on the unit sphere, each point representing a magnetic field

orientation characterized by polar angles e and ~ relative to the

EFG frame. (3) The values of V
Q

and 0 are calculated for each

141

point, i:e., each combination of e and ~ •

the quantities so obtained, then the value

(4) If VQ. and 0. are
~ ~

of T(V
Qi

) is added to

an output "bin" specified by the value of 0 .• (5) The average
~

contribution to each bin is calculated at the last step to yield

a point-by-point trace of T(V
Q
).

There are obviously too many variables in this procedure for

any sort of definitive study here; instead only a few examples will

be presented. We will once again assume vQc = 36 KHz and choose a

pulse sequence very much like the one discussed in section 2.10.1:

1. x-pulse 25 ~sec 20 KHz 5. x-pulse 3 ~sec 80 KHz

2. delay 6. delay 30 ~sec

3. x-pulse 25 ~sec 20 KHz 7. y-pulse 3 ~sec 80 KHz

4. delay 8. delay 31. 5 ~sec.



When the two tensors are axially symmetric and aligned, a familiar

T(a) and lineshape result (Fig. 11.34). Keeping both tensors

axially symmetric but separating the unique axes by 10° markedly

changes the appearance of T(a) and the powder lineshape (Fig. 11.35).

In particular; the big dip at a = cr fills in since intensity from

crystallites with vQ f 0 can contribute there. The same effect is

achieved by keeping a = S = 0° but setting BQ f O. Fig. 11.36

shows the shielding transfer function and lineshape for n
Q

= 0.5.

These powder lineshapes (and many more that could be generated)

are of interest for the following reason: if experimental resolution

were sufficiently good, the nature and location of chemical shielding

powder pattern distortions could possibly reveal the relative

orientation of the shielding and EFG tensors. Since the orientation

of the latter with respect to the molecule is often known or can be

surmised, one would therefore have a handle on the orientation of

the former relative to molecular axes.

This sort of information, however, is much more easily and

unambiguously obtained via two-dimensional NMR. Linder, Hohener,

and Ernst [81] have demonstrated the technique with some beautiful

2-D powder spectra, including a carbon-13 spectrum of benzene showing

13 13 Ithe C chemical shielding lineshape along one axis and the C- H

dipolar powder pattern along the other.

In our case, we would collect a single~quantum FID beginning

at the quadrupolar echo point for each value of T. A double Fourier

transform with respect to T and with respect to the FID time would

then yield the 2-D spectrum. Simulated lineshapes for the case of

axial and aligned tensors appear in Fig. 11.37 and Fig. 11.38, with
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Figure II.34 A chemical shielding transfer function and corresponding

powder lineshape for axial and aligned shielding and EFG tensors. A

four-pulse DQ sequence was used (weak pulses: Vl =20 KHz, t=25 ~sec;

strong pulses: v
l

=80 KHz, t=3 ~sec) with VQc=36 KHz.
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Figure II.35 The DQ chemical shielding transfer function and powder

lineshape for axial shielding and EFG tensors with unique principal

axes separated by an angle S=10°. Pulse sequence parameters as in

Figure II.34. Unlike Figure II.34, there is no dip in intensity at
-o.
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Figure 11.36 The DQ chemical shielding transfer function and powder

lineshape for an axial shielding tensor and an EFG tensor with nQ=0.5.

The z principal axes of the two tensors are aligned (6=0°). Pulse

sequence parameters as in Figure 11.34.



TWO· DIMENSIONAL POWDER L1NESHAPE

without pulse sequence distortion

146
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/ Single-Quantum Spectrum /
X 8 L 828-6396
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Figure 11.37 An idealized two-dimensional magnitude spectrum for a

polycrystalline deuterium sample--no transfer function distortions

are considered, and the shielding and EFG tensors are assumed to be

axial and aligned. A projection onto the single-quantum axis yields

the quadrupole powder lineshape; a projection onto the double-quantum

axis yields the chemical shielding powder lineshape.
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TWO-DIMENSIONAL POWDER LJNESHAPE

with pulse sequence distortion

/ Sing/e- Quantum Spectrum /
X B L 8 28 - 63 97

hc

Figure II.38 Another two-dimensional deuterium magnitude spectrum,

this time including the distortions inherent in a four-pulse DQ sequence.

As in Figure II.37, the shielding and EFG tensors were chosen to be

axial and aligned with VQc=36 KHz. The resulting loss of intensity

at VQ=O and cr=cr is apparent where the "ridges" cross.



and without the distortions caused by the pulse sequence described

earlier in this section. In both spectra, the projection along one

axis is the single-quantum quadrupole powder lineshape; the

projection along the other axis is the DQ chemical shielding

pattern.

2.12 Effect of the Second-Order Quadrupole Shift

One complication in the measurement of chemical shielding

tensors by double-quantum spectroscopy has only been alluded to

thus far, but will now be laid bare: the second-order quadrupole

shift Hamiltonian. The effect of this term is to increase the

spacing between the 11> and 1-1> energy levels; second-order

energy corrections for nQ = 0 are as follows [20]:
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m = -1

m = 0

E(2) 1
-1 ="2

E(2) = 0
o

2cos 6+1)

m = 1
2cos 6+1) (lI.72)

where Vo i~ the deuterium Larmor frequency. The second-order shift

thus acts like a chemical shift during free evolution and must be

taken into account for an accurate analysis of DQ powder lineshapes.

For simplicity, let us assume once again that the quadrupole

and chemical shielding tensors are axially symmetric and aligned.

The double-quantum precession frequency, E_l-El in the rotating

frame, is then



Now for some typical numbers. In a magnet for which the

The frequency per photon is half this quantity.
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(3 cos 8-1) +

2
vQ 2

(-._c_) (sin 8) (3
va

149

2cos 8+1) • (11.73)
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proton tarmor. frequency is 180 MHz, va for deuterium is 28.4 MHz.

If we consider rapidly spinning benzene or ferrocene, VQc = 36 KHz

and ~a = al l-a1 = -6.5 ppm = -185 Hz. The corresponding value of

aO is -2.2 ppm = -62 Hz, and we have

(II.74)

Even at a relatively low v Qc value of 36 KHz, the secpnd-order

shift term is non-negligible. The situation is worse of course

if the benzene or ferrocene rings are not spinning; in that case,

both aU and V
Qc

are twice as large, but the square of the

characteristic quadrupole frequency appears in the expression for

VnQ - cr = (-125 Hz)(3 cos 28-l) + (91 Hz) (sin28)(3 cos 28+l) •

(II.75)

t~ A few simulated lineshapes will bring Eq. 11.73 more fully to
L:;

life. For simplicity, no pulse sequence distortions are included.

Figure 11.39 displays the pure second-order quadrupole powder

!
L

lineshapes (aO = 0) for VQ: = 36 KHz (top) and 72 KHz (bottom).

The center peak of each corresponds to 8 = 90°, the peak on the
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2nd-Order Quadrupole Shift DQ Powder Lineshapes

a) vQc =36 kHz

axial tensors
eTo = 0 ppm

v0 =28.4 MHz

{'
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b) IIQc =72 kHz
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6 4 2 0 -2 -4 -6 -8
ppm from a-

Xil 8210-2729

Figure 11.39 Two simulated deuterium DQ spectra featuring second

order quadrupole powder lineshapes for different values of VQc ' No

chemical shielding anisotropy or pulse sequence distortions are

included and n
Q

is assumed to be zero. Overall linewidths are 1.07 ppm

in (a) and 4.28 ppm in (b).
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Chemical Shielding Plus 2nd-Order Quadrupole
Shift DQ Linllhapes

CIIIia I tensorl
V o • -2 ppm

1'0 • 28.4 MHz

b) I'oc· 36 kHz

c I I'oc· 72 kH.z
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Figure 11.40 Simulated and slightly broadened deuterium DQ powder

lineshapes featuring a chemical shielding anisotropy cr of -2 ppm
o

and varying amounts of second-order quadrupole broadening. The EFG

and shielding tensors are assumed to be axial and aligned, and no

pulse sequence distortions are included. As VQc increases, the

overall unbroadened linewidth drops from 6.0 ppm to 5.2 ppm to 4.0 ppm.
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Chemical Shieldin; Plus 2nd-Order Quadrupole
Shift DO Line.hapes
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b I I'Qc • 36 kHz
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Figure 11.41 Deuterium DQ powder lineshapes as in Figure 11.40, but

with a chemical shielding anisotropy 00=+2 ppm. As VQc increases, the

overall unbroadened linewidth expands from 6.0 ppm to 6.8 ppm to 9.2 ppm.
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right to e = e = 54.7 0
, and the low shoulder on the left to e =

m

00
• The overall linewidths are 1.07 ppm and 4.28 ppm respectively.

In Fig. 11.40, the value of aO is fixed at -2 ppm (roughly

the value for rotating benzene or ferrocene). The characteristic

quadrupole frequency V
Qc

varies from 0 KHz (top) to 36 KHz (middle)

to 72 KHz (bottom), substantially changing both the lineshape and

the overall linewidth (which drops from 6.00 ppm to 5.20 ppm to

4.00 ppm). In contrast, when aO equals +2 ppm, the effect of the

second-order shift is to stretch the powder lineshape, as illustrated

in Fig. 11.41. As V
Qc

increases from 0 KHz to 36 KHz to 72 KHz,

the overall linewidth expands from 6.00 ppm to 6.80 ppm to 9.22 ppm.

2.13 Double-Quantum Spin-Locking

In the spirit of Vega and Pines [64], Gold [68], and Hatanaka

and Hashi [62], I too have explored the eminently curious

phenomenon of double-quantum spin-locking. My sample was a single

crystal of d-18 hexamethylbenzene oriented for maximum quadrupolar

splitting (V
Q

= 16.7 KHz). Both the short-term and long-term

properties of DQ spin-locking were investigated.

The conventional single-quantum spin-locking experiment begins

with a 90 0 x-pulse to create transverse magnetization along the

y-axis of the rotating frame. A 90 0 rf phase shift leads to a

parallel configuration of HI and the magnetization. Then as long

as the rf field stays on, the decay of the locked magnetization

requires energy exchange with the lattice and is characterized by

a relaxation time TIp that is on the order of TI rather than T2 .

As noted in section 2.4.3, the DQ operators I 2 and Iz, z,3
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interconvert under rotation about the I 1 axis with twice the
z,

frequency of the SQ operators I 1 and I 1. Therefore a DQz, y,

preparation pulse followed by rf irradiation at a 45° phase shift

will result in double-quantum spin-locking. Although there is

no magnetization associated with DQ coherence, its decay is

nonetheless a type of Tl process.

When VI « V
Q

' spin locking can be understood as follows.

detailed in section 2.8.1, a weak pulse acts like a rotation about I. 3'
z,

converting the density matrix from I to I 2. Specifically,z,l z,

r
t

2
I 3 + -3 vQ I 3z, xy,

(II. 76a)

Shifting the rf phase by 45° converts this Hamiltonian to

2
v

'3C :::: (_1_)
VQ

2
I 2+-3 V

Q I 3z, xy, (II. 76b)

That both the phase-shifted Hamiltonian and the prepared DQ density

matrix are proportional to I 2 leads to locking.z,

A more involved analysis of an evolving spin-locked spin-one

system is made easier if the phase of the DQ preparation pulse is

45°. The prepared density matrix is then I 3. Its subsequentz,

evolution during a spin-locking y-pulse can be obtained from the

well-worn equations of Table 11.7 if it is assumed that ~v = 0:

L



a 3(t)z, [1 - cos 2rr Veff t]
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, '

a l(t)y,

a 2(t)y,

a 3(t)xy,

V
1= - ---- sin 2rr V

eff
tveff

2
V1= - 2 [1 - cos 2rr veff t]

, Veff

(II. 77)

For comparison, the evolution of a sing1e~quantum coherence I 1
y,

locked by a y-pu1se is given by the following set of operator

coefficients:

a l(t) =y,

I
h V

a 2(t) = -~ sin 2rr Veff ty, Veff

a 3(t)xy, . = -
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r
I

a 3(t)z, = - [1 - cos 2TI veff t] (II.78)

where again ~V is assumed to be zero. Note that the same four
r',

system, for which p = I y ' U =

operators are involved in both cases, including I 3' the operatorxy,

(The situation is definitely moredescribing quadrupolar order.

I , d h' ,1comp ~cate t an ~n a sp~n - 2"

-WI I y ' and no evolution occurs other than relaxation.)

The extent of double-quantum spin-locking as a function of

time can be monitored by first applying a second DQ preparation

pulse of 45° phase to rotate I 3 back to I l' waiting a time onz, z, .

the order of T2 for extraneous coherences to fade, and then applying

a 90° pulse to create measurable single-quantum coherence. In this

fashion the evolution of I 3 was put under surveillance for bothz,

small and large values of the spin-locking time. For short times,

the detected magnetization should be proportional to a 3(t):z,

a 3(t) =z,

2
VI

1 - --2'='" [1 - cos 2TI Veff t]
Veff

(II.79)

The oscillations in the magnetization are in fact seen experimentally,

as shown in Fig. 11,42, along with a simulation. The spin-locking

field vI was roughly 60 KHz, hard to measure exactly due to pulse

drooping. Agreement of simulation and experiment can be optimized

b

by varying the vI value used in the calculation; despite the stigma

of a "fudge factor", the close spectral match is gratifyi~g.

p
r-;
U
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Double-Quantum Spin Locking in a d-18 HMB Sinole Crystal

0) Experiment

1.0

-~
'c
:s
>-~ O.OIL-_...J. L-__..L.__...L.__--1 .l-..__-'-__~__.......IL._.~---'

.:
:c..
cz
itO
c
0'en

b) Simulation

T (I&sec)

I.OIL.----L--~:---...J....---:="=:---.L--~=-----.L.---::4I:;:O:---~---:-:!50

Pulse Sequence: -60 60

T

IIg • 16.7 kHz

611· 0.5 kHz

lCILIZ9-1546

Figure 11.42 Short-time oscillations in DQ coherence a 2 duringz,
spin-locking. The sample was a single crystal of perdeuterated

hexamethylbenzene oriented such that V
Q

=16.7 KHz. The spin-locking

field was ~ 60 KHz for extremely short T values, but drooped to

~ 50 ~1Z as T increased. This drop in VI is mirrored in the experimental

plot by a decreasing oscillation frequency as T grows larger. 60 KHz

was chosen for v1 in the simulation.



For longer spin-locking times, these oscillations damp out due

to inhomogeneities in H1 and HO' but a value for the doub1e-

quantum T
1P

can be obtained from the slow exponential decay of the

detected magnetization. I found (T
1P

)DQ = 38 msec for perdeuterated

hexamethy1benzene. In contrast, a conventional single-quantum

spin-locking experiment gave (T
1P

)SQ = 64 msec, a factor of 1.7

times longer.
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CHAPTER III

CONTINUOUS-WAVE NMR WITH PHASE-CYCLED PULSES

3.1 Introduction

Time now for a little relaxation before making the leap to big

spin systems in Chapters IV and V. Yes, for the first and only time

in this dissertation, finite Tl and TZ values will be more than just

a vaguely troubling complication in the experimental verification of

our calculations. Instead, relaxation times will be explicitly

included in our computations, although in a very simple-minded way •.

The problem to be addressed in this chapter is as follows:

can a particular multiple-quantum order (all transitions that involve

a specified value of ~M) be selectively excited in some sort of cw

NMR experiment. If this feat is possible, such selectivity would

circumvent the major drawback to cw multiple-quantum experiments:

overlap of the sharp higher-quantum lines of interest with the

saturation-broadened remains of lower-quantum transitions. The

equations developed will be applicable to any order of coherence,

but the pulse sequences these equations inspire will be tested on that

scarred veteran from Chapter II, the three-level system.

The detailed theory of lineshapes for cw multiple quantum NMR

was first worked out by Yatsiv [8Z] in a paper not noted for its

appeal to the casual reader. More accessible descriptions were later

put forth by both Anderson, Freeman, and Reilly [6] and Cohen and

Whiffen [9]. They likened cw MQ NMR to a special case of nuclear

double resonance in which the same rf field is used both to perturb

energy levels (mixing eigenstates of the internal Hamiltonian with

159



different values of M) and to observe transitions between the

levels.

The conceptual link to double resonance suggests the use of

multiple frequencies for MQ NMR. This approach was first described

by Yatsiv, who analyzed the effect of audio-modulated rf irradiation

(giving rise to frequencies w, w-w d' and w+w d) on the size ofau au

double-quantum intensity. For three states la>, Ib>, and Ic> in

successive Zeeman manifolds, one can enhance the two-quantum transition

la> ++ Ic> by setting w ~ w /2 and w d ~ Iw b-~ 1/2. (SQ excitationac au a bC

arises if the rf frequencies resultin2 from modulation are exactly

resonant with the single-quantum transitions.) Cohen and Whiffen

pointed out that rf frequency modulation or audio-oscillation of H
O

can also provide a spread in 6w values," and they used the latter method

to boost the double-quantum transition in an AX system.

Our approach to the problem of enhancing MQ transitions will be

to modulate rf phase instead of amplitude or frequency. Indeed, the

relationship between rf pulse phase and the phase of aM-quantum

coherence will be the recurrent theme of our manipulations. As

discussed at length in section 4.6.2, a change in rf phase of ~~

results in a coherence phase change of (~)(~~). The following

scenario can thus be put forth. Imagine a system of three coupled

3protons or just a single spin-I nucleus. First apply a very weak

pulse with ~ • 0° to an initial density matrix Po proportional to

I. The evolution that occurs can be described schematically asz

follows:

160
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where Uo is a pulse propagator for ¢ = 0°, PnQ is a shorthand for

the. operators representing n-quantum coherence, and c is a smalln

number proportional in some loose sense to the amount of n-quantum

coherence created. Now consider applying a second pulse to the

system, but phase-shifting it by 120°. The density matrix after

this second pulse is given by the following, where only linear terms

in the small quantities are retained:

161

+ [ P + i2n/3 P +' i4n/3 P + P ]Co OQ e cI IQ e c2 2Q c3 3Q . (111.2)

Note that the coherences created by each pulse simply add in this

linear regime. The effect of a third pulse with ¢ = 240° is to

create coherences given by

(111.3)

When the three sets of coherences spawned by the three pulses are

added together, the coefficients for single- and double-quantum

coherences vanish since

In comparison, zero- and three-quantum coherences add constructively,

as illustrated schematically in Figure III.L (If the system under
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One - Quantum
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Two-Quantum
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Figure 111.1 A schematic depiction of the coherences resulting

from a 3k-quantum selective sequence. Each arrow represents the

overall phase ~M¢ of the ~-quantum coherence produced by a pulse

of phase ¢. For one- and two-quantum orders, these arrows add to

zero in the complex plane; the selected 3Q arrows add constructively.
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consideration is a single nucleus, then zero-quantum transitions do not

exist.) The sequence is in fact 3k-quantum selective, with

k = 0,1,2, ..••

This admittedly simplistic argument at least makes the selective

preparation ofn-quantum coherence seem qualitatively possible.

Exciting the coherence is only half the battle, however, because

ultimately the transverse magnetization associated with single-

quantum transitions must be affected as well or nothing is detected.

Only a few preliminary calculations are included here--much work

remains to be done to fully investigate the use of weak pulses in MQ

NMR. The following scatter of topics will be considered in this

chapter. In section 3.2, the frequency spectrum of a phase-shifted

rf pulse cycle is analyzed with an eye towards multiple-quantUm

applications. In section 3.3, the Bloch equations are put to use in

a saperoperator describing the cw NMR lineshape of our favorite three-

level system, the deuteron. A method for calculating the steady-

state response to phase-shifted rf cycles is presented in section

3.4, and the method is applied to deuterium in section 3.5.

3.2 The Frequency Spectrum of a Phase-Cycled Sequence

Consideracontinuous succession of rf pulses, each with the same

length and wI value, but with phases incremented by 2n/N radians at

each step. As discussed earlier, this sequence is expected to be

Nk-quantum selective. We now wish to see if this selectivity is

mirrored in frequency space.

The sequence can be decomposed as shown in FigureIII.2 into the

sum of N periodically amplitude-modulated pulse trains with constant
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Figure 111.2 A continuous but phase-cycled rf pulse can be treated

as a sum of amplitude-modulated components. each with constant phase.
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phase. Let Sk(t) describe the on-off envelope of component k, and

let W
o

be the rf carrier frequency. The sum of the N components

yields the complete waveform f as a function of time:

N
f(t) = E· Sk(t) coS(Wot + <Pk )

k=l

165

1 N
="2 [

k=l
(III. 5)

where <Pk = 2TIk/N. We are interested in the Fourier transform g(w)

of the function f(t):

dt,

'(III.6)

"where "x" stands for convo'lution [78] and, Sk (w) is itself the Fourier

transform of Sk(t):

co

= L Sk(t) e-iwt dt
_co

The integral in Eq. 111.6 can be simplified by keeping only the

non-oscillating term for Wo > 0:

(III. 7)

1 i(Wot+<Pk) -i(wot+<Pk) -iwt
e + e e dt =

..0:>

With this reduction,

(III. 8)



(III. 9)

'"We turn now to an evaluation of Sk(W) , noting first that
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A

where T is the length of each pulse. Sk(w) can then be written as

follows:

(III. 11)

With u = t + (k-l)T,

00

Sk(W) = ~Sl(u) exp{-iw[u-(k-l)T]}du
-00

- exp[iw(k-1)T] Sl(W) (III. 12)

The Fourier transform of the amplitude function for component k is

simply a phase factor times the Fourier transform of the amplitude

function for the first component.
A

Now for the evaluation of Sl(W). Over one cycle, Sl(t) = 2w1

for 0 ~ t ~ T and Sl (t) = 0 for T < t < NT. The periodicity of Sl (t)

implies that Sl(t + NT) = Sl(t). Straightforward use of the Fourier

series expansion yields



where w = 2n/NT is the angular cycle frequency and
c

f ~

i

r
r
r

sin nw t +
c

00r Bnn=l
cos nw t

c
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(III. 13)

(III. 14a)

Alternately,

(IlL 14b)

(III. 14c)

with

00r
n=-OO

c
n

inw tce (111.15)

l The Fourier transform of Sl(t) is then simply

(III.16a)

(III.16b)

00

= I: c
nn=-OO

o(w-nw )
c

(IlL 17)

We now can plug Eqs. 111.12 and 111.17 into Eq. 111.9 and obtain



N =
= 1 r exp[iw(k-l)'r] ( r c o(w-nw» x

2 k=l n=....co n c
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i4>
ke o(w-wo) (111.18)

The convolution in g(w) can be evaluated at this stage. Recalling

that [78]
( 
i 
I

!

we have

(III. 19) J -

g(w) 1= -2

1... -
2

= N i4> 11: c r e' k exp[iO(k-l)T] o(O-nw )
n... ""CO n k=l.al c

1
="2

= N
! cn !.

n"'-= k=l
exp( 27T

N
ik) exp(27Tin~k-l» ~[( )]

U w- wO+nwc

(III. 20)

I
b

where the relations WcT = 27T/n and 4>k = 27Tk/N have been used.

onward,

Mushing



r, g(w) 1= -
2
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(III. 21)

At this juncture~ a crucial simplification takes place:

brackets equals zero unless

the sum in

( .

I

n+l = mN

or

m = 0, ±l, ±2 (III. 22a)

n· ••• -(2N+l), -(N+l), -1, N-l, 2N-l, ••• (III.22b)

When these conditions are met, the sum in brackets equals N.

From this point on, manipulation of g(w) is straightforward

algebraic slogging. The result (at last) is

i (7f) i37f/Ns n - e
N

co

n-.JJQ

1
(n) 0 [w-(wo+nw )] o.

c n,mN-l
• (III. 23)

The component magnitudes are given by

The two largest (and closest to wO) are as follows:

. (III.24)

w • w -wo c (III.25a)



Ig{w) I 1=--
N-l

[N • (7T) ]WI 11" S1n N
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(III.25b)

r,

r
I

Although the frequency spectrum of our phase-modulated pulse contains

an infinite number of terms, there is a pleasing relationship concern-

ing these two. 'If one adds (N-l) photons of frequency wO-w
c

and one

photon of frequency Wo + {N-l)wc ' the result is NwO--exact resonance

with the N-quantum transition. Moreover, the intensities of the

[1

Fourier components at w· wO-wc and w= Wo + {N-l)wc are in precisely

the correct ratio for this combination. This seems to auger well for
( -

N-quantum selectivity. I
Figure Ill.3a displ~ys Ig{w) I vs. w for N=4. It was calculated

not from Eq. 111.24 but for convenience by a fast Fourier transform

of the pulse phase envelope (using a spectrometer computer). The

unavoidable restriction of a finite sampling length introduces some

small peak amplitude error, particularly at larger frequencies, but

Fig.III.3a is qualitatively correct.

The frequency spectra of fancier pulse sequences have also been

investigated. It has been shown in the theory of selective excitation

by pulsed NMR that more complicated phase patterns than a simple

"forward roll" lead to better selectivity [55]. To be specific, the

phase-cycling we have considered thus far is described as being zero

order selective because the zero-order term X{O) in the average

Hamiltonian expansion [24,53,54] of the pulse propagator is purely

nk-quantum selective. A first-order selective sequence results, i.e.,

an additional term in the average Hamiltonian is rendered nk-quantum

selective, when the pulse cycle is symmetrized. [Symmetrization

[

!
G

L

fc
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p, Frequency Components of Phose-Cycled 4k-Quontum Selective Sequences

"=-1

(0) zero order

n=3
"--5

(b) first order

( ) th"rd deC I or r

Ii I I I •I I. I I Ii I
I

(

I
\"":,

L

xBL 8&-6548

Figure 111.3 The frequency components of three phase-cycled 4k-quantum

selective cw pulse sequences with the same overall cycle time. (a) A

simple phase roll (0123) is zero-order selective. The intensity at

w = w - w (n = -1) is three times that at w = w + 3w (n = 3).
o c 0 c

(0) A first-order sequence results when the phases are symmetrized:

(0123) (3210). (c) A second level of phase cycling combined with a

second symmetrization yields a 64-step third-order sequence: (0123)

(3210) (1230) (0321) (2301) (1032) (3012) (2103) (3012) (2103) (2301)

(1032) (1230) (0321) (0123) (3210).
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entails following a pulse cycle by its mirror image in time. For

example, a three-quantum zero-order selective cycle can be symbolized

by (012), where each integer j signifies a pulse of phase 2TIj/N

radians, with N=3 in this case. The corresponding first-order

selective symmetrized cycle is written (012)(210).] Combining

symmetrization and additional phase-shifting leads to higher orders

of selectivity: the 36-step cycle (012)(210) (120)(021) (201)(102)

(201)(102) (120)(021) (012)(210) is third-order selective.

Figure III.4 illustrates these cycle-building concepts schematically

for n=4. The pulse sequence in Fig. III.4a is the simple progression

of phases examined earlier; its frequency spectrum appears in Fig.

III.3a. Sequence ~is first-order selective and its frequency spectrum

(calculated numerically as the fast Fourier transform of its pulse

phase envelope) is displayed in Fig. III.3b. (More accurately, Fig.

III.3b shows the frequency spectrum of a first-order sequence with the

same cycle time as sequence a; hence the individual pulses are half as

long.) Similarly, the frequency spectrum of a third-order sequence

like Fig. III.4c but with a cycle time equal to that of sequence ~

(entailing pulses one-sixteenth the length of those in~) is presented

in Fig. III.3c. It is immediately apparent that symmetrization of the

pulse sequence is mirrored by a symmetric distribution of frequencies

about wo' but other than this observation, no physical insight into the

reasons for improved selectivity as we go from ~ to £ is available.

(Components with the largest intensity tend to move outward from

Wo in progressing from ~ to £, but the relationship of this

redistribution to multiple-quantum selectivity is not obvious.)
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r~ (o) zero-order sequence (16 cycles)
I

2700~
1800
90°

0°

(b) first-order sequence (8 cycles)

2700~
180°
90°

0°

(c) third-order sequence (I cycle)

180°
90°

0°
270°
180°
90°

0°
xaL 822-B060

Figure III.4 A representation of the rf phases used in the zero

order, first-order, and third-order 4k-quantum selective sequences,
of Fig. III.3. There is. one.important difference, however -- in

Fig. III.3, the overall cyqle times are the same for each sequence;

here the individual pulse lengths are equal.
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3.3 Calculation of Conventional cw NMR Spectra for a Three-Level

System

Now that phase-cycled pulse sequences have been analyzed in

frequency space, it is time to calculate their actual effect on spin

systems. We wiil be interested in the steady-state response to a large

number of pulse cycles; therefore the equation of motion for the

density matrix must be modified to take relaxation into account

[20]:

r
i
I

f '

~

~ = i[p,K] - r (p-p )
dt 0

(III. 26)

(~,
I

The mysterious r is the relaxation superoperator; when it is expressed

as a matrix, p must be expressed as a column vector. In a similar

fashion, a Hamiltonian superoperator can be defined:

x p _ i [p,K]

and thus

(III. 27)

~ ~ ~"* = (K-f)p + r Po (III. 28)

The introduction of relaxation and the concomitant use of

superoperators greatly increases the size of the calculation. If

there are L spin states, the undamped equation of motion, dp/dt =

i[p,X], requires complex LxL matrices for p and X. In contrast,
~ ~ 2 2

superoperators X and r are on the order of L x L matrices and

I
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quickly become enormous as L increases. In the interest of finite

computing time (and to benefit from a well-established formalism),

we will therefore focus on the familiar case of L = 3.

Relaxation will also be approached in the spirit of simplicity

by making use of the Bloch equations [11,20-22], which describe the

decay of coherences to zero at a rate characterized by a spin-spin

relaxation time T2 , and which describe the return of populations to

their equilibrium Zeeman values in terms of a spin-lattice relaxation

time Tl • As such, our analysis is valid only for isolated three-level

systems, such as deuterons in low isotopic abundance in a proton-decoupl~d

solid or adrift on molecules dissolved in a liquid crystal solvent.

In particular, phenomena involving the establishment of a spin

temperature, such as spin locking, cannot be handled at all.

With these limitations in mind, let us begin our investigation of

a relaxable three-level system. The Ip,i operators introduced in

Chapter II will again serve as a framework for our algebraic constructions.

The density matrix p will be expressed as a vector with eight

coefficients for the operators I l' I 2' I l' I 2' I 3' I l'x, x, y, y, xy, z,

I 2' and I 3 that span the three-level spin system. (The operatorz, z,

I = I 3-1 3 is used instead of I 3 and I separately in orderxy , 3 x , y , x , y , 3

to minimize the size of the superoperator matrix.)

The Hamiltonian to be considered is"a familiar one:

(III. 29)

Because X and p are both expanded in terms of I . operators, the
P,l.

commutation rules of Table 11.2 can be used to evaluate [p,X].



As for relaxation, let us first distinguish single-quantum and double-

quantum spin-spin relaxation times, TZSQ and TZDQ (expected to be

comparable quantities). Furthermore,. let us define relaxation rates

Rl = l/Tl , RZSQ = l/TZSQ ' and R2DQ = l/T2DQ • Equation rrr.Z8 for the

evolution of p can then be written as eight coupled differential

equations:

da
xy,3 = R
dt -vl ax,Z - 1 axy,3

da 2
dZt' = vl a 2 + 2!1v a - R ay, z,3 2DQ z,2
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In terms of a matrix and vector description in the operator basis

set described above,

--
W'ith

, (III.31)

T
P • (a l' a 2' a l' a 2' a 3' a l' a 2' a 3)x, x, y, y, xy, z, z, z,

(III. 32)

and

T
~ • (0, 0, 0, 0, 0, ~, 0, 0) , (111.33)
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Before pondering the effects of phase-cycled pulses, let us first

consider the simplest case of spin-system response to rf irradiation

with constant phase. The steady-state solution is easily found by

•
setting all elements of p equal to zero:

n
r
P
\

o = Mp + r or
-1

p = -M r- (III.35)

A standard matrix-inversion routine [52] can be used to solve for

the steady-state elements of p as a function of vQ' VI' and ~v.

Spectra can be generated by calculating the value of ay,l' the single

quantum coherence perpendicular to the applied field, versus ~v for

fixed values of VI and vQ. FigurenI.5 displays four such spectra. In

each case VQ = 30 KHz, Tl = 50 msec, and T2SQ = T2DQ = 1 msec, roughly

appropriate values for deuterium in solids. As vI increases, the

single-quantum lines broaden and saturate, and as expected, a sharp

double-quantum peak appears at ~v = O. A different view of the

process can be found in Fig.III.6: spectral intensities at the

single quantum transition frequency (~V=±VQ) and the double-quantum

frequency (~v=0) plotted as a function of VI.

These results are well known and are included here to illustrate

both the basic computational approach and the basic problem of cw

multiple-quantum NMR: high-quantum transitions of interest are mired

in a morass of broadened lower-quantum transitions. Cycling of rf

pulse phase will improve matters, but before spectra are displayed, a

means for determining the steady-state response of the system will be

presented.

( ,

1

!
b
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Normalized Deuterium CW Spectra

r"
\

(a) VI =0.01 kHz (b) VI =0.1 kHz
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Figure 111.5 Four deuterium cw spectra, calculated in steady state

(p = 0) with no rf phase shifts and each normalized to the same height.

As VI increases, SQ transitions saturate and broaden while a sharp DQ

transition grows in. System p.arameters are as follows: V
Q

= 30 KHz,

T
I

= 50 msec, T2SQ = T2DQ = 1 msec. Maximum intensity for each spectrum

in terms of an ay,l value: (a) 0.0225, (b) 0.0078, (c) 0.0016,(d) 0.0022.
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Figure 111.6 Steady-state spectral intensities at the SQ and DQ

resonance frequencies of deuterium as a function of rf pulse strength

Vl in conventional cw NMR. The system parameters are those of Fig.
III. 5.
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3.4 Calculating the Steady-State Response to Phase-Cycled rf

Irradiation

The starting point for calculating the steady-state response to

phase-cycled irradiation is the superoperator matrix equation discussed

in the last section:

•
p = Mp + r (IIiIi,36)

This equation can be formally integrated over a pulse length T to

give

peT) = exp(MT)p(O)+M-l[exp(MT) - l]r
:=:: ::: ::: ~ -

This can be written as

peT) = B p(O) + C r- --
where

S = exp(MT) and C = M-l(B-l)

(III. 37)

(III. 38)

(III.39)
:::: - -- -

To select double-quantum coherence in a three-level system requires

only two rf phases and thus two Hamiltonians:

(III. 40a)
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The damped evolution of p under Xl is described above. An analogous

set of equations holds for X2 • Let N be the superoperator matrix

corresponding to M but with the sign of VI reversed. The integrated

equation of motion for p is then

with

nI .

F = exp(NT) and G = N-I(F-I)- -- -
After two pulses described by Xl and X

2
, we have

p(2T) = ! p(T) + ~ :- -
= F B p(O) + Fer + G r

Similarly,

p(3T) = B F B p(O) + B Fer + B G r + C r

(II. 42)

(III. 43)

(III. 44a)-- - -
and



F B F B p(O) + F B F C r + F B G r + F C r + G rp(4T) = - -- - ::: ::: ...... - ..................- - - ...-
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n
I
\

_ L2 p(O) + (L + l)(F C + G)r (III.44b)

I
C:;

where L = F B = exp(~) exp(N). Continuing the process one finds... - -- - - ... ...

p(2nT) L
n p(O) (Ln- l n-2 + +L+ l)(F C + G)r= + + L ...- ... ... :::: :::: - ... -- ... - - ...

= L
n p(0) + (L_l)-l (Ln_l) (F C + G)r (III. 45)

:::: ::::: ::::: :::: :::: :::: :::: - --
where the sum rule for geometric series is applied to the matrix

L.

In the steady-state limit at long times, the form of p must be

independent of initial conditions--all p(O) density matrices for a

3iven system will evolve to the same final p(2nT). (Actually the

steady-state p will oscillate between two sets of operator coefficients

corresponding to the two pulses in the cycle. If we look at the

system only after an even number of pulses, this steady-state oscillation

will not be seen.) Because the final density matrix is independent

of p(O), it must be the case that Ln
~ 0 as n ~ 00. With this

as '"

assumption, the steady-state density matrix after an even number of

pulses is given by
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= -[exp(NT) exp(MT) _ 1]-1
::::s :::: ~

x {exP(NT)M-l [exp(MT)-l] + N-l [exp(NT)-l]}r
:::: ~ ~ ~ ~ ~

As a check on this formula, note what happens when N = M:

= -[exp(2MT)

x {exp(MT) [exp(MT) - 1] + exp(MT) - l}M-l r
:l:,

(III.46a)

(III. 46b)

r
! :

= [exp(2MT)

-1= M r

1]-1 [exp(2MT) --
(III. 47)

the steady-state result for constant rf phase derived earlier.

Equation III.46b is an exact solution for p ,but it was notss

used in the calculations reported here because a computer algorithm

for diagonalization (and subsequent exponentiation) of a non-hermitian

matrix was not available at the time. Instead the first-order

response to short time intervals was compounded to simulate continuous

evolution. Starting with

•
p = M P + r

:::: -
one can write for small ~t,



I -

;

•p(6t) = p(O) + p 6t

= (1 + M 6t) p(O) + (6t)r

- p p(O) + s

with

p = 1 + M 6t

and

s = 6t r-

Continued evolution under the same pulse results in

185

(III. 48)

p(26t) = p2 p(O) + p s + s
~ .. - -

p(36t) = p3 p(O) + (p2 + P + l)s
::: - - ::: -- -

p(m6t) pIn p(O) -1 m (III.49)( = + (P-1) (P -1) s
! - ~ ::: - ~ -- -\-;

!----'
! : In analogous fashion, evolution during X2 is described by
U

p(rn6t) QIn p(O) (Q_l)-l In (III. 50)= + (Q -l)s- ::: - ::: - -- -
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where Q = 1 + N ~t. l~ith the additional substitutions B = pm,- - - - -- - - - -
C = (P_l)-l (B-l)~t, F = Qm, and G
~ ~::::s: ~~ ~ ~ ~

= (Q_l)-l (F-l)~t, the two
~ ::: AI ~

n
i

equations of evolution become, for T = mnt,

= B p(O) + C rp(T) -- - -- for (III.Sla)

p(T) = ~ p(O) + ~ E for X = X2 (III.Slb)

These equations are used to estimate the actual evolution during a

pulse and are most accurate when m is large. To calculate the

steady-state response to phase-cycling, note that Eqs. III.Sla

and III.5lb are identical in form to the previously examined Eqs.

111.38 and III.4lb. Hence the solution in Eq. II1.46a is applicable

with the appropriate substitutions. One finds

= -[(1 + N~t)m(l + M ~t)m _ 1]-1
::::=::::s ~ ~ :::

(III. 52)

where it should be mentioned again that each pulse is divided into m

small steps for the purpose of calculating the evolution. A comparison

of this approximate formula with the exact solution of Eq. 111.46b

reveals that the difference lies in the use of (1 + M ~t)m here to
;ll ~

simulate exp(MT), plus similar relations for N. Expansions of the two
~ III

expressions,



n
I

r'! .
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(1 + M ~t)m = 1 + ~t M+ (m) em..-l) ~t2 M2 + ...- ::: ~
2 :::-

1 1 2 - T~t)]M2 (III. 53a)= + TM + [- (T + ...
::: z·· 2 :::

and

exp(MT) I 2 2
= ~ + T~ +"2 T ~ + ... (III. 53b)

indicate that when m is large, the approximate formula should perform

satisfactorily.

3.5 Phase-cycled cw Spectra for a Three-Level System

With Eq. 111.52 as the heart of our computer program, we now

hope to generate doub.le-quantum selective spectra in a three-level

system using phase-cycled cw NMR. For system parameters we will

choose vQ = 2 KHz, Tl = 50 msec, and T2SQ = T2DQ = I msec. The time

increment ~t over which evolution is assumed to be linear will usually

be set to 2 ~sec. A typical pulse length will be 32 ~sec, giving

a cycle time t of 64 ~sec (only two-pulse zero-order-selective
c

cycles will be considered here).

FigureIII.7 displays coefficients a I and a 2 as a function
y, . z,

of the number of applied cycles (0-400) forlvi = 2 KHz, ~v = 0

(double-quantum resonance), and cycle time t = 64 ~sec. Initial
c

oscillations of each coefficient are damped by the relaxation terms in

the Hamiltonian as the system approaches a steady state. Note that

the final magnitudes of a I and a 2 in this plot are roughly they, z,

same size.
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Figure 111.7 Evolution of SQ and DQ coherence (a 1 and a 2y, z,
respectively) when a phase-cycled cw pulse is applied at the deuterium

DQ transition frequency (~v = 0). Two 32 ~sec pulses, differing in
ophase by 180 , comprise each cycle. The initial density matrix is

Iz,l' and relaxation times are as follows: TI = 50 msec, T2SQ = T2DQ =
I msec. The time increment over which evolution is assumed to be

linear is 2 ~sec.



For comparison, Fig. 111.8 depicts coefficients a let) and
y,

az ,2(t) for single-quantum resonance: ~v = VQ = 2 KHz with Ivll =

2 KHz and t = 64 ~sec as before. The long-time value of a 2 isc z,

essentially zero, as we would expect, but the final value of ay,l

is larger in magnitude than the corresponding a 1 value for ~v = O.y,

As this runs counter to our expectations for an alleged double-

quantum selective sequence, the steady-state spectrum (a 1 vs.y,

~v) has also been computed and appears in Fig. 111.9 along with a

plot of a 2 vs. ~v. It can be seen that the spectrum is non-zeroz,

but essentially flat over the range of ±4 KHz, except for a dip at

the double-quantum transition, ~v = O. Nothing distinguishes the

single-quantum transitions at ~v • tv, but matching the dip at

~V = 0 is a peak in the plot of a 2 vs. ~v. Apparently the
z,

creation of double-quantum coherence ·causes a reduction in the SQ

"background" signal, a hole-burning that could be measured

experimentally.

Three similar steady-state spectra have also been computed.

Figure 111.10 features the same system and the same pulse cycling as

Fig. 111.9; the only difference is the range of ~v values shown:

189
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C

±32 KHz instead of ±4 KHz. The spectrum looks considerably different,

crossing zero at ~v • ±(l/t ) • ±15.6 KHz. This suggests that ifc

*v is the width of a desired spectrum, the cycle time t c should

always be chosen such that v* t c « 1.0.

FigureIII.11 displays the same limited range of ~v values as does

Fig. III •9 but with Ivll equal to 1.2 KHz instead of 2 KHz. For this

less-than-optimal pulse strength, the amounts of SQ coherence created
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Figure 111.8 Evolution of SQ coherence (a 1) and DQ coherence
o y,

(a 2) when a 0 - 1800 phase-cycled cw pulse is applied at az,
deuterium SQ transition frequency (~v = v). Pulse and system

Q
parameters as in fig. 111.7.

H

Q



r~

l .

f'
I .

0.10

0.05

Stead y State

111,1 = 2 kHz

t c = 64 ",sec
lIQ = 2 kHz

191

XBl 829-11690

-2 o
~11 (kHz)

2 4

Figure III. 9

I

h

Steady-state values of a 1 and a 2 as a function of
o 0 y, z,

rf frequency following 0 - 180 phase-cycled cw excitation. Pulse

and system parameters are those of Fig. 111.7. Note the dip in SQ

intensity (a 1) at the double-quantum resonance frequency (6V = 0)y,
and the lack of an.SQ intensity change at the single-quantum reson-

ance frequencies (6v = ±V
Q
). The spectral "noise" is a numerical

artitact.
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Figure 111.10 Steady-state values of a 1 and a 2 as in Fig.
y, z,

111.9, but over a much wider range of frequencies. The value of

a 1 is zero at I~vl = lit (15.625 KHz) and I~vl = 2/t. In
y, c c

contrast, the value of a 2 is essentially zero except at
z,

I~vl = nit, n = 0,1,2.
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Figure 111.11 Steady-state values of a 1 and a 2 followingy, z,
0

0
- 1800 phase-cycled cw excitation for a smaller value of l~v1i

than in Fig. III. 9. The dip at !J.v = 0 is much less pronounced.
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Figure 111.12 Steady-state values for a 1 and a 2 at the double-y, z,
quantum resonance frequency (~v = 0) as a function of Ivll for

o 0o - 180 phase-cycled cw excitation. Relaxation times are as in

Fig. III. 7.
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Figure III.13 The steady-state value of ay,l at a single-quantum

resonance frequency (~v = V
Q

) as a function of Ivll; a
z

,2 is

essentially zero at this frequency and range of Ivll values and

thus does not appear. Compare with Fig. III.12.
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Figure 111.14 Steady-state values of a 1 and a 2 followingy, z,
00

_ 1800 phase-cycled cw excitation. The value of Ivll was

chosen to maximize the dip in SQ coherence at ~v = O. Notice,

however, that. the dip is broadened compared to those in Figs.

111.9 and 111.11.



r~

l

IF ..;.
f ..

€
!
I
l j

197

at ~v = a and ~v = VQ are roughly equal, and the double-quantum dip

is very small. Such ineffectual behavior could be predicted from

plots of steady-state a 1 or a 2 values as a function of VI for. y, z,

both ~V = a and ~v = V
Q

• (See Figs. 111.12 and 111.13). These graphs

suggest that Ivll :::: 4 KHz is the best choice for selective depletion

of the SQ signal at the double-quantum transition for the parameters

chosen; a spectrum is shown in Fig. 111.14.

3.6 Conclusions

As hoped, the preliminary simulations of phase-shifted spectra

do exhibit two-quantum selectivity, although manifested as a dip

in absorbance rather than a peak. Of course, only a few pulse

parameter "knobs" have been turned in this study. A more detailed

investigation using the mathematical framework developed in the

chapter, perhaps on a system of three coupled protons and definitely

making use of standard subroutines for the diagonalization and

exponentiation of a general n x n matrix, should generate better

insight and better selectivity.
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IV. BEYOND THE THREE-LEVEL SYSTEM: FUNDAMENTALS OF MULTIPLE-QUANTUM NMR

4.1 Introduction

This chapter and the remaining one address a second area in

which multiple-quantum techniques have proven useful: the proton

NMR of molecules dissolved in nematic liquid crystal solvents and

the NMR of liquid crystal molecules themselves. The advantage of

multiple-quantum spectroscopy here is the sp~ctral simplification

it provides, allowing the determination of structural and

conformational parameters.

Our focus will be on molecules with four to eight coupled

protons (16 to 256 spin states, entailing 256 to 65536 density

matrix elements). Such systems can formally be described in

terms of fictitious spin-1/2 operators [65-67]:

n
U
n
1

( ,

I~-k = t (Ij><k/ + /k><jl)

I;-k = _ ~ (Ij><k/ - Ik><j I)·

However, the number of these operators required to span the

(IV.la)

(IV.lb)

(IV.lc)

density matrix quickly becomes enormous as N, the number of spins,

increases: each pair of states gives rise to three operators,

for a total of (3)(t)(2N)(2N-l). For N=4, there are 360 such

operators; for N=8, there are 97920 of them. [The fictitious

spin-1/2 operators are not all linearly independent, since



r
P
I -

I j - k = Ij-~ + I~~k. The minimum number of linearly independent
z z z

operators needed to characterize an N spin-1/2 system is one for

each density matrix element with the constraint that p be trace-
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Nless, or 4 -1. N N-lThere are thus (2 -1)(2 -1) "excess" j-k
I

p

f -

l '

I
h

operators, roughly a third of the total.]

Clearly, an operator expansion of the density matrix as in

Chapter II will not be possible; we never again will be able to

know a system as intimately as we knew one single deuteron. Instead

of keeping tabs on the entire density matrix, we will monitor

expectation values, such as Tr(p Ix) or the average six-quantum

coherence magnitude. Even this limited knowledge of the exact

dynamics will prove to be too much indigestable information, and

we will eventually turn to statistical arguments in Chapter V.

In this chapter, the fundamentals of multiple-quantum NMR in

coupled-proton systems are laid bare. We turn first to one

motivation for the development of MQ techniques: the NMR of

molecules in nematic liquid crystal solvents. Order tensors and

the effect of anisotropic motion on the spin Hamiltonian are

Briefly presented, and the need for simplification of spectra

becomes painfully apparent. An analysis of the Hamiltonian reveals

that the use of multiple-quantum transitions can provide an

elegant solution to this problem. Basic MQ pulse sequences and

properties of the prepared density matrix are then described at

some length, and three popular Pines group molecules--benzene,

n-pentyl-dil-cyanobiphenyl, and acetaldehyde--are discussed as

examples. The chapter closes with a curious selection rule



demonstration.

4.2 NMR in Liquid Crystal Solvents

Liquid crystals are characterized on the molecular level by

rapid translational diffusion but restricted molecular rotation.

We will be interested in thermotropic liquid crystals. which as

pure compounds form liquid crystalline mesophases over a

temperature range between solid and isotropic liquid. The

typically long. rod-like molecules align parallel to each other

along local director axes, resulting in localized rotational order.

When a static magnetic field is applied. the molecules respond

cooperatively to reduce their free energy, given by [83J

200
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CIV.2)

The result is long-range order characterized by a single director.

!:J.x is the difference in bulk diamagnetic susceptibility parallel

and perpendicular to the director axis, and a is the angle between

the director and the magnetic field. Usually!:J.x· XU~X1.is positive.

!:J.G is minimized for a-OJ and the liquid crystal molecules align

parallel to the magnetic field. Such is the case for the compounds

used in experiments reported here. !:J.X is negative for other liquid

crystals. and molecules orient themselves perpendicular to the

applied field.

Some thermotropic liquid crystals exhibit more than one

liquid crystalline phase. The most disordered of these is the
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nematic phase, for which there is·no periodicity in molecular order

along the director axis [Fig. IV.1(a)]. There are also a number of

layered smectic phases that occur in some compounds at lower

tempeatures [Fig. IV.1(b)]. We will only consider the nematic

phase here.

4.2.1 The Order Tensor

A molecule dissolved in a nematic liquid crystal solvent will

itself experience some degree of ordering, i.e" rotational

anisotropy. The extent of this ordering for a rigid solute (or

solvent) molecule can be described in terms of a symmetric and

traceless second-rank Cartesian tensor (or 3x3 matrix), the Saupe

order tensor S [46,83,84]. In an arbitrary molecular axis system
""

x,y,z,S will in general have five independent elements, most

conveniently chosen to be S , (S -S ), S , S , and Szz xx yy xy xz yz

elements of S describe the average orientation of the molecule with

respect to the magnetic field (and director). Alternately, they can

be thought of as giving a probability distribution for the magnetic

field direction in a molecule-fixed coordinate frame. This distribu-

tion involves an expansion in functions closely akin to zero~rank

and second-rank spherical harmonics 146]:

p(e,¢) = (4TI)-1 {l + (~2)[(3 cos 2e-1)Szz

+ (sin2e cos2¢)(S -S ) + (4 sine cose cos¢)Sxx yy xz

+ (4 sine cose sin¢)S + (2 sinle sin2¢)S ]}. (IV.3)yz xy

201
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Figure IV.l An artist's conception of two common liquid crystal

phases, as drafted by Steve Sinton. (a) In the nematic phase, { ,
~ .;

the typically rod-like liquid crystal molecules tend to align ~

parallel to the director axis n, which in turn is parallel to the H

external magnetic field for most liquid crystals. (b) A lower- t]
temperature smectic A phase features additional ordering: molecules

are arranged in layers perpendicular to the director axis.
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[Strictly speaking, p(e,~), a probability per unit solid angle,

should include terms proportional to all even-rank spherical

harmonics. However, only the terms listed above can be analyzed

using the second-rank tensor interactions of NMR.]

Tensor elements SaB are defined as follows. Recall from

section 1.4 that the expression for a symmetric second-rank tensor

A in the laboratory frame can be related to its form in some other
::::

axis system, specifically a molecule-fixed set of axes x,y,z, by

a transformation matrix R:
::::

203

A(LAB) = R A R
t

-- (IV.4)

In the h~gh-field approximation, we are interested in AZZ(LAB) ,

given by

X,t,Z
a,S

(IV.5)

Rza is the cosine of the angle between the a-axis of the molecule

and the lab Z-axis. Hence

1
= -

3

+ 1:. (A + A + A )
3 xx yy zz

(IV.6a)

(IV.6b)
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3 +A (IV.6c)
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The angles in this expression must be averaged over molecular

motion, yielding at last the definition of order elements SaS

[83,84] :

f '
\

2
AZZ(LAB) ="3

2
- 3

x,y,z

k
x,~,z

a';s
+A

+ A(IV.7a)

(IV.7b)

The range of each SaS element is -0.5 to 1.0.

Like other symmetric second-rank tensors, S can be diagonalized--
in a principal axis system x',y',z'. It can thus be characterized

in terms of the three Euler angles relating frames x,y,z and

x',y',z' and two independent principal values S , , and S -Sz z x'x' y'y'

(only two since S is traceless in any axis system). In a non-

symmetric molecule, however, there is no 'obvious way to relate the

orientation of the principal axis system to the molecular framework;

hence diagonalizing S provides no simplification.--
In molecules with symmetry, on the other hand, one or more

of the five independent elements of S may equal zero if the molecular

axis system x,y,z is chosen correctly [83]. For example, if the

molecule has a plane of symmetry and the z-axis is oriented

perpendicular to it, then Sand S vanish. If the moleculexz yz

possesses two perpendicular mirror planes, then the principal
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axis system of 8 is determined: the x-axis lies in one plane,--
the y-axis in the other, and the z-axis lies along the line of

intersection. In this frame only 8 and 8 -8 are non-zero.zz xx yy

If the molecule is graced with a C axis, n ~ 3, and if this axis
n

is chosen as the z-axis, then there is but one non-zero order
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parameter: 8zz Finally, for molecules with tetrahedral or

I
Ir-;

higher symmetry, no ordering is expected at all--the molecule should

tumble freely and isotropically despite the aligning influence of

the nematic solvent.

As it turns out, however, the NMR spectra of tetrahedral

molecules like methane and tetramethylsilane show unmistakable

dipolar splittings [85,86], a sure sign of some sort of anisotropic

interaction. Common explanations for this anisotropy include

coupling between the reorientation of a molecule and its asymmetric

vibrational modes [87,88] and molecular distortion caused by

interaction with the ordered solvent [86].

This leads us into an exceedingly brief consideration of

ordering in molecules with large-amplitude internal motion.

According to Burnell and de Lange [88,89], two extreme cases can

be distinguished. When the rate of internal motion (typically

rotation around a single bond) is much faster than the rate of

molecular reorientation, then an averaged set of order parameters

<8 >, <8 -8 >, etc., suffices to describe the ordering if azz xx yy

molecular axis system can be chosen to separate internal from

reorientational motion. When the internal rotation is



characterized by jumps between conformations with a jump rate

much lower than the rate of molecular reorientation, then each

conformer is assigned its own set of order parameters, and the

overall ordering is weighted by the amount of time the molecule

spends in each conformation. For intermediate cases, analysis

is even messier since an average over internal motion must be

taken.

Emsley and Luckhurst [87], on the other hand, believe that

"arguments based on time scales can be misleading and may be

incorrect." They treat the order tensor as an equilibrium property

and use statistical mechanics to calculate the av~rage value of

~z{LAB), which for a molecule with discrete conformations again

requires a separate set of order parameters for each conformer,

weighted by its probability:
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AZZ{LAB) = A + ~ r Pn
n

x,y,z

r
a,S

(IV.8)

Only when the intermolecular potential energy is independent of

conformation, they claim, will a single set of order parameters

suffice.

Clearly, the current understanding of internal motion as

measured by nematic-phase NMR is undergoing some internal

motion of its own. Multiple-quantum techniques can help resolve

much of the ambiguity plaguing such measurements, as discussed

in the Ph.D. theses of Gary Drobny [57], Steve Sinton [56], and

Dan Weitekamp [58].
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4.2.2 The Basics of NMR in Nematic Phase

Magnetic resonance spectroscopy of molecules dissolved in

ordered liquid crystalline phases was introduced in the early

1960's by Saupe and Englert [90]. The spectra obtained are nearly

ideal for detailed study of molecular conformation and internal

motion. Due to rapid translational diffusion in the nematic phase,

all intermolecular couplings average to zero; hence lines are

narrow (on the order of a few Hz for solute molecules in the absence

of exchange), free from the extensive dipolar broadening that

generally characterizes solid-phase NMR. At the same time,

rotational motion is anisotropic due to ordering imposed by the

liquid crystal molecules. Non-scalar intramolecular couplings, in

particular intramolecular direct dipole-dipole couplings, do not
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average to zero as in the NMR of isotropic liquids. These inter-

actions give rise to a profusion of transitions, even for a small

number of spins. The spectrum that results features a large number

of sharp and hopefully resolvable lines; lines that are of interest

because experimental dipolar couplings can be related to averaged

internuclear distances. (The liquid crystal molecules themselves

usually contain a ,large number of spins and order to a much greater

extent than do the solute molecules. As such, they give rise to

broad background features in the NMR spectrum which do not interfere

with the sharp solute peaks.)

4.2.3 Effects of Molecular Motion on the Hamiltonian

For the details of proton NMR in liquid crystals, the reader

must once again endure the ritualistic display of Hamiltonians.



First, however, the effect of anisotropic motion on the three

terms of the internal Hamiltonian--those describing direct dipolar

coupling., chemical shielding, and J-coupling--must be considered.

Of these, the largest and most interesting is the direct

dipole-dipole term. Recall from section 1.5.5 that the Hamiltonian

describing the direct interaction of pairs of protons is given in

units of Hz by
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r
j<k

{ -

• (IV.9)

calculated.

where 8jk is the angle between the internuclear vector and the

magnetic field. When the nuclei are in motion, both r jk and 8jk

may vary, and an average value of the spatial part of 3~ must be

<Djk>, the averaged dipolar coupling constant for spins

j and k, can be expressed as

(IV.lO)

[ .

b
In a rigid molecule (one without internal rotation), the inter-

nuclear separation r jk is affected primarily by vibrations, which

generally occur on a faster time scale than molecular reorientation,

It is customary then to assume that r jk and 8jk can be averaged

separately [85]:



~ 2uy
327T<r >

jk

(IV. 11)
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In its own principal axis system a,b,c (with the c-axis

aligned with the internuclear vector), the vibrationally averaged

dipolar tensor for protons j and k is given by

o
1

o
~ )

-2

(IV.12)

Equation 1.4 can be used to transform ~jk to the molecule-fixed

axis system x,y,z chosen to describe the order parameters. In this

reference frame,

(IV.13a)

(IV.13b)

L
I
L

where e is the angle between the a-axis of the molecule-fixedac

system (a=x,y,z) and the principal axis c. The average value of

Djk = (~jk)ZZ is given by Eq. IV.8:

(IV.14)



(There is no isotropic component.) A little manipulation yields

finally [47]
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hy )

3
27T<r· k >. J

- 1)5zz

+ (cos 2e -cos2e )(5 -5 )xc yc xx yy

+ 4 (cose cose )5 + 4(cose cose )5xc yc xy xc zc xz

+ 4 (cose cose )5 ]yc zc yz (IV.lS)

,-
I

For simplicity, we will drop the averaging brackets on Djk from

now on.

Each term in this expression for D
jk

involves the product of

an order parameter and <r
jk

3>-l. Hence, unless the order parameters

are determined by some other experiment, measurement of Djk

values can never yield absolute internuclear distances; one such

separation r jk must be assumed from another technique. Nonetheless,

Eq. IV.lS is exceedingly useful: it can provide information not

only on molecular dimensions, but also on the nature and timescale

of internal motion.

The effect of partial molecular ordering on the other terms

of the internal Hamiltonian is easier to deal with. Recall from

section 1.5.3 that the chemical shielding experienced by a nucleus

j can be expressed as a second-rank tensor cr .. In the high-field
:::J

j
I::::J
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approximation, the chemical shielding Hamiltonian is

(IV.16)

Using Eq. IV. 7b', (OJ) ZZ can be related to the components of ~j

in a molecule-fixed axis system as follows:
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_ 2 x,~z
= 0 +-j 3 a,

(IV.17a)

(IV.17b)

A chemical shift (OJ)ZZ (or O'j for short) measured in nematic

phase is therefore likely to differ from the corresponding

isotropic-phase value, and a determination of this difference

can provide information on the anisotropy of chemical shielding £91J.

However, the difficulty in distinguishing order parameter effects

from chemical shielding effects and in separating intramolecular

and intermolecular contributions to shielding make detailed analysis

often difficult and unreliable.

Anisotropic terms in the indirect spin-spin coupling

Hamiltonian were cast to the wind in Chapter I, since calculations

indicate that such terms are likely to be negligible for inter-

action between protons. The remaining scalar coupling is

impervious to any sort of rotation or motion; hence no modification

of Eq. 1.36 is necessary:
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(IV.lS)
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With the inclusion of an rf offset term, the overall

Hamiltonian for a,coupled-proton system in nematic phase is

(at last) given as follows:

where

, (IV.19)

{;

I

;}(
cs

(IV.20a)

(IV.20b)

.. r J I -L .
j <k jk ...j ;:}t

;}( .. - 6w Ioff z

(IV.20c)

(IV.20d)

Again it should be noted that Djk and OJ are partially averaged

quantities that depend on the degree of molecular ordering.

4.2.4 The Case for Multiple-Quantum NMR

A large number of rigid and flexible molecules have been

successfully analyzed in nematic phase [25,45,46,92] by use of

conventional single-quantum (SQ) NMR and various computer

lineshape-fitting programs [51]. For small molecules, the lush



profusion of resolvable transitions in the SQ spectrum can be

harvested to yield information on the nature of conformer

geometries and probabilities, rotational barrier heights, exchange

rates, chemical shielding anisotropies, etc. The technique is

limited, however, by a gross overabundance of spectral lines as
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the number of spins increases beyond six or so. An example is

the calculated and slightly broadened single-quantum spectrum of

a 4,4'-disubstituted biphenyl in Figure IV.2. For this eight-spin

molecule (discussed further in section 4.8.2), there are 1580

distinct single-quantum transition frequencies, even when D4

symmetry is assumed 156,93]. The resulting tangle of transitions

is extremely difficult to analyze (although Diehl ~ al. 194] were

able to simulate a l6384-point spectrum of 4,4'-dichlorobiphenyl

dissolved in nematic phase). Moreover, even if individual lines

can be resolved and identified, most of the spectral information

is redundant: for D4 symmetry there are at most sixteen independent

parameters to be determined--seven unique dipolar couplings,

seven J-couplings, and two chemical shifts.

Deuterium substitution is certainly one remedy, since replacing

all but two or three protons with deuterons would result in a

well-resolved deuterium-decoupled proton spectrum. Unfortunately,

selective deuteration is time-consuming and expensive, even with

an experienced chemist on hand, since an entire series of deuterated

compounds would need to be synthesized in order to map out all the

proton-proton couplings. To make matters worse, deuteration may
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Figure IV.2 A simulated nematic-phase single-quantum spectrum (with

some artificial broadening) for a 4,4'-disubstituted biphenyl with

D4 spin symmetry. Steve Sinton's coupling constants for 4~cyano-4'-n

pentyl-dll-biphenyl were used, although that particular molecule is

itself a liquid crystal and would be expected to have broader lines

than those here [56]. There are 2220 symmetry-allowed SQ transitions,

of which 640 pairs are doubly degenerate. The result is 1580 unique

transition frequencies, making analysis a formidable task,
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change the conformational geometry, the rate of internal motion, or

the order parameters [95]. What is needed instead is a general

spectroscopic technique for isolating a reduced number of resolvable

transitions. As the reader no doubt has guessed, multiple-quantum

FT NMR is "the answer".

4.3 Up Close and Personal with the Multiple-Quantum Hamiltonian

"By their Hamiltonians ye shall know them ••• "

As stated earlier, the Hamiltonian for a collection of N

coupled protons adrift in nematic phase consists of four terms

describing direct dipole-dipole coupling, indirect J-coupling,

chemical shifts, and the rf frequency offset. It commutes

with I in high field and thus shares a common set of 2N
z·

eigenfunctions. When written in the convenient spin~product basis

set (e.g., 1++-+ ... -> or laaSa•.. S», the Hamiltonian is block-

diagonal, each block characterized by a value of M, the eigenvalue

of I. (Because it only connects states with the same value ofz

M, X is in effect a zero-quantum operator.) Its simplified form

in the spin-product basis makes numerical diagonalization much

easier, since each block can be treated separately. As an example,

an eight-spin system has 256 eigenstates, but the largest block

with M=O contains only 70 states.

The energy levels of X are shown schematically in the much-

reproduced Fig. IV.3. They are divided into N+I Zeeman manifolds,

each corresponding to a different value of M, If n = N/2 + M is

defined as the number of spins "up", then each manifold contains
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Figure IV. 3 A schematic energy level diagram for N coupled spin - 2"
nuclei. Eigenstates are divided into Zeeman manifolds characterized

by the value of M. The number of states in each manifold follows a

binomial distribution: the ways of choosing n out of N spins to be

"up" instead of "down", where n = M + N/2. It can be seen from this

figure that there can be many single-quantum transitions (~M=±l) but

only one N-quantum transi~ion.



N( ) =NI![(N!2+M) I (N!2-M) I] states, the number of ways of choosing
n

N spins n at a time. Splittings within all but the extreme

Zeeman manifolds are due to the coupling and chemical shift terms

in :Jr.

The key to' the usefulness of multiple-quantum NMR is that the

number of possible transitions drops sharply as ~ increases. The

total number of transitions in a non~symmetric N-spin system is the

1 N Nnumber of density matrix elements above the diagonal. or 2 (4 -2 ).

The number of 6M-quantum transitions is given by a sum over products

of appropriate Zeeman manifold dimensions:

Wokann and Ernst [13] noted that these sums could be reduced to

simpler expressions:
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1Making use of the Stirling approximation (In p! ::: (n+I) In p - p +

In Iii ), one obtains the following useful relationship for large



N and small ~M:

Number of ~-quantum transitions
_(~)2/N

e for ~~O
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r=I·
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The number of ~ M-quantum transitions is seen to drop off in

a Gaussian manner. [The overall spectral intensity of each

multiple-quantum order (~ = 1,2,3, etc.) will decrease in much

the same way, although much of Chapter V is devoted to showing

that an accurate treatment of high-quantum intensity predicts

rc;

I

a less drastic rate of decline.] For same actual numbers, a

non-symmetric eight-spin system has (using the exact formula) a

whopping 11440 single-quantum transitions, but only 1 eight-quantum

transition, 16 seven-quantum transitions, and 120 six-quantum

transitions. The N,N-l, and N-2 quantum regions of the MQ spectrum

are thus expected to contain resolvable transitions. (Techniques

for separating different multiple-quantum orders will be discussed

in section 4.7.) But will an analysis of these high-quantum

lines enable us to determine all molecular parameters of interest?

The answer, at ~east in principle, is yes. For a non-symmetric

N-spin system we expect 2N2-N (N-2)-quantum lines and 2N (N-l)-

quantum lines, plus one N-quantum transition (which, ·however, is

uninformative--see section 4.6.3). In comparison, there are at

most N2 molecular parameters: t N (N-l) dipolar couplings, the
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same number of J-couplings, and N chemical shifts. Because there

are more frequencies for input than molecular unknowns, the problem

of fitting the experimental spectrum using an iterative computer

program is not underdetermined.

4.4 The Effect of Symmetry

Benzene, benzene (ordered phase),

On your spectra still we gaze;
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What a tangled mess they'd be

Without your six-fold symmetry ...

. The existence of spin-system symmetry often leads to substantial

simplification of both experimental spectra and computer analysis.

When the eigenstates of ~ can be divided into·different irreducible

representations [96,97], the original 2N
x iN density matrix can be

split up into smaller units, spawning what are effectively new and

independent systems. This division is possible because pulses do

not mix symmetries.

Hamiltonian, belong

I and I , the operators involved in the rfx y

to the totally symmetric Al representation

198J and hence cannot connect states in different representations.

There are several ways to determine the symmetry of a spin

system. For a rigid collection of spins, one can assign a point

group (C3v ' D4 , 0h' etc.) from the spatial relationship of the

nuclei, omitting those symmetry operations (other than the identity)

which do not exchange the spins. More generally, the permutation

group 199] of the system is determined by noting which nuclear



labels in the Hamiltonian can be interchanged without altering its

form. The spin system is then characterized by the point group

isomorphic to this permutation group. Once the group is known,

sYmmetry-adapted states for the various irreducible representations

can be constructed using projection operators 197].

An alternate procedure (to be discussed more fully in Appendix

D) is to let the computer do the symmetry sorting. The essence of

this method is as follows. After X is diagonalized and its eigen-

states determined numerically, appropriate matrix elements of I arex

calculated. Assume ~a and ~b are eigenstates of X, differing in

M value by ± 1. If <~ II I~b> , 0, then ~ and ~b must belong toa x a

the same representation. In contrast, if there are no other eigen-

states ~ and ~d such that <~ II I~ > , 0, <~ II I~d> , 0, andc a x c c x

<~dIIxl~b> , 0, then ~a and ~b are in different representations.

This sorting technique has two disadvantages--the diagonalization

of Umust take place prior to symmetry-labeling and the resulting

representations are not properly identified (e.g., Al,Bl , etc.)-

but its speed and generality make it extremely useful.

An example of the spectral simplification provided by spin-

system symmetry can be found in Table IV.l, a comparison of

8-spin molecules. The number of allowed transitions is seen to

decrease greatly when transitions can occur only between states

of the same representation. The computer simulation of intensities

is also simplified by the reduced size of the symmetry species. The

lengthiest part of such simulation involves matrix multiplication,
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which obviously takes longer when the matrices are bigger:

specifically, if A and Bare nxn matrices, then the calculation of

A·B involves n3 individual products. The computation times required

for a general 8-spin system and for the 8-spin methylene chain are

thus approximately in the following ratio:

222

chain computation time
general system computation time (IV.21)

(Another curious comparison--the number of allowed transitions for

each odd-quantum order in the 8-spin chain is exactly one-fourth

the corresponding general system value.)

The extreme "top" and "bottom" states with M = ± N/2 always

belong to the totally symmetric Al representation. Hence the

N-quantum line and all (N-I)-quantum lines in the MQ spectrum are

Al transitions. Transitions between states of other symmetry

occur in lower orders.

It was earlier demonstrated that the number of (N-I)-quantum

and (N~2)-quantum lines in the spectrum of a general non-symmetric

system is sufficient to determine all relevant molecular parameters.

Warren and Pines [95] have shown, by means of the analogy between

high-quantum spectroscopy and isotopic spin-labeling, that the same

sufficiency relation holds when both the number of lines and the

number of independent couplings and shifts are reduced by

symmetry.

b
L2
L'
U
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4.5 Your Basic Multiple-Quantum Pulse Sequence

Conventional single-quantum pulsed NMR is singularly straight-

forward. A pulse applied to the system creates single-quantum

coherence, which manifests itself macroscopically as a rotating

magnetization. The magnetization is monitored as a function of time

by the current it induces in a coil. This free induction decay

(FID) signal is then Fourier transformed to obtain the NMR spectrum,

which is equivalent to that found in a slow-passage low-power cw

experiment.

In contrast. the simplest multiple-quantum pulse sequence

contains three pulses [40.100,101] [Fig. IV.4(a)]. Two pulses

separated by a time T are necessary to create multiple~quantum

coherences, which then evolve for a time t
l

• Because these

coherences do not generate a rotating magnetization, they are

not directly measurable. Hence a third pulse is needed to

transform multiple-quantum coherence back to single-quantum

coherence. which is detected after an additional delay t Z• One

point is taken for each incremented value of t l ; the resulting MQ
,

free induction decay is then Fourier transformed to yield the

multiple-quantum spectrum. Different multiple~quantumorders

(~ = 1,Z,3, etc.) can be separated by a variety of techniques

to be discussed in section 4.7.

Schematically, the experiment can be divided into a

preparation phase, an evolution phase, and a detection phase [100].

(For some experiments, it is convenient to separate the third
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Figure IV.4 (a) The simple three-pulse multiple-quantum sequence.

(b) IT pulses during the preparation and detection periods remove

effects of the offset Hamiltonian, permitting even-odd selectivity

for systems without chemical shift differences. (c) In this TPPI

sequence, the incrementation of preparation pulse phase as t
l

is

increased separates different MQ orders.' No rf frequency offset is

then needed during evolution; hence a IT pulse can be added to eliminate

inhomogeneous line broadening.
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phase into a mixing period wherein MQ coherence is rotated back

to SQ coherence and a subsequent detection period for the SQ

signal. We won't make the distinction here.)

A few assumptions will simplify the analysis of this sequence.

Unlike Chapter: II ,we will assume here that U;Krf ll »IIJC1I, so that the

internal Hamiltonian can be neglected during pulses. Each pulse

can thereby be described in terms of a flip angle a and an rf

phase~. We will deal almost exclusively with 90° flip angles.

The first pulse will generally be chosen to be a 90y pulse (~ =

-90°), rotating aI , the initial equilibrium density matrixz

[a • (wo/kT)(2-N)] to aIx ' Additionally, the rf detector in the

rotating frame will be assumed to measure magnetization proportional

to Ix' We will ignore relaxation effects since or and t 2 are

generally less than TZ for the proton systems of interest. Finally,

for simplicity we will often assume a perfectly homogeneous

magnetic field.

Although three pulses are sufficient for the creation,

evolution, and eventual detection of multiple-quantum coherence,

more are often desirable. Indeed, the complexity of an MQ

experiment'is limited only by the imagination and obsession of

the experimenter, the capabilities of his pulse programmer, the

T2 relaxation time of his molecule, and the susceptibility of

his sample to rf heating. The most common modification, to be

discussed in the next section, is the addition of two or three pi

pulses to eliminate or reduce the effect of the offset Hamiltonian.
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At the other extreme, selective excitation of a particular order

of coherence may require .thousands of pulses r55,lOZ~l04J.

Before moving onward, it should be noted that the preparation

and detection periods of the three-pulse experiment are closely

related. This similarity is heightened by including an additional

90y pulse after the t z delay in Fig. IV.4(a) [40]. Detecting the

signal proportional to I in the absence of this extra pulse isx

equivalent to monitoring <Iz> just after the pulse when it is

present. In this scheme, the preparation sequence evolves I z

forward in time to MQ coherence; the modified detection sequence

devolves I backward in time, also resulting in MQ coherence. Due. z

to this preparation/detection symmetry, all the characteristics

of "prepared density matrices" described in the next section apply

equally well to "devolved detection matrices".

4.6 Properties of the Prepared Density Matrix

In analyzing the effect of pulses and delays on the density

matrix of a spin system, there are two paths one can follow, The

first is to consider the transformation caused by each pulse or

delay in a step-by-step manner. This procedure has several

computational advantages, especially when hard pulses are used~

the only Hamiltonian which must be diagonalized is ~i ,which is
nt

easy to construct and (more importantly) block-diagonal in the

spin-product basis.

A second technique, more convenient for manipulation of

operators, is to work in terms of effective Hamiltonians.

r~
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Consider, for example, the preparation pulse sequence 90Y-T-90y

applied to a density matrix proportional to I. The propagatorz

for this sequence is
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(IV.22)

( .

I

Rather than having. the pulse propagators exp(±i I Iy) act on the

density matrix, we can let them act on X instead to create an effective

preparation Hamiltonian (see Appendix A):

U = exp(-i X T)
x

(IV.23)

(IV.24)

Rotation of X by 90 degrees about the y~axis. as in Eq. IV.23,

converts I zj to -Ixj and Ixj to Izj • Hence

3( •
x

(IV.25)

L
(The "x" subscript signifies that X is quantized along the x-axisx

and that [X ,I ] • O. Note that the scalar J-coupling term isx x

unaffected by the rotation.) It is also convenient to lump all

the bilinear operators of 3( into yet another Hamiltonian Xx xx:



(IV.26)

(IV.27a)
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1---X +2 zz (IV.27b)

where X is the bilinear portion of the unrotated Hamiltonian.zz

The prepared density matrix P immediately following the

sequence is given by

I"

I
i

(XV.28)

1 .
In general, Xx contains zero-quantum. operators (- 2 Xzz' XJ),

one-quantum operators (Lj aj I xj + ~w Ix), and two-quantum

3
operators [8' Lj<k Djk (I+jI+k + I_jI_k)]. The complex exponential

of X in Eq.IV.28 can therefore generate non-zero matrix elements
x

Pjk corresponding to all multiple-quantum orders.

4.6.1 Even-Odd Selection

Consider now a system with no chemical shift differences.

~w • 0, then

If

Ho
SP • exp(-i X T)S I exp(i X T)xx z xx (IV.29)



X contains only zero- and two-quantum operators; thus the expansion
xx

of exp(-i X T) = 1 - i X T _!~ T2 + ... gives rise to only
xx :::: xx 2 xx

r~

I,
l _

even-quantum terms. Since I itself is a zero-quantum operatort-. no
z
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(In each case t the density matrix at

r .
odd-quantum coherence can ever be created in the prepared density

matrix. Hence the sequence 90Y-T-90y is even-quantum selective when

X = X [40].x xx

Simi1ar1Yt the sequence 90x-T-90y will be odd-quantum selective.

Note that this sequence applied to BI is equivalent to a 90y-T-90yz

sequence acting on BI [40].y

T=O is BI.) The prepared density matrix can thus be written asy

follows:

P = exp(-i X T)B I exp(i X T)
xx Y xx

= B{1 + iT [ I ,X ] - 12 T
2[ [I ,X ] ,X ]

::: yxx yxx xx

+ ... } (IV.30)

Since the product of an odd-quantum operator (I ) and an even-quantum
y

operator (X ) is an odd-quantum operator, only odd-quantum coherence
xx

will be created in P.

The requirement that ~w be zero can be met by adding a pi

pulse (6 = 180°) of any phase to the middle of the preparation period

[40J, as in Fig. IV.4(b). (This is entirely analogous to the use

of the familiar Hahn spin echo [105J for removing the effect of

magnet inhomogeneity in conventional FT NMR.) Consider, for



example, the even-selective experiment. If the phase of the pi

pulse is chosen to be zero, then the augmented preparation sequence
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is 90y - T/2 - 180x - T/2 - 90y. Since the first pulse rotates I z

to I , this sequence is equivalent to 90y ~ {180x - T/2 - 18Ox}x

T/2 - 90y. (The ~xtra 180x pulse does nothing to Ix') Within the

brackets, the pi pulses have no effect on X ,the bilinear part ofzz

the Hamiltonian, but reverse the sign of Xoff ' The preparation

propagator is therefore

1T
• exp(-i - I )2 y (IV.31)

Since [X ,X ffl = 0, exponentials involving these operators can bezz 0

separated and

exp(-i X T)xx

(IV.32)

Changing the phase of the pi pulse merely adds a phase factor to U.

When !::.w :/: 0, the prepared density matrix of a "shiftless"

system oscillates between even- and odd~quantum selectivity. The

propagator U can be divided into bilinear and offset exponentials

because [X ,1] = O. Hencexx x
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SP = exp(~i X T)S I exp(i X T)
x z x

(IV.33a)
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= exp(-i X T) exp(-i~w I T)S I exp(i~w I T) exp(i X T)xx x z x xx

(IV.33b)

= COS~WT exp(-i X T)B I exp(i X T)xx z xx

- SinnwT exp(-i X T)S I exp(i X T)xx y XX
(IV.33c)

where the first term in Eq. IV.33c is even-selective and the

second is odd-selective. Ideally, the value of T could be adjusted

to select one or the other. However, magnet homogeneity is usually

not good enough to make this a practical technique--different regions

of the sample experience different ~w values, destroying the even/odd

separation [106].

The even-odd effect is the simplest example of selective

excitation, the funneling of spectral intensity into a certain MQ

order or orders [55,102-104]. For success, the pulses at the beginning

and the end of the preparation period must have a flip angle 6=90°

and the appropriate relative phase. Moreover, the Hamiltonian must

be made purely bilinear. When there are no chemical shift

differences, this condition is easily met by adding an echoing pi

pulse; when X +0, a Carr-Purcell [107] train of closely andcs

evenly spaced pi pulses will yield a purely bilinear zero-order

average Hamiltonian ~(O) [24]. Unwanted correction terms ~(2) ,
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fc(4), etc., are smallest when the time between pulses shrinks toward

zero.

4.6.2 Rotation About I :
~~~~;.;...;;.,;;,;,.;;;,.;;;.;;..=-;..;;;;...;;....;;..;;;.....~z

The Ways of Phase

Consider changing the rf phase of all pulses in the preparation

sequence by an angle ¢. This corresponds to rotation about the

z-axis of the associated pulse propagators; for ~ample, if a 90y

pulse, then exp(-i I I
y

) becomes

'IT
exp(-i ¢ I ) exp(-i -2 I )z y

like exp(-i X T) is unaltered by

pulse is converted to a 90y~

'IT
exp[-i 2 (cos¢ I y - sin¢ Ix)] or

exp(i ¢ I). In contrast, a termz

a z-axis rotation, since [X,I ] = O. A change in phase of allz

preparation pulses is therefore equivalent to a rotation about z ( -

of every exponential factor in the preparation propagator, which in

turn is equivalent to a rotation of the propagator itself:

u' (new phases) = exp(-i ¢ I ) U exp(i"¢ I )z z (IV.34a)

The effect on the density matrix is also a rotation:

-i¢I i¢I -i¢I
ut i¢I

BP' (new phases) = (e z U e z)B I (e z e z)
z

-i¢I
ut i¢I

e z U B I z= ez

-i¢I i¢Iz BP z (IV.34b)= e e

fc

In terms of a single element,



= e

-i<pI i<pI
Pjk (e z z= P e ) jk

-iM.<p i~<PJ= e P
jk e

-i~<P (IV.35)
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Thus a change in pulse phases by an angle <p produces a change in

the phase of prepared ~-quantum coherence by an angle ~<p [40,108,109J.

This simple relationship is fraught with useful consequences for the

separation or selective excitation of multiple-quantum orders.

4.6.3 Spin-Inversion States

It is of interest to investigate the effect of a spin~inversion

operator [110] on the prepared density matr~ SP. Define IT as

exp(-i TI I ), the propagator for a 180x pulse. I commutes withx x

J( , so
x

4-

IT' P IT = e IT e
i3C l'

x

-i3C l'
x= e

= -P

(-I ) ez·

iJ(1'
x

(IV,36)

In terms of a single matrix element,

(IV.37)



In certain cases, lIT Wk> will itself be an eigenstate Iwk> of X.

Three such cases are as follows:

1) When the internal Hamiltonian is purely bilinear

(JC • :J<D + XJ ), it commutes with IT. For all Wk '
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n

t

(IV.38)

2) For any Hamiltonian, the effect of IT on the lone M = N/2

eigenstate 1+ + + ••• +> is to flip all the spins,

creating the lone M = -N/2 eigenstate 1- - - ,., ->.

3) Computer calculations suggest that if the highest possible

MQ coherence order attainable in any given representation

is composed of only one transition or one set of degenerate

transitions, then that transition (or set of transitions)

connects spin-inversion states.

Some examples will make this third statement clearer, In

Table IV.2, two 6-spin systems are compared as to the separation of

eigenstates by M value and representation, In the A3B2C system with

D3h permutation symmetry, there are four types of spin-inversion

"states: two Ai states with M • ±3, two A2 states with M = ±2,

, "four E states with M • ±2, and four E states with M = ±l. In

, "'" ,contrast, for the AA A A BB system with D2 symmetry, there are

only three spin-inversion pairs: two Al states with M = ±3, two

B2 states with M • ±2, and two B3 states with M • ±2. The

non-degenerate pair of M • 2 Bl states are not related by spin

inversion to the corresponding M • -2 states.
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Table IV.2

Symmetry States for 6-Spin Systems

Number of states in each representation
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A'
M 1

3 1

2 3

1 5

0 6

-1 5

-2 3

-3 1

total: 24

A"2

1

2

2

2

1

8

E'

2x1

2x3

2x4

2x3

2x1

24

E"

2x1

2x2

2x1

8

Number of states in each representation

M
A1 B1 B2 B

3

3 1

2 2 2 1 1

1 6 3 3 3

0 6 6 4 4

-1 6 3 3 3

I -2 2 2 1 1
!
~ -3 1

[---:i total: 24 16 12 12
L
L~



Spin-inversion transitions have a number of interesting

properties. First of all, the frequency of such a transition

is independent of any bilinear term in the Hamiltonian. This

can be readily shown if we first note that
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(IV.39a)

(IV.39b)

but
r
!

t
IT Xoff IT = ~off

Hence

(IV.39c)

(IV.39d)

(IV.40)
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If Ik> and Ik> refer to extreme states 1+++..•+> and I--~, •. ->, and

if X is chosen such that the sum of all shifts is zero, then w
kk
cs

is merely N Aw. For any nematic~phase system, therefore, the

N-quantum transition frequency provides no information on the

internal Hamiltonian. (The N-quantum line from a powdered solid

sample will broaden into a chemical shielding tensor lineshape,

however [111].)

In a system with no chemical shift differences, each transition

Ik~ co Ik> occurs with frequency ~-~)AW, simply a multiple of

the effective rf offset. For N spins, these spin-inversion transitions

lie at the center of the (N-2n)-quantum spectra (n = 0,1,2 ••• ) and

again provide no information on Xint • For "shiftless" systems, the

spectrum'of each MQ order is symmetric about its center at ~w,

since (Wjk-~W) = -(~J' - A~w).

A second property of spin-inversion transitions concerns the

phase of the prepared density matrix element Pkk following a

90y - T;" 90y or 90x - T - 90y sequence. From Eq. IV .37, if spin~

inversion pairs exist, then P
jk

- - Pjk' In particular, for a

spin-inversion transition Ik> to Ik>, Pkk - - Pkk , Since P is

Hermitian, Pkk must always be purely imaginary, no matter what the

value of T. In any system, therefore, statement (2) above implies

that the highest-quantum coherence is quantized along one axis

of the complex plane. In systems without chemical shift differences,

each eigenstate with M # 0 belongs to a spin-inversion pair, so the

number of coherences restricted to one axis is
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1 N2 [Z ] for N odd,

1 N N2 IZ - (N/Z)] for N even.

It will be shown in the next chapter that the intensity and

phase of a transition Ij> to Ik> in a three-pulse t 2=T experiment

are given by [Pjk(T)]2. Pjk is in general a complex number, so as

T varies, the phase of Pjk varies also. In contrast, IPkk (T)J
2 is

always a real negative number for any value of T. The transition

Ik> to Ik> is, in the words of Dan Weitekamp, a "line of resolute

phase." [106].

Such resolute behavior is useful in the determination of

chemical shielding tensors from N-quantum transitions in powdered

samples. For a molecule of solid benzene, at a temperature

characterized by rapid rotation about its six-fold axis, both the

intramolecular dipolar couplings and the chemical shift relative

to its isotropic value are proportional to ~ = (3 cosZ8-1), where

8 is the angle between the six-fold axis and the magnetic field

(see sections 1.5.3 and 1.5.5). If the small J-coup1ings are

ignored, then for any value of 8,
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JC(8) = ~ (8) JC
c

where 'JC is a "characteristic" Hamiltonian. Each propagator
c

(IV.41)

U = exp[-i JC(8)t] can thus be written as U = exp{-i JC [~(8)t]}.c '
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That is, changing the orientation of a benzene molecule is equivalent

to scaling the preparation (or evolution or detection) time, but because

the six-quantum benzene transition entails spin inversion, its phase

is unaffected by this time scaling. Hence the entire six-quantum

chemical shielding lineshape will appear with the same phase-~no

cancellation of intensity occurs.

Spin-inversion properties also give rise to additional selection

rules for zero-quantum transitions between M = 0 states when N is

even and X contains no chemical shift differences. Then eigenstates

of X and I can be chosen to be eigenstates of IT as well, withz

eigenvalues of +1 (gerade) or -1 (ungerade) [112]. Since <~j Ipl~k> =

- <IT ~j IplIT ~k> , transitions between M = 0 states with the same

eigenvalue of IT are forbidden.

4.6.4 A Note on Degeneracy

Degeneracy is claimed to have caused the downfall of the Roman

empire, and it is somewhat of a problem here too in the analysis of

multiple-quantum experiments. Consider a doubly-degenerate E

representation. The computer has no difficulty generating the

requisite eigenstates, but their specific form is arbitrary within

the constraint of orthonormality. (If ~al and ~a2 are degenerate

eigenstates, then for any value of X, ~a3 = cosX ~al + sinX ~a2

and ~a4 = -sinX ~al + cosX ~a2 are also eigenstates.) If ~al'

~a2 and ~bl' ~b2 are two different sets of degenerate states, then

in general all prepared density matrix elements Pal,bl' Pal ,b2'

Pa2 ,bl' and Pa2 ,b2 will be non-zero. However~ using appropriate



linear combinations, these states~ be chosen such that Pal ,b2 =

Pa2 ,bl = 0 [98]. (This separation generally entails the use of

complex numbers in the eigenfunction expansions, and so is not

actually attempted in subsequent calculations.) Nonetheless, we

will count two (not one or four) distinct though degenerate

transitions between the pairs of states, as if an E manifold of 2n

states were in fact two separate, identical, non-degenerate manifolds

of n states each. (Analogous relationships hold in the case of a

triply-degenerate representation.)

It is not immediately apparent whether the combined intensity

for the two transitions mentioned above in a t 2=L three-pulse

2 2 2 21experiment should be I(Pal,bI) + (Pal ,b2) + (Pa2 ,bl) + (Pa2 ,b2)

or IPal 'bl l2 + IPal ,b2 12 + IPa2 ,bl I2 + IPa2 ,b2 12 • Fortunately, each

2
(Pai,bj) term has the same complex phase, so the sums are equal.

4.7 Separation of Hultiple-Ouantum Orders

The spectral simplicity resulting from excitation of high-quantum

coherences is for naught if these lines appear amidst a tangled

thicket of single-quantum transitions (one of the unavoidable draw-

backs of cw multiple-quantum experiments). Fortunately, there exist

a variety of techniques for cleanly separating different orders in

pulsed MQ spectra. Each in some way depends on the fundamental

relationship between the phase of MQ coherence and rotation about

the z-axis:'

240

f',
I1 __

( -
j

-:l¢I ict>Iz[e Z ]
P e jk (IV.42)

[~

U



f C'

l

__ n
r

241

4.7.1 A Frequency Offset

The easiest way to separate MQ orders is merely to go off-resonance

with the rf irradiation. Recall that our Hamiltonian is the sum of two

commuting terms, 3C
int

and 3Coff • The eigenfunctions of 3C are determined

entirely by the, internal Hamiltonian; the effect of 3Coff is merely to

shift the energy of each state Ij> by an amount -M
j
6w. The frequency

of each transition Ij> to Ik> is thus augmented by (Mj-~)6w =

(6M)(6w). When 6w is greater than the splittings due to 3C
i

'nt

( -

I
I

different multiple-quantum orders will not overlap.

Unfortunately, the effects of magnet inhomogeneity also scale

with the value of 6M. This can be seen by rewriting 3Coff to take

account of the variation .in W-WO from region to region in the

sample:

3C ff • - L6wi (r) Io i .. Z
(IV.43)

t;- -

L

If the spread in frequencies is characterized by some full width

*at half-height w , then the inhomogeneous contribution to the

*linewidth of a 6M-quantum transition is (6M)(w). The resolution

and effective intensity of high-quantum transitions are of course

reduced by this broadening. Zero-quantum lines, however, are

unaffected and remain sharp in even the worst of magnets [108].

To eliminate inhomogeneous broadening of MQ transitions in

systems without chemical shifts, an echoing pi pulse can be added

to the middle of the evolution period to reverse the sign of

3Coff but leave ~J and 3CD unaffected. (Compare with section 4.6.1.



For systems with chemical shifts, a Carr-Purcell train of pi

pulses can be used to remove Xes and ~off from the zero-order

average evolution Hamiltonian.) Alas, the added pulse or pulse

train gets rid of not only the spread in offset frequencies but

the average value as well--hence, no separation of orders. With

the following more involved techniques, however, one can retain

the Hahn echo during evolution and still avoid the painful

swelling of spectral overlap.

4.7.2 Phase Fourier Transforms

As stated in section 4.6.2, changing all the pulse phases in

the preparation sequence has a characteristic effect on the phase

of multiple-quantum coherence: pulse phase shifts are multiplted

by the value of aM. A particular multiple-quantum order or orders

can be selected, therefore, by taking linear combinations of the

appropriate phase-shifted spectra 140,10B]. As an example,

consider these four MQ spectra of a 4-spin system:

Relative coherence phases

Spectrum Pulse phase shift ~ .J&.. ~ 29- ~
A 0° 0° 0° 0° 0° 0°

B 90° 0° 90° 180° 270° 0°

C 180° 0° 180° 0° 180° 0°

D 270° 0° 270° 180° 90° 0°

The prescription for generating only three-quantum transitions is

to combine spectra A through D as follows: A-C + i(B-D). For two
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quantum transitions, one can add spectra A and C, then subtract

~ the sum of Band D.

4.7.3 Frequency Adjustment to Separate Orders

With a pi pulse added to the evolution period, the offset

Hamiltonian is effectively Xoff = -][ ~Wi(~) I z before the pulse

and ~off afterwards. When the evolution propagator UE is

calculated, these terms cancel--no broadening, but also no

separation. If, however, Xoff were augmented by an additional

spatially homogeneous term -2~w' I for the first half of the
z

evolution period, then the propagator would be
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(IV.44)

If large enough, the additional offset would provide the necessary

separation of orders.

One means of changing the offset Hamiltonian in this manner

is to change the rf frequency. Specifically, switch the frequency

from w to w + 2~w' immediately after the preparation period, then

switch it back before the pi pulse in evolution. This Frequency

Adjustment to Separate Orders (FATSO) technique is illustrated

schematically in Fig. IV.5. In (a), at the start of the evolution

period, multiple-quantum coherences have not yet been affected by

inhomogeneities in HO. In (b) and (c), the prepared coherences

then evolve under the influence of Xint (not depicted) and Xoff '
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Figure IV.5 A spin-vector dramatization of the FATSO technique.

For each MQ order, the pi pulse during the evolution period removes

the spread in slow (s) and fast (f) frequencies resulting from

inhomogeneity in the magnetic field H. The shift in rf frequency,
o

however, enables each order to evolve with an effective offset (~M)

(~w'). See the text for more details.
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the sum of inhomogeneous terms and the additional quantity

-211w'I due to the rf offset. Vectors marked "s" and "f" arez

meant to suggest "slow" and "fast" rotation in the x-y plane

caused by spatial variation in the static field; the spread of

these vectors is proportional to both ~1 and the evolution time.

The pi pulse then flips the spin "pancake" [ 20], reversing the

relative positions of vectors "s" and "f". In (d) and (e), the

special frequency offset is removed, but the HO inhomogeneity

remains, now refocusing spin vectors. Finally in (f), at the

end of the evolution period, each order of MQ coherence has

echoed, but at a different relative phase that depends on the

value of t
l

• As t l is varied, each echoed coherence rotates in

the x-y plane at a frequency (llM)(llw').

The reader may wonder how the spin system "knows" what the

rf frequency is when pulses are not being applied. How can each

MQ order march to the beat of its own drummer if the music isn't

playing? For the answer, we must realize that the spectrometer's

frequency synthesizer (with accompanying mixers, doublers, etc.)

is more than just a source of megahertz radiation; the phase of

its rf output, whether amplified into a pulse or left alone,

defines the x and y axes of the rotating frame.· To see the

effect of a frequency shift (and to avoid getting dizzy), let's

observe from a reference system spinning at frequency W. From

this vantage point, the rf-defined x and y axes are motionless

during the preparation period, but are seen to rotate when the
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rf frequency is changed. When the frequency returns to its

original value of w after a time ~ t l , the axes once more stand

still; how far they have traveled depends on the product of ~ t l

and the frequency jump 2~w'. The spins learn of this axis

rotation when subsequent pulses are applied: the x-axis defined

for evolution and detection pulses is not the same as the x-axis

defined during the preparation period. The change in rf

frequency is thus manifested as a change in relative pulse phase.

Clearly, this procedure requires a synthesizer which can

be externally triggered to switch frequencies in a phase-coherent

manner; i.e., the rf phase must remain continuous when the

frequency is shifted. Otherwise, the rotating frame axes would

jump unpredictably each time w is changed, totally scrambling

the evolution.

4.7.4 Time-Proportional Phase Incrementation

FATSO was never tried in the Pines lab for two reasons:

(1) We lacked the necessary frequency-jump synthesizer and (2) an

equivalent technique which was somewhat more general and easier to

implement was soon developed. As noted above, the effect of

shifting the rf frequency is to change the phase of the preparation

pulses relative to the rest of the pulse sequence by an amount

proportional to the value of t
l

• (As t
l

increases, the two

frequencies grow more and more out of phase.) Thus we can adjust

the pulse phases directly instead of playing with the frequency.

In the Time-Proportional Phase Incrementation (TPPI) technique
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[109] (discovered independently by Bodenhausen, et al. [16]), a

r,
digital phase-shifter is used to increment the preparation pulse

phases by an angle ~ for each valu~ of t l in the multiple-quantum

experiment. This sequence is displayed in Fig. IV.4(c).

The angle ¢ equals (~w)(~tl)' where ~w is the effective TPPI

offset frequency and ~tl is the increment in the evolution time.

The evolved density matrix at a time tIn = n ~tl (i.e., the density

matrix for the nth point in the MQFID) is given by

= exp[-i(X
i

+~wI )t
l

lBP exp[i(Xi t+~WI )tl ]. (IV.45)nt z n n z n

demonstrating the equivalence of a time-proportional phase shift

to an artificial offset frequency. A useful relationship for an

N-spin system: if ¢ is chosen to be l80/N degrees, then the

Coherence Transfer Echoes

N-quantum line will sit at the Nyquist frequency [11,113]

-1
= (2 ~ t

l
) •vNyq

4.7.5L
1

For the most useful version of this technique [58,114,115],

the pulse sequence can be written as follows:



Preparation:

Evolution:

Detection:

- 1 1
90y - 2 T - l80x - 2 T - 90y

T - 90y - t 2

248

By the start of the detection period, multiple-quantum coherences

have been excited and allowed to evolve in what is effectively

a homogeneous magnetic field. They then dephase for a fixed

time T without benefit of pi pulses; the rate of dephasing is

once again proportional to~. Next the detection pulse rotates

these MQ coherences back to single-quantum coherences, which can

rephase in the same inhomogeneous field at a rate proportional

to ~M=l. A coherence transfer echo thus occurs for each non-zero

order at t z = ~T. By sampling at t z = ~, only that signal

transferred from ~-quantum coherence will be appreciably

detected. Coherence transfer echoes can be combined with TPPI

to eliminate the dynamic range problem associated with detecting

all MQ orders at the same point [58,106].

4.8 Meet the Molecules

As a breather from the numbing details of density matrix

manipulation, a whiff of chemistry seems in order--specifica11y,

an introduction to three molecules which have served as model

systems in the Pines lab for both experimental and computational

studies of MQ NMR. Each will be used illustratively in the next

chapter on intensity calculations.
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4.8.1 Benzenen
t C Benzene was the very first solute molecule to be analyzed
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in nematic phase using conventional NMR, by Saupe and Englert

in 1963 [90]. It is only fitting that benzene has since become

the archetype~ the consummate model system, for multiple-quantum

studies as well [40,101,10Z,116].

The benzene molecule itself can be described in terms of D6h

symmetry, but since reflection in the horizontal mirror plane

cr
h

has no effect on the position of nuclei, the spin permutation

group is D
6

or C
6v

' (The g and u subscripts associated with the

irreducible representations of D6h are useful in labeling the

spin-inversion properties of the M=O eigenstates, however.) In

isotropic phase, benzene is an A6 system; all protons have the
.-.

same chemical shift, and J-couplings between these magnetically-

equivalent nuclei do not perturb the one-line S:Q spectrum 1117].

In nematic phase, however, the three different dipolar couplings--

D D and D --make benzene an AA' A"A" ,A""A"'" spinortho' meta, para

system with 38 distinct pairs of lines in its single-quantum

spectrum [lIZ].

The breakdown of eigenstates by magnetic quantum number and

symmetry manifold is displayed in Fig. IV.6--there are 13 Al

states, 1 AZ state, 7 Bl states, 3 B2 states, Zx9 E
l

states, and

Zxll EZ states. Because there are no chemical shift differences,

each state with M~O belongs to a spin-inversion pair, and M=O

states are g or u eigenfunctions of the spin-inversion operator

IT. A typical benzene multiple-quantum spectrum is shown in
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Figure IV.6 The eigenstates of oriented benzene, divided according to

M value and irreducible representation. The El and E2 representations

are two-dimensional: each energy level is doubly degenerate.
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Fig. IV.7, courtesy of Warren Warren. Because chemical shifts

are absent, each MQ order is symmetric about a central

frequency (AM)(~w).

Saupe [112] long ago worked out all the symmetrized basis

functions for'benzene and also calculated the conventional

single-quantum transition frequencies and intensities. For 11

states (or pairs of states) with M ~ 0, the symmetrized functions

are themselves eigenfunctions of Xj their energies can thus be

given exactly as multiples of the coupling constants J12 , J 13 ,

J 14 , D12 , D13 , and D14 • To treat the remaining states, Saupe

assumed a ratio of dipolar couplings appropriate for a hexagonal

molecule and included the small J-couplings only to first order

in a perturbation expansion.

Four of the "exact" transition frequencies, /Al (M=3» ++

IAl (M=±2», IBl (M=2» ++ IBl (M=±l», IB2(M=1» ++ IB 2(M=0»,

and IE2u(M-2» ++ IE2u(M=0», are independent of J jk values and

can be used to solve for the three unique dipolar couplings.

Using linear combinations of these frequencies from his experimental

spectrum, Saupe found D12 , D13 , and D14 to be very nearly in the

ratio expected for a perfect hexagon of protons:
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More recently, Diehl ~ ale [l18J have analyzed benzene in a

number of nematic solvents to prodigious lengths with SQ NMR.

3 3Correcting for the small difference between <rjk> and <r
jk

> , they

find deviations in coupling constant ratios from "hexagonality"
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Figure IV.7 The TPPI multiple-quantum spectrum of benzene, oriented

in Eastman nematic liquid crystal #15320. This spectrum, obtained by

l.Jarren Warren, is an average over four values of T=t 2 (4, 6, 8 and

10 msec).
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of ~ 0.05% to ~ 0.45%, depending on the coupling constant and

the solvent in use. This slight distortion apparently results

from solute-solvent interaction.

The existence of a C6 axis of symmetry in benzene implies

that only one order parameter, S ,is needed to characterizezz

the degree of orientational anisotropy. The three dipolar

couplings are thus proportional to Szz; from Eq. IV.15 with

e = 90 0

zc '
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Szz (IV.47)

f
I,
r-=

I
j

L

S itself is a function of the liquid crystal in use, thezz

concentration of benzene, and the temperature. For some typical

numbers, I found D12 to be -817.06 Hz in Eastman nematic solvent

#15320 at 25°C, measured using the J-free Al single-quantum

transition frequency mentioned above. "Hexagon" values of D13

and D14 (-157.25 Hz and -102.13 Hz respectively) were sufficient

. 3 1/3 0
to simulate 'the spectrum. W1th <r12> ~ <r12> = 2.477 A

[118], the corresponding value of S is -0.103. The negativezz

sign implies that the benzene C6 axis is much more likely to be

pointing perpendicular to the magnetic field than parallel with

it.

The indirect spin-spin coupling constants that have been

used in benzene spectr&simulations are the isotropic values

[112,118]. Different authors report slightly different numbers;



from these I chose J 12 = 7.5 Hz, J 13 = 1.4 Hz, and J14 = 0.65 Hz.

These are small in comparison to the direct dipolar couplings,

but nonetheless must be included to correctly simulate the spectrum.

Moreover, the presence or absence of J-coup1ings has a curious

effect on the nUmber of allowed transitions. When all J
jk

values

are zero for benzene, it can be shown that one of the three M=O

eigenfunctions in the B1 representation no longer connects to

other B1 states--matrix elements of Ix involving this eigenfunction

are identically zero. (For an outline of the proof, see Appendix

B.) Eliminated are two zero-quantum transitions, one sing1e-

quantum transition, and one double-quantum transition. When small

J-coup1ings are present, the wayward state reestablishes tenuous

links to its B1 brethren and these transitions reappear, but

with miniscule intensities.

The same phenomenon of an uncoupled M=O state occurs in random

4-spin systems with X = XD--see Appendix C. I have not been able

to determine if this uncoupling in the absence of indirect spin-

spin interaction is a consequence of some more general selection

rule.

4.B.2 4-cyano-4'-n-penty1-d11-bipheny1

This eight-proton liquid crystal was manfully analyzed by

my colleague, Steve Sinton [56,93], and his efforts inspired some

intensity computations of my own. A rather heroic molecular

diagram can be found in Fig. IV.B. Rapid reorientation on the

NMR timescale occurs about the central single bond, with potential

wells at dihedral angles of ± 32°. Inter-ring couplings are thus
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Figure IV.8 A dramatic rendering of the biphenyl moiety, complete

with the molecular axis system used to define the order parameters.

For the molecule discussed in section 4.8.2, R=-CN, R'=-(CD2)4CD3'

and the favored dihedral angle 0 between the phenyl planes is measured

to be ±32°. Rapid rotation about the single bond results in only

three unique inter-ring couplings, DIS' D16 , and D26 •



characteristic of an average over four equivalent orientations of

one ring relative to the other. Moreover, Steve found that

couplings between protons on one ring were essentially the same

as those between protons on the other, in spite of the difference

in para-substituents. The spin-system permutation group is

therefore isomorphic to the D4 point group, and there are only

seven unique dipolar couplings: D12 , D13 , D14 , D15 , D16 , D23 ,

and D26 • Steve determined the values of these using MQITER, his

least-squares iterative computer program for fitting MQ spectra.

Small isotropic J-coupling constants were included in the simulation,

but no chemical shift difference between "outer" and "inner"

protons was needed. (Actually, a small but real difference in

chemical shifts exists, but as detailed in section 5.9.2, the effect

of this difference is removed by the pi pulse in the TPPI evolution

period.)

Two order parameters are necessary to characterize the
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orientation of this molecule.

and (S -S ). 0.057 ± .002.xx yy

Steve found S = 0.568 ± .001zz

The rather large S value reflectszz

the fact that a liquid crystal molecule is reasonably well-ordered

along its director axis in nematic phase. The resulting dipolar

couplings are roughly an order of magnitude larger than those

found in partially oriented benzene.

A tableau of the 256 eigenstates separated by M value and

symmetry species is displayed in Fig. IV.9. Due to the lack of

chemical shift differences, each state with M~O belongs to a
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Figure IV.9 A schematic energy level diagram for a 4,4'-disubstituted

biphenyl, assuming a permutation group for the eight protons isomorphic

to the D4 point group. Each energy level in the E representation is

doubly degenerate.



spin-inversion pair, and M=O states are gerade or ungerade with

respect to spin inversion.

4.8.3 Acetaldehyde

At last a chemical shift! This AB3 system (CH3CHO) was

analyzed as part of an experiment involving total spin coherence

transfer echoes [119] (see section 6.2). Because of the rapid

methyl rotation, only four molecular parameters affect the spectrum:

DAB' DBB , JAB and crAB = crA-aB• The separation of eigenstates

into Al and E representations can be found in Table IV.3; the

highest-quantum transition in each representation connects spin-

inversion states.

Exact expressions for all single-quantum frequencies of an

AB3 system can be found in Emsley and Lindon [120]. My task of

assigning these frequencies to the proper experimental lines was

made easier by calculating trial spectra as a function of each of

the three adjustable parameters DAB' DBB , and crAB· (JAB was

fixed at its isotropic value of 2.8 Hz.) For the expected range

of coupling constant and chemical shift values, the separation
,

between certain pairs of lines was found to depend almost entirely

on DAB. A knowledge of this coupling constant then enabled the

correct matching of tabled frequency~pressions to experimental

line positions. The fitted molecular parameters are as follows:

DAB = -358.0 Hz, D]B = 917.2 Hz, crAB = 1361 Hz, and JAB =

2.8 Hz. (The dipolar couplings here are a factor of two larger

than those reported in Ref. 119.) In a different nematic

r
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Table IV.3

Symmetry States for Oriented Acetaldehyde

Number of states in each representation

M Al E

2 1

1 2 2xl

0 2 2x2

-1 2 2xl

-2 1

258a
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total: 8 8
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solvent and at 100 MHz proton resonance, Emsley et al. [12lJ

found DAB = -555.2 Hz (155% of our value), DBB = 1575.2 Hz

(172% of our value), and crAB = 742.7 Hz (which corresponds to

1359 Hz at our Larmor frequency of 183 MHz). Because three

order parameters--S ,S -S ,and S --are needed to describezz xx yy xy

the orientation of acetaldehyde, Emsley's dipolar couplings are

not scaled by a single factor relative to ours.

The twelve Al single-quantum transition frequencies of

acetaldehyde are displayed as a function of DAB' DBB , and crAB

in Figs. IV.lO-IV.12.

4.9 Gerade-Ungerade Selectivity

(This experiment was suggested by Dan Weitekamp and involved

a sample prepared by George Wolf.)

The spin-inversion selection rules discussed in section 4.6.3

depend on the flip angle e of the second preparation pulse. There

we focused on e = 90°. When e = 45°, however, it is possible in

systems with no chemical shift differences to select either the

~ or the ~g, ~ M = 0 zero-quantum transitions merely by

adjusting the rf phases.

Consider first the preparation pulse sequence 45x - T - 45i

applied on resonance to such systems. (The flip angle of the first

pulse is set here at 45° to simplify the analysis; experimentally,

a 90° pulse would be used to maximize the MQ signal.) The effective

preparation Hamiltonian for this sequence is
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Figures IV.lO-IV.12. The single-quantum spectrum of oriented

acetaldehyde calculated as a function of various molecular

parameters. Only the Al transitions are shown, and the intensities

are those for a conventional one-pulse experiment. Each figure

consists of a series of horizontal spectra, wherein each symbol

represents a line position. Relative intensities are denoted by

the choice of symbol. The squares are for manly transitions at

least two thirds as intense as the strongest line. Weak transitions,

with less than one sixth of the intensity of the strongest line,

are indicated with dots. Intermediate transitions are marked with

x's.

In all three figures, the bottom-most spectrum corresponds

to the experimental parameters: DAB = -358.0 Hz, DBB = 917.2 Hz,

crAB = 1361 Hz, and JAB = 2.8 Hz.
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ORIENTED ACETALDEHYDE
Singl e - Quantum Spectra
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Figure IV.lD Al single-quantum frequencies of oriented acetaldehyde

as a function of DAB' the methyl proton-aldehyde proton dipolar

coupling constant.
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Figure IV.II Al single-quantum frequencies of oriented acetaldehyde

as a function of D
BB

, the intramethyl dipolar coupling constant.
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Oriented Acetaldehyde
Single· Quantum Spectra
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single-quantum frequencies of oriented acetaldehyde

as a function of crAB' the chemical shift difference between aldehyde

and methyl protons.



"U' = -i -rr/4 Ix "U' i -rr/4 Ix
~45 e ~e (IV.48a)
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3(45 commutes with IT; if

r-f -

-i 3(45 l'
I3P = e 131z

, (IV.49)

L

tthen IT PIT· -P, as in Eq. IV.36.

In comparison, the pulse sequence 45y - l' - 45x is equivalent

to the previous x,x sequence acting on an initial density matrix

proportional to 1. In this case,x

f '
t
( -

and

(IV.50)

t -i ~45 l' t
IT PIT-e IT Ix

• P (IV.51)

Thus the first sequence prepares transitions between M = a

states with different eigenvalues of IT, whereas the second sequence

prepares transitions between M = a states with the same eigenvalue

of IT. Note that "because 3(45 contains both even-quantum and odd

quantum operators, neither sequence results in the even-odd

selection described earlier for 90° pulses.
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Figure IV.l3 displays the gerade-ungerade selectivity in the

zero-quantum spectrum of oriented benzene (Dl2 = -817.06 Hz).

For the spectrum in (a), the pulse sequence used was

1 1 1 1
90x - 2 L - l80x - 2 L - 45x - t l - 45x - 2 L - l80x - 2 L ,

where the pi pulses simply remove any ~w offset. For the spectrum

in (b), the 45x pulses were changed to 45y pulses. In each case,

magnitude spectra corresponding to seven different values of L

between 4 and 16 msec were averaged together. The magnet

homogeneity was sufficiently poor that only zero-quantum

transitions appeared as sharp lines; hence, no special techniques

were needed to separate MQ orders.

Lines present in both spectra are due to zero-quantum

transitions between states w.ith M ~ O. Lines which appear solely

in the first spectrum are due to ~ M = 0 transitions; the ~g

and u~ transitions show up in the second spectrum. Two of these

u++u transitions, however, involve the weakly-coupled Bl state

described earlier and thus have vanishing intensity.

The simulations accompanying the experimental spectra are

exact calculations for the actual values of L that were used.

A list of computed frequencies and symmetry properties for all

the zero-quantum transitions of benzene can be found in Table IV.4.

4.10 Summary

NMR spectroscopy of small molecules dissolved in nematic
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ORIENTED BENZENE
Zero Quantum Spectra

(a) 90 x, 45 x
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I I
(b) 90 x, 45 y

o
Frequency (Hz)

2500
XBL B22·B059

Figure IV.13 Gerade-ungerade selectivity in the zero-quantum spectrum

of oriented benzene. Each spectrum and its accompanying simulation

are an average over seven t values. (a) An on-resonance 90X-T-45x

preparation sequence excites g++u M=O transitions. (b) In contrast,

an on-resonance 90x-t-45y sequence prepares ~g and u++u transitions.

Zero-quantum lines involving states with M~O appear in both spectra.
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Table IV.4

P Zero-Quantum Transitions of Oriented Benzene
t

- [" D12 = -817.06 Hz J 12 = 7.5 Hz

D
13

= ~157.25 Hz J 13 = 1.4 Hz

D14 = -102.13 Hz J 14 = 0.65 Hz

where the transition appears

Frequency 9Ox-1'-45x 90x-1'-45y
(Hz) Symmetry 1k!1 Type sequence sequence

1. 402.76 E2 0 g++u x

2. 408.93 B1 0 u+-+u (x)a

3. 465.06 E1
0 ~u x

4. 501.71 A1 1 x x

5. 511.47 E2 1 x x

6. 546.95 E2 1 x x

7. 617.42 E1 0 g++u x

8. 698.38 E2 0 g+-+g x

9. 921.09 E1 1 x x

10. 923.85 A1 0 g++g. x

11. 996.92 A1 0 g++g x

12. 1058.41 E2 1 x x

13. 1082.48 E1 0 u-+-+u x

14. 1101.14 E2 0 g++u x

15. 1147.64 A1 1 x x

16. 1286.39 B1 0 u+-+u (x)a

17. 1649.35 A1 1 x x

18. 1695.32 B1 0 u+-+u x

19. 1920.77 A1 0 ~g x
L

i
L.=;

aextremely weak transition.-

-..



phase is a powerful tool in the investigation of structure and

internal motion. Unfortunately, the conventional SQ experiment

cannot be extended to larger molecules without an explosive growth

in the number of transitions to the point of unresolvable blobs.

Multiple-quantum·techniques, however, can provide the same

information on molecular parameters from a greatly reduced set

of lines.

In this chapter, the basic three-pulse sequence for the

excitation, evolution, and detection of MQ coherence has been

analyzed using an effective Hamiltonian formalism. More

complicated sequences to provide even-odd selectivity or to

separate different MQ orders have also been considered, as well

as the effect of molecular symmetry on the resulting spectra.

Three molecules--benzene, a 4,4'-disubstituted bipheny~ and

acetaldehyde--have been examined at length in preparation for the

fevered computational excesses faatured in the next chapter.
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v. COMPUTER SIMULATION OF MULTIPLE-QUANTUM INTENSITIES

5.1 Introduction

Multiple-quantum intensities are of interest for several

reasons. One is a practical consideration: can the higher-order

transitions of use in the analysis of molecular structure and

motion be excited with reasonable or at least detectable intensity;

i.e., is non-selective MQ NMR a viable technique for systems with

more than five or six spins. A second reason is the importance of

intensities in computer simulations of experimental MQ spectra to

determine dipolar couplings and chemical shifts. An iterative

least-squares fitting program like Steve Sinton's MQITER [56] will

generate multiple-quantum frequencies; a complementary calculation

of the corresponding intensities can confirm or throw doubt on the

simulation. Finally, a third reason for studying MQ intensities

is to probe the curious -relationship between exact quantum-mechanical

dynamics and statistical "random walk" behavior in multi-spin

systems.

In this chapter, most of the analysis concerns multiple-quantum

coherences generated by the basic three-pulse sequence, although

the effects of a pi pulse in the evolution period will be examined

briefly. (Because a simulated magnetic field is easy to make

homogeneous, a simple rf offset will be used to separate MQ orders

if necessary--no explicit calculation of TPPI, phase Fourier

transforms, FATSO, etc., is included.) A discussion of computer-

simulated spectra for more complicated selective excitation

sequences can be found elsewhere [122].
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5.2 An Expression for Multiple-Quantum Int~nsity

Before discussing the computer results, we will first

rewrite the prepared density matrix in a form more convenient

for computation. The pulse sequence to be considered is

90Y - T - 90y - t
l

- 90y - t 2

The density matrix at the moment of detection may be written as

270

(V.l)

If S is the orthogonal transformation (or matrix of eigenvectors)

which diagonalizes X,

we may define

(E diagonal) (V.2)

x = st I s I expressed in the basis set of Xx x

and

A = st
-i TI/2 I

e y S -- the pulse propagator in the

basis set of X. X and A are both real matrices and X is sYmmetric.



With these definitions,

-iEtz -iEtl t -iEL iEL iEtl t iEtz t
= SSe A e A e X e A e A e S

(V.3)

The signal s(tl ;L,t2) equals Tr{p Ix}. In a flurry of

symbols, we introduce p(L) as the prepared density matrix and

Q(tz) as the "devolved detection matrix"--Ix taken backwards in

time to the start of the detection period. We write both in the

basis set of j{:

271

t iEtz -iEt2
Q = A e X e A

In terms of these matrices,

(V.4a)

(V.4b)

r
L

(V.5)

Fourier-transforming with respect to the evolution time t
l

yields

the multiple-quantum spectrum:

(V.6)



The intensity of each multiple-quantum line is thus

determined by the product of two complex matrix elements, with

272

( ~

I

P
jk rI: t

~k
iWbaT

= Aja Xab e
a p

rr A. Xab ~k
iWbaT

= e
a b aJ

rr Bab
i~a't

= e
a b

and

Qkj = rr .\b ~a Aaj

iWbat 2e
a b

rL Aaj Xab ~k

iWbat 2= e
a b

rr Bab

iwbat 2= e
a b

(V.7)

(V.8)

(B, a real matrix, is different for each transition Ij> to Ik>.

For convenience though, we will not include an explicit j,k label.)

Because X is a single-quantum operator, /Ma-Mb' = 1 and the

frequencies wba correspond to sYmmetry-allowed single-quantum

transitions. These dephase during the preparation period and

rephase during the detection period.

When T = t 2, Pjk(T) = Qkj(t 2) and the intensity and phase of

a transition Ij> to Ik> are given by

L_

L
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2= 8 Pjk = M[I:
a b

(V.9)

This quantity is in general a complex number (except for spin-

inversion transitions, for which S kk is always real and negative);

thus the multiple-quantum spectrum contains lines with many

different phases (Fig. V.la). In comparison, the intensity of

a single-quantum transition in the usual FT experiment is

2
13Xjk ; barring experimental misadjustments, all lines have the

same phase.

With a more complicated pulse sequence, it is possible, at

least in theory, to generate a multiple-quantum spectrum with all

lines in phase. If T were made equal to -t2 by some time-reversal

sequence [123] applied during preparation, then Pjk would equal

Q=j and for all transitions Ij> to \k>,

(V.lO)

Time reversal (which may involve literally hundreds of

pulses) is fortunately not necessary in many cases. Lines in

the proton spectra of molecules dissolved in liquid crystals are

narrow (3-10 Hz) in the absence of exchange and do not overlap in

the "interesting" higher-quantum regions. A magnitude spectrum

can therefore be calculated as in Fig. V.lb (creating some line

broadening due to dispersive tails) or each line can be phased

individually. For t 2=T, the resulting intensity of each transition

Ij> to Ik> is again 13IPjkI2.



a. Fourier transform of si9nal
(two buffers)

Oriented Benzene
n-quantum spectra

T=t2 =IO.O msec, ~=500 Hz
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b Magnitude spectrum
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XBL B010-12694

Figure V.l The multiple~quantum spectrum of oriented benzene (14 wt %

in Eastman nematic liquid crystal #15320 at 24.0°), obtained by Warren

Warren. The wide range of MQ phases apparent in (aJ makes analysis

difficult. The magnitude spectrum in (b) shows only slight broadening

and is much more informative.
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In solids, however, the existence of intermolecular dipolar

couplings gives rise to a continuum of transitions. Significant

cancellation of intensity will thus occur if time-reversal sequences

are not used [124]. The extent of this cancellation can be roughly

estimated as follows. If L transitions of equal magnitude p but

random phase overlap, then the intensity in the absence of time

reversal is, by analogy to a random walk in the complex plane,

given by

275

(V.ll)

for L »1. (See section 5.7 for the details of a similar

calculation.) In contrast, when a time-reversal sequence is used

to generate all lines in phase, the overall intensity is merely

Lp. The gain in signal to noise associated with time reversal

is therefore

1.128 L1/ 2 . (V.12)

t-""'!

I ·I
{ .

A more complete discussion of MQ intensities in solids will be

presented elsewhere [125]. In this chapter, we will focus on

magnitude spectra for molecules in liquid crystalline phase.



5.3 Coherence Magnitude as a Function of Preparation Time

From Eq. V.6 it is apparent that the intensity of multiple-

quantum lines depends on the values of T and t 2 • For example,

the calculated multiple-quantum magnitude spectra of oriented

benzene for T = t 2 = .25 msec, 5 msec, and 100 msec are displayed

in Fig. V.2. Lines appear and disappear as the preparation and

detection times are varied. To avoid missing a line due to an

unfortunate choice of T and t 2 , magnitude spectra for different

values of T and t 2 can be averaged together, as in Fig. V.3.

We have also computed, again for oriented benzene, the average

prepared coherence magnitude slPjk ' for each multiple-quantum order

as a function of T. To avoid even-odd selectivity, the two

preparation pulses were chosen to differ in phase by 45 0 [40].

Three such plots are displayed in Fig. V.4. For the lower-quantum

orders with many allowed transitions, the averaged coherence

magnitude per transition is largely independent of T after an

initial "incubation" period [given roughly by (27fT) (average dipolar

- . - -1coupling D in Hz) ~ 7f/2 or T ~ (4D) ~ 570 ~sec in this case].

The single six-quantum coherence naturally shows greater oscillation

but is also more intense on the average than a lower-order

transition, as will be discussed later.

Let's examine this six-quantum spin-inversion transition

further. The prepared coherence Pkk is purely imaginary for all

values of T (see section 4.6.3); specifically
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ORIENTED BENZENE

Magnitude Spectrum Simulations

(a) T =0.25 msec

(b) T =5 msec

(c) T =100 msec
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Figure V.Z Three calculated magnitude spectra for oriented benzene.

The molecule was assumed to be hexagonal, with rapid reorientation

about the C6 axis. DIZ was chosen to be -817.08 Hz, and isotropic

J-coupling values were used. In the top spectru~T and t z are too

short for higher-order transitions to be prepared or detected.
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Figure V.3 The multiple-quantum spectrum of oriented benzene,

averaged over four values of T=t 2 (4, 6, 8, and 10 msec). (a)

Experiment (a duplicate of Figure IV.7), (b) simulation with

broadening, (c) stick simulation.
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Figure V.4 Average prepared coherence magnitude slPjkl as a function

of t for oriented benzene. The preparation sequence contained two

rr/2 pulses with a relative phase of 45°, and ~w was assumed to be zero.
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With its i removed, Pkk is plotted in Fig. V.5a for values of T

up to 20 msec. Of more practical relevance is the six-quantum

2
intensity IPkk ' plotted versus T-t2 in Fig. V.5b. It can be

seen that over the range of a few hundred microseconds, the

intensity can vary markedly. Thus to make certain of appreciably

pumping the transition, it is necessary to combine magnitude

spectra for different values of T or use the parameter-proportional

phase incrementation (PPPI) technique [126J to select an optimal

T or a set thereof.

To check for the possibility of ~ong-term drift, the intensity

has also been calculated out tOT· 5 seconds (again it should be

stressed that relaxation is ~ considered here). 250000T

values were examined at 20 ~sec intervals. Intensities in groups

of 500 were then combined to give average intensities over 10 msec

periods. The resulting 500 points are displayed in Fig. V.6; no

drift in the "noise" is apparent. The dotted line represents the

soon-to-be-discussed ultimate T average intensity for an even-

selective sequence.

The normalized short T behavior of prepared benzene coherence

is presented in Fig. V.7. (Again the two preparation pulses differ

in phase by 45° to avoid even-odd selectivity.) For T = 0, only

t _
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Figure V.5 (a) Six-quantum coherence as a function of preparation

time L for oriented benzene and an even-quantum-selective

90y - L - 90y sequence with ~w = O. The maximum magnitude of

this N-quantum coherence is NB/2 = 38. (b) The corresponding

intensity for a three-pulse even-quantum-selective sequence with
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Figure V.6 Benzene six-quantum intensity for a three-pulse

even-quantum-selective sequence examined at great lengths -

out to t 2 = T = 5 sec. Each of the 500 points is an average

over 500 intensity values at 20~sec intervals. The averaged

intensity varies by "'10% from one 10 msec "bin" to another, but

there is no long-term drift. The dotted line marks the even

quantum-selective ultimate T average intensity.
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Figure V.7 Average prepared coherence magnitude at short values of

L for oriented benzene, with the same type of pulse sequence as in

Figure V.4. The height of each curve has been normalized, and the

L power dependences calculated for the coherences match the values

in the last column of Table V,l. All orders of coherence are present

when 2TIIOIL ~ TI/2 or L ~ 570 ~sec.



single-quantum coherence can be created; as T increases, other

orders of coherence appear. Higher-quantum transitions, in a

sense more forbidden, require more time to be pumped. This

dependence on T can be quantified by expanding the prepared

density matrix in a power series and evaluating commutators, as

detailed in Ref. 55:
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r
f

l3 P = e
-iX T

x 13fT
x

(po can be l3 I or l3 I , depending on the phase of the preparationz x

pulses.) Alternately, one can expand Eq. V.7 and use the computer

to calculate the (P.
k

) terms:
J n

+ ..• (V.15a)

= I: I:
a b

(V.15b)

The first non-zero commutator or (P. k) term in the expansion
J n

determines the growth of coherence magnitude for short T values.

The exponents describing the T power dependence of prepared

coherence magnitude for different values of ~ are listed in

Table V.I. The T power exponents for MQ spectr&intensity in a

t 2=T experiment would be double these numbers, since the effects

L
Rw
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Table V.I

Dependence on T of Multiple-Quantum Coherences Produced by the

Sequence 90¢ - T - 90y

Initial T power dependence

p=_90 oa ¢=Ooa p=_45 ob

Anisotropic
ICsystems 0 2 I

I I 0 0

2 I 2 I

3 3 2 2

4 3 4 3

n(even) n.,.l n n.,.l

n(odd) n n-l n-l

Isotropic
systems 0 2 I I

I I 0 0

2 3 4 3

3 5 6 5

4 7 8 7

n(even) 2n-1 2n 2n-1

n(odd) 2n-1 2n 2n-1

aFor systems without chemical shift differences, ¢=-90° is even-selective
and ¢=Oo is odd-selective when 6w=O.

b¢=-45°is equivalent to a superposition of ¢=_90° and ¢=Oo results.
c .

In systems without chemical shift differences, only even~selective

terms can prepare zero-quantum coherence. For these systems, the
appearance of zero-quantum coherence is therefore proportional to T

2
•
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Figure V.8 Intensity per transition for each MQ order of oriented

benzene as a function of t z = T. (All seven curves are normalized

to the same height.) The growth of n-quantum intensity ( n > 0)
Zn-Z

is proportional to T the growth of zero-quantum intensity is
4proportional to T •
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of both preparation and detection must be included. The growth of

r
normalized intensities as a function of t 2=T for oriented benzene

is shown in Fig. V.8.

As an added feature of Table V.1, the anisotropic spin systems we

have been considering are compared with isotropic liquid systems.

The fundamental difference between the two is the existence of non-

scalar dipolar couplings in anisotropic systems. These couplings

greatly facilitate the creation of multiple-quantum coherence; not

only are they roughly 100 times larger than the J-coup1ings present in

liquids, but their very form is such that lower powers of Tare

sufficient to produce coherence [55J.

5.4 T-Independent Spectra

We turn now to the question of line intensities in the limit of a

spectrum averaged over all possible values of T. Such a spectrum should

contain the "intrinsic" intensity for each line, free from the

distortions due to a limited range of T values.

5.4.1 The Statistical Limit Model

The simplest estimate of T~independent intensities is to assume

that in the limit of long preparation times each symmetry-a11owed

coherence in the prepared density matrix will have the same magnitude

but random phase. In this statistical limit, all symmetry-allowed

transitions are excited equally [40]. Figure V.9a displays the

L

I
L

I
l,

statistical-limit multiple-quantum magnitude spectrum for benzene,

Such spectra are relatively easy to calculate but ignore the fact that

some transitions are inherently stronger than others. In particular,

these spectra often underestimate the intensity of higher-quantum

lines, as will be discussed later.
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Ori en ted Benzene
Theoretical MQ Spectra

a) Statistical model

b) Ultimate Taverage f -

6M=O 6M=1 ~M=2 ~M=3 ~M=4 6M=5 6M=6

XBL 8112-13152

Figure V.9 Two T-independent spectra calculated for oriented benzene.

(a) The statistical-limit spectrum, in which every allowed transition

is weighted equally. (b) The "ultimate" T average spectrum.
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For the T=t2 MQ experiment, the total magnitude spectrum

intensity plus the sum of the squares of the associated populations

is given by

(V.16)

Since the trace is invariant to unitary transformations,

289

2NThe number of density matrix elements is 2 (coherences plus

(V.17)

populations). The statistical-limit intensity per transition in

multiples of S is thus N 2-(N+2) and the statistical-limit value

for coherence magnitude IPjkl is just the square root of this number.

The integrated spectral inten.sity per order is merely the

intensity per transition times the number of allowed transitions.

For non-symmetric systems, recall (from section 4.3) that the

number of ~M-quantum transitions is given by the following

expressions:

or roughly

for ~M :f 0

for ~M = 0

lC

f-
L

-(~M)2/N
e for ~ :f 0



The integrated statistical-limit intensities per order in

non-symmetric four, six, and eight-spin systems are listed in

Table V.2. It can be seen that the statistical model suggests

that simple non-selective excitation of high-quantum transitions

will be very difficult to achieve.

5.4.2 Symmetry-Adjusted Statistical-Limit Intensities

A somewhat more accurate model for systems with symmetry is

to calculate the statistical-limit intensity for each representation,

equal to the initial magnetization S Tr(I2) available to thez

representation divided by the number of elements in its reduced

density matrix. This procedure is appropriate because each

representation is in essence a separate system and evolves

independently.

As an example, the Al representation of benzene contains

thirteen states--one with M=3, one with M=2, three with M=l, and

three with M=O, plus equivalent totals for M<O. Hence
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and the symmetry-adjusted intensity per Al transition is

(V.18)

L
= 0.189 S (V.19)

8.08 times the simple statistical-limit value of 0.0235 S for a

six-spin system.



r .

{ ,

[

r,
1
l-~

Table V.2

Integrated Statistical-Limit Intensities Vs. Multiple-Quantum

Order for Systems Without Symmetry

in multiples of e = (wo/kT)(2-N)

LiM 8 spins 6 spins 4 spins

0 49.27 10.08 1.688

1 89.38 18.56 3.500

2 62.56 11.60 1.750

3 34.13 5.156 0.500

4 14.22 1.547 0.063

5 4.375 0.281

6 0.938 0.023

7 0.125

8 0.008

291



Table V.3 gives the symmetry-adjusted statistical-limit

intensity per transition for the various representations of

several by-now-familiar molecules. A number of conclusions can

be drawn from the data: (1) When the overall density matrix is

partitioned according to representation, the number of allowed

coherences drops considerably. As a result, the intensities of

all remaining transitions are several times greater than the

simple statistical-limit value of a N 2-(N+2). (2)0 Different

representations in general have different average intensities,

although for a given molecule these intensities vary by less than

a factor of two or three. (3) For a given number of spins,

smaller representations tend to have higher average intensities.

In Table V.4, symmetry-adjusted statistical-limit intensities

are given as a function of aM. In each case the N-quantum and

(N+I)-quantum lines, which are always Al transitions, have the

same intensity. Beyond that it is difficult to say anything

profound: in acetaldehyde, benzene, and disubstituted biphenyl,

the intensity per transition increases modestly from AM=O to

~·8, but hexane-d6 shows a slight decline over the same range.

The simple and symmetry-adjusted statistical-limit spectra

for oriented benzene.are comparable in appearance. The major

difference between the two spectra when plotted to the same height

is that the E-representation lines are smaller in the "symmetry-

adjusted spectrum, especially the E2 lines.

The calculation of symmetry-adjusted intensities is

eminently straightforward and naturally' more accurate than the
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Table V.3

Symmetry-Adjusted Statistical-Limit Intensities per Transition

Intensity per transition

'"J ~IV ~

'11;l!'.Ii!!

iilli
II'I
II!
I
"Iii

1:1,(

i'l

i
I:
1,1
'I'

Iii,i
Iii
:Ill

I!
II
I:
i
i
i

Molecule

acetaldehyde

benzene

4,4'
disubstituted
biphenyl

CD/CH2) 4CD3

chain

Relative
to simple

Repre- Number TdI 2} (multiples statistical
sentation of states z of 8) model

Al 8 12.0 0.1875 3.0

E 8 4.0 0.1250 2.0

Al 13 32.0 0.1893 8.079

B1 7 10.0 0.2041 8.708

B2 3 2.0 0.2222 9.482

E
1

2x9 2x12.0 0.1481 6.321

E2 2x11 2x14.0 0.1157 4.937

Al 55 144.0 0.0476 6.093

A2 15 16.0 0.0711 9.102

B1 21 32.0 0.0726 9.288

B2 45 96.0 0.0474 6.068

E 2x60 2xl12.0 0.0311 3.982

Al 76 176.0 0.0305 3.900

B1 60 112.0 0.0311 3.982

B2 60 112.0 0.0311 3.982

B3 60 112.0 0.0311 3.982

t-J
\0
W

,II

!
i
I

I



Table V.4

Symmetry-Adjusted Statistical-Limit Intensities per Transition

in multiples of B= (WO/kT) (Z-N)

4,4'-disubstituted CD3(CH2)4CD3

~ Acetaldehyde Benzene biphenyl chain

0 0.1625 0.1470 0.0392 0.0309

1 0.1625 0.1491 0.0395 0.0309

2 0.1750 0.1527 0.0396 0.0309

3 0.1875 0.1545 O. G396 0.0309

4 0.1875 0.1714 0.0402 0.0308

5 0.1893 0.0407 0.0308

6 0.1893 0.0432 0.0307

7 0.0476 0.0305

8 0.0476 0.0305
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simple statistical approach. If the couplings and chemical

shifts are known however, a little computation yields a far

more realistic set of L-independent intensities, as presented

in the next section.

5.4.3 Ultimate L Average Intensities

This alternate approach, for t 2 = L, is to actually average

the L-dependence contained in the expression for the magnitude of

a given line. An expression for this "ultimate" '[ average can be

derived as follows. From Eq. V.9,

295

(V.20)

Using Eq. V.7,

Re(Pjk) • r[ Bab COSWbaL
'a b

and

Im(Pjk) • rr Bab si~aL
a b

(V.21a)

(V.21b)

where the second set of summations is restricted: wba must equal

~'a' and B;b terms are excluded.

I

I
(
I
L

~

[

!
I
\~,

• 8 rr
a b
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Except for accidental degeneracies, there are only three

circumstances for which single-quantum frequencies ~a and wb'a'

would be expected to be equal. The first is the case of degenerate

eigenstates in multi-dimensional irreducible representations, such

as the doubly-degenerate E
I

or E2 states of benzene. Calculations

indicate, however, that the sum over all BabBa'b' terms associated

with the transitions between two sets of degenerate states is always

zero.

The second cause for overlap of single-quantum frequencies is

the existence of spin-inversion states. In this case wba = ~a and

r
~ =

(V.23)

Bab can be shown to equal Bab for ~ even and -Bab for t.M odd;

hence

for even-quantum transitions, <1~jkl>T = 2B I: I:
a b

(V.24a)

for odd-quantum transitions, <ISjkl>T = 0

This result is merely a manifestation of the even-quantum

(V.24b)

L
selectivity of the 90y - T - 90y preparation sequence applied R

6

to systems with purely bilinear Hamiltonians.

general sequence

With the more

I,
U



90y - T - 90~ - t - 90~ - T1 (~ = ~~)
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the dependence of the ultimate T average on the phase of the

second and third pulses for these systems is as follows:

for even-quantum transitions, <IS.kl>
J T

2= 2S cos ~ [L
a b

(V.25a)

for odd-quantum transitions, <1~kl>T
2= 2S sin ~ [.r

a b

(V.25b)

To avoid the effect of even-odd selectivity when analyzing systems

with no chemical shift differences, we will choose ~ = 45°, for

which <1~kl>T is simply

that of the corresponding

value.

S~~ B
2
b • This intensity is half

a b a
purely even-selective or odd-selective

1L_

I
L;

(An additional curious and useful relationship for spin-

inversion states: the ultimate T average intensities of

transitions Ij> to lk>, Ij> to lk>, II> to Ik>, and II> to lk>
are equal.)

The third cause for overlap of frequencies ~a and wb'a'

is the extra single-quantum degeneracy in certain highly symmetric

systems, such as D2 or C4v four-spin systems with D=O or with

no J-coupling. Only for these special cases must the sum over
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BabBaib' terms be actually calculated to obtain the correct

intensity. Of course, the inclusion of BabBa'b' terms re-introduces

even-quantum· selectivity for "shiftless" systems when f1w=O.

To eliminate this effect yet retain the corrected intensity

values, the search for overlapping single-quantum frequencies

should be restricted to either the upper or the lower triangular

portion of the density matrix.

5.4.3.1 Simplifying the Calculation

When the BabBa'b' terms can be ignored, the computation of

ultimate T average intensities is greatly simplified. If we let

2 2
A~m = A~m and X~ = X~m' the T-averaged intensity of any

transition Ij> to Ik> is just B(AtXA)jk. This calculation

requires no more multiplication than the calculation of Sjk for

a single value of T: roughly 2·22N + 2·23N real-number multiplications

for a general N-spin system once A and X have been computed.

{As a comparison, the use of Eq. V.24a for every transition would

entail [(22N_2N)/2].[2.23N] or approximately 25N multiplications.}

The ultimate T average spectrum for most systems can thus be

generated much more quickly than an average over a number of discrete

T values.

Even greater computational speed is possible if only the

average or integrated intensity per ~ order is desired. We first

Ndefine A', a 2 x (N+1) matrix, as follows:

r
r
c

r
i
I

'- .../

= L
j

A.• <5 (J ,M.)
~J J

(V.26)

L
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where O(J,M
j

) is unity when J=M
j

and zero otherwise. The

integrated ultimate T average intensity <SJK> for transitions

between the M=J and M=K manifolds is in turn given by
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• a [(A')+ X A']
JK

(V.27)

The integrated intensity between manifolds J and K is thus given

by one element of an (N+1)x(N+l) matrix. The integrated

~quantum intensity is then

2N 2NOnly on the order of 2-2 + 2-(N+1)-2 multiplications are

required once A and X are computed, a substantial savings over

2N 3Nthe previous total of 2-2 + 2-2 for large N.

(

I

L
- i:

!
I

L
I
I
L"

<S>
-n

.. (V.28)
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In the pursuit of still more rapid evaluation of intensities

as a function of MQ order, one is tempted to reduce the problem

even further. For an approximate integrated intensity, the following

(N+l)x(N+l) matrices could be defined:

r
f ::

A" =JK

(V.29)

X" =...L.
JK n

JK
I: I: XJo k O(J,Mj ) O(K,~)
j k

(V.30)
r~
,
t

One would expect by analogy to Eq. V.27 that

nJK is the number of matrix elements Xjk with Mj=J and

(Because X is a single-quantum operator, X;K=O unless~=K.

IJ-K/=l.)

where

(V.31)

However, this is going too far: <SJK> by this formula turns out

to be exactly the statistical-limit integrated intensity for

transitions between the M=J and M=K manifolds. That is,

R
6

5.4.3.2 Some Ultimate L Average Spectra

Figure V.9b displays the ultimate L average spectrum of

benzene. Although both this spectrum and the statistical-limit

t
U
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spectrum simulate the general features of the experimental results,

the ultimate T average approach more correctly predicts the

intensity of individual lines. All transitions are not pumped

equally; in particular, the lone six-quantum transition is

appreciably stronger than an average isolated lower-quantum

transition.

Figure V.lO compares the experimental MQ spectrum of an

eight-proton cyanobiphenyl liquid crystal (kindly supplied by

Steven Sinton) with statistical-limit and ultimate Taverage

simulations. Of the two, clearly the ultimate T average spectrum

more accurately models such experimental features as the bimodality

of the one-quantum region, the side peaks of the two-quantum

region, and the enhanced intensity of the higher-quantum lines.

That these latter transitions are in fact more intense than the

ultimate T average calculation would predict reflects a choice

of experimental T values fortuitous for the creation of high-quantum

coherence.

5.5 Higher-Quantum Selectivity in the Ultimate T Average

It is worthwhile to study the ultimate Taverage intensity
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transition as a function of multiple-quantum order. Results

a number of molecules are listed in Table V.5. In each case,

integrated intensity per MQ order decreases as ~ increases,

the average intensity per transition is greater for larger

This increase in intensity per transition is most pronounced

systems possessing a high degree of symmetry or for systems
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Cs DII rfJ 2 CN

Multiple Quon tum Spectrum

0) Experiment

bl Ult imate T' overage
simulation

cl StatIstIcal model
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X8l.BII2-13IS3

Figure V.ID (a) The proton TPPI MQ spectrum of a nematic n-pentyl-dll

cyanobiphenyl liquid crystal, obtained by Steven Sinton. Six individual

spectra with T values ranging from 4 to 14 msec were averaged together.

The 8Q line does not appear due to the choice of TPPI parameters, and

the center line in the 7Q region is a TPPI artifact. (b) and (c) Two

T-independent simulations assuming D4 spin symmetry. In all three

spectra, the strongest DQ,lQ,2Q, and 4Q lines have been clipped to

better emphasize the overall lineshape.
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Table V.5

Ultimate T Average Intensity Vs. Multiple-Quantum Order for Various Molecules

-Nin multiples of B = (w
O

/kT)(2 )

Cyc1o- 2,5-Dich1oro- 4,4'-Disubstituted
CD3(CH2)4CD3Benzene Cyc1opropanea pentadienea acetophenonea bipheny1b

- --1/2 0.777 0.567 0.028 0.225 0.519 0.080Dijl (Dij 2)

Integrated
.intensity:

6M = 0 4.354 5.006 6.632 6.917 33.06 29.69
1 17.08 17.36 17.56 17.32 83.89 83.92
2 11. 72 12.19 11.83 11.58 62.62 63.16
3 6.007 6.002 5.820 6.039 36.59 36.87
4 3.289 3.020 2.602 2.388 . 20.09 20.49
5 0.909 0.642 0.625 0.640 6.920 6.782
6 0.605 0.379 0.164 0.126. 3.251 3.083
7 0.594 0.432
8 0.354 0.223

Intensity
per transition:

6M = 0 0.109 0.132 0.060 0.051 0.029 0.020
1 0.147 0.152 0.072 0.060 0.038 0.029
2 0.148 0.158 0.073 0.063 0.040 0.031
3 0.177 0.177 0.075 0.069 0.043 0.034
4 0.274 0.252 0.093 0.075 0.053 0.043
5 0.455 0.321 0.104 0.080 0.060 0.048
6 0.605 0.379 0.164 0.126 0.108 0.086
7 0.148 0.108
8 0.354 0.223

aCoupling constants from Ref. 25.
bCoupling constants from Ref. 56.
c w

Coupling constants courtesy of G. Drobny, private communication, for the a11-t~~ns configuration. 0
w



whose dipolar couplings are similar in value, for which the
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quantity

d = (V.33)

r
I =

is close to 1.0. We now shall explore the relationship between

the value of d and the enhancement of higher-quantum coherence.

5.5.1 Equivalent-Spin Systems

Consider the case of N magnetically fully equivalent spins in

an anisotropic medium--an example would be the fluxional ten-spin

molecule bullvalene dissolved in a liquid crystal I127]. For

such a system with unique dipolar coupling constant D and indirect

spin-spin coupling constant J, d = 1.0 and

r

3;J(=-D
2

N N

~<~
1. -I - 6.w I
-J _k z

(V.34)

The second term describes scalar coupling between equivalent spins

and has no effect on the spectrum [117]. The remaining terms

2
commute with ! ; hence the eigenstates can be separated into

representations labeled by the value of 1(1+1). As an example,

the states of a four spin system of this type divide into one

quintet, three triplets, and two singlets. The number of allowed

transitions is thus greatly reduced. In particular, there can be

no zero-quantum transitions.
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Warren Warren [55] has calculated the resulting line

intensities using the effective preparation Hamiltonian
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3
j( • - Dx 2 (V.35)

The two terms of j( commute, so
x

3 N N
6P=8{exp(-i -2 DT r r I j1 k) }(COS~WT I +Si~T I )

j<kxX Z Y

This expression can be evaiuated using the relationships

and

= cos (3DT)1 _ 2 sin (3DT)1 I
4 zj 4 yj xk (V.37a)

3 3
exp(-i -2 DT I .1 k)1 . exp(i -2 DT I .1 k)

xJ x YJ XJ x

= cos (3DT)I + 2 sin
4 yj

(3DT)1 I
4 zj xk (V.37b)

The
Nn

i=l

prepared N-quantum coherence, given by the coefficient of

I ., is
+1



(_ iBN) (cosllwT) [sin (3DT)](N-1)
2 4

(iBN) (SinllWT) [sin ,3DT)](N-1)
2 4

for N even,

for N odd.

(V.38a)

(V.38b)
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The T-averaged intensity for the N-quantum transition is

(2N-2)!
(N-1)!(N-1)! (V.39)

Table V.6 presents these T-averaged N-quantum intensities for

several different values of N. Also included are computer-

calculated values of T-averaged integrated intensity for lower

multiple-quantum orders of these equivalent-spin systems. When

N=8, note that the integrated one-quantum and N-quantum intensities

differ only by a factor of roughly 46; for a general 8-spin

molecule, the difference would be a factor of 11440 in the

statistical limit.

5.5.2 General Spin Systems

Now return to the problem of a general N-spin system with
,

arbitrary Dij's. Let Dbe the average value of the N(N-1)/2

dipolar couplings. The dipolar Hamiltonian can be written as

N N -3 1 N N 3 1
'JfD = r r: (D·k-D) (-2 I .I k--2 !J··!k) + Dr) (-2 I .I k--2 I.e l k) ,

j < k J ZJ Z j <'t" ZJ Z - J -

(V.40)

I '
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Table V.6

Integrated Ultimate ~ Average Intensities Vs. Multiple-Quantum

Order for Equivalent-Spin Systems

in multiples of B= (wO/kT)(2-N)

tIM 8 spins 6 spins 4 spins

0 0 0 0

1 76.95 16.10 3.125

2 47.61 9.580 1.750

3 36.33 6.504 0.875

4 27.18 4.770 0.625

5 12.73 1.395

6 10.21 1.107

7 1.998

8 1.676
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where the second term preferentially pumps higher-quantum

transitions. In going from a symmetric to a nonsymmetric

system, this term will become less important and the integrated

intensities of these higher-quantum spectral regions will drop.

However, the number of allowed lower-quantum transitions increases

rapidly as the symmetry is reduced, especially in the one- and

two-quantum orders. Thus the T-averaged intensity per transition

is greater for large 6M, even in completely general systems.

To illustrate this, we have calculated ultimate T average

intensities for non-symmetric four-spin systems as a function of

fi, the average value of the dipolar coupling. For each system,

six dipolar couplings were generated randomly between ± 1000 Hz,

and a constant value was added to each to fix the proper D. Small

random J-couplings were included, but no chemical shifts.

Intensities from fifty different random systems were then averaged

for each value of n.. Figure V.ll displays the resulting intensity

per transition for each MQ order as the contribution of the average

dipolar operator is varied. When D grows large compared to the

range of dipolar couplings, the average four-quantum intensity

naturally approaches its equivalent-spin value of 0.625 S, or ten

times the statistical-limit prediction. The average zero-quantum

intensity drops toward zero. When n= 1000 Hz, with dipolar

couplings ranging from 0 to 2000 Hz, the four-quantum line

intensity is 6.5 times greater than the statistical-limit value.

Even greater enhancement occurs when the number of spins

increases, as illustrated in Fig. V.12 for N=6. Again, random
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dipolar couplings were generated between ± 1000 Hz and D then

adjusted to the desired value. Small J-couplings were included

but no chemical shifts, and intensities from 25 random "molecules"

were averaged together for each Dvalue. The ultimate T average

intensity of the six-quantum transition when Dis comparable to

the range of dipolar couplings is 27 times greater than the

statistical-limit intensity per transition. The average five-

quantum transition intensity is 3.9 times larger than the

statistical value. For N=8, the comparable enhancements are

150 and 13.

310

The effect of chemical shifts is displayed for N=4 in Fig. V.13.

For each line, dipolar and J-couplings were generated as described

above. In addition, random chemical shifts within a specified

range were included in the Hamiltonian. The four-quantum

ultimate T average intensities of 50 systems were averaged

together for each point. The chemical shift range for curves a

through g increases from ± a Hz to ± 3000 Hz; as the spread in

chemical shift frequencies increases, the N-quantum enhancement is

diluted, particularly for larger values of D.

To summarize, nonselective excitation of high-quantum lines

is, surprisingly, not so hopeless a procedure as the simple

statistical-limit picture would imply, especially for systems with

similar dipolar couplings. Even in completely general molecules,

the residual selectivity of highly symmetric systems carries over

and results in often sizeable improvement. This bodes well not

only for ensemble-averaged MQ spectra but also for total spin

Au
A
L

L
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spin systems with no chemical shifts. Zero-, one-, and two-quantum
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with all dipolar couplings equal. Maximum range of Djk values for
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coherence transfer echo experiments [119].

5.5.3 Residual Symmetry Effects When DIs Zero

It can be seen from Fig. V.11 that even when Dequals zero,

the four-quantum ultimate L average intensity in a general four-

spin system is still roughly twice as large as the statistica1-

limit value of 0.0625 S. This selectivity is due to residual

effects from other symmetries. For example, the L-averaged

four-quantum intensity of a hypothetical four-spin C3v system

with no chemical shifts or J-coup1ings can be shown, after straight-

forward but lengthy evaluation of the appropriate matrices, to

be given by the following formula:

where v = 012 = 013 = 023 and w = 014 = 024 = 034· The details

of the derivation can be found in Appendix C. When D= 0

(v = -w), the 4Q intensity is 0.324 S, or 5.18 times the

statistical value. Some of this selectivity carries over to

general four-spin systems with D= O.

Similarly, the average N-quantum intensity of a four-spin

04 system with no J-coup1ings can also be calculated (back to

Appendix C for the algebraic flourishes). In this molecule, we

must be careful about degenerate single-quantum transitions-

the simplified ultimate L average formula <1~jkl>L = rAt x A]jk

is in fact incorrect for the 04 case itself. Nonetheless, the
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T-averaged 4Q intensity of a distorted "quasi-D4" molecule

approaches the D
4

value:

where f = Dl2 = D23 = D34 ~ D14 and g = D13 = D24 0 When

D= 0 (g = -2f), the ultim~te T average intensity is 118/32 ~

0.344 6.

The effect of general four-spin systems becoming more

"D4-like" is shown in Fig. V.l4. For each system, six di.polar

co:;plings were chosen randcmly between ± 1000 Hz and adjusted

such that D = o. Small J-couplings were also generated but no

chemical shifts. An aug:nented· coupling D' was then added to

D12 , D23 , D34 , and D14 , while 2D' was subtracted from D13 and

D24 , thereby keeping D constant but increasing the spread in

coupling frequencies. D' was varied from -2500 Hz to 2500 Hz

in incre~ents of 100 H~~, and the 4Q intensities of 100 random

systems were averaged together for each point. As ID'I grows

large compared to the range of dipolar couplings, the general

spin systems more and more closely resemble the true D4 system,

and the 4Q intensities approach 116/32.

5.5.4 A Comparison of Two Eight-Spin Systems

To further illustrate the importance of Q (the ratio of the

average dipolar coupling to the r.m.s value) in its effect on

the N-quantum signal, two eight-spin systems with random couplings

but no chemical shifts are compared here. Por system 1, dipolar

314
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Figure V.14 Ultimate T average intensity per transition for diff

erent MQ orders as a function of the "D4-character" of random four

spin systems with D= O. Each point is an average over 100 such

systems. Dij val~es were chosen randomly between ±lOOO Hz and

adjusted so that D = 0; a variable augmented dipolar coupling D'

was then added to D12 , D23 , D34 , and D
14

while 2D' was subtracted

from D13 and D24 • As ID'I increases, these random systems become

more "D4-like". The arrow marks the statistical limit intensity

per transition.



couplings were generated between ± 500 Hz and then adjusted so

that fi = O. For system 2, 500 Hz was added to each of these

Dij's. J-couplings, generated between ± 10 Hz, were the same

in each case. Both sets of dipolar couplings are characterized

by the same standard deviation, 297.4 Hz, but the value of d

differs between the "molecules": d = 0 for system 1, while for

system 2,d = 0.864. A comparison of various other parameters

can be found in Table V.7. In addition, the prepared 8Q coherences

and intensities as a function of T are displayed in Figs. V.15

and V.16 (note the large difference in vertical scales). The

eight-quantum intensity for system 2 varies far more periodically

than that for system 1, and its ultimate T average value is 67

times larger.

As stated earlier, the reason for this disparity lies in

the similarity of system 2 to the case of eight fully equivalent

spins. One eigenstate in each Zeeman manifold of system 2

approximates an equivalent-spin Al eigenstate. Recall the

expression for N-quantum coherence:
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(V.43)

The Bab elements connecting the aforementioned eigenstates are

far bigger than any other B
ab

terms. These few large components

give rise to both the size of the 8Q signal and its periodicity--

effectively only a few sine terms contribute to its evolution.
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Table V. 7

A Comparison of Two Eight-Spin Systems

System 1 System 2
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D

d

Bab values for

8Q coherence:

average

average deviation

standard deviation

largest value

8Q ultimate T average

(even-selective sequence)

8Q signal-results

from 1001 T values:

<IPjkl>

<lp· k I2>

<IP~kI2>/<IPjkl>2

0.0 Hz

0.0

0.0
-42.72x10
-48.49x10

0.0163

0.0330

0.1428

0.0324

1.587

500 Hz

0.864

0.0
-41.89x10
-36.95x10

0.440

2.209

1.261

2.249

1.415
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In contrast, the Bab terms which sum to give Pkk for system 1 are

more nearly the same size; there are no "favored" eigenstates.

The prepared SQ coherences of systems 1 and 2 also differ

in their autocorrelation functions, as discussed in the next

section.

5.6 The Autocorrelation Function of Prepared Coherence

The autocorrelation function of a function f(t) is defined

as [113]

320

ff*f](T) ... 1 *f (t) f(t+T)dt (V.44)

If f is not square-integrable, i.e. , if

then a modified definition can be used Il2S]:

(V.45)

(V.46)

With this definition, f*f at T-O is just the average value of

As T increases, f*f is a measure of the overlap between

*f and f shifted by an amount T, again averaged over time. If

f(t) changes rapidly, f*f will quickly decay from its initial

value. If fCt) is a truly random function. of time, then f*f will

go to zero as T increases--that is to say, when averaged over
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time there is a monotonic decrease in correlation between f*(t)

and f(t+T) as T increases. For large enough T, f*(t) and

f(t+T) become completely uncorrelated; a knowledge of f(t) is

then of no use in determining the value of f(t+T). On the

other hand, if f(t) is a periodic function, then f*f will also

be periodic since the overlap of f*(t) and f(t+T) will go through

maxima and minima as T is varied.

The autocorrelation function of prepared coherence P
jk

can

be calculated as follows:

1 T·
= iim 2T J_ {r Bab exp(-iWbat)}
T~ -T a,b

321

= r
a,b

L

(V.47)

The limit expression equals one when wb'a' = ~a but is zero

otherwise. Ignoring for now the problem of degenerate single-

quantum frequencies ~'a' and wba ' the quadruple sum thus

simplifies to a double sum:



r
a,b

(V.48)
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It can be seen that when T=O, the autocorrelation function of Pjk

equals the ultimate T average intensity. Overall, the expression

for Pjk*Pjk is very similar to that for Pjk--the only difference

is the substitution of B;b for Bab •

The two random eight-spin systems considered earlier have

very different autocorrelation functions (Fig. V.17). For system

1 with its profusion of similar Bab values, many frequencies

Wba contribute to the expression for Pjk*Pjk • The result is

similar to the autocorrelation function of a truly random process:

a monotonic decay from an initial value to near zero with no

[:
{

appreciable recurrence. 2For system 2, in contrast, a few B
ab

exp(i ~a T) terms dominate in Eq. V.48, making the autocorrelation

function sinusoidal and periodic.

5.7 Average Intensities in Isotropic Systems

Ultimate T average intensities in isotropic systems have also

been briefly investigated. Here XD = 0 and thus J-couplings are

the sole source of spin-spin interaction. If multiple-quantum

coherence is to develop, there must be chemical shift differences

as well; otherwise only single-quantum transitions can be prepared.

(This can be seen by rewriting Eq. IV.33c with Xxx equal to XJ .:

!
U

L
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Figure V.l7 Autocorrelation functions for eight-quantum prepared

coherence in two random eight-spin systems. As could be predicted

from the corresponding plots of 8Q coherence vs. preparation time

(Figs. V.lS and V.l6), the coherence autocorrelation function for

system 2 has much greater periodicity and amplitude th~n that for

system 1.



-ffi' T
Bp • COS&wT e J B I z

-ffi' T
sinbwT e J B I

Y

(V.49a)

324

r
U

since

(V.49b)

r
!=

• • 0.)

The degree of higher-quantum excitation depends on the

relative sizes of the J-coupling constants and the chemical

shift differences. In the first-order limit (Ioj-crkl » J jk) , the

N-quantum coherence magnitude can be shown [55] to be given by

the following:

for N even

for N odd.

(V.50a)

(V.50b)

The T-averaged N-quantum intensity calculated from these

expressions is e~actly the statistical-limit value. Note,

however, that for N-quantum coherence to develop after a

reascaably short time T, there must be at least one spin j

with healthy couplings J jk to all other spins. (This "cluster

coupling" condition is not necessary for the creation of N-quantum

coherence in anisotropic dipolar-coupled systems.) As for lower-

(3

U



quantum lines, computer simulation· of first-order systems has

shown that all transitions are on the average excited equally,

in complete accord with the statistical model.

In contrast, for the strong-coupling limit (Jjk > laj-crkl),

the same sort of higher-quantum enhancement occurs as in aniso-

tropic systems. Again the effect is most pronounced when the

bilinear coupling constants (here the J jk values) are nearly

equal.

5.8 Total Spectral Intensity When T Does Not Equal t 2

Thus far, only the case of t 2=T has been considered. We will

now examine the effect on signal intensity of varying T and t 2

independently. Figure V.18 is a calculation of the total intensity

of the magnitude MQ spectrum of oriented benzene as a function of

t 2 for two different values of T. Figure V.19 displays the total

magnitude spectrum intensity for benzene over a range of T and

t 2 values. Clearly, there is something special, but not spectacular,

about t 2=T. A simple argument follows to explain why there is a

maximum in total spectral intensity there and why this maximum

is about 1. 27 times the t 2;'T "baseline."

Recall from Eq. V.6 that the magnitude of a given MQ line can

be written as
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The ratio R of the total intensity at t 2=T relative to the
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''baseline'' is

(V. 52)

Both numerator and denominator involve the summation of many

transition intensities for one value of T. We will assume that

the same ratio holds if we look at a single MQ transition but

average over many values of T, in a sense substituting a time

average for an ensemble average. That is, we assert that

328 rco,
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(V.53)

and concentrate on just a single line. <lp~kl>T is just the

ultimate T average intensity of the transition:

(V.54)

,
On the other. hand,

f •
!

b

(v. 55)

and hence
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l - 2
• C1jk + 1 , (V.56b)

where 0jk is the relative standard deviation of IPjk '.

For simplicity, rewrite Pjk as follows:

(V.57)

IPjkl is the magnit~de of the sum of complex numbers with fixed

real lengths Pt and varying phases ~t • WtT. In general, the

single-quantum frequencies wt are unequal, so as T varies these

components fan out in the complex plane like different hands on

a clock. The T-averaged probability density associated with a

given component is simply

Pt(r) = o(r-pt ) (V.58)

For a fixed value of T, Pjk can be thought of as a complex piane

random walk of q steps, where q is the number of components. The T-

averaged pr9bability density of Pjk is difficult to compute exactly,

but can be approximated using the central limit theorem [129J as a

L

two-dimensional Gaussian~

Per)

With this approximation,

2 2-r 10,
e (V.59)
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Thus for a given line, the average over T of the transition

intensity for t 2=T should be 1.27 times the average intensity

when T and t 2 are varied separately.

The averaging is somewhat different for /k>to Ik> transitions.

It was shown previously that Pkk is always purely imaginary. For

such transitions, Bba = -Bab , and

= i r
R.

(V.61)

Each component of Pkk now oscillates only along the complex axis

with a T-averaged probability density given by [129]

1 [ 2 2]-1/2
~(y) =- c -y
----., 11' R.

and displayed in Fig. V.20.

(.y2 2)
< cR. (V.62)

For a fixed value of T, P
kk

can be thought of as a one-dimensional

random walk; averaged over T its probability density will again be

assumed to be a Gaussian:
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Figure V.20 A probability distribution for the prepared coherence

~ ..

[

magnitude of a spin-inversion transition when only one B
ab

sinw
ab

T

term contributes to Pjk ( Ik> = II> ). Such is actually the case

for the two-quantum B2 transition in benzene. The functional form

of this distribution is given by Eq. V.62, and the ratio R = .
2/ _

iT 8 - 1.234.



In this case,

</Pkk/
2

\ "2 2
R

y (J 1T ::: 1.57= = = = "2<Ip _I> 2 (fy"f)2 (12!i (J)2
kk T

(V.63)

(V.64)
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Because spin-inversion transitions are at most a small percentage

of the total number of transitions, they do not contribute much

to the total magnitude spectrum intensity. Thus, as stated earlier,

this total intensity at t 2=T should be about 1.27 times larger than

the intensity when t 2;T.

The ·ratio R was calculated for the totally symmetric Al

transitions of oriented acetaldehyde by averaging over 200 000

values of T; results are listed in Table V.8. For this molecule,

the four quantum line is the only Al spin-inversion transition and

R for it is 1.585. The average value of R for all other transitions

is 1.271. Both numbers are very close to the random-walk values.

Also in Table V.8 are similar results for the Al transitions

of oriented benzene, obtained by averaging over 20 000 T values.

The average ratio for odd-quantum orders (for which there can be

no spin-inversion transitions) is 1.22, very close to the predicted

ratio for two-dimensional random walks. The ratio for the spin-

inversion six-quantum line is 1.44. Though smaller than the

prediction of the simple l-D random walk model, this value is, to

think positively, closer to 1T/2 than 4/1T.

L
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Table V.8

R as a Function of Mu1tip1e-Qua~tumOrder (A1 Transitions)

LiM Benzene Acetaldehyde

0 1.290 1.298

1 1.218 1.256

2 1.223 1.277

3 1.225 1.283

4 1.253 1.585

5 1.239

6 1.441
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Actually, the value of R relates back to the value of d, the

ratio of the average dipolar coupling to the r.m.s. coupling.

The last line of Table V.7 compares R for the N-quantum transitions

of the two eight-spin systems considered in section 5.5.4. For

system 1 with d=O, the Bab elements which comprise P
kk

and which

constitute the step lengths of the random walk are roughly

comparable in size. The central limit theorem with its prediction

of a Gaussian probability density should be especially accurate

and R should be close to ~/2, as indeed it is for system 1 (R =

1.587). In contrast, when d ~ 1, as in system 2, a few Bab

elements are far larger than the rest, generating a few "giant

strides" in the random walk. The central limit assumption is

thus less valid, and R is expected to lie between ~/2 and its

value for the single-component probability density of Eq. V.62,

2
namely ~ 18 ~ 1.234. For system 2 with d=0.864, R=1.4l5. As

a.comparison, d fo~ benzene is 0.776 and R=1.44 as noted above.

In addition to the calculation of R values, the actual

distribution of /Pjk ' for each multiple-quantum order was

computed for both the benzene Al transitions and acetaldehyde Al

transitions by again averaging over many values of T. In Fig.

V.2l P(r) ~. r is plotted for benzene with ~=l, ~M=3, and ~M=6.

Figure V.22 displays E(r) vs. r for acetaldehyde. In each case

except the benzene six-quantum transition, the distribution

indeed appears roughly Gaussian.
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Figure V.21 Probability distribution for the average prepared coherence

magnitude of Al transitions in oriented benzene, obtained by averaging

over many values of T. Ideally, curves (a) and (b) are profiles of two

dimensional Gaussians; curve (c) is ideally half of a one-dimensional

Gaussian.
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r
r To summarize, it can be seen that choosing t 2 equal to T

is advantageous but not crucial in the three-pulse multiple-

quantum experiment. When magnet homogeneity is good, one may,

for optimal signal-to-noise, sample the magnetization at many

values of t 2.' One can then average together the magnitude MQ

spectra associated with each value of t 2 [55], or take the two

dimensional transform [100,108] and compress the resulting

magnitude spectrum along the multiple-quantum axis. When magnet

homogeneity is bad, however, echoing pulses [40,105,107] must be

added to the pulse sequence at 1/2 T and during the detection

period. Under these circumstances, the magnetization can be

meas~red at only a limited number of points in the detection

period, and one might as well choose t 2=T as one of them.

5.9 Further Tinkering with the Pulse Sequence

As the final act of this study in intensity, two variations

in the basic three-pulse sequence will now be briefly investigated:

a variable flip angle for the second and third pulses and the

addition of a pi pulse moored in the midst of evolution.

5.9.1 Flip-Angle Frolics

Except for the gerade-ungerade selectivity experiment

described at the end of Chapter IV, only 90 0 pulses for MQ

preparation and detection have been considered thus far. Varying

the flip angles, however, leads to different multiple-quantum

intensities and, as we have seen, to different selection rules.
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The first pulse is not very interesting. Assuming its

phase is -90°, the density matrix after the first pulse is

p = stcose I + sin6 I )z x (V.65)
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That portion of p which is proportional to I is unchanged duringz

the preparation period and gives rise only to single-quantum

coherence after the second preparation pulse. Hence we will keep

the flip angle of the first pulse at 90°.

Playing with the second and third pulses is more entertaining.

Figure V.23 displays the ultimate T average intensity per transition

for the Al representation of oriented benzene as a function of

flip angle. (To keep Qkj • Pjk , it is convenient to use matching

flip angles for pulse 2 and pulse 3.) The most striking aspect of

this figure is that the plots of intensity vs. 6 become more

narrowly centered about e=90° as AM increases. As one would

intuitively expect, the highest-quantum transition is the least

tolerant of pulse misadjustment. The earlier observation that

intensity per transition increases with the value of ~M, especially

for a molecule with similar dipolar couplings like benzene, is

thus seen to be true only for 6 ~ 90°.

Figure V.24 features ultimate T average intensities for the

Bl states of benzene, also as a function of flip angle. The

zero-quantum plot is of interest here. When 6=90°, transitions

between the three M=O ungerade eigenstates are forbidden. Away

!
~
L

f
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Figure V.23 Ultimate L average intensity per transition for each MQ

order of benzene Al states as a function of the flip angle of the
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from 90°, however, the selection rule is relaxed, in particular

at 8=45° (as discussed in Chapter IV).

5.9.2 Effects of a Pi Pulse in Evolution

It was noted in section 4.7.1 that a pi pulse in the middle

of the evolution period will remove inhomogeneous line broadening

in the multiple-quantum spectrum. If all spins have the same

chemical shift, then the spectrum of each MQ order is otherwise

unaffected by the additional pulse. When chemical shift

differences are present, however, spectral analysis is more

complicated, as outlined below.

Let C be the propagator (in the· basis set of the Hamiltonian)

for whatever we choose to stick in the middle of the preparation

period. The expression for multiple-quantum signal as a function

of t
1

becomes

341

=s r
j,k

L

(
!
L,

(V.66)

(a variation on Eq. V.5). Fourier transforming yields

(V.67)



or with T=tz'
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[

s = B r
j,k

r
i,m

(V.68)

(Kumar [130], Turner [13lJ, and Sinton [56J have derived much the

same result.)

In the simplest case (all that will be considered here), C

is just the propagator for a l80x pulse:

.lo -i7TI
C = SI e x S (V.69)

where S is the eigenvector matrix for~. In the spin-product
...i7TI

basis, the only non-zero elements of e x are those connecting

spin-inversion pairs, and each of these elements equals iN.

(See Appendix D for details.) In the normal ordering of spin
-i7TI

product states, e x is thus "mirror-image diagonal" with non-

zero elements running from lower left to upper right. The

elements of C are in turn given by

= r (S t) SVb <5 -
lJ,V alJ V,lJ

= iN r SlJa S-
lJ lJb

(V.70)

f
tJ



r '
)

!

When the internal Hamiltonian is purely bilinear, these

elements are zero except for the following:

when M # 0 , C - = iNa aa

when M = 0 , C - = C = ±(i)Na aa aa

(V.71a)

(V.7lb)
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where the plus sign is used for a gerade state and the minus sign

for an ungerade state. As expected,the resulting multiple~quantum

spectrum is exactly what was calculated earlier when no pi pulse

was included:

s r r Cji Pim * o[w - ~ (Wmi+wkj)J= C
km

Pjkj,k i,m

r r 0i -:" Pi 0 1= - P o [w - 2" (Wmi+wkj )J
j,k i,m ,J m m,k jk

1: 2
O(W-~j )= Pjkj,k

Now for the general case. Because S is block diagonal,

partitioned according to the value of M, C is "mirror-image

(V.72)

l~

block diagonal"--elements Cab are non-zero only when Ma = -~.

As such, a pi pulse in the evolution period will not mix MQ

orders; a given n-quantum coherence is transferred by the pulse

only to other n-quantum coherences. To be more specific, a

coherence between states with Zeeman quantum numbers Ml and M2



is transferred to coherences between states with Zeeman quantum

numbers -MI and -M2• Each transfer of coherence from Ptm to

Qkj=Pjk is manifested in the MQ spectrum by a line at the average

of the two frequencies involved, namely W n and wk'
mJt. J.

In Figs. V.25 and V.26, multiple-quantum spectra of a four-

spin C3v system are presented as a function of the chemical shift

difference, with and without a pi pulse in the evolution period.

The dipolar and J-couplings used for each simulation were those

found for acetaldehyde (see section 4.8.3), but the methyl-aldehyde

chemical shift was varied between 0 and 800 Hz. Ten equally-

spaced values of T=t 2 from 2 to 20 msec were chosen in each case

and the resulting magnitude spectra were averaged together. The

effective offset frequency ~w was 5000 Hz.

Consider first the spectra in Fig. V.25, for which no pi

pulse was included in evolution. When ~cr = 0, each MQ order is

symmetric about its center frequency (~)(~w) as expected. For

small values of ~cr, a few lines are split and some small additional

transitions appear. The intensity and spacing of most of the

initial doublets remain virtually unchanged but they are no

longer centered about ~)(~w). For larger values of ~cr, all

traces of the initial spectral symmetry disappear.

Compare these results to those of Fig. V.26, for which a

pi pulse was present in evolution. The most striking difference

is that the pi pulse preserves the reflection symmetry of each

MQ order independent of chemical shifts. When ~cr is small, two
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Figure V.25 Simulated three-pulse MQ spectra of oriented

acetaldehyde with the dipolar and J-couplings used in section

4.8.3 but various methyl-aldehyde chemical shift differences.

In each case, magnitude spectra for ten equally spaced values

of T = t 2 from 2 msec to 20 msec were averaged together. The

offset frequency is 5000 Hz, and all spectra are to the same

scale.
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tier' 0 Hz

.""••.•J'.

Figure V.26 Another set of simulated MQ spectra for oriented

acetaldehyde. The coupling constants, chemical shift differences,

and preparation times are as in Fig. V.25. For these spectra,

however, a n pulse has been included in the middle of the evolution

period. As a result, each spectral order is symmetric about

(~)(~w), where ~w is the effective TPPI offset frequency (5000 Hz

in this case). All spectra are to the same scale.
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effects occur: (1) The intensities of the initial lines change

but not the frequencies. (2) Small additional transitions appear.

For larger 1:::.0 values, this "first generation" of new lines grows

up to become comparable in magnitude to the now-shifted initial

transitions; furthermore, a second generation of additional

transitions appears.

That the frequencies in an evolution-echo experiment are

apparently unaffected to first order by a chemical shift is an

important simplification in the analysis of TPPI spectra, as

discussed by Drobny [57] and Sinton 156]. For example"in the

case of our friend the 4,4'-disubstituted biphenyl, the relatively

small chemical shift difference between "inner" and "outer"

protons can be set to zero when fitting the dipolar couplings.

(Indeed, unless the lineshape-fitting program is explicitly

tailored to an evolution-echo sequence, the symmetry of each

experimental MQ order would force the fitted chemical shift

difference to be zero.) That the intensities are affected to

first order by a chemical shift means that an accurate simulation

of a TPPI spectrum should include the effects of a pi pulse. A

knowledge of the actual chemical shifts is therefore required--

these could be estimated from isotropic spectra.

5.10 Conclusions

A good many bits have been shuffled in obtaining the results

of this chapter. Fortunately, the dozens of data files and

mounds of computer paper have revealed at least a few details
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concerning multiple-quantum intensities. First of all, the

intuitive concept of an incubation period for preparation and

detection of MQ coherence has been confirmed. For short values

of L=t2 , the growth of n-quantum intensity in a dipolar-coupled

348
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. iIi 1 T
2n- 2 for n > O.system ~s n genera proport ona to. Beyond

the incubation period (given roughly by the inverse of the average

dipolar coupling), the average intensity per transition for lower-

quantum orders is essentially constant and roughly equal to the

symmetry-adjusted statistical-limit value. The average intensities

per transition of higher-quantum orders are usually larger.

Simulations based on discrete L values are naturally most

accurate in matching experimental spectra, but when many L values

must be averaged over for large spin systems, a faster method for

estimating intensities is desirable. The statistical-limit model

provides a first approximation and is easy to calculate, but the

ultimate L average approach is much more realistic, especially

for higher-quantum orders. Of course, the ultimate L average does

have its limitations: (1) The method assumes that every sin2wbaL

2
and cos ~aL term in the

*in a time less than T2•

quantum frequencies ~a'

expression for Ip~kl is averaged to 1/2
. J

This may not be true for small single-

(2) Overlapping transition intensities

add coherently as a sum of magnitudes rather than incoherently as

a sum of complex values. (3) The efficient algorithm for

tcalculating ultimate L average intensities [~k = (A X A)jk]

is invalid for some highly-symmetric systems with vanishing
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J-couplings. (4) The effect on intensities of a pi pulse in

evolution for a system with chemical shifts cannot be included.

Nonetheless, an ultimate L average simulation can be used to

estimate the intrinsic strength of transitions, eliminating

variations due to "good" or "bad" L values. Moreover, ultimate

L averages provide an efficient way of exploring intensity as a

function of coupling parameters.

Such explorations have revealed that higher-quantum

transitions are on the average more intense than lower-quantum

transitions. This inherent selectivity for the simple three-

pulse experiment is most pronounced in highly symmetric

molecules but carries over as well to general systems with

couplings reminiscent of the symmetric case. In particular,

systems for which the average dipolar coupling is comparable to

the r.m.s. coupling have much stronger high-quantum transitions

than the statistical-limit model would predict. An example of

such a system would be a planar molecule, for which all dipolar

coupling constants have the same sign ••• there is hope yet for

the fabled seventeen- and eighteen-quantum transitions in

hexamethylbenzene.
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APPENDIX A

SOME PROPERTIES OF EXPONENTIAL OPERATORS

In the ever-evolving world of density matrix manipulation,

exponential operators are constantly rotating into view. In this

appendix, several useful properties of these beasts are presented;

details can be found in books by Louisell [132] and Haeberlen [24]

and in an article by Wilcox [133].
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1.
. ±iAThe exponent~al operator e is defined as follows:

±iAe 1 +_ iA - 1. A2 -.! A3 + ..!.. A4
- :::: 2 + 6 24 +. • . (A.l)

f A i h . . i (i') h :HA [(e±iA.) i'I s erm~t an A =A , t en e is unitary =

+iA]e . Analogous to Eq. A.l, one also defines

cos(cA) 1 1 2 A2 +J:.... 4 A4
- -"2 c 24 c..

sin(cA) - cA _ 1:. c3 A3 + ...
6

(A.2)

(A.3)

where c is a constant.
\. j

2. Simplifying an exponential operator requires a tad of

caution: L
-i(.A+B) -iA -iB -iB -iAe = e e = e e

if and only if fA,B] = O.

(A.4)

I

b



Baker-Campbe11-Hausdorff formula:

3. -iB -iAIf [A,B] +0, then e e can be expanded using the
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-iB -iA 1 i
e e = exp{-i(A+B) - I [B,A] + 12 [B,[B,A]]

i+ 12 [[B,A],A] + •.• }. (A.S)

This formula is equivalent to an average Hamiltonian expansion when

the Hamiltonian makes one discrete change during a cycle.

-i(A+B) .
There is also an expansion for e , the Zassenhaus formula:

-i(A,B) -iA -iB 1 i· i
e = e e exP{I[A,B]}exp{'3[B, [A,B]] + "6[A, [A,B]]}- ...(A.6)

If [A, [A,B]] = [B, [A,B]] = 0, then both Eqs. A. Sand A.6 simplify

to

-i(A+B) -iA -iB [A,B]/2 -iB -iA [B,AJ/2e =e e e =e e e

4. If U is a unitary matrix and

(A.7)

A = U D U
t (A.8)

I

L
then

1

L
f~ ... iA

U
-iD ut (A.9)• e = e,

j
L

I

I
L



In particular, this relation is true when U is the transformation

matrix of eigenvectors that diagonalizes A:

4

A = U D Ul D diagonal (A.IO)
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E A 9 · h . h f d I s~nce e-iD is itselfq. . ~s t en stra~g t orwar to eva uate •

diagonal with

-iD
(e . ) j j

5. Similarly, if

-iD' j= e J (A. H)

then

-iC -iA -iB iAe = e e e

A transformation of this type is often used in calculating an

effective Hamiltonian. The expansion of C is as follows:

C = B -i[A,B] - i[A,[A,B]] + i[A,IA,IA,B]]] + ".

(A.12)

(A.13)

(A.14)

n
U'
,
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APPENDIX B

VANISHING Bl TRANSITIONS IN BENZENE

B.l Introduction

A curious finding in the course of simulating the MQ spectrum

of benzene was that one of the M=O Bl states is only slightly coupled

to other states in its representation, as determined by calculating

matrix elements of I. Moreover, when the small isotropic J-couplingsx

are omitted from the calculation, this state is not coupled at all,

as if some additional symmetry operation acts to isolate the state

in its own representation. (In addition, its energy is zero when

x = XD.) The purpose of this appendix is to prove analytically

what the computer has suggested numerically.

The B
l

representation of benzene contains seven states with M

quantum numbers 2, 1, 0, 0, 0, -1, and -2. Of these, we are

interested in the three M=O states plus the M=l state ~o which they

couple via I. (States with IMI > ° form spin-inversion pairs, sox

results for the M=l eigenstate will hold also for M=-l.) Our plan

of attack will be as follows: (1) Construct the appropriate

symmetry-adapted functions for benzene. (2) Set up the 3x3 Hamiltonian

for the M=O Bl states and prove that one energy eigenvalue equals

zero. (3) Find the eigenfunction corresponding to this energy.

(4) Show that matrix elements of I involving this state are zero.x

B.2 Symmetry-Adapted Functions
/.CC~

t The projection operator [96,97] for the Bl representation of

the D6 point group can be constructed from its character table:



=[
R

(B .1)

354

r
r
r, -

The effect of this operator on spin-product states is to generate

symmetry-adapted functions ~ for each Zeeman manifold of the B
1

representation. For M=l,

~1 = ~ {I- + - + + +> + 1- + + + - +> + 1+ + - + - +>
16

- 1+ - + - + +> - 1+ - + + + -> - 1+ + + - + ->} • (B.2)

For M =- 0,

= ~ {I- - - + + +> + 1- + + + - -> + 1+ + - - - +>
v'6

- 1+ - - - + +> - 1- - + + + -> - 1+ + + - - ->}, (B.3)

= ~ {I- - + - + +> + 1+ + + + - -> + 1+ + - - + ->
lIT

+ 1+ - + - - +> + 1+ - - + + -> + 1- + + - + ->

- 1- + - + + -> - 1+ - - + - +> - 1- + + - - +>

- 1- - + + - +> - 1+ + - + - -> - 1- + - - + +>}, (B.4)



~ =~ {I- + - + - +> - 1+ - + - + ->}
"'Oc rz (B.5)
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The single M=l symmetry-adapted function is itself an eigenstate of

the benzene spin Hamiltonian. For M=O, the 3x3 block of the

Hamiltonian involving functions CPOa' CPOb' and CPOc must be

diagonalized to obtain all the energies and eigenstates.

B.3 Analyzing the Hamiltonian for M=O

Although the dipolar Hamiltonian is most easily constructed in

the simple spin-product basis set, the resulting M=O block is an

unwieldly 20x20 matrix. Hence the utility of symmetry-adapted

functions: for the B
l

representation onlya--3x3 matrix need be

considered. We must, however, use Eqs. B.3-B.5 to calculate matrix

elements in the symmetry-adapted basis set as linear combinations

of spin-product matrix elements. The result is as follows, where

the basis set is {CPOa' CPOb' CPOc} and Do' Dm, and Dp are the ortho,

meta, and para dipolar couplings:

1:K =
D 4

-2D -2D -D

(

om p

-v'2(D -2D )o m

-13 D
p,

-v2(D -2D )
o m

-4 D +2D
m p

v'6Do

-13 D

p )V6D

-6 D +6: -3D
o m p

(B.6)

I

L
Were we interested in all of the eigenstates and eigenvalues of

this matrix, we would first solve the secular equation

(B.7)

I
I~- -

for the eigenvalues A. However, the computer results indicate that
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the eigenstate of interest has energy equal to zero. To check this

analytically, we need only prove that the determinant of ~D itself

is zero. The standard formula [134] and a page of algebra suffice

to verify that this is indeed the case.

B.4 Constructing the Wayward Eigenstate

If ~O is the eigenstate corresponding to A=O, then

~D ~0 = 0 (B • 8 )

r~

Solving for ~O as a linear combination of the sYmmetry-adapted I

functions is straightforward but paper-intensive; the result is

~O = N{[I3(Do-2D +D )]¢O + [16(D -D )]¢Ob- mp a om·

+ [D ...D ]¢O }ope (B.9)

where N is the normalization constant. To prove that ~O does not

connect to other Bl states, we must show that

(B .10)

L
We first calculate the following matrix elements:

(B .11)

(B .12) ru

u



Then at last,

+ (-12)(16) (D -D )
o m

+ (13) (D -D )
o P

(B .13)
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= 0 (! ) (B .14)

Like the proverbial cheese,tlJO stands alone--an uncoupled state.

It should be stressed that for this finding to hold, J-couplings must

be absent, but there is no requirement as to the relative sizes of

D , D , and D. In particular, no hexagon ratios were assumed in
o m p

the proof.

As a final thought, I suspect that in the course of his

benzene analysis, Saupe [112] made the same observations and

performed the same manipulations.
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APPENDIX C

AN ANALYSIS OF DIPOLAR-COUPLED FOUR-SPIN SYSTEMS

C.l Introduction

In section 5.5, computed ultimate T average MQ intensities are

studied as a function of various dipolar coupling parameters, in

particular the ratio of the average dipolar coupling to the r.m.s.

value. The purpose of this appendix is to present a few analytical

expressions to complement the numerical results. For simplicity, we

focus on four-spin systems with no J-couplings and no chemical shift

differences: ~ = ~D. Moreover, to obtain expressions for N-quantum

intensity, we will invoke D4 or C3v symmetry. First, however, let

us zero in on some general properties of the M=O block of the dipolar

Hamiltonian.

C.2 A Look at the M=O Eigenstates of ~D

~D is a purely bilinear operator and as such, it commutes with

the spin-inversion operator IT (see section 4.6.3). Eigenstates of

r~ with M~O form spin-inversion pairs; we thus can skip an analysis

of any state with M < 0 since its energy and its form in the spin-product

basis can be determined from the corresponding M > 0 state. When

M=O, eigenstates of ~D are either gerade or ungerade with respect

to spin inversion:

f

r
c
r

I
L~

IT ~ = ~ (gerade)

IT W= -w (ungerade)

(C.la)

(C.lb)



359

If gerade and ungerade linear combinations of the spin-product

states are chosen as basis functions, then the 6x6 M=O block of XD

for a four-spin system can be decomposed into two 3x3 matrices. In

the gerade basis set {(I- - + +> + 1+ + - -»/12, (1- + - +> + 1+ - + -»/

12, (1- + + -> + 1+ - - +» / 12},

-p+q+r r q

X 1 ( ) (C.2)= -7; r p-q+r p
Dg

q P p+q-r

where p = D12 + D34 , q = D13 + D24 , and r = D14 + D23 · The

corresponding ungerade basis set is {(I- - + +> .. 1+ + - -» /12,

(1- + - +> - 1+ - + -»/12, (1- + + -> - 1+ - - +»/12 . Here

-p+q+r

c

b

c

p-q+r

a

b

a )

p+q-r

(C.3)

where p, q, and r are defined as above and a = D12 - D34 , b = D13 

D24 , and c = D14 - D23 • ~g and XDu can be diagonalized analytically,

unlike the original 6x6 matrix.

C.3 The Wayward State

computer studies of general four-spin systems with U = XD

indicate the presence of a "wayward" state l/J for whichw

il .

j

I
t ,

(C.4)

(C.S)



where Wi is any eigenstate of XD with IMI = 1. Furthermore 9 a look

at the computed eigenvectors reveals that W is a gerade state.
w

These results-imply that A = 0 is one solution of the secular

equation
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r
r
r

(C.7)

or that

(C.B)

A straightforward application of algebra confirms the numerical

results: Det(X
D

) is zero. The other two energy eigenvalues of
g -

X
Dg

are then easy to find:

EOg+ = - ~ [(~) + R]

where S, the sum of the six dipolar couplings, equals p+q+r and

mentioned earlier are found by solving the equation

Elements x, y, and z describing W in the gerade basis setw

S 2 1/2R = [9('2) .. 6(pq + pr + qr)]

(C.9)

(C.IO)

L
U
nu

L
L



r
r'

~

(C. 11)

After a healthy dose of algebra one finds
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r 
i (C.12)

where N is the (uninteresting) normalization factor. Note that

x+y+z a O.

To prove that ~ is uncoupled from other states is to provew

that Eq. C.6 is true. Assume ~i is an M=l state of the general

form

~i = al- + + +> + b!+ - + +> + cl+ + - +> + dl+ + + -> (C.13)

(Choosing an M=-l state would yield the same result.) A little

manipulation reveals that

<~. II Iwo > = 2
1

(x+y+z)(a+b+c+d)
J. x g

(C.l4)

i
L

where ~Og is any gerade MaO state. Clearly this matrix element

is always zero when x+y+z = 0, so ~ is indeed an uncoupled state
w

for any set of dipolar couplings. When J-couplings or chemical

shifts are introduced into the Hamiltonian, however, x+y+z ~ 0 and

~w rejoins its peers.

I have not been able to determine if the phenomenon of an

uncoupled M=O state occurs in general for larger spin systems when



x = XD. Computer results for N=6 and N=8 do not predict such a

state, although round-off errors may cloud the true situation. As

discussed in Appendix B, one of the M=O B
l

states of benzene is

uncoupled when J-couplings are removed from the Hamiltonian.

c.4 Four-Quantum Intensity for D4 Symmetry

We now wish to derive an expression for N~quantum T-averaged

intensity in a four-spin, purely dipolar-coupled system. The

general case of six random couplings would involve considerable

manipulation; instead we will focus on two special cases: D4 symmetry

in this section, C3v symmetry in the next.

The relevant Al representation for a four-spin D4 system contains

six states with Zeeman quantum numbers 2, 1, 0, 0, -1, and -2. For

couplings, we will cho9se
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r
r

f -

(C.15)

1q = - q =2
(C.16)

The sum of the couplings is then

S = 4f + 2g (C.l7)

and the resulting energies and eigenfunctions for the Al states with

M~O are as follows: n
L

L
f ~

L



r

M = 2 EZ
1

l/J2 1+ + + +>= - S =
4

M = 1 El
1 l/J = l{l_ + + +> + 1+ - + +>= - - s8 1 2

+ 1+ + - +> + 1+ + + ->}

1 1
1-M = -1 E_l

= - - s l/J ='2{ 1- - - +> + - + ->
8 -1

+ 1- + - -> + 1+ - - ->}
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M = -2 l/J = 1- - - ->-2

Group-theoretic arguments as well as computer results assign the

two M=O states as gerade. From"Eq. C.9, the energies for states

1 S
~Og+ and ~Og- are (- 4)[(2) ± R], with

(C.18)

It is not necessary to determine each of the coefficients x, y, and

z in the expansions of l/JOg+ and ~Og-; as could be guessed from

Eq. C.14, a knowledge of (x+y+z) is sufficient to obtain the four-

quantum intensity. Let s+ and s_ be the respective sums. The

appropriate symbol shuffling then yields the following:

f ~1.
Z 3 Ss = - (1 + -)+ 4 2R

2 = 2. (1 _ ~)
s 4 2R

(C.19a)

(C.19b)
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3-54

Now for the heart of the calculation. The four-quantum

coherence as a func~ion of L is given by

= SLb <l/J_2IAIl/Ja><l/Jalxl1/Jb><l/JbIAIl/J2>
a,

} -

iw" L
• e a (C.20)

After evaluating and mult::.plyl.ng the various matrix elements and

frequencies ~ _, ope fines
be....

s PI;.Q (L)
i 2 2) . (RL) . (38L)J= - 2" B [2(8+ -s_ s~n 4" s~n --e

= - 1. 8 [38 . (RL) sin (38L)] (C.2l)2R sJ.n -., 4 8~

As a chE'ck on this formula, we note that ~vhen all cO....lplings~re equal

(£=g) , WE: have

and

"

R='::'8
2

S =6 D

S P4Q(L)
i [3 sin(3ih) 9ih= - - (3 - sin(-)]2 4 4

3 (3DL)= - 2i sin 4

(C.22)

(C.23)

(C.24)

f '

6

I
6



exactly as in the previously derived Eq. V.38a with ~w = O.

The magnitude of the four-quantum transition intensity in a

t 2 = T experiment is given by
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Is4Q I = ~ [~i sin (~T) - sin (C.25)

,

L

for an even-selective sequence and half as much for a sequence in

which the phase of the second and third pulses is shifted by 45° to

permit excitation and detection of all MQ orders. Averaging the

intensity over T for this latter case yields

13
2

<I:4Q I>T [2L + 1]=-16 4R2

13 8f2 + 4fg + 3 2
= -

g
(C.26)8 2 3g24f - 4fg +

The intensity is greatest (513/8) when f=g and approaches. the non-

selective statistical-limit value of 13/16 when S .. 0 (g ::::: ~2f).

\Vhen S is exactly zero, the averaging that preceded Eq. C.26 is

invalid and ~Q = 0 for all T values.

The ultimate T average four-quantum intensity can also be

calculated using the simplified formula of section 5.4.3.1:

f
Lo

13 4 4
= 16 [1 + 4 (s+ + s _ )]

2
13 [11 +~]

= 16 2 8R2

(C.27a)
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Figure C.l The ultimate T average 4Q intensity of a four-spin

D4 system as a function of the ratio of the two unique dipolar

coupling constants. In using the "exact" formula, the effect of

degenerate single-quantum transition frequencies is specifically

included in the calculation of intensities; this complication is

ignored when using the "simplified" formula. Both curves have

the same maximum value (56/8) for the equivalent-spin case (g = f),

and both have a minimum at D= ° (g = -2f). (Actually, the exact

formula predicts zero 4Q intensity at precisely D = 0, but this dip

is not included here.) The arrow marks the statistical-limit intensity

per transition (6/16).

L



with the exact L average intensity given by Eq. C.26. For other

2 2_ ~ l4f ~ 8fg + 9g

- 8 4f2 _ 4fg + 3g2

When f=g, the ultimate L average intensity is 56/8, coinciding

367

(C.27b)

l-

r
1
L

ratios of f and g, however, the two formulas give different results,

as illustrated in Fig. C.l. The discrepancy is due to the neglect

of overlapping single-quantum frequencies in the simplified "ultimate"

expression, in particular EOg_ - El = E_l - EOg+ = R/4 and EOg+ -

El = E_l - EOg_ = -R/4. For this highly symmetric system, the

unsimplified ultimate L average expression, Eq. V.22, should therefore

be used.

Nonetheless, Eq. C.27b does provide the limiting N~quantum

intensity for general four-spin "shiftless" systems with quasi-D4

character. (A general system would not have the degenerate single-

quantum transitions that reduce the four-quantum intensity in the

true D4 case.) The minimum value of the "ultimate" intensity occurs

when ~O. This value, l18/3Z, is ~till 5.5 times.greater than· the

statistical-limit intensity for a general four-spin system.

C.5 Four-Quantum Intensit~ for C3v Symmetry

As a second example of N-quantum selectivity in a four-spin

system, consider the C3v case with X .~. As recorded in Table

IV.3, there are two representations, Al and E. Let v • D12 = D13 =

D23 be one unique dipolar coupling and w • D14 = D24 • D34 be the

other. The eight resulting Al energies and eigenvectors are displayed

in Table C.l. Note that one of the M-O states is gerade and the

other ungerade.



Table C.1

Al Energies' and Eigenvectors for a Four-Spin C3v System with. X = XD
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c
[

M Energy

2 1(v+w)
4

1 1- -(w+F)
4

Eigenvector

lP2 = 1+ + + +>

lP1+ = c+{I+ + + ->}

+ d+{I- + + +> + 1+ - + +> .+ 1+ + .;.. +>}

"\ 'j

1
1

- L;(w-F) lP
1

_ = c_{/+ + + ->}

+ d_{I- + + +> + 1+ - + +> + 1+ + - +>}

o

o

3
- -(v+w)

4

1- -(3v-w)
4

lPOg
1= - {I- - + +> + 1- + - +> + 1- + + ->
16
+ ·1+ - - +> + 1+ - + -> + 1+ + ~ ->}

= l {I- - + +> + 1- + - +> + 1- + + .->
16
- /+ - - +> - 1+ - + -> - 1+ + - ->}

-1

-1

-2

1- -(w+F)
4

1- -(w-F)4

lP_1+ = c+{/- - - +I}

+ d.{I+ - - -> + 1- + - -> + 1- - + ->}

lP = c {I- .-._- +>}
-1- -

+ d_{I+ - - -> + 1- + - -> + 1- - + ->}

lP_2 = 1- - - ->

c± = --w--
, 2

d± = w[2F ± 2F(2w-3v)]-1/2 2w-3v±F
d±

L



Equation C.27a can be used to calculate the ultimate T average

four-quantum intensity--unlike the D4 case, there is no problem with

overlap of single-quantum frequencies. The result, after heinous

algebraic thrashing, is given by

369

5
= 64 8

2 2
29w - 42vw + 45v

2 27w - l2vw + 9v
(C.28)

where c± and d± are defined in Table C.l. The averaged four-quantum

intensity is plotted as a function of v/w in Fig. C.2. When all

couplings are equal (v = w), the intensity is 58/8 as before. When

the sum of the couplings is zero (v = -w), the intensity is 0.3248,

or 5.18 times the statistical-limit value of 8/16.

A final curious fact--no matrix elements involving the ungerade

M=O state contribute to the four-quantum intensity. This is a

consequence of a more general rule: in a system without chemical

shifts, all Bab terms involving ungerade M=O states are zero in the

expression for N-quantum prepared coherence,

L
f

I

I

1
L

L
a<b

(C.29)
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Figure C.2 Tne ultimate T average 4Q intensity of a four-spin

C3v system as a function of the ratio of the two unique dipolar

coupling constants. The maximum intensity of ss/a occurs for

the equivalent-spin case ( v • w). When D= 0 (v = -w), the

intensity is O.324S. The arrow marks the statistical-limit

intensity per transition ( S/l6).
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APPENDIX D

A LOOK AT THREE-PULSE MULTIPLE-QUANTUM PROGRAMS

A number of programs have been written to analyze the ever-

timely three-pulse sequence for systems with up to eight coupled

sPin-~ nuclei, among them SPEC, SPECHO, EVOKNEVO, ULTAV, and ENSAVE.

In each, it is assumed that hard pulses are used (wI » D.. ,J . . ,0.),
~J ~J J

so that X. and Xrf can be diagonalized separately. Computation
~nternal

begins by setting up the internal Hamiltonian in the spin-product

basis set. Because the Hamiltonian commutes with I , it is blockz

I

L

diagonal with respect to the value of M, and each block is created

and diagonalized separately. For convenience, the spin-product

states are represented as numbers; the six-spin state 1+-++-->, for

example, corresponds to 101100 (base 2) or 44. Off-diagonal matrix

elements are computed by comparing two such numbers bit by bit in

search of a two-spin flip-flop. After every element of a given

Hamiltonian block has been calculated, a standard Jacobi transforma-

tion algorithm is used for diagonalization. The energies and the

eigenvector matrix are stored for later use.

When the entire Hamiltonian has been diagonalized, the. process

of symmetry labeling and sorting begins. (Naturally, a more efficient

and accurate procedure would be to establish the permutation symmetry

and irreducible representations of X. t prior to diagonalization,
~n

but the following somewhat "quick and dirty" technique works well

except in the case of accidental degeneracies.) Central to the

method is the evaluation of matrix elements of I involving eigenstatesx

of X. t' These elements are straightforward to compute: the
~n



eigenstates as expanded in the spin-product basis were obtained

during diagonalization, and appropriate portions of I in the
x

spin-product basis are easily constructed.

Because Ix belongs to the totally symmetric Al representation,

it only connects states of the same irreducible representation. As

an example, any eigenstate 1JJ. with U = "&/2 - I for which the matrix
1.

element

is non-zero must be an Al state since 1JJN/ 2 = 1+++...+> is always an.

Al state. In general, if 1JJa and 1JJb are two eigenstates differing

in M value by ±l a~d if 1<1JJ II l1JJb> I is greater than some smalla x

cut-off number q (non-zero to allow for round-off errors), then

l~a and 1JJb belong to the same irreducible representation. A smaller

value of this matrix element magnitude is not interpreted immediately

as proof of differing representations, however. Instead, only if

372

no string of

1<1JJ II 11JJ >/a x c

I <1JJ.1 I l1JJb> I
J x

eigenstates 1JJ ,1JJd ,1JJ , ... 1JJ. is found such that
c e J

~ q, I <1JJ I I Iwd> I > q, I <Wd I I Iw > I > q, •.• ,c x x e

> q are W
a

and W
b

assigned to different representations.

In this manner, eventually every eigenstate gets labeled.

Of the various irreducible representations obtained by this

procedure, only the totally symmetric one (AI) is immediately

identifiable in general. For the others, an analysis of the permuta-

tion properties of the relevant eigenstates yields the proper

designation (B
I

, E2g , etc.).

!
b

1'
L



exp{iwlt (cos~ I + sin~ I )}
x Y =

Nn exp(ieI~j)
j=l

, (D.l)

373

where N is the number of spins, e - wlt is the pulse flip angle,

and I~j is a single-spin operator:

• (D.2)

Making use of the fact that for a single spin,

we obtain

, (D.3)

N

n exp(ieI~j)

j-l

N

-n
j-l

(D.4)

(Kumar [130] and Turner [131] have used this expression analytically.)

t

L
For a 900 pulse,

N

(D.S)



A given matrix element is obtained by comparing the two direct-

product states involved spin by spin. If among the N spins, there

are k cases of <+jII~jl-j> and n cases of <-jII~j I+j >, then the

matrix element equals

374 r
n
n

(cos ~)N-(n+k) (i
2

i e)n+k i(n~k)~s n - e
2

(D.6)

For a y-pulse (~ = ~/2) this becomes

and for a 90° y-pulse we get

Using simple expressions like these, the entire 2N x 2N pulse

(D.7)

(D.B)

propagator matrix can be easily set up in the spin-product basis.

Once Ix and the pulse propagator have been calculated, they

are transformed into the basis set of the internal Hamiltonian,

becoming the matrices X and A defined in section V.2. The block-

diagonal form of the overall eigenvector matrix S is made USE' of to

minimize the number of mUltiplications. Matrices X and A are then

sorted according to irreducible representation; the result is a

direct sum of smaller matrices X(~) and A(~).

At this point, the various programs diverge according to which

spectral quantities are desired. In those programs that deal with

specific values of T • t 2 , the prepared density matrix for

f
b
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representation ~ is calculated:

(D.9)
iw. l'

e baA(~) X(lJ) A(lJ)
aj ab -ok

p(~) =
jk L

a,b

The intensity of the j .....k transition is I{P~~)(1')}21. In some

I
r
f~

programs (such as EVOKNEVO), a loop over 1'values lies within

a loop over the different representations,in other programs (such

as SPEC) this arrangement is reversed.

When ultimate l' average intensities are of interest, matrices

A(~) and X(~) are calculated:

(D. lOa)

(D .lOb)

The elements of [A(~)t X(~) A(~)] are the ultimate l' average

intensities for irreducible representation lJ.

L
(

L



APPENDIX E

PROGlW-1 NOTES

The following is a brief description of some of the computer

programs developed for double-quantum and multiple-quantum

simulation. All are written in Fortran, and most are currently VAX

compatible and stored on tape.

Spin-l Systems

DQC. A general program for computing the exact response of a three-

level system to any sort of pulse sequence. Quadrupole frequencies,

offset frequencies, pulse parameters, or time can be varied.

DQCW6. Calculates the effect of both phase-cycled cw excitation

376 f

r
r
r
I

and relaxation on a three-level system. I i operator coefficientsp,

can be followed as a function of the number of cycles or studied in

·steady state a~ a function of pulse strength or frequency. Used to

generate Figs. 3.5 through 3.14.

DQTWO. Similar to DQC, but treats a system of two dipolar-coupled

deuterons.

DQUICK. Uses the analytical expressions in Tables 11.6 and 11.7

for the evolution of a deuteron under a two-term Hamiltonian and

a user-specified range of times and VI values to quickly obtain

the best double-quantum pulse or quadrupole echo sequence for a

powder.
f
L
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GARY. A variant of DQUICK specialized for the quadrupole echo

sequence. Used to obtain the pulse parameters in Fig. 11.28.

SOS2. Generates the double~quantum powder lineshape of an axially

symmetric chemical shielding tensor, broadened by second-order

quadrupole shifts and (optionally) distorted by a DQ transfer

function (previously calculated using DQC). Used for Figs. 11.39-

11.41.

TENSE. Computes pulse-sequence-distorted chemical shielding powder

lineshapes when the chemical shielding tensor and the EFG tensor

are non-axial or non-aligned--see Figs. 11.34-11.36.

TENSORS!. Calculates two-dimensional powder spectra (single-quantum

frequencies along one axis, double-quantum frequencies along the

other), with or without pulse sequence distortion. The chemical

shielding and EFG tensors are assumed to be axial and aligned. Used

for Figs. 11.37 and 11.38.

ICoupled Spin - 2' Systems

[In most of these programs, the form of the pulse sequence is

fixed: two hard pulses in the preparation period and one in the

detection period. The exceptions are DINKPULSE and DINK2D (one

weak preparation pulse); EDSEL, MQC3, and MQC3D (user-designed

sequences); and UVIEW (no pulses involved).]
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ANGLEI. Calculates the ultimate T average intensity per transition

for each MQ order as a function of rf pulse flip angle. Used to

create Figs. V.23 and V.24. Input data from program MOLEC.

AUTOCORR. Generates the autocorrelation function of prepared

coherence (averaged over each MQ order). Input from program

EVOQUE.
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r'
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~ -

13 1heteronucleus (e.g., C instead of H). Both "carbon" and "proton"

CARBOY. Very much like EDSEL, except that one of the spins is a
(~

i 
i

pulses can be applied. Input is via program CARQUE.

DINKPULSE. Considers the use of a weak pulse for MQ preparation.

The average coherence magnitude for each MQ order is calculated as

a function of either the pulse strength or pulse length. Input

from program DINKQUE.

DINK2D. A two-dimensional analog of DINKPULSE--pulse length and

VI values can be varied simultaneously.

EDSEL. Displays the density matrix of a system with four spins or

less after a general preparation sequence of hard pulses and delays.

Input from program EDQUE.

ENSAVE. Calculates an ultimate T average by the slow and careful

method of considering all the BabBa'b' cross-terms (Eq, V.22).

Input from program MOLEC.
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ENSAVE2. A variant of ENSAVE that skips the BabBa'b' terms which

give rise solely to even-odd selection in systems without chemical

shift differences.

EVO~~EVO. Calculates the average prepared coherence magnitude per

transition and the average intensity per transition for each MQ

order as a function of L = t 2 • Used for Figs. V.4, V.7, and V.8.

Input from program EVOQUE.

EXFUNK. For each MQ order, this program compares the average

prepared coherence magnitude and the PPPI excitation function (see

ref. 126), both as a function of L. Input from EVOQUE.

MOMENTS4. Starting with a randomly chosen XD, this program computes

the ultimate L average and statistical-limit second moments and

fourth moments for each MQ order. Input from program MOM4QUE.

MQC3. Computes the time evolution of three methyl protons for a

general pulse sequence.

MQC3D. Displays the density matrix for three methyl protons after

a general pulse sequence.

NQEVO. Calculates the prepared coherence and intensity of the

N-quantum transition as a function of L = t 2 , plus its autocorrelation

function and various averaged quantities. Used to generate Figs.

V.S and V.1S-V.17. Input from program EVOQUE.
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PROBDO. This program generates a probability distribution for the

average prepared coherence magnitude of each MQ order and was used

to creates Figs. V.2l and V.22. Input from program TAUQUE.

SNAPSHOT. Displays prepared density matrices for different

representations and T values. Input from program EVOQUE.

SPEC. Generates MQ spectra with a choice of intensities: exact

values for a particular T or set of T'S, ultimate T average values,

statistical-limit values, or symmetry-adjusted statistical-limit

values. Used frequently in Chapter V. Input data supplied by

program SPEQUE.

SPECHO. A variant of SPEC with a pi pulse in the middle of

evolution--an example appears in Fig. V.26. Ultimate T average

intensities are not obtainable.

SPIFFY. Generates MQ spectra as a function of some molecular

parameter--a dipolar ~oupling, for example, or a chemical shift.

Figs. IV.lO-IV.l2 are three examples. Input via program SPIFFQUE,

SQSPEC. Calculates a standard single-quantum spectrum, as in Fig.

IV.2. Input data from program MOLEC.

TAUPOWER. For each MQ order, this program displays the ~verage

coefficient associated with different powers of T in the expansion

of the prepared density matrix (Eqs. V.lSa, V.ISb). Such information
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was used in constructing Table V.I. Input data from program

TAUPOWQUE.

T2BER. Calculates the total spectral intensity as a function of

detection time t 2 for a fixed value of the preparation time T.

Used for Fig. V.IB. Input from program T2QUE.

<SOk> = (A X A) 'k' where An-J J ~m

provided by program MOLEC.

ULTAV. Calculates ultimate T average intensities the fast way:

2 2= AR.m and XR.m = XR.m· Input data

I, ,

UVIEW. Displays eigenvectors expanded in the spin-product

basis.

WIMP76. A variant of SPEC for use with eight-spin systems when the

normal symmetry-sorting algorithm doesn't work well. This program

skips symmetry sorting altogether but then to save time computes

only the N-quantum, (N-I)-quantum and (N-2)- quantum ultimate T

average intensities.

YS. Computes second moments and ultimate T average intensities for

each MQ order. Input data from MOLEC.

General Programs and Subroutines

CATPAC. A collection of manipulation and multiplication subroutines

for complex matrices. The corresponding collection for real

matrices is entitled RATPAC.
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FILEOP. This program performs various arithmetic operations on the

elements of a data file or two such files. Specifically, it can be

used for element-by-element addition or multiplication of data

files.

HEIGEN. Diagonalizes a complex hermitian matrix using the Jacobi

transformation method. It is derived from program EIGEN of the

IBM Scientific Subroutine Package [52J.

REIGEN. Another offspring of EIGEN for diagonalizing a real symmetric

matrix.

In addition, a number of plotting programs have been written for

the Tektronix 4014 display terminal and 4662 plotter connected to

the Biodynamics VAX. These make use of various Tektronix Plot-IO

subroutines and include programs for displaying equally spaced data

points (PLOTI, PLOT16), MQ spectra (PLOTTO, WAZOO, HUNKPLOT), a

series of related MQ spectra (SPIFFPLOT), two-dimensional data

arrays (PLOT2D, PLOT2DS), spin-vector projections (JCP2), and

transfer functions (JCPTF).
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APPENDIX F

POSTSCRIPT

Lord, carry me back to the rotating frame,

Where spins fear my pulses and cringe at my name;

I'll bully them into unnatural states,

Then ponder the patterns coherence creates.

383



References

1. E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev. 69,

37 (1946).

2. F. Bloch, W.W. Hansen, and M. Packard, Phys. Rev. lQ, 474

(1946).

3. M. Goeppert-Meyer, Ann. Physik i, 273 (1931).

4. W. A. Anderson, Phys. Rev. 104, 850 (1956).

5. J. I. Kaplan and S. Meiboorn, Phys. Rev. 106, 499 (1957).

6. W. A. Anderson, R. Freeman, and C. A. Reilly, J. Chern. Phys.

~' 1518 (1963).

7. J. I. Musher, J. Chern. Phys. 40, 983 (1964).

8. K. A. McLauch1a~ and D. H. Whiffen, Proc. Chern. Soc., 144

(1962); A. D. Cohen and K. A. McLauchlan, Disc. Faraday Soc.

34, 132 (1962).

9. A. D. Cohen and D. H. Whiffen, Mol. Phys. Z, 449 (1964).

10. G. Bodenhausen, "Mu1 tip1e-Quantwn NMR" ,Progress in NMR

Spectroscopy, Ed. J. W. Ems1ey, J. Feeney, and L. H. Sutcliffe

(Pergamon, Oxford, 1981), Vol. 14, pp. 137-173.

11. T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR

(Academic, New York, 1971).

12. E. Fukushima and S. B. W. Roeder, Experimental Pulse NMR: A

Nuts and Bolts Approach (Addison-Wesley, Reading, Massachusetts,

1981).

13. A. Wokaun and R. R. Ernst, Mol. Phys. 36, 317 (1978).

14. M. E. Stoll, A. J. Vega, and R. W. Vaughan, J. Chern. Phys. 67

384 I
r
r
r

(

~ -,

L



r-"
\ -

( ,

t

L
f
t -
L;,

i
i
I
l ~

2029 (1977).

15. R. Poupko, R. L. VoId, and R. R. VoId, J. Magn. Reson. 34,

67 (1979).

16. G. Bodenhausen, R. L. VoId, and R. R. VoId, J. Magn. Reson.

11., 93 (1980).

17. J. Tang and A. Pines, J. Chem. Phys. 21,3290 (1980).

18. J. Tang, Ph.D. Thesis, University of California, Berkeley,

1981 (published as Lawrence Berkeley Laboratory report

LBL-13605).

19. J. Tang and A. Pines, J. Chem. Phys. 73, 2512 (1980).

20. A. Abragam, The Principles of Nuclear Magnetism (Oxford

University Press, London, 1961).

21. C. P. Slichter, Principles of }mgnetic Resonance (Harper and

Row, New York, 1963; Springer-Verlag, Berlin, 1978).

22. A. Carrington and A. C.McLachlan, Introduction to Magnetic

Resonance (Harper and Row, New York, 1967).

23. M. Mehring, "High Resolution NMR Spectroscopy in Solids",

NMR: Basic Principles and Progress, Ed. P. Diehl, E. Fluck,

and R. Kosfe1d (Springer-Verlag, Berlin, 1976), Vol. 11.

24. U. Haeberlen, "High Resolution NMR in Solids: Selective

Averaging", Advances in Magnetic Resonance, Supplement 1

(Academic, New York, 1976).

25. J. W. Emsley and J. C. Lindon, NMR Spectroscopy Using Liquid

Crystal Solvents (Pergamon, Oxford, 1975).

26. Reference 21, Chapter 1.

27. I. N. Levine, Quantum Chemistry (Allyn and Bacon, Boston, 1970),

385



Vol. I, Chapter 5.

28. Reference 23, Chapter 2.

29. Reference 24, Chapter 2.

30. J. F. Nye, Physical Properties of Crystals (OXford University

Press, London, 1972).

31. M. E. Rose, Elementary Theory of Angular Momentum (Wiley,

New York, 1957).

32. B. L. Silver, Irreducible Tensor Methods (Academic, New York,

1976).

33. N. Davidson, Statistical Mechanics (McGraw~Hill, New York,

1962), Chapter 12.

34. M. Sargent, M. O. Scully, and W. ~. Lamb, Laser Physics~ (Addison-

Wesley, Reading, Massachusetts, 1974), Chapter 2.

35. Reference 21, Chapter 2.

36. Reference 20, Chapter 2.

37. Reference 21, Chapter 5.
,

38. L. M. Jackman and S. Sternhell, Applications of Nuclear

Magnetic Resonance Spectroscopy in Organic Chemistry (Pergamon,

OXford, 1969).

39. Reference 23, Chapter 5.

40. D. E. Wemmer, Ph.D. Thesis, University of California, Berkeley,

1978 (published as Lawrence Berkeley Laboratory report LBL-8042).

41. Reference 20, Chapters 6 and 7.

42. R. G. Barnes and J. W. Bloom, J. Chem. Phys. 57, '3082 (1972).

43. Reference 22, Chapter 3.

44. Reference 21, Chapter 3.

386 f1
\

[J

n
n
t -

n
6



387

f _

L
r -

!

45. S. Meiboom and L. C. Snyder, Ace. Chem. Res. ~, 81 (1971).

46. P. Diehl and C. L. Khetrapa1, "NMR Studies of 1101ecules

Oriented in the Nematic Phase of Liquid Crystals", NMR: Basic

Principles and Progress, Ed. P. Diehl, E. Fluck, and R. Kosfe1d

(Springer-Verlag, Berlin, 1969), Vol. 1, pp. 1-96.

47. Reference 25, Chapter 2.

48. Reference 25, Chapter 7.

49. P. D. Buckley, K. W. Jolley, and D. N. Pinder, "Application of

Density Matrix Theory to NMR Line...Shape Calculations", Progress

in NMR Spectroscopy, Ed. J. W. Ems1ey, J. Feeney, and L. H.

Sutcliffe (Pergamon, Oxford, 1975), Vol. 10, pp. 1-26.

50. J. H. Wilkinson, The Algebraic Eigenvalue Problem (OXford

University Press, London, 1965).

51. P. Diehl, H. Ke11erha1s, and E. Lustig, "Computer Assis tance

in the Analysis of High-Resolution NMR Spectra", NMR: Basic

Principles and Progress, Ed. P. Diehl, E. Fluck, and R. Kosfe1d

(Springer-Verlag, Berlin, 1972), Vol. 6.

52. IBM System/360 Scientific Subroutine Package, Programmer's

Manual (IBM Technical Publications Dept., New York, 1967).

53. U. Haeber1en and J. S. Waugh, Phys. Rev, 175,453 (1968).

54. J. S. Waugh, "Coherent Averaging and Double Resonance in

Solids", NMR: Basic Principles and Progress, Ed.• P. Diehl,

E. Fluck, and R. Kosfe1d (Springer~Ver1ag, Berlin, 1976),

Vol. 13, pp. 23-30.

55. W. S. Warren, Ph.D. Thesis, University of California, Berkeley,

1980 (published as Lawrence Berkeley Laboratory report LBL-11885).



388

56. S. W. Sinton, Ph.D. Thesis, University of California, Berkeley,

1981 (published as Lawrence Berkeley Laboratory report LBL-13604).

57. G. P. Drobny, Ph.D. Thesis, University of California, Berkeley

(1982).

58. D. P. Weitekamp, Ph.D. Thesis, University of California,

Berkeley (1982).

59. R. E. Eckman, Ph.D. Thesis, University of California, Berkeley

(1982) •.

60. D. R. Hofstadter, Scientific American 245(5), 22 (Nov., 1981).

61. R. P. Feynman, F. L. Vernon, and R. W. He11warth, J, App1. Phys.

28, 49 (1957).

62. H. Hatanaka, T, Terao, and T, Hashi, J. Phys, Soc, Japan 39, 835

(1975); H. Hatimaka and To Hashi, J. Phys. Soc. Japan 39,1139

(1975); H. Hatanaka, T. Ozawa, and T. Hashi, J. Phys. Soc. Japan

42, 2069 (1977); H. Hatanaka and T, Hashi, Physics Letters 67A,

183 (1978); H. Hatanaka and T. Hashi, Phys. Rev. B 21, 2677

(1980); lI. Hatanaka and T. Hashi, J. Phys. Soc. Japan 50, 3629

(1981).

63a. S.Vegop,T.W.Shattuck, and A. Pines, Phys. Rev. Lett, 37,43

(1976).

63b. T. W. Shattuck, Ph.D. Thesis, University of California, Berkeley,

1976 (published as Lawrence Berkeley Laboratory report LBL-5458).

64. A. Pines, S. Vega, ~. J. Ruben, T. W. Shattuck, and D. E. Wemmer,

Proc. IV Ampere Int. Summer School, Pula, Yugoslavia (1976).

65. S. Vega and A. Pines, J. Chern. Phys. ~, 5624 (1977),

66. S. Vega, J. Chern. Phys. 68, 5518 (1978).
! .
I< :

t:J

I

I
L



67.

68.

69.

70.

A. Wokaun and R. R. Ernst, J. Chern. Phys. 67, 1752 (1977).

D. G. Gold and E. L. Hahn, Phys. Rev. A 16, 324 (1977); D. G.

Gold, Ph.D. Thesis, University of California, Berkeley (1978).

R. G. Brewer and E. L. Hahn, Phys. Rev. A 11, 1641 (1975).

S. Hsi, H. Zimmermann, and Z. Luz, J~ Chern. Phys. 69, 4126

(1978) .

389

L

71. G. L. Hoatson and K. J. Packer, Mol. Phys. 40, 1153 (1980).

72. M. E. Stoll, E. K. Wolff, and M. Mehring, Phys. Rev. A 17,

1561 (1978); E. K. Wolff and M. Mehring, Phys. Lett. 70A, 125

(1979); M. Mehring, E. K. Wolff, and M. E. Stoll, J. Magn.

Reson. lI, 475 (1980).

73. P. L. Corio, Structure of High-Resolution NMR Spectra (Academic,

New York, 1966).

74. S. Vega, J. Chern. Phys. 63, 3769 (1975).

75. J. Jeener and P. Broekaert, Phys. Rev. 157, 232 (1967).

76. G. Drobny, private communication.

77. M. Bloom, J. H. Davis, and M. I. Va1ic, Can. J. Phys. 58, 1510

(1980).

78. E. O. Brigham, The Fast Fourier Transform (Prentice~Ha11,

Englewood Cliffs, New Jersey, 1974).

79. H. W. Spiess, H. Zimmermann, and U. Haeber1en, Chern. Phys. 12,

123 (1976).

80. T. Chiba, J. Chern. Phys. 39, 947 (1963).

81. M. Linder, A. Hoehener, and R. R. Ernst, J. Chern. Phys. fl,

4959 (1980).

82. S. Yatsiv, Phys. Rev. 113, 1522 (1959).



390

83. Reference 25, Chapter 1.

84. A. Saupe, Z. Naturforsch. 19a, 161 (1964).

85. Reference 25, Chapter 4.

86. L. C. Snyder and S. Meiboom, J. Chern. Phys. 44, 4057 (1966).

87. J. W. Emsley· and G. R. Luckhurst, Mol. Phys. 41, 19 (1980).

88. E. E. Burnell and C. A. deLange, J. Magn. Reson. 39, 461 (1980).

89. E. E. Burnell and C. A. deLange, Chern. Phys. Lett. 76, 268 (1980).

90. A. Saupe and G. Englert, Phys. Rev. Lett. l!, 462 (1963); G.

Englert and A. Saupe, Z. Naturforsch. 19a, 172 (1964).

91 •. Reference 25, Chapter 8.

92. C. L. Khetrapal and A. C. Kunwar, "NMR Studies of Molecules

Oriented in Thermotropic Liquid Crystals," Advances in Magnetic

Resonance, Ed. J. S. Waugh (Academic, New York, 1977), Vol. 9,

pp. 302-422.

93. S. Sinton and A. Pines, Chem. Phys. Lett. ~' 263 (1980).

94. W. Niederberger, P. Diehl, and L. Lunazzi, Uol. Phys. 12., 571

(1973).

95. W. S. Warren and A. Pines, J. Am. Chem. Soc. 103, 1613 (1981).

96. M.'Tinkham, Group Theory.and Quantum Uechanics (McGraw-lUll,

New York, 1964).

97. D. S. Schonland, Molecular Symmetry: An Introduction to Group

Theory and its Uses in Chemistry (Van Nostrand, London, 1965).

98. E. B. Wilson, J. Chem. Phys. 27,60 (1957).

99. R. G. Jones, "The Use of Symmetry in Nuclear Magnetic Resonance,"

NMR: Basic Principles and Progress, Ed. P. Diehl, E. Fluck, and

R. Kosfeld (Springer-Verlag, Berlin, 1969), Vol, I, pp. 97-174.

r
u
n
nt =

'I -



r .
(

391

100. W. P. Aue, E. Bartho1di, and R. R. Ernst, J. Chern. Phys. 64,

2229 (1976).

101. A. Pines, D. Wemmer, J. Tang, and S. Sinton, Bull. Am. Phys.

Soc. 23, 21 (1978).

102. W. S. Warren, S. Sinton, D. P. Weitekamp, and A. Pines, Phys.

Rev. Lett. 43, 1791 (1979).

103. W. S. Warren, D. P. Weitekamp, and A. Pines, J. Chern. Phys. ]2,

2084 (1980); W. S. Warren, D. P. Weitekarnp, and A. Pines, J.

Magn. Reson. 40, 581 (1980); W. S. Warren and A. Pines,

J. Chern. Phys. ~, 2808 (1981).

104.

105.

106.

107.

108.

109.

G. Drobny, A. Pines, S. Sinton, W. S. Warren, and D. p. Weitekamp,

Phil. Trans. R. Soc. Lond. A 299, ·585 (1981).

E. L. Hahn, Phys. Rev. 80, 580 (1950).

D. P. Weitekamp, private communication.

H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).

A. Wokaun and R. R. Ernst, Chern. Phys. Lett. 52, 407 (1977).

G. Drobny, A. Pines, S. Sinton, D. P. Weitekarnp, and D. Wemmer,

Faraday Symp. Chern. Soc. 13, 49 (1979).

r
L

I

I ~
I

110. P. L. Corio, Structure of High-Resolution NMR Spectra (Academic,

New York, 1966).

111. J. R. Garbow, private communication.

112. A. Saupe, Z. Naturforsch. 20a, 572 (1965).

113. R. N. Bracewell, The Fourier Transform and its Applications

2nd Ed., (McGraw-Hill, New York, 1978).

114. A. A. Mauds1ey, A. Wokaun, and R. R. Ernst, Chern. Phys. Lett.

E., 9 (1978).



115. A. Bax, P. G. deLong, A. F. Meh1kopf, and J. Smidt. Chern, Phys.

Lett. 69. 567 (1980).

116. J. B. Murdoch, W. S. Warren, D. P. Weitekamp, and A. Pines,

J. Magn. Reson. (submitted).

117. H. S. Gutowsky, D. W. McCall, and C. p. S1ichter, J, Chern.

Phys. 21, 279 (1953).

118. P. Diehl, H. Bosiger, and H. Zimmermann, J. Magn. Reson. 33.

113 (1979).

119. D. P. Weitekamp, J. R. Garbow, J. B. Murdoch, and A. Pines,

J. Am. Chern. Soc • .!..91, 3578 (1981).

120. Reference 25, Chapter 3.

121. J. W. Ems ley , J. C. Lindon, and J. Tabony. J. Chern. Soc.,

Faraday II 2!., 586 (1975).

122. W. S. Warren. J. B. Murdoch. and A. Pines, J. Magn. Reson.

(submitted) .

392
P
i

r
L

f '
l
i -

\ -

123. W. K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. B 1, 684 (1971).

124. Y. S. Yen, private communication.

125. Y. S. Yen, J. Tang. J. B. Murdoch. and A. Pines, to be published.

126. D. P. Weitekamp, J. R. Garbow, and A. Pines, J.Magn. Reson.

46, 529 (1982).

127. C. S. Yannoni, J. Am, Chem. Soc. 92, 5237 (1970).
,~

128. D. Middleton, An Introduction to Statistical Communication

Theory, n1cGraw-Hill, New York, 1960).

129. F. Reif, Fundamentals of Statistical and Thermal Physics,

(McGraw-Hill, New York, 1965).

130. A. Kumar, J. Mag. Reson. 12, 227 (1978).

131. D. L. Turner, J, Magn. Reson. 46, 213 (1982).

, -
!
L

r
U





"Better down the road without that load. 1I

Neil Young

[

r .

~ =I J

G




